

Exelon Generation Company, LLC

Braidwood Station 35100 South Route 53, Suite 84 Braceville, IL 60407-9619

www.exeloncorp.com

December 10, 2015 BW150112

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

> Braidwood Station, Units 1 and 2 Facility Operating License Nos. NPF-72 and NPF-77 NRC Docket Nos. STN 50-456 and 50-457

- Subject: Braidwood Unit 1 Pressure and Temperature Limits Reports (PTLRs), Revision 8 Braidwood Unit 2 - Pressure and Temperature Limits Reports (PTLRs), Revision 7
- Reference: Letter from U.S. NRC to B.C. Hanson (Exelon Generation Company, LLC), "Issuance of Amendments to Utilize WCAP-16143-P, Revision 1, "Reactor Vessel Closure Head/Vessel Flange Requirements Evaluation for Byron/Braidwood Units 1 and 2," dated October 16, 2014," dated October 28, 2015

The purpose of this letter is to transmit the Pressure and Temperature Limits Reports (PTLRs) for Braidwood Station, Units 1 and 2 in accordance with Technical Specification (TS) 5.6.6, "Reactor Coolant System (RCS) Pressure and Temperature Limits Report (PTLR)."

The Braidwood Unit 1 and Unit 2 PTLRs were revised to update the reference to WCAP-16143-P, "Reactor Vessel Closure Head/Vessel Flange Requirements Evaluation for Byron/Braidwood Units 1 and 2," from Revision 0 to Revision 1 for consistency with the referenced Technical Specification Amendment.

Please direct any questions you may have regarding this matter to Mr. Phillip Raush, Regulatory Assurance Manager, at (815) 417-2800.

Sincerely

Marri Marchionda-Palmer Site Vice President Braidwood Station

Attachments: 1. Braidwood Unit 1 Pressure Temperature Limits Report (PTLR), Revision 8 2 Braidwood Unit 2 Pressure Temperature Limits Report (PTLR), Revision 7

ATTACHMENT 1

Braidwood Unit 1 Pressure and Temperature Limits Report (PTLR), Revision 8

BRAIDWOOD UNIT 1

PRESSURE AND TEMPERATURE LIMITS REPORT (PTLR)

Revision 8

I

Table of Contents

Section		Page
1.0	Introduction	1
2.0	RCS Pressure and Temperature Limits	1
	2.1 RCS Pressure and Temperature (P/T) Limits (LCO 3.4.3)	1
3.0	Low Temperature Over Pressure Protection and Boltup	7
	3.1 LTOP System Setpoints (LCO 3.4.12)	7
	3.2 LTOP Enable Temperature	7
	3.3 Reactor Vessel Boltup Temperature (Non-Technical Specification)	7
4.0	Reactor Vessel Material Surveillance Program	10
5.0	Supplemental Data Tables	12
6.0	References	18

List of Figures

Figure		Page
2.1	Braidwood Unit 1 Reactor Coolant System Heatup Limitations (Heatup Rate of 100°F/hr) Applicable for 32 EFPY (Without Margins for Instrumentation Errors)	3
2.2	Braidwood Unit 1 Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0, 25, 50, and 100°F/hr) Applicable for 32 EFPY (Without Margins for Instrumentation Errors)	4
3.1	Braidwood Unit 1 Nominal PORV Setpoints for the Low Temperature Overpressure Protection (LTOP) System Applicable for 32 EFPY (Includes Instrumentation Uncertainty)	8

List of Tables

Table		Page
2.1a	Braidwood Unit 1 Heatup Data Points at 32 EFPY (Without Margins for Instrumentation Errors)	5
2.1b	Braidwood Unit 1 Cooldown Data Points at 32 EFPY (Without Margins for Instrumentation Errors)	6
3.1	Data Points for Braidwood Unit 1 Nominal PORV Setpoints for the LTOP System Applicable for 32 EFPY (Includes Instrumentation Uncertainty)	9
4.1	Braidwood Unit 1 Surveillance Capsule Withdrawal Summary	11
5.1	Braidwood Unit 1 Calculation of Chemistry Factors Using Surveillance Capsule Data	13
5.2	Braidwood Unit 1 Reactor Vessel Material Properties	14
5.3	Summary of Braidwood Unit 1 Adjusted Reference Temperature (ART) Values at 1/4T and 3/4T Locations for 32 EFPY	15
5.4	Braidwood Unit 1 Calculation of Adjusted Reference Temperatures (ARTs) at 32 EFPY at the Limiting Reactor Vessel Material, Nozzle Shell Forging 5P-7016	16
5.5	RT _{PTS} Calculation for Braidwood Unit 1 Beltline Region Materials at EOL (32 EFPY)	17

1.0 Introduction

This Pressure and Temperature Limits Report (PTLR) for Braidwood Unit 1 has been prepared in accordance with the requirements of Braidwood Technical Specification (TS) 5.6.6, "Reactor Coolant System (RCS) Pressure and Temperature Limits Report (PTLR)". Revisions to the PTLR shall be provided to the NRC after issuance.

The Technical Specifications (TS) addressed in this report are listed below:

LCO 3.4.3 RCS Pressure and Temperature (P/T) Limits; and LCO 3.4.12 Low Temperature Overpressure Protection (LTOP) System.

2.0 RCS Pressure and Temperature Limits

The PTLR limits for Braidwood Unit 1 were developed using a methodology specified in the Technical Specifications. The methodology listed in WCAP-14040-NP-A, Revision 2 (Reference 1) was used with the following exceptions:

- a) Optional use of ASME Code Section XI, Appendix G, Article G-2000, 1996 Addenda,
- b) Use of ASME Code Case N-640, "Alternative Reference Fracture Toughness for Development of P-T Limit Curves, Section XI, Division 1",
- c) Use of ASME Code Case N-588, "Alternative to Reference Flaw Orientation of Appendix G for Circumferential Welds in Reactor Vessel, Section XI, Division 1", and
- d) Elimination of the flange requirements documented in WCAP-16143-P.

- 3

These exceptions to the methodology in WCAP 14040-NP-A, Revision 2 have been reviewed and accepted by the NRC in References 2, 8, 9 and 10.

WCAP 15364, Revision 2 (Reference 11), provides the basis for the Braidwood Unit 1 P/T curves, along with the best estimate chemical compositions, fluence projections and adjusted reference temperatures used to determine these limits. WCAP-16143-P, Reference 12, documents the technical basis for the elimination of the flange requirements.

- 2.1 RCS Pressure and Temperature (P/T) Limits (LCO 3.4.3)
- 2.1.1 The RCS temperature rate-of-change limits defined in WCAP-15364, Revision 2 (Reference 11) are:
 - a. A maximum heatup of 100°F in any 1-hour period,
 - b. A maximum cooldown of 100°F in any 1-hour period, and

- c. A maximum temperature change of less than or equal to 10°F in any 1-hour period during inservice hydrostatic and leak testing operations above the heatup and cooldown limit curves.
- 2.1.2 The RCS P/T limits for heatup, inservice hydrostatic and leak testing, and criticality are specified by Figure 2.1 and Table 2.1a. The RCS P/T limits for cooldown are shown in Figure 2.2 and Table 2.1b. These limits are defined in WCAP-15364, Revision 2 (Reference 11). Consistent with the methodology described in Reference 1 and exceptions noted in Section 2.0, the RCS P/T limits for heatup and cooldown shown in Figures 2.1 and 2.2 are provided without margins for instrument error. These limits were developed using ASME Boiler and Pressure Vessel Code Section XI, Appendix G, Article G2000, 1996 Addenda. The criticality limit curve specifies pressure-temperature limits for core operation to provide additional margin during actual power production as specified in 10 CFR 50, Appendix G.

The P/T limits for core operation (except for low power physics testing) are that the reactor vessel must be at a temperature equal to or higher than the minimum temperature required for the inservice hydrostatic test, and at least 40°F higher than the minimum permissible temperature in the corresponding P/T curve for heatup and cooldown.

