Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards
Docket Number:	(n/a)
Location:	Rockville, Maryland
Date:	Wednesday, September 9, 2015

Work Order No.: NRC-1870

Pages 1-160

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	627TH MEETING
5	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
6	(ACRS)
7	+ + + +
8	WEDNESDAY
9	SEPTEMBER 9, 2015
10	+ + + +
11	ROCKVILLE, MARYLAND
12	+ + + +
13	The Advisory Committee met at the Nuclear
14	Regulatory Commission, Two White Flint North, Room
15	T2B3, 11545 Rockville Pike, at 1:00 p.m., John W.
16	Stetkar, Chairman, presiding.
17	COMMITTEE MEMBERS:
18	JOHN W. STETKAR, Chairman
19	DENNIS C. BLEY, Vice Chairman
20	RONALD G. BALLINGER, Member
21	SANJOY BANERJEE, Member
22	CHARLES H. BROWN, JR., Member
23	MICHAEL L. CORRADINI, Member-at-Large
24	DANA A. POWERS, Member
25	JOY REMPE, Member
ļ	I

	2
1	PETER RICCARDELLA, Member
2	HAROLD B. RAY, Vice Chairman
3	STEPHEN P. SCHULTZ, Member
4	GORDON R. SKILLMAN, Member
5	
6	DESIGNATED FEDERAL OFFICIAL:
7	Weidong Wang
8	
9	ALSO PRESENT:
10	EDWIN M. HACKETT, ACRS
11	PHIL AMWAY, Exelon Corporation
12	JON BARR, RES/DSA/AAB
13	ROBERT BEALL, NRR/DPR/PRMB/PFLT
14	PAULA GOTSCH, Grandmothers, Mothers and More
15	for Energy Safety *
16	JOHN GRUBB, Xcel Energy
17	PAUL GUNTER, Beyond Nuclear
18	STEVE KRAFT, NEI
19	MARY LAMPERT, Pilgrim Watch *
20	DAVID LOCHBAUM, Union of Concerned Scientists
21	ABY MOHSENI, NRR/DPR
22	ERIC OESTERLE, NRR/DPR/PRMB/PFLT
23	MARTY STUTZKE, RES/DRA
24	RICH WACHOWIAK, EPRI
25	* Present via telephone
ļ	I

	3
1	<u>CONTENTS</u>
2	Page
3	Opening Remarks by the ACRS Chairman 4
4	Review of Containment Protection
5	and Release Reduction 5
6	Remarks by Subcommittee Chairman,
7	Stephen P. Schultz 5
8	Briefing and Discussion by NRC Staff 8
9	Briefing and Discussion by Industry 58
10	Briefing and Discussion with Public 118
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	

	4
1	PROCEEDINGS
2	1:02 p.m.
3	CHAIRMAN STETKAR: The meeting will now
4	come to order. This is the first day of the 627th
5	meeting of the Advisory Committee on Reactor
6	Safeguards.
7	During today's meeting, the Committee will
8	consider the following: Review of Containment and
9	Release Reduction, Discussion of Commission Meeting
10	Topics, and Preparation of ACRS Reports.
11	This meeting is being conducted in
12	accordance with the provisions of the Federal Advisory
13	Committee Act. Mr. Weidong Wang is the Designated
14	Federal Official for the initial portion of this
15	meeting.
16	We have received that's not correct.
17	We have received several written comments and requests
18	to make oral statements from members of the public
19	regarding today's sessions. And we have time
20	allocated for that process.
21	There will be a phone bridge line. To
22	preclude interruption of the meeting the phone will be
23	placed in a listen in mode during the presentations
24	and Committee discussion.
25	A transcript of the meeting portions f
ļ	I

(202) 234-4433

	5
1	the meeting is being kept. And it is requested that
2	speakers use one of the microphones. Identify
3	themselves and speak with sufficient clarity and
4	volume so that they can be readily heard.
5	I also ask everybody to check your little
6	phones and other communications devices. And please
7	turn them off so we're not interrupted.
8	We will open the phone bridge line at the
9	conclusion of this session on Containment Protection
10	and Release Reduction, to be sure that we have
11	comments from anyone who is listening in out there.
12	As an item of interested, I'd also like to
13	note the passing of former ACRS Member Dr. Don Miller,
14	who served on the Committee between 1995 and 1999.
15	And we certainly recognized Don's tremendous
16	contributions to nuclear safety throughout his career.
17	We're sorry to hear about his passing.
18	With that, unless ay of the members have
19	any other items for discussion, we'll turn to the
20	first item on our agenda. Which is Review of the
21	Containment Production and Release Reduction.
22	And Steve Schultz will lead us through
23	that portion of the meeting. Steve?
24	MEMBER SCHULTZ: Thank you, John, for
25	introducing the topic. Our ACRS Subcommittees on
ļ	I

(202) 234-4433

	6
1	Fukushima and on Reliability and PRA have met jointly
2	to review this matter during two meetings in 2014, and
3	on July 7 and August 18, this year.
4	During each of these meetings, we had the
5	benefit of discussions with the NRC Staff,
6	representatives of the Industry and the public.
7	Separately, this Committee has also been
8	reviewing the related staff guidance and industry
9	implementation of the response to the NRC Order EA-
10	13109, which will ensure a severe accident capable
11	venting systems in these facilities.
12	In our meetings in 2014, the Subcommittees
13	reviewed the general concepts of the analysis and
14	evaluation approach the staff intended to use in
15	structuring the regulatory basis in its documentation.
16	In July and August this year, the
17	Subcommittees have reviewed the detailed technical
18	analysis work and evaluations performed by the staff
19	which support this document. That is the document on
20	Containment Protection and Release Reduction for BWR
21	Mark I and Mark II containments. As well as the
22	result in findings and recommendations.
23	We also heard presentations from industry
24	representatives regarding their development and
25	analysis of severe accident management approaches for
l	I

(202) 234-4433

	7
1	these facilities. And discussed these findings.
2	We discussed filtering strategies in
3	severe accident management issues. And received
4	comments from members of the public.
5	At our Subcommittee at our previous
6	Subcommittee meeting on this subject, on August 18, we
7	heard from staff and industry regarding their views.
8	And are pleased to have them back today at this full
9	Committee session to summarize their positions.
10	In addition, at this meeting, as John
11	indicated, we will hear presentations from David
12	Lochbaum of the Union of Concerned Scientists, Paul
13	Gunter of Beyond Nuclear, and Mary Lampert of Pilgrim
14	Watch on their views. And we'll also hear from any
15	other interested members of the public who wish to
16	make comments.
17	Following our August Subcommittee meeting,
18	the Commission completed their deliberations on the
19	matter. And decided not to proceed with Rulemaking
20	Alternative 1 as described in the staff SECY paper.
21	They provided clear direction to the staff to proceed
22	accordingly.
23	Since the Commission has rendered their
24	decision on this the alternatives that were
25	presented by the staff, the Committee intends today to
	I

(202) 234-4433

	8
1	focus on deliberations on the technical aspects of
2	containment protection and release reduction for these
3	facilities. With emphasis on the performance of
4	severe accident capable venting systems and engineered
5	filter systems.
6	We'll now proceed with the presentations.
7	And I would like to invite Aby Mohseni of the staff to
8	begin. Aby?
9	MR. MOHSENI: Thank you very much. Good
10	afternoon Mr. Chairman and distinguished members. I
11	am Aby Mohseni, Deputy Director for the Division of
12	Policy and Rulemaking in NRR.
13	And we appreciate the opportunity to
14	address the Committee today. The NRC staff is here
15	today to provide a high level overview of the draft
16	reg basis for the containment protection and release
17	reduction rulemaking's CPRR.
18	The staff previously made detailed
19	presentations on the CPRR rulemaking to the ACRS PRA
20	and Fukushima Subcommittees on July 7 and August 18,
21	2015. And has benefitted from their feedback.
22	The NRC staff developed a Commission
23	paper, SECY 15-0085 and a supporting draft regulatory
24	basis that provides details on the high level
25	conservative estimate and the benefits of external
Į	I

(202) 234-4433

	9
1	water addition.
2	Since the last time we met with you, the
3	Commission has provided direction to the staff in SRM
4	SECY 15-0085 to discontinue the CPRR rulemaking
5	activities, proceed with the implementation of Order
6	EA-13-109. And use as applicable, the draft CPRR
7	regulatory basis to support other near term task force
8	Tier III items related to containment protection.
9	To start today's presentation, Bob Beall
10	will provide an overview of the CPRR regulatory
11	evaluation. Bob is the lead PM for the CPRR
12	rulemaking in the Office of Reactor Regulations.
13	Next, Marty Stutzke from the Office of
14	Nuclear Regulatory Research will briefly talk about
15	the risk and PRA results in the draft CPRR regulatory
16	basis. We also have John Barr from the Office of
17	Research to answer questions as needed.
18	So now, let me turn it over to Bob.
19	MR. BEALL: Thank you, Aby. Good
20	afternoon, gentlemen. I'd like to start on page two,
21	slide two, by going over a background information on
22	the overall Fukushima lessons learned.
23	CPRR rulemaking is just one part of a much
24	larger NRC activity related to the lessons learned
25	from the Fukushima accident. In this slide, we see a
l	I

(202) 234-4433

(202) 234-4433

	10
1	number of the Fukushima activities that the NRC is
2	looking at right now.
3	And if you look at towards the center or
4	the upper center right portion of the slide, you can
5	see where CPRR is. This says containment protection
6	and release reduction rulemaking.
7	And it's also right next to the hardened
8	vent order. Which is EA-13-10. But in addition to
9	that, you also see there's a number of activities
10	related to seismic and flooding activities with walk
11	downs and reevaluations.
12	There's also onsite and offsite activities
13	related to the FLEX equipment. And you also see
14	there's emergency procedures and other activities like
15	offsite blackout vents that's also part of the lessons
16	learned.
17	So, CPRR is just on a facet of a much
18	larger NRC activity related to the Fukushima lessons
19	learned.
20	On the next slide, in the draft CPRR
21	regulatory basis, the staff came up with four
22	alternatives for the Commission to consider. They can
23	be broken down into high level actions with related to
24	containment protection and release reduction.
25	Alternatives 1, 2 and 3 are related to

(202) 234-4433

Í	11
1	containment protection. And Alternative 4 is release
2	reduction.
3	Alternative 1 had to do with no rulemaking
4	or maintain the status quo was going with, staying
5	with the Order EA-13-109, which talks about over
6	pressure protection. It also has a kind of a benefit
7	of severe accident water addition to help cool core
8	debris.
9	Alternative 2 had to do with codifying or
10	making genetically applicable the Order. So basically
11	we would take the Order EA-13-109 and add it to the
12	regulations.
13	Alternative 3 was a combination of
14	Alternatives 1 and 2, which is codifying the Order.
15	But also require that the use of severe accident water
16	addition or SAWA as part of the regulations.
17	MEMBER CORRADINI: So, can I ask? So, at
18	this point, you're going to get to 4, which I know is
19	different.
20	I'm still personally struggling about the
21	difference between 1, 2, and 3. And I think that
22	having the I asked this at the Subcommittee and I
23	want to make sure that I've got it right in my head.
24	So is the difference between 1, 2, and 3
25	from a technical standpoint, no difference? And it's
	I

(202) 234-4433

	12
1	more a process?
2	Or is there a technical difference between
3	1, 2, and 3? That's what I'm still struggling with.
4	MR. BEALL: There is really no technical
5	difference between 1, 2 and 3. Because all three of
6	them have the severe accident water addition as part
7	of the regulatory evaluation.
8	MEMBER CORRADINI: Okay. And just to help
9	me then, under Alternative 3, you note, and I think
10	you guys noted this before in the Subcommittee about
11	protection against major containment failure modes.
12	I don't appreciate what your pointing out
13	there that makes it different. What does that mean?
14	MR. BEALL: The Order EA-13-109 was
15	specifically written to address over-pressurization.
16	But, when you add the addition of water, severe
17	accident water addition, that also can apply to other
18	containment failure modes like liner melt-through.
19	MEMBER CORRADINI: Sure.
20	MR. BEALL: Or, leakage through the
21	drywall head.
22	MEMBER CORRADINI: Sure. But wouldn't
23	that apply to 1 and 2?
24	MR. BEALL: It can. But it's not
25	specifically called out like it would be in
	I

(202) 234-4433

	13
1	Alternative 3.
2	When we would codify the Order plus
3	requiring severe accident water addition, we could of
4	we could actually we could also talk about
5	protecting against alternative containment failure
6	modes instead of just over-pressurization. Which is
7	what the Order calls out for you to protect against.
8	CHAIRMAN STETKAR: Bob, let me
9	MR. BEALL: It's a very subtle difference.
10	CHAIRMAN STETKAR: Let me see if I can
11	understand it though. In principle, Alternative 2 and
12	the Order, Alternative 2 simply codifying through
13	rulemaking the Order,
14	MR. BEALL: That's correct.
15	CHAIRMAN STETKAR: Could in principle, I'm
16	not saying in practice. Could in principle be
17	satisfied by someone designing a drywell vent with no
18	water addition that would survive the condition in the
19	drywell with no water addition?
20	Is that correct?
21	MR. BEALL: In principle that's correct.
22	CHAIRMAN STETKAR: Okay.
23	MR. BEALL: Because in Phase II of the
24	Order allows you having a drywell vent operational.
25	CHAIRMAN STETKAR: And that's all that it
ļ	I

(202) 234-4433

14 1 requires? Is a drywell vent that satisfies that 2 function? 3 MR. BEALL: Right. Or you can have --4 CHAIRMAN STETKAR: Ιt has to be 5 operational. Right, 6 MR. BEALL: it has to be 7 operational. 8 CHAIRMAN STETKAR: And so I said, in 9 principle, if I could design it with the right 10 materials and environmental qualifications and reliability, that drywell vent with no water addition 11 could satisfy either Alternative 1 or the codified 12 version in Alternative 2. 13 14 MR. BEALL: Yes, sir, that is correct. 15 CHAIRMAN STETKAR: Okay. In Alternative 16 3, it actually adds the requirement for water addition. 17 VICE CHAIR BLEY: The reason why they say 18 19 there's no technical difference, as I understand it, is because now you expect all the licensees to come in 20 under any of the three with SAWA. 21 That's correct. 22 MR. BEALL: Yes, sir. VICE CHAIR BLEY: But --23 24 MEMBER CORRADINI: Okay. But if I might So, technically, all three of them 25 just interject.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	15
1	except for the process by which the licensees would
2	follow, technically would have the same effect under
3	1, 2, and 3. Unless I'm in practice.
4	Forget about principle for the moment.
5	MR. BEALL: Right.
6	MEMBER CORRADINI: From a practice
7	standpoint, they would be practically the same. They
8	are the same.
9	MR. BEALL: Right. So for like as John
10	said, is that Alternative 1 and 2, you could come in
11	
12	MEMBER CORRADINI: Right, right, right.
13	Okay. I'm with you there. I'm with you there.
14	CHAIRMAN STETKAR: That's why I tried to
15	you're trying to see what is the distinction.
16	MEMBER CORRADINI: Yes.
17	CHAIRMAN STETKAR: And in my mind, that's
18	it's a if you accept the fact that all of the
19	licensees are going to satisfy the Order with water
20	addition, then there is no distinction.
21	MEMBER CORRADINI: Okay.
22	CHAIRMAN STETKAR: But in principle, there
23	could be.
24	MEMBER CORRADINI: Okay.
25	MR. BEALL: In Alternative 4, it's
ļ	I

	16
1	classified under release reduction. And Alternative
2	4 it talks about using engineered filters and other
3	filtering strategies to reduce your offsite release to
4	through the vent.
5	In slide four, as Steve and Aby talked
6	about, we have an SRM, all from the draft from the
7	Commission on the draft regulatory basis.
8	The SRM instructed the staff to
9	discontinue the CPRO rulemaking. And to not issue the
10	draft regulatory basis for public comment.
11	They asked us to continue on with the
12	Order EA-13-109 as written. And to implement it
13	without additional any additional regulatory
14	actions.
15	It also
16	MEMBER CORRADINI: So if I might now, now
17	we've got that technically they're all the same in
18	prac potentially in practice.
19	MR. BEALL: Um-hum.
20	MEMBER CORRADINI: So from a process
21	standpoint, what is the commitment under Alternative
22	1 by those licensees to follow the Order
23	MR. BEALL: Right.
24	MEMBER CORRADINI: And SAWA or SAWM,
25	whatever it is, would be part of that implementation
	I

(202) 234-4433

	17
1	of the Order that would be
2	MR. BEALL: That's correct. That's
3	MEMBER CORRADINI: Expected and
4	MR. BEALL: Yes, that's correct. That's
5	Phase II of the Order.
6	MEMBER CORRADINI: Okay.
7	MR. BEALL: Right. Phase I of the Order
8	talks about having an operable wetwell vent. And
9	Phase II gives you the drywell vent. Or having a
10	maintaining the wetwell vent in this direction.
11	MEMBER CORRADINI: Excellent. Thank you.
12	MR. BEALL: Yes, sir?
13	MEMBER BROWN: With the SAWA and stuff,
14	when you originally did that Order, didn't I mean,
15	we had a lot of extensive discussions on the water
16	management and the water addition and all that stuff
17	in the last meeting or two.
18	And but I don't remember that being talked
19	about to that extent in the early Order. But so
20	but it's still okay?
21	I mean it isn't this more of an
22	industry initiative under the water addition stuff?
23	As opposed to being a regulation?
24	Or, is the Order encompassing enough to
25	get what we've heard in the last couple of meetings,
I	I

(202) 234-4433

18 1 covered under the severe accident water addition and water management protocols that you all discussed with 2 3 us? 4 MR. BEALL: The water is encompassing 5 enough that they would -- it gives the licensees a choice. Okay? Under Phase II to the drywell vent, or 6 7 have an alternative method to satisfy -- to maintain 8 the wetwell vent. MEMBER BROWN: So that's the wetwell vent 9 10 issue then. MR. BEALL: Right. That's right. That's 11 12 correct. MEMBER BROWN: So then the Order was 13 14 explicit enough of that. MR. BEALL: Yes, sir. 15 MEMBER BROWN: I guess I didn't understand 16 17 that. Okay. Thank you. MR. BEALL: 18 Okay. 19 MEMBER CORRADINI: Sorry. MR. BEALL: Go ahead. 20 MEMBER CORRADINI: I'm still not all the 21 So, under what the Commission is 22 way there yet. moving forward with, which is Alternative 1, Plant X 23 24 says that here's how I'm going to satisfy Phase 1. Here I'm going to satisfy Phase II. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	19
1	And in practice, part of Phase II is water
2	addition and the associated management for days,
3	weeks, of managing the water supply such that one has
4	what they have so that they can vent. And then
5	appropriately manage the water for coolability.
6	MR. BEALL: Correct.
7	MEMBER CORRADINI: Is that water addition
8	strategy checkable by the staff? And if so, how is it
9	going to be checkable?
10	MR. BEALL: I can't address that. That's
11	prob
12	MEMBER CORRADINI: I use the word
13	checkable because anything else I use is probably
14	illegally binding. I just want to know how are you
15	going to check?
16	MR. BEALL: That's a question that would
17	have to be answered by the folks in the JLD, who's
18	managing the Order. You know, because I'm so I
19	don't know how they're going to be checking that.
20	Because we didn't move it in that phase of
21	the rulemaking to codify and come up with rule
22	language and things like that.
23	MEMBER CORRADINI: Oh. But you're saying
24	at this point, you hadn't anticipated that direction.
25	So it's to be determined.
Į	I

(202) 234-4433

	20
1	MR. BEALL: To be determined.
2	MEMBER CORRADINI: But it has to be
3	checkable, right?
4	MR. BEALL: I assume it would be.
5	MEMBER CORRADINI: Okay.
6	MR. BEALL: But, that's a question for the
7	
8	CHAIRMAN STETKAR: But on I mean, the
9	ability for the NRC staff to confirm that a licensee
10	is satisfying their compliance with an Order, doesn't
11	seem to be an issue specific item. Is it?
12	I think what we're asking is, if a
13	licensee says I will comply with Order whatever, Order
14	X. And by complying with Order X, I will do A, B and
15	C. I don't care what those are.
16	Does the staff have a mechanism and a
17	requirement to confirm that indeed that licensee is
18	maintaining A and B and C?
19	MR. BEALL: The
20	CHAIRMAN STETKAR: That's a process issue.
21	It has nothing to do with severe accident water
22	addition or anything.
23	MR. BEALL: Right. Right.
24	CHAIRMAN STETKAR: And a couple of us, I
25	being one, don't know the answer to that question. I
I	1

```
(202) 234-4433
```

	21
1	think that's why we've raised it.
2	MEMBER CORRADINI: We're anticipating the
3	answer is it's checkable. But, I just want to make
4	sure that I understand. If 1 through 3 are
5	approximately the same except for process, I'm trying
6	to understand the process subtleties. That's all.
7	CHAIRMAN STETKAR: It's clear that if it's
8	a rule, it's codified in the regulations.
9	MEMBER CORRADINI: Right.
10	CHAIRMAN STETKAR: And we know how those
11	are treated. But what we're asking is, how is a
12	licensee commitment to comply with an Order treated in
13	a regulatory checkability thanks for the word,
14	space.
15	MR. MOHSENI: It is the same. It has the
16	same legal authority as the rules do. What you have
17	in regulation, you have additional parts of the
18	regulation that would kick in.
19	For example, there might be references to
20	other parts of the regulation that generally adds more
21	to the context of this rule. Whereas, in an Order,
22	you only have what the Order says.
23	And the Order generally is more focused on
24	what exactly it is that the Order is about. It does
25	not reinvent all the other additional components that
I	1

(202) 234-4433

	22
1	are in a regulation that goes generally with a
2	regulation.
3	And you don't have those benefits,
4	flexibilities that the regulation offers sometimes.
5	Exemptions for example.
6	CHAIRMAN STETKAR: Okay.
7	MR. MOHSENI: Where as an Order in fact is
8	enforceable. And just as much as regulatory
9	requirements are.
10	And because the number of plants affected
11	by this thing, by this particular rule, are not
12	expected to increase in future, hence an order seems
13	to be an efficient way of actually capturing the
14	essence that was intended to be captured in codifying
15	the rule the Order.
16	MEMBER SCHULTZ: Aby, going back to the
17	example that John gave, the simple one where the
18	licensee had determined and committed committed as
19	a result of the order to the staff that they are going
20	to do A, B and C.
21	The staff then has the right and the
22	responsibility to validate that A, B and C are in fact
23	being accomplished going forward.
24	MR. MOHSENI: That's correct. There will
25	be verification that in fact it satisfies the Order.
I	I

(202) 234-4433

	23
1	The Order isn't the Phase II of the
2	Order says if you chose not to have a hardwell vent,
3	you have to demonstrate why that is adequate for the
4	protection of the containment.
5	In fact, this requires a subsequent
6	analysis by NRC to approve the methodology that the
7	licensees offer as meeting the Order.
8	So yes, there will be a schedule. There
9	will be a time line for when NRC actually indicates
10	that the Order is satisfied by each licensee.
11	CHAIRMAN STETKAR: Marty, that's for
12	initial satisfaction of the Order itself. I today say
13	that I will do A and B and C to satisfy this Order.
14	The NRC reviews that and says yes indeed, we believe
15	that if you do A and B and C, you will satisfy the
16	Order.
17	What I think we're asking about in terms
18	of checkability, is seven years from now, does the NRC
19	have the ability to go to that licensee and check
20	whether you still have the capability. Whether that's
21	hardware or training or procedures or whatever, to
22	indeed accomplish A and B and C.
23	That's the sense of checkability. Not the
24	initial ability to meet the order. But continued
25	ability throughout the life of the facility.
Į	I

(202) 234-4433

	24
1	MR. BEALL: Like Aby said that, you know,
2	it's almost like doing the rulemaking, codifying it.
3	Except that, you know, it's an Order.
4	So, it should be able it should be
5	falling under the ROP process for the site resident
6	inspectors to look at the commitment. Making sure
7	they're complying to commitment.
8	And having any site inspections as needed.
9	MEMBER POWERS: they can site against the
10	commitment?
11	MR. BEALL: That's correct.
12	MEMBER CORRADINI: That's all we need.
13	MEMBER POWERS: They can site against
14	commitment, then it's the same as a regulation.
15	MEMBER BROWN: Do you have the ability
16	when they say they're going to do to use John's
17	example, C. We will comply with C. They have to
18	execute.
19	There's got to be a method to what they
20	do. Here's how we're going to do it.
21	MR. BEALL: UM-hum.
22	MEMBER BROWN: Do you have the ability
23	because it's an Order to be able to say, we don't
24	agree with the way you're doing it. And you need to
25	do it in a slightly different manner?
l	I

