INSERVICE INSPECTION REPORT

UNIT 3 OCONEE 1993 REFUELING OUTAGE 14

Location: Hwy 130/183, Seneca, South Carolina 29679

NRC Docket No. 50-287

Commercial Service Date: December 16, 1974

Owner: Duke Power Company 526 South Church St. Charlotte, N. C. 28201-1006

Revision 1

		4			1 1 1
Prepared By:		& Kom		_ Date	5/16/94
Reviewed By:	& M	Bouglinan		Date _	5/16/94
Approved By:	Za C	Sarlino	·	Date	5/16/94
Copy No.	2	Assigned To	NRC Docu	ument Cont	<u>rol </u>
Controlled	X	Uncontrolled		y gine kalaya sakkar di Sant.	<u> </u>

Revision 1 FORM NIS-1 OWNERS' DATA REPORT FOR INSERVICE INSPECTION S

As required by the Provisions of the ASME Code Rules

. Plant Unit:		(Name and Addre		od) N/A
		•	orization (if require	:
		ecember 16, 1974 6	. National Board N	number for Unit
. Componen	ts Inspected:	•		•
Component or Appurentance	Manufacturer or Installer	Manufacturer or Installer Serial No.	State or Providence No.	National Board No.
				·
				2
4	Caa Caatian 1 Da	1 4 5	A 1 1 T	
	<u>See Section III.</u> a	r <u>agraph 1.5 in f</u> r	ne Attached Rep	o <u>rt </u>
	<u></u>	ragraph 1.5 in fr	e Attached Rep	ort
	<u></u>	ragraph 1.5 in fr	ne Attached Rep	ort
		ragraph 1.5 in fr	ne Attached Rep	ort
		ragraph 1.5 in fr	e Attached Rep	ort
	See Section 11 a	ragraph 1.5 in fr	e Attached Rep	Ort
	See Section 11 a	ragraph 1.5 in fr	e Attached Rep	ort
	See Section 11 a	ragraph 1.5 in fr	ne Attached Rep	Ort
	See Section 11 a	ragraph 1.5 in fr	e Attached Rep	Ort
	See Section 11 a	ragraph 1.5 in fr	ne Attached Rep	
	See Section 11 a	ragraph 1.5 in fr	ne Attached Rep	

Note: Supplemental sheets in form of lists, sketches, or drawings may be used provided (1) size is $8^{1}/2$ in. x 11 in., (2) information in items 1 through 6 on this data report is included on each sheet, and (3) each sheet is numbered and the number of sheets is recorded at the top of this form.

FORM NIS-1 (back)

- 8. Examination Dates 9/26/92 to 2/24/94 9. Inspection Interval from 12/16/84 to 12/16/94
- 10. Abstract of Examinations. Include a list of examinations and a statement concerning status of work required for current interval. See attached report.
- 11. Abstract of Conditions Noted. See attached report.
- 12. Abstract of Corrective Measures Recommended and Taken. See attached report.

 We certify that the statements made in this report are correct and the examinations and correct

We certify that the statements made in this report are correct and the examinations and corrective measures taken conform to the rules of the ASME Code, Section XI..

Date 5/16 1994 Signed	Duke Power Co.	By (Rarlywr)	
	Owner		

Certificate of Authorization No. (if applicable)

N/A Expiration Date

<u>N/A</u>

CERTIFICATE OF INSERVICE INSPECTION

By signing this certificate neither the Inspector nor his employer makes any warranty, expressed or implied, concerning the examinations and corrective measures described in this Owners' Data Report. Furthermore, neither the Inspector nor his employer shall be liable in any manner for any personal injury or property damage or loss of any kind arising from or connected with this inspection.

Date <u>5-16-94</u> 19 <u>94</u>

Inspector's Signature Commissions NC914

National Board, State, Province and No.

*The Hartford Steam Boiler Inspection & Insurance Co. 200 Ashford Center North Suite 300

Atlanta Ga., 30338

CONTROLLED DISTRIBUTION

Copy No.	,	Assigned To
Original		Duke Power Company Quality Assurance Technical Services
1		Oconee Component Engineering
2		NRC Document Control
	UNCONTROLLED DIS	TRIBUTION
3		Hartford Steam Boiler Inspection and Insurance Company (AIA) ^C / _O C. A. Ireland
4		L. A. Wiens Office of NRR USNRC Washington, DC 20555

TABLE OF CONTENTS

Section .	<u>Title</u>	<u>Revision</u>
1.	General Information	. 0
2.	Summary of Inservice Inspections for Outage 14	0
3.	Second Ten Year Inspection Status	•
4.	Final Inservice Inspection Plan for Outage 14	• 0
5.	Results of Inspections Performed During Outage 14	0
6.	Reportable Indications	1
7.	Personnel, Equipment, and Material Certifications	0
8.	Corrective Action	0
9.	Reference Documents	1
10.	Class 1 and 2 Repairs and Replacements	0

1.0 General Information

This report describes the Inservice Inspection of Duke Power Company's Oconee Nuclear Station, Unit 3, during the 1993 Refueling Outage (also referred to as Outage 14). Outage 14 is in the Third Inspection Period of the Second Ten Year Interval.

Included in this report are the final Inservice Inspection Plan, the inspection results for each item, a summary for each category of examination and corrective action taken when unacceptable conditions were found. In addition, there is a section included for repairs and replacements required since September 26, 1992.

1.1 <u>Identification Numbers</u>

<u>Item</u>	Manufacturer or Installer	Manufacturer or Installer <u>Serial No.</u>	State or <u>Province No.</u>	National Board <u>No.</u>
Reactor Vessel Steam Generator A Steam Generator B Pressurizer	Babcock & Wilcox Babcock & Wilcox Babcock & Wilcox Babcock & Wilcox	620-0009-51-52 620-0009-55-1 620-0009-55 620-0009-59	N/A N/A N/A N/A	N-125 N-127 N-128 N-126

1.2 Authorized Nuclear Inservice Inspector(s)

Name:

M. B. Chapman

Employer:

The Hartford Steam Boiler Inspection & Insurance Company

Business Address:

The Hartford Steam Boiler Inspection & Insurance Co.

200 Ashford Center North

Suite 300

Atlanta, GA 30338

2.0 Summary of Inservice Inspection for Outage 14

The information shown below provides an abstract of ASME Section XI Class 1, Class 2, and Augmented Items scheduled and examined during Outage 14 at Oconee Nuclear Station Unit 3.

2.1 Class 1 Inspection

Examination Category B-A Pressure Retaining Welds in Reactor Vessel

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
B01.010	Shell Welds		
B01.011	Circumferential	3	3
B01.012	Longitudinal	0	. 0
B01.020	Head Welds		
B01.021	Circumferential	1	1
B01.022	Meridional Welds	0	0
B01.030	Shell to Flange Welds	1	1
B01.040	Head to Flange Welds	. 0	0
B01.050	Repair Welds		
B01.051	Beltline Region	N/A	N/A
TOTALS		5	5

Examination Category B-B Pressure Retaining Welds in Vessels Other than Reactor Vessels

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
	Pressurizer		
B02.010	Shell to Head Welds		
B02.011	Circumferential	0	0
B02.012	Longitudinal	0	0
B02.020	Head Welds		
B02.021	Circumferential	NA	NA
B02.022	Meridional Welds	NA	NA
	Steam Generator		
B02.030	Head Welds		
B02.031	Circumferential	N/A	N/A
B02.032	Meridional	N/A	N/A
B02.040	Tubesheet to Head Weld	0	0
	Heat Exchangers (Primary Side)		
B02.050	Head Welds		
B02.051	Circumferential	0	0
B02.052	Meridional	NA	NA
B02.060	Tubesheet to Head Welds	1	1
TOTALS	·	1	1

Examination Category B-D

Full Penetration Welds of Nozzles in Vessels Inspection Program B

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
	Reactor Vessel		
B03.090	Nozzle to Vessel Welds	8	8
B03.100	Nozzle Inside Radius Section	8	8
	Pressurizer		
B03.110	Nozzle to Vessel Welds	3	3
B03.120	Nozzle Inside Radius Section	3	3
	Steam Generators (Primary Side)		
B03.130	Nozzle to Vessel Welds	0	0
B03.140	Nozzle Inside Radius Section	3	3
ı	Heat Exchangers (Primary Side)		
B03.150	Nozzle to Vessel Welds	2	2
B03.160	Nozzle Inside Radius Section	0	0
TOTALS		27	27

Examination Category B-E

Pressure Retaining Partial Penetration Welds in Vessels

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
B04.010	Partial Penetration Welds		
B04.011	Vessel Nozzles	NA	NA
B04.012	Control Rod Drive Nozzles	0	0
B04.013	Instrumentation Nozzles	0	0
	Pressurizer		
B04.020	Heater Penetration Welds	NA	NA
TOTALS		0	0

Examination Category B-F Pressure Retaining Dissimilar Metal Welds

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
	Reactor Vessel		
B05.010	Nominal Pipe Size ≥4"	2	2
	Nozzle to Safe End Butt Welds		2
B05.011	Nominal Pipe Size < 4" Nozzle to Safe End Butt Weld	NA	NA
B05.012	Nozzle to Safe End Socket Welds	NA	NA .
	Pressurizer		
B05.020	Nominal Pipe Size ≥4" Nozzle to Safe End Butt Welds	0	0
B05.021	Nominal Pipe Size < 4" Nozzle to Safe End Butt Weld	NA	NA
B05.022	Nozzle to Safe End Socket Welds	NA	NA
	Steam Generators		
B05.030	Nominal Pipe Size ≥4" Nozzle to Safe End Butt Welds	NA	NA
B05.031	Nominal Pipe Size < 4" Nozzle to Safe End Butt Weld	NA	NA
B05.032	Nozzle to Safe End Socket Welds	NA	NA
	Heat Exchangers		
B05.040	Nominal Pipe Size ≥4" Nozzle to Safe End Butt Welds	NA	NA
B05.041	Nominal Pipe Size < 4" Nozzle to Safe End Butt Weld	NA	NA
B05.042	Nozzle to Safe End Socket Welds	NA	NA

Examination Category B-F (Continued)

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
	Piping		
B05.050	Nominal Pipe Size ≥4" Dissimilar Metal Butt Welds	0	0
B05.051	Nominal Pipe Size <4" Dissimilar Metal Butt Welds	0	0
B05.052	Dissimilar Metal Socket Welds	NA	NA
TOTALS		2	2

Examination Category B-G-1 Pressure Retaining Bolting, Greater Than 2" in Diameter

Item Number		Total Scheduled During Outage	Total Examined During Outage
		During Outage	Daring Catage
	Reactor Vessel		
B06.010	Closure Head Nuts	0	0
B06.020	Closure Studs (in place)	NA	NA
B06.030	Closure Studs, (when removed)	0	0
B06.040	Threads in Flange	0 .	0
B06.050	Closure Washers, Bushings	0	0
	Pressurizer		
B06.060	Bolts and Studs	0	0
B06.070	Flange Surface (when connection disassembled)	1	0 (connection not disassembled)
B06.080	Nuts, Bushings and Washers	0	0
	Steam Generators		
B06.090	Bolts and Studs	NA	i NA
B06.100	Flange Surface (when connection disassembled)	NA	NA

Examination Category B-G-1 (Continued)

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
B06.110	Nuts, Bushings and Washers	NA	NA
	Heat Exchangers		
B06.120	Bolts and Studs	NA	NA
B06.130	Flange Surface (when connection disassembled)	NA	NA
B06.140	Nuts, Bushings and Washers	NA	NA
	Piping		
B06.150	Bolts and Studs	: NA	NA
B06.160	Flange Surface (when connection disassembled)	NA	NA
B06.170	Nuts, Bushings and Washers	NA ·	NA
	Pumps		
B06.180	Bolts and Studs	2	2
B06.190	Flange Surface (when connection disassembled)	1	(connection not disassembled)
B06.200	Nuts, Bushings and Washers	2	2
	Valves		
B06.210	Bolts and Studs	NA	NA
B06.220	Flange Surface (when connection disassembled)	NA	NA ·
B06.230	Nuts , Bushings and Washers	NA	NA
TOTALS		6	4

Examination Category B-G-2 Pressure Retaining Bolting, 2" and Less in Diameter

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
	Reactor Vessel		
B07.010	Bolts, Studs, and Nuts	NA	NA
•	Pressurizer		
B07.020	Bolts, Studs, and Nuts	0	0
	Steam Generators		
B07.030	Bolts, Studs, and Nuts	0	0
	Heat Exchangers		
B07.040	Bolts, Studs, and Nuts	NA NA	NA
	Piping		
B07.050	Bolts, Studs, and Nuts	NA	NA
	Pumps		
B07.060	Bolts, Studs, and Nuts	NA	NA
	Valves		
B07.070	Bolts, Studs, and Nuts	1	1
	CRD Housings		
B07.080	Bolts, Studs, and Nuts	2	2
TOTALS		3	3

Examination Category B-H Integral Attachments for Vessels

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
	Reactor Vessel		
B08.010	Integrally Welded Attachments	0	0
	Pressurizer		
B08.020	Integrally Welded Attachments	0	0
	Steam Generators		
B08.030	Integrally Welded Attachments	0	0
•	Heat Exchangers		
B08.040	Integrally Welded Attachments	NA	NA
TOTALS		. 0	0

Examination Category B-J Pressure Retaining Welds in Piping

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
B09.010	Nominal Pipe Size ≥4"	38-	
B09.011	Circumferential Welds	13	13
B09.012	Longitudinal Welds*	0	0
B09.020	Nominal Pipe Size <4"		
B09.021	Circumferential Welds	1	1
B09.022	Longitudinal Welds	NA	NA
B09.030	Branch Pipe Connection Welds		

^{*} Longitudinal welds that intersect circumferential welds are examined as required by Table IWB 2500-1, Category B-J. However, for reporting purposes, the totals do not reflect the number of longitudinal welds examined during this outage.

Examination Category B-J (Continued)

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
B09.031	Nominal Pipe Size ≥4"	0	0
B09.032	Nominal Pipe Size <4"	0	0
B09.040	Socket Welds	2	2
TOTALS		16	16

Examination Category B-K-1 Integral Attachments for Piping, Pumps and Valves

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
	Piping		
B10.010	Integrally Welded Attachments	0	0
,	Pumps		
B10.020	Integrally Welded Attachments	0	0
	Valves		
B10.030	Integrally Welded Attachments	NA	NA
TOTALS		0	0

Examination Category B-L-1, B-M-1

Pressure Retaining Welds in Pump Casings and Valve Bodies **Pump Casings and Valve Bodies**

$\mathbf{D} \mathbf{I} \mathbf{A}$	$\mathbf{D} \mathbf{A} \mathbf{A}$
B-L-2.	B-M-2
<i>D</i>	D 141 -

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
	Pumps		
B12.010	Pump Casing Welds	· 0	0
B12.020	Pump Casing	0	0
B12.030	Valves, Nominal Pipe Size <4" Valve Body Welds	NA	NA
B12.031	Valves, Nominal Pipe Size ≥4" Valve Body Welds	NA	NA
B12.040	Valve Body, Exceeding 4" Nominal Pipe Size	0	0
TOTALS		0	0

Examination Category B-N-1

Interior of Reactor Vessel

B-N-2

Integrally Welded Core Support Structures and Interior Attachments to Reactor Vessels

Removable Core Support Structures B-N-3

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
	Reactor Vessel		
B13.010	Vessel Interior	1	. 1
	Reactor Vessel (BWR)		
B13.020	Interior Attachments	NA	NA
B13.021	Core Support Structure	NA	NA-
	Reactor Vessel (PWR)		
B13.030	Core Support Structure	1	1
TOTALS		2	2

Examination Category B-O Pressure Retaining Welds in Control Rod Housings

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
	Reactor Vessel		
B14.010	Welds in CRD Housing	0	0
TOTALS		0	0

Examination Category B-P. All Pressure Retaining Components

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
	Reactor Vessel		
B15.010	Pressure Retaining Boundary	0	0
B15.011	Pressure Retaining Boundary	1	1
	Pressurizer		
B15.020	Pressure Retaining Boundary	0	0
B15.021	Pressure Retaining Boundary	1	1
	Steam Generators		
B15.030	Pressure Retaining Boundary	0	0
B15.031	Pressure Retaining Boundary	2	2
	Heat Exchangers		
B15.040	Pressure Retaining Boundary	0	0
B15.041	Pressure Retaining Boundary	2	2
	Piping		
B15.050	Pressure Retaining Boundary	1	1

Examination Category B-P

(Continued)

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
B15.051	Pressure Retaining Boundary	10	10
	Pumps	,	
B15.060	Pressure Retaining Boundary	0	0
B15.061	Pressure Retaining Boundary	4	4
	Valves		
B15.070	Pressure Retaining Boundary	Covered in B15.050	Covered in B15.050
B15.071	Pressure Retaining Boundary	Covered in B15.051	Covered in B15.051
TOTALS		21	21

Examination Category B-Q

Steam Generator Tubing

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
B16.010	Steam Generator Tubing in Straight Tube Design	**	**
B16.020	Steam Generator Tubing in U-Tube Design	NA	NA
TOTALS		NA	NA

^{**} Steam Generator Tubing is examined and documented by the Diversified Services Group of the Generation Services Department as required by the Station Technical Specifications and is not included in this report.