MATERIAL PROPERTY BASIS '

LIMITING MATERIAL: NOZZLE SHELL FORGING 5P-7016 LIMITING ART VALUES AT 32 EFPY: 1/4T, 48°F 3/4T, 35°F

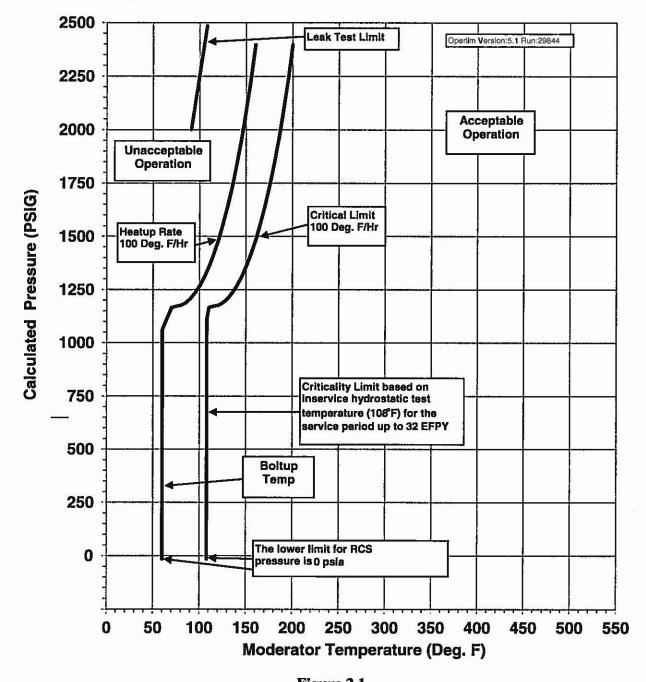


Figure 2.1 Braidwood Unit 1 Reactor Coolant System Heatup Limitations (Heatup Rate of 100°F/hr) Applicable for 32 EFPY (Without Margins for Instrumentation Errors)

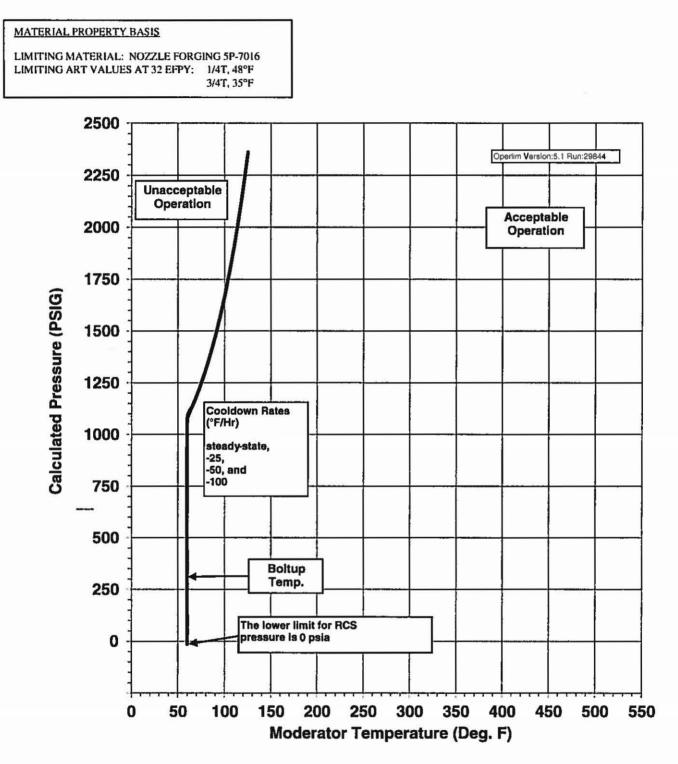


Figure 2.2 Braidwood Unit 1 Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0, 25, 50 and 100°F/hr) Applicable for 32 EFPY (Without Margins for Instrumentation Errors)

Table 2.1a Braidwood Unit 1 Heatup Data Points at 32 EFPY (Without Margins for Instrumentation Errors)

		Heatu	p Curve			
100 F	100 F Heatup		icality imit	Leak Test Limit		
T (°F)	P (psig)	T (°F)	P (psig)	T (°F)	P (psig)	
60	Note 1	108	Note 1	91	2000	
60	1064	108	1114	108	2485	
65	1114	110	1166			
70	1166	115	1172			
75	1172	120	1176			
80	1176	125	1188			
85	1188	130	1207			
90	1207	135	1234			
95	1234	140	1267			
100	1267	145	1308			
105	1308	150	1357			
110	1357	155	1414			
115	1414	160	1479			
120	1479	165	1554			
125	1554	170	1638			
130	1638	175	1732			
135	1732	180	1838			
140	1838	185	1956			
145	1956	190	2088			
150	2088	195	2235			
155	2235	200	2397			
160	2397					

Note 1: The Minimum acceptable pressure is 0 psia

Table 2.1b

Braidwood Unit 1 Cooldown Data Points at 32 EFPY (Without Margins for Instrumentation Errors)

			Cooldov	vn Curve	s			
Steady State		25 °F Cooldown		50 °F Cooldown		100 °F Cooldown		
T (°F)	P (psig)	T (°F)	P (psig)	T (°F)	P (psig)	T (°F)	P (psig)	
60	Note 1	60	Note 1	60	Note 1	60	Note 1	
60	1082	60	1078	60	1078*	60	1078*	
65	1133	65	1133	65	1133	65	1133	
70	1188	70	1188	70	1188	70	1188	
75	1250	75	1250	75	1250	75	1250	
80	1318	80	1318	80	1318	80	1318	
85	1393	85	1393	85	1393	85	1393	
90	1476	90	1476	90	1476	90	1476	
95	1568	95	1568	95	1568	95	1568	
100	1669	100	1669	100	1669	100	1669	
105	1781	105	1781	105	1781	105	1781	
110	1905	110	1905	110	1905	110	1905	
115	2042	115	2042	115	2042	115	2042	
120	2194	120	2194	120	2194	120	2194	
125	2361	125	2361	125	2361	125	2361	

* Refer to Reference 13

Note 1: The Minimum acceptable pressure is 0 psia

3.0 Low Temperature Overpressure Protection and Boltup

This section provides the Braidwood Unit 1 power operated relief valve lift settings, low temperature overpressure protection (LTOP) system arming temperature, and minimum reactor vessel boltup temperature.

3.1 LTOP System Setpoints (LCO 3.4.12)

The power operated relief valves (PORVs) shall each have maximum lift settings in accordance with Figure 3.1 and Table 3.1. These limits are based on References 3 and 4.

The LTOP setpoints are based on P/T limits which were established in accordance with 10 CFR 50, Appendix G without allowance for instrumentation error and in accordance with the methodology described in Reference 1. The LTOP PORV nominal lift settings shown in Figure 3.1 and Table 3.1 account for appropriate instrument error.

3.2 LTOP Enable Temperature

Braidwood Unit 1 procedures governing the heatup and cooldown of the RCS require the arming of the LTOP System for RCS temperature of 350°F and below and disarming of LTOP for RCS temperature above 350°F.

Note that the last LTOP PORV segment in Table 3.1 extends to 400°F where the pressure setpoint is 2335 psig. This is intended to prohibit PORV lift for an inadvertent LTOP system arming at power.

3.3 Reactor Vessel Boltup Temperature (Non-Technical Specification)

The minimum boltup temperature for the Reactor Vessel Flange shall be $\ge 60^{\circ}$ F. Boltup is a condition in which the Reactor Vessel head is installed with tension applied to any stud, and with the RCS vented to atmosphere.