(202) 234-4433

	25
1	Or do you have to accept what they say
2	because they say they're complying with the Order?
3	MR. BEALL: NO. We don't have to agree
4	with that. We can
5	MEMBER BROWN: You can get a change
6	MR. BEALL: We can get a change.
7	MEMBER BROWN: To satisfy some so
8	you're satisfied that they are in fact complying with
9	the intent of the Order.
10	MR. BEALL: Yes, sir.
11	MEMBER BROWN: Okay.
12	MR. OESTERLE: Thank you. Eric Oesterle
13	from the staff. I'm the team lead for the Fukushima
14	Lessons Learned Rulemaking Team.
15	I just wanted to point out that once the
16	licensees have provided their plans for compliance
17	with the Order, that becomes part of the licensing
18	basis. And compliance with the licensee's licensing
19	basis is part of the normal inspection process that we
20	go through.
21	And as Bob said, resident inspectors will
22	routinely inspect those types of activities. In
23	addition, the staff has already been working with
24	industry on guidance for implementing the Orders.
25	And one thing that we've seen is that this
	I

(202) 234-4433

	26
1	guidance has developed a template for implementing
2	actions under Phase II. And they all include severe
3	accident water additions.
4	So, that's one indicator that we have from
5	industry, including our discussions with them here
6	that all licensees are either going with severe
7	accident water addition. Or any alternative has to be
8	reviewed and approved by the NRC.
9	Later this years, I think by December, we
10	expect all of the implementation plans from licensees
11	for compliance with the Order. And that's when we'll
12	get the, you know, the 100 percent verification that
13	they're following, you know, the template that has
14	been developed for implementing the Order in
15	accordance with the ISG guidance document that's been
16	developed.
17	So I just want to make the difference that
18	it's not really a commitment that they're making here.
19	They're complying with an Order that becomes part of
20	their licensing basis.
21	MEMBER RICCARDELLA: Are there plant
22	specific submittals? Or a general topical report
23	submittal? Or some combination of the
24	MR. BEALL: It would be plant specific.
25	MEMBER RICCARDELLA: Okay.
	I

(202) 234-4433

	27
1	MR. BEALL: Okay. On slide five. And
2	part of the draft regulatory basis that was submitted
3	to the Commission, the technical analysis that's
4	provided by the staff, supported all four
5	alternatives.
6	That allowed the Commission to look over
7	all the alternatives and all the data. And then come
8	up with a their recommendation and direction they
9	gave to the staff last month.
10	So, the but the technical analysis did
11	demonstrate that the risk reduction from this
12	that's shown in the risk reduction in the draft
13	regulatory basis was not a substantial safety
14	improvement.
15	Also, that the safety goal of the QHO, the
16	Quantitative Health Objective limit of 2 times 10 to
17	the minus 6, versus the CPRR high level conservative
18	estimate that we calculated, was over an order of
19	magnitude difference.
20	So, we were way below the NRC safety goal
21	for that. And also the valuation and Marty will be
22	talking about some of this stuff in a little bit,
23	showed that, you know, we took advantage of the flex
24	equipment, operator actions, probabilities and things
25	like that and all that was all factored into the
ļ	I

(202) 234-4433

	28
1	analysis that the staff did.
2	And on slide six, I'd like to turn it over
3	to Marty.
4	MR. STUTZKE: Good afternoon. Slide six
5	shows an example risk calculation to try to remind all
6	of us how these numbers are estimated like this.
7	Starting up at the top, when we began the
8	analysis. We defined a variety of what are called
9	sub-alternatives. And a sub-alternative is nothing
10	more then a specific set of CPRR strategies.
11	For example, we'll consider a strategy
12	that says gee, we're going to have severe accident
13	water addition. And that water is going to go into
14	the reactor vessel. And we will open the wetwell vent
15	first. And an operator will do that as opposed to
16	some rupture disk.
17	All of these different combinations.
18	There's 20 sub-alternatives for defined, evolved as
19	we continued to work on the process.
20	What's important to realize is that the
21	strategies are or a sub-alternative specifies a
22	capability or what is possible within the strategies.
23	Probabilistically then, we treat it inside risk
24	assessment and estimate the probability whether the
25	strategy succeeds or fails.
I	I

(202) 234-4433

	29
1	So, looking a little bit down on there,
2	you see a box called CDET. That is the Core Damage
3	Event Tree. The notion is that we come in with an
4	extended loss of A/C power as the initiating event to
5	that tree.
6	That CDET then models the FLEX
7	implementation probability through a variety of
8	accident sequences. In reality, that CDET has 340
9	sequences of which 280 go to core damage.
10	So, it's rather lengthy that way. And
11	this is where the approximate 40 percent reduction
12	comes from, like this.
13	All of that is just to get started with
14	the real purpose of our analysis, which is CPRR.
15	Because we needed to establish the boundary and the
16	initial conditions for the thermal hydraulics work.
17	And that's what the CDET provides us. So
18	we group those sequences into what are called plant
19	damage states. They are then fed into an APET or an
20	Accident Progression Event Tree.
21	And out of the APET, what we get are
22	release category frequencies that come out. And a
23	release category defines a specific type of release.
24	One that will happen, how much material is released.
25	How much energy is associated with the release.
I	

(202) 234-4433

30 1 Things like this that we get out of MELCOR 2 calculations that input are then to our max 3 calculations for consequence. So the actual risk 4 calculation per se, is this table. 5 So we have a variety of release categories each sub-alternative. Their associated 6 for 7 frequencies. We go through the thermohydraulics and 8 the consequence calculations. 9 provides the conditional And John 10 consequence. We simply multiply those two numbers together and add them up like this. 11 MEMBER BANERJEE: Does this take into 12 account also the weather at its max? 13 14 MR. STUTZKE: Yes. MEMBER BANERJEE: So that there's the --15 16 but you take into account what weather class it is, 17 the frequency of that. And that's all fed into this? MR. BARR: All of -- this is Jon Barr. 18 19 So, all of the conditional consequences are mean values over about 1,000 different weather trials. 20 And those are based on site specific 21 weather for the reference point. 22 MEMBER BANERJEE: That was my question. 23 24 Thank you. MR. STUTZKE: Within the release category, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	there's something subtle, because they are encoded.
2	But it tells us how the material is escaping into the
3	environment.
4	The middle column there, where you see the
5	labels like WW or DW. That stands for venting through
6	the wetwell or venting through the drywell.
7	If you scroll down the list a little bit,
8	you see one called OP, over-pressurization failure of
9	the containment. Meaning that none of the vents got
10	opened in time. Okay, so that's an example of the
11	containment failure mode.
12	The last column, IRV stands for in-vessel
13	retention. LMT is liner melt-through. So, those are
14	other additional containment failure mechanisms that
15	come up.
16	What's important to realize is that within
17	each sub-alternative or each risk calculation is there
18	are different pathways for material to escape into the
19	environment. And not all of those pathways are
20	filterable.
21	In other words, if there's an over-
22	pressurization failure, it doesn't go through the
23	vent. And so putting a filter on the vent is not a
24	benefit. The same way if there's a liner melt-
25	through, that doesn't matter whether there's a filter
I	

(202) 234-4433

	32
1	on the vent either.
2	So, we spent a great deal of time trying
3	to track and understand the different ways that the
4	containment was failing. So that when we apply a CPRR
5	strategy to it, we're not over-crediting it or under-
6	crediting it in the computation.
7	MEMBER RICCARDELLA: Excuse me. Why do
8	some of the subcategories include drywell venting when
9	I thought we weren't, you know, most of the SAWA
10	strategies don't include a drywell vent.
11	MR. STUTZKE: Okay. When these
12	strategies evolved over time. And one of the first
13	strategies that came from our discussions was a so
14	called passive drywell vent.
15	So we were going to put a rupture disk in
16	there, not a valve. And it's like, okay, everybody's
17	dead or they're incapacitated. And it will blow at
18	the right time and therefore relieve the pressure.
19	So, that is one of the sub-alternatives.
20	I can show it to you. The same way later on as the
21	importance of water addition during severe accidents
22	became obvious to us.
23	We defined flavors of that to SAWA, severe
24	accident water addition, which is the pump just start
25	it and let it run. And the whole containment would
ļ	1

(202) 234-4433

	33
1	fill up. As compared to a severe accident water
2	management strategy that says throttle it and don't
3	submerge the wetwell vent.
4	So, it truly I mean, on a personal
5	note, we used to go to these meetings among ourselves
6	and with industry. And I'd come back with three more
7	sub-alternatives I would have to analyze. Of course
8	by tomorrow. This sort of thing.
9	But, that's the nature of
10	MEMBER POWERS: Maybe that should have
11	been done before it was suggested.
12	CHAIRMAN STETKAR: Knowing Marty, he did.
13	He just Marty, be careful with your paper there so
14	you don't hit the mic.
15	Go back to the earlier slide. Because I
16	want to make sure I don't I want to make sure I
17	remember something from the full. Nope, not quite
18	that early.
19	MR. STUTZKE: Not that early, right. I
20	agree with that one.
21	CHAIRMAN STETKAR: There we go. This
22	slide says that you indeed did model the operation of
23	FLEX equipment to potentially prevent core damage.
24	Right? And if it's correct.
25	If it prevented core damage, you didn't
ļ	

(202) 234-4433

	34
1	have core damage. So that's what if it failed,
2	then it remained did it remain failed for the post-
3	core damage response?
4	MR. STUTZKE: It depends on how it failed.
5	CHAIRMAN STETKAR: Okay.
6	MR. STUTZKE: If the hardware itself
7	failed, that was the end of it.
8	CHAIRMAN STETKAR: Okay.
9	MR. STUTZKE: Okay. If the operator
10	failed to implement it in time, we did ask again,
11	given more time, could they be successful?
12	CHAIRMAN STETKAR: Okay. So the
13	operator's got a second chance if the hardware was
14	available. But if the hardware failed you know, I
15	recall there was also some timing issue related to
16	core damage.
17	That if for example, RCIC failed early,
18	you did not include credit for FLEX to prevent core
19	damage.
20	MR. STUTZKE: Right.
21	CHAIRMAN STETKAR: Am I remembering that
22	correctly?
23	MR. STUTZKE: That's correct. To add a
24	little more confusion to the jargon, FLEX has Phase I
25	and Phase II now.

(202) 234-4433
	35
1	CHAIRMAN STETKAR: Right. Yes.
2	MR. STUTZKE: As well as Phase III. Phase
3	I is reliance on your in plant equipment. So, the
4	logic structure says RCIC pump needs to work during
5	Phase I.
6	CHAIRMAN STETKAR: Right.
7	MR. STUTZKE: Meanwhile, everybody's
8	running around trying to install FLEX and drag the
9	portable equipment out and this sort of thing like
10	that. In this event tree, we assume that took a
11	minimum of four hours.
12	CHAIRMAN STETKAR: So that if you lost
13	RCIC early, you said you basically didn't have the
14	operators essentially didn't have the early chance to
15	save the core. They would still have the later
16	chance.
17	MR. STUTZKE: Yes.
18	CHAIRMAN STETKAR: And because the
19	hardware wasn't questioned. You questioned the
20	hardware in the back part of the model?
21	MR. STUTZKE: That's correct.
22	CHAIRMAN STETKAR: Okay.
23	MEMBER BANERJEE: Could I also ask a
24	question? MELCOR and yes, let's talk about MELCOR.
25	The calculations there, there's no
I	

36 1 uncertainty in the results put on that in addition to anything? 2 3 MR. STUTZKE: Not that the MELCOR team 4 did. I'll show you a slide and a couple back, where 5 Ι tried to inform my understanding of the uncertainties by relying on the SOARCA uncertainty 6 7 analysis work. 8 It's very --9 MEMBER BANERJEE: Okay. I think that's --10 MR. STUTZKE: Yes, it's a very current approach. 11 But, yes. MEMBER BANERJEE: At least it gives you a 12 rough idea. 13 14 MR. STUTZKE: Okay. If nothing else, it 15 demonstrates I pay attention to other research. 16 MEMBER BANERJEE: Right. 17 MR. STUTZKE: Okay. So slide number Sorry John, I got to turn this page. I just 18 seven. 19 need this, right. Is trying to show the contributions to 20 risk at a very high level. So I picked four sub-21 alternatives which are in the table below the graph. 22 And I apologize, the sub-alternatives have 23 24 rather we'll say strong nomenclatures to how they're labeled. 25 One --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	37
1	CHAIRMAN STETKAR: Unintelligible is a
2	different terminology.
3	MR. STUTZKE: And they would routinely
4	change as the project evolved. Which I was going to
5	say pulled my hair out, but I guess it's too late for
6	that.
7	Like that, but I have tired to for this
8	example, to summarize it. If you look in the lower
9	right-hand corner, this is an example of a
10	specification of part of a sub-alternative.
11	So we can talk about the water injection
12	pathway. And here it says reactor pressure vessel.
13	Another choice would be to the drywell directly.
14	The water strategy, whether it's SAWA
15	versus SAWM. The venting priority, we're going to use
16	the wetwell vent first, or we're going to try the
17	drywell vent first. Vent control manual as opposed to
18	a passive rupture disk.
19	And a venting strategy. An open and leave
20	open strategy versus a vent cycling strategy. Where
21	the vent would then be reclosed after the containment
22	depressurizes by about ten pounds. Something like
23	that.
24	So, for each of the cases you see here,
25	all of these are the same so that we can do a fair
I	I

(202) 234-4433

	38
1	apples to apples comparison. In the first sub-
2	alternative, there is no water addition capability and
3	no filter.
4	All right. And you can see the risk.
5	Total risk is about 3 times 10 to the minus 9 per
6	reactor year like that.
7	MEMBER CORRADINI: What is the horizontal
8	access? Time?
9	MR. STUTZKE: No. The horizontal access
10	is just showing you the different cases.
11	MEMBER CORRADINI: Between 3 and 4, okay.
12	MR. STUTZKE: Right. So, moving over to
13	the column of 3(a), we now allow water addition
14	capability with its associated success or failure
15	probabilities in there.
16	And I'll call your attention to the green
17	line, which is the third down from the top. And it
18	has increased. That's actually the desired or the
19	preferred response.
20	Now, corresponding to a case where the
21	containment is in fact vented. And core debris is
22	being retained because water addition has been
23	successful.
24	If you'll look at the black line, which is
25	the total risk. So you can see that the inclusion of

(202) 234-4433

	39
1	a water addition capability does lower the risk
2	somewhat.
3	Moving over to the third column. Now we
4	add in the possibility of a filter on the containment
5	vent line. In this case the decontamination factor
6	was assumed to be 10.
7	This is a parametric study. It's not as
8	if we say they can actually achieve a DF of 10. It's
9	just want if it was 10.
10	And you can see the risk is lowered
11	somewhat. But it's not totally eliminated. And
12	that's because as I'd said before, not all the release
13	pathways are in fact filterable to that vent line.
14	Then when one increases the DF up to
15	1,000, assuming that's possible, you don't see much
16	change in the total risk at all.
17	MEMBER CORRADINI: So, it's all the
18	leakage around it?
19	MR. STUTZKE: It's the cases where things
20	like the SAWA capacity doesn't work. So they get a
21	liner melt-through.
22	MEMBER CORRADINI: Ah.
23	MR. STUTZKE: Okay.
24	MEMBER CORRADINI: So it's not that it's
25	working. But it's bypassing. It's a combination of
I	

	40
1	a whole bunch of failures.
2	MR. STUTZKE: That's correct.
3	MEMBER BANERJEE: Are these changes
4	significant within the uncertainties?
5	MR. STUTZKE: You must have read my
6	slides.
7	(Laughter)
8	MEMBER BANERJEE: I guessed again.
9	MR. STUTZKE: Yes. Next slides next
10	slide.
11	VICE CHAIR BLEY: Do look at that left-
12	hand scale. There's not a lot of change.
13	MEMBER BANERJEE: That's what it means.
14	CHAIRMAN STETKAR: This is a linear scale
15	in 5E to the minus 10 increments. This is
16	MEMBER BANERJEE: Yes. And that's why I
17	asked it.
18	CHAIRMAN STETKAR: Now, something that
19	looks like a factor of 2 on a really small number.
20	MEMBER BANERJEE: And with very large
21	uncertainties.
22	MR. STUTZKE: Correct. If you flip to
23	slide number eight.
24	MEMBER SCHULTZ: Before we go Marty.
25	MR. STUTZKE: Yes?
Į	

	41
1	MEMBER SCHULTZ: So, what you're saying is
2	for the cases on the right-hand side where filtration
3	comes into play, for some period of time the pathway
4	to the filter is functional?
5	MR. STUTZKE: No. Remember this is a
6	compilation of many sequences. So
7	MEMBER SCHULTZ: Many sequences. Okay.
8	MR. STUTZKE: In some cases the sequence
9	is such that there's no venting at all. So you get an
10	over-pressurization failure, which is not filtered.
11	Okay. So this is results of all of the
12	sequences summed together.
13	MEMBER SCHULTZ: So it's a combination of
14	possibilities
15	MR. STUTZKE: Correct.
16	MEMBER SCHULTZ: That are represented by
17	the point result.
18	MR. STUTZKE: Correct. Yes, it's not a
19	specific sequence.
20	MEMBER SCHULTZ: But that could be an
21	outcome. In other words that could be an outcome
22	where the pathway, the venting pathway to the filter
23	is functional. But then the containment fails or the
24	liner melts through and at that point, it releases
25	through that pathway.
I	I

(202) 234-4433

	42
1	MR. STUTZKE: That's correct.
2	MEMBER SCHULTZ: Okay. Thank you.
3	MR. STUTZKE: Okay. This slide shows the
4	comparison of the risk results to the NRC's safety
5	goal. And I think the let's try to review this
6	from the bottom up because it answers Dr. Banerjee's
7	question.
8	And that is, the 20 regulatory sub-
9	alternatives are shown displayed across there with
10	their uncertainty bounds on there. Those uncertainty
11	bounds include the uncertainty in the seismic hazard
12	curves, the seismic fragility, the equipment
13	reliability, the operator reliability, and
14	simplistically in the consequence that we got out of
15	MACCS.
16	And the consequence uncertainty was then
17	formed by SOARCA. But it's very simple. It's just a
18	log normal variable on top of it.
19	But it provides some idea of as you say,
20	if you look at the change in the red dots, which are
21	the mean values on this. On the previous side, you
22	see a reduction of 50 percent.
23	But the uncertainty band was well over an
24	order of magnitude. Most of that being driven by the
25	uncertainty in the seismic hazard curve itself, like
ļ	I

(202) 234-4433

	43
1	that.
2	Working up at the
3	CHAIRMAN STETKAR: But that uncertainty
4	though is a constant for all of these?
5	MR. STUTZKE: That is correct.
6	CHAIRMAN STETKAR: Yes. So it's I'm
7	just thinking, we've not seen
8	MR. STUTZKE: The other thing to remember
9	that makes it a little bit more confusing is what
10	you're looking at is a fleet average risk here.
11	Averaged over all the BWR Mark I and Mark II plants.
12	And they all have their own uncertainties
13	in the seismic hazard curves because those were site
14	specific. Okay. So you really begin to and those
15	were propagated through the trees for the but it
16	gets difficult then to begin to interpret the result.
17	MEMBER BANERJEE: How much of that is the
18	seismic part?
19	MR. STUTZKE: Most of it.
20	MEMBER BANERJEE: Most of it. So, if you
21	took the seismic out, it would just be a much smaller
22	incident.
23	MR. STUTZKE: That's correct.
24	CHAIRMAN STETKAR: You did say that there
25	is you characterized this simplistic. There's just
I	

(202) 234-4433

	44
1	a log number distribution. But, you mentioned it and
2	I think we did discuss it a little bit at the
3	Subcommittee.
4	There is some characterization in the
5	MACCS part of the process in here. I mean, it's small
6	compared to the seismic hazard I think you explained.
7	But there is something in there.
8	MR. STUTZKE: It's there. On Table on
9	the Table on slide six. What we're talking about is
10	the conditional consequence. I treated that as a mean
11	value.
12	CHAIRMAN STETKAR: Um-hum.
13	MR. STUTZKE: And I put a parametric
14	uncertainty around it, log normal.
15	CHAIRMAN STETKAR: Okay.
16	MR. STUTZKE: And I mean, I can tell you,
17	the air factor was set to 10 because that's what we
18	were seeing out of the SOARCA uncertainty.
19	CHAIRMAN STETKAR: But it was set to ten?
20	Which is a reasonableness. Okay.
21	MR. STUTZKE: Yes.
22	CHAIRMAN STETKAR: Okay.
23	MR. STUTZKE: Moving up the side, I've
24	tried to put some arrows in here that group the sub-
25	alternatives by the SECY paper alternatives. Stating
l	I

(202) 234-4433

	45
1	on the left-hand side, you'll see there's two sub-
2	alternatives where we consider only the severe
3	accident capable event.
4	No first accident water addition
5	capability or no external filtration. Then we have a
6	block there labeled alternatives one, two and three,
7	that do include the water addition. And alternative
8	four is water addition plus filtration.
9	This goes back to the kind of evolving
10	nature of how the calculation is done. Dr. Corradini
11	will probably realize, this has been relabeled, then
12	what we showed at the subcommittee meeting in response
13	to your question.
14	Okay. When we started the analysis, the
15	assumption was as laid out in the SRM to SECY 12-0157
16	that said, assume you have a severe accident capable
17	vent and go from there.
18	So, we did just that. It didn't occur
19	until later that it wasn't physically possible to
20	design that vent without water addition capability.
21	So the first two bars are like the
22	first two sub-alternatives are as if you have I think
23	of it like a super vent. It doesn't need water
24	addition in order to be used.
25	So, the materials are right. And it can

(202) 234-4433

	46
1	just vent when it needs to vent.
2	The next block of alternatives, adding the
3	water addition capability, is done. The presumption
4	was, it was being done to prevent liner melt-through.
5	Another important containment failure mode.
6	Retroactively, it turns out well, you need
7	in order to practically design the vent, you need the
8	water addition.
9	MEMBER CORRADINI: So, my question was,
10	now there's various ways to look at this figure since
11	it's got so much information on it.
12	But, the previous one, if you can go back
13	just one click. So, the black line under 3(a), now go
14	forward, 3(a) and 4(b), is where? That black line is
15	the red or the blue?
16	MR. STUTZKE: That black line is the red
17	dots.
18	MEMBER CORRADINI: The red dots. Okay.
19	Are the red dots. And the uncertainty from site
20	I'm just trying to try to remember all this. The
21	uncertainty and seismic dominates the range.
22	But if I'm going to have a very bad day,
23	I'm going to have a very bad day within a factor of 2
24	regardless.
25	MR. STUTZKE: That's correct.
ļ	I

	47
1	MEMBER CORRADINI: Even
2	MR. STUTZKE: If I under
3	CHAIRMAN STETKAR: On a mean value, it
4	depends on what you call a very bad day.
5	MEMBER CORRADINI: And my point is, if
6	you're
7	CHAIRMAN STETKAR: If you're at the 95th
8	percentile confidence in terms of what you
9	characterize as a very bad day, in terms of what is
10	the 95th percentile of the frequency of a damaging
11	earthquake, I mean, you could interpret that as
12	looking at the patter of the black Xs at the top.
13	MEMBER CORRADINI: Right. But you're
14	looking at how
15	CHAIRMAN STETKAR: And so how you
16	characterize a very bad day, it depends on
17	MEMBER CORRADINI: But there's still a
18	factor of 2.
19	CHAIRMAN STETKAR: It's a factor of 2
20	delta on the black Xs. That's right. Okay.
21	MEMBER CORRADINI: That's what I'm trying
22	to get at. Okay.
23	CHAIRMAN STETKAR: Right.
24	MR. STUTZKE: The other thing you need to
25	remember is when you're making a comparison to the
I	1

```
(202) 234-4433
```