F1.1 Component Supports

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
F1.01	Reference Section 4.0 of this	2	2
TOTALS	report	2	2

2.2 Class 2 Inspections

Examination Category C-A Pressure Retaining Welds in Pressure Vessel

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
C01.010	Shell Circumferential Weld	0	0
C01.020	Head Circumferential Welds	2	2
C01.030	Tubesheet to Shell Weld	1	1
TOTALS		3	3

Examination Category C-B Pressure Retaining Nozzle Welds in Vessels

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
C02.010	Nozzles in Vessels ≤ ¹ / ₂ " Nominal Thickness	0	0.
C02.020	Nozzles in Vessels > 1/2" Nominal Thickness	NA	NA

Examination Category C-B (Continued)

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
C02.021	Nozzle to Shell (or Head Welds)	1	1
C02.022	Nozzle Inside Radius Section	1	. 1
TOTALS		2	2

Examination Category C-C Pressure Retaining Nozzle Welds in Vessels

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
	Pressure Vessels		
C03.010	Integrally Welded Attachments	2	2
	Piping		
C03.040	Integrally Welded Attachments	0	0
	Pumps		
C03.070	Integrally Welded Attachments	NA	NA
	Valves		
C03.100	Integrally Welded Attachments	NA	NA
TOTALS		2	2

Examination Category C-D Pressure Retaining Bolting Greater Than 2" in Diameter

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
	Pressure Vessels		
C04.010	Bolts and Studs	NA	NA
	Piping		
C04.020	Bolts and Studs	NA	NA
,	Pumps		
C04.030	Bolts and Studs	NA	NA
	Valves		
C04.040	Bolts and Studs	NA	NA
TOTALS		NA	NA

Examination Category C-F Pressure Retaining Welds in Piping

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
C05.010	Piping Welds ≤1/2" Nominal Wall Thickness		
C05.011	Circumferential Weld	13	13
C05.012	Longitudinal Welds ***	6	6
C05.020	Piping Welds > ¹ /2" Nominal Wall Thickness		
C05.021	Circumferential Welds	1	. 1
C05.022	Longitudinal Welds ***	0	0 -
C05.030	Pipe Branch Connections		
C05.031	Circumferential Welds	0	0
C05.032	Longitudinal Welds***	0	0
TOTALS		20	20

^{***} Longitudinal welds that intersect circumferential welds were examined as required by Table IWC-2500-1, Category C-F. However, for reporting purposes, the totals do not reflect the number of longitudinal welds examined during this outage.

Examination Category C-G Pressure Retaining Welds in Pumps and Valves

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
	Pumps		
C06.010	Pump Casing Welds	NA	NA
	Valves		
C06.020	Valve Body Welds	NA	NA
TOTALS		NA	NA

Examination Category C-H All Pressure Retaining Components

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
	Pressure Vessel		
C07.010	Pressure Retaining Boundary	0	0
C07.011	Pressure Retaining Boundary	4	4
	Piping		
C07.020	Pressure Retaining Boundary	0	0
C07.021	Pressure Retaining Boundary	22	22
	Pumps		
C07.030	Pressure Retaining Boundary	.0	0
C07.031	Pressure Retaining Boundary	0	0
	Valves		
C07.040	Pressure Retaining Boundary	Covered in C07.020	Covered in C07.020
C07.041	Pressure Retaining Boundary	Covered in C07.021	Covered in C07.021
TOTALS		26	26

F1.2 Component Supports

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
F1.02	Reference Section 4.0 of this report	0	0
TOTALS		0	0

2.3 Augmented Inspections

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
E01.001	Reactor Coolant Pump Flywheel	0	. 0
E02.001	Steam Generator Tube Examinations	Ref. footnote for Item No. B16.010	Ref. footnote for Item No. B16.010
E03.001	Alternate Examinations	2	2
E04.001	HPI Safe End Examinations	0	0
E05.001	Augmented Pressurizer Surge Line Examinations	2	2
E06.001	Augmented Weld Inspection	0	0
E07.001	Thermal Stress Piping (NRC Bulletin 88-08)		0
E08.001	Pressurizer Spray Piping Thermal Transient Inspection (Ref. PIR 1-O89-0003)	0	0
E09.001	Auxiliary Feedwater Header Water Hammer Examinations (PSC21-82)	14	14

Augmented Inspections

(Continued)

Item Number	Description	Total Scheduled During Outage	Total Examined During Outage
E10.001	Pressurizer Sensing/ Sampling Nozzle Safe Ends	0	0
TOTALS		18	18

A detailed description of each examination listed in Sections 2.1 through 2.3 are located in Section 3 of this report. Results of each examination are located in Section 4 of this report.

3.0 Second Ten Year Inspection Status

The completion status of inspections required by the 1980 ASME Section XI Code, including Addenda through Winter 1980, is summarized in this section. The requirements are listed by the ASME Section XI Examination Category as defined in Table IWB-2500-1 for Class 1 Inspections, and in Table IWC-2500-1 for Class 2 Inspections. Augmented inspections are also included.

Class 1 Inspections

Examination Category	Description	Inspections Required	Inspections Completed	Percentage Completed	† Deferral Allowed
B-A	Pressure Retaining Welds in Reactor Vessel	8 Welds	8 Welds	100%	Yes
B-B	Pressure Retaining Welds in Vessels Other than Reactor Vessel	14 Welds	14 Welds	100%	No
B-D	Full Penetration Welds of Nozzles in Vessels	62 Inspections	62 Inspections	100%	Partial
В-Е	Pressure Retaining Partial Penetration Welds in Vessels	31 Welds	31 Welds	100%	No
B-F	Pressure Retaining Dissimilar Metal Welds	38 Welds	38 Welds	100%	No
B-G-1	Pressure Retaining Bolting Greater than 2 Inch Diameter	551 Items	551 Items	100%	Yes
B-G-2	Pressure Retaining Bolting 2 Inches and Less in Diameter	46 Connections	46 Connections	100%	No
в-н	Integral Attachment for Vessels	12 Attachments	12 Attachments	100%	.No
В-Ј	Pressure Retaining Welds in Piping	105 Welds	105 Welds	100%	No

 $^{^\}dagger$ Deferral of inspection to the end of the interval as allowed by ASME Section XI Tables IWB and IWC 2500-1.

Class 1 Inspections (Continued)

Examination Category	<u>Description</u>	Inspections <u>Required</u>	Inspections Completed	Percentage <u>Completed</u>	† Deferral Allowed
B-K-1	Integral Attachments for Piping, Pumps and Valves	1 Attachments	1 Attachments	100%	No
B-L-1	Pressure Retaining Welds in Pump Casings	1 Weld	1 Weld	100%	Yes
B-L-2	Pump Casings	1 Casing	1 Casing	100%	Yes
B-M-1	Pressure Retaining Welds in Valve Bodies	None	N/A	N/A	N/A
B-M-2	Valve Body > 4 in. Nominal Pipe Size	2 Valves	2 Valves	100%	Yes
B-N-1	Interior of Reactor Vessel	3 Items	3 Items	100%	No
B-N-2	Integrally Welded Core Support Structures and Interior Attachments to Reactor Vessels	None	N/A	N/A	N/A
B-N-3	Removable Core Support Structures	1 Item	1 Item	100%	Yes
B-0	Pressure Retaining Welds in Control Rod Housings	3 Housings	3 Housings	100%	Yes
В-Р	All Pressure Retaining Components	•			No
-	System Leakage Test	121 Components	121 Components	100%	
•	System Hydrostatic Test	20 Components	19 Components	95%	
B-Q	Steam Generator Tubing	As stated in Station Technical Specifications	100% Station Technical Specifications Met		N/A
F1.01	Class 1 Component Supports	85 Supports	85 Supports	100%	No

[†] Deferral of inspection to the end of the interval as allowed by ASME Section XI Tables IWB and IWC 2500-1.

Class 2 Inspections

Examination <u>Category</u>	Description	Inspections <u>Required</u>	Inspections <u>Completed</u>	Percentage <u>Completed</u>	[†] Deferral <u>Allowed</u>
C-A	Pressure Retaining Welds in Pressure Vessels	10 Welds	10 Welds	100%	No
C-B	Pressure Retaining Nozzle Welds in Vessels	5 Welds	5 Welds	100%	No
C-C	Integral Attachments for Vessels, Piping, Pumps and Valves	58 Attachments	58 Attachments	100%	No
C-D	Pressure Retaining Bolting Exceeding 2 Inches in Diameter	1 Item	1 Item	100%	No
C-F	Pressure Retaining Welds in Piping	227 Welds	227 Welds	100%	No
C-G	Pressure Retaining Welds in Pumps and Valves	None	N/A	N/A	N/A
С-Н	All Pressure Retaining Components				No
	System or Component Functional Test	36 Components	35 Components	97.22%	
	System Hydrostatic Test	55 Components	51 Components	92.72%	
F1.02	Class 2 Component Supports	347 Supports	347 Supports	100%	No

[†] Deferral of inspection to the end of the interval as allowed by ASME Section XI Tables IWB and IWC 2500-1.

Augmented Inspections

Description

Percentage Complete

Reactor Coolant Pump Flywheels

100% of Technical Specifications met

High Pressure Injection and Make-Up Nozzle

100%

Safe-Ends

100 /

Thermal Stress Piping

100% of requirements for Outages 11 and 12

Pressurizer Surge Line Drain Line

100%

Alternate Inspections

Description

Percentage Complete

Reactor Coolant Pump 3A2 and 3B1 Flange Joint, Studs, Adjacent Areas

100% of requirements for Outages 11 and 12

4.0 Final Inservice Inspection Plan For Outage 14

The final ISI Plan shown in this section lists all ASME Section XI Class 1 and ASME Section XI Class 2, and Augmented examinations credited for Outage 14 at Oconee Nuclear Station Unit 3.

The information shown below is a field description for the reporting format included in this section of the report:

A. Items examined by NDE methods

Item Number = ASME Section XI Tables IWB-2500-1 (Class 1),

IWC-2500-1 (Class 2), IWF-2500-1 (Class 1 and Class 2), Augmented Requirements

and Class 2 /, Magmemed Requirements

ID Number = Unique Identification Number

Drawing Number = Location and/or Detail Drawing

Locs. = Location

Insp. Req. = Examination Technique - Magnetic Particle,

Dye Penetrant, etc.

Proc. Numbers = Examination Procedures

Material Type/Grade = General Description of Material

Diam./Thick = Diameter/Thickness

Calib. Block = Calibration Block Number

Comments = General and/or Detail Description

PROGRAM: NISTRONB-QAISIO2
FILE: C007133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER B01

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 1 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LØCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE		CALIB BLOCK	COMMENTS
B01.011.000	REACTOR VESSEL	CIRCUMFERENTIAL**** SHELL WELDS********		***	******	****	=:=	****	**************************************
B01.011.001	3RPV-WR1A	ISI-0CN3-001 0M-2201-96 & 0-2479A		UT	ISI-138	cs	09:500	40393	CIR SEAM 87 TO 165 CAL BLOCK 50304 MAY BE USED
B01.011.002	3RPV-WR1	ISI-0CN3-001 0M-2201-96 &/0-2479A		UΤ	ISI-138	cs 	09 :500	40393	CIR SEAM 165 TO 166 CAL BLOCK 50304 MAY BE USED
B01.011.003	3RPV-WR18	ISI-0CN3-001 OM-2201-96 & 0-2479A		UT	ISI-138	cs	12.000	40393	CIR SEAM 86 TO 87 CAL BLOCK 50304 MAY BE USED
B01.021.000	REACTOR VESSEL	HEAD WELDS************************************		***	******	****	•	****	******************
B01.021.002	3RPV-WR34	ISI-0CN3-001 0M-2201-96 & 0-2479A		UT	ISI-138 ———	cs	05 .500	40392	CIR SEAM 36 TO 166 CAL BLOCK 40393 & 50304 MAY BE USED 43.5% COVERAGE REF.RFR 94-01
B01.030.000	REACTOR VESSEL	SHELL TO FLANGE WELD		***	******	****	_:	****	*****************
B01.030.001	3RPV-WR19	ISI-0CN3-001 0M-2201-96 & 0-2479A		UT	<u>ISI-138</u>	cs	12.000	40390	PC 7 TO 86 UT FROM VESSEL ID CAL BLOCK 50304 MAY BE USED 67.9% COVERAGE REF.RFR 94-01

PROGRAM: NISIRUNB-QAISIO2 FILE: CGO7133 PLANT: CCONEE UNIT 3 KEY: ITEM NUMBER BO1

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 2 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.		MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK	COMMENTS
B01.030.001B	3RPV-WR19	ISI-0CN3-001 0M-2201-96 & 0-2479A		UT	NDE-650	cs	12.000	50304	PC 7 TO 86 VESSEL FLANGE 180 TO 0 DEG FROM FLANGE SURFACE 95% COVERAGE OBTAINED
B01.040.000	REACTOR VESSEL	HEAD TO FLANGE WELDS		***	******	****	_:_	****	**************************************

PROGRAM: NISIRUNB-QAISIO2 FILE: C007133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER BO2

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 3 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE		CALIB BLOCK	COMMENTS
B02.011.000	***PRESSURIZER	SHELL TO HEAD WELDS CIRCUMFERENTIAL*****		***	******	****	_:	****	***********************
B02.012.000	***** PRESSURIZER	SHELL TO HEAD WELDS* LONGTUDINAL ******		***	******	****	_:_	****	**************************************
B02.031.000	**** STEAM GENERATOR	HEAD WELDS ************************************		***	****** ******				************************
B02.040.000	******* STEAM	GENERATORS TUBESHEET TO HEAD WELDS******		***	******	****	_:_	****	**********************
B02.060.000	**** HEAT EXCHANGER	TUBESHEET TO SHELL** OR HEAD WELDS *****		***	*****	****	_:_	****	**** INSPECTOR TO RECORD **** ** COOLER S\N ON INSP. DATA **
B02.060.001	3-LDCA-IN-V3	OH-2201-1419		UT	NDE-600	SS ,	08.62 00.875	40411	LDC-A INL.TUBE SHT\CHNL. BODY PC.3 TO 2, INSPECTOR REC. S\N

PAGE 4 DATE 04/11/94

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PROGRAM: NISIRUNB-QAISIO2 FILE: C007133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER B03