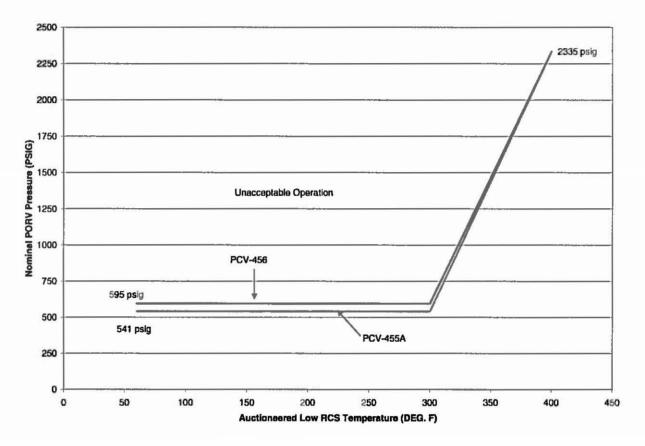


Figure 3.1 Braidwood Unit 1 Nominal PORV Setpoints for the Low Temperature Overpressure Protection (LTOP) System Applicable for 32 EFPY (Includes Instrumentation Uncertainty)

Table 3.1 Data Points for Braidwood Unit 1 Nominal PORV Setpoints for the LTOP System Applicable for 32 EFPY (Includes Instrumentation Uncertainty)

PCV-455A		PCV-456 (ITY-0413P)					
(ITY-0413M)							
AUCTIONEERED LOW	RCS PRESSURE	AUCTIONEERED LOW	RCS PRESSURE				
RCS TEMP. (DEG. F)	(PSIG)	RCS TEMP. (DEG. F)	(PSIG)				
60	541	60	595				
300	541	300	595				
400	2335	400	2335				

Note: To determine nominal lift setpoints for RCS Pressure and RCS Temperatures greater than 300°F, linearly interpolate between the 300°F and 400°F data points shown above. (Setpoints extend to 400°F to prevent PORV liftoff from an inadvertent LTOP system arming while at power.)

4.0 Reactor Vessel Material Surveillance Program

The pressure vessel material surveillance program (Reference 5) is in compliance with Appendix H to 10 CFR 50, "Reactor Vessel Radiation Surveillance Program." The material test requirements and the acceptance standard utilize the reference nil-ductility temperature, RT_{NDT} , which is determined in accordance with ASME Boiler and Pressure Vessel Code Section III, NB-2331. The empirical relationship between RT_{NDT} and the fracture toughness of the reactor vessel steel is developed in accordance with Appendix G, "Protection Against Non-Ductile Failure," to Section XI of the ASME Boiler and Pressure Vessel Code. The surveillance capsule removal schedule meets the requirements of ASTM E185-82.

The third and final reactor vessel material irradiation surveillance specimens (Capsule W) have been removed and analyzed to determine changes in material properties. The surveillance capsule testing has been completed for the original operating period. The remaining three capsules, V, Y, and Z, were removed and placed in the spent fuel pool to avoid excessive fluence accumulation should they be needed to support life extension. The removal summary is provided in Table 4.1.

	.Table 4.1									
	Braidwood Unit 1 Capsule Withdrawal Summary ^(a)									
Capsule	Capsule Location	Lead Factor	Withdrawal EFPY ^(b)	Fluence (n/cm ² , E>1.0 MeV)						
U	58.5°	4.02	1.16	0.388 x 10 ¹⁹						
x	238.5°	4.06	4.30	1.17 x 10 ¹⁹						
w	121.5°	4.05	7.79	1.98 x 10 ¹⁹						
Z ^(c)	301.5°	4.09	12.01 (EOC 10)	2.79 x 10 ¹⁹						
V ^(c)	61.0°	3.92	17.69 (EOC 14)	3.71 x 10 ¹⁹						
Y ^(c)	241.0°	3.81	12.01 (EOC 10)	2.60 x 10 ¹⁹						

Notes:

(a) Source document is CN-AMLRS-10-7 (Reference 14), Table 5.7-3.

(b) Effective Full Power Years (EFPY) from plant startup.

(c) Standby Capsules Z, V, and Y were removed and placed in the spent fuel pool. No testing or analysis has been performed on these capsules. If license renewal is sought, one of these standby capsules may need to be tested to determine the effect of neutron irradiation on the reactor vessel surveillance materials during the period of extended operation.

5.0 Supplemental Data Tables

The following tables provide supplemental information on reactor vessel material properties and are provided to be consistent with Generic Letter 96-03. Some of the material property values shown were used as inputs to the P/T limits.

Table 5.1 shows the calculation of the surveillance material chemistry factors using surveillance capsule data.

Table 5.2 provides the reactor vessel material properties table.

Table 5.3 provides a summary of the Braidwood Unit 1 adjusted reference temperature (ART) values at the 1/4T and 3/4T locations for 32 EFPY.

Table 5.4 shows the calculation of ARTs at 32 EFPY for the limiting Braidwood Unit 1 reactor vessel material, i.e. weld WF-562 (HT # 442011, Based on Surveillance Capsules U and X Data).

Table 5.5 provides the RT_{PTS} calculation for Braidwood Unit 1 Beltline Region Materials at EOL (32 EFPY), (Reference 7).

Table 5.1										
Braidwood Unit 1 Calculation of Chemistry Factors Using Surveillance Capsule Data ^(a)										
Material	Capsule	Capsule f ^(b) (n/cm ² , E > 1.0 MeV)	FF ^(c)	ΔRT _{NDT} ^(b) (°F)	FF*∆RT _{NDT} (°F)	FF ²				
Lower Shell	U	0.388 x 10 ¹⁹	0.738	5.78	4.26	0.54				
Forging	x	1.17 x 10 ¹⁹	1.044	38.23	39.91	1.09				
(Tangential)	w	1.98 x 10 ¹⁹	1.186	24.14	28.64	1.41				
Lower Shell	U	0.388 x 10 ¹⁹	0.738	0.0 ^(d)	0.00	0.54				
Forging	x	1.17 x 10 ¹⁹	1.044	28.75	30.01	1.09				
(Axial)	w	1.98 x 10 ¹⁹	1.186	37.11	44.03	1.41				
		i.		SUM:	146.85	6.08				
	($CF_{LS Forging} = \sum (FF * \Delta RT_N)$	_{iDT}) + Σ(F	F^2) = (146.85)	+ (6.08) = 24.1°	7				
Braidwood Unit 1	U	0.388 x 10 ¹⁹	0.738	17.06	12.59	0.54				
Surveillance Weld	x	1.17 x 10 ¹⁹	1.044	30.15	31.47	1.09				
Material	w	1.98 x 10 ¹⁹	1.186	49.68	58.94	1.41				
Braidwood Unit 2	U	0.388 x 10 ¹⁹	0.738	0.0 ^(d)	0.00	0.54				
Surveillance Weld	x	1.15 x 10 ¹⁹	1.039	26.3	27.33	1.08				
Material	w	2.07 x 10 ¹⁹	1.198	23.9	28.63	1.44				
	SUM: 158.96									
	C	$F_{Weld Metal} = \sum (FF * \Delta RT)$	$(V_{NDT}) + \sum (F_{NDT})$	F^2) = (158.96)	+ (6.10) = 26.1°	F				

Notes:

Source document is CN-AMLRS-10-7 (Reference 14), Table 5.2-1. (a)

 $f = fluence; \Delta RT_{NDT}$ values are the measured 30 ft-lb shift values taken from Reference 6. FF = fluence factor = $f^{(0.28 - 0.10 + \log f)}$ (b)

(c)

Measured ΔRT_{NDT} values were determined to be negative, but physically a reduction should not occur; therefore, conservative values of zero are used. (d)

Table 5.2								
Braidwood Unit 1 Reactor Vessel Material Properties								
Material Description	Cu (%)	Ni (%)	Chemistry Factor	Initial RT _{NDT} (°F) ^(a)				
Closure Head Flange Heat # 5P7381/3P6406	0.11	0.67		-20				
Vessel Flange Heat # 122N357V		0.77	-	-10				
Nozzle Shell Forging * Heat # 5P-7016	0.04	0.73	26.0°F ^(b)	10				
Intermediate Shell Forging * Heat # [49D383/49C344]-1-1	0.05	0.73	31.0°F ^(b)	-30				
Lower Shell Forging * Heat # [49D867/49C813]-1-1	0.05	0.74	31.0°F ^(b) 24.1°F ^(c)	-20				
Circumferential Weld * (Intermediate Shell to Lower Shell) WF-562 (HT# 442011)	0.03	0.67	41.0°F ^(b) 26.1°F ^(c)	40				
Upper Circumferential Weld * (Nozzle Shell to Intermediate Shell) WF-645 (HT# H4498)	0.04	0.46	54.0°F ^(b)	-25				

* Beltline Region Materials

a) The Initial RT_{NDT} values for the plates and welds are based on measured data.

b) Chemistry Factor calculated for Cu and Ni values per Regulatory Guide 1.99, Rev. 2, Position 1.1.

c) Chemistry Factor calculated for Cu and Ni values per Regulatory Guide 1.99, Rev. 2, Position 2.1.