	48
1	safety goal that's supposed to be done on the mean
2	value. Not the other percentiles.
3	MEMBER CORRADINI: But I'm sure we're
4	going to have other speakers that are going to argue
5	about that. So I don't want to argue about that right
6	now.
7	I just want to say that if I had the Y
8	axis with no numbers, but the relative spacing of them
9	had meaning, there's really not a lot of movement
10	between them however I try to start managing the acts
11	the consequences. That's what I'm
12	MR. STUTZKE: I think that's a fair
13	characterization.
14	CHAIRMAN STETKAR: If the first two I
15	think Marty, what you were saying though, is if that
16	first two were quantified without a vent, which is
17	what you're saying, you couldn't really design it.
18	You assumed it was a
19	MR. STUTZKE: Right.
20	CHAIRMAN STETKAR: A magic vent.
21	MR. STUTZKE: Exactly.
22	CHAIRMAN STETKAR: The mean values there,
23	the red dots on those first two bars, would certainly
24	be higher then where they are. Would they be as high
25	as your high level conservative estimate?
I	

(202) 234-4433

	49
1	MR. STUTZKE: I don't think so.
2	CHAIRMAN STETKAR: Okay.
3	MR. STUTZKE: I mean, we obviously, we
4	didn't quantify it since the Commission instructed us
5	to assume that you have the vent.
6	CHAIRMAN STETKAR: Yes.
7	MR. STUTZKE: It might help to review how
8	that what that high level conservative estimate
9	means. Or how it was derived.
10	CHAIRMAN STETKAR: Could you do that?
11	MR. STUTZKE: Yes. Let me do that now.
12	MEMBER SCHULTZ: Before you do that though
13	Marty, I just I mean, we're focusing as I think we
14	did on the Subcommittee on the first two points.
15	First two cases on the left.
16	But, we know what we're going to hear from
17	industry. And that is in order for them to implement
18	the Order, they're going to talk about severe accident
19	capable vents with post accident water addition.
20	CHAIRMAN STETKAR: I was just trying to
21	get a since we're arguing about the
22	MEMBER SCHULTZ: No, I got it. I actually
23	
24	CHAIRMAN STETKAR: Fact that there are two
25	alternatives.
I	I

	50
1	MEMBER SCHULTZ: No, I understand.
2	CHAIRMAN STETKAR: As we go, two
3	alternatives, one, two, three and four.
4	MEMBER SCHULTZ: Right.
5	CHAIRMAN STETKAR: I'm just trying to get
6	a sense of how big the delta in the opposite direction
7	would be if we did not have venting capability.
8	MEMBER SCHULTZ: Correct. Okay. Yes, I'm
9	fine with that.
10	CHAIRMAN STETKAR: Do you follow me? How
11	big is that delta?
12	MEMBER SCHULTZ: I just want to provide
13	the perspective to the Committee on the discussion
14	content.
15	CHAIRMAN STETKAR: And that gets us to how
16	they've defined that high level conservative.
17	MEMBER RICCARDELLA: A question on your
18	95th percentile. Does that include the variability
19	from plant to plant? Or is that 95th percentile
20	uncertainty on the mean?
21	MR. STUTZKE: On the means.
22	MEMBER RICCARDELLA: So, you could
23	conceivably get a plant that's
24	MR. STUTZKE: That could be an outlier
25	plant.
I	I

(202) 234-4433

	51
1	MEMBER RICCARDELLA: Ultimately, are we
2	going to get plant specific information of this type?
3	I mean, this brings to mind that, you know, the
4	statistician who drowned in a river with an average
5	depth of six inches.
6	MR. STUTZKE: Yes. Now, I don't believe
7	that we will have this on a plant specific basis from
8	licensees.
9	MEMBER RICCARDELLA: But don't we need to
10	have some understanding of how bad a worse case plant
11	could be relative to the mean?
12	MR. STUTZKE: Well, the whole strategy of
13	the argument here, and looking at the fleet-wide mean,
14	is to convince yourself on the average, everything is
15	okay.
16	Remember, we're not after to estimate the
17	risk of any specific plant. What we're trying to show
18	you is, we think the risk is reasonably below some
19	regulatory limit.
20	And that lets you do simplify the
21	computations somewhat.
22	MEMBER RICCARDELLA: I understand.
23	MR. STUTZKE: So, the real question is,
24	even though, you know, if I picked my black Xs, the
25	95th percentile of the mean, and you ask, well, how
ļ	I

(202) 234-4433

	52
1	bad could it really be?
2	MEMBER RICCARDELLA: At the worst plant.
3	MR. STUTZKE: At the worst plant. That's
4	what the high level conservative estimate attempts to
5	address.
6	MEMBER RICCARDELLA: Okay.
7	MR. STUTZKE: And that high level
8	conservative estimate was, we went through the
9	results. Well, let me remind the Committee, and
10	perhaps the full Committee hasn't heard this story.
11	Was, when we had presented to the
12	Subcommittee a while back, there were valid concerns
13	about the human reliability. The ability of the
14	operators to function.
15	It's a very complicated problem to
16	estimate those probabilities. Especially post-core
17	damage.
18	So, I started thinking about it and said
19	look. If I just take the highest ELAP frequency
20	across the fleet, not the average, but the worst one
21	that I got. And I multiply it times the worst
22	condition or consequence that John calculated for me.
23	That number is well below the safety goal.
24	More then an order of magnitude below the safety goal.
25	MEMBER CORRADINI: Well even if you took
I	I

(202) 234-4433

	53
1	the worst of those?
2	MR. STUTZKE: Correct.
3	MEMBER CORRADINI: Regardless of location?
4	MR. STUTZKE: Correct. But, remember his
5	calculations are for a generic site I believe.
6	MR. BARR: The MACCS calculations were for
7	a referenced Mark I site, which was Peach Bottom. In
8	the sensitivities that we looked at that went into the
9	high level conservative estimate, there were some
10	other sites used for population, distribution and
11	economic values there. Thank you.
12	MR. STUTZKE: Yes. And the frequency site
13	is, of course, site specific. Like that. But the
14	flavor of it is, give no credit whatsoever for any
15	CPRR strategy at this point.
16	Everything goes to the worst possible
17	release category. Which is a combination of over-
18	pressurization and liner melt-through at this point in
19	time.
20	Like that. And you can see, we generated
21	into the high level conservative estimate about 7
22	times 10 to the minus 8. As compared to the safety
23	goal of 2 times 10 to the minus 6.
24	And you say
25	MEMBER BANERJEE: That's at the worst
	1

(202) 234-4433

	54
1	site?
2	MR. STUTZKE: That's at the worst. Of
3	what site with the highest ELAP frequency. The site
4	with the highest frequency of release.
5	MEMBER RICCARDELLA: Which is related to
6	the seismic.
7	MR. STUTZKE: Which is related to well,
8	a combination of seismic and the seismic response of
9	the plant.
10	MEMBER BANERJEE: But the worst site must
11	also take into account things like weather and the
12	population distribution and all these other things.
13	Right?
14	MR. STUTZKE: Yes. I don't disagree with
15	you. I mean, ideally we would have a site specific
16	set of MACCS runs.
17	MEMBER BANERJEE: Right.
18	MR. STUTZKE: For all the plants. But
19	that's not feasible to this.
20	MEMBER BANERJEE: Right. But would you
21	how would your estimate do in your judgement
22	encompassing that sort of thing?
23	MR. STUTZKE: I mean, it's to my mind,
24	it's an overlap of the meteorological patterns and the
25	population, the demographic data.
I	

(202) 234-4433

	55
1	MEMBER BANERJEE: Direction the wind blows
2	and all that sort of stuff.
3	MR. STUTZKE: Like that.
4	MEMBER BANERJEE: Right.
5	MR. BARR: Right, exactly. And you almost
6	have to look at the actual weather data that would
7	correspond to the different sites to know.
8	So, Peach Bottom is not the most populous
9	site, Mark I site within 10 miles. It's very high
10	within 50 miles. But not within 10.
11	However, we could look at a higher
12	population site in 10 miles and find that the wind
13	typically blows away from population centers. So,
14	just because it has a higher population doesn't
15	necessarily mean a higher response.
16	MEMBER BANERJEE: Generally, your worst
17	case is a Pascal-F weather? Or what sort of weather
18	gives you your worst case?
19	MR. BARR: Generally, either the highest
20	consequences would be when there is rain over a
21	population center.
22	MEMBER BANERJEE: Oh, rain.
23	MR. BARR: Or when there is extremely slow
24	winds.
25	MEMBER BANERJEE: Which would be F
I	

(202) 234-4433

	56
1	probably. Right, the unknown weather conditions.
2	MR. BARR: Yes.
3	MEMBER SKILLMAN: Are the data for
4	selecting the worst meteorological site and the data
5	for selecting the worst ELAP site readily available to
6	the public?
7	MR. STUTZKE: I don't believe I don't
8	recall in the draft regulatory basis that we provide
9	results on a plant by plant basis. I need to check.
10	MEMBER SKILLMAN: It would seem that for
11	this argument to be convincing, a reasonable member of
12	the public should be able to find that information.
13	And include in his or her own mind that you've really
14	identified what is that worst product.
15	The greatest ELAP frequency and the site
16	that has the meteorological information that would
17	suggest that is the most vulnerable site.
18	MR. STUTZKE: Yes. So I guess the to
19	wrap this up, of course we'll go to Robert, is that,
20	you know, again, you can see reductions or changes in
21	risk as various as a function of the various CPRR
22	strategies in there.
23	The changes are small as compared to the
24	overall uncertainty in the calculation. We looking
25	at the available uncertainty information that we have,
I	1

(202) 234-4433

	57
1	we are well below quantitative health objectives.
2	MR. BEALL: Okay. The last slide to wrap
3	up our presentation. Currently the CPRR rulemaking
4	activities have been discontinued.
5	The staff is planning to capture the
6	excellent job that the folks in research have done to
7	support the CPRR rulemaking as a NUREG. So, we'll
8	hope to have that documented and out sometime next
9	year.
10	And the Agency will continue to proceed
11	with implementing the Order EA-13-109. That concludes
12	our presentation.
13	MEMBER SCHULTZ: Are there questions by
14	Members of the Committee before we move to the
15	industry presentation?
16	(No response)
17	MEMBER SCHULTZ: Hearing none, thank you
18	very much. Appreciate the presentation today. And
19	we'll move right to the industry presentation.
20	If you would like to stand up, now would
21	be the time to do so while we make the change.
22	CHAIRMAN STETKAR: Just Steve on your
23	microphone. Just don't hit the microphone with your
24	papers.
25	MR. KRAFT: My apologies.
I	I

(202) 234-4433

	58
1	CHAIRMAN STETKAR: And keep it turned off
2	when you're not speaking. That's the other thing.
3	For those of you who haven't been here, we've
4	instituted a new policy that when you speak, turn it
5	on. Otherwise it helps not only our transcript,
6	but also people on the bridge line.
7	MEMBER SCHULTZ: We're then ready for the
8	next presentation from members of the industry. And
9	I'll call upon Steven Kraft to orchestrate the next
10	presentation. Thank you, Steve.
11	MR. KRAFT: Well, thank you. Thank you,
12	Mr. Chairman. I'll make another observation since
13	you've changed the procedures for handling the
14	microphones.
15	And I think my team, if you slide them a
16	little closer to you, it might be better. I've also
17	observed, you've increased the wattage of the lights
18	overhead. I sit in this seat often enough I can tell
19	the difference.
20	And I'm not so sure if it's that heat or
21	that heat at the other end of the table. But we'll
22	determine it going forward.
23	MEMBER BROWN: You and I have a stronger
24	difficulty with that sort of temperature down there.
25	MR. KRAFT: Yes, I have to remember to
	I

(202) 234-4433

59 1 turn on the -- yes, okay. Thank you, Charlie. Ι appreciate that. 2 MEMBER BROWN: To the point. 3 It was 4 important, the levity. 5 MR. KRAFT: So, thank you again, for inviting us too such a --6 7 MEMBER POWERS: I've noticed also fast and more cooling capability too. 8 9 MEMBER BROWN: That's also true. 10 MR. KRAFT: You know, if we tell jokes long enough, we can get through the time and just sort 11 of call it a day, right? 12 13 MEMBER POWERS: I quess so. 14 MR. KRAFT: Again, thank you for the 15 opportunity to meet with you. Let me introduce my Rick Wachowiak from the Electric Power 16 colleagues. Research Institute. He's the Project Manager for the 17 CPRR rulemaking analysis that EPRI did. 18 19 Jon Grubb, who you may not have met before, is the General Vice Chairman of the BWR 20 He's with us today specifically to 21 Owners' Group. talk about operator preparedness for beyond design 22 basis events. 23 24 This is a question that's come up several times in our discussions. So we thought we'd ask Jon 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	60
1	to come along and talk about that.
2	And to his right is Phil Amway. Who is
3	you are familiar with, Exelon Corporation.
4	So, I only have one slide here. And that
5	is to indicate our reasons for why we think the
6	Commission decision to end the CPRR rulemaking,
7	deciding there's no additional regulatory actions
8	necessary.
9	And that is first and foremost, and
10	perhaps the main reason is it was the right decision
11	for safety. In doing so, the Commission focuses both
12	industry and NRC resources on what is truly important
13	in safety.
14	And that ought to be something that should
15	apply regardless of what topic we're talking about.
16	Along with that is that the 29 affected plants are
17	already taking actions to protect BWR Mark I and Mark
18	II containments using the industry endorsed guidance
19	and pursuant to the Order.
20	So, as was reported as stated by the Staff
21	in a previous panel, no one's planning on building a
22	Mark I or Mark II. No licenses are expected. This
23	was addressed in the Commission both records. And I
24	though talked about that quite extensively.
25	The critical regulatory principle is
I	

(202) 234-4433

	61
1	upheld. That decision should be based on quantitative
2	evaluations. And then quoting from the SRM for SECY
3	14-0087 on back fit rule and qualitative factors.
4	Qualitative factors should only inform
5	decision making in limited cases when quantitative
6	analyses are not possible or practical. I think this
7	applied in both the decision on this rulemaking as
8	well as the decision on the mitigating strategy we're
9	making to not include CMGs in requirements.
10	In both cases, the settings were very much
11	the same. Industry is already doing these things, et
12	cetera.
13	And that last item in the staff
14	consistent with the staff's recommendation, CPRR
15	rulemaking, quantitative recommendation analysis fully
16	supported, taking no action requiring external
17	containment on filters where the staff recommended.
18	So that I thought was another reason why this made
19	some sense.
20	Before I turn to Rick to carry the
21	technical discussion, let's just go back for a moment
22	to the questions you were asking the staff about what
23	happens when the Order is issued. And what you can
24	do.
25	So, I think as I followed the
ļ	

(202) 234-4433

1 conversation, I think you finally got to the point of 2 agreeing or that upon issuing the Order, it becomes 3 part of the license. And this has to be done in 4 accordance with whatever guidance is approved, et 5 cetera.

6 But the question that came up that I 7 thought was asked one other time as well, was go out 8 seven years. And for some reason that I have a hard 9 time understanding why it would be true, but let's 10 accept it as such, a licensee decides they don't like 11 the system anymore. Or the cut the pipe flange it off 12 and come up with something else to do.

And how does that get noticed by the Commission? It is true the Order itself has no inspection requirements in it. That would be something a rule would do.

Because the Order is part of the license, it is inspectible by definition. Then what happens is that as noted in Chairman Burns' vote record, the only guidance approved available is the NEI 13-02 requires everything that we, you know, have in that, in that Order in a guidance to apply to the Order.

And if a licensee chooses or a licensee chooses option two under the Order, which is the -somehow a drywell vent that would somehow work. I

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	don't know how without water addition, but it does.
2	They have come to back to the staff and explain how
3	the Order is met.
4	And that is the key right there. You
5	don't get out of that. You have to come back to the
6	staff. And I will tell you that we've had workshops
7	and meetings with the industry where we have talked
8	about this.
9	That if you are going to get so clever as
10	to say I can design that drywell vent. I can find
11	that valve disc material that will work.
12	Well, first of all, there's no guidance
13	that we are providing that allow that to happen.
14	That is made very clear in our guidance. You are
15	forced back to the Commission staff. And they will
16	ask you the same questions.
17	So, there's no way really out of it. And
18	I'm pleased to say as we reported to the Subcommittee
19	back in mid-August, that the BWORG did a survey of its
20	membership. All 29 affected units are going to be
21	water additioned. They also are going to do water
22	management and avoiding the severe action drywell
23	vent.
24	And as I we also reported, we are
25	conducting what we are calling a Consistency Assist
	I

(202) 234-4433

	64
1	Program. We've been through several meetings. Phil
2	was one of the leaders of that effort to assure that
3	the 29 licensees are complying with the guidance as it
4	is written.
5	Granted, it was not done the same way at
6	every site. But that is we've never done that
7	before. I think that is an important step we are
8	taking here to assure that we actually close off any
9	possibility of, you know, not quite meeting it.
10	VICE CHAIR BLEY: Steve, can you tell us
11	a little more about that? How that works?
12	MR. KRAFT: Yes. Sure, Dennis. We of
13	course divided the country into regions and fleets
14	with BWRs. Each fleet, Phil representing Exelon was
15	the first one, were given a set of questions as to how
16	are you from a design philosophy point of view going
17	to meet the order? It was all done in spreadsheets.
18	And then we had a group of people of
19	people from the BWORG Fukushima Committee. I was the
20	loan NEI representative of course. And then we went
21	through how did you do that? How are you meeting
22	that?
23	And it was interesting to, you know,
24	someone says hey, we're doing it this way. And
25	another says oh, that's a great idea. So, we're
	I

(202) 234-4433

	65
1	actually seeing some knowledge transfer going on.
2	And we're having another meeting, is it
3	the end of the month in Minneapolis, right? To finish
4	that out. Phil, do you want to talk about that?
5	MR. AMWAY: Yes. There's one at the end
6	of this month. And we're going this in two phases.
7	Every site now, with the exception of maybe a few that
8	are later on, have gone through and at least done a
9	preliminary look at their plant with the guidance.
10	And said, this is how we would do
11	SAWA/SAWM. So, that's kind of a high level, even
12	preconceptual design phase where we scope out what it
13	would take to implement SAWA/SAWM.
14	We'll do another phase later on in
15	November before we submit the Phase II OIP. Where
16	we'll go back and say okay, on such and such a date,
17	you presented your scoping evaluation as this.
18	How does that translate to the OIP that
19	will be submitted at the end of December? So can look
20	and make sure that was consistently done throughout
21	the initial scoping evaluation to the OIP, which
22	actually gets submitted.
23	MR. KRAFT: And just one additional step.
24	You have to we actually have a workshop next week,
25	a combined NEI and Owners' Group workshop where we are
I	I

(202) 234-4433

	66
1	going to walk through the template for the OIP.
2	So, there will be specific training as to
3	how you fill out this part. And what analysis is
4	required. What designs are required.
5	So, we're doing a lot to ensure that this
6	is we know this is complicated. And we're doing a
7	lot to ensure that it's done correctly.
8	VICE CHAIR BLEY: Does INPO have a role in
9	this process?
10	MR. KRAFT: Not yet. But they are you
11	probably know more about it then I do. And that IER
12	that they
13	MR. AMWAY: Yes. I'm not sure that the
14	IER goes to that extent. But, what we did was, as
15	part of this process, we did the two pilot plants.
16	We had a Mark I pilot that went through
17	and took their initial scoping. Filled out the OIP
18	template with what their plan is for implementing
19	Phase II.
20	We did the same thing with a Mark II. And
21	then now that can go out as to the other sites as an
22	example of okay, we have the template. Here's an
23	example of one filled out for a Mark I. Here's an
24	example of one filled out for a Mark II.
25	That's how were did with the Phase I. It
	I

(202) 234-4433

	67
1	worked very well in terms of making sure we had a
2	level of consistency. And now even with these
3	additional design consistency reviews that we're doing
4	for Phase II, will even bring that more into focus and
5	make sure that we're consistent in Phase II.
6	MR. KRAFT: Right. So specific to INPO
7	though. I think where INPO might get involved in
8	operator training and things like that after this will
9	implement.
10	I know that they have their own set of
11	they don't call them orders obviously, but IERs, that,
12	you know, talk to requirements that they would look
13	for. That of course go beyond NRC regulatory
14	requirements into an area, you know, of excellence.
15	So, I think there's going to be some
16	actions taken there. But I don't think that's been
17	figured out quite yet for this.
18	VICE CHAIR BLEY: Now, is somebody going
19	to talk about how this rolls into training and so
20	I'll wait for that.
21	MR. KRAFT: Yes. Okay, Rick. You're up.
22	MR. WACHOWIAK: Okay. Good afternoon.
23	Rick Wachowiak from EPRI.
24	And we performed an independent analysis
25	of different strategies that could be used to reduce
I	1

(202) 234-4433

	68
1	the probability of containment failure. And to reduce
2	the release of radioactive materials into the
3	environment for an ELAP condition.
4	What we are trying to do here, is
5	establish the basis for any type of changes that could
6	be done to a plant in order to achieve the goals for
7	the CPRR rulemaking. And the way that we did this was
8	very similar to what Marty talked about.
9	We performed a focused Level III PRA for
10	a representative plant. And with an ELAP condition
11	initiated by various things. Losses of offsite power,
12	loss of the grid, seismic events that sort of thing.
13	And in our ideas for doing this to begin
14	with, we decided that it would be good to look at how
15	each end state progressed through to the release.
16	Because what we found in our original
17	report that we did back in 2012, that the results in
18	terms of the release were dependent on highly
19	dependent on the boundary conditions caused by the
20	scenario that you are in. The timing, the failure
21	mode, the condition of the components in the
22	containment.
23	So, we took the route of going through a
24	focused PRA so that we could assess all of the
25	scenarios. And we could identify the dominant
ļ	I

(202) 234-4433

69 And we could look at how the accident 1 scenarios. 2 progressed through each of those. 3 It's been the industry's contention all 4 along that severe accident management guidelines 5 played a great -- will play a great role in the reduction of releases. And in the management of the 6 7 accident. And that the operator actions that need to 8 9 take place are really a shaping factor in all of this. 10 So, our analysis included the -- included operator actions. 11 Now, before we get into how we quantified 12 anything like that, we focused on 13 those or the 14 dependence between actions. Things that would happen 15 early in the scenario and how that would affect the outcome later in the scenario. 16 17 So, we focused more on the dependence between actions and used the methodologies, SPAR-H 18 19 methodology that's been used in other PRAs to calculate the numbers. 20 We did sensitivities and found that the 21 individual values that we assigned to the operator 22 actions were really insensitive for the result. 23 But 24 the dependencies between the actions were where the important pieces were. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	If the operators failed to do something
2	early, that affected their ability to be able to do
3	something later. If they didn't have certain pieces
4	of equipment, it affected their ability to respond to
5	events that come later.
6	So we found that's the one part that
7	one of the parts that we focused on was getting the
8	dependence right.
9	MEMBER CORRADINI: So, just to ask
10	MR. WACHOWIAK: Go ahead.
11	MEMBER CORRADINI: John's question of you
12	guys in a similar fashion, so you not only looked at
13	equipment failures, but if they didn't get an
14	operation done in a time window that was considered a
15	failure. But they could recover from that because
16	they had more time to maybe implement it later in
17	time? Does that make sense?
18	MR. WACHOWIAK: Yes. If we were
19	addressing a different phenomena. So, if they were
20	unable to get a portable pump installed in time to
21	prevent core damage, we gave them credit for being
22	able to get that water on the floor. Some credit for
23	being able to get that water on the floor to cool the
24	debris later on.
25	And we essentially took the same approach
	I

(202) 234-4433
	71
1	that Marty did. That if the RCIC failure was early
2	that we didn't give them any credit.
3	However, we went through and looked and
4	took some of these plant surveys that Steve talked
5	about. But they were done for identifying plant
6	differences.
7	And saw that there was some margin there.
8	Most of the plants could actually install their
9	portable equipment faster then the required time.
10	And so we think if we were to go and do a
11	further study on this, you'd see that there's some
12	more margin. You could get some credit for getting
13	things installed a little sooner if the installed
14	equipment wasn't there in some scenarios.
15	CHAIRMAN STETKAR: You said you took
16	surveys of plants. And you said most could install
17	the equipment faster then their omitted time.
18	MR. WACHOWIAK: Said that they could.
19	CHAIRMAN STETKAR: Said that under the
20	worst earthquake that anybody's ever seen?
21	MR. WACHOWIAK: No. We didn't go into
22	that.
23	CHAIRMAN STETKAR: Because that's the
24	presumption on these analysis.
25	MR. WACHOWIAK: Yes, we didn't go into
	I