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE		BLOCK	COMMENTS
B03.090.000	REACTOR VESSEL	NOZZLE TO VESSEL**** WELDS***********		***	*****	****	_:	****	*******************
B03.090.001	3RPV-WR13	ISI-0CN3-001 OM-2201-96 & 0-2479A		UT	ISI-138 ———	cs	60.00 12.000		X-OUTLET NOZZLE PC 19 TO 86 & 87 UT FROM VESSEL ID CAL BLOCK 50304 MAY BE USED 47.6% COVERAGE REF.RFR 94-01
B03.090.001A	3RPV-WR13	ISI-0CN3-001 0M-2201-96 & 0-2479A		UT	ISI-138	<u>cs</u>	60.00 12.000		X-OUTLET NOZZLE PC 19 TO 86 & 87 UT FROM NOZ. ID ONS-014 47.6% COVERAGE REF.RFR 94-01
B03.090.002	3RPV-WR13A	ISI-0CN3-001 0M-2201-96 & 0-2479A		UΤ	ISI-138	cs ·	60.00 12.000		Z-OUTLET NOZZLE PC 19 TO 86 & 87 UT FROM VESSEL ID CAL BLOCK 50304 MAY BE USED 47.6% COVERAGE REF.RFR 94-01
B03.090.002A	3RPV-WR13A	ISI-0CN3-001 0M-2201-96 & 0-2479A		UΤ	ISI-138 	cs	60.00 12.000		Z-OUTLET NOZZLE PC 19 TO 86 & 87 UT FROM NOZ. ID ONS-014 47.6% COVERAGE REF.RFR 94-01
B03.090.003	3RPV-WR12	ISI-0CN3-001 0M-2201-96 & 0-2479A		UT	ISI-138	cs	48.00 12.000		W-X INLET NOZZLE PC 18 TO 86 & 87 UT FROM VESSEL ID CAL BLOCK 50304 MAY BE USED 71.7% COVERAGE REF.RFR 94-01
B03.090.003A	3RPV-WR12	ISI-0CN3-001 01-2201-96 & 0-2479A		UT	1SI-138 	cs ·	48.00 12.000		W-X INLET NOZZLE PC 18 TO 86 & 87 UT FROM NOZZLE ID 71.7% COVERAGE REF.RFR 94-01
B03.090.004	3RPV-HR12A	ISI-0CN3-001 0M-2201-96 & 0-2479A		UT	ISI-138 ———	cs	48.00 12.000	40390	X-Y INLET NOZZLE PC 18 TO 86 & 87 UT FROM VESSEL ID CAL BLOCK 50304 MAY BE USED 71.7% COVERAGE REF.RFR 94-01

PAGE 5 DATE 04/11/94

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER BO3

ITEM NUMBER		DRAWING NUMBERS	LOCS.		PROC. NUMBERS	MATERIAL TYPE/GRADE			COMMENTS
B03.090.004A	3RPV-WR12A	ISI-0CN3-001 0M-2201-96 & 0-2479A		ŲT	ISI-138	cs	48.00 12.000		X-Y INLET NOZZLE PC 18 TO 86 & 87 UT FROM NOZZLE ID
									71.7% COVERAGE REF.RFR 94-01
B03.090.005	3RPV-WR12B	ISI-0CN3-001 0M-2201-96 & 0-2479A		UT	ISI-138 		48.00 12.000		Y-Z INLET NOZZLE PC 18 TO 86 & 87 UT FROM VESSEL ID CAL BLOCK 50304 MAY BE USED 71.7% COVERAGE REF.RFR 94-01
B03.090.005A	3RPV-WR12B	ISI-0CN3-001 0M-2201-96 & 0-2479A		UT	ISI-138	cs	48.00 12.000	50304	Y-Z INLET NOZZLE PC 18 TO 86 & 87 UT FROM NOZZLE ID
									71.7% COVERAGE REF.RFR 94-01
B03.090.006	3RPV-NR12C	ISI-0CN3-001 01-2201-96 & 0-2479A		UT	ISI-138	cs	48.00 12.000	40390	Z-W INLET NOZZLE PC 18 TO 86 & 87 UT FROM VESSEL ID CAL BLOCK 50304 MAY BE USED 71.7% COVERAGE REF.RFR 94-01
B03.090.006A	3RPV-WR12C	ISI-0CN3-001 0M-2201-96 & 0-2479A		UT	ISI-138	cs	48.00 12.000	50304	Z-W INLET NOZZLE PC 18 TO 86 & 87 UT FROM NOZZLE ID
					ř				71.7% COVERAGE REF.RFR 94-01
B03.090.007		ISI-0CN3-001 OM-2201-96 & 0-2479A		UT	ISI-138 	<u>cs</u> -	25.00 12.000		CORE FLOOD NOZ W-AXIS PC 17 TO 86 UT FROM VESSEL ID CAL BLOCK 50304 MAY BE USED 87.9% COVERAGE REF.RFR 94-01
B03.090.007A		ISI-0CN3-001 01-2201-96 & 0-2479A		UT	ISI-138 		25.00 12.000	40390	CORE FLOOD NOZ W-AXIS PC 17 TO 86 UT FROM NOZZLE ID CAL BLOCK 50304 MAY BE USED 87.9% COVERAGE REF.RFR 94-01
B03.090.008		ISI-0CN3-001 0M-2201-96 & 0-2479A		UΤ	ISI-138 	cs	25.00 12.000	40390	CORE FLOOD NOZ Y-AXIS PC 17 TO 86 UT FROM VESSEL ID CAL BLOCK 50304 MAY BE USED 87.9% COVERAGE REF.RFR 94-01

PAGE 6 DATE 04/11/94

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PROGRAM: NISIRUNB-QAISIO2 FILE: C007133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER BO3

ITEM NUMBER		DRAWING NUMBERS			NUMBERS	MATERIAL TYPE/GRADE			COMMENTS
B03.090.008A	3RPV-WR54A	ISI-0CN3-001 0M-2201-96 & 0-2479A		UΤ	ISI-138		25.00 12.000	40390	CORE FLOOD NOZ Y-AXIS PC 17 TO 86 UT FROM NOZZLE ID CAL BLOCK 50304 MAY BE USED 87.9% COVERAGE REF.RFR 94-01
B03.100.000	REACTOR VESSEL	*******NOZZLE INSIDE RADIUS SECTION*****		***	*****	****	=:=	****	********************
B03.100.001	3RPV-WR13	ISI-0CN3-001 0M-2201-96 & 0-2479A		UT	ISI-138 ——	cs	60.00 12.000		X-OUTLET NOZZLE PC 19 TO 86 & 87 UT FROM NOZ. ID ONS-014
B03.100.002	3RPV-WR13A	ISI-0CN3-001 OM-2201-96 & 0-2479A		UT	ISI-138 	cs	60.00 12.000		Z-OUTLET NOZZLE PC 19 TO 86 & 87 UT FROM NOZ. ID ONS-014
B03.100.003	3RPV-WR12	ISI-0CN3-001 OM-2201-96 & 0-2479A		UT	ISI-138		48.00 12.000		W-X INLET NOZ PC 18 TO 86 & 87 UT FROM NOZZLE ID 68.4% COVERAGE REF.RFR 94-01
B03.100.004	3RPV-WR12A	ISI-0CN3-001 0M-2201-96 & 0-2479A	<u>=</u>	UT ·	ISI-138 ———	cs	48.00 12.000	50304	X-Y INLET NOZ PC 18 TO 86 & 87 UT FROM NOZZLE ID 68.4% COVERAGE REF.RFR 94-01
B03.100.005	3RPV-WR12B	ISI-0CN3-001 OM-2201-96 & 0-2479A	<u></u>	UT	ISI-138	cs	48.00 12.000	50304	Y-Z INLET NOZ PC 18 TO 86 & 87 UT FROM NOZZLE ID 68.4% COVERAGE REF.RFR 94-01
B03.100.006	3RPV-HR12C	ISI-0CN3-001 01-2201-96 & 0-2479A		UΤ	ISI-138 ——		48.00 12.000	50304	Z-W INLET NOZ PC 18 TO 86 & 87 UT FROM NOZZLE ID 68.4% COVERAGE REF.RFR 94-01

PAGE 7 DATE 04/11/94

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER BO3

ITEM NUMBER		DRAWING NUMBERS		REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE			COMMENTS
B03.100.007	3RPV-WR54	ISI-OCN3-001 OM-2201-96 & O-2479A	<u></u>	UT	ISI-138 ——	cs	25.00 12.000	40390	CORE FLOOD NOZ W-AXIS PC 17 TO 86 UT FROM NOZZLE ID CAL BLOCK 50304 MAY BE USED 50.0% COVERAGE REF.RFR 94-01
B03.100.008	3RPV-WR54A	ISI-0CN3-001 0M-2201-96 & 0-2479A		UT	ISI-138	CS	25.00 12.000		CORE FLOOD NOZ Y-AXIS PC 17 TO 86 UT FROM NOZZLE ID CAL BLOCK 50304 MAY BE USED 50.0% COVERAGE REF.RFR 94-01
B03.110.000	***PRESSURIZER	NOZZLE TO VESSEL**** WELDS***********		***	****** 	****	_:_	****	**********************
B03.110.009	3PZR-WP26-1	ISI-OCN3-002		UΤ	NDE-620 NDE-640	cs	<u>06:18</u> 8	40338	PZR SEN & SAMPLING NOZ BET W&X ID 30 TO 04 RFR 94-01; (34.39% COVERAGE)
B03.110.011	3PZR-WP26-3	ISI-OCN3-002		υτ	NDE-620 NDE-640	<u>cs</u>	06:188	40338	PZR SENSING/SAMPLING NOZZLE 47 DEGREES OFF W-AXIS ID 30 TO 04 RFR 94-01; (35.5% COVERAGE)
B03.110.012	3PZR-WP26-7	ISI-0CN3-002		UT	NDE-620 NDE-640	cs	06 .188	40338	PZR SENSING/SAMPLING NOZZLE 40 DEGREES OFF W-AXIS ID 30 TO 04 RFR 94-01 (34.39% COVERAGE)
B03.120.000	***PRESSURIZER	NOZZLE INSIDE RADIUS SECTION***********		***	*****	****	_:	****	**************************************
B03.120.009	3PZR-WP26-1	ISI-OCN3-002		υr	NDE-680	cs	06 :188	40338	SAMPLING NOZZLE BETWEEN W & X PC 30 TO 4 INSIDE RADIUS RFR 94-01; (60.6% COVERAGE)

PAGE 8 DATE 04/11/94

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
COONEE 3 INSERVICE INSPECTION LISTING RFO #14

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER BO3

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE			COMMENTS
B03.120.011	3PZR-WP26-3	ISI-0CN3-002		UT	NDE-680	cs	06 :188	40338	SAMPLING NOZZLE 47 DEGREES OFF W AXIS PC 30 TO 4 INSIDE RAD.
									RFR 94-01 (66.7% COVERAGE)
B03.120.012	3PZR-WP26-7	ISI-0CN3-002		UT	NDE-680	cs	06 :188	40338	SAMPLING NOZZLE 40 DEGREES OFF W AXIS PC 30 TO 4 INSIDE RAD.
									RFR 94-01; (60.6% COVERAGE)
B03.130.000	*******STEAM	GENERATOR NOZZLE TO VESSEL HELDS******		***	*****	****	_:_	****	**************************************
B03.140.000	********STEAM	GENERATOR NOZZLE**** INSIDE RADIUS******		***	*****	****	=:	****	**************************************
B03.140.002	3SGA-HG50-1	ISI-0CN3-003		UT	NDE-680	cs	38.38 08.000	40393	3A Y-Z AXIS OUT. NOZZLE INSIDE RADIUS SECTION PC 65 TO 07
									RFR 94-01 (80% COVERAGE)
B03.140.005	3SGA-HG25	ISI-0CN3-003		UΤ	NDE-680		48.63 08.000	40393	3A INLET NOZZLE INSIDE RADIUS SECTION ID 70 TO 08
									RFR 94-01 (74% COVERAGE)
B03.140.006	3SGB-WG25	ISI-0CN3-004		UT	NDE-680		48.63 08.000	40393	3B INLET NOZZLE INSIDE RADIUS SECTION ID 70 TO 08
		•							RFR 94-01; (74% COVERAGE)
B03.150.000	HEAT EXCHANGER	NOZZLE TO VESSEL*** WELDS******		***	*****	****	=:=	****	**** INSPECTOR TO RECORD ***** ** COOLER S\N ON INSP. DATA **
									

PROGRAM: NISIRUNB-QAISIO2
FILE: COO7133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER BO3

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 9 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK =====	COMMENTS
B03.150.003	3-LDCB-IN-VI	OM-2201-1419		υT	NDE-600	ss	03.00 00.875	40411	LDC-B TUBESIDE INL. NOZ.,PC.5 TO 3, INSPECTOR RECORD S\N
B03.150.004	3-LDCB-OUT-V2	OM-2201-1419	<u></u>	UT	NDE-600	ss	03.00 00.875		LDC-B TUBESIDE OUT. NOZ.,PC.5 TO 3, INSPECTOR RECORD S\N
B03.160.000	HEAT EXCHANGER	NOZZLE INSIDE RADIUS SECTION*********		***	*****	****	_:	****	**** INSPECTOR TO RECORD ***** ** COOLER S\N ON INSP. DATA **

PROGRAM: NISIRUNB-QAISIO2 FILE: C007133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER B04

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 10 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK	COMMENTS
B04.012.000	********* PARTIAL	PENETRATION WELDS*** CRD NOZZLES ******		***	*****	****	_:_	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
B04.013.000	****** PARTIAL	PENETRATION WELDS*** INSTRUMENTATION ****		***	******	****	_:_	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER BO5	QUA PRE-SERVICE OCONEE 3 INSERV	DUKE PO LLITY ASSU AND IN-S VICE INSPE	WER COMPAN RANCE DEPA ERVICE INS CTION LIST	Y RTMENT PECTION SYS ING RFO #14	TEM	PAGE 11 DATE 04/11/94
ITEM NUMBER ID. NUMBER		LOCS. REQ		TYPE/GRADE	DIAM./ CALI THICK BLOC	K COMMENTS
B05.010.000 REACTOR VESSEL	NOZZLE TO SAFE END** BUTT WELDS*******	· **	* *****	****	_: ****	* NOMINAL PIPE SIZE GREATER THAN OR EQUAL TO 4 INCH
B05.010.001A 3RPV-WR53	ISI-0CN3-001 0M-2201-96 & 0-2479A	ur	ISI-138 NDE-610	cs/ss	15.63 4038 01.688	B A SIDE CORE FLD W-AXIS SAFE END UT FROM NOZZLE SIDE CAL BLOCK 40389 MAY BE USED
B05.010.001B 3RPV-WR53	ISI-0CN3-001 0M-2201-96 & 0-2479A	ит	ISI-138 NDE-610	cs/ss	15.63 4038 01.688	9 A SIDE CORE W-AXIS SAFE END UT FROM SAFE END SIDE CAL BLOCK 40388 MAY BE USED
B05.010.002A 3RPV-WR53A	ISI-0CN3-001 OM-2201-96 & 0-2479A	υτ 	ISI-138 NDE-610	CS/SS	15.63 4038 01.688	B SIDE CORE FLD Y-AXIS SAFE END UT FROM NOZZLE SIDE CAL BLOCK 40389 MAY BE USED
B05.010.002B 3RPV-WR53A	ISI-0CN3-001 OM-2201-96 & 0-2479A	UT	ISI-138 NDE-610	CS/SS	15.63 4038 01.688	9 B SIDE CORE FLD Y-AXIS SAFE END UT FROM SAFE END SIDE CAL BLOCK 40388 MAY BE USED
B05.020.000 ***PRESSURIZER	NOZZLE TO SAFE END** BUTT WELDS	** 	* ***** 	****	****	* NOMINAL PIPE SIZE > OR EQUAL TO 4 INCHES
B05.021.000 ******PRESSURIZER	NOZZLE-TO-SAFE END BUTT WELDS ********	**	* ***** ******		_:	NOMINAL PIPE SIZE < 4 IN. ****
B05.050.000 CLASS 1 PIPING	DISSIMILAR METAL*** BUTT WELDS********	*×	* *****	****	: ****	NOMINAL PIPE SIZE 4 IN. & OVER

PROGRAM: NISIRUNB-QAISIO2
FILE: COO7133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER B05

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 12 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK	COMMENTS
B05.051.000	CLASS 1 PIPING	DISSIMILAR METAL*** BUTT WELDS****		***	*****	****	±:	****	NOMINAL PIPE SIZE < 4 INCH*** *********************************