.Table 5.3								
Summary of Braidwood Unit 1 Adjusted Reference Temperature (ART) Values at 1/4T and 3/4T Locations for 32 EFPY ⁽ⁿ⁾								
32 EFPY								
Reactor Vessel Material	Surface Fluence (n/cm2, E>1.0 MeV)	1/4T ART (°F)	3/4T ART (°F)					
Nozzle Shell Forging	0.586 x 10 ¹⁹	47	34					
Intermediate Shell Forging	1.76 x 10 ¹⁹	33	15					
Lower Shell Forging	1.76 x 10 ¹⁹	43	25					
→Using credible surveillance data	1.76 x 10 ¹⁹	21	15					
Nozzle to Intermediate Shell Forging Circ. Weld Seam (Heat # H4498)	0.586x 10 ¹⁹	52	25					
Intermediate to Lower Shell Forging Circ. Weld Seam (Heat # 442011)	1.70 x 10 ¹⁹	122	99					
→Using credible surveillance data	1.70 x 10 ¹⁹	93	78					

Notes:

(a) The source document containing detailed calculations is CN-AMLRS-10-7 (Reference 14), Tables 5.3.1-1 and 5.3.1-2. The ART values summarized in this table utilize the most recent fluence projections and materials data, but were not used in development of the P/T limit curves. See Figures 2.1 and 2.2 of this PTLR for the ART values used in development of the P/T limit curves.

.Table 5.4							
Braidwood Unit 1 Calculation of Adjusted Reference Temperatures (ARTs) at 32 EFPY at the Limiting Reactor Vessel Material, Nozzle Shell Forging 5P-7016							
Parameter	Va	lues					
Operating Time	32 E	EFPY					
Location ^(a)	1/4T ART(°F)	3/4T ART(°F)					
Chemistry Factor, CF (°F)	26.0	26.0					
Fluence(f), n/cm^2 (E>1.0 Mev) ^(b)	3.65 x 10 ¹⁸	1.32 x 10 ¹⁸					
Fluence Factor, FF	0.772	0.475					
$\Delta RT_{NDT} = CFxFF(^{\circ}F)$	18.8	12.4					
Initial RT NDT., I(°F)	10	10					
Margin, M (°F)	18.8	12.4					
ART= I+(CF*FF)+M,°F per RG 1.99, Revision 2	48	35					

(a) The Braidwood Unit 1 reactor vessel wall thickness is 8.5 inches at the beltline region. (b) Fluence f, is based upon f_{surf} (E > 1.0 Mev) = 6.08 x 10¹⁸ at 32 EFPY (Reference 11).

Table 5.5										
RT _{PTS} Calculation for Braidwood Unit 1 Beltline Region Materials at EOL (32 EFPY) ^(a,b)										
Reactor Vessel Material	R.G. 1.99, Rev. 2 Position	CF (°F)	Fluence (n/cm², E>1.0 MeV)	FF	IRT _{NDT} (c) (°F)	ΔRT _{NDT} (°F)	σ _u ^(c) (°F)	σ _Δ ^(d) (°F)	Margin (°F)	RT _{PTS} (°F)
Nozzle Shell Forging	1.1	26	0.586 x 10 ¹⁹	0.8504	10	22.1	0	11.1	22.1	54
Intermediate Shell Forging	1.1	31	1.76 x 10 ¹⁹	1.1554	-30	35.8	0	17	34	40
Lower Shell Forging	1.1	31	1.76 x 10 ¹⁹	1.1554	-20	35.8	0	17	34	50
→Using credible surveillance data	2.1	24.1	1.76 x 10 ¹⁹	1.1554	-20	27.8	0	8.5	17	25
Nozzle to Intermediate Shell Forging Circ. Weld Seam (Heat # H4498)	1.1	54	0.586x 10 ¹⁹	0.8504	-25	45.9	0	23.0	45.9	67
Intermediate to Lower Shell Forging Circ. Weld Seam (Heat # 442011)	1.1	41	1.70 x 10 ¹⁹	1.1461	40	47.0	0	23.5	47.0	134
\rightarrow Using credible surveillance data	2.1	26.1	1.70 x 10 ¹⁹	1.1461	40	29.9	0	14	28	98

Notes:

(a) The 10 CFR 50.61 methodology was utilized in the calculation of the RT_{PTS} values.

(b) The source document containing detailed calculations is CN-AMLRS-10-7 (Reference 14), Table 5.5-1.

(c) Initial RT_{NDT} values are based on measured data. Hence, $\sigma_u = 0^{\circ}F$.

(d) Per the guidance of 10 CFR 50.61, the base metal $\sigma_{\Delta} = 17^{\circ}$ F for Position 1.1 (without surveillance data) and with credible surveillance data $\sigma_{\Delta} = 8.5^{\circ}$ F for Position 2.1; the weld metal $\sigma_{\Delta} = 28^{\circ}$ F for Position 1.1 (without surveillance data) and with credible surveillance data $\sigma_{\Delta} = 14^{\circ}$ F for Position 2.1. However, σ_{Δ} need not exceed 0.5* Δ RT_{NDT}.

6.0 References

- 1. WCAP-14040-NP-A, Revision 2, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," J.D. Andrachek, et al., January 1996.
- NRC Letter from R. A. Capra to O.D. Kingsley, Commonwealth Edison Company, "Byron Station Units 1 and 2 and Braidwood Station Units 1 and 2, Acceptance for referring of pressure temperature limits report, (M98799, M98800, M98801, and M98802)," January 21 1998.
- 3. Westinghouse Letter to Exclon Nuclear, CAE-10-MUR-197, Revision 0, "Low Temperature Overpressure Protection (LTOP) System Evaluation Final Letter Report," M.P. Rudakewiz, September 8, 2010.
- Byron & Braidwood Design Information Transmittal DIT-BRW-2006-0051, "Transmittal of Braidwood Unit 1 and Unit 2 Temperature and Pressure Uncertainties for Low Temperature Overpressure System (LTOPS) Power Operated Relief Valves (PORVS)," Nathan (Joe) Wolff Jr., July 18, 2006.
- 5. WCAP-9807, "Commonwealth Edison Company, Braidwood Station Unit 1 Reactor Vessel Radiation Surveillance Program," S.E. Yanichko, et al., February 1981.
- WCAP-15316, Revision 1, "Analysis of Capsule W from Commonwealth Edison Company Braidwood Unit 1 Reactor Vessel Radiation Surveillance Program," E. Terek, et al., December 1999.
- 7. WCAP-15365, Revision 1, "Evaluation of Pressurized Thermal Shock for Braidwood Unit 1," J.H. Ledger, January 2002.
- 8. NRC Letter from G. F. Dick, Jr., NRR, to C. Crane, Exelon Generation Company, LLC, "Issuance of Amendments: Revised Pressure-Temperature Limits Methodology; Byron Station, Units 1 and 2, and Braidwood Station, Units 1 and 2," dated October 4, 2004.
- NRC Letter from M. Chawla to O.D. Kingsley, Exelon Generation Company, LLC, "Issuance of exemption from the Requirements of 10 CFR 50 Part 60 and Appendix G for Byron Station, Units 1 and 2, and Braidwood Stations, Units 1 and 2," dated August 8, 2001.
- NRC Letter from R. F. Kuntz, NRR, to C. M. Crane, Exelon Generation Company, LLC, "Byron Station, Unit Nos. 1 and 2, and Braidwood Station, Unit Nos. 1 and 2 - Issuance of Amendments Re: Reactor Coolant System Pressure and Temperature Limits Report (TAC Nos. MC8693, MC8694, MC8695, and MC8696)," November 27, 2006.

