Industrial Nuclear Company, Inc. Multi-Payload Shipping Container Model MPSC

A Presentation to the US Nuclear Regulatory Commission

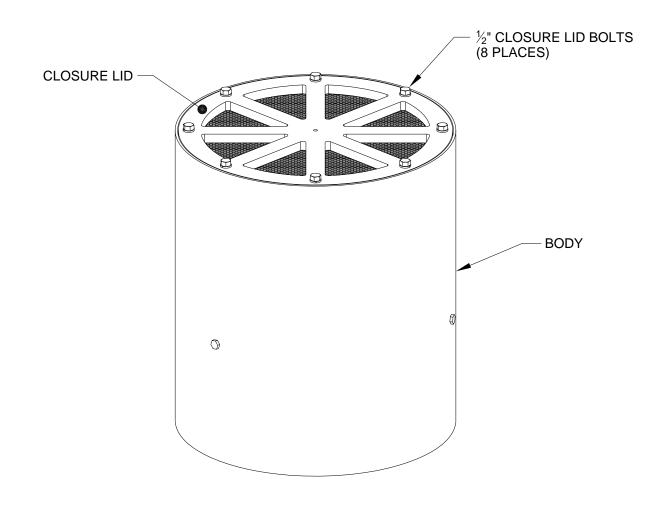
November 17, 2015

Agenda

- **▶** Introduction
- **▶** Description of MPSC Package
- ► Materials of Construction
- ► Payload Descriptions
- ► Certification Test Plan
- **▶** Schedule
- **▶** Summary

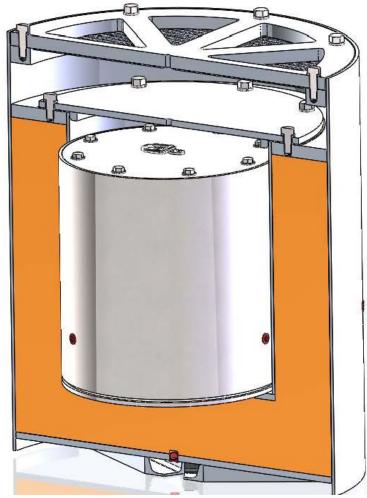
Description of MPSC Package

- ► Enclosed, Right Circular Cylinder
 - ▶ 22" OD x 25" High
- Stainless Steel Construction
- ► Two Payloads
 - Ten-Hole Source Changer (THSC)
 - Raw Material Shipping Container (RMSC)
- ► Gross Weight:
 - Approximately 680 lb w/ THSC payload
 - Approximately 745 lb w/ RMSC payload

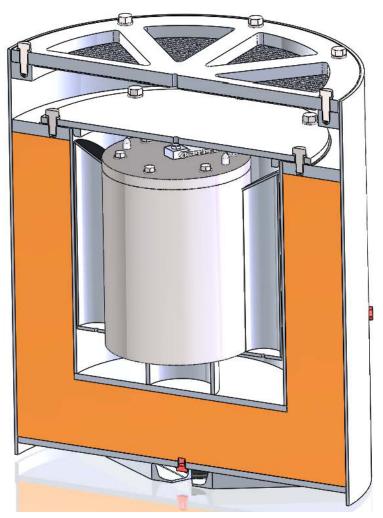


MPSC Materials of Construction

- ► Structural:
 - Type 304 stainless steel plate, bar, and pipe
 - ◆ ASTM A320 L7 or L43 Alloy Steel Closure Lid Bolts
 - Outer Lid
 - Inner Lid
 - Body All welded construction
 - Polyurethane foam for impact mitigation
- ► Gamma Shielding
 - Provided by THSC and RMSC payloads
 - Cast depleted uranium (DU)

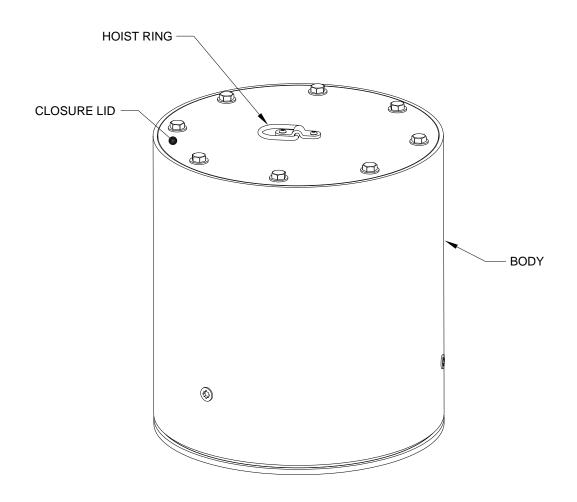


Description of MPSC Package (con't)



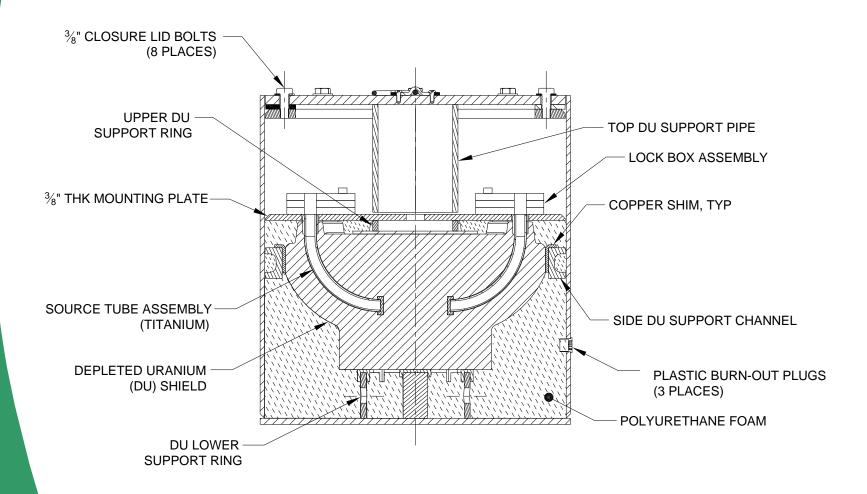
Description of MPSC Package (con't) THSC Payload

Description of MPSC Package (con't) RMSC Payload



Description of THSC Payload

- ► Enclosed, Right Circular Cylinder
 - ◆ 12-3/4" OD x 13-1/2" High
- ► Welded Stainless Steel Construction
- ▶ DU Gamma Shield
- ► Titanium Source Tubes/Hub
- ► Gross Weight: Approximately 327 lb



Description of THSC Payload (con't)

Description of THSC Payload (con't)

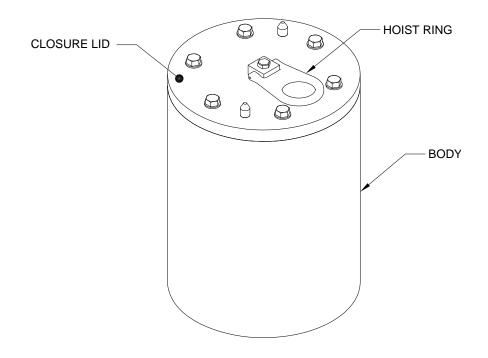
THSC Materials of Construction

► Structural:

- Type 304 stainless steel plate, bar, and pipe
- ◆ ASTM A320 L7 or L43 Alloy Steel Closure Lid Bolts
- All welded construction encasing gamma shields
- Copper shims between DU and stainless steel contact points
- Polyurethane foam for impact mitigation
- ◆ 0.50" OD x 0.056" wall titanium source tubes
- Titanium hub
- ▶ Gamma Shielding
 - Cast depleted uranium (DU)
- ► All materials have been previously used in currently NRC licensed source changers and radiation cameras

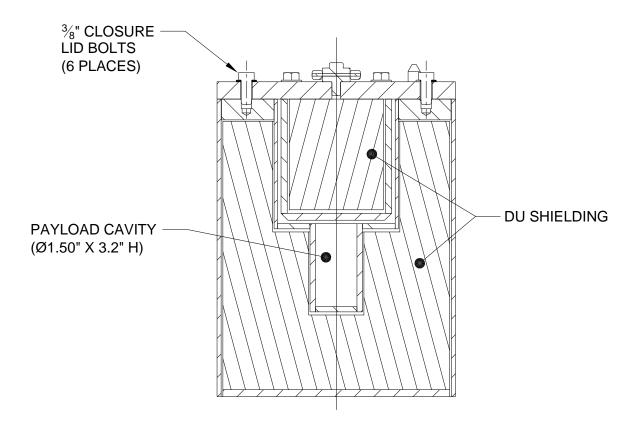
THSC Contents

- **▶** Contents
 - ◆ Iridium 192 (Ir–192) capsules
 - ◆ Selenium 75 (Se–75) capsules
 - Licensed as Special Form
- **▶** Contents limits
 - 1,500 Ci total limit
 - Maximum 150 Ci per capsule
 - Maximum of 10 capsules per package
- ► Decay Heat Limit: 11 watts



Description of RMSC Payload

- ► Enclosed, Right Circular Cylinder
 - ◆ 8-5/8" OD x 11-3/8" High
- ► Welded Stainless Steel Construction
- ► DU Gamma Shield
- ► Gross Weight: Approximately 367 lb



Description of RMSC Payload (con't)

Description of RMSC Payload (con't)

RMSC Materials of Construction

- ► Structural:
 - Type 304 stainless steel plate, bar, and pipe
 - ◆ ASTM A320 L7 or L43 Alloy Steel Closure Lid Bolts
 - ◆ All welded construction encasing gamma shields
 - Copper shims between DU and stainless steel
 - ◆ Polyurethane foam for impact mitigation
- ► Gamma Shielding
 - Cast DU

RMSC Contents

- **▶** Contents
 - Iridium 192 (Ir–192) capsules
 - ◆ Selenium 75 (Se–75) capsules
 - Licensed as Special Form
- ► Radioactive Contents Limit: 12,000 Ci
- ► Decay Heat Limit: 85 watts

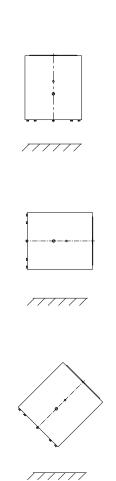
MPSC Certification Test Plan

▶ Objectives

- To demonstrate that, after a worst—case sequence of free and puncture drops, no degradation in shielding capability of payload packages occurs
- To demonstrate retention of special form capsules within the gamma shields

- ► Full-scale, prototypic CTUs
- ► Demonstration basis: radiation dose rates comply with 10 CFR 71 radiation limits after full series of free and puncture drops
 - No shielding credit for outer MPSC package
 - Use of actual radioactive source capsules in THSC and RMSC payloads
 - Post–test readings versus pre–test readings
- ► Normal speed filming of free drops planned
- ► Tests
 - Free Drops
 - Puncture Drops

- ► Structural evaluations:
 - NCT free drops, and HAC free & puncture drops, by test
 - Total of two NCT free drops
 - Total of five HAC free and four puncture drops
 - All other NCT and HAC load cases by analysis
- ► Thermal NCT & HAC evaluations by analysis


- **▶** Initial conditions
 - ◆ For high-impact free drops, temperature will be cold (-20 °F):
 - Top down orientation
 - For maximum deformation free drops, temperature will be NCT hot condition:
 - CG-over-corner
 - Side
 - Puncture tests will be performed at ambient temperature

- ► Two NCT, 4—ft free drops
- ► Four HAC 30—ft free drops
 - Two focused on impact
 - Two focused on deformation
- ► Four puncture drops
 - Tentatively the same free drop orientations
 - Final orientations to be determined based on observed free drop damage
- ► Thermal Evaluation of Most Damaged CTU(s)

Free Drop Test	<u>Purpose</u>
Vertical, Top Down (cold); NCT & HAC THSC & RMSC Payloads	Max impact to dislodge gamma shields, source capsules
Side (hot) RMSC Payload	Impact to damage gamma shields, enclosure
Top Down, CG-over-Corner (hot) THSC & RMSC Payloads	Max deformation to attempt to damage lock block assemblies, damage gamma shields

- ► Data collection
 - Temperature of polyurethane foam
 - Normal speed film
- ▶ Measurements (pre— and post—test)
 - Crush distance, puncture damage
 - Radiation Dose Rates
 - Photographs

- ► Acceptance Criteria
 - Radiation dose rates comply with 10 CFR §71.51(a)(2):
 - THSC payload
 - RMSC payload
 - No dislodgement of source capsules in THSC payload
 - No loss of gamma shielding in RMSC payload
- **▶** Discussion

Schedule

- ► CTU fabrication completion 1st Quarter 2016
- ► Certification testing 2nd Quarter 2016
- ► Submittal of application to NRC for Type B(U)–96 certification 3rd Quarter 2016
- ► Planning on approximately 5 months to first round RAIs

MPSC Package

▶ Summary