PROGRAM: NISLANB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER B06

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 13 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE			COMMENTS
B06.010.000	****REACTOR VESSEL	CLOSURE HEAD NUTS ** **********************************		_				· .	********************
B06.030.000	REACTOR VESSEL	CLOSURE STUDS****** ******************************		***	*****	****	_:		WHEN REMOVED************************************
B06.040.000	REACTOR VESSEL	THREADS IN FLANGE*** *********************************		***	******	****	:	****	**************************************
806.050.000	REACTOR VESSEL	CLOSURE WASHERS AND* BUSHINGS************************************		***	*****	****	_:	****	*********************
B06.060.000	***PRESSURIZER	BOLTS AND STUDS **** ********************************		***	******	****	:	****	*******************
B06.070.000		FLANGE SURFACES***** ***************		×××	*****	****	_:_	*****	INSPECT WHEN CONNECTION DISASSEMBLED
B06.080.000	***PRESSURIZER	NUTS, BUSHINGS, AND MASHERS**********		***	*****	****	_:_	****	*******************
B06.180.000		BOLTS AND STUDS***** ****************		***	******	****	_:	****	GREATER THAN 2 INCH************************************

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER B06

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 14 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.		MATERIAL TYPE/GRADE			COMMENTS
B06.180.003	3RCP-3B1-F	OM-1201-1217 OM-2201-1134-001		UT	NDE-44	<u>cs</u>	03.75 32.000	40362	B1 RCP MAIN FLG.STUDS PC.19 , TOTAL 20 STUDS
806.180.004	3RCP-3B2-F	OM-1201-1217 OM-2201-1134-001		υT	NDE-44	cs	03.75 32.000	40362	B2 RCP MAIN FLG.STUDS PC.19 , TOTAL 20 STUDS
B06.190.000	*CLASS 1 PUMPS	FLANGE SURFACE **** ********************************		***	******	*****	=:=	****	WHEN CONNECTION DISASSEMBLED** **********************************
806.200.000	*CLASS 1 PUMPS	NUTS,BUSHINGS,AND WASHERS **********		***	*****	****	=:=	****	*********************
B06.200.003	3RCP-3B1-NUTS	OM-1201-1217 OM-2201-1134-001		VT1	QAL-13	·	=:=		3RCP-3B1-MAIN FLG NUTS, BUSHINGS & WASHERS
B06.200.004	3RCP-3B2-NUTS	OM-1201-1217 OM-2201-1134-001		VT1	QAL-13		_:_		3RCP-3B2-MAIN FLG NUTS, BUSHINGS & WASHERS

PAGE 15 DATE 04/11/94

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER BO7

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC: NUMBERS	MATERIAL TYPE/GRADE			COMMENTS
B07.020.000	***PRESSURIZER	BOLTS,STUDS,AND NUTS		×××	*****	****	_:_	****	2 IN. AND LESS IN DIAMETER *** *********************************
B07.030.000	*** STEAM GENERATOR	BOLTS,STUDS AND NUTS		***	*****	****	_:_	****	********************
B07.070.000	CLASS 1 VALVES	BOLTS,STUDS,AND NUTS		***	*****	****	=:=	****	**************************************
B07.070.018	3-50-LP131	OM-245-1085		VT1	QAL-13		01.50		AUX. PRESS. SPRAY , VLV. LP131 BOLTING.(BASELINE OUTAGE 10)
B07.080.000	**CRD HOUSINGS	BOLTS,STUDS,AND NUTS ************************************		***	*****	****	_:_	****	INSPECT ONLY IF HOUSING IS**** DISASSEMBLED************************************
B07.080.001	3RPV-CRD-BOLTS	B&W 149902E B&W 149919E		VT1	QAL-13	<u>cs</u>	_:		8 BOLTS PER CRD HOUSING REQUEST FOR RELIEF ONS-012 14 CONN. INSP. TO DATE
B07.080.002	3RPV-CRD-RINGS	B&W 149902E B&W 149919E		VT1	QAL-13	cs	_:_		1 PAIR PER CRD HOUSING REQ.FOR REL.ONS-011 & ONS-012 14 CONN. INSP. TO DATE

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER BO8

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 16 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK	COMMENTS
B08.020.000	***PRESSURIZER	INTEGRALLY WELDED ATTACHMENTS********		***	******	****	=:=	****	***************************************
B08.030.000	STM GENERATORS	INTEGRALLY WELDED ATTACHMENTS*******		***	*****	****	=:=	****	· ************************************

PROGRAM: NISIRUNB-QAISIO2
FILE: COO7133
PLANT: OCCNEE UNIT 3
KEY: ITEM NUMBER B09

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 17 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS		NUMBERS	MATERIAL TYPE/GRADE		BLOCK	COMMENTS
B09.011.000	****** CLASS 1	CIRCUMFERENTIAL***** WELDS************************************	***	*****	****	=:=	****	NOMINAL PIPE SIZE 4 IN. & OVER
B09.011.014	3PDA1-8	ISI-OCN3-011	 UT	ISI-138 ———	<u>cs</u>	33.50 03.000		Al DISCH TERMINAL END PC 38 TERMINAL END TO REACTOR VESSEL CAL BLOCK 50304 MAY BE USED
809.011.028	3PDA2-8	ISI-OCN3-012	 UT .	ISI-138	cs	33.50 03.000		A2 DISCHARGE TERMINAL END PC 38 TO REACTOR VESSEL NOZ CAL BLOCK 50304 MAY BE USED
B09.011.042	3PDB1-8	ISI-0CN3-013	 UT	ISI-138	cs	33.50 03.000	40350	B1 DISCHARGE TERMINAL END PC 38 TO STEAM REACTOR VESSEL NOZ CAL BLOCK 50304 MAY BE USED
B09.011.056	3PDB2-8	ISI-0CN3-014	 UT	ISI-138	<u>cs</u>	33.50 03.000		B2 DISCHARGE TERMINAL END PC 38 TO REACTOR VESSEL NOZ. CAL BLOCK 50304 MAY BE USED
B09.011.057	3PHA-1	ISI-OCN3-005	 υτ	ISI-138	cs	42.75 03.000		A HOT LEG TERMINAL END PC 19 TO 32 ONS-014;CAL BLOCK 40350 MAY ALSO BE USED
B09.011.069	3PHB-1	ISI-OCN3-006	 UT	ISI-138	<u>cs</u>	42.75 03.000	50304	B HOT LEG TERMINAL END PC 19 TO 32 ONS-014 CAL BLOCK 50304 MAY BE USED
B09.011.104	3PSL-2	ISI-OCN3-015	 UT	NDE-600 NDE1001	SS	10.75 01.000	40399	SELECTION CRITERIA 4.2.1

PROGRAM: NISTRONB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER B09

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 18 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.		MATERIAL TYPE/GRADE			COMMENTS
B09.011.104A	3PSL-2	ISI-0CN3-015		РТ	NDE-35	SS	10.75 01.000		SELECTION CRITERIA 4.2.1
B09.011.105	3PSL-3	ISI-0CN3-015		UΤ	NDE-600 NDE1001	SS	10.75 01.000	40399	SELECTION CRITERIA 4.2.1
B09.011.105A	3PSL-3	ISI-OCN3-015		PT	NDE-35	ss	10.75 01.000		SELECTION CRITERIA 4.2.1
B09.011.106	3PSL-4	ISI-0CN3-015		UT	NDE-600 NDE1001	ss	10.75 01.000	40399	SELECTION CRITERIA 4.2.1
B09.011.106A	3PSL-4	ISI-OCN3-015		рт	NDE-35	ss 	10.75 01.000		SELECTION CRITERIA 4.2.1
B09.011.107	3PSL-6	ISI-0CN3-015		UT	NDE-600 NDE1001	ss	10.75 01.000	40399	SELECTION CRITERIA 4.2.1
B09.011.107A	3PSL-6	ISI-0CN3-015		PT	NDE-35	ss	10.75 01.000	<u> </u>	SELECTION CRITERIA 4.2.1
809.011.108	3PSL-7	ISI-0CN3-015			NDE-600 NDE1001	SS	10.75 01.000	40399	SELECTION CRITERIA 4.2.1

PAGE 19 DATE 04/11/94

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER BO9

ITEM NUMBER	ID. NUMBER		REQ.		MATERIAL TYPE/GRADE	THICK	BLOCK	COMMENTS
B09.011.108A	3PSL-7	ISI-0CN3-015	 PΤ	NDE-35	ss	10.75 01.000		SELECTION CRITERIA 4.2.1
B09.011.151	3-53A-15.1-44	SYS 53A ISO 15 P1 OM-2201-96 & 0-2479A	 UT	ISI-138	ss	14.00 01.250	40388	CORE FLOOD A TERMINAL END REQUEST FOR RELIEF ONS-001 CAL BLOCK 40389 MAY BE USED 85.0% COVERAGE REF. RFR94-01
B09.011.159	3-53A-16-01	SYS 53A ISO 16 OM-2201-96 & O-2479A	UΤ	ISI-138 	ss	14.00 01.250	40388	CORE FLOOD SYSTEM TERMINAL END CAL BLOCK 40389 MAY BE USED 85.0% COVERAGE REF. RFR 94-01
B09.012.000	****** CLASS 1	LONGITUDINAL******* WELDS**********	***	*****	****	_:_	****	NOMINAL PIPE SIZE 4 IN. & OVER
B09.021.000	****** CLASS 1	CIRCUMFERENTIAL**** WELDS***********	 ***	*****	****	_:_	******	NOMINAL PIPE SIZE < 4 IN. **** ********************************
B09.021.125	3-51A-63-30	SYS 51A ISØ 63	 РТ	NDE-35	ss	02.50 00.375		3A1 HIGH PRESSURE INJECTION
B09.031.000	***** BRANCH PIPE	CONNECTION WELDS *** *************	***	*****	****	_:_	****	NOMINAL PIPE SIZE 4 IN. & OVER
B09.032.000	****** BRANCH PIPE	CONNECTION WELDS *** **************	***	******	****	_:_	****	NOMINAL PIPE SIZE < 4 IN. **** ********************************

PAGE 20 DATE 04/11/94

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER B09

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK =====	COMMENTS
B09.040.000	***** SCCKET WELDS	**************************************		***	******	****	=:=	****	***************************************
B09.040.003	3-50-152-05	SYS 50 ISØ 152		PT	NDE-35	ss 	01.50 00.281		AUX. PRESSURIZER SPRAY LINE
B09.040.004	3-50-152-07	SYS 50 ISØ 152		PT	NDE-35	SS	01.50 00.281		AUX. PRESSURIZER SPRAY LINE

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER B10

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 21 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LØCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK =====	COMMENTS
B10.010.000	**** CLASS 1 PIPING	INTEGRALLY WELDED ** ATTACHMENTS ******		***	*****	****	=:=	****	**************************************

DECEMAN, ALCHUM

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER B12 DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 22 DATE 04/11/94

ITEM NUMBER ID. NUMBER	DRAWING NUMBERS	INSP PROC. REQ. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	BLOCK	COMMENTS
B12.040.000 CLASS 1 VALVE	BODIES EXCEEDING**** 4 INCH NPS*******	*** ******	****	_:_	****	INSPECT IF DISASSEMBLED******* *****************************

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER B13

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 23 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK	COMMENTS
B13.010.000	REATOR VESSEL	VESSEL INTERIOR***** ***************		×××	*****	****	=:=	****	**************************************
B13.010.001	3RPV-INT SUR	ISI-OCN3-001		VT3	QAL-14	ss	=:_		INTERIOR SURFACES OF VESSEL USE PROCEDURE ISI-354 ALSO
B13.030.000	REACTOR VESSEL	CORE SUPPORT******* STRUCTURE*********		***	*****	****	_:_	****	************************
B13.030.001	3RPV-INTERNALS		=	VT3	QAL-14	SS	_:_		CORE SUPPORT STRUCTURES WELDS, BOLTING, AND SURFACES

PROGRAM: NISIRUNB-QAISIO2
FILE: COO7133
PLANT: COONEE UNIT 3
KEY: ITEM NUMBER B14

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 24 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	Locs.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK	COMMENTS
B14.010.000	REACTOR VESSEL	CRD HOUSING WELDS*** ************		***	*****	****	_:_	****	INSPECT IF DISASSEMBLED****** ******************************

PROGRAM: NISIRUNB-QAISIO2
FILE: COO7133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER B15

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 25 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	REQ.		MATERIAL TYPE/GRADE	THICK	BLOCK	COMMENTS
B15.010.000	REACTOR VESSEL	PRESSURE RETAINING** BOUNDARY*********	 ***	*****	****	_:_	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
B15.011.000	REACTOR VESSEL	PRESSURE RETAINING** BOUNDARY*********	***	*****	***** 	_:_	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
B15.020.000	***PRESSURIZER	PRESSURE RETAINING BOUNDARY**********	***	*****	****	=:=	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
B15.021.000	***PRESSURIZER	PRESSURE RETAINING** BOUNDARY*********	 ***	*****	****	_:	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
B15.030.000	******STEAM	GENERATORS PRESSURE* RETAINING BOUNDARY**			****	_:_	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
B15.031.000	**************************************	GENERATORS PRESSURE* RETAINING BOUNDARY**	 ***	*****	****	_:_	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
B15.040.000	HEAT EXCHANGER	PRESSURE RETAINING BOUNDARY				_:_		REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
B15.041.000	HEAT EXCHANGER	PRESSURE RETAINING BOUNDARY	 			_:_		REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER B15

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 26 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK		COMMENTS
B15.051.000	CLASS 1 PIPING	PRESSURE RETAINING** BOUNDARY**********		***	******	****	_:_	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
B15.060.000	*CLASS 1 PUMPS	PRESSURE RETAINING** BOUNDARY*********		***	*****	****	=:=	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
B15.061.000	*CLASS 1 PUMPS	PRESSURE RETAINING** BOUNDARY*********		***	*****	****	_:_	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
B15.071.000	CLASS 1 VALVES	PRESSURE RETAINING** BOUNDARY*********		***	*****	****	_:	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO

PROGRAM: NISIRUNB-QAISIO2 FILE: C007133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER B16

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 27 DATE 04/11/94

ITEM NUMBER ID. NUMBER	DRAWING NUMBERS	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK =====	CALIB BLOCK	COMMENTS
B16.011.000 *** STEAM GENERATOR	TUBING ************************************	 ***	****** ******				**** STRAIGHT TUBE DESIGN **** ********************************

PAGE 28 DATE 04/11/94

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PROGRAM: NISIRUNB-QAISIO2
FILE: C007133
PLANT: 0CONEE UNIT 3
KEY: ITEM NUMBER C01

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK	COMMENTS
C01.010.000	**************************************	CIRCUMFERENTIAL**** WELDS*********		***	******	****	_:_	****	***** PRESSURE VESSEL ****** ******************************
C01.020.000	*********HEAD	CIRCUMFERENTIAL***** WELDS************************************		***	*****	****		****	****** PRESSURE VESSELS ***** *******************************
C01.020.001	3-CFTA-UH-SHL	B&W 148732E		UT	NDE1002 NDE-640	cs	02:375	40410	CORE FLD TK 3CF-T1A TOP HD TO SHL. PROC NDE-620 MAY BE USED.
C01.020.005	3-CFTB-LH-SHL	B&W 148732E		UT	NDE1002 NDE-640	cs	02.375	40410	CORE FLD TK 3CF-T1B BOT. HD TO SHL. PROC. NDE-620 MAY BE USED 96.6% COVERAGE
C01.030.000	******CLASS 2	TUBESHEET TO SHELL WELDS************************************		***	*****	****	=:=	****	***** PRESSURE VESSELS ***** *******************************
C01.030.005	3LPCB-SH-TUBE	B&W 36-43-004-00		UT	NDE-630	ss	00 .750	40385	LP COOLER B S/S SHELL TO TUBE SHEET FLANGE 100% COVERAGE OBTAINED

PROGRAM: NISIRUNB-QAISIO2
FILE: C007133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER C02