- 11. WCAP-15364, Revision 2, "Braidwood Unit 1 Heatup and Cooldown Limit Curves for Normal Operation," T.J. Laubham, November 2003.
- 12. WCAP-16143-P, Revision 1, "Reactor Vessel Closure Head/Vessel Flange Requirements Evaluation for Byron/Braidwood Units 1 and 2," W. Bamford, et al., October 2014.
- 13. Westinghouse Letter to Exelon Nuclear, CCE-07-24, "Braidwood Unit 1 and 2 RCS HU/CD Limit Curve Table Values," dated February 15, 2007.
- Westinghouse Calculation Note CN-AMLRS-10-7, Revision 0, "Braidwood Units 1 and 2 Measurement Uncertainty Recapture (MUR) Uprate: Reactor Vessel Integrity Evaluations," A.E. Leicht, September 2010.

ATTACHMENT 2

Braidwood Unit 2 Pressure and Temperature Limits Report (PTLR), Revision 7

BRAIDWOOD UNIT 2

PRESSURE AND TEMPERATURE LIMITS REPORT (PTLR)

Revision 7

Table of Contents

Section			Page
1.0	Intro	duction	1
2.0	RCS	Pressure Temperature Limits	1
	2.1	RCS Pressure and Temperature (P/T) Limits (LCO 3.4.3)	1
3.0	Low	Temperature Over Pressure Protection and Boltup	7
	3.1	LTOP System Setpoints (LCO 3.4.12)	7
	3.2	LTOP Enable Temperature	7
	3.3	Reactor Vessel Boltup Temperature (Non-Technical Specification)	7
4.0	Reac	tor Vessel Material Surveillance Program	10
5.0	Supp	lemental Data Tables	12
6.0	Refe	rences	18

List of Figures

Figure		Page
2.1	Braidwood Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rate of 100°F/hr) Applicable for 32 EFPY (Without Margins for Instrumentation Errors)	3
2.2	Braidwood Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0, 25, 50 and 100°F/hr) Applicable to 32 EFPY (Without Margins for Instrumentation Errors)	4
3.1	Braidwood Unit 2 Nominal PORV Setpoints for the Low Temperature Overpressure Protection (LTOP) System Applicable for 32 EFPY (Includes Instrumentation Uncertainty)	8

List of Tables

Table		Page
2.1a	Braidwood Unit 2 Heatup Data at 32 EFPY (Without Margins for Instrumentation Errors)	5
2.1b	Braidwood Unit 2 Cooldown Data Points 32 EFPY (Without Margins for Instrumentation Errors)	6
3.1	Data Points for Braidwood Unit 2 Nominal PORV Setpoints for the LTOP System Applicable for 32 EFPY (Includes Instrumentation Uncertainty)	9
4.1	Braidwood Unit 2 Capsule Withdrawal Summary	11
5.1	Braidwood Unit 2 Calculation of Chemistry Factors Using Surveillance Capsule Data	13
5.2	Braidwood Unit 2 Reactor Vessel Material Properties	14
5.3	Summary of Braidwood Unit 2 Adjusted Reference Temperature (ART) Values at 1/4T and 3/4T Locations for 32 EFPY	15
5.4	Braidwood Unit 2 Calculation of Adjusted Reference Temperature (ARTs) at 32 EFPY at the Limiting Reactor Vessel Material, Nozzle Shell Forging 5P-7056	16
5.5	RT _{PTS} Calculation for Braidwood Unit 2 Beltline Region Materials at EOL (32 EFPY)	17

1.0 Introduction

This Pressure and Temperature Limits Report (PTLR) for Braidwood Unit 2 has been prepared in accordance with the requirements of Braidwood Technical Specification (TS) 5.6.6, "Reactor Coolant System (RCS) Pressure and Temperature Limits Report (PTLR)". Revisions to the PTLR shall be provided to the NRC after issuance.

The Technical Specifications addressed in this report are listed below:

LCO 3.4.3 RCS Pressure and Temperature (P/T) Limits; and LCO 3.4.12 Low Temperature Overpressure Protection (LTOP) System.

2.0 RCS Pressure Temperature Limits

The PTLR limits for Braidwood Unit 2 were developed using a methodology specified in the Technical Specifications. The methodology listed in WCAP-14040-NP-A, Revision 2 (Reference 1) was used with the following exception:

- a) Optional use of ASME Code Section XI, Appendix G, Article G-2000, 1996 Addenda,
- b) Use of ASME Code Case N-640, "Alternative Reference Fracture Toughness for Development of P-T Limit Curves, Section XI, Division 1", and
- c) Use of ASME Code Case N-588, "Alternative to Reference Flaw Orientation of Appendix G for Circumferential Welds in Reactor Vessel, Section XI, Division 1", and
- d) Elimination of the flange requirements documented in WCAP-16143-P.

This exception to the methodology in WCAP 14040-NP-A, Revision 2 has been reviewed and accepted by the NRC in References 2, 7, 9, and 10.

WCAP 15373, Revision 2 (Reference 11), provides the basis for the Braidwood Unit 2 P/T curves, along with the best estimate chemical compositions, fluence projections and adjusted reference temperatures used to determine these limits. WCAP-16143-P, Reference 12, documents the technical basis for the elimination of the flange requirements.

- 2.1 RCS Pressure and Temperature (P/T) Limits (LCO 3.4.3)
- 2.1.1 The RCS temperature rate-of-change limits defined in Reference 11 are:
 - a. A maximum heatup of 100°F in any 1-hour period.
 - b. A maximum cooldown of 100°F in any 1-hour period, and

- c. A maximum temperature change of less than or equal to 10°F in any 1-hour period during inservice hydrostatic and leak testing operations above the heatup and cooldown limit curves.
- 2.1.2 The RCS P/T limits for heatup, inservice hydrostatic and leak testing, and criticality are specified by Figure 2.1 and Table 2.1a. The RCS P/T limits for cooldown are shown in Figure 2.2 and Table 2.1b. These limits are defined in WCAP-15373, Revision 2 (Reference 11). Consistent with the methodology described in Reference 1, with the exception noted in Section 2.0, the RCS P/T limits for heatup and cooldown shown in Figures 2.1 and 2.2 are provided without margins for instrument error. These limits were developed using ASME Boiler and Pressure Vessel Code Section XI, Appendix G, Article G2000, 1996 Addenda. The criticality limit curve specifies pressure-temperature limits for core operation to provide additional margin during actual power production as specified in 10 CFR 50, Appendix G.

The P/T limits for core operation (except for low power physics testing) are that the reactor vessel must be at a temperature equal to or higher than the minimum temperature required for the inservice hydrostatic test, and at least 40°F higher than the minimum permissible temperature in the corresponding P/T curve for heatup and cooldown.