(202) 234-4433

	72
1	that sort of detail. However, you have to remember
2	that this is supposed to be a mean analysis. And in
3	some cases they probably could. And in other cases
4	they probably couldn't.
5	So, for example, if we got into a it's
6	almost irrelevant with this because we didn't use it
7	in the analysis. We used it as a sensitivity to see
8	how close we were.
9	Because everybody with their licensee
10	committed times right on the bubble of where the
11	accident would go. It's now there is some margin to
12	that. If we use the committed times, then missing it
13	by a few minutes doesn't help the ability analysis.
14	CHAIRMAN STETKAR: Can those committed
15	times theoretically account for beyond design basis
16	seismic events?
17	MR. WACHOWIAK: I believe it does. It's
18	in the FLEX arena.
19	CHAIRMAN STETKAR: Right.
20	MR. WACHOWIAK: So
21	CHAIRMAN STETKAR: Well, but we're talking
22	about the same people and equipment.
23	MR. WACHOWIAK: Same people, same
24	equipment. I
25	MR. KRAFT: The way I understand, INPO did

73 1 some checking how industry was implementing FLEX. And 2 the results of that were that for example, under the quidance 12-06, or for FLEX, you have to be able to 3 4 deploy within six hours. 5 And so go give you the most margin, you 6 then say you look at your -- you analyze your 7 deployment time. You say well, okay, it's two hours. So you back up and say four hours after certain, we'll 8 9 start to deploy. When in fact we know they'll start 10 to deploy as soon as they can. So, there's that margin that's inherently 11 Although as Rick points 12 built into these surveys. out, it's not the same at every plant. 13 Not everyone 14 has the same particular margin. 15 MR. WACHOWIAK: Okay. And as I was going 16 into this, the accident management really involves 17 several things. Cooling the debris, managing the decay heat, making sure that the consignment isn't 18 19 challenged. And then if you are going to have a 20 release, to do the actions that you can to shape the 21 So that it's as small as you can make it. 22 release. So, our objectives in the evaluation. 23 24 First, we wanted to do a -- to look at a comprehensive set of the scenarios in a probabilistic framework. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	Thus, getting to the focus Level III PRA.
2	As an offshoot of this, we're also,
3	we're looking into what role FLEX plays in ELAP
4	mitigation in the risk arena. And we started that off
5	with this analysis.
6	And now there are other groups that are
7	analyzing using the benefits of FLEX possibly in other
8	risk informed initiatives. Most of it's voluntary
9	internal plant stuff right now. That's the stage that
10	we're at with this.
11	We also have a group at EPRI that's
12	looking into how do you really quantify the operator
13	actions. Or they're not really operator actions at
14	that point. It's more institutional actions that are
15	going on at the plant.
16	And we have another project that's looking
17	at how you would go about calculating those.
18	MEMBER SCHULTZ: Rick, it sounds
19	interesting. Could you have an example of some of
20	these strategies that are being discussed?
21	MR. WACHOWIAK: Other strategies that are
22	being
23	MEMBER SCHULTZ: Well, what you've
24	described here is that there's other work going on, on
25	other projects. And we're looking for other
I	I

(202) 234-4433

1 opportunities to use the FLEX equipment. Can you give 2 an example that would help us understand what's being discussed? 3 4 MR. WACHOWIAK: Well, some of it is 5 dealing with how do you -- how would you in a defensible way, put FLEX into your plant PRA? 6 7 So let's say а - some sort of а 8 significance determination comes up. How would you 9 factor that in? What types of information would you need? What is the role of the equipment? Role of the 10 operators in being able to defend that SDP? 11 That would be one case. Another is that 12 maybe there's some things associated with a risk 13 14 informed application. Is it right to put the FLEX 15 equipment in there? Or is it better to not have it in 16 that 17 particular application because of the other things that creep in around it. Like maintenance rule and 18 19 other things like that. So, really, we're looking at scoping. How 20 does the industry want to use and how should they use 21 the FLEX equipment in their probabilistic framework? 22 MR. KRAFT: There was a -- this is a 23 24 nascent, where the work is being run out of the risk department for EPRI. And NEI has a part in it. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

75

	76
1	But I believe you actually saw part of it
2	at Palo Verde when we were behind Unit II. One of the
3	FLEX pumps was positioned and strapped down. It
4	wasn't hooked up.
5	And they were using that during I believe
6	an outage, if I remember the story correctly. And it
7	put them in a lower risk category during that outage
8	at the time.
9	It's a way of getting more use out of the
10	same equipment. That's the most obvious part of it
11	that would be helpful. There are others that are
12	being explored.
13	But again, you have to be careful. For
14	example, one plant's spent fuel pool implementation,
15	which isn't part of the FLEX order, but the same
16	concept, has decided to make that new wide range
17	instrumentation their normal instrumentation.
18	Well, the moment we heard that, we told
19	them, you better start looking at cyber security,
20	designation of critical digital assets, maintenance
21	role. You have to look at that stuff and either
22	analyze yourself into it or out of it, however it is.
23	But once you go beyond the use as
24	intended, credited use under the intention of the
25	order, which is the ELAP conditions, you then find
I	I

(202) 234-4433

	77
1	yourself in this other space you have to pay attention
2	to. So it becomes a corporate decision at the end.
3	MR. WACHOWIAK: So, another thing that we
4	wanted to do in the analysis was understand the
5	dominant severe accident scenarios. What are the
6	things that are getting us to the point of having some
7	sort of a release? And focus our strategies on the
8	scenarios that are really driving the risk.
9	That was one of the things that was in the
10	original SRM that started this whole thing off. To
11	focus on the dominant scenarios. And we took a look
12	at that.
13	We also found that some of the scenarios
14	that we evaluated in the previous paper from 2012,
15	didn't really turn out to be the dominant scenarios.
16	That other things were dominating the risk. And it
17	was an interesting insight from this.
18	We want to look at ways to look at I'm
19	sorry. We want to make sure that the way that we
20	present our filtering strategies that that is clear,
21	understandable, and people can, when they look at the
22	analysis, they can tell how the thing's proceeded from
23	the beginning to the end.
24	We are publishing this in two steps. The
25	first step is our report that's out right now. It

(202) 234-4433

(202) 234-4433

	78
1	describes what the purpose of the report or purpose
2	of the analysis is. What the results are.
3	But the details in how we actually did all
4	the different analysis and what the nitty gritty on
5	all the event trees and all that, they're in a
6	subsequent report that's going to be published later
7	this year.
8	And John's probably the only one who is
9	going to be interested in looking at that. It's going
10	to be several thousand pages of event trees and things
11	like that.
12	CHAIRMAN STETKAR: Bring it on.
13	(Laughter)
14	MEMBER POWERS: Rick? Quit trying to suck
15	up to the Chairman.
16	(Laughter)
17	VICE CHAIR BLEY: When you started digging
18	into the dominant scenarios, did you have fully
19	full scope PRAs with fire good fire PRA and seismic
20	and other externals?
21	MR. WACHOWIAK: Yes. We included seismic
22	explicitly in this. We did not do the details of a
23	fire PRA in this.
24	Now, there was some reasons for that.
25	One, with a hypothetical plant, it's really impossible
I	

	79
1	to get all of the different dependencies that might
2	show up with spurious actions. Things like that.
3	So it wasn't really feasible to do that
4	piece. And in looking at the contributors to ELAP,
5	we're not sure that fire is going to be a is going
6	to be a large contributor to ELAP itself.
7	Now, there might be some things with
8	diesel generators and stuff like that. But, once
9	again, we we're just not sure that that gets us to
10	the ELAP.
11	The loss of offsite power, yes. But I'm
12	not sure that it's going to be dominant for ELAP.
13	The other interesting thing that we found
14	with the seismic portion though, is that everything,
15	if we alter the seismic contribution to the ELAP, it
16	kind of just shifts all our numbers all together.
17	It doesn't change any of the deltas that
18	we look at. It's just if you have a greater seismic
19	cap or seismic hazard, then everything shifts up.
20	And the deltas between the strategies shift up.
21	If it's lower, everything shifts out.
22	Because the seismic tends to cause the things that
23	just can't be dealt with by any of the strategies
24	anyway. Too much of the infrastructure gets damaged.
25	And most of the things go down the damage branch.
Į	1

(202) 234-4433

	80
1	It was an interesting study.
2	VICE CHAIR BLEY: All right. Well, one
3	wonders if that's because of the way your this
4	plant, imagined plant is set up. Or if it's, you
5	know, is it part of the analysis process or is it
6	real?
7	MR. WACHOWIAK: That's a good question.
8	VICE CHAIR BLEY: And if somebody were
9	looking at their own full scope plant specific PRAs,
10	we might get a better feel for that.
11	MR. WACHOWIAK: Yes, you'd find some
12	different things. Especially from the fragility.
13	Because we picked a particular fragility for the DC
14	system based on one of the configuration that's out
15	there that's not really amenable to staying together
16	in a seismic event.
17	So, yes, that's part of a bounding piece
18	of this. But, once again, you'd have to go through
19	all the differences.
20	Marty took a shot at that. And I think he
21	came to about the same conclusion. That the delta
22	results all follow along in the seismic area.
23	We wanted to inform the implementation of
24	13-109 to the extent possible. And we used some of
25	the results from this to identify how water addition
ļ	

(202) 234-4433

	81
1	is beneficial to the plant. Should be included in 13-
2	109.
3	And how it affects the temperature and
4	other boundary conditions inside the containment.
5	Making the equipment being installed for 13-109 in the
6	reasonable range rather then the super range that was
7	talked about earlier here.
8	Providing insights to the Owners' Group on
9	the EPG/SAGs, we'll hear a little bit more about that
10	later. But there's a couple of things that have been
11	approved by the Committee that have come out of this
12	work on how to implement SAWA and SAWM in the EPG/SAGs
13	that follow along with what we did.
14	We set this analysis up so that a cost
15	benefit could be done later as a follow on. That
16	never actually got to a point where it was needed. So
17	the industry did not do any cost benefit analysis.
18	So, here's our chart that looks somewhat
19	similar to what Marty had presented. I have only mean
20	values on here.
21	We didn't do a comprehensive uncertainty
22	analysis. But we did do sensitivity studies or
23	sensitivity analyses to see which types of things
24	could affect the outcome of the means.
25	Our pink bars are basically a vent is
Į	

(202) 234-4433

	82
1	available, but there's no SAWA. The green bars are
2	things where SAWA is there, but it's injected via the
3	RPV. So it goes into the RPV, through the hole where
4	the core debris came out and into containment.
5	Blue is directly injecting into the
6	consignment. And the hatched areas are the ones where
7	we looked at what we might be able to get further with
8	some sort of hypothetical engineered filter.
9	Our results are a little less scattered
10	then what Marty's were. It may be because ours is on
11	a log scale and his was on a linear scale. But, it in
12	general were the same sort of results.
13	And we superimposed a what looks like
14	it was a preliminary version of his 5th and 95th on
15	there. I noticed that from his higher scenarios, the
16	upper black X was about 70 minus 9. And so we didn't
17	try to match one to one.
18	I think his lower 95th was somewhere in
19	the 1 to 2 times 10 to the minus 10. So, it must have
20	been 3 times 10 to the minus 10 a few months ago when
21	we published our report.
22	So, in here, we can see that we're well
23	away from the QHO on this particular risk metric. Our
24	results are right in the middle of where the NRC got
25	their results.
	I

(202) 234-4433

1 They used a similar type of analysis. And expected this the We've 2 to be same. done we sensitivities where we show how much these move around 3 4 based on different operator actions. Or different 5 frequencies for ELAP. And different seismic Different things like that. 6 fragilities. 7 And things move around a little bit. But they don't really change all that much. I mean, we're 8 9 still talking about 2 times 10 to the minus 9 here. 10 So, it's not changing very much in an absolute scale. MEMBER SCHULTZ: Rick, could you describe 11 why your results in the cases for engineered filters 12 show a differential between the different 13 don't

14 approaches that are used with regard to the15 engineering filter design?

MR. WACHOWIAK: Because this particular risk metric is driven by the scenarios where the filter isn't effective. So, if I were to split one of these bars, let's say the green -- one of the green ones was there.

How much of this risk is associated with an unfiltered release because it bypasses the filter. Versus how much of it is in -- risk is in the filtered release.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

What you'd see is a very small sliver in

(202) 234-4433

25

	84
1	the filtered release part. And the risk itself is
2	driven by the scenarios that have un that are
3	unfiltered. Even though the filter is present.
4	MEMBER SCHULTZ: So again, it's a
5	combination of scenarios similar to what the staff
6	presented.
7	MR. WACHOWIAK: Yes.
8	MEMBER SCHULTZ: Thank you.
9	CHAIRMAN STETKAR: But despite that, the
10	staff did ostensibly the same thing. And they were
11	showing roughly a factor of 2ish.
12	MR. WACHOWIAK: Yes. There's a reason
13	CHAIRMAN STETKAR: It's thought to be
14	discernable.
15	MR. WACHOWIAK: There's a little bit of a
16	reason for that I think in that the difference between
17	the ability to do a MAAP case for a scenario versus a
18	MELCOR case for a scenario. I think they had
19	approximately 20, 30 some odd MELCOR cases that they
20	bend into their different results.
21	We did an explicit MAAP calculation for
22	every single one of our results. And so, some of the
23	way that the venting was, you could get more credit
24	for a filter or less credit for a filter depending on
25	which scenario you pick.
I	I

(202) 234-4433

And so I think some of those variabilities probably had a little bit more to do with venting them. The other thing is that MELCOR in these calculations does tend to in some of the scenarios that turn out to be a little more important, not the dominant ones.

But the ones that are a little bit more important get to a point where the filter works for a while. But then the vessel fails. And the liner melts later. And so they're getting a little bit more performance out of a filter then our MAAP cases did because of the timing of the containment failure.

So, a little bit of differences on the consequence analysis. But as you saw with the ranges on there, I, you know, the differences are within the uncertainty of doing any of these calculations.

But I think that's -- those are the chief reasons why you saw a little bit of movement on the NRC cases. And not as much movement on ours.

20 MEMBER POWERS: Excuse me, Rick. I 21 presume these are again averages of all the plants? 22 And do you have any comments on that?

23 MR. WACHOWIAK: Yes. We didn't do a fleet 24 average like Marty did. We picked a representative 25 plant.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	86
1	MEMBER POWERS: Okay.
2	MR. WACHOWIAK: So this is for a
3	representative plant. Now we looked at some features
4	that other plants had that we thought might affect
5	what the analysis would do.
6	And we compared the representative plant
7	to the for the to information that was received
8	from other plants. You know, how do you do these
9	things?
10	MEMBER POWERS: Um-hum.
11	MR. WACHOWIAK: What are the you know,
12	what are your seismic characteristics? Things like
13	that. And then we did sensitivity studies in our
14	report to identify whether or not those idiosyncrasies
15	from the different plants would make a difference to
16	the conclusions that we're reaching.
17	And we decided that it's all it
18	wouldn't make any difference in the conclusion that
19	you draw. That there is very little difference
20	between anything except adding water.
21	Adding water is really the only thing that
22	we see where it makes a marked change to the outcome
23	of the risk.
24	MEMBER POWERS: Thank you.
25	MR. WACHOWIAK: And so yes, we did it for
	I

(202) 234-4433

	87
1	sensitivity and not through an uncertainty sort of
2	analysis.
3	Okay. What did we see in this study? The
4	role of the operator is essential for this. As you
5	can see on the fourth bullet down there, explored
6	adding something that was maybe totally passive. That
7	didn't involve the operators.
8	What we found is that water addition was
9	always going to require operators. There really isn't
10	a passive way to retrofit that onto an existing plant
11	right now.
12	And when we tried to put in a passive
13	vent, the designs that we came up with for a totally
14	passive vent, had the unfortunate response that it
15	increased the core damage frequency. And so even
16	though it did some things to reduce the releases, we
17	had an increase in core damage frequency.
18	The reason why it increased the core
19	damage frequency is it took away the one of the
20	FLEX options for extending RCIC operation by venting
21	the containment.
22	So, yes, you can do it. It change I
23	think we'd rather keep the core from melting rather
24	then having the incremental capability on the release.
25	And then that was even in one of these
I	1

(202) 234-4433

	88
1	other bars here though. I don't remember which
2	exactly one it is, passive filter down here.
3	When we get to the consequence analysis,
4	the core damage frequency increase is offset by a
5	little bit more filtration. And the risk comes out to
6	be the same anyway.
7	So, still, we thought it was better if we
8	preserved that.
9	MEMBER SKILLMAN: Rick, perhaps it's
10	simply assumed in bullet one. But it seems to me that
11	an additional insight would be if the essential if
12	the role of the operators is as essential as you
13	indicate, that training has a yet more important role
14	then it might have had before.
15	MR. WACHOWIAK: I think John's going to
16	address the training on the severe accident
17	guidelines.
18	MEMBER SKILLMAN: Okay. Thank you.
19	MR. WACHOWIAK: Oh, let's see. The
20	importance of water addition was identified here. I
21	think we've said that at every meeting.
22	It is something that can show a difference
23	between, in the risk from what we have without the
24	water addition. But remember, water addition has
25	always been part of the severe accident strategies at
I	I

(202) 234-4433

	89
1	the BWR.
2	It's always been there. What we did hear
3	though, is say, let's look at the scenarios you might
4	be in when you need the water addition. And let's
5	make sure that the water addition is available in the
6	dominant scenarios.
7	In the scenarios that you might get a
8	chance to use it. So, it wasn't really identifying,
9	oh, yes, you need water. We always knew you needed
10	water.
11	This helps us identify what are the
12	conditions going to be when you need the water. And
13	if it will inform the plants on how they're going to
14	implement the water.
15	As I said, we did try to confirm that our
16	analysis was robust by doing various sensitivity
17	studies not only on phenomena that might happen in the
18	during the course of the scenario. But also, at
19	some different configurations that some plants might
20	have.
21	And tried to convince ourselves we did
22	convince ourselves that there wasn't really something
23	lurking around the corner that was going to change the
24	results by an awful lot from what we have here.
25	MEMBER SCHULTZ: Rick, I understand your
I	

(202) 234-4433

	90
1	comments about we always knew that water was
2	important. And that the operators in any response
3	would be trained to add water, add water, add water.
4	That happened after TMI for sure.
5	But my question is, it did seem that when
6	we first started looking at severe accident capable
7	venting through the drywell that it was a revelation.
8	That in fact the drywell vents were not going to be
9	able to perform their function given the temperatures
10	that were being calculated for the severe accident.
11	MR. WACHOWIAK: Yes. That's what I mean
12	by identifying what are the scenarios? What are the
13	actual conditions going to be.
14	Like I said, I mean, who we had with that
15	water
16	MEMBER SCHULTZ: Okay. Okay. I was just
17	wondering if it would be specifically related to what
18	we found with the drywell vent. Because that was
19	significant.
20	MR. KRAFT: Yes. There was a more of
21	a moment in our consideration of all this where, as I
22	said before, the ability to add water is the essence
23	of all our safety systems.
24	So that's nothing new. And under this
25	Order, it's to add water well, it's to be able to
ļ	I

(202) 234-4433

91 1 vent containment with the power out, let's just say that. 2 3 Reliably, you know, the word reliable 4 drives a lot of the Order. But, when we finally 5 finished up the wetwell vent and the industry was launched on doing those plans, we began turning our 6 attention to the drywell vent. 7 And by that time Rick had enough analysis 8 9 done that we were starting to see the temperature profiles in containment, it occurred to us that the 10 original thought when we started writing, you know, 11 industry started writing the Order, was we knew water 12 addition was going to come along. 13 14 The question was, where in the sequence of 15 the development of the requirements was it going to 16 come along? And it occurred to us that water addition 17 as part of the Order actually made much more sense then waiting. 18 19 And then of course the water addition then, you know, also has the filtering effect that 20 research was showing. So, we came to NRC senior 21 22 levels saying, you know, we need to modify our quidance. 23 24 And there was a brush up on that. I wrote a letter that got, you know, a good response. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	So, the point being, is that you're right.
2	There came a time where we said, you know, we learned
3	from this. Let's do this the right way.
4	And then everything is beginning to fall
5	out the way they have.
6	MR. WACHOWIAK: And one of the interesting
7	things at least to me, about this was, when we started
8	looking at ways to get the information from our
9	analysis off of our super computer, is we used our
10	super computer to analyze all of the scenarios
11	individually with the MAAP and MACCS run.
12	It generates a lot of data. And we have
13	to find ways to get it off the computer and be able to
14	look at it.
15	And this temperature thing with SAWA
16	didn't come out really until we'd developed one of
17	those ways. We took a slice of things and oh heck,
18	when water works, the temperatures are always down.
19	When water doesn't work, the temperatures
20	are always up. So, if you add SAWA to the vent, the
21	temperatures for the design come out very nice.
22	And so, I've covered all these things. But
23	I just want to say, the water addition provides the
24	best overall best safety benefit. But once again,
25	everything is in the very, very low range of risk.
	I

(202) 234-4433

	93
1	And so, it does provide benefit. It's the
2	right thing to do. And what we're we were already
3	doing it. What we want to make sure we understand is,
4	is it going to be there when we need it.
5	And this helps inform us what types of
6	design considerations, access considerations, do we
7	need to do to make sure that we implement these things
8	that were in the SAMGs.
9	Our other conclusion is that we couldn't
10	come up with any way to do this without operators.
11	So, just like the questions that keep coming up, where
12	does this fall? And a lot of it falls into the SAMG
13	development.
14	And other alternatives that we looked at,
15	we found things that in some scenarios would reduce
16	the releases. But when we put them in the overall
17	context of the whole probabilistic framework, when we
18	looked at all the scenarios, it just didn't affect
19	enough of the dominant scenarios to make much
20	difference.
21	That's it for me. I'll let you figure out
22	how to get the next slide.
23	MR. GRUBB: All right. Good afternoon.
24	I'm John Grubb from Xcel Energy.
25	In my day job, I'm the General Manager of
ļ	I

(202) 234-4433

94 1 Fleet Operations for our Fukushima Response at both our Monticello and Prairie Island plants. So that's 2 implementation of all of the Fukushima related Orders 3 4 for our two sites. 5 I'm also, as Steve mentioned, I'm the Vice Chair of the BWR Owners' Group general committee. And 6 I'm going to talk about what we've done to try to 7 8 prepare our operating crews for beyond design basis 9 events. First off, information on the BWR Owners' 10 It's a forum for our member utilities to 11 Group. improve plant safety primarily. 12 We also look at improving reliability of 13 14 the plants, minimizing and sharing costs, and also 15 very important, to facilitate regulatory interaction with both INPO, the NRC, NEI, EPRI, all the key 16 stakeholders. 17 All U.S. Boiling Water Reactors, all of 18 19 those utilities are members. This BWR Owners' Group is open to all international BWRs. Currently we have 20 12 international BWRs that are participating in the 21 22 Owners' Group. 23 Is that by utility? MEMBER SCHULTZ: Or 24 By utility. 25 MR. GRUBB:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	MEMBER SCHULTZ: Okay. Thank you.
2	MR. GRUBB: And I have the list if you
3	want to see it later.
4	Within the BWR Owners' Group, we did form
5	our initial committee was an ad hoc committee
6	formed in late 2011 that became a general committee
7	that all members participate in.
8	And ad hoc is just a quicker way to get
9	moving on the process. So we did that initially.
10	That was first formed in late 2011. That
11	Fukushima Response Committee then worked with the
12	existing Emergency Procedures Committee, which I'll
13	talk about on the next slide, and with EPRI to develop
14	the criteria for the FLEX support guidelines.
15	It's important to note that the
16	procedures, these FSGs that we have developed at each
17	site, do work in conjunction with the EOPs and SAMGs
18	that were already in place.
19	So this was not something sitting off on
20	a shelf that the operator's got to think of at the
21	time of this unusual event. They're integrated into
22	the existing EOPs and SAMGs.
23	Also, that each plant used this generic
24	set of criteria that we developed as an Owners' Group.
25	And developed plant specific FLEX support procedures
I	I

(202) 234-4433

	96
1	for beyond design basis events.
2	We will use we are using the exact same
3	process for the 13-109 Order. The vent Order
4	requirements for both Phase I and Phase II. So, the
5	industry you know, the Fukushima Committee and the
6	Emergency Procedures Committee are putting together
7	the criteria that the individual sites will then use
8	to meet the requirements of the Order.
9	All right. Emergency Procedures
10	Committee. We've had this in place for a number of
11	years. This is ac that Committee has experts from
12	each one of the U.S. utilities as well as several
13	international BWRs.
14	The focus of this Committee is improving
15	plant operations and safety. And then we are taking
16	into consideration the events at Fukushima.
17	And out of that we have been able to
18	already make changes to the emergency procedures, the
19	severe accident management guidelines. And we are
20	implementing those into the FLEX support guidelines as
21	well.
22	So, that Committee is very active. I
23	think we have at this point, we have five
24	subcommittees of the Emergency Procedures Committee,
25	looking at the different aspects of the Fukushima
Į	1