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 29 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK	COMMENTS
C02.010.000	******NOZZLES	IN VESSELS*********************************		***	******	****	=:=	****	1/2 IN. NOMINAL THICKNESS **** AND LESS **********************************
C02.021.000	*****NOZZLE	TO SHELL OR HEAD**** WELDS************		***	*****	****	00 :500	****	**********************
C02.021.006	3-CFTB-OUTLET	B&W 148732E	-	UT	NDE-620 NDE-640	cs	20.50 02.875	40410	CORE FLD TK 3CF-T1B OUTLET NOZZLE PC 6 TO 11 NDE-1002 MAY BE USED 92.88% COVERAGE
C02.021.006A	3-CFTB-OUTLET	B&W 148732E OM 201-1021		МТ	NDE-25	cs	20.50 02.875		CORE FLD TK 3CF-T1B OUTLET NOZZLE PC 6 TO 11 REF PIR 4-091-0093 SECT 10
CÓ2.022.000	******NOZZLE	INSIDE RADIUS****** SECTION***********		***	*****	****	_:_	****	********************
C02.022.006	3-CFTB-OUTLET	B&W 148732E		UΤ	NDE-680 NDE1002	cs	20.50 02.875	40410	CORE FLOOD TANK 3CF-T1B OUTLET NOZZLE PC 6 TO 11 RFR 94-01 (72% COVERAGE)

PROGRAM: NISIRUNB-QAISIO2
FILE: C007133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER C03

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 30 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK		COMMENTS
C03.010.000	*****PRESSURE	VESSELS INTEGRALLY** WELDED ATTACHMENTS**		***	******	****	_:_	****	**************************************
C03.010.017	3-CFTA-WT18-X	B&W 148732E		МТ	NDE-25	cs	<u>02.00</u> 0		CORE FLD TK SUPPORT ATTACH. X QUADRANT PC 18 TO 12
C03.010.022	3-CFTB-WT18-W	B&W 148732E		МТ	NDE-25	cs	<u>02</u> .000		CORE FLD TK SUPPORT ATTACH. W QUADRANT PC 18 TO 12
C03.040.000	CLASS 2 PIPING	INTEGRALLY WELDED ATTACHMENTS************************************		***	*****	****	_:	****	*******************

PAGE 31 DATE 04/11/94

PROGRAM: NISIRUNB-QAISIO2
FILE: C007133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER C05

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS		PROC. NUMBERS	MATERIAL TYPE/GRADE	THICK		COMMENTS
CO5.011.000	**** CLASS 2 PIPING	CIRCUMFERENTIAL WELD	 ***	*****	****	_:_	****	NOMINAL WALL THICKNESS ******* 1/2 IN, OR LESS **********************************
C05.011.002	3-53B-33-58	SYS 53B ISØ 33	РТ	NDE-35	ss	14.00 00.250		
C05.011.003	3-538-33-56	SYS 53B ISO 33	 PT .	NDE-35	SS	14.00 00.250		
C05.011.065	3-538-47-08	SYS 53B ISØ 47	PT	NDE-35	ss	08.00 00.250		
C05.011.066	3-53B-47-02	SYS 53B ISO 47	 PT	NDE-35	ss	10.00 00.250		
C05.011.074	3-53B-50-42	SYS 53B ISO 50	 PT	NDE-35	ss	06.00 00.134		
C05.011.075	3-538-50-26	SYS 53B ISO 50	 PT	NDE-35	ss	10.00 00.250		
C05.011.232	3-54B-8-36	SYS 54B ISØ 8	 PT	NDE-35	ss ———	08.00 00.250		

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER CO5

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 32 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.		PROC. NUMBERS	MATERIAL TYPE/GRADE		COMMENTS
C05.011.233	3-54B-8-36A	SYS 54B ISØ 8		PT	NDE-35	SS	08.00 00.250	
C05.011.234	3-548-8-43	SYS 54B ISØ 8		PT	NDE-35	ss ———	08.00 00.250	
C05.011.235	3-54B-6-32	SYS 54B ISØ 6		РΤ	NDE-35	SS	08.00 00.250	
C05.011.236	3-54B-6-23A	SYS 54B ISØ 6		PT	NDE-35	SS ·	08.00 00.250	
C05.011.237	3-548-6-23	SYS 54B ISØ 6		PT	NDE-35	ss	08.00 00.250	
C05.011.269	3-51A-50-44	SYS 51A ISO 50		PT	NDE-35	SS	06.00 00.280	
C05.012.000	**** CLASS 2 PIPING	LONGITUDINAL WELDS		***	****** *****		=: =	 NOMINAL WALL THICKNESS ******* 1/2 IN. OR LESS **********************************
C05.012.062	3-54B-6-23AL	SYS 54B ISO 6		PT	NDE -35	SS	08.00 00.250	 LONG SEAM FOR CO5.011.236

PAGE 33 DATE 04/11/94

DUKE POWER COMPANY

QUALITY ASSURANCE DEPARTMENT

PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM

OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PROGRAM: NISIRUNB-QAISIO2
FILE: C007133
PLANT: 0CONEE UNIT 3
KEY: ITEM NUMBER C05

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.			MATERIAL TYPE/GRADE	DIAM./ CALIB THICK BLOCK	COMMENTS
C05.012.063	3-54B-6-23L	SYS 54B ISØ 6		PT	NDE-35	ss	08.00 00.250	LONG SEAM FOR CO5.011.237
C05.012.064	3-53B-33-58L	SYS 53B ISØ 33		PT	NDE-35	ss	14.00 00.250	LONG SEAM FOR CO5.011.002
C05.012.065	3-53B-33-56L	SYS 53B ISØ 33		PT	NDE-35	ss	14.00 00.250	LONG SEAM FOR CO5.011.003;HEEL OF 90
C05.012.065A	3-53B-33-56L1	SYS 53B ISØ 33		PT	NDE-35	ss	14.00 00.250	LONG SEAM FOR CO5.011.003;TOE OF 90
C05.012.066	3-53B-50-26L	SYS 53B ISO 50		РТ	NDE-35	ss	10.00 00.250	LONG SEAM FOR CO5.011.075
C05.021.000	**** CLASS 2 PIPING	CIRCUMFERENTIAL WELD		***	******	****	_: *****	NOMINAL WALL THICKNESS ****** > 1/2 INCH ************************************
C05.021.001	3-53A-15.2-76	SYS 53A ISO 15 PT 2		UT	NDE-600	ss	10.00 40354 01.125	
C05.021.001A	3-53A-15.2-76	SYS 53A ISO 15 PT 2		PT	NDE-35	ss	10.00 01.125	

PROGRAM: NISIRUNB-QAISIO2 FILE: C007133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER C05

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 34 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK	COMMENTS
C05.022.000	**** CLASS 2 PIPING	LONGITUDINAL WELDS		***	****** ******		_:_		NOMINAL WALL THICKNESS ******* > 1/2 INCH ************************************
C05.031.000	CLASS 2 PIPING	BRANCH CONNECTION WELDS ***********		***	*****	****	_:_	****	**************************************

PROGRAM: NISIRUNB-QAISIO2
FILE: COO7133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER CO7

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 35 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK =====	COMMENTS
C07.011.000	*****PRESSURE	VESSELS*********************************		***	*****	****	=:=	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
C07.021.000	******PIPING	**************************************		***	*****	****	_:_	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
C07.031.000	********PUMPS	**************** *********************		***	*****	****	_;	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
C07.040.000	*******VALVES	**************************************		×××	*****	****		****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
C07.041.000	*******VALVES	**************************************		***	*****	****	_:_	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO

PROGRAM: NISIRUNB-QAISIO2
FILE: COO7133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER DO1

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 36 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	Locs.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE		CALIB BLOCK	COMMENTS
D01.012.000	*******SYSTEM	HYDROSTATIC TEST**** *******************************		***	*****	****	_:_	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO

PROGRAM: NISIRUNB-QAISIO2
FILE: C007133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER D02

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 37 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE		CALIB BLOCK	COMMENTS
D02.012.000	*******SYSTEM	HYDROSTATIC******** TEST***************************		***	******	****	_:_	****	REF. PRESSURE TEST PROGRAM MAINTAINED BY QATS-GO
D02.020.000	*****INTEGRAL	ATTACHMENTS************************************		***	******	****	•	****	COMPONENT SUPPORTS AND RESTRAINTS************************************
D02.030.000	*****INTEGRAL	ATTACHMENTS************************************		***	*****	****		****	MECHANICAL AND HYDRAULIC****** SNUBBERS***********************************
D02.040.000	*****INTEGRAL	ATTACHMENTS************************************		***	******	****	_:	****	SPRING TYPE SUPPORTS************************************

PROGRAM: NISIRUNB-QAISIO2
FILE: COO7133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER DO3

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 38 DATE 04/11/94

D03.012.000 **********************************	ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	THICK	BLOCK	COMMENTS
	D03.012.000	*******SYSTEM			***	*****	****	=:=	****	

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER E01

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 39 DATE 04/11/94

ITEM NUMBER ID. NUMBER	DRAWING NUMBERS LOO	INSP PROC. OCS. REQ. NUMBERS 1	MATERIAL DIAM./ CALIB TYPE/GRADE THICK BLOCK	COMMENTS
	FLYWHEEL INSPECTIONS	*** ******		**************************************

PROGRAM: NISIRUNB-QAISIO2
FILE: COO7133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER E03

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 40 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ. ====	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK =====	COMMENTS
E03.001.000	****ALTERNATE	EXAMINATIONS************************************		***	*****	****	_:_	****	**************************************
E03.001.003	3RCP-3A2	OM1201-1217		VT1	QAL-13	ss 			INSP. FLG. JOINT, STUDS AND ADJ AREA PER REQ. FOR REL. ONS.010 INSP PER REQ. FOR REL.ONS-010
E03.001.004	3RCP-3B1	OM1201-1217		VT1	QAL-13	ss	_:_		INSP. FLG. JOINT, STUDS AND ADJ AREA PER REQ. FOR REL. ONS-010

PROGRAM: NISIRUNB-QAISIO2
FILE: C007133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER E04

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 41 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK =====	COMMENTS
E04.001.000	***** HPI SAFE END	EXAMINATIONS ******* *****************************		***	****** ******		_:_		********************

PROGRAM: NISIRUNB-QAISIO2 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER E05

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 42 DATE 04/11/94

ITEM NUMBER ID. NUMBER	DRAWING NUMBERS	LØCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ (THICK E	CALIB BLOCK =====	COMMENTS
E05.001.002 3PSL-133	ISI-OCN3-015		UT	MDE-600	ss	10.75 01.000	40399	ELBOW PC 80 TO 83 EXAM 3" BAND PER VOL 1 SECT 7.1.6
E05.001.003 3PSL-142	ISI-0CN3-015		UT	NDE-600	ss	10.75 01.000	40399	ELBOW PC 80 TO 82 EXAM 3" BAND PER VOL 1 SECT 7.1.6

PAGE 43 DATE 04/11/94

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PROGRAM: NISIRUNB-QAISIO2
FILE: C007133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER E09

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LOCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ CALIB THICK BLOCK	COMMENTS
E09.001.000	*AUXILIARY FEEDWATER	HEADER*********	**** **** ****	***		****	_:	* (PSC21-82) WATER********** * HAMMER EXAMINATIONS *******
E09.001.014	3-03A-147-10	SYS03A ISO 147		MT	NDE-25	cs	03.00 00.300	3B AUX. FDWTR. HEADER 3" FLANGE_TO-ELL
E09.001.015	3-03A-147-4VEN	SYS03A ISO 147		мт	NDE -25	cs	04.62 00.938	3B AUX. FDWTR. HEADER 3" FLANGE NOZZLE TO 6" HEADER
E09.001.016	3-03A-147-12	SYS03A ISO 147		МТ	NDE-25	cs	03.00 00.300 ——	3B AUX. FDWTR. HEADER 3" FLANGE-TO-ELL
E09.001.017	3-03A-147-5VEN	SYS03A ISO 147		МТ	NDE-25	cs	04.62 00.938	3B AUX. FDWTR. HEADER 3" FLANGE NOZZLE TO 6" HEADER
E09.001.018	3-03A-147-14	SYS03A ISO 147		МТ	NDE-25	cs	03.00 00.300	3B AUX. FDWTR. HEADER 3" FLANGE-TO-ELL
E09.001.019	3-03A-147-6VEN	SYS03A ISO 147		МТ	NDE-25	<u>cs</u>	04.62 00.938	3B AUX. FOWTR. HEADER 3" FLANGE NOZZLE TO 6" HEADER
E09.001.020	3-03A-147-4	SYS03A ISO 147		мт	NDE-25	<u>cs</u>	03.00 00.300	3B AUX. FDWTR. HEADER 3" FLANGE-TO-ELL

PAGE 44 DATE 04/11/94

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PROGRAM: NISIRUNB-QAISI02 FILE: CO07133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER E09

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LØCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ CALIB THICK BLOCK	COMMENTS
E09.001.021	3-03A-147-7VEN	SYS03A ISO 147		MT	NDE-25	cs	04.62 00.938	3B AUX. FDWTR. HEADER 3" FLANGE NOZZLE TO 6" HEADER
E09.001.022	3-03A-1 <u>4</u> 7-6	SYS03A ISO 147		мт	NDE -25	cs .	03.00	3B AUX. FDWTR. HEADER 3" FLANGE-TO-ELL
E09.001.023	3-03A-147-8VEN	SYS03A ISO 147		мт	NDE-25	cs	04.62 00.938	3B AUX FDMTR. HEADER 3" FLANGE NOZZLE TO 6" HEADER
E09.001.024	3-03A-147-8	SYS03A ISO 147		мт	NDE-25	cs	03.00 00.300	3B AUX. FDWTR. HEADER 3" FLANGE-TO-ELL
E09.001.025	3-03A-147-9VEN	SYS03A ISO 147		МТ	NDE-25	cs	04.62 00.938	3B AUX. FDWTR. HEADER 3" FLANGE NOZZLE TO 6" HEADER
E09.001.026	3-03A-147-1VEN	SYS03A ISO 147		RT	NDE-12	cs	06.00 00.432	3B AUX. FDMTR. HEADER HEADER PIPE-TO-TEE
E09.001.027	3-03A-147-16	SYS03A ISØ 147		RT	NDE-12	cs	06.00 00.432	3B AUX. FDWTR. HEADER HEADER PIPE-TO-CAP

PROGRAM: NISIRUNB-QAISIO2
FILE: CO07133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER F1.