Material Property Basis Limiting Material: Circumferential Weld WF-562 & Nozzle Shell Forging Limiting ART Values at 32 EFPY 1/4T 93°F (N-588) & 67°F ('96 App, G) 3/4T 79°F (N-588) & 54°F ('96 App, G)

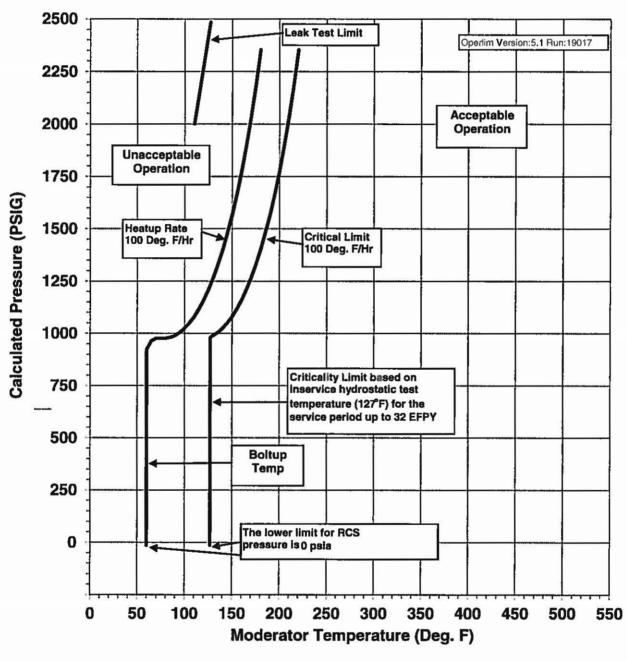
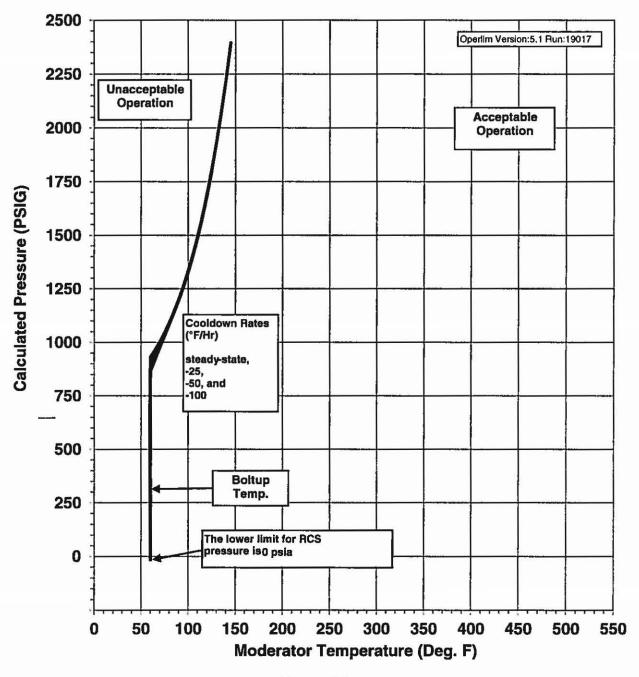



Figure 2.1

Braidwood Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rate of 100°F/hr) Applicable to 32 EFPY (Without Margins for Instrumentation Errors)

Material Property Basis

Limiting Material: Circumferential Weld WF-562 & Nozzle Shell Forging Limiting ART Values at 32 EFPY 1/4T 93°F (N-588) & 67°F ('96 App. G) 3/4T 79°F (N-588) & 54°F ('96 App. G)

Braidwood Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0, 25, 50 and 100°F/hr) Applicable to 32 EFPY (Without Margins of Instrumentation Errors)

Table 2.1a

Braidwood Unit 2 Heatup Data Points at 32 EFPY (Without Margins for Instrumentation Errors)

Heatup Curve						
100 F Heatup Criticality Limit Leak Test Limit						
T (°F)	P (psig)	T (°F)	P (psig)	T (°F)	P (psig)	
60	Note 1	127	Note 1	110	2000	
60	924	127	965	127	2485	
65	965	127	977*			
70	977	127	977			
75	977	127	981			
80	977	130	990			
85	981	135	1005			
90	990	140	1025			
95	1005	145	1051			
100	1025	150	1081			
105	1051	155	1118			
110	1081	160	1161			
115	1118	165	1210			
120	1161	170	1266			
125	1210	175	1329			
130	1266	180	1400			
135	1329	185	1480			
140	1400	190	1569			
145	1480	195	1668			
150	1569	200	1778			
155	1668	205	190 1			
160	1778	210	2036			
165	1901	215	2186			
170	2036	220	2353			
175	2186	a ang ang ang ang ang ang ang ang ang an				
180	2353					

* Refer to Reference 13

Note 1: The Minimum acceptable pressure is 0 psia

Table 2.1b

Braidwood Unit 2 Cooldown Data at 32 EFPY (Without Margins for Instrumentation Errors)

Cooldown Curves							
Stead	Steady State 25 °F Cooldown 50 °F Cooldown 100 °F Cooldown						
T (°F)	P (psig)	T (°F)	P (psig)	T (°F)	P (psig)	T (°F)	P (psig)
60	Note 1	60	Note 1	60	Note 1	60	Note 1
60	931	60	908	60	889	60	866
65	965	65	946	65	932	65	921
70	1003	70	989	70	980	70	980
75	1045	75	1036	75	1033	75	1033
80	1092	80	1088	80	1088	80	1088
85	1143	85	1143	85	1143	85	1143
90	1200	90	1200	90	1200	90	1200
95	1263	95	1263	95	1263	95	1263
100	1332	100	1332	100	1332	100	1332
105	1409	105	1409	105	1409	105	1409
110	1494	110	1494	110	1494	110	1494
115	1587	115	1587	115	1587	115	1587
120	1691	120	1691	120	1691	120	1691
125	1805	125	1805	125	1805	125	1805
130	1932	130	1932	130	1932	130	1932
135	2071	135	2071	135	2071	135	2071
140	2226	140	2226	140	2226	140	2226
145	2396	145	2396	145	2396	145	2396

Note 1: The Minimum acceptable pressure is 0 psia

3.0 Low Temperature Overpressure Protection and Boltup

This section provides the Braidwood Unit 2 power operated relief valve lift settings, low temperature overpressure protection (LTOP) system arming temperature, and minimum reactor vessel boltup temperature.

3.1 LTOP System Setpoints (LCO 3.4.12).

The power operated relief valves (PORVs) shall each have nominal lift settings in accordance with Figure 3.1 and Table 3.1. These limits are based on References 3 and 8.

The LTOP setpoints are based on P/T limits that were established in accordance with 10 CFR 50, Appendix G without allowance for instrumentation error. The LTOP setpoints were developed using the methodology described in Reference 1. The LTOP PORV nominal lift settings shown in Figure 3.1 and Table 3.1 account for appropriate instrument error.

3.2 LTOP Enable Temperature

Braidwood Unit 2 procedures governing the heatup and cooldown of the RCS require the arming of the LTOP System for RCS temperature of 350°F and below and disarming of LTOP for RCS temperature above 350°F.

Note that the last LTOP PORV segment in Table 3.1 extends to 400°F where the pressure setpoint is 2335 psig. This is intended to prohibit PORV lift for an inadvertent LTOP system arming at power.

3.3 Reactor Vessel Boltup Temperature (Non-Technical Specification)

The minimum boltup temperature for the Reactor Vessel Flange shall be $\geq 60^{\circ}$ F. Boltup is a condition in which the Reactor Vessel head is installed with tension applied to any stud, and with the RCS vented to atmosphere.

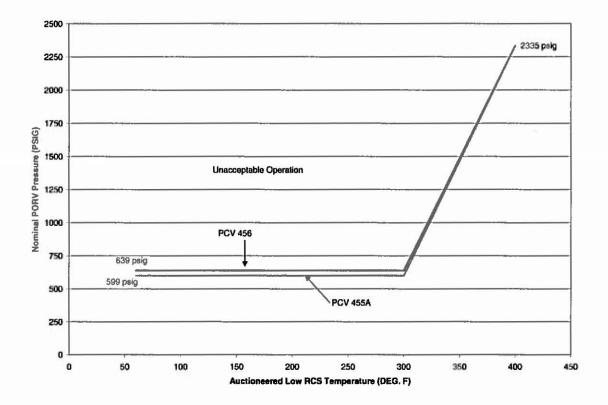


Figure 3.1 Braidwood Unit 2 Nominal PORV Setpoints for the Low Temperature Overpressure Protection (LTOP) System Applicable for 32 EFPY (Includes Instrumentation Uncertainty)

Table 3.1 Data Points for Braidwood Unit 2 Nominal PORV Setpoints for the LTOP System Applicable for 32 EFPY (Includes Instrumentation Uncertainty)

PCV-455A

PCV-456

RCS TEMP. (DEG. F)	RCS Pressure (PSIG)	RCS TEMP. (DEG. F)	RCS Pressure (PSIG)		
60	599	60	639		
300	599	300	639		
400	2335	400	2335		

Note: To determine nominal lift setpoints for RCS Pressure and RCS Temperatures greater than 300°F, linearly interpolate between the 300°F and 400°F data points shown above. (Setpoints extend to 400°F to prevent PORV liftoff from an inadvertent LTOP system arming while at power).