(202) 234-4433

	97
1	lessons learned.
2	It's important to talk about the BWR
3	Owners' Group does work quite a bit internationally to
4	make sure not only are we sharing with our
5	international partners the lessons we've learned
6	through our implementation of the FLEX and the Orders
7	here.
8	But, also they're sharing with us what
9	they're leaning. Because a lot of the internationals
10	are taking a slightly different approach then we've
11	taken in the United States to the Fukushima response.
12	So, we have tech support guideline skill
13	set workshops where we go to we do them both
14	domestically and internationally. Where we get
15	together with the BWR partners and talk about the
16	lessons learned.
17	We also do the severe accident workshops.
18	And both of these have case studies where we will walk
19	through the events and the sequence of damage
20	accidents.
21	And talk about why we made choices within
22	the United States on the FLEX criteria that we put in
23	place. And listen to the internationals tell us why
24	they might have gone a different route.
25	
I	I

(202) 234-4433

98 1 This Committee also advised the Owners' individual member utilities on issues 2 Group and related to the emergency procedures. It's not at all 3 4 unusual for an individual plant who is in the process 5 of making a change to their emergency procedures, to contact a chair of this committee and say hey, let us 6 7 run something by you. Could you talk to the committee 8 about this? Does this make sense, the road we're 9 heading down? This committee also, it's really -- keeps 10 the history of the emergency procedures. 11 So, it maintains the guidelines. All the appendices. All of 12 the issue files, conference reports. 13 14 So we can see from when we first put this committee together, the series of decisions that were 15 16 made to the existing emergency procedures that we have 17 in place at this point. This is kind of a pictorial pre-Fukushima. 18 19 On the left there is the procedure hierarchy we had at the BWRs, starting with design basis external events. 20 Station lack of coping capabilities. And the super 21 accident management guidelines working in conjunction 22 with the emergency plans. 23 24 When you think about the procedures that we put in place for FLEX and will be similar for the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	99
1	severe accident or the vent Order, it's really just
2	an increase in defense-in-depth procedurally and
3	training wise. Because we're preparing the operators
4	for something that wasn't really part of their
5	training prior to this.
6	We're giving them a set of tools that they
7	can use to diagnose and manage the plant for this
8	different set of events that we're looking at for both
9	FLEX and for the vent Order.
10	All right. Again, I mentioned that each
11	plant used the generic criteria to develop a set of
12	specific FLEX procedures for response to beyond design
13	basis events. We're going through the same process
14	for the vent Order right now.
15	The procedure guidelines and the criteria
16	are being established by the Fukushima Response
17	Committee working with our Emergency Procedures
18	Committee.
19	At each one of the plants, and once
20	they've developed their their onsite Fukushima team
21	develops their specific criteria strategies and
22	procedures for responding to the beyond design basis
23	events that gets put right into the operator training
24	program.
25	So they've got a there's a validation
	I

(202) 234-4433

	100
1	process they go through. All the crews have to go
2	through and perform these procedures in their
3	training.
4	And all of this was required for FLEX
5	prior to the plant declaring that they had met the
6	requirements of the FLEX Order.
7	The FLEX and beyond design basis screening
8	has been added to the operator training program. So
9	it will be revisited at a frequency and depth as far
10	as how much they cover it based on their existing
11	training program.
12	It becomes a little bit of a balancing act
13	because you don't want to take too much training time
14	away from the normal training you do to run a complex
15	nuclear power plant. But you also don't want to
16	ignore it.
17	So the individual sites are making that
18	determination based depending on where they are on
19	their training program.
20	MEMBER CORRADINI: What is the purpose of
21	that? You said, what is the frequency?
22	MR. GRUBB: The frequencies are defined by
23	the individual stations. So the Owners' Group
24	MEMBER CORRADINI: So it's a wide range?
25	It could range depending on the plant staff?
ļ	I

(202) 234-4433

101 1 MR. GRUBB: Correct. Another thing I wanted to make sure and mention on this slide, is the 2 3 training wasn't just for operations. So, the FLEX and 4 beyond design basis, there was extensive training and 5 procedural changes done for the rest of the emergency response organization. 6 I think one of the staff slides talked 7 8 about some of the other things that were done as part 9 of the beyond design basis events. So, there's 10 training for engineering, radiation protection, chemistry, even security depending on the plant and if 11 you take credit for the security officers in your 12 13 response. 14 This is a -- that was really the end of 15 You know, this is just a sample of the approach it. that was taken at one of our plants on the amount of 16 training that was provided to operations. 17 So, I didn't intend to go through this. 18 19 I'd be happy to answer any questions. MR. KRAFT: So that completes our prepared 20 presentation to this. 21 Let me ask, John, one 22 CHAIRMAN STETKAR: thing that I've asked a couple of times in the 23 Subcommittee, and since you're involved

integrating the EOPs and SAMGs and FLEX procedures.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

(202) 234-4433

with

If I read the NEI guidance, NEI 13-02 that's specifically focused on compliance with Order EA-13-109, I'm left with the impression that I don't need to worry about getting water into what I'll call the reactor vessel or what you might call the plant from an external water supply for at least eight hours. Which means that I have up to eight hours to try to get the pumps aligned. And power hooked up to valves that might need to be opened.

How are the procedures in the plants actually implementing that? Because there are many cases were if I could get the water in earlier, I wouldn't need it for a severe accident response.

So for ex -- my point is that if I decide to put all of my equipment in a robust shelter that's ten miles away from the plant because I've done an analysis that says within eight hours I can get it there.

And I don't have to worry about flooding. I don't have to worry about, you know, very, very site specific issues. Am I then precluding the fact that I can use it for other things, like preventing core damage?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. GRUBB: Well, what's interesting is,

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

25

	103
1	at that the vent Order and the FLEX Order, they're not
2	contrary to each other. But, for the vent Order,
3	we've assumed FLEX doesn't work.
4	So, we got core damage and now we're
5	dealing with core damage. The plants, we will always
6	implement and put our FLEX equipment, our ability to
7	put water back into either the vessel or containment
8	in place as quick as reasonably can.
9	That will always be done. You can jump in
10	here Phil if I'm
11	CHAIRMAN STETKAR: But the NEI guidance
12	specifically says I can have up to eight hours to do
13	that.
14	MR. GRUBB: Yes.
15	CHAIRMAN STETKAR: So if I'm implementing
16	if I'm following the NEI guidance, all I have to do
17	is be able to demonstrate that indeed I can get a
18	truck to drive the stuff down there and get the power
19	and the water connected within eight hours.
20	And I can check off the box that I comply
21	with the NEI guidance. That doesn't say that
22	doesn't say well, of course I know if I get it hooked
23	up faster that's a good thing.
24	It says that all I need to do is
25	demonstrate that I can do it within eight hours. It
I	1

(202) 234-4433

	104
1	might be seven and a half hours.
2	So how now is the Owners' Group and the
3	plants thinking about that from a realistic point of
4	view in terms of maintaining the broadest number of
5	options available to the operators? Not only to
6	mitigate core damage, which we hope we never get to,
7	but to prevent that core damage?
8	MR. GRUBB: Right.
9	CHAIRMAN STETKAR: If for example, RCIC
10	fails at TO?
11	MR. GRUBB: Okay. And I
12	CHAIRMAN STETKAR: Which is your which
13	is by definition for BWRs with Mark I and Mark II, the
14	FLEX Phase I equipment. Which is assumed not to fail.
15	MR. GRUBB: Yes.
16	CHAIRMAN STETKAR: So that's why I
17	still haven't gotten a nice coherent story from
18	people. So I thought I'd ask you since you're
19	involved in getting people to actually do the things.
20	MR. AMWAY: And I'll start off, and feel
21	free if you need to add or modify. But the eight
22	hours, the way we - the way that's viewed from a 1302
23	perspective is that's what our analysis says how much
24	time we actually have to prevent containment failure.
25	The actual implementation through the
ļ	I

(202) 234-4433

	105
1	procedures is, you know, we're using the same type of
2	connection points and portable FLEX equipment to
3	implement SAWA/SAWM as we did for FLEX. So I mean,
4	we're all designing our FLEX strategies to get water
5	into the vessel as soon as possible.
6	And our strategy procedures will start in
7	the EOPs. Let's take your example. RCIC fails at T0.
8	CHAIR STETKAR: Right.
9	MR. AMWAY: Those EOPs are going to drive
10	us to start lining up alternate water injection
11	systems immediately. So the way this is really going
12	to work, you know, if RCIC fails at time zero, the
13	reactor water level's going down.
14	CHAIR STETKAR: Yes.
15	MR. AMWAY: And it's going to drive us
16	through the EOP lags. We're going to initiate actions
17	to start lining up the equipment, and one of two
18	things are going to happen. If we're really good and
19	we have a short deployment time, and we can, you know,
20	let's say in theory we could hook up that FLEX
21	equipment and start pumping in water before we get
22	core damage. That's where we're at.
23	CHAIR STETKAR: I understand that if, if,
24	if. What I'm asking about is if plants, say, and the
25	staff does their reviews, compliance following EA, any
	I

(202) 234-4433

106 1 I13-02 is adequate to meet this order. And a plant 2 decides that, "Yeah, I'm vulnerable to flooding or I'm 3 vulnerable to some other damage, high wind damage or 4 whatever." 5 And to protect the equipment that I'm 6 going to take credit for in phase two of FLEX, or for

severe accident conditions, I make the active decision that I'm going to park that equipment 15 miles away from the containment because I can demonstrate that I can get it there and hooked up within eight hours.

It might take me six hours, but I can do it within eight hours. I can't do it in an hour and a quarter. I just physically can't do it in an hour and a quarter. That decision would comply with all of the guidance, and yet they couldn't do it in your scenario with if, if, if, right?

MR. AMWAY: And I agree.

18CHAIR STETKAR: So I'm asking on a plant19specific basis, are people thinking about that?

MR. AMWAY: And the answer is yes.

CHAIR STETKAR: Okay.

22 MR. AMWAY: I mean, we are definitely 23 looking at it. And like when we do the workshops and 24 we're doing these design consistency reviews, if 25 there's options that we can do that we can reasonably

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

7

8

9

10

17

20

21
107 1 shorten that deployment time and use of that SAWA connection point, we'll do that and we'll consider it. 2 3 You know, and it's -4 MR. GRUBB: The way we're viewing the 5 eight hours is I have to have a strategy that I can deploy at my plant for any set of conditions, and this 6 7 is beyond an assigned basis set of conditions, and assure, have absolute confidence I can have water 8 9 going into the vessel inside that eight hours. It's 10 - you'd almost like it going over and dropped in. Ιf I can't do that, I can't use this strategy. 11 CHAIR STETKAR: You can't use it. You're 12 right, but that's for containment protection. You're 13 14 giving up the core. See, that's part of the way that 15 the orders and the NEI quidance have been partitioned between FLEX, FLEX, FLEX, if I use the term FLEX, is 16 17 to prevent core damage. But there are built-in assumptions there 18 19 like RCIC is my phase one FLEX equipment, and by definition it does not fail. So therefore, I don't 20 need phase two FLEX equipment to prevent core damage 21 because RCIC works. 22 Now the other flip side is now I've got 23 24 NEI quidance for this other order that presumes I give up on the core. And it says well, to - the guidance 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 says all I've got to do is get the stuff there within 2 eight hours because I've done the most limiting 3 analysis for the most limiting plant. It says as long 4 as I get the stuff hooked up, water - depressurized 5 and water addition within eight hours or within some 6 margin, I'm okay. 7 VICE CHAIR BLEY: Let me John's thing

VICE CHAIR BLEY: Let me John's thing around a little bit. We understand that to get everybody together and move ahead, people had to pick starting points, and this was a starting point.

And kind of what we're asking now is we've gotten everybody together. We're going to meet that starting point, but are the plants thinking about real flexibility beyond just responding to ELAP or whatever it is?

MR. GRUBB: Yeah.

VICE CHAIR BLEY: That's what we're after. 17 MR. GRUBB: I do understand your question 18 19 better than you all think. I'll take this back to our focus unit committee and make sure that they talk 20 about that, and that it's covered in our workshops. 21 But I can tell you as a plant operator, we're going to 22 deploy the equipment. Anything to protect the core, 23 24 they're going to deploy as guickly as possible.

And because of the way the order had to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

8

9

10

16

25

	109
1	assume some, you know, FLEX fail, they feel almost
2	contrary to one another. But we will be able to
3	implement the actions for both orders simultaneously.
4	So we'll be taking all of the actions for FLEX as soon
5	as we recognize and declare the event.
6	CHAIR STETKAR: And I think, you know, you
7	said, "As a plant operator." I think that's a little
8	bit from the perspective that we're coming through.
9	Now that everything is starting to come together,
10	people have developed strategies for FLEX. People
11	have developed strategy for severe accident
12	mitigation.
13	People have developed strategies for
14	hardening and protecting the equipment that will be
15	used. People are now developing guidance and
16	procedures, and whether you want to call them
17	guidelines or procedures, and training. All of it
18	eventually comes back to those operators.
19	MR. GRUBB: Right.
20	CHAIR STETKAR: And I'd hate to be the
21	operator sitting in the plant that says, "Yeah, I'd
22	really like to use all of this stuff, but somebody
23	made the smart decision that they wanted to park it 15
24	miles away because they were allowed to do that, and
25	I can't get to it."
ļ	I

(202) 234-4433

MR. AMWAY: And the thing I want to be careful of is for the vast majority of plants that have implemented FLEX with the hardened storage requirements, the location of where that equipment is being stored is already set. And the requirements of 13-02 is we protect it to the same level as we did for FLEX.

8 What we can do, and I think, and that's 9 what I'm, you know, driving within my sights within 10 Exelon, is where we can structure those procedures 11 such that when the decision is made to deploy the 12 equipment, that they're going to do it the same way 13 whether it's an ELAP FLEX no core damage case, or an 14 ELAP FLEX fails core damage case.

15 It's the same series of actions that 16 they're doing so they don't get part way down one 17 strategy and realize, "This doesn't work. I am now, 18 you know, I've lost RCIC. I'm now on the SAWA case 19 and I've got to jump over to this other procedure and 20 get that out, and undo actions I did to get to where 21 I'm at to implement SAWA."

And that's where I see the biggest benefit to shortening that deployment time, is to make sure that the procedures are structured such that, you know, it's a continuous set of actions from the time

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

111 1 they enter the EOPs, until they realize RCIC fails, to the time they start hooking up the FLEX equipment 2 3 that's also serving the SAWA purpose. 4 CHAIR STETKAR: Right. 5 MR. AMWAY: So that there's no delay in the decision making and the actions that are being 6 7 taken to get that water delivered as soon as 8 practical. 9 VICE CHAIR BLEY: John, could you put up 10 slide seven again? I know it wasn't - it's just a sample case. Oops. 11 Maybe I can. 12 MR. GRUBB: Maybe I can't. VICE CHAIR BLEY: 13 This is - can you 14 explain the general structure of this? And then I 15 have a question or two. This was from my Monticello 16 MR. GRUBB: 17 Plant. Monticello implemented the requirements of the spent fuel and FLEX orders earlier this year with one 18 19 We do have a relaxation on the missile caveat. protection of the vent. Monticello's strategy credits 20 our existing hard pipe vent for containment, venting 21 and it does not meet the missile 22 containment, protection requirements called up by the -23 VICE CHAIR BLEY: 24 I didn't want to challenge details. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	112
1	MR. GRUBB: I know.
2	VICE CHAIR BLEY: I wanted to know the
3	general structure.
4	MR. GRUBB: So if you look, this spring
5	would be T0, so back it off of the spring elements we
6	had. At about T9 is the first time we really
7	introduced FLEX to the operators, about an hour and a
8	half, all in the classroom, both licensed and
9	non-licensed.
10	By that point, the site had developed our
11	initial strategies. Our OIP had been submitted
12	actually about a year and a half earlier. So this was
13	kind of the first taste of what FLEX looks like for
14	the operators.
15	A month later, we got into the basic.
16	There was two industry CVTs that were put together, so
17	we gave those to - the first one to both licensed and
18	non-licensed, and then the second one just to the
19	licensed operators.
20	At T6, we went into the classroom and
21	walked through how the FLEX strategies work in
22	conjunction with our existing station black out
23	procedures, and the changes that were made to the
24	procedures to help them detect the event, the extended
25	loss of - the ELAP event earlier.
ļ	I

(202) 234-4433

	113
1	We talked about the mods that were being
2	done to assist the, you know. At Monticello, they did
3	two buildings that were separated. So we went through
4	all of the mods, the procedures, the new equipment.
5	We did plant walk downs for the people
6	that were going to be deploying the equipment out in
7	the field, so they got to hook up the truck and tow
8	the equipment out to the spot. They got to park it to
9	tie into the, either the injection line, or for
10	Monticello, it's repowering the batteries. Let's see.
11	VICE CHAIR BLEY: I can see the rest of
12	it. You don't have any T+ a month or a year.
13	MR. GRUBB: I had that in my slides. I
14	don't what happened to them on this. So we were
15	getting FLEX training all the way up to just before
16	the outage. So the last training cycle before the
17	outage was the last of the FLEX changes.
18	Some of the things we covered there, as we
19	were going through and developed our FSGs and things
20	were going on within the owner's group, and plants
21	were learning lessons as they went through
22	implementation, we made changes to things that we may
23	have presented earlier.
24	So we did do training all the way up right
25	until, you know, the last training cycle before our
ļ	I

(202) 234-4433

	114
1	spring outage.
2	VICE CHAIR BLEY: Are you planning - and
3	I know you have the usual training we have to get done
4	for the highest risk issues. But are you planning to
5	have exercises routinely in the future, and does
6	everybody get some of that?
7	MR. GRUBB: Yeah, somebody asked a
8	question about INPO earlier. I apologize, I don't
9	remember who that was. But one of the things that
10	INPO is doing is they're putting drill requirements in
11	place through the SERs where we now will touch
12	elements of the beyond design basis accidents through,
13	at some certain frequency. I don't know off the top
14	of my head what that is.
15	So I can tell you the last two drills that
16	Monticello did, both of those used elements of the
17	FLEX strategies although it wasn't really a FLEX
18	drill. Because of what - the scenario, it led them
19	into a place where they had the ability to deploy the
20	FLEX equipment, and in both cases, they did that.
21	VICE CHAIR BLEY: And in the past, when we
22	got the new operating procedures and emergency
23	procedures and ran through those on the simulator, we
24	found lots of places it didn't work and a lot of
25	cleanup. Have you found places where the strategies
ļ	I

	115
1	have needed some cleanup or rethinking as you go
2	through?
3	MR. GRUBB: We've found a number of items.
4	So what we did at Monticello is, you know, we
5	completed our strategies sometime late last year. We
6	didn't finalize them until we went through the - every
7	operator had gone through the training.
8	So we captured comments throughout the
9	entire training process, you know, the seven weeks,
10	for all six crews, and then we did a final set of reps
11	too. So we found a lot of implementation type of
12	issues that we were able to fix before we had to
13	finally implement.
14	VICE CHAIR BLEY: Okay, thanks.
15	MR. AMWAY: The other opportunity to catch
16	that too is when we do our phase two staffing studies
17	where you actually go through and do the, you know,
18	the walk through of the procedures and the
19	validations, that type of thing. It's also another
20	opportunity where you can identify and catch those
21	things and have time to correct them before
22	implementation.
23	MEMBER SCHULTZ: All right, that's the end
24	of the industry's presentation. Any comments or
25	questions from the rest of the committee?
	1

(202) 234-4433

	116
1	MEMBER RICCARDELLA: I just have one
2	question. Could someone comment on any differences
3	there might be between the actions being taken by the
4	U.S. versus international via Mark I, Mark II BWRs?
5	MR. GRUBB: I attended an IAEA meeting in
6	Vienna earlier this year that was all focused on
7	lessons learned from Fukushima, a lot of it on the
8	research side. But in general, I would say almost all
9	of the European and non-U.S. plants, frankly, are
10	implementing some type of a filter approach, not for
11	a technical reason, for a political reason. That was
12	talked about by a number of the presenters at that
13	meeting.
14	MEMBER RICCARDELLA: And haven't they seen
15	the data that shows that the filter doesn't do much?
16	MR. GRUBB: Well, both the BWR owners
17	group and EPRI, as well as the NRC was at that
18	meeting, and presented the data saying there's no
19	technical benefit from the filters, which is why we
20	went a different direction in the United States.
21	But the individuals that spoke at the
22	meeting, these are the individuals - and then once I
23	talked to between sessions, it was driven more
24	politically than technically.
25	MEMBER RICCARDELLA: Thank you.
ļ	I

(202) 234-4433

	117
1	MR. WACHOWIAK: There was - we looked at
2	some of the European Mark IIIs, and once again in
3	Spain, there was a political decision to have the
4	filter. And what they did was use an analysis similar
5	to ours to help define what the design requirements
6	for the filter were given that they had to have one.
7	MEMBER SCHULTZ: All right, at this point
8	then the industry presenters will leave the podium as
9	it were, and we'll go to the public comment
10	presentations where the members of the public have
11	requested time with the committee. John, could we
12	have a break at this point?
13	CHAIR STETKAR: You know, Steve, you're
14	running this portion of the meeting -
15	MEMBER SCHULTZ: Oh, thank you, so I would
16	like to call a break -
17	CHAIR STETKAR: - so, yes, we can.
18	MEMBER SCHULTZ: - so that all presenters
19	will be comfortable with their presentations and ready
20	to go in about - at 3:30.
21	CHAIR STETKAR: So we're recessed until
22	3:30.
23	(Whereupon, the above-entitled matter went
24	off the record at 3:19 p.m. and resumed at 3:31 p.m.)
25	AGENDA ITEM 2.2
ļ	I

(202) 234-4433

	118
1	MEMBER SCHULTZ: At this point by the
2	clock it's 3:30, so we'll come back on the record.
3	Thank you, John.
4	CHAIR STETKAR: The only reason I do that
5	is they use it as a time stamp on the -
6	MEMBER SCHULTZ: We now have it.
7	CHAIR STETKAR: - transcript.
8	MEMBER SCHULTZ: And in this session we
9	have presentations by members of the public who have
10	asked the committee for an opportunity to present to
11	the committee. And the first presentation is going to
12	be by David Lochbaum from the Union of Concerned
13	Scientists. Welcome to the forum, David, thank you.
14	MR. LOCHBAUM: Thank you, and good
15	afternoon, and thank you for looking into this topic
16	and also for allowing us this opportunity to share our
17	perspectives with you.
18	We reviewed the staff's draft regulatory
19	basis seeking to understand what the staff
20	recommended, and also why they recommended it. After
21	that review, we conclude that - we feel that the staff
22	miscalculated the QHO benefits of Alternative 4, and
23	calculated and then dismissed the non-QHO benefits of
24	Alternative 4.
25	Step back a minute. If you look at Order
	1

(202) 234-4433

	119
1	EA-13-109, it did not change the situation from being
2	above the QHO goal to now being below it. In other
3	words, the very low probability of this bad accident
4	happening itself meant that nothing needed to be done
5	to meet the QHO goal.
6	Therefore, EA-13-109 also met the goal and
7	was ordered. Yet Alternative 4 is not being approved
8	and was thrown aside because it too, along with
9	everything else, does not - already meets the QHO
10	goal.
11	We would agree with the staff and the
12	commission now if the individual latent cancer
13	fatality had been determined realistically and if it
14	was the dominant factor. But we totally disagree with
15	the staff and the commission's conclusion and the
16	bizarre path to it.
17	There was discussion earlier whether rule
18	making or ordering effects checkability by the NRC
19	staff. Let me relate a big difference that affects
20	the public. In rule making, the public has a right to
21	contest the nonsense. In ordering, the public only
22	gets to observe nonsense. We were deprived our due
23	process by the decision to forego rule making for a
24	wink, wink, nudge, nudge, say no more ordering with
25	the staff.
ļ	I

(202) 234-4433

When the orders were issued, there was opportunities by the public to contest the orders or intervene in the orders, but at that time, it was a bait and switch. We were told there would be a rule making to follow it up and we held our powder until that moment which has now been taken away from us, and we're not real happy about that.