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION LISTING RFO #14

PAGE 45 DATE 04/11/94

ITEM NUMBER	ID. NUMBER	DRAWING NUMBERS	LØCS.	INSP REQ.	PROC. NUMBERS	MATERIAL TYPE/GRADE	DIAM./ THICK	CALIB BLOCK	COMMENTS
F1.01.000	****** CLASS 1	SUPPORTS ************************************	<u>. </u>	***	******		=:=	 .	**************************************
F1.01.140	3SGA-SKIRT	ОМ-2201-222 ISI-ОСN3-003		VT	QCL-14		_:		3SGA SUPPORT SKIRT
F1.01.141	3SGB-SKIRT	OM-2201-222 ISI-OCN3-004		VT	QCL-14		_:		3SGB SUPPORT SKIRT
F1.02.000	***** CLASS 2	SUPPORTS ************************************		×××	****** *****		=:=_		*********************
F1.03.000	********** CLASS 3	SUPPORTS ************************************		***	****** ******		=:=		**************************************

B. Items examined by Pressure Testing

Item Number = ASME Section XI Tables IWB-2500-1 (Class 1),

IWC-2500-1 (Class 2)

Drawing Number = Number of the Flow Diagram

Revision = Revision of the Flow Diagram

Test = Type of Pressure Test

Comp = Vessel, Piping or Pump

Comp Name = Example: Reactor Vessel, etc.; for piping -

System designation will be used

Req. Insp. = Type inspection performed, i.e., VT2

Req. Proc = Required inspection procedure

Comments = General and/or Detail Description

OCONEE UNIT NUMBER 3 CLASS A (CATEGORY B-P) REQUIREMENTS FOR OUTAGE NUMBER 14

ITEM NO.	DRAWING	REV	TEST	COMP	COMP NAME	REQ. INSP	REQ. PROC	COMMENTS
B15.011.001	OFD-100A-3.1	11	HYDRO	VESSEL	UNIT 3 REACTOR	VT-2	QAL-15	
B15.021.001	OFD-100A-3.2	07	HYDRO	VESSEL	PRESSURIZER	VT-2	QAL-15	
B15.031.001	OFD-100A-3.1	11	HYDRO	VESSEL .	STEAM GENERATOR	VT-2	QAL-15	•
B15.031.002	OFD-100A-3.1	11 -	HYDRO	VESSEL	STEAM GENERATOR 3B	VT-2	QAL-15	
B15.041.001	OFD-101A-3.1	11	HYDRO	VESSEL	LETDOWN COOLER 3	AVT-2	QAL-15	
B15.041.002	OFD-101A-3.1	11	HYDRO	VESSEL	LETDOWN COOLER 3	BVT-2	QAL-15	
B15.050.003	OFD-101A-3.4	14	LEAK	PIPING	HPI SYSTEM	VT-2	QAL-15	
B15.051.001	OFD-100A-3.1	11	HYDRO	PIPING	RC SYSTEM	VT-2	QAL-15	
B15.051.001A	OFD-100A-3.2	07	HYDRO	PIPING	RC SYSTEM	VT-2	QAL-15	
B15.051.002	OFD-101A-3.1	11	HYDRO	PIPING	HPI SYSTEM	VT-2	QAL-15	
B15.051.003	OFD-101A-3.4	14	HYDRO	PIPING	HPI SYSTEM	VT-2	QAL-15	
B15.051.004	OFD-102A-3.1	17	HYDRO	PIPING	LPI SYSTEM	VT-2	QAL-15	
B15.051.005	OFD-102A-3.2	10	HYDRO	PIPING	LPI SYSTEM	VT-2	QAL-15	
B15.051.006	OFD-102A-3.3	05	HYDRO	PIPING	LPI SYSTEM	VT-2	QAL-15	
B15.051.007	OFD-110A-3.1	09	HYDRO	PIPING	CA SYSTEM	VT-2	QAL-15	
B15.051.009	OFD-100A-3.3	07	HYDRO	PIPING	RC SYSTEM	VT-2	QAL-15	
B15.051.010	OFD-110A-3.4	02	HYDRO	PIPING	CA SYSTEM	VT-2	QAL-15	•
B15.061.001	OFD-100A-3.1	11	HYDRO	PUMP	RCP-3A1	VT-2	QAL-15	
B15.061.002	OFD-100A-3.1	11	HYDRO	PUMP	RCP-3A2	VT-2	QAL-15	•
B15.061.003	OFD-100A-3.1	11	HYDRO	PUMP	RCP-3B1	VT-2	QAL-15	

PAGE NO 04/05/94

OCONEE UNIT NUMBER 3 CLASS A (CATEGORY B-P) REQUIREMENTS FOR OUTAGE NUMBER 14

ITEM NO.	DRAWING	REV	TEST	COMP	COMP NAME	REQ.	PROC	COMMENTS
B15.061.004	OFD-100A-3.1	11	HYDRO	PUMP	RCP-3B2	VT-2	QAL-15	

OCONEE UNIT NUMBER 3 CLASS B (CATEGORY C-H) REQUIREMENTS FOR OUTAGE NUMBER 14

ITEM NO.	DRAWING	REV	TEST	COMP	COMP NAME	REQ. INSP	REQ. PROC	COMMENTS
C07.011.001	OFD-121B-3.3	09	HYDRO	VESSEL	STEAM GENERATOR	VT-2	QAL-15	
C07.011.002	OFD-121B-3.3	09	HYDRO	VESSEL	STEAM GENERATOR 3B	VT-2	QAL-15	
C07.011.003	OFD-102A-3.3	05	HYDRO	VESSEL	CORE FLOOD TANK	VT-2	QAL-15	
C07.011.004	OFD-102A-3.3	05	HYDRO	VESSEL	CORE FLOOD TANK 3B	VT-2	QAL-15	
C07.021.003	OFD-101A-3.2	11	HYDRO	PIPING	HPI SYSTEM	VT-2	QAL-15	
C07.021.004	OFD-101A-3.3	07	HYDRO	PIPING	HPI SYSTEM	VT-2	QAL-15	
C07.021.005	OFD-101A-3.4	14	HYDRO	PIPING	HPI SYSTEM	VT-2	QAL-15	
C07.021.007	OFD-102A-3.1	17	HYDRO	PIPING	LPI SYSTEM	VT-2	QAL-15	
C07.021.008	OFD-102A-3.2	10	HYDRO	PIPING	LPI SYSTEM	VT-2	QAL-15	
C07.021.009	OFD-102A-3.3	05	HYDRO	PIPING	LPI SYSTEM	VT-2	QAL-15	·
C07.021.011	OFD-104A-3.1	14	HYDRO	PIPING	SF SYSTEM	VT-2	QAL-15	
C07.021.017	OFD-110A-3.1	09	HYDRO	PIPING	CA SYSTEM	VT-2	QAL-15	
C07.021.019	OFD-116A-3.1	01	HYDRO	PIPING	R.PRGE	VT-2	QAL-15	See PIP Number 3-094-0425
C07.021.020	OFD-116C-3.1	02	HYDRO	PIPING	N.PRGE	VT-2	QAL-15	•
C07.021.021	OFD-121B-3.3	09	HYDRO	PIPING	FDW SYSTEM	VT-2	QAL-15	
C07.021.022	OFD-121B-3.5	10	HYDRO	PIPING	FDW SYSTEM	VT-2	QAL-15	
C07.021.023	OFD-121D-3.1	16	HYDRO	PIPING	FDW SYSTEM	VT-2	QAL-15	
C07.021.024	OFD-121D-1.2	08	HYDRO	PIPING	FDW SYSTEM	VT-2	QAL-15	
C07.021.025	OFD-122A-3.1	11	HYDRO	PIPING	MS SYSTEM	VT-2	QAL-15	

OCONEE UNIT NUMBER 3 CLASS B (CATEGORY C-H) REQUIREMENTS FOR OUTAGE NUMBER 14

ITEM NO.	DRAWING	REV	TEST	COMP	COMP NAME	REQ. INSP	REQ. PROC	COMMENTS
C07.021.026	OFD-122A-3.2	80	HYDRO	PIPING	MS SYSTEM	VT-2	QAL-15	
C07.021.027	OFD-122A-3.3	08	HYDRO	PIPING	MS SYSTEM	VT-2	QAL-15	
C07.021.028	OFD-122A-3.4	14	HYDRO	PIPING	MS SYSTEM	VT-2	QAL-15	
C07.021.029	OFD-122B-3.1	06	HYDRO	PIPING	LPS SYSTEM	VT-2	QAL-15	
C07.021.032	OFD-127B-3.2	. 08	HYDRO	PIPING	N SYSTEM	VT-2	QAL-15	
C07.021.033	OFD-137A-3.2	02	HYDRO	PIPING	BA SYSTEM	VT-2	QAL-15	
C07.021.034	OFD-137B-1.2	09	HYDRO	PIPING	IA SYSTEM	VT-2	QAL-15	

OCONEE UN NUMBER 3 CLASS C (CATEGORY D-A) REQUIREMENTS FOR OUTAGE NUMBER 14

ITEM NO.	DRAWING	REV	TEST	COMP	COMP NAME	REQ. INSP	PROC	COMMENTS
D01.012.002	OFD-101A-3.1	11	HYDRO	PIPING	HPI SYSTEM	VT-2	QAL-15	
D01.012.003	OFD-101A-3.2	11	HYDRO	PIPING	HPI SYSTEM	VT-2	QAL-15	
D01.012.007	OFD-106A-3.2	04	HYDRO	PIPING	CT SYSTEM	VT-2	QAL-15	
D01.012.008	OFD-109A-3.1	04	HYDRO	PIPING	DW SYSTEM	VT-2	QAL-15	Reference TER 3.4.3.4 for Request for Relief testing.

OCONEE UNIT NUMBER 3 CLASS C (CATEGORY D-B) REQUIREMENTS FOR OUTAGE NUMBER 14

ITEM NO.	DRAWING	REV	TEST	COMP	COMP NAME	REQ. INSP	REQ. PROC	COMMENTS
D02.012.001A	OFD-110A-3.3	02	HYDRO	PIPING	CA SYSTEM	VT-2	QAL-15	
D02.012.003	OFD-121A-3.7	1.5	HYDRO	PIPING	C SYSTEM	VT-2	QAL-15	
D02.012.005	OFD-121B-3.3	09	HYDRO	PIPING	FDW SYSTEM	VT-2	QAL-15	
D02.012.006	OFD-121B-3.5	10	HYDRO	PIPING	FDW SYSTEM	VT-2	QAL-15	
D02.012.007	OFD-121D-3.1	16	HYDRO	PIPING	FDW SYSTEM	VT-2	QAL-15	
D02.012.008	OFD-121D-1.2	08	HYDRO	PIPING	FDW SYSTEM	VT-2	QAL-15	
D02.012.022	OFD-124A-3.1	07	HYDRO	PIPING	LPS SYSTEM	VT-2	QAL-15	
D02.012.023	OFD-124A-3.3	10	HYDRO	PIPING	LPS SYSTEM	VT-2	QAL-15	
D02.012.024	OFD-124B-3.1	14	HYDRO	PIPING	LPS SYSTEM	VT-2	QAL-15	
D02.012.025	OFD-124B-3.2	06	HYDRO	PIPING	LPS SYSTEM	VT-2	QAL-15	
D02.012.026	OFD-124B-3.4	06	HYDRO	PIPING	LPS SYSTEM	VT-2	QAL-15	
D02.012.027	OFD-124A-1.1	13	HYDRO	PIPING	LPS SYSTEM	VT-2	QAL-15	
D02.012.029	OFD-124C-3.2	12	HYDRO	PIPING	HPS SYSTEM	VT-2	QAL-15	

OCONEE UNLI NUMBER 3 CLASS C (CATEGORY D-C) REQUIREMENTS FOR OUTAGE NUMBER 14

ITEM NO.	DRAWING	REV	TEST	COMP	COMP NAME	REQ. INSP	REQ. PROC	COMMENTS
D03.012.001	OFD-104A-3.1	14	HYDRO	PIPING	SF SYSTEM	VT-2	QAL-15	
D03.012.002	OFD-104A-3.2	09	HYDRO	PIPING	SF SYSTEM	VT-2	QAL-15	

5.0 Results Of Inspections Performed During Outage 14

The results of each examination shown in the final ISI Plan (Section 4 of this report) are included in this section. The completion date and status for each examination are shown. Limited examinations are described in further detail in Section 5.2. All examinations revealing reportable indications are described in further detail in Section 6.

- 5.1 The information shown below is a field description for the reporting format included in this section of the report:
 - A. Items examined by NDE methods

Item Number = ASME Section XI Tables IWB-2500-1

(Class 1), IWC-2500-1 (Class 2), IWF-

2500-1 (Class 1 and Class 2), Augmented Requirements

ID Number = Unique Identification Number

Inspection Date = Date of Examination

Inspection Status = CLR Clear

REC Recordable REP Reportable

Inspection Limited = \underline{L} Limited

_ No

_ _

Geo. Ref. $= \underline{Y}$ Yes (Geometric Reflector applies only to UT) \underline{N} No

Comments = General and/or Detail Description

PRCGRAM: NISIRUND-QAISIO4 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER BOI

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

PAGE 1 DATE 04/11/94

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEØ. REF.	COMMENTS
B01.011.001	3RPV-WR1A	01/21/94	REC	-	Y	
B01.011.002	3RPV-WR1	01/23/94	REC	-	Y	
B01.011.003	3RPV-WR18	01/22/94.	REC	L	Y	73.4% COVERAGE REF.RFR 94-01
B01.021.002	3RPV-HR34	01/27/94	REC	L	Y	43.5% COVERAGE REF.RFR 94-01
B01.030.001	3RPV-WR19	01/24/94	REC	L	Y	67.9% COVERAGE REF.RFR 94-01
B01.030.001B	3RPV-WR19	01/05/94	CLR	L	N	95% COVERAGE OBTAINED

PROGRAM: NISIRUND-QAISIO4 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER BO2

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

PAGE 2 DATE 04/11/94

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEO. REF.	COMMENTS
B02.060.001	3-LDCA-IN-V3	01/31/94	CLR	L	N	100% COVERAGE OBTAINED

PAGE 3 DATE 04/11/94

PROGRAM: NISIRUND-QAISIO4 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER BO3

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEØ. REF.	COMMENTS
B03.090.001	3RPV-WR13	01/22/94	REC	ι	Υ Υ	47.6% COVERAGE REF.RFR 94-01
B03.090.001A	3RPV-WR13	01/26/94	REC	L	Y	47.6% COVERAGE REF.RFR 94-01
B03.090.002	3RPV-WR13A	01/25/94	REC	·L	Y	47.6% COVERAGE REF.RFR 94-01
B03.090.002A	3RPV-MR13A	01/26/94	REC	L	Υ	47.6% COVERAGE REF.RFR 94-01
B03.090.003	3RPV-WR12	01/22/94	REC	L	Y	71.7% COVERAGE REF.RFR 94-01
B03.090.003A	3RPV-WR12	01/27/94	REC	L	Y	71.7% COVERAGE REF.RFR 94-01
B03.090.004	3RPV-WR12A	01/21/94	REC	L	Y	71.7% COVERAGE REF.RFR 94-01
B03.090.004A	3RPV-WR12A	01/21/94	REC	L.	Y	71.7% COVERAGE REF.RFR 94-01
B03.090.005	3RPV-WR12B	01/26/94	REC	L	Y	71.7% COVERAGE REF.RFR 94-01
B03.090.005A	3RPV-WR12B	01/27/94	REC	L	Y	71.7% COVERAGE REF.RFR 94-01
B03.090.006	3RPV-WR12C	01/26/94	REC	. L	Y	71.7% COVERAGE REF.RFR 94-01
B03.090.006A	3RPV-WR12C	01/27/94	REC	L	Y	71.7% COVERAGE REF.RFR 94-01
B03.090.007	3RPV-WR54	01/22/94	REC	L	Y	87.9% COVERAGE REF.RFR 94-01
B03.090.007A	3RPV-WR54	01/22/94	REC	L	Υ	87.9% COVERAGE REF.RFR 94-01
B03.090.008	3RPV-WR54A	01/24/94	REC	L	Y	87.9% COVERAGE REF.RFR 94-01

PAGE 4 DATE 04/11/94

PROGRAM: NISIRUND-QAISIO4
FILE: C007133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER B03

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEØ. REF.	COMMENTS
B03.090.008A	3RPV-WR54A	01/24/94	REC	ι	Y	87.9% COVERAGE REF.RFR 94-01
B03.100.001	3RPV-WR13	01/23/94	REC	_	Y	
B03.100.002	3RPV-WR13A	01/24/94	REC	· _ `	Y	
B03.100.003	3RPV-NR12	01/22/94	REC	L	Y	68.4% COVERAGE REF.RFR 94-01
B03.100.004	3RPV-WR12A	01/21/94	CLR	L	_	68.4% COVERAGE REF.RFR 94-01
B03.100.005	3RPV-WR12B	01/23/94	REC	L	Y	68.4% COVERAGE REF.RFR 94-01
B03.100.006	3RPV-WR12C	01/25/94	REC	L	Y	68.4% COVERAGE REF.RFR 94-01
B03.100.007	3RPV-WR54	01/22/94	REC	L	Y	50.0% COVERAGE REF.RFR 94-01
B03.100.008	3RPV-WR54A	01/24/94	REC	L	Y	50.0% COVERAGE REF.RFR 94-01
B03.110.009	3PZR-WP26-1	01/28/94	CLR	L	-	RFR 94-01; (34.39% COVERAGE)
B03.110.011	3PZR-WP26-3	02/02/94	CLR	L	_	RFR 94-01; (35.5% COVERAGE)
B03.110.012	3PZR-WP26-7	01/28/94	CLR	L	_	RFR 94-01 (34.39% COVERAGE)
B03.120.009	3PZR-WP26-1	01/28/94	CLR	L	_	RFR 94-01; (60.6% COVERAGE)
B03.120.011	3PZR-WP26-3	02/02/94	CLR	L	_	RFR 94-01 (66.7% COVERAGE)
B03.120.012	3PZR-WP26-7	01/28/94	CLR	L	_	RFR 94-01; (60.6% COVERAGE)

