National Organization of Test, Research, and Training Reactors

Thermal Hydraulic Analysis Update

2015 TRTR Conference

Patrick G. Boyle Nuclear Engineer Research and Test Reactors Licensing

October 6, 2015

Relevance to Operations

- Existing inventory of fuel is much more varied than when General Atomics started supplying TRIGA reactors
- Department of Energy is looking for additional sources of replacement fuel including utilization of "lightly" burned fuel currently on inventory
- Fuel management for improved shuffle without peak channel penalty
- General Atomics was not able to provide a threshold power per element for safe operations
- HEU to LEU conversion experience
- Over power event at a facility with a highly tilted flux profile following addition of a fresh element
- Desire to use modern tools for research reactors

Code Enhancements

- TRACE Update
 - Revision (minor release) coming soon (end of CY2015)
 - Updated Groeneveld correlation table
 - Corrected Groeneveld calculation
- TRACE Code availability
 - Must have non-disclosure agreement (agreement to not redistribute) on file with NRC office of Nuclear Regulatory Research
 - Free to Universities

Code Enhancements

- RELAP5 Update
 - Updated Groeneveld correlation tables (2006 version)
 - Code is available
 - Must have non-disclosure agreement (agreement to not redistribute) on file with NRC office of Nuclear Regulatory Research
 - Free to Universities

Code Enhancements

- Interfacial drag (bundle) model versus PIPE model in TRACE and RELAP5
 - Classical pipe slug flow does not occur in rod bundles
 - Rod bundle interfacial drag model does not have the bubbly to slug flow transition that the pipe interfacial drag model has

Common Issues

- Conflicting information for grid plate and fuel dimensions
 - Inconsistent inlet and outlet flow loss coefficients
 - Inconsistent channel flow area and hydraulic diameter determination
- Need to search for limiting sub-channel
 - Limiting channel may not be highest power rod, need to consider all parameters
 - Limiting channel based on power and flow, especially with circular lattice (irregular pin pitch)

Result Challenges

- Using technical specification (TS) values for input parameters can create artificial conditions that may never exist
- Bounding core designs may result in limitations to bulk pool (core inlet) temperature, power level, or fuel placement constraints
- Code results show density wave oscillations
 - Driven by power to flow area ratio
 - Stability limit may be more restrictive than CHF

Potential Items Under Consideration

- Measurement of actual inlet temperatures instead of assuming bulk limit
- Determination of cross-flow and utilization of core models that can apply appropriate cross-flow values
 - More accurate representation of physical phenomena
 - Increased margin to critical heat flux (reduced DNBR) and flow stability boundary

Potential Items Under Consideration

- Increased range in test series in sub-cooled boiling models
 - Model improvements needed to address irregular quality of predicting void fractions at low pressure and low flow
 - Validate against existing data
 - Expect to update both codes

Future Plans

10

- Consideration for more testing to further assess and enhance the models
 - Understand flow stability limits in TRIGA lattice geometries
 - Plate fuel creates unique power distribution issues (edge peaked) that complicates 1D flow modeling. The existing plate fuel CHF and flow stability thermal hydraulic data has uniform power distributions

Thermal Hydraulic Analysis Update

Questions