8 This is Figure 4-24 from the draft 9 regulatory basis, and it provided the consequence reduction factors for Alternatives 3 and 4 under four 10 different emergency evacuation scenarios. The staff 11 decided that CRFs of 3.1 to 6.0 were not enough to 12 justify the cost of Alternative 4. I urge you to keep 13 14 this point in mind because I'll return to it pretty 15 soon.

While the staff looked at an unsuccessful evacuation scenario, their conclusion rested on confidence that evacuations will be 100 percent successful. The staff assumes that the trend -

20 MEMBER POWERS: Is that conclusion that 21 they rest on 100 percent successful - I mean, there's 22 a base line refusal to evacuate in most of the models. 23 It's 100 percent successful save for that default 24 value of the refusal to evacuate?

MR. LOCHBAUM: And the dead people too.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

	121
1	They don't leave either.
2	MEMBER POWERS: Well -
3	MR. LOCHBAUM: If you look at the first
4	alternatives and what they considered in the base
5	model for the conclusion, it was no value - there was
6	essentially no radiation exposure avoided to the
7	population within 10 miles, which basically translates
8	into all of those people getting out of the way before
9	the plume went by.
10	MEMBER POWERS: So they overload the
11	default. There's a default level of people that
12	refuse to evacuate.
13	MR. LOCHBAUM: That's the little band of
14	people who didn't get out before the plume went by.
15	If everybody had gotten out - but it's 100 percent
16	successful based on the definition of what a
17	successful evacuation is.
18	MEMBER POWERS: On what 100 percent
19	successful is, yeah, okay, so they kept those -
20	MR. LOCHBAUM: The same -
21	MEMBER POWERS: - whatever the default
22	value is for - by some sociologists on how many people
23	would just adamantly refuse, there being contestations
24	of that in the literature saying that that value
25	varies in response to technological accidents. The
ļ	1

(202) 234-4433

	122
1	default value comes from all kinds of evacuations.
2	And some people would contest that it's a
3	little too high because people in technological
4	events, and by that they mean like, oh, in the south
5	every once in a while they dump railroad cars of
6	chlorine, that people over respond to those and
7	under-respond to other kinds of things.
8	MR. LOCHBAUM: It's very magical because
9	the people who are downwind evacuate. The people who
10	are upwind, it's assumed that they don't evacuate and
11	get in the way of those that are downwind, so it's a
12	very magical process.
13	MEMBER POWERS: Well, I think they always
14	assumed some sort of default value for shadow
15	evacuations and - I mean -
16	MR. LOCHBAUM: It's assumed -
17	MEMBER POWERS: It's built into model that
18	you've always had some fraction of those people who
19	were not directed to evacuate did anyway, and
20	therefore clog up arteries to some extent. I mean, I
21	thought that always was built into the models unless
22	you deliberately go in and override that.
23	MR. LOCHBAUM: Right.
24	MEMBER POWERS: Which is not easy to do.
25	MR. LOCHBAUM: That's my understanding
ļ	I

(202) 234-4433

	123
1	too.
2	MEMBER POWERS: Okay.
3	MR. LOCHBAUM: In the draft regulatory
4	basis, the staff assumed that trained and qualified
5	nuclear officials would only be 53 to 60 percent
6	successful in preventing core damage using FLEX at
7	all, but the untrained amateurs were nearly 100
8	percent successful running away from it.
9	MEMBER POWERS: I really did not
10	understand that in your paper. It's in your - the
11	people - I'm not sure who the amateurs are. The
12	people that order evacuations and whatnot are the
13	state officials. You can't call them amateurs. I
14	mean, they're professional emergency preparedness
15	trained. Sometimes it's the sheriff's department, but
16	-
17	MR. LOCHBAUM: Right, but the people that,
18	when they push that button and hit the evacuation
19	siren, the people that are supposed to get out of the
20	way have children in school. They have children -
21	MEMBER POWERS: Well, nearly all the
22	school districts have emergency preparations and
23	things like that. If the amateurs you're talking
24	about are the citizens, then fair enough, but the
25	people running the evacuation are not amateurs.
I	

(202) 234-4433

1	MR. LOCHBAUM: It's the people you're
2	trying to protect. They have received essentially no
3	training on this. It's assumed they'll do whatever
4	those trained responders tell them to do. There's no
5	training. There's no awareness. It's as assumption
6	that's never been tested that these people -
7	MEMBER POWERS: Well, that's not quite

8 true. We've done evacuations, certainly have done 9 them in connection with Rocky Flats, and then there 10 have been a few others like Crystal River and all of 11 the - there have been a dozen or so. And it's hardly 12 my area of expertise, but I've always been impressed 13 that - at the level of compliance, shall we say.

14 MR. LOCHBAUM: Yeah, if you look at the data and throw out stuff like Hurricane Rita where 15 people didn't get out in time, it all looks good. 16 It doesn't - it's the various cherry picking. 17 Those who are advocates of emergency planning and evacuations 18 19 will pick the ones that people did get out, and they 20 have excuses of why Hurricane Rita is a bad data point and gets to be thrown out. The science is not there 21 to support that it's just 100 percent. 22

23 MEMBER POWERS: Hurricane Rita is a data 24 point that I use in my class because it - I used to 25 have a slide in my class about how the death rate, the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

deaths due to evacuation itself as opposed to whatever prompting, were very low, and Hurricane Rita promptly forced me to throw that slide out because it really screws things up.

But I mean, I'm not sure what you mean by cherry picking. Even I average Hurricane Rita death rates in, okay, it doubled my death rates, tripled it maybe, that's still a pretty small number. And the evacuation rates, I mean, the problem is they're slow.

10 MR. LOCHBAUM: They're slow and you 11 mentioned earlier the evacuation of the untrained 12 amateurs. We citizens aren't consistent. We don't 13 respond.

So the statistics on people who don't evacuate, employing the releases or whatever, those are not selected by proponents that are arguing that the evacuations are successful. There are reasons why all of these things don't apply because it wasn't a nuclear plant, or it wasn't whatever.

MEMBER POWERS: Well, 20 Ι mean, the statistics on failure to evacuate chlorine are lower 21 than they are for hurricanes. 22 So when they average the two together, or in whatever magical way they 23 24 decide to average, they actually get a number that 25 some people contend are too high.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5

6

7

8

9

	126
1	MR. LOCHBAUM: It's nearly 100 percent
2	MEMBER POWERS: Yeah, yeah -
3	MR. LOCHBAUM: - through the industry
4	study.
5	MEMBER POWERS: Yeah, it's only about half
6	a percent.
7	MR. LOCHBAUM: You can't take all of the
8	data and throw out all of the bad points and still get
9	100 percent.
10	MEMBER POWERS: Well, I don't think - I
11	mean, I'm not sure what bad point they're throwing out
12	when you say that.
13	MR. LOCHBAUM: They're assuming nearly 100
14	percent evacuation except for those who refuse to
15	evacuate.
16	MEMBER POWERS: Yeah.
17	MR. LOCHBAUM: That's the best they could
18	possibly be. They're not accounting for anything less
19	than the best that it could possibly be, and that's -
20	I hope that's the case, but that's not good public
21	policy. That's a convenient answer. It's not good
22	public policy. If they choose to do it by a majority
23	of votes and adopt bad public policy, so be it.
24	But when it doesn't represent reality and
25	it assumes the optimum best assuming only those who
	I

(202) 234-4433

	127
1	refuse to go get out in time, there's no way in the
2	world as a scientific organization we can say, "Oh,
3	yeah, there's sound reasoning behind that gimmick."
4	MEMBER POWERS: But you have statistics on
5	what, 50 some evacuations? We have statistics on some
6	evacuations.
7	MR. LOCHBAUM: I bet you look at the
8	highest ones pulling that close to what the NRC is
9	assuming for this case, but I won't know that answer
10	yet anyway, so in the interest of time, I'm going to
11	move onto my next slide.
12	MEMBER POWERS: Okay.
13	MR. LOCHBAUM: I mentioned earlier that
14	the staff regulatory basis looked at the consequence
15	reduction factors. Then I noticed that they only
16	looked at that for the alternatives between - or for
17	the differences between Alternatives 3 and 4. Table
18	4-24 from the draft technical basis provided the data
19	for Option 1 or 2 as well, so I calculated the
20	consequence reduction factor between 2 and 3.
21	For individual latent cancer fatality
22	risks, that difference was - CRF was 2.27. For the
23	difference between 3 and 4, it was 2.73. If you go
24	across that table, in every single case the
25	consequence reduction factor between the status quo
	I

(202) 234-4433

	128
1	and the SAWA option is less, much less than the
2	consequence reduction factor between 3 and 4.
3	The small, the allegedly small consequence
4	reduction factor between 3 and 4 was utilized by the
5	staff to say that Alternative 4 was not justified, yet
6	they recommended Alternative 3 which had even smaller
7	consequence reduction factors.
8	We also did an exercise based on the
9	highest range cost for the external filter, \$64
10	million, taking an assumed value of life of \$5 million
11	per dead person, then you roughly have to save - the
12	external filter would have to save about 12 lives to
13	be justified.
14	On this table, the staff provided the
15	average individual latent cancer fatality risk for the
16	SAWA case, Alternative 3, and the SAWA case plus the
17	external filter which was Alternative 4. That delta
18	is 9.5 times 10 to the minus fifth.
19	So if you multiply the delta ILCF factor
20	of 9.5 times 10 to the minus fifth, times an effective
21	population, divided by the cost, you have to figure
22	out how many people could be exposed to that radiation
23	level and be experiencing that individual latent
24	cancer fatality in order for that \$64 million to be
25	justified. At \$5 million per life, that number turns
I	

(202) 234-4433

	129
1	out to be 134,737 persons.
2	Going back to your earlier question about
3	what is the population around the plants, had the
4	staff looked at the population within 10 miles and
5	shown that there's only 20,000 people, so it's no way
6	that they could not get out in time but that it would
7	save 12 lives, but they've not done that. We'll do
8	that once I get access to that data.
9	If you assume the value of a life is as
10	high as \$8 million, then it's 84,211 people who have
11	to be exposed for that \$64 million filter to be
12	justified.
13	MEMBER POWERS: What did they use in their
14	cost benefit? I don't remember.
15	MR. LOCHBAUM: The Office of Management
16	Budget had been saying they've been using \$3 million
17	roughly.
18	MEMBER POWERS: That sounds about what I
19	thought.
20	MR. LOCHBAUM: At that number, the
21	affected population is 224,561 people who - what we're
22	going to do is look at what percentage of the
23	population within 10 miles do these numbers represent
24	to try to come up with some conclusion. Is it
25	reasonable that most of those people will be out?
	I

(202) 234-4433

Basically, what percent success rate does the evacuation have to be in order to keep the numbers below the value of life cost justified? So we'll even though the commission has ruled, so it's a moot point, but we have a calculator and some time, so we'll do that.

7 But it disappoints us that we don't understand how the staff came to a conclusion that 8 9 Alternative 3 was justified when its consequence reduction factors are less than that of Alternative 4. 10 The other thing we don't understand, and 11 this goes back - on this slide. The lefthand column, 12 as we understand, is doing nothing. I mentioned this 13 14 earlier. And in the beginning and the middle in the 15 next couple of columns is Alternative 3, which is what the staff recommended. 16

All of those are below the high level 17 conservative estimate which the NRC panel said was the 18 19 worst case, worst ELAP, and all of that stuff, so that's the worst of the worst. The NOC order which 20 led to Alternative 3 being basically what's being 21 happening was already below. 22 How did the staff justify issuing the order for improvements that were 23 24 below the QHO to begin with and ended up below the QHO at the end? 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

1	Given the fact that EPRI's data and the
2	NOC's data shows very little variability amongst the
3	individual latent cancer fatality for the various
4	options, why is Alternative 3 the right one out of
5	those options?

Why not go for Alternative 4 and also gain the huge economic benefits that it provides by not contaminating large parts of the American countryside? Why was that not factored into the evaluation?

None of these options, even the one that 10 was ordered and the one that the NRC recommended, 11 reduces the QHO below the QHO goal. They are already 12 So what game is being played on the 13 below that. 14 American public by this bait and switch with doing an order and denying the public its opportunity for rule 15 How in the world did that happen? 16 makinq? What justified the order and how does that justification 17 not mean we need to pursue rule making for Alternative 18 4?

19

6

7

8

9

It doesn't mean pursuing rule making means that you automatically have to adopt Alternative 4, but gives us, the public, a chance to recommend that, and it also gives us a chance to fight the NRC in court if they choose not to do that, but they took away that right.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

I also had some comments about some things perhaps should been considered that have in Alternative 5, but in the interest of time, that's in the record in the material I provided. I think it's pretty straightforward. I'll omit covering that unless there's any questions over the reliability of the SRVs or any of the other issues. Hearing none.

MEMBER SCHULTZ: The next presenter for 9 the next presenter for us us, excuse me, this afternoon is Paul Gunter from Beyond Nuclear. Paul?

MR. GUNTER: Thank you very much. Yes, my I'm a Director of the Reactor 12 name Paul Gunter. Oversight Project at Beyond Nuclear. 13 I'm going to 14 make no pretense that I'm a technical expert on this, 15 basically come before you but have I've we representing the informed public, and we have also 16 been active in interventions before the U.S. Nuclear 17 Regulatory Commission. 18

19 And I think that that brings us to, well, perhaps the most egregious point in this rule making, 20 is that I, you know, looking at the transcript from 21 August 18, it's apparent to us that you, as the NRC's 22 independent expert panel, were as blind-sided by the 23 24 taking an informational paper from staff and turning it into a vote, that that was as much as - I would 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

10

11

suspect that would be as much a surprise to you as it was to the public in terms of the course that we were moving along, that it seems to have been an extreme waste of your time.

5 But it's - and I think that that is part 6 of this very egregious decision which fails to uphold 7 the concept of defense in depth, as well as Dave has 8 pointed out, removes the public due process to present 9 our own expert testimony. And, you know, let's make 10 no bones about this.

pulling this rule making, the 11 By commission basically voted to, in majority, to kick 12 the public out of standing in any kind of legal 13 14 challenge to a controversial issue that has now gone 15 than four decades with regard to on more the 16 unreliability of the Mark Ι and the Mark ΤT 17 containment, and it's consistent with this process of keep away. 18

And I've been around long enough to understand that it took a Freedom of Information Act through the Union of Concerned Scientists to reveal in 1978 the Hanauer memo recommending - where the AEC recommended we should suspend operations of these reactors and make no more.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

You know, it took five years for that memo

(202) 234-4433

25

1

2

3

4

to get out. And by that time, the AEC and the NRC had already proceeded down a path to license 16 more Mark Is. And it, you know, it just goes on that, you know, we, as the public, and public safety as monkey in the middle, has seen this ball go over our head time and time again.

Generic Letter 89-16 was done, as I've 7 8 pointed out to you earlier, under 10 CFR 5059. It was 9 treated like changing out the wastepaper basket liners 10 in the control room. You know, it was basically presented to us as no significant safety issue. 11 And by removing that, by turning it into a voluntary 12 initiative for this industry, the public again was 13 14 denied participation and a formal standing.

15 So now we arrive at, you know, our 16 realization post-Fukushima that an affirmation of what 17 we'd known already, where these containments are highly prone to failure. As was presented in 1986, it 18 19 was a 90 percent chance of failure by Harold Denton. And, you know, if you are informed and following this 20 along, you understand that if these containments are 21 challenged, they will probably fail, and yet we have 22 been denied standing all the way through the process. 23 24 Now, we arrived at a point with SECY 2012-0157 where to my surprise, there was - including 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

myself after study, there was broad approval of the staff decision to move to the filtered vent system. And there was an opportunity for the NRC to gain a consensus of public confidence that public safety was the primary concern, and that opportunity was lost 6 here.

7 But in fact, it was picked up in Japan. 8 And, you know, I just picked a couple of days here, 9 several days where we were sort of flabbergasted by 10 this about face that we saw where, you know, we had been awaiting the opportunity on the August 18 ACRS 11 subcommittee meeting to meet and talk about some of 12 these ideas. 13

14 That subcommittee meeting was predated by 15 AREVA announcing that it was installing the 14th 16 installation at Japanese nuclear power stations, and that was BWRs and PWRs with these filtered containment 17 venting systems. 18

19 And so, the day after, you know, the ACRS subcommittee meets, we realize that the commission has 20 in fact again taken an informational order, we believe 21 out of context, and turned it into a vote. 22 Now, granted, Commissioner Svinicki wasn't alone in that 23 24 vote, and - but we were deeply surprised by the fact that the process that was moving forward was abandoned 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	136
1	so abruptly.
2	And again, it closed out your
3	participation, you know, despite the fact that we, you
4	know, were not in full agreement with your direction
5	in this as well, but it removed our expert opinion on
6	how these aging Mark I and Mark II containment systems
7	will be managed in the next accident.
8	That said though, you know, we had known
9	for a couple of years that the Japanese were
10	proceeding with the filtration containment venting
11	system. This is the schematic for the Shimane BWR.
12	This is the schematic for Kashiwazaki-Kariwa.
13	Now, there was an NRC senior management
14	team that went to Japan and reviewed this. I had the
15	opportunity to talk to David Skeen who was, you know,
16	quite impressed by the small footprint that these
17	double-filtered containments was providing.
18	And you know, as the staff had recognized
19	in the SECY 2012-0157, you have to take more than just
20	the limited scope that we have by hypothetical
21	analysis, and this is one of our big concerns is that
22	- and this was also expressed in the notation vote of
23	Chairwoman Allison Macfarlane in the vote on
24	2012-0157, where she explained that, you know, when
25	you look at the hypothetical, when you look at the
I	

(202) 234-4433

	137
1	probability assessments, it does not match up with
2	what we are seeing in reality, and that the -
3	You know, the reality is that these
4	containments if challenged will fail, and the failure
5	trees are hypothetical and will be surprised. But,
6	you know, we've made a choice now to limit the defense
7	in depth, and the die is cast on this.
8	But again, it's particularly egregious
9	that we are not getting an opportunity to address a
10	lot of the uncertainties that have even been presented
11	by the National Academy of Sciences where, if you look
12	at their June 2014 paper through the Fukushima
13	committee and their analysis, their Appendix L which
14	looks at the factoring the costs of severe nuclear
15	accidents and the backfit decisions, when they ran
16	their assessment of the costs of Fukushima Daiichi,
17	their figures were exceeding \$2 billion.
18	And they raised the question in Appendix
19	L, "It is instructive to compare these costs to the
20	estimates developed by the NRC staff for a
21	hypothetical accident at the Peach Bottom nuclear
22	plant in Pennsylvania. These costs were used in the
23	staff's backfit analysis for filtered vents."
24	And it goes on to say that, "The total
25	estimate costs for the hypothetical accident at the

(202) 234-4433

Peach Bottom plant are therefore \$6 billion." So the NAS pointed out that that's about 33 - their estimate, their tally of this ongoing estimate was 33 times higher than the NRC estimate in its - in going by its quantitative analysis. And therefore, I think that justification that was part of the for also incorporating the qualitative analysis which put the filtered venting system into play.

9 But you know, and again, it is our concern 10 that we're being denied an opportunity to bring in a 11 whole host of independent expert analysis to challenge 12 this on the record through due process. And I 13 speculate that that is in good part why this rule 14 making process was ended so abruptly in that it 15 basically closes the record.

I just wanted to close with a couple of 16 17 inclusion into the record here, the comments of Commission Jeff Baran in that he pointed out in his 18 19 notation vote, "In my view, it is premature for the commission to consider the draft regulatory basis at 20 this time without the benefit of public comment or the 21 ACRS review. 22

I approve the staff's established plan based on clear commission direction to seek public comment and ACRS review of the draft regulatory basis

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

prior to its submission to the commission for a notation vote.

Furthermore, there is no reason for the 3 4 commission to vote on the draft regulatory basis 5 before the ACRS has reviewed and provided recommendations on the document. Under the staff's 6 7 original schedule, the ACRS plan to hold а 8 subcommittee meeting and provide a letter to the commission after the staff reviewed and addressed 9 public comments for the draft regulatory basis. 10

The staff should resume this course though 11 the staff previously presented the draft results of 12 the regulatory analysis to the ACRS, this will be the 13 14 first time the ACRS will examine the draft regulatory 15 basis as a whole and share its thoughts with the commission. We should wait for the ACRS letter before 16 decisions 17 making substantive about the draft regulatory basis." 18

Emphasis 19 here, "This is important an post-Fukushima rule making. A wide range of stake 20 holders will have a variety of perspectives on the 21 four alternatives presented in the draft regulatory 22 We should hear their views and critiques of 23 basis. 24 these alternatives and the staff's regulatory analysis before taking any alternatives off of the table. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

Therefore, consistent with the existing commission directive, the staff should carry out its plan to seek public comment and the ACRS review of the draft regulatory basis prior to submission to the commission for the next few months - in the next few months for a notation vote."

7 So just in closing, basically we feel that this order, this notation vote was 8 we that 9 essentially effectively a gag order on the American public's ability and opportunity to formally provide 10 input into severe accident mitigation efforts for the 11 continued operation of the GE Mark I and Mark II 12 13 reactors.

Ironically, the international nuclear industry is simultaneously cashing in on the effort to restart Japan's nuclear power plants where their nuclear regulatory authority has ordered state of the art engineered external filters on severe accident capable hardened containment vents as a prerequisite to resume operation.

And then that - you know, I provided this - the subcommittee with the AREVA press release, and that's part of your records. And, you know, I think the die is cast.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MEMBER SCHULTZ: Paul, we do have all of

(202) 234-4433

25

1

2

3

4

5

6

that information available, and it's been available, made available to the committee already. Any comments or questions from the members? With that, I'd like we're not done with the public comment period. We have one more to move forward. I wanted to thank David and Paul for your comments to the committee today.

8 At this point, for the members of the 9 public that are on the phone line, Mary Lampert of 10 Pilgrim Watch has requested time before this meeting, had made a formal request for time 11 to make a presentation to the committee. She is on the public 12 line, so we're going to open that line and allow Mary 13 14 to make that presentation to us at this time.

There will be an opportunity for others on the telephone line to make comment following her presentation. But I'd like you all to reserve the time for Mary to make her presentation first. And so, if you could, please put your phones on mute except for Mary. Mary, are you there?

21 MS. LAMPERT: Yes, I am. Are the slides 22 up? 23 MEMBER SCHULTZ: We do have the slides up, 24 and David is at the computer. He could show the

slides for you if you indicate when you're going to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

	142
1	move from slide to slide.
2	MS. LAMPERT: Certainly. Slide two,
3	please. Good afternoon. I'm speaking from my home in
4	Duxbury, Mass, which is located across open water
5	about six miles from the Pilgrim Nuclear Power
6	Station, a Mark I reactor. So I've a vested interest
7	in this, and a vested interest in having a filter.
8	Slide three, please. The staff does not
9	recommend filters, although we know other egress
10	routes that you can have releases from are filtered.
11	The staff reversed its course and they changed the way
12	it performed as a cost benefit analysis, relied on
13	flawed and unsupported assumptions, and used outdated
14	consequence codes, the MACCS and SOARCA.
15	Slide four. As for the analysis of
16	offsite economic consequences, the staff
17	recommendation sent economic consequences of a release
18	from a vent to the back of the bus. The staff did
19	this because economic consequences indisputably show
20	that adding a filter to SAWA would provide the most
21	bang for the buck.
22	Table 4-23 before you on the slide shows
23	that an \$11 to \$64 million filter saves \$3.51 billion
24	in economic consequences. And of course, the solution
25	to this inconvenient truth was to give it considerably
I	

(202) 234-4433
	143
1	less weight than it deserves. However, tell that to
2	the agricultural industry that I can see now in
3	Duxbury Bay that has a very large oyster farm.
4	Tell that to the cranberry growers. Tell
5	that to the people whose investment is in their homes.
6	Tell that to my three sons who are looking forward to
7	a very sizable amount of money from the sale of this
8	house when I kick the bucket, which will be sooner if
9	I have to listen to what has gone before us.
10	Slide five. Instead of giving the offsite
11	economic consequences their due, the staff prioritized
12	health consequences and pretended that they would be
13	essentially zero, although in fact, if an honest
14	analysis had been done, they too would justify a
15	filter.
16	How did they pull this magic trick turning
17	offsite health costs to zero? First, they made the
18	ludicrous assumption that evacuations will take less
19	than six hours. Second, they assume that SAWA and
20	SAWM, however you pronounce it, will delay releases to
21	allow timely evacuation.
22	And thirdly, with no basis given, assuming
23	it would be effective 60 percent of the time, and then
24	conveniently, the staff ignored its admission that
25	SAWA does not work 20 percent of the time. Third,
I	1

(202) 234-4433

	144
1	health costs become zero by limiting health impacts to
2	cancer fatalities and limiting to a too small
3	geographic area.
4	Slide six, please. First, let's look at
5	evacuation. I can speak on this because I have been
6	appointed by the town of Duxbury within Pilgrim's EPZ
7	to review the radiological emergency plan and
8	procedures each year. I have done this since the year
9	2000, so I know this subject.
10	Evacuations indeed will take far longer
11	than six hours if the foolish assumptions the NRC uses
12	are corrected. We first have to remember that when
13	reactors were built, many of them like Pilgrim,
14	etcetera, were built in less populated areas. They
15	are now in more densely populated areas with an
16	insufficient infrastructure, meaning that people are
17	not going to get out of Dodge in time.
18	Also, many reactors are on large bodies of
19	water such as the one I'm looking at. Therefore, you
20	only have 180 degrees available for evacuation, not
21	like a few reactors in the Midwest where it's not
22	densely populated and there are evac routes around the
23	entire circle.
24	So what NRC does is create fiction. Our
25	emergency management director during Winter Storm Juno
I	I

(202) 234-4433

1 here is on record saying it would take four days to evacuate the population. That is not less than six 2 hours. 3 4 Slide seven. Some of the ridiculous 5 assumptions in NUREG/CR 7002, which forms the basis for evacuation time estimates, and I presume, is what 6 7 the staff relied upon to come up with this foolishness that evacuations will occur in less than six hours. 8 9 First, how do they judge public response? 10 They don't tell them in telephone surveys that the questions are about a nuclear disaster, and hence they 11 get false responses. That is what Sandia has done. 12 That is what ALD that does the evacuation time 13 14 estimates for reactors do in their telephone surveys, 15 general question, "What would you do in any old evacuation disaster?" 16 17 However, what have seen is we by а telephone survey that was done here in southeastern 18 19 Massachusetts that actually told people and asked the

20 question, "What would you do in the event that there 21 was a disaster at the Pilgrim Nuclear Power Station?"