PROGRAM: NISIRUND-QAISIO4
FILE: C007133
PLANT: 0CONEE UNIT 3
KEY: ITEM NUMBER B03

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

PAGE 5 DATE 04/11/94

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEØ. REF.	COMMENTS
B03.140.002	3SGA-MG50-1	01/10/94	CLR	L.	· -	RFR 94-01 (80% COVERAGE)
B03.140.005	3SGA-HG25	01/06/94	CLR	L	_	RFR 94-01 (74% COVERAGE)
B03.140.006	3SGB-WG25	01/06/94	CLR	L	_	RFR 94-01; (74% COVERAGE)
B03.150.003	3-LDCB-IN-VI	01/31/94	REC	-	Y	
B03.150.004	3-LDCB-OUT-V2	01/31/94	CLR	_		

PROGRAM: NISIRUND-QAISIO4 FILE: COO7133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER B05

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

PAGE 6 DATE 04/11/94

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEØ. REF. ====	COMMENTS
B05.010.001A	3RPV-WR53	01/27/94	REC	· -	Y	
B05.010.001B	3RPV-WR53	01/27/94	REC	_	Y	
B05.010.002A	3RPV-WR53A	01/27/94	REC	_	Υ .	
B05.010.002B	3RPV-HR53A	01/27/94	REC	-	Y	

PROGRAM: NISIRUND-QAISIO4
FILE: CO07133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER B06

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

PAGE 7 DATE 04/11/94

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEØ. REF.	COMMENTS
B06.180.003	3RCP-3B1-F	01/17/94	CLR	-	_	
B06.180.004	3RCP-3B2-F	01/17/94	CLR	-		
B06.200.003	3RCP-381-NUTS	01/12/94	CLR	_	_	
B06.200.004	3RCP-3B2-NUTS	01/12/94	CLR	_		

PROGRAM: NISIRUND-QAISI04
FILE: C007133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER B07

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

PAGE 8 DATE 04/11/94

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEO. REF.	COMMENTS
B07.070.018	3-50-LP131	01/13/94	CLR	-		
B07.080.001	3RPV-CRD-BOLTS	01/24/94	REC	-	N	######################################
B07.080.002	3RPV-CRD-RINGS	01/24/94	REP	_	N	

PAGE 9 DATE 04/11/94

PROGRAM: NISTROND-QAISIO4 FILE: COO7133 PLANT: OCCNEE UNIT 3 KEY: ITEM NUMBER B09

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEO. REF.	COMMENTS
B09.011.014	3PDA1-8	01/23/94	RĘC	-	γ .	
B09.011.028	3PDA2-8	01/22/94	CLR	-	_	
B09.011.042	3PDB1-8	01/24/94	REC	_	Y	
B09.011.056	3PDB2-8	01/26/94	REC	_	Y	
B09.011.057	3PHA-1 .	01/27/94	CLR	_	_	
B09.011.069	3PHB-1	01/24/94	CLR	_	_	
B09.011.104	3PSL-2	01/11/94	REC	_	Y	
B09.011.104A	3PSL-2	01/16/94	CLR	_	_	
B09.011.105	3PSL-3	01/11/94	REC	_	Y	
B09.011.105A	3PSL-3	01/06/94	CLR	_	_	
B09.011.106	3PSL-4	01/11/94	REC	_	Y	
B09.011.106A	3PSL-4	01/06/94	CLR	_	_	
B09.011.107	3PSL-6	01/11/94	REC	-	Y	
B09.011.107A	3PSL-6	01/06/94	CLR	-	_	
B09.011.108	3PSL-7	01/11/94	REC	_	Y	

PAGE 10 DATE 04/11/94

PROGRAM: NISIRUND-QAISIO4
FILE: C007133
PLANT: OCCNEE UNIT 3
KEY: ITEM NUMBER B09

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCCNEE 3 INSERVICE INSPECTION RESULTS RFO #14

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEØ. REF.	COMMENTS
B09.011.108A	3PSL-7	01/06/94	CLR	· <u>-</u>	-	
B09.011.151	3-53A-15.1-44	01/27/94	REC	Ĺ	Y	85.0% COVERAGE REF. RFR94-01
B09.011.159	3-53A-16-01	01/27/94	REC	L	Y	85.0% COVERAGE REF. RFR 94-01
B09.021.125	3-51A-63-30	01/16/94	CLR	- .	_	
B09.040.003	3-50-152-05	01/05/94	CLR	. -	· —	
B09.040.004	3-50-152-07	01/05/94	CLR			

PROGRAM: NISIRUND-QAISIO4
FILE: COO7133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER B13

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

PAGE 11 DATE 04/11/94

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEØ. REF. ====	COMMENTS
B13.010.001	3RPV-INT SUR	01/27/94	REC	L	_	
B13.030.001	3RPV-INTERNALS	01/20/94	REC	_	_	

PROGRAM: NISIRUND-QAISIO4
FILE: C007133
PLANT: CCONEE UNIT 3
KEY: ITEM NUMBER C01

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

PAGE 12 DATE 04/11/94

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEØ. REF. ====	COMMENTS
C01.020.001	3-CFTA-UH-SHL	01/24/94	REC	L	_	98.9% COVERAGE
C01.020.005	3-CFTB-LH-SHL	01/24/94	REC	L	_	96.6% COVERAGE
C01.030.005	3LPCB-SH-TUBE	12/01/93	CLR	L	_	100% COVERAGE OBTAINED

PROGRAM: NISIRUND-QAISIO4
FILE: C007133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER C02

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

PAGE 13 DATE 04/11/94

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEO. REF.	COMMENTS
C02.021.006	3-CFTB-OUTLET	01/29/94	CLR	L	_	92.88% COVERAGE
C02.021.006A	3-CFTB-OUTLET	01/24/94	CLR	-	_	REF PIR 4-091-0093 SECT 10
C02.022.006	3-CFTB-OUTLET	01/29/94	CLR	L		RFR 94-01 (72% COVERAGE)

PROGRAM: NISITUND-QAISIO4 FILE: C007133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER C03

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

PAGE 14 DATE 04/11/94

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEO. REF.	COMMENTS
C03.010.017	3-CFTA-HT18-X	01/25/94	CLR	_	_	
C03.010.022	3-CFTB-WT18-W	01/24/94	CLR	_	_	-

PAGE 15 DATE 04/11/94

PROGRAM: NISIRUND-QAISIO4

FILE: C007133

PLANT: OCONEE UNIT 3

KEY: ITEM NUMBER C05

PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEØ. REF. ====	COMMENTS
C05.011.002	3-53B-33-58	01/24/94	CLR	_	_	
C05.011.003	3-53B-33-56	01/24/94	CLR	_	_	
C05.011.065	3-53B-47-08	12/13/93	CLR	-	_	
C05.011.066	3-53B-47-02	12/13/93	CLR	- -	_	
C05.011.074	3-53B-50-42	12/09/93	CLR	-		
C05.011.075	3-538-50-26	01/25/94	CLR	· _	_	
C05.011.232	3~54B-8-36	12/13/93	CLR	-		
C05.011.233	3-54B-8-36A	12/13/93	CLR		_	
C05.011.234	3-54B-8-43	01/16/94	CLR	-	_	,
C05.011.235	3-54B-6-32	01/05/94	CLR	-	_	
C05.011.236	3-54B-6-23A	01/05/94	CLR	_	_	
C05.011.237	3-54B-6-23	01/05/94	CLR	-	_	
C05.011.269	3-51A-50-44	01/24/94	CLR	~	- ,	
C05.012.062	3-54B-6-23AL	01/20/94	CLR		_	:
C05.012.063	3-54B-6-23L	01/20/94	CLR	_	_	

PROGRAM: NISIRUND-QAISIO4
FILE: COO7133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER CO5

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

PAGE 16 DATE 04/11/94

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEO. REF.	COMMENTS
C05.012.064	3-53B-33-58L	01/24/94	CLR	_	***	
C05.012.065	3-53B-33-56L	01/24/94	CLR	-	•	
C05.012.065A	3-53B-33-56L1	01/24/94	CLR	-	_	
C05.012.066	3-53B-50-26L	01/25/94	CLR	_	_	
C05.021.001	3-53A-15.2-76	01/04/94	REC	_	Y	
C05.021.001A	3-53A-15.2-76	12/13/93	CLR			

PROGRAM: NISIRUND-QAISIO4
FILE: C007133
PLANT: 0CONEE UNIT 3
KEY: ITEM NUMBER E03

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

PAGE 17 DATE 04/11/94

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEØ. REF.	COMMENTS
E03.001.003	3RCP-3A2	01/13/94	CLR	_	N .	INSP PER REQ.FOR REL.ONS-010
E03.001.004	3RCP-3B1	01/12/94	CLR	_	N	INSP PER REQ.FOR REL.ONS-010

PROGRAM: NISIRUND-QAISIO4
FILE: C007133
PLANT: OCONEE UNIT 3
KEY: ITEM NUMBER E05

DUKE POWER COMPANY
QUALITY ASSURANCE DEPARTMENT
PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM
OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

PAGE 18 DATE 04/11/94

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEØ. REF.	COMMENTS
E05.001.002	3PSL-133	01/11/94	CLR	_	_	
E05.001.003	3PSL-142	01/11/94	CLR		_	

PAGE 19 DATE 04/11/94

PROGRAM: NISIRUND-QAISIO4
FILE: C007133
PLANT: 0C0NEE UNIT 3
KEY: ITEM NUMBER E09

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

ITEM NUMBER	ID NUMBER	INSPECTION DATE	INSPECTION STATUS	INSPECTION LIMITED	GEØ. REF.	COMMENTS
E09.001.014	3-03A-147-10	01/18/94	CLR	_	_	
E09.001.015	3-03A-147-4VEN	01/18/94	CLR	_	· _	
E09.001.016	3-03A-147-12	01/18/94	CLR	_	-	
E09.001.017	3-03A-147-5VEN	01/18/94	CLR	-	_	
E09.001.018	3-03A-147-14	01/18/94	CLR		-	
E09.001.019	3-03A-147-6VEN	01/18/94	CLR	_	_	
E09.001.020	3-03A-147-4	01/18/94	CLR	-	_	
E09.001.021	3-03A-147-7VEN	01/18/94	CLR		_	
E09.001.022	3-03A-147-6	01/18/94	CLR	_	_	Part
E09.001.023	3-03A-147-8VEN	01/18/94	CLR	-		
E09.001.024	3-03A-147-8	01/18/94	CLR	_		
E09.001.025	3-03A-147-9VEN	01/18/94	CLR	_		
E09.001.026	3-03A-147-1VEN	01/19/94	CLR	_	_	
E09.001.027	3-03A-147-16	01/19/94	CLR	_	_	

PROGRAM: NISIRUND-QAISIO4 FILE: C007133 PLANT: OCONEE UNIT 3 KEY: ITEM NUMBER F1.

DUKE POWER COMPANY QUALITY ASSURANCE DEPARTMENT PRE-SERVICE AND IN-SERVICE INSPECTION SYSTEM OCONEE 3 INSERVICE INSPECTION RESULTS RFO #14

PAGE 20 DATE 04/11/94

ITEM NUMBER	ID NUMBER	INSPECTION DATE ========	INSPECTION STATUS	INSPECTION LIMITED	GEØ. REF.	COMMENTS
F1.01.140	3SGA-SKIRT	01/10/94	REC	- ,	_	
F1.01.141	3SGB-SKIRT	01/10/94	REC	_	_	

B. Items examined by Pressure Testing

Item Number = ASME Section XI Tables IWB-2500-1

(Class 1), IWC-2500-1 (Class 2)

Drawing = Number of the Flow Diagram

Examination Date = Latest examination date

Condition = Partial or Complete test

Status = Clear, Recordable or Reportable

Comments = General and/or Detail Description

PAGE NO 04/05/94

OCONEE UNIT NUMBER 3 CLASS A (CATEGORY B-P) RESULTS FOR OUTAGE NUMBER 14

ITEM NO.	DRAWING	DATE LAST EXAMINED	CONDITION	STATUS	COMMENTS
B15.011.001	OFD-100A-3.1	02/24/94	COMPLETE	CLEAR	
B15.021.001	OFD-100A-3.2	02/24/94	COMPLETE	CLEAR	
B15.031.001	OFD-100A-3.1	02/24/94	COMPLETE	CLEAR	•
B15.031.002	OFD-100A-3.1	02/24/94	COMPLETE	CLEAR	
B15.041.001	OFD-101A-3.1	02/24/94	COMPLETE	CLEAR	
B15.041.002	OFD-101A-3.1	02/24/94	COMPLETE	CLEAR	
B15.050.003	OFD-101A-3.4	02/24/94	COMPLETE	CLEAR	
B15.051.001	OFD-100A-3.1	02/24/94	COMPLETE	CLEAR	
B15.051.001A	OFD-100A-3.2	02/24/94	COMPLETE	CLEAR	
B15.051.002	OFD-101A-3.1	02/24/94	COMPLETE	CLEAR	
B15.051.003	OFD-101A-3.4	02/24/94	PARTIAL	RECORDABLE	
B15.051.004	OFD-102A-3.1	02/24/94	COMPLETE	RECORDABLE	
B15.051.005	OFD-102A-3.2	02/24/94	COMPLETE	CLEAR	
B15.051.006	OFD-102A-3.3	02/24/94	COMPLETE	CLEAR	
B15.051.007	OFD-110A-3.1	02/24/94	COMPLETE	CLEAR	
B15.051.009	OFD-100A-3.3	02/24/94	COMPLETE	CLEAR	
B15.051.010	OFD-110A-3.4	02/24/94	COMPLETE	CLEAR	, (
B15.061.001	OFD-100A-3.1	02/24/94	COMPLETE	CLEAR	
B15.061.002	OFD-100A-3.1	02/24/94	COMPLETE	CLEAR	
B15.061.003	OFD-100A-3.1	02/24/94	COMPLETE	RECORDABLE	
				· ·	ا (غايش ر

PAGE N 04/05/94

OCONEE UNIT NUMBER 3 CLASS A (CATEGORY B-P) RESULTS FOR OUTAGE NUMBER 14

ITEM NO.	DRAWING	DATE LAST EXAMINED	CONDITION	STATUS	COMMENTS
B15.061.004	OFD-100A-3.1	02/24/94	COMPLETE	CLEAR	

OCONEE UNIT NUMBER 3 CLASS B (CATEGORY C-H) RESULTS FOR OUTAGE NUMBER 14

ITEM NO.	DRAWING	DATE LAST EXAMINED	CONDITION	STATUS	COMMENTS
C07.011.001	OFD-121B-3.3	02/24/94	COMPLETE	CLEAR	
C07.011.002	OFD-121B-3.3	02/24/94	COMPLETE	CLEAR	
C07.011.003	OFD-102A-3.3	02/24/94	COMPLETE	CLEAR	
C07.011.004	OFD-102A-3.3	02/24/94	COMPLETE	CLEAR	
C07.021.003	OFD-101A-3.2	11/10/93	COMPLETE	CLEAR	
C07.021.004	OFD-101A-3.3	02/06/94	PARTIAL	CLEAR	
C07.021.005	OFD-101A-3.4	02/24/94	PARTIAL	CLEAR	
C07.021.007	OFD-102A-3.1	01/31/94	COMPLETE	CLEAR	
C07.021.008	OFD-102A-3.2	01/31/94	COMPLETE	CLEAR	
C07.021.009	OFD-102A-3.3	02/24/94	COMPLETE	CLEAR	
C07.021.011	OFD-104A-3.1	10/20/92	COMPLETE	CLEAR	
C07.021.017	OFD-110A-3.1	02/24/94	COMPLETE	CLEAR	
C07.021.019	OFD-116A-3.1	02/17/94	COMPLETE	CLEAR	See PIP Number 3-094-0425
C07.021.020	OFD-116C-3.1	02/01/94	COMPLETE	CLEAR	
C07.021.021	OFD-121B-3.3	02/24/94	COMPLETE	CLEAR	
C07.021.022	OFD-121B-3.5	02/24/94	COMPLETE	RECORDABLE	
C07.021.023	OFD-121D-3.1	02/24/94	COMPLETE	CLEAR	
C07.021.024	OFD-121D-1.2	02/07/94	COMPLETE	CLEAR	
C07.021.025	OFD-122A-3.1	02/24/94	COMPLETE	RECORDABLE	
C07.021.026	OFD-122A-3.2	02/24/94	COMPLETE	CLEAR	

PAGE NO. 2

OCONEE UNIT NUMBER 3 CLASS B (CATEGORY C-H) RESULTS FOR OUTAGE NUMBER 14

ITEM NO.	DRAWING	DATE LAST EXAMINED	CONDITION	STATUS	COMMENTS
C07.021.027	OFD-122A-3.3	02/24/94	COMPLETE	CLEAR	
C07.021.028	OFD-122A-3.4	02/24/94	COMPLETE	CLEAR	
C07.021.029	OFD-122B-3.1	02/24/94	COMPLETE	CLEAR	
C07.021.032	OFD-127B-3.2	02/15/94	COMPLETE	CLEAR	
C07.021.033	OFD-137A-3.2	02/15/94	COMPLETE	CLEAR	
C07.021.034	OFD-137B-1.2	02/01/94	COMPLETE	CLEAR	

PAGE 1 04/05/

OCONEE U NUMBER 3 CLASS C (CATEGORY D-A) RESULTS FOR OUTAGE NUMBER 14

ITEM NO.	DRAWING	DATE LAST EXAMINED	CONDITION	STATUS	COMMENTS
D01.012.002	OFD-101A-3.1	02/06/94	COMPLETE	CLEAR	
D01.012.003	OFD-101A-3.2	01/08/94	COMPLETE	CLEAR	
D01.012.007	OFD-106A-3.2	10/20/92	COMPLETE	CLEAR	
D01.012.008	OFD-109A-3.1	11/03/93	PARTIAL	CLEAR	Reference TER 3.4.3.4 for Request for Relief testing.