4.0 Reactor Vessel Material Surveillance Program

The pressure vessel material surveillance program (Reference 4) is in compliance with Appendix H to 10 CFR 50, "Reactor Vessel Radiation Surveillance Program." The material test requirements and the acceptance standards utilize the reference nil-ductility temperature, RT_{NDT} , which is determined in accordance with ASME Boiler and Pressure Vessel Code, Section III, NB-2331. The empirical relationship between RT_{NDT} and the fracture toughness of the reactor vessel steel is developed in accordance with Appendix G, "Protection Against Non-Ductile Failure," to Section XI of the ASME Boiler and Pressure Vessel Code. The surveillance capsule removal schedule meets the requirements of ASTM E185-82.

The third and final reactor vessel material irradiation surveillance specimens (Capsule W) have been removed and analyzed to determine changes in material properties. The surveillance capsule testing has been completed for the original operating period. The remaining three capsules, V, Y, and Z, were removed and placed in the spent fuel pool to avoid excessive fluence accumulation should they be needed to support life extension. The removal summary is provided in Table 4.1.

Table 4.1								
Braidwood Unit 2 Capsule Withdrawal Summary ^(a)								
Capsule	Capsule Location	Fluence (n/cm ² , E>1.0 MeV)						
U	58.5°	4.08	1.18	0.388 x 10 ¹⁹				
x	238.5°	4.03	4.24	1.15 x 10 ¹⁹				
w	121.5°	4.06	8.56	2.07 x 10 ¹⁹				
Z ^(c)	301.5°	4.14	12.78 (EOC 10)	2.83 x 10 ¹⁹				
V ^(c)	61.0°	3.92	18.42 (EOC 14)	3.73 x 10 ¹⁹				
Y ^(c)	241.0°	3.89	12.78 (EOC 10)	2.66 x 10 ¹⁹				

Notes:

(a) Source document is CN-AMLRS-10-7 (Reference 14), Table 5.7-4.

(b) Effective Full Power Years (EFPY) from plant startup.

(c) Standby Capsules Z, V, and Y were removed and placed in the spent fuel pool. No testing or analysis has been performed on these capsules. If license renewal is sought, one of these standby capsules may need to be tested to determine the effect of neutron irradiation on the reactor vessel surveillance materials during the period of extended operation.

5.0 Supplemental Data Tables

The following tables provide supplemental information on reactor vessel material properties and are provided to be consistent with Generic Letter 96-03. Some of the material property values shown were used as inputs to the P/T limits.

Table 5.1 shows the calculation of the surveillance material chemistry factors using surveillance capsule data.

Table 5.2 provides the reactor vessel material properties table.

Table 5.3 provides a summary of the Braidwood Unit 2 adjusted reference temperature (ART) values at the 1/4T and 3/4T locations for 32 EFPY.

Table 5.4 shows the calculation of ARTs at 32 EFPY for the limiting Braidwood Unit 2 reactor vessel material.

Table 5.5 provides the RT_{PTS} Calculation for Braidwood Unit 2 Beltline Region Materials at EOL (32 EFPY), (Reference 6).

Table 5.1 Braidwood Unit 2 Calculation of Chemistry Factors Using Surveillance Capsule Data ^{(a})									
Lower Shell	U	0.388 x 10 ¹⁹	0.738	0.0 ^(d)	0.00	0.54			
Forging	x	1.15 x 10 ¹⁹	1.039	0.0 ^(d)	0.00	1.08			
(Tangential)	w	2.07 x 10 ¹⁹	1.198	4.53	5.43	1.44			
	U	0.388 x 10 ¹⁹	0.738	0.0 ^(d)	0.00	0.54			
Lower Shell Forging	x	1.15 x 10 ¹⁹	1.039	33.94	35.26	1.08			
(Axial)	w	2.07 x 10 ¹⁹	1.198	33.2	39.78	1.44			
		· · · · · · · · · · · · · · · · · · ·		SUM:	80.47	6.12			
	C	$\sum F_{1.S \text{ Forging}} = \sum (FF * \Delta RT_N)$	_{DT}) + Σ(F	F^2) = (80.47) -	+ (6.12) = 13.2°F	•			
Braidwood Unit 1	U	0.388 x 10 ¹⁹	0.738	17.06	12.59	0.54			
Surveillance Weld	x	1.17 x 10 ¹⁹	1.044	30.15	31.47	1.09			
Material	w	1.98 x 10 ¹⁹	1.186	49.68	58.94	1.41			
Braidwood Unit 2	U	0.388 x 10 ¹⁹	0.738	0.0 ^(d)	0.00	0.54			
Surveillance Weld	x	1.15 x 10 ¹⁹	1.039	26.3	27.33	1.08			
Material	w	2.07 x 10 ¹⁹	1.198	23.9	28.63	1.44			
			•	SUM:	158.96	6.10			
	CI	$F_{Weld Metal} = \sum (FF * \Delta RT_{NI})$	_{DT}) + Σ(F)	F^2) = (158.96)	+ (6.10) = 26.1°	F			

Notes:

(a) Source document is CN-AMLRS-10-7 (Reference 14), Table 5.2-2.

 $f = fluence; \Delta RT_{NDT}$ values are the measured 30 ft-lb shift values taken from Reference 5. FF = fluence factor = $f^{(0.28 + 0.10^{\circ} \log f)}$ (b)

(c)

Measured ΔRT_{NDT} values were determined to be negative, but physically a reduction should not occur; therefore, conservative values of zero are used. (d)

Table 5.2								
Braidwood Unit 2 Reactor Vessel Material Properties								
Material DescriptionCu (%)Ni (%)Chemistry FactorRT								
Closure Head Flange Heat # 3P6566/5P7547/4P6986 Serial # 2031-V-1		0.75		20				
Vessel Flange Heat # 124P455	0.07	0.70		20				
Nozzle Shell Forging * Heat # 5P-7056	0.04	0.90	26.0°F ^(b)	30				
Intermediate Shell Forging * Heat # [49D963/49C904]-1-1	0.03	0.71	20.0°F ^(b)	-30				
Lower Shell Forging * Heat # [50D102/50C97]-1-1	0.06	0.76	37.0°F ^(b) 13.2°F ^(c)	-30				
Circumferential Weld * (Intermediate Shell to Lower Shell) Weld Seam WF-562 Heat # 442011	0.03	0.67	41.0F ^(b) 26.1F ^(c)	40				
Circumferential Weld * (Nozzle Shell to Intermediate Shell) Weld Seam WF-645 Heat # H4498	0.04	0.46	54.0°F ^(b)	-25				

* Beltline Region Materials

a) The Initial RT_{NDT} values for the plates and welds are based on measured data.

b) Chemistry Factor calculated for Cu and Ni values per Regulatory Guide 1.99, Rev. 2, Position 1.1.
c) Chemistry Factor calculated for Cu and Ni values per Regulatory Guide 1.99, Rev. 2, Position 2.1

.Table 5.3 Summary of Braidwood Unit 2 Adjusted Reference Temperature (ART) Values at 1/4T and 3/4T Locations for 32 EFPY ^(a)								
Reactor Vessel Material	(n/cm ² , E>1.0 MeV)	1/4T ART (°F)	3/4T ART (°F)					
Nozzle Shell Forging	0.559 x 10 ¹⁹	66	54					
Intermediate Shell Forging	1.73 x 10 ¹⁹	10	-1					
Lower Shell Forging	1.73 x 10 ¹⁹	41	24					
→Using non-credible surveillance data	1.73 x 10 ¹⁹	-3	-11					
Nozzle to Intermediate Shell Forging Circ. Weld Seam (Heat # H4498)	0.559x 10 ¹⁹	51	24					
Intermediate to Lower Shell Forging Circ. Weld Seam (Heat # 442011)	1.67 x 10 ¹⁹	122	99					
→Using credible surveillance data	1.67 x 10 ¹⁹	92	78					

Notes:

(a) The source document containing detailed calculations is CN-AMLRS-10-7 (Reference 14), Tables 5.3.1-3 and 5.3.1-4. The ART values summarized in this table utilize the most recent fluence projections and materials data, but were not used in development of the P/T limit curves. See Figures 2.1 and 2.2 of this PTLR for the ART values used in development of the P/T limit curves.