22 Seventy percent said they would evacuate, 23 and those respondents were from 10 to 25 miles distant 24 from the reactor, so not the 20 percent from 10 to 15 25 miles that is assumed by the NUREG NRC, no, far

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

greater.

1

2

3

4

5

6

7

Then they asked specifically to those respondents, and all at the 95 percent confidence level, "What would you do if you were told that you were not in the EPZ, in other words, not to evacuate?" Fifty percent said they would evacuate. What does this tell us?

The assumptions of the shadow evacuation 8 9 are wrong, so therefore expect a cork put in the 10 bottle clogging the evac route. Then also, the seqmented evacuation assumed inside the EPZ which is 11 that everyone will obey, and only those directed to 12 evacuate will evacuate having an orderly evacuation, 13 14 letting those closer out first.

with today's 15 communication We know 16 capability that as soon - I tell you, as soon as I hear that there is a release or that the two mile 17 around Pilgrim is told to evacuate, I won't hear that 18 19 instantaneously either on email, on the phone, what have you, and I'm out of Dodge. That is clear. 20

And it is also clear another telephone survey that happened here in Duxbury was whether people could hear the sirens and the siren message. Seventy percent of those in Duxbury said, "No, we can't hear the siren message." So if you can't hear

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

146

1 the siren message or the siren, then how is a segmented evacuation going to occur? 2 3 And so assumption after assumption that 4 brings about the fiction that you can have a timely 5 evacuation, it has been shown to be bologna, and as a result of that, you will find that if you did an 6 7 honest analysis, that the health costs indeed would 8 increase. 9 Slide eight, please. This is a review on 10 this slide. I don't have to repeat it for you. What it - of the Cape Cod telephone survey, which was paid 11 for by Entergy by the way, that shows the 250 percent 12 to 300 percent increase in the number of evacuees, 13 14 which will bring about a huge increase in traffic 15 density, a decrease in speed, and a dramatic increase in the evacuation time. This is proof in the pudding, 16 17 an actual survey that shows the foolishness of the assumption that leads to the statement that ETEs will 18 19 take less than six hours. Slide nine, please. Last, the draft's own 20 Figure 24, dash 24, shows the health benefits of 21 adding a filter. The short columns to the right are 22 SAWA and filter, plus the filter. 23 They lead to a 24 dramatic drop in latent cancer fatality risk, especially as evacuation time increases which are the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

147

148 1 columns on the far right, or no evacuation at all. Slide ten, please. The staff assumption 2 3 of health costs equaling zero rests on another 4 ludicrous assumption, and that is the assumption that 5 SAWA will work 60 percent of the time. Also, the staff ignored that accidents that cannot be assumed to 6 7 be slow breaking, that 40 percent of the time that the 8 staff assumed SAWA would not work. And may I add any 9 solution that purports to ensure public health and 10 safety, even 60 percent of the time, is morally 11 corrupt. Next slide, please, slide 11. 12 An example - I provide an example that SAWA is unlikely. 13 There 14 is no basis to assume it will work six out of ten 15 times by pointing to Pilgrim's plan for supplemental 16 water. Entergy's proposed system here requires 17 workers to bring a portable pump and flexible hose to 18 19 a barge landing area to connect by a block pulley system to an installed mooring system in the barge 20 landing area, and then the suction pipe supposedly 21 will be connected to the pump on the tractor that will 22 feed into a buried pipe providing coolant to the 23 24 reactor. What could go wrong? The real question 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	149
1	is, "What possibly could go right with this Rube
2	Goldberg plan?" First, the truck tractor pump is
3	housed in storage sheds in another - and obviously not
4	located right by Cape Cod Bay. So the question would
5	be, such as during Juno, a storm in January here, or
6	the following one in February, or during another
7	natural event where there would be a lot of debris,
8	can the road be cleared to get the little truck, and
9	the hose, etcetera, and the people down to the Bay?
10	Supposedly, this has to be - debris
11	removal accomplished in six to nine hours. What does
12	that do a timely evacuation? Then to get down to the
13	barge landing area, there is a very narrow sandy road
14	on the edge of the Bay, that supposedly this whole
15	operation is going to be carried forth.
16	Take a 17-foot storm tide plus a 10-foot
17	wave, and as the cartoon shows, you're going to have
18	to work with the truck in the water. If that doesn't
19	occur and they manage to get down there and stay on
20	the road, what is the likelihood that this snatch
21	block pulley system, you know, which you use to get
22	your dinghy close to show, is not going to get clogged
23	either with seaweed or with ice? The whole plan is
24	ridiculous.
25	Slide 12, please. Last, the health
Į	

(202) 234-4433

(202) 234-4433

1 impacts were underestimated because the radiation health impacts that they looked at with cancer 2 3 fatalities, they did not look at cancer incidents. 4 They didn't look at reproductive disorders, other 5 health impacts that they discussed in BEIR IV. Thev also ignored the likely geographic impact of exposure, 6 7 and essentially by using а straight line and 8 restricting it to 10 miles.

9 Slide 13, please. The third reason the 10 staff analysis is not credible is that they relied upon a faulty cost benefit analysis and they used the 11 outdated computer tools of MACCS and SOARCA. I think 12 the cartoon says it all, that all of the numbers we've 13 14 heard, and it's been mind numbing. You could say, 15 "Hey, they don't lie," but luckily assumptions do lie. 16 And I'll slip to the next slide 14. And 17 you can see there I've submitted papers previously to your group on what is wrong with the MELCOR analysis, 18 19 quoting heavily from David Chanin who wrote the FORTRAN 4 code. I also was mystified on why the staff 20 used MACCS and not a later so-called improved version 21 of that code. 22 On slide 14, I've listed some of the ways 23

23 On Slide 14, 1've listed some of the ways 24 in which the use of the MACCS served to underestimate 25 consequences. For example, they only considered in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	151
1	the code iodine, and in a small fraction, caesium-137.
2	And Dave Lochbaum talked about the fact that NRC's
3	value of life is \$3 million where other agencies are
4	using \$5 million to \$9 million.
5	Slide 15 discusses more ways in which the
6	code - use of that code underestimates costs,
7	particularly economic costs, although the staff
8	analysis itself justified filters just based on
9	economics alone.
10	Slide 16. I'm trying to go as quickly as
11	I can to give other members of the public on the phone
12	an opportunity. The slide 16 has the NRC's OIG audit
13	report issued June 24, 2015. They found that the
14	staff has limited costs estimates making it vulnerable
15	to errors and flawed decision making. This analysis
16	that has been done is a prime example.
17	The staff's flawed cost benefit analysis
18	got the right answer for industry, but the wrong
19	answer for public health, public safety, and the
20	public's pocketbook. There is no way even this
21	analysis justifies not recommending a filter.
22	It seems that the commission didn't like
23	the answer the staff presented a couple of years ago
24	to have a filter, the majority of the staff, but
25	Chairwoman Macfarlane did. And so, the game was kick
ļ	I

(202) 234-4433

152 1 it back for more study, which really said, "Get the right answer this time for industry." 2 3 And then the ground work to getting the 4 right answer started to be put into play. "No, we're 5 not going to have gualitative analysis. We're just going to focus on quantitative," even though there 6 7 were papers by the NRC Jamali indicating all of the 8 various uncertainties and unknowns that require 9 looking at qualitative. 10 Oh, and as far as health, just yesterday there was a report. "Oh, we're going to cancel that 11 cancer study around reactors because God forbid we 12 might have the wrong answer." It goes on, and on, and 13 14 on which means that the public has lost almost 100 percent respect for the NRC as an institution. 15 16 The public expects an accident because -17 here in the U.S. because that is the only thing that is clear will make - will shake up the NRC to get back 18 19 to protecting the public and not the industry, and an accident is likely to occur in a Mark I, like the 20 reactor I'm looking at right now. 21 So therefore, I say to the ACRS, do your 22 job to protect the public, to bring the turnaround, if 23 24 for no other reason than to start getting some respect back in the public for the agency, and also so you can 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

look yourselves in the face when there is the next accident. And I thank you very much for this opportunity.

4 MEMBER SCHULTZ: Mary, thank you for your 5 comments. Any questions or comments from the committee? With that, what I would like to do at this 6 7 point is to ask members of the public on the phone 8 line who would like to make a comment to please state 9 your name and make your comment to the committee. Is 10 there anyone on the line who would like to make a If so, please state your name and proceed. 11 comment? 12 MS. GOTSCH: Are the lines open? MEMBER SCHULTZ: The line is open. 13 14 MS. GOTSCH: Okay, my name is Paula Gotsch. I'm a member of Grandmothers, Mothers, and More for 15 16 Energy Safety. I would like to begin by saying the most intelligent thing I heard today. I think it was 17 probably somebody from ACRS, maybe not, who mentioned 18 19 the story of the statistician who drowned in a river with an average depth of six inches. 20

And that seemed to me to be the theme for the day in terms of what I heard in terms of all of this risk assessment and all of these things that are supposed to save us.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

I also thought that the person who spoke

(202) 234-4433

25

1

2

3

	154
1	about, "Here is the order. Here is what we know we
2	have to do. We have - we comply by doing A, B, or C."
3	This is each individual plan. Now, where does the
4	followup from that happen? How do we check to make
5	sure that the plants not only do this now, but
6	continue to do it? I thought that was, you know,
7	reasonable of all of these things I've heard.
8	And I just want to say - hello? Hello, am
9	I still on?
10	MEMBER SCHULTZ: We're still here or
11	you're still there. Thank you.
12	MS. GOTSCH: Okay, I heard a funny noise.
13	I didn't know what that was. Okay, I just want to say
14	I'm in the Oyster Creek area. We had a forest fire
15	over in the Pinelands yesterday, the day before
16	yesterday. And then - now that's west of the plant.
17	Now, we've been told most times, you know, that things
18	blow out to sea.
19	Okay, so I'm now choking in my house from
20	this smoke that you get from this forest fire. And I
21	say smoke is what you would smell if you could smell
22	radiation. You know, it's a good way to test your
23	nose, what way the wind is blowing.
24	The next day I'm talking to my
25	daughter-in-law who lives now in Monmouth County which
ļ	I

(202) 234-4433

	155
1	is northeast of here, and her house is suddenly full
2	of smoke. Then I hear on the report that Queens and
3	Brooklyn also got this smoke from the Pinelands, which
4	shows that the plumes and the air currents, they do
5	what they want.
6	It might also be a reason there's so much
7	breast cancer on Long Island. I don't know. But in
8	terms of this pat little idea of protecting the public
9	in the event of an emergency and they'd all come out
10	fine, that is totally beyond comprehension.
11	Okay, now Oyster also, the reassurance
12	that there would be all of these training programs for
13	these people that are supposed to run around with
14	their flashlights or whatever they're doing to do all
15	of these things that have to happen in an emergency,
16	the reassurance of the training continuing.
17	I will say that Exelon ended up being
18	cited three times by the annual inspections for their
19	members not - their workers, some of them, not
20	following procedures. They were, you know, those cute
21	little things. They have white, yellow, and green,
22	whatever, findings that don't seem to mean very much
23	in the long run.
24	They were guilty of, I think it might have
25	been a white performance malfunction there. And I'm
ļ	I

(202) 234-4433

	156
1	not going to start knocking the workers. I don't know
2	what kind of training they get. All I know is that
3	the turnover is very often.
4	I've been told by some of the plant people
5	that I know that the institutional memory is shot on
6	that plant which is the reason they kept putting the
7	wrong cables, the safety cables, they kept putting the
8	wrong ones in for three times, which was considered a
9	yellow, by the way.
10	So there was a problem of institutional
11	memory going on in these plants. The fact that -
12	another thing is now you've got high burnup fuel in
13	those plants. That raises the temperature on an
14	accident I would imagine tremendously.
15	And then I also was surprised to hear such
16	an unscientific statement from somebody saying that
17	the reason they have the filtered vents in Europe is
18	political because he heard it from some of these
19	speakers. I don't think Frank von Hippel is an idiot.
20	He is a very smart professor from Princeton who has
21	been around a long time, top of his field, who wrote
22	an article about the importance of filtered vents. I
23	don't think that man is political at all. He doesn't
24	have a political bone in his body.
25	So I think, you know, hearsay on something
ļ	I

(202) 234-4433

	157
1	and getting the false, you know, this false feeling
2	that all of these filtered vents are going in in
3	Europe because it's political since Fukushima,
4	actually some of those filtered vents were already in
5	there before Fukushima until some people figured out,
6	"Hey, they might save a few people."
7	So in terms of - and I will agree with
8	Paul totally. You cheated us out of our chance to
9	have something to say about what you're saying, to do
10	this FLEX program. It sounds like - it does sound
11	like a Rube Goldberg.
12	And the other thing is - oh, something
13	someone said - I wrote everything down that made me -
14	that there is no sense putting filters on because the
15	stuff leaks out other passageways and you can't filter
16	them. Another reason to show that this plant is not
17	fulfilling the responsibility nuclear was supposed to
18	have to protect the people from the radiation.
19	We were supposed to have a leak tight
20	containment. We weren't supposed to have all of this
21	stuff leaking out all over. We know that there's been
22	tremendous amounts of radiation in the past released
23	from Oyster, I mean, millions of whatever you call
24	them, curies or whatever you want to - I don't know
25	what the heck you call them now. All I know is it's
ļ	I

(202) 234-4433

1

2

3

4

5

6

7

8

9

therefore, And so number one, you shouldn't even be operating these plants. And you know what else occurred to me? You're all trying to - you know, arguing over how to do this for now, how many years since Fukushima? "Oh, And saying, we should do this. We should do that." That meant that all of those years before Fukushima we - no one would have known what to do if there was an accident here.

We wouldn't have been any smarter than the Japanese. And in terms of - I really believe that you're sitting there thinking, "Oh, but what are the chances this is going to happen?" Well, you know what? How long can we keep our fingers crossed? This could happen.

And I want to agree with Mary. When will we get someone who when the buck gets to the - and I'm talking to ACRS here. And I'm saying some of you are smart because you have that smart thing you said about A, B, C, and where do we find out the compliance, and I loved the story about the guy who drowns in a river with an average of six inches.

23 Some of you are smart enough to know b.s. 24 when you hear it. And so, someone's got to stand firm 25 and stop it, and say, "Give these people their

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	159
1	hearings. Give them their legal rights," and not let
2	this b.s. continue. And I really appreciate the time.
3	MEMBER SCHULTZ: Thank you, Paula. I
4	appreciate your comments. I would like to ask anyone
5	on the phone who would like to make a comment to
6	please identify yourself and make your comment. I'm
7	listening. If you are on the phone and would like to
8	make a comment, please state your name and do so.
9	Hearing none, at this point we will close
10	the phone line. But I'd like to ask if there are
11	members of the public in the audience here in the
12	meeting room to - if you'd like to make a comment, to
13	come to the microphone and do so. Seeing no one
14	taking advantage of that, I would like to close this
15	session and turn the meeting back over to you, John.
16	CHAIR STETKAR: Thanks very much, Steve.
17	I did, because we do have a number of members of the
18	public who are obviously very interested in these
19	issues, I wanted to make you aware that on August 27
20	the commission did issue a staff requirements
21	memorandum for SECY 15-0065 instructing the staff to
22	go ahead with issuing proposed rule making regarding
23	mitigation of beyond design basis events which does
24	explicitly address the core damage prevention aspects
25	of FLEX.

(202) 234-4433

	160
1	So the public will have the opportunity as
2	part of that rule making package to certainly provide
3	review and comments on that aspect of the FLEX
4	proposals.
5	Now, I didn't know whether members of the
6	public - I wanted to take the opportunity because it
7	is relatively recent within the last two weeks anyway.
8	So that will - I don't know when it will be issued for
9	public comments, but at least the commission has
10	approved its issuance.
11	And with that, unless there are any other
12	comments from members of the committee - I'd again -
13	I'd like to personally thank everyone that we've heard
14	from this afternoon. I think it was a very good
15	discussion. I think we do provide a forum for the
16	public to express their concerns and place their
17	concerns on the record.
18	We do consider very seriously the input
19	from the public, and we'll do that in our
20	deliberations. And with that, we are adjourned. I'm
21	sorry, we are - I always get that wrong. We are off
22	the record and we are recessed for this portion of our
23	meeting.
24	(Whereupon, the above-entitled matter went
25	off the record at 4:41 p.m.)
ļ	I

(202) 234-4433

ACRS Full Committee Meeting: Containment Protection and Release Reduction Rulemaking

September 9, 2015

Background NRC Activities to Address Fukushima Lessons Learned

Order EA-13-109 and CPRR Rulemaking

Containment Protection

- Alternative 1 (no rulemaking status quo)
 - Order EA-13-109 for overpressure protection
 - SAWA/SAWM for Phase 2
 - Establishes design conditions & supports wetwell level control.
 - Collateral benefit of core debris cooling.
- Alternative 2 (codify order)
 - Core debris cooling remains collateral benefit.
- Alternative 3 (codify order plus require SAWA)
 - Rule for protection against major containment failure modes.

Release Reduction

• Alternative 4 (engineered filter/filtering strategy)

Commission Decision SRM for SECY-15-0085

- The Commission directed the staff to not issue the draft CPRR regulatory basis for public comment.
- The Commission approved Alternative 1, Order EA-13-109 implementation without additional regulatory actions.
- The staff should leverage the draft CPRR regulatory basis to the extent applicable to support resolution of the post-Fukushima Tier 3 item related to containments of other designs (Near-Term Task Force Recommendation 5.2).

CPRR Rulemaking Evaluation of Alternatives

- Technical Analyses
 - The technical analyses demonstrated that the reduction in risk was not a substantial safety improvement per the backfit criteria.
 - Consideration of Severe Accidents.
 - Low Frequency-High Consequence Events with low estimated risks to public health and safety.
 - Quantitative Health Objective Limit ≈ 2x10⁻⁶ vs.
 CPRR High-Level Conservative Estimate ≈ 7x10⁻⁸
 - Evaluation of alternatives considers factors such as the performance of other response capabilities (i.e. FLEX equipment, Operator actions, etc.)

Example Risk Calculation

Protecting People and the Environment

Total ILCFR for Sub-Alternative 4Bi(1) = 1.3E-09

Contributions to Risk

Protecting People and the Environment

7

Comparison to NRC Safety Goal

- Frequency-weighted individual LCF risk is orders of magnitude below the NRC Safety Goal QHO
- High-level conservative estimate using highest ELAP frequency and highest conditional LCF risk about 30 times below QHO
- Risk reduction from regulatory alternatives are within uncertainty bounds

CPRR Conclusions

Protecting People and the Environment

- CPRR rulemaking activities have been discontinued.
- The staff is planning to issue a NUREG technical report to document the completed CPRR analysis.
- Proceeding with licensee implementation and NRC oversight of Order EA-13-109.

Containment Protection and Release Reduction Rulemaking Regulatory Evaluation

Advisory Committee on Reactor Safeguards September 9, 2015

Commission Decision Supports Safety

- Decision to implement Order EA-13-109 without additional regulatory actions focuses both the NRC and industry resources on what is truly important for safety
- The 29 affected plants are already taking actions to protect BWR Mark I and II containments using industry guidance endorsed by NRC pursuant to the Order.
- Supports the critical regulatory principle that decisions should be based on quantitative evaluations and "qualitative factors should only inform decision making in limited cases when quantitative analyses are not possible or practical." [SRM-SECY-14-0087]
- The CPRR Rulemaking quantitative analysis fully supported not taking action to require external containment filters on BWR Mark I and II plants.

Technical Evaluations of CPRR Strategies

Rick Wachowiak (EPRI): EPRI Project Manager

Advisory Committee on Reactor Safeguards September 9, 2015

CPRR Rulemaking

- Evaluation of the residual benefits of filtering strategies should be made in the context of an effective accident management capability and focused on the dominant accident scenarios
- Industry has always viewed the CPRR Rulemaking in the context of accident management
 - Response to postulated severe accidents like the accidents at Fukushima requires operator action
- Accident management involves:
 - Cooling core debris
 - Managing decay heat
 - Mitigating releases

Objectives of EPRI Evaluation

- Consider a comprehensive set of extended loss of ac power (ELAP) scenarios in a probabilistic framework
- Understand the role FLEX plays in ELAP mitigation
- Understand dominant severe accident scenarios
- Develop clear, manageable analysis of filtering strategy alternatives
- Support open dialog with NRC staff on assumptions, technical issues, dominant scenarios, and insights
- Inform the implementation of EA 13-109 (to the extent feasible)
- Providing insights to BWROG on EPG/SAGs
- Support industry decision-makers on the cost-benefit considerations

Technical Basis for Severe Accident Mitigating Strategies: Volume 1. EPRI, Palo Alto, CA: 2015. 3002003301.

Example Results: Latent Cancer Fatality Risk

Insights

- Essential role of the operators
- Importance of water addition
- Incremental benefit of engineered filters
- Totally passive vent shown to increase core damage frequency (CDF)
- Sensitivity cases confirmed that the margins identified in the base results are not challenged by uncertainties

Conclusions

- Adoption of severe accident water addition strategies provides the greatest overall safety benefit, both in terms of protecting containment and reducing releases
- Manual actions would be required to manage the severe accident for all strategies
- Other alternatives investigated provide negligible additional benefit to public health and safety

Together...Shaping the Future of Electricity

Preparing BWR Operating Crews for Beyond Design Basis Events

Advisory Committee on Reactor Safeguards September 9, 2015

BWROG

• Mission of BWROG

Provide a forum for member utilities to improve plant safety, improve reliability, minimize & share costs, and facilitate regulatory interaction.

- All US BWRs are members
- All international BWRs are eligible to be members, currently there are 12 international participants

Fukushima Subcommittee

- Fukushima Response *ad hoc* committee formed in late
 2011
- This committee worked with the existing Emergency Procedures Committee (EPC) and EPRI to develop FLEX Support Guidelines (FSGs) criteria
- These procedures work in conjunction with the station EOPs and SAMG
- Each plant used the generic FSGs criteria to create plant specific FLEX procedures for response to BDB events

Emergency Procedures Committe

- Expert participation from all US and several international BWRs
- Improve plant operations and safety by taking into consideration the events at Fukushima
 - EPG/SAGs; FLEX Guidance (FSGs)
- Experience and information sharing and worldwide workshops
 - Revision 3 EPG/SAG workshops to facilitate a uniform understanding of revision and their technical bases among the members
 - Technical Support Guideline Skill Set workshops with case studies
 - Severe Accident Workshops with case studies
- Advises the BWROG and utilities on issues related to emergency response strategies
- Maintains guidelines and associated appendices, issue files, conference reports, analyses, etc.