OCONEE UNIT NUMBER 3 CLASS C (CATEGORY D-B) RESULTS FOR OUTAGE NUMBER 14

ITEM NO.	DRAWING	DATE LAST EXAMINED	CONDITION	STATUS	COMMENTS	_
D02.012.001A	OFD-110A-3.3	11/09/93	PARTIAL	CLEAR		_
D02.012.003	OFD-121A-3.7	02/05/94	COMPLETE	CLEAR		
D02.012.005	OFD-121B-3.3	02/24/94	COMPLETE	CLEAR		
D02.012.006	OFD-121B-3.5	02/07/94	PARTIAL	CLEAR		
D02.012.007	OFD-121D-3.1	02/09/94	COMPLETE	CLEAR		
D02.012.008	OFD-121D-1.2	02/09/94	COMPLETE	CLEAR		
D02.012.022	OFD-124A-3.1	01/26/94	COMPLETE	RECORDABLE		
D02.012.023	OFD-124A-3.3	01/26/94	COMPLETE	CLEAR		
D02.012.024	OFD-124B-3.1	02/05/94	COMPLETE	RECORDABLE		
D02.012.025	OFD-124B-3.2	01/26/94	COMPLETE	CLEAR		
D02.012.026	OFD-124B-3.4	01/26/94	COMPLETE	CLEAR		
D02.012.027	OFD-124A-1.1	01/26/94	COMPLETE	CLEAR	•	
D02.012.029	OFD-124C-3.2	02/05/94	COMPLETE	CLEAR	÷ .	

OCONEE UNIT NUMBER 3 CLASS C (CATEGORY D-C) RESULTS FOR OUTAGE NUMBER 14

ITEM NO.	DRAWING	DATE LAST EXAMINED	CONDITION	STATUS	COMMENTS
D03.012.001	OFD-104A-3.1	11/02/93	COMPLETE	CLEAR	,
D03.012.002	OFD-104A-3.2	11/02/93	COMPLETE	CLEAR	

5.2 Limited examinations (i.e., less than 90% of the required examination coverage obtained) identified during Outage 14 are shown below. A copy of the Request for Relief is contained in Section 9.0 of this report

	•
<u>Item Number</u>	Request for Relief Serial Number
B01.011.003	94-01
B01.021.002	94-01
B01.030.001	94-01
B03.090.001	94-01
B03.090.001A	94-01
B03.090.002	94-01
B03.090.002A	94-01
B03.090.003	94-01
B03.090.003A	94-01
B03.090.004	94-01
B03.090.004A	94-01
B03.090.005	94-01
B03.090.005A	94-01
B03.090.006	94-01
B03.090.006A	94-01
B03.090.007	94-01
B03.090.007A	94-01
B03.090.008	94-01
B03.090.008A	94-01
B03.100.001	94-01
B03.100.002	94-01
B03.100.003	94-01
B03.100.004	94-01
B03.100.005	94-01
B03.100.006	94-01
B03.100.007	94-01
B03.100.008	94-01
B03.110.009	94-01
B03.110.011	94-01
B03.110.012	94-01
B03.120.009	94-01
B03.120.011	94-01
B03.120.012	94-01
B03.140.002	94-01
B03.140.005	94-01
B03.140.006	94-01
C02.022.006	94-01

6.0 Reportable Indications

Outage 14 had one reportable indication. Item Number B07.080.002 (3RPV-CRD-RINGS) had to be replaced due to degradation of the material. Reference Request for Relief Serial Numbers ONS-011 and ONS-012 in Section 9 of this report.

7.0 Personnel, Equipment and Material Certifications

All personnel who performed or evaluated the results of inservice inspections from September 26, 1992 to February 24, 1994 at Oconee Nuclear Station, Unit 3, were certified in accordance with the requirements of 1980 Edition of ASME Section XI with Addenda through Winter 1980. The appropriate certification records for each Duke Power Company inspector are on file at Oconee Nuclear Station or copies can be obtained by contacting Duke Power's Corporate Office in Charlotte, North Carolina. The certification records for the Babcock & Wilcox inspectors are on file at the Babcock & Wilcox Offices in Lynchburg, Virginia.

Records of periodic calibration of Duke Power Company inspection equipment are on file at Oconee Nuclear Station or copies can be obtained by contacting Duke Power's Corporate Office in Charlotte, North Carolina. Records of periodic calibration of Babcock & Wilcox inspection equipment are on file at the Babcock & Wilcox Offices in Lynchburg, Virginia.

8.0 Corrective Action

Problem Investigation Process report serial numbers 3-O94-0150, 0-O94-0155 and 3-094-0425 were originated during Outage 14. Copies of these reports are contained in Section 9 of this report.

9.0 Reference Documents

The following reference documents apply to the inservice inspection performed during Outage 14 at Oconee 3.

B&W's Reactor Vessel Examination Report (Copy not included, due to size of report. This report can be reviewed by contacting Duke Power's Corporate Office in Charlotte, North Carolina).

Duke Power Company Request for Relief ONS-011

Duke Power Company Request for Relief ONS-012

Duke Power Company Request for Relief 92-14

Duke Power Company Request for Relief 94-01

TER 3.4.3.4 Request for Relief

Problem Investigation Process Report, Serial Number 3-O94-0150

Problem Investigation Process Report, Serial Number 0-094-0155

Problem Investigation Process Report, Serial Number 3-094-0425

Page 1 of 3

Duke Power Company Oconee Nuclear Station Second Ten Year Interval Request for Relief 88-10

I. Component for which relief is requested: 4

Control Rod Drive Mechanism (CRDM) motor tube to nozzle pressure retaining bolting.

ISI Class 1 Duke Class A

II. Reference Code requirement that has been determined to be impractical:

ASME Boiler and Pressure Vessel Code Section XI, 1980 Edition (with Addenda through Winter 1980) paragraph IWB 2430(a) which requires that bolting showing indications exceeding the standards allowed by IWB-3000 require an additional number of components equivalent in number to that initially sampled be examined. The purpose of this Code requirement is to assure other CRDM bolting material is not degraded due to the same cause.

III. Basis for requesting relief:

During each refueling outage since December 1980 all CRDMs have been visually examined for evidence of RCS leakage. This inspection is documented as part of the Oconee response to Generic Letter 88-05 and IE Bulletin 82-02. During the Unit 3 end of cycle 11 refueling outage, 11 CRDMs exhibited evidence of RCS leakage (see attached figures). Each of these CRDMs were disassembled and examined pursuant to the requirements of Table IWB 2500 Item 87.80. This process involved approximately 24 person-rem of exposure.

Of the 11 disassembled CRDMs only 1/2 of 1 nut ring exceeded the criteria of IWB-3000. Damage to this nut ring was specifically due to corrosion as a result of exposure to RCS leakage. As a result of examined.

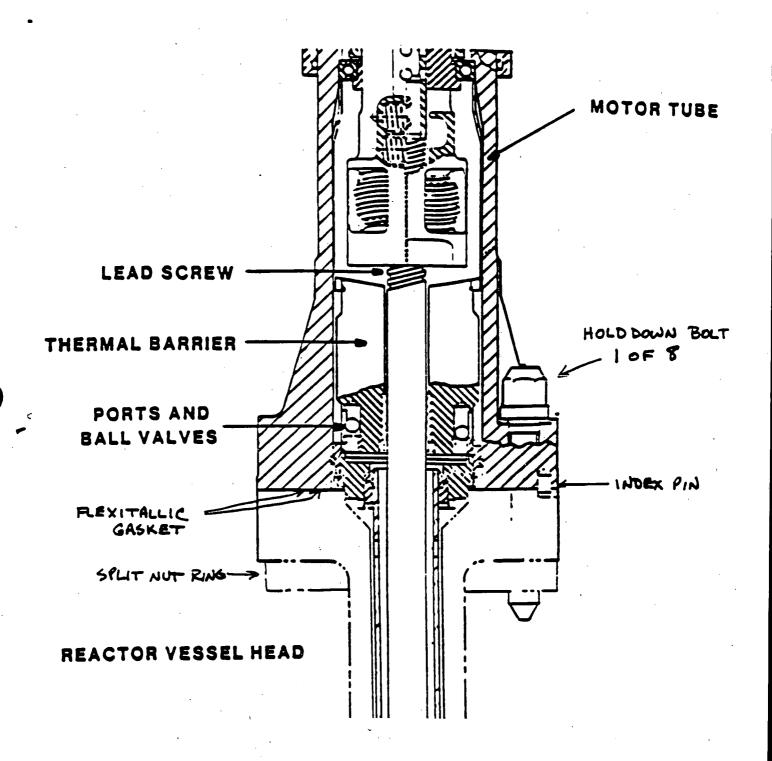
The requirements of IWB 2430(a) have been determined to be impractical, because it may unnecessarily require disassembly and VT-1 examination of CRDM bolting material which was not affected by RCS leakage. Further, disassembly and VT-1 examination of the additional CRDMs will involve approximately 20-25 person-rem of radiation exposure to personnel, as well as unnecessary extension of the Unit 3 end of cycle 11 refueling outage by approximately 15 days.

Request for Relief 89-10, Page 2

IV. Alternate Examination:

Each refueling outage all CRDM flanges will be visually examined per station procedures for evidence of leakage in compliance with the Oconee Nuclear Station response to NRC Generic Letter 85-05 and IE Bulletin 82-02. Corrective action will be based upon the results of those examinations, and will include replacement of all affected bolting. Inspection of any required additional samples of bolting material during CRDM maintenance not associated with flange leakage will be performed in accordance with the requirements of IWB-2430(a).

V. Acceptability of proposed alternate testing with respect to the level of quality and safety as well as public health and safety:


The Oconee Nuclear Station program for inspection of CRDMs for RCS leakage assures that CRDM bolting material exposed to RCS leakage will be replaced. Following CRDM disassembly for maintenance not associated with flange leakage, required additional samples will be examined in accordance with IWB-2430(a).

VI. Implementation schedule:

To be placed in effect for all Oconee units for the remainder of the interval commencing with the current Oconee Unit 3 end of cycle 11 refueling outage.

Serial No: CNS-011

Page 3 of 3

Page 1 of 3

Duke Power Company Oconee Nuclear Station Second Ten Year Interval Request for Relief 89-11

I. Component for which relief is requested:

Control Rod Drive Mechanism (CRDM) motor tube to nozzle pressure retaining bolting.

ISI Class I Duke Class A

II. Reference Code requirement that has been determined to be impractical:

ASME Boiler and Pressure Vessel Code Section XI, 1980 Edition (with Addenda through Winter 1980) Table IWB-2500 Item 87.80 which requires CRDM bolting material to undergo VT-1 visual examination when disassembled. The intent of this code requirement is to assure the disassembled bolting material is acceptable for re-use and to increase confidence that there is not a generic problem occurring that should be further investigated through additional inspections.

III. Basis for requesting relief:

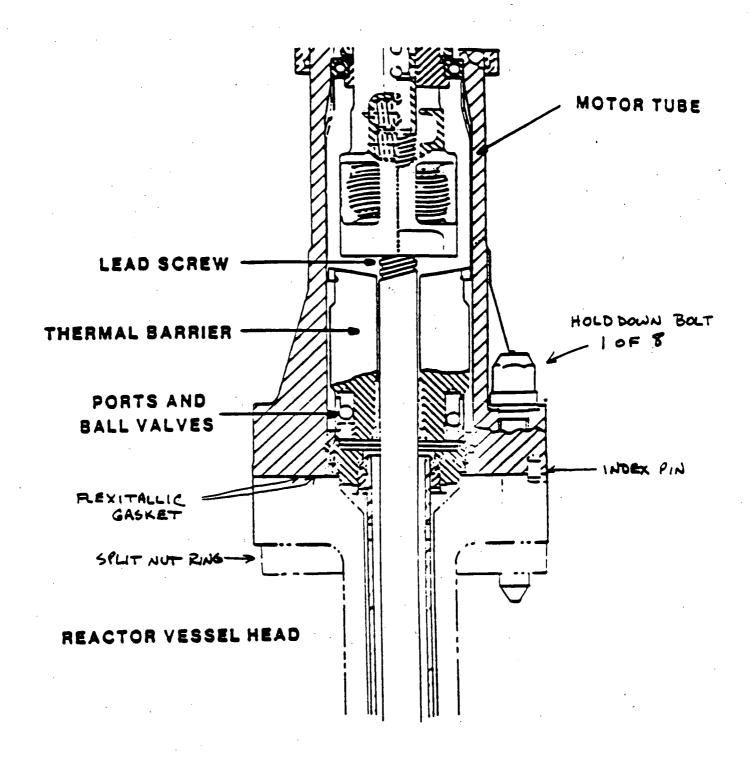
Per Oconee Nuclear Station Policy CRDM bolting material removed due to exposure to RCS leakage is not re-used because the excessive boron deposit degradation destroys it for further use. It is replaced during maintenance for flange leakage by new material that has a pre-service examination performed on it prior to installation. The boron deposit degradation makes it virtually impossible to perform a meaningful inservice inspection. As a result, table IWB 2500 Item 87.80 requirements for VT-1 examination of bolting material (when CRDMs are disassembled due to RCS leakage indications) are unnecessary since the material will not be re-used and is in no condition to disclose any possible generic problems. In addition VT-1 examination of the bolting material which will not be re-used involves significant unnecessary radiation exposure to personnel.

IV. Alternate examination:

Each refueling outage all CRDM flanges will be visually examined per station procedures for evidence of leakage in compliance with the Oconee Nuclear Station response to NRC Generic Letter 85-05 and IE Bulletin 82-02. Corrective action (including replacement of affected bolting) will be based upon the results of those examinations. Inspection of bolting material during CRDM maintenance not associated with flange leakage will be performed in accordance with the requirements of Table IWB 2500 Item B 7.80.

V. Acceptability of proposed alternate testing with respect to the level of quality and safety as well as public health and safety:

Automatic replacement of bolting material removes the necessity for examination of the material for continued service. Pre-