Table 5.4								
Braidwood Unit 2 Calculation of Adjusted Reference Temperatures (ARTs) at 32 EFPY at the Limiting Reactor Vessel Material, Nozzle Shell Forging 5P-7056								
Parameter	Values							
Operating Time	32 EFPY							
Location ^(a)	1/4T ART (°F)	3/4T ART(°F)						
Chemistry Factor, CF (°F)	26.0	26.0						
Fluence(f), n/cm^2 (E>1.0 Mev) ^(b)	3.40x10 ¹⁸	1.23x10 ¹⁸						
Fluence Factor, FF	0.703	0.460						
$\Delta RT_{NDT} = CFxFF(^{\circ}F)$	18.3	12.0						
Initial RT NDT., I(°F)	30	30						
Margin, M(°F)	18.3	12.0						
ART= I+(CF*FF)+M, °F per RG 1.99, Revision 2	67	54						

a) The Braidwood Unit 2 reactor vessel wall thickness is 8.5 inches at the beltline region.

b) Fluence, f, is the calculated peak clad/base metal interface fluence (E>1.0 Mev) = 5.67x10¹⁸ n/cm² at 32 EFPY (Reference 11).

Table 5.5										
RT _{PTS} Calculation for Braidwood Unit 2 Beltline Region Materials at EOL (32 EFPY) ^(a,b)										
Reactor Vessel MaterialR.G. 1.99, Rev. 2 PositionCF (°F)Fluence (n/cm², E>1.0 MeV)FFIRT_NDT (°F) ΔRT_{NDT} (°F) $\sigma_u^{(c)}$ (°F) $\sigma_{\Delta}^{(d)}$ (°F)Margin (°F)									Margin (°F)	RT _{PTS} (°F)
Nozzle Shell Forging	1.1	26	0.559 x 10 ¹⁹	0.8373	30	21.8	0	10.9	21.8	74
Intermediate Shell Forging	1.1	20	1.73 x 10 ¹⁹	1.1508	-30	23.0	0	11.5	23.0	16
Lower Shell Forging	1.1	37	1.73 x 10 ¹⁹	1.1508	-30	42.6	0	17	34	47
→Using non-credible surveillance data	2.1	13.2	1.73 x 10 ¹⁹	1.1508	-30	15.2	0	7.6	15.2	0
Nozzle to Intermediate Shell Forging Circ. Weld Seam (Heat # H4498)	1.1	54	0.559x 10 ¹⁹	0.8373	-25	45.2	0	22.6	45.2	65
Intermediate to Lower Shell Forging Circ. Weld Seam (Heat # 442011)	1.1	41	1.67 x 10 ¹⁹	1.1413	40	46.8	0	23.4	46.8	134
→Using credible surveillance data	2.1	26.1	1.67 x 10 ¹⁹	1.1413	40	29.8	0	14	28	98

Notes:

(a) The 10 CFR 50.61 methodology was utilized in the calculation of the RT_{PTS} values.

(b) The source document containing detailed calculations is CN-AMLRS-10-7 (Reference 14), Table 5.5-2.

(c) Initial RT_{NDT} values are based on measured data. Hence, $\sigma_u = 0^{\circ}F$.

(d) Per the guidance of 10 CFR 50.61, the base metal $\sigma_{\Delta} = 17^{\circ}$ F for Position 1.1 (without surveillance data) and for Position 2.1 with non-credible surveillance data; the weld metal $\sigma_{\Delta} = 28^{\circ}$ F for Position 1.1 (without surveillance data) and with credible surveillance data $\sigma_{\Delta} = 14^{\circ}$ F for Position 2.1. However, σ_{Δ} need not exceed 0.5* Δ RT_{NDT}.

6.0 References

- 1. WCAP-14040-NP-A, Revision 2, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves", J.D. Andrachek, et al., January 1996.
- NRC Letter from R. A. Capra to O.D. Kingsley, Commonwealth Edison Company, "Byron Station Units 1 and 2 and Braidwood Station Units 1 and 2, Acceptance for referring of pressure temperature limits report, (M98799, M98800, M98801, and M98802)," January 21, 1998.
- Westinghouse Letter to Exelon Nuclear, CAE-10-MUR-197, Revision 0, "Low Temperature Overpressure Protection (LTOP) System Evaluation Final Letter Report," M.P. Rudakewiz, September 8, 2010.
- 4. WCAP-11188, "Commonwealth Edison Company, Braidwood Station Unit 2 Reactor Vessel Surveillance Program," December 1986.
- 5. WCAP-15369, "Analysis of Capsule W from the Commonwealth Edison Company Braidwood Unit 2 Reactor Vessel Radiation Surveillance Program," March 2000.
- 6. WCAP-15381, "Evaluation of Pressurized Thermal Shock for Braidwood Unit 2", T.J. Laubham, September 2000.
- 7. NRC Letter from G. F. Dick, Jr., NRR, to C. Crane, Exelon Generation Company, LLC, "Issuance of Amendments: Revised Pressure-Temperature Limits Methodology; Byron Station, Units 1 and 2, and Braidwood Station, Units 1 and 2," dated October 4, 2004.
- Byron & Braidwood Design Information Transmittal DIT-BRW-2006-0051, "Transmittal of Braidwood Unit 1 and Unit 2 Temperature and Pressure Uncertainties for Low Temperature Overpressure System (LTOPS) Power Operated Relief Valves (PORVS)," Nathan (Joe) Wolff Jr., July 18, 2006.
- NRC Letter from M. Chawla to O.D. Kingsley, Exelon Generation Company, LLC, "Issuance of exemption from the Requirements of 10 CFR 50 Part 60 and Appendix G for Byron Station, Units 1 and 2, and Braidwood Stations, Units 1 and 2," dated August 8, 2001.
- NRC Letter from R. F. Kuntz, NRR, to C. M. Crane, Exelon Generation Company, LLC, "Byron Station, Unit Nos. 1 and 2, and Braidwood Station, Unit Nos. 1 and 2 -Issuance of Amendments Re: Reactor Coolant System Pressure and Temperature Limits Report (TAC Nos. MC8693, MC8694, MC8695, and MC8696)," November 27, 2006.
- 11. WCAP-15373, Revision 2, "Braidwood Unit 2 Heatup and Cooldown Limits for Normal Operation," T.J. Laubham et al., November 2003.

- WCAP-16143-P, Revision 1, "Reactor Vessel Closure Head/Vessel Flange Requirements Evaluation for Byron/Braidwood Units 1 and 2," W. Bamford, et al., October 2014.
- 13. Westinghouse Letter to Exelon Nuclear, CCE-07-24, "Braidwood Unit 1 and 2 RCS HU/CD Limit Curve Table Values," dated February 15, 2007.
- Westinghouse Calculation Note CN-AMLRS-10-7, Revision 0, "Braidwood Units 1 and 2 Measurement Uncertainty Recapture (MUR) Uprate: Reactor Vessel Integrity Evaluations," A.E. Leicht, September 2010, and Westinghouse evaluation MCOE-LTR-13-102 Rev. 0, "Byron and Braidwood Closure Head/Vessel Flange Region: MUR Uprate Assessment," November 2013.