Calvert Cliffs GSI-191 Program

Strainer Head Loss Testing and

Option 2b Closure Approach

December 2015

- Introductions
- Objectives for Meeting
- Discussion of Strainer Chemical Effects Head Loss Testing
- Discussion of Option 2b Simplified Risk-Informed Closure Plan
- Status of Calvert Cliffs Work
- Staff Questions & Concerns
- Schedule for Future Periodic Meetings

CCNPP Attendees

- Mike Gahan Engineering Manager
- Andre Drake Lead Responsible Engineer GSI-191
- Jim Landale Lead PRA Engineer
- Ken Greene Licensing Engineer
- Craig Sellers Project Manager GSI-191
- Steve Kinsey Strainer Chemical Effects Head Loss Testing
- Eric Federline Project Support & Testing
- Patrick Romine Project Support & Testing

Objectives of this Meeting

- Discussion of Strainer Chemical Effects Head Loss Testing
- Presentation of Calvert Cliffs Simplified Risk-Informed Approach
- Capture Staff Issues and Concerns
- Discuss Next Steps

Strainer Head Loss Testing

- CCNPP Conducted 7 Strainer Head Loss Tests in 2010
 - Performed in CCI Multi-Function Test Facility (MFTF) in Switzerland
 - Debris Preparation in Accordance with CCI Protocols
 - Fiber disintegrated into Fines using high pressure jet
 - NRC observed CCI debris preparation protocols
 - Debris introduced in 5 batches
 - Each batch 20% of particulate followed by 20% of fiber
 - First batch included 100% of Marinite
 - Tests included WCAP-16530 Chemical Precipitate Surrogate
 - WCAP surrogate prepared in accordance with WCAP guidance
 - WCAP surrogate introduced via metering pump
 - Flow Rate
 - 5000 gpm equivalent prior to chemical addition (Design)
 - 2400 gpm equivalent for chemical addition
 - 820 gpm HPSI, 600 to 1000 gpm per EOP-5
 - 1580 gpm CS (One CS Pump)
 - One CS pump secured at containment pressure < 2.8 psig
 - Containment Response calculation shows sump temperature > 150°F at 2.8 psig
 - Sodium Aluminum Silicate does not precipitate until sump temperature < 140°F
 - Optional flow sweep prior to test termination

- Test #1 Included Fine and Small Fibrous Debris
 - Maximum Head Loss 1.75 inches of water
 - Non-Uniform Debris Deposition
 - Conclusion: Testing with Small Pieces is Non-Conservative
 - Results of Test #1 were Rejected as Non-Conservative

- Remaining Tests Used Only Fine Fibrous Debris
 - Full load of particulates and precipitates
 - Test for Success Campaign
 - Break-throughs experienced during each test

Picture 28: Debris layer at approximate 75 mbar head loss

Picture 30: Underwater picture of breakthrough

- Test 6 Rejection
 - Test 6 was rejected in 2010
 - Documented basis for rejection was limited
 - Email archives from period searched
 - Significant discussion of improper agitation observed
 - Use of the hand held drill was lifting the debris within the Test Bed and creating a new profile that was considered not to be consistent with previous and subsequent testing.
 - A formal evaluation of the test was performed and additional guidance on agitation control was prepared.
 - After communication with the CCNPP project team the results of Test 6 were rejected.
 - This rejection was performed before proceeding with Test 7.
 - This has been documented and added to test files at CCNPP

	Test						
Debris Type	3	4	5	7			
Nukon	167 ft ³	36 ft ³	88 ft ³	61.5 ft ³			
Thermal Wrap	154 ft ³	227 ft ³	227 ft ³	227 ft ³			
Temp-Mat	3.61 ft ³	3.61 ft ³	3.61 ft ³	3.61 ft ³			
Generic LDFG	44.5 ft ³	4.1 ft ³	4.1 ft ³	0 ft ³			
Mineral Wool	0 ft ³	0 ft ³	0 ft ³	0 ft ³			
Lead Blanket Cover	0 ft ³	0 ft ³	0 ft ²	564.5 ft ²			
Epoxy Particulate	2 ft ³	1.5 ft ³	2 ft ³	1.5 ft ³			
IOZ Particulate	5.9 ft ³	4.8 ft ³	5.9 ft ³	4.8 ft ³			
Unqual Part	2 ft ³	1.3 ft ³	2 ft ³	1.3 ft ³			
Latent Particulate	1.275 ft ³	1.275 ft ³	1.275 ft ³	1.275 ft ³			
Marinite	0.2 ft ³	0.2 ft ³	0.2 ft ³	0.2 ft ³			
NaAlSi ₃ 0 ₈	59.48 lbs	47.70 lbs	54.1 lbs	56.8 lbs			

• Test Debris Types & Equivalent Quantities

•	Test	Head	Loss	Results	(ft-water)
---	------	------	------	---------	------------

Test	Debris HL	CS HL	Total HL
2	0.05	0.28	0.33
3	3.165	0.28	3.445
4	0.599	0.28	0.879
5	1.211	0.28	1.491
7	0.656	0.28	0.936