FLEX Support Guidelines

Current

Current plus FLEX

Operator Training

- Each plant used the generic FSG criteria to create plant specific FLEX procedures for response to BDB events
- Operator training was developed and delivered for the new procedures and overall FLEX concept prior to plant being compliant with FLEX Order
- FLEX and BDB training added to the Operations training program

Back Up Info

- Operator Training
- T-9 months:
- FLEX Introduction (1.5 hours CR for all licensed and non-licensed Operators)
- Provided the basics of Site response strategy as well as definitions, assumptions, etc.
- T-8 months:
- Basic FLEX (1 hr Industry CBT for all licensed and non-licensed Operators)
- Industry developed overview of the FLEX concept and the Lessons Learned from Fukushima
- Advanced FLEX (1 hr Industry CBT for all SROs)
- Industry developed generic discussion of SAFER response and timelines as well as leadership under stressful situations
- T-6 months:
- FLEX Classroom SBO Overview (15 hours classroom for all Operators)
- Site modifications, procedure changes, and new procedures for FLEX.
- In-Plant Walkthroughs (4 hours for Non-Licensed Operators)
- Focused on initial site assessment, deployment paths, staging concerns, equipment maneuvering and operation
- SBO and FLEX Simulator Exercises (4 hours simulator for all Licensed Operators with Non-licensed Operator participation)
- Simulator scenarios designed for SBO and ELAP implementation efforts
- SBO and Flowcharts (Los)
- AOP training on SBO and use of the C.5-4000 SBO Guideline; presented the integration of EOP activities into AOP/FLEX activities

Public and Environment Protection by Release Reduction

David Lochbaum Director, Nuclear Safety Project

September 9, 2015

NA A A A A A

Draft Regulatory Basis for Containment Protection and Release Reduction for Mark I and Mark II Boiling Water Reactors (10 CFR Part 50)

U.S. Nuclear Regulatory Commission

Office of Nuclear Reactor Regulation Office of Nuclear Regulatory Research

May 2015

Sources: Unless noted otherwise, all graphics and text quotes in this presentation are from this document (ML15022A214)

3.5 Regulatory Evaluation Conclusion

Based on the considerations discussed above, the staff is planning to pursue a rulemaking to make the requirements of Order EA-13-109 generically applicable, with an additional requirement for the use of SAWA/SAWM (i.e., alternative 3). This approach would provide the administrative benefits described for alternative 2, while also including the potential synergistic severe accident mitigation opportunities associated with SAWA/SAWM. Unlike alternative 4, a rulemaking to make Order EA-13-109 generically applicable with additional requirements for SAWA/SAWM seems unlikely to have significant additional costs for licensees because, as far as the staff is aware, licensees are currently planning to adopt SAWA/SAWM strategies as part of the implementation of Order EA-13-109. Alternative 4 would provide some additional safety enhancements, but as discussed above provides only minimal safety benefits with regard to the QHOs while having a significant cost of development and implementation.

The Regulatory Analysis of Alternative 4 miscalculated QHO benefits and essentially neglected all non-QHO benefits.

Figure 3-3: Uncertainty Bounds for Individual Latent Cancer Fatality Risk

If core damage occurs, there would be a release due to containment venting and/or containment failure caused by over-pressurization or liner melt-through for all CPRR alternatives. However, the estimated mean individual latent cancer fatality risk (0-10 miles) is more than two orders of magnitude below the relevant NRC Safety Goal Quantitative Health Objective. The risk is low because the core-damage frequency is low and the conditional latent cancer fatality risk is low.

If the individual latent cancer fatality risk had been determined realistically and if it were the dominant factor, UCS would concur with the Regulatory Analysis that Alternative 3 was the way to go.

But it is not and we do not think Alternative 3 is the right thing to do.

ILCFs Not Determined Realistically

 Assuming protective actions are taken in the intermediate and long-term phases, the ILCF risk is maintained at a level well below the QHO, when multiplied by the accident frequency.

Regulatory Analysis unrealistically assumed that protective actions would be nearly 100% reliable in evacuating individuals <u>before</u> they were exposed to significant levels of radioactivity.

Figure 4-24: CRF for Conditional ILCF Risk (0-10 mi) for Evacuation Sensitivity Calculations for BWR Mark | MELCOR Case 49

ILCFs Not Determined Realistically

As Figure 4-24 in the Regulatory Analysis shows, the NRC's base model assumed protective actions (i.e., evacuations) would be ~100% successful.

Figure 4-24 also shows that less than 100% success results in larger individual latent cancer fatality risks during the emergency phase than for ALL phases examined by the base model.

The Regulatory Analysis's conclusion relies on a non-validated assumption of ~100% success.

Figure 3-1: Calculation of High-Level Conservative Estimate

• The evaluation assumed that 60 percent of the time the pre-core-damage water addition (FLEX) will be successful in preventing core damage. This assumption is informed by the results of the risk evaluation, which used scoping estimates of human error probabilities, and the NRC review of licensees' mitigating strategies, including plant walkdowns. Half of the failure probability is due to failure to implement needed operator actions and the remaining half is due to equipment failures.

4.2.4 Summary of Technical Approach

The core-damage frequency (CDF) due to ELAPs is calculated to be 8.9×10^{-6} /ry, which is 2 times lower than the value of 1.6×10^{-5} /ry that was estimated for SECY-12-0157. The CDF was calculated by averaging together the CDF for each BWR plant that has a Mark I containment and a RCIC system. As shown in Figure 4-2, "Contributions to ELAP Frequency and Core-Damage Frequency," the internal event ELAPs and seismic ELAPs caused by earthquakes with peak ground accelerations ranges from 0.3 to 0.7g are notable contributors to the CDF. Figure 4-2 also indicates that the conditional core-damage probability (CCDP) given the occurrence of an ELAP is about 47 percent (i.e., the SBO mitigation strategies reduce the CDF by about 53 percent).

Highly trained nuclear professionals are only assumed to be 53-60% successful in preventing core damage. Untrained amateurs are assumed to be ~100 successful in running from it. The Regulatory Analysis seems to be evacuating the wrong individuals.

Why not evacuate the nuclear professionals and let the amateurs apply their talent, skill, or luck, to preventing reactor core damage?

Non-ILCFs Improperly Dismissed

Table 4-24: Average Mark II Conditional Offsite Consequences for the Different	
MELCOR Cases Associated with the CPRR Alternatives	

	MELCOR Case	MACCS Bin	Individual Latent Cancer Fatality Risk (0-10 mi)	Population Dose (rem) (0-50 mi)	Offsite Cost (\$ 2013) (0-50 mi)	Land Contamination (sq. miles) (0-50 mi)	Population Subject to Long-Term Protective Actions (0-50 mi)	
Status Quo (No Water)	1	8	4.70E-04	6,110,000	85,500,000,000	854	721,000	
	5	6	2.29E-04	2,160,000	24,000,000,000	303	62,400	
	6	7	3.08E-04	4,140,000	80,800,000,000	698	619,000	
	Average:		3.40E-04	4,100,000	63,000,000,000	620	470,000	
	10	5	1.35E-04	689,000	4,250,000,000	130	15,400	
SAWA	11	4	7.90E-05	202,000	844,000,000	44	1,030	
SAWA	24	6	2.29E-04	2,160,000	24,000,000,000	303	62,400	
	Aver	age:	1.50E-04	1,000,000	9,700,000,000	160	26,000	
SAWA + External Filter	10DF10	4	7.90E-05	202,000	844,000,000	44	1,030	
	11DF10	3	6.58E-06	20,700	393,000,000	2	0	
	24DF10	4	7.90E-05	202,000	844,000,000	. 44	1,030	
	Aver	age:	5.50E-05	140,000	690,000,000	30	690	

With an external filter, Alternative 4 achieves only a modest reduction in ILCF but <u>huge</u> reductions in all other concurrent consequences.

		MEL	COR Cases	Associated w	ith the CPRR Al	ternatives	
	MELCOR Case	MACCS Bin	Individual Latent Cancer Fatality Risk (0-10 mi)	Population Dose (rem) (0-50 mi)	Offsite Cost (\$ 2013) (0-50 mi)	Land Contamination (sq. miles) (0-50 mi)	Population Subject to Long-Term Protective Actions (0-50 mi)
Status Quo (No Water)	1	12	2.91E-04	1,720,000	13,000,000,000	549	64,500
	2	15	2.59E-04	1,740,000	15,700,000,000	573	111,000
	4	10	4.06E-04	1,360,000	9,900,000,000	479	51,400
	5	10	4.06E-04	1,360,000	9,900,000,000	479	51,400
	6	12	2.91E-04	1,720,000	13,000,000,000	549	64,500
	Average:		3.30E-04	1,600,000	12,000,000,000	530	69,000
	8	11	1.35E-04	1,110,000	5,960,000,000	286	40,500
	9	7	1.21E-04	524,000	2,740,000,000	190	15,000
	10	7	1.21E-04	524,000	2,740,000,000	190	15,000
	11	7	1.21E-04	524,000	2,740,000,000	190	15,000
	12	11	1.35E-04	1,110,000	5,960,000,000	286	40,500
	13	7	1.21E-04	524,000	2,740,000,000	190	15,000
	14	7	1.21E-04	524,000	2,740,000,000	190	15,000
	15	7	1.21E-04	524,000	2,740,000,000	190	15,000
SAWAV	16	7	1.21E-04	524,000	2,740,000,000	190	15,000
SAWM	21	11	1.35E-04	1,110,000	5,960,000,000	286	40,500
	22	12	2.91E-04	1,720,000	13,000,000,000	549	64,500
	23	11	1.35E-04	1,110,000	5,960,000,000	286	40,500
	25	7	1.21E-04	524,000	2,740,000,000	190	15,000
	26	7	1.21E-04	524,000	2,740,000,000	190	15,000
	28	7	1.21E-04	524,000	2,740,000,000	190	15,000
	29	6	7.95E-05	253,000	1,150,000,000	116	3,440
	30	7	1.21E-04	524,000	2,740,000,000	190	15,000
	Average:		1.30E-04	720,000	4,000,000,000	230	23,000
	8DF10	6	7.95E-05	253,000	1,150,000,000	116	3,440
	9DF10	5	2.03E-05	71,200	220,000,000	41	118
	10DF10	5	2.03E-05	71,200	220,000,000	41	118
	11DF10	5	2.03E-05	71,200	220,000,000	41	118
	12DF10	6	7.95E-05	253,000	1,150,000,000	116	3,440
	13DF10	5	2.03E-05	71,200	220,000,000	41	118
	14DF10	5	2.03E-05	71,200	220,000,000	41	118
SAWA	15DF10	5	2.03E-05	71,200	220,000,000	41	118
SAWM +	16DF10	5	2.03E-05	71,200	220,000,000	41	118
External Filter	21DF10	6	7.95E-05	253,000	1,150,000,000	116	3,440
	22DF10	6	7.95E-05	253,000	1,150,000,000	116	3,440
	23DF10	6	7.95E-05	253,000	1,150,000,000	116	3,440
	25DF10	5	2.03E-05	71,200	220,000,000	41	118
	26DF10	5	2.03E-05	71,200	220,000,000	41	118
	28DF10	5	2.03E-05	71,200	220,000,000	41	118
	29DF10	4	1.72E-05	48,400	141,000,000	23	7
	30DF10	5	2.03E-05	71,200	220,000,000	41	118
	Aver	age:	3.80E-05	120,000	490,000,000	62	1,100

Table 4-23: Average Mark I Conditional Offsite Consequences for the Different MELCOR Cases Associated with the CPRR Alternatives

With an external filter, Alternative 4 achieves only a modest reduction in ILCF but <u>huge</u> reductions in all other concurrent consequences. 13

damages (5 trillion yen). This compensation is mainly given to 86,000 individuals that have been displaced from areas of the government mandated evacuation and affected businesses.⁴³

In comparison to a cost of about \$76 billion for an accident affecting 86,000 individuals, Mark I source term bin 14, represented by case 22dw, subjects 93,700 individuals to long-term protective actions for the area within 50 miles. This case has a total offsite economic cost of about \$12.9 billion associated with the 50-mile area. Comparing the two costs for accidents that displace a roughly similar population size shows that the Government of Japan projects the cost to be roughly 6 times higher than the MACCS calculation in this analysis. The reason for this difference is not well understood yet, as the estimates are based on a number of factors such as the length of time before people return and the level of necessary cleanup efforts. As more

The Regulatory Analysis of post-Fukushima upgrades acknowledges that actual costs from Fukushima are only about 6 times higher than the post-accident costs it calculated for reasons that are "not well understood yet."

When in doubt, throw it out?

Alternative 5: More Reliable MBDBE?

Why not severe-accident-capable reliable reactor pressure vessel relief capability?

Why not FLEX pumps that can inject into the reactor pressure vessel up to the SRV pressure?

Why not severe-accident-capable reliable instrumentation?

Reliable RPV Relief Valves

- The plant operators will reduce RPV pressure using the safety relief valves (SRVs) to a range of 200-400 psig in order to minimize SRV cycling and to minimize heatup of the suppression pool.
- The CDETs credit local manual operation of SRVs if dc power fails.

But the SRVs require more than dc power in order to be manually opened.

Figure 4-20: Mark I RPV Water Level for Case 9-IVR

Reliable RPV Relief Valves

The ADS uses selected SRVs for depressurization of the reactor, as described in Section 6.3. Each of the SRVs used for automatic depressurization is equipped with an air accumulator and check valve arrangement. These accumulators ensure that the valves can be held open following failure of the air supply to the accumulators. They are sized to be capable of opening the valves and holding them open against the maximum drywell pressure of 62 psig. The accumulator capacity is sufficient for each ADS valve to provide two actuations against 70 percent of the maximum drywell design pressure.

5.2-15

HCGS-UFSAR

Revision 0 April 11, 1988

Source: Hope Creek Generating Station Updated Final Safety Analysis Report

SRVs need dc power and pneumatic pressure to open. Why not require severe-accident-capable reliable RPV relief valves?

High Pressure FLEX RPV Injection

 If the RCIC pump fails, core cooling can be provided by aligning the portable FLEX pump for RPV injection and depressurizing the RPV below the portable FLEX pump's shutoff head.

FLEX seems inflexible by needing the RPV pressure to be low enough for it to inject water. Why not procure portable FLEX pumps flexible enough to inject water to the RPV all the way up to the SRV pressure?

Reliable Instrumentation

Operator actions to prevent or mitigate severe accidents are contingent on the availability and functionality of equipment and diagnostic instruments under severe accident conditions. The MELCOR analysis provides insights on the timeline for such actions. The SRM to SECY-12-0157 mentions consideration of equipment availability as one of several performance measures. The impacts of equipment availability can be quantitatively measured by the conditional uncontrolled release index (CURI) which is reviewed in Section 5, "Performance Criteria Information". The operator relies on instruments to know when to add water and/or to take other accident management actions. Therefore, instrument availability and reliability play an important role in this respect. In the PRA done as part of this evaluation, FLEX was assumed to be 60 percent successful. In the accident progression analysis using MELCOR, instruments measuring the RPV and containment water levels and pressures were assumed to be available. Note that 10 CFR 50.34(f)(2)(xix) requires licensees to provide instrumentation adequate for monitoring plant conditions following an accident that includes core damage.

 Information on some parameters may not be available to the operators or may be ambiguous for decisionmaking.

Successful mitigation depends on reliable diagnoses. Why not identify key parameters that must be monitored for the EOPs, EPGs, and SAMGs and require severe-accident-capable reliable instrumentation? GE Mark I and Mark II Containment Protection & Release Reduction:

A Fukushima Lesson Unlearned In U.S.

NRC ACRS Full Committee September 9, 2015

> Paul Gunter Beyond Nuclear

Some context to Commission "About-Face"

August 17, 2015

AREVA delivers Filtered Containment Venting System to Hamaoka for its 14th installation at Japanese nuclear power stations

August 18, 2015

As per NRC plan, ACRS subcommittee meets and agrees to draft letter to Commission on Containment Protection and Release Reduction (CPRR) proposed rulemaking

August 19, 2015

•Commission Notation Vote (3-1) adopts "Status Quo"

Abandons CPRR proposed rulemaking activity

•Abruptly closes out independent expert analyses and public comments on severe accident management for controversial U.S. Mark I and Mark II containment systems including external filtration in vent lines

添付資料

フィルタ付ベント設備の概要

filter vent equipment structure フィルタ装置の構造

DISCONNECT OR DUAL STRATEGY IN BOILING WATER REACTOR OWNERS GROUP RISK-BENEFIT COMMUNICATIONS?

PUBLIC PROTECTION REQUIRES FILTERS

Mary Lampert, Pilgrim Watch ACRS Presentation September 9, 2015

Good Afternoon

Staff Analysis Does Not Recommend Filters What's Wrong?

An "Inconvenient Truth" A \$11- \$64 million filter saves \$ 3.51 billion in Economic Consequences

		MEL	LUR Cases	Associated w	ith the CPRR Al	ternatives	
	MELCOR Case	MACCS Bin	Individual Latent Cancer Fatality Risk	Population Dose (rem) (0-50 mi)	Offsite Cost (\$ 2013) (0-50 mi)	Land Contamination (sq. miles)	Population Subject to Long-Term Protective Action
			(0-10 mi)	(0-50 m)	(0-50 m)	(0-50 mi)	(0-50 mi)
	1	12	2.91E-04	1,720,000	13,000,000,000	549	64,500
Status Quo (No Water)	2	15	2.59E-04	1,740,000	15,700,000,000	573	111,000
	4	10	4.06E-04	1,360,000	9,900,000,000	479	51,400
	5	10	4.06E-04	1,360,000	9,900,000,000	479	51,400
	6	12	2.91E-04	1,720,000	13,000,000,000	549	64,500
	Aver	age:	3.30E-04	1,600,000	12,000,000,000	530	69,000
SAWA/ SAWM	8	11	1.35E-04	1,110,000	5,960,000,000	286	40,500
	9	7	1.21E-04	524,000	2,740,000,000	190	15,000
	10	7	1.21E-04	524,000	2,740,000,000	190	15,000
	11	7	1.21E-04	524,000	2,740,000,000	190	15,000
	12	11	1.35E-04	1,110,000	5,960,000,000	286	40,500
	13	7	1.21E-04	524,000	2,740,000,000	190	15,000
	14	7	1.21E-04	524,000	2,740,000,000	190	15,000
	15	7	1.21E-04	524,000	2,740,000,000	190	15,000
	16	7	1.21E-04	524,000	2,740,000,000	190	15,000
	21	11	1.35E-04	1,110,000	5,960,000,000	286	40,500
	22	12	2.91E-04	1,720,000	13,000,000,000	549	64,500
	23	11	1.35E-04	1,110,000	5,960,000,000	286	40,500
	25	7	1.21E-04	524.000	2.740.000.000	190	15.000
	26	7	1.21E-04	524,000	2,740,000,000	190	15.000
	28	7	1.21E-04	524,000	2,740,000,000	190	15.000
	29	6	7.95E-05	253,000	1,150,000,000	116	3,440
	30	7	1.21E-04	524,000	2,740,000,000	190	15.000
	Average:		1.30E-04	720,000	4.000.000.000	230	23,000
SAWA/ SAWM+ External Filter	8DF10	6	7.95E-05	253,000	1,150,000,000	116	3,440
	9DF10	5	2.03E-05	71,200	220,000,000	41	118
	10DF10	5	2.03E-05	71,200	220.000.000	41	118
	11DF10	5	2.03E-05	71,200	220,000,000	41	118
	12DF10	6	7.95E-05	253,000	1,150,000,000	116	3,440
	13DF10	5	2.03E-05	71,200	220,000,000	41	118
	14DF10	5	2.03E-05	71,200	220,000,000	41	118
	15DF10	5	2.03E-05	71,200	220,000,000	41	118
	16DF10	5	2.03E-05	71,200	220,000,000	41	118
	21DF10	6	7.95E-05	253,000	1,150,000,000	116	3,440
	22DF10	6	7.95E-05	253.000	1,150,000,000	116	3.440
	23DF10	6	7.95E-05	253,000	1,150,000,000	116	3,440
	25DF10	5	2.03E-05	71,200	220,000,000	41	118
	26DF10	5	2.03E-05	71,200	220,000,000	41	118
	28DF10	5	2.03E-05	71,200	220,000,000	41	118
	29DF10	4	1.72E-05	48,400	141,000,000	23	1
	30DF10	5	2.03E-05	71,200	220,000,000	41	118
	Average:		3.80E-05	120,000	490,000,000	62	1,10

An Honest Analysis Health Costs Justify a Filter

NRC's "Solution" to that "Inconvenient Truth"

- Assume evacuations take < 6 hours
- Assume SAWA/SAWM will delay releases to allow timely evacuations
 - Staff ignores its admission that SAWA does not work 40% of the time.
- Improperly limiting health impacts to cancer fatalities
 & to a too small geographic area

Evacuations take more than 6 hours Especially in nuclear disasters

NUREG/CR-7002 Guidance & ETE's Underestimate Evacuation Times

Incorrect Assumptions - How many will evacuate

Examples:

- NRC telephone surveys do not explain survey is for nuclear disaster and elicit false information Cape Survey (70%) v. Sandia (20%)
- Staged evacuation not supported Cape Survey
- Shadow evacuation > 20% and extends to at least 25 miles, not 5 miles – Cape Survey
- Siren messages not heard by 70% Town of Duxbury Survey

Cape Cod Telephone Survey Told Respondents to Assume a Nuclear Accident

- 70% (not 20%) would evacuate
- 50% would evacuate even if told they were not in the EPZ
- The Cape Cod respondents lived 10-25 miles from Pilgrim; their "shadow evacuation" was not limited to those within 15 miles as assumed by NRC

Bottom Line:

- The number within the EPZ that will evacuate is three (3) times the NRC assumption
- 50% "Shadow evacuation" outside the EPZ is 2 ½ times NRC assumption
- 250% to 300% increase in number of evacuees →huge increase in traffic density and decrease in speed → dramatic increase in ETE

NRC's Draft Figure 4-24 Clear Health Benefit From Adding Filters

Staff Assumption of Health Costs Another Ludicrous Assumption

Staff assumed that accidents will be slow breaking allowing timely evacuations

- This depends on SAWA working. Staff assumed this would be the case only <u>60%</u> of the time.
- Staff ignored accidents that cannot be assumed to be slow breaking - the <u>40%</u> of the time that Staff said SAWA will not work.
- Any "solution" that purports to insure public health and safety even 60% of the time is wrong.

SAWA/SAWM - No Basis to Assume Works 6 out of 10 times – Pilgrim's Plan

Health Impact Underestimated

Staff limited Radiation Health Impacts to Cancer Fatalities

- Ignored cancer incidence, birth defects, reproductive disorders, other health impacts discussed in BEIR VII
- Ignored likely geographic impact

Staff Draft based Faulty Cost-benefit Analysis & Use Outdated Computer Tools - MELCOR/MACCS/SOARCA

© Scott Adams, Inc./Dist. by UFS, Inc.

What's Wrong with Staff PRA Analysis

- 1. PRA multiplies "probability" and "consequences."
- 2. Staff Underestimated Probability
 - Assumed SAWA works
 - MACCS assumes (1) core damage event every 31,000 reactor years.
 - History shows (5) actual core damages in 36 years <u>1 every 7 yrs.</u>
- 3. Staff Underestimated Consequences
 - Considered only gamma (Iodine) and a small faction of Cs-137
 - Realistic ETE's result in much greater consequences
 - NRC says a life is worth \$3 million; other agencies say \$5-9 million

What's Wrong with Staff PRA Analysis (cont'd)

4. Unrealistically limited radioactive release concentration and geographic area impacted by using simplistic straight-line Gaussian plume model

- 5. Underestimated economic costs although Staff analysis justified filters.
 - Underestimated size of contaminated area and extent of contamination
 - Underestimated volume of contaminated waste
 - Ignored forests, wetlands, and bodies of water that cannot be decontaminated
 - Ignored that technologies needed for cleanup have not been developed
 - Ignored that there is no cleanup standard Reichmuth & Luna
 - Ignored that there are no locations to bring large volumes of waste

OIG Audit of NRC's Regulatory Analysis Process (OIG-15-A-15 June 24, 2015)

OIG found that NRC Staff has limited cost-estimating experience making it "vulnerable to errors and flawed decision-making."

- This analysis is a good example
- The Staff's flawed cost-benefit analysis got the right answer for industry; but the wrong answer for public health and safety