- Maximum Allowable Strainer Head Loss
 - Currently Under Development
 - Limiting Failure Mode is Deaeration
 - Will range 1.75 to 2.5 ft-water
- Test 5 Test with Highest Acceptable Head Loss

Strainer Head Loss Correlation Demonstrates Head Loss Proportional to Mass of Fine Fiber

- Plot of Head Loss -vs- Fiber Mass produces well correlated curve fit
- Plot includes clean strainer head loss
- Empirical Correlation based on Calvert Cliffs Prototypical Strainer Head Loss Testing

Simplified Risk-Informed Approach Define Threshold Break Size

- Identify Applicable Strainer Chemical Effects Head Loss Test
 - WCAP-16530 Chemical Surrogates
- Identify Smallest Break(s) that Generate Equivalent Quantity of Fine Fibrous Debris as used in Applicable and Acceptable Head Loss Test
 - Also key criteria
 - Quantity of Particulate for Each Break
 - Quantity of WCAP-16530 Precipitate for Each Break
- Breaks That Produce Less Debris Than Tested are Acceptable Through Deterministic Analysis
- Breaks That Produce More Debris Than Tested are Addressed Probabilistically (Risk-Informed)
 - The ID of the smallest break that produces more debris than tested is defined as the Threshold Break Size

Simplified Risk-Informed Approach Calculate ΔCDF & ΔLERF

- CDF and LERF are taken from the Calvert Cliffs PRA Model of Record.
- ΔCDF Determined from LOCA Frequency for Threshold Break Size
 - Apportion LOCA Frequency Across Welds \geq Threshold Break Size
 - Interpolate within NUREG-1829 Intervals as needed for Break Size
 - \triangle CDF = \sum Apportioned LOCA Frequency for Breaks that produce more debris than tested
 - Sensitivities on interpolation and LOCA Frequency Aggregation Methods
- ΔLERF approach is to obtain a CDF multiplier from the Calvert Cliffs LERF model that is bounded by a worst case accident sequence for the Threshold Break Size for non SBO conditions.
- Compare CDF, ΔCDF, LERF, and ΔLERF results against Reg Guide 1.174 criteria for Region III.
- Verify other requirements (safety margin, defense in depth) of Reg Guide 1.174 are met.

Simplified Risk-Informed Approach (Continued) Deterministic Analysis

- Breaks Acceptable Through Deterministic Analysis
 - Bounding Analyses
 - NEI 04-07
 - Limiting Single Failure
 - All HPSI pumps running
 - Credit for Operator Actions in EOPs
 - Secure one CS pump
 - Failure of LPSI pump to trip being resolved through plant modification
 - Safety Related Calculations
 - Calvert Cliffs GSI-191 calculations prepared in accordance with Appendix B QA program

Simplified Risk-Informed Approach (continued) Identify Applicable Head Loss Test

- Test 5 and DEGB @ ISI 30-RC-11A-6 (Crossover Leg at RCP Suction Elbow)
 - Test 5 used equivalent of 825.7 lbm Fiber Fines
 - Use 800 Ibm Acceptance Criterion
 - DEGB @ ISI 30-RC-11A-6 generated 797.8 lbm Fiber Fines

	Material											
	Nukon	Thermal Wrap	Temp-Mat	Generic LDFG	Mineral Wool	Lead Blanket Cover	Epoxy Part.	IOZ Part.	Alkyd Part.	Latent Part.	Marinite	NaAlSi ₃ 0 ₈
Toot F	210.9#	543.2#	42.9#	28.6#	0#	0#	2 ft ³	5.9 ft ³	2 ft ³	1 075 ft ³	0 ft ³	Ed 1 lbo
lest 5	E-Glass		325.7 lbm		0#	0#		9.9 ft ³		1.275 IL	Οπ	54.1 105
ISI	309.6#	249.8#	30.2#	179.9#	00 E 0 #	0#	1.21 ft ³	2.22 ft ³	1.74 ft ³	1 075 ft ³	0 10 ft ³	GE Q Iba
30-RC-11A-6	E-Glass		769.5 lbm		22.58# 0#		5.17 ft ³		1.2751	U.12 IL	00.8 105	

- Test 5 had
 - 56 lbm more E-Glass fiber fines
 - 22.58 lbm less mineral wool
 - Mineral wool 2.8% of fine fiber quantity
 - CHLE investigatory tests showed no notable head loss impact from mineral wool
 - 73% more failed coatings & latent particulate
 - 0.12 ft³ less Marinite
 - 82% of NaAlSi₃O₈ precipitate
 - All tests experienced debris bed break-throughs relieving ΔP before 100% WCAP-16530 surrogate precipitates introduced

Simplified Risk-Informed Approach (continued) Identify Small Breaks that Produce Sufficient Debris

- Risk-Informed Debris Generation Calculation Results
 - Breaks Analyzed at 437 Circumferential Welds
 - Longitudinal Welds Currently Being Analyzed
 - ISI 30-RC-11A-6 is break #25 below

DEGB Fiber Fines Mass for 70 Largest Breaks

Simplified Risk-Informed Approach (continued) Calculate ΔCDF – Preliminary Results

- Use Conservative Approach
 - Smallest break that threatens strainer performance – 30" DEGB
 - NUREG-1829 LOCA Frequencies
 - Equally Apportion LOCA Frequency Across RCS Welds
 - Degradation mechanisms are Design and Construction for all 126 RCS welds
 - PWSCC also on 8 RCS welds

	-			
LOCA	Break Size	Geometric	Arithmetic	
Category	(in.)	Mean ¹	Mean ²	
1	≥ 0.5	1.90E-03	1.00E-02	
2	≥ 1.5	4.20E-04	3.00E-03	
3	≥3	1.60E-05	7.30E-05	
4	≥ 6.75	1.60E-06	9.40E-06	
5	≥14	2.00E-07	2.40E-06	
6	≥ 31.5	2.90E-08	1.50E-06	
Notes:				
[1] Taken from Table 7-19 of NUREG-1829 [2] Taken from Table 7-13 of NUREG-1829				

- 126 Welds \geq 30"
- 24 Welds ≥ 30" Threaten Strainer Performance

• Linear Interpolation

LOCA	Break Size	Geometric	Arithmetic			
Category	(>in.)	Mean	Mean			
1	≥ 0.5	1.90E-03	1.00E-02			
2	≥ 1.5	4.20E-04	3.00E-03			
3	≥3	1.60E-05	7.30E-05			
4	≥ 6.75	1.60E-06	9.40E-06			
5	≥ 14	2.00E-07	2.40E-06			
5.5	≥30	4.37E-08	1.58E-06			
6	≥ 31.5	2.90E-08	1.50E-06			
# Welds	#Failed	ΔCDF GM	ΔCDF AM			
126	24	8.32E-09	3.00E-07			

Log-Log Interpolation

LOCA	Break Size	Geometric	Arithmetic		
Category	(>in.)	Mean	Mean		
1	≥ 0.5	1.90E-03	1.00E-02		
2	≥ 1.5	4.20E-04	3.00E-03		
3	≥3	1.60E-05	7.30E-05		
4	≥ 6.75	1.60E-06	9.40E-06		
5	≥14	2.00E-07	2.40E-06		
5.5	≥30	3.93E-08	1.55E-06		
6	≥ 31.5	2.90E-08	1.50E-06		
# Welds	#Failed	ΔCDF GM	∆CDF AM		
126	24	7.48E-09	2.96E-07		

Differences STP – VOGTLE – CCNPP

• Physical

Item	STP	VOGTLE	CCNPP
NSSS	Westinghouse	Westinghouse	CE
RCS Piping Welds	Circumferential Welds	Circumferential Welds	Circumferential & Longitudinal Welds
RCS Piping ID	31"	31"	42" & 30"
ECCS Trains	3	2	2
Strainer Config.	3 combined	4 separate	1 combined
Strainer Design	PCI Flow Control	GE Stacked Disc	CCI Pocket
Strainer SA	~1800 ft²/Train	~800 ft ² /Pump	~6000 ft ² Total
CS Setpoint	9.5 psig	~21.5 psig	2.8 psig

Differences STP – VOGTLE – CCNPP

• Analytical

Торіс	STP	VOGTLE	CCNPP	
Debris Generation	Casa Grande	BADGER		
Break Size/Orientation	Search Algorithm	2", 45°in	crements	
Debris Transport	Casa Grande	NARWHAL		
Chemical Precipitate Qty	Bounding Test	NARWHAL Break-Specific Analysis		
Precipitation Timing	Not Credited	ANL Solubility	Precipitate ≤140°	
Aluminum Passivation	Not Credited	Credited	Not Credited	
Core Flow / Blockage	FIDOE/RELAP5-3D	WCAP-17788	WCAP-16793	
GSI-191 Risk Quantification	Critical Break Size Frequency	CFP Entered Critical Bre into PRA Size Freque		
Strainer HL Protocol	Flume	Tank	CCI MFTF	

Status of Calvert Cliffs Analysis

- Calculation Revisions
 - In Owner Acceptance Review
 - Debris Generation 4 size distribution for Mineral Wool debris
 - In process
 - Revised Debris Transport Calculation
 - Revised WCAP-16530 Chemical Precipitate Calculation
 - Revised LOCADM Calculation
 - Maximum Allowable Strainer Head Loss Calculation
 - Revised Strainer Bypass Calculation
 - Scheduled
 - Formal Risk-Informed Analysis Calculations
 - Update Ex-Vessel Downstream Effects Calculations
- Plan for GL 2004-02 Response
 - Commitment Change Letter
 - Perform Risk-Informed Analyses: March to June 2016
 - Prepare Final Submittal: October 2015 to July 2016
 - Submit Final Response: August 2016

Questions/Concerns

• Jointly Review Issues, Questions, and Concerns for Future Communication

Next Steps

- Finalize Update of Deterministic Calculations
- Present Formal Risk-Informed GSI-191 Analysis and Results
- Desire Next Meeting April 2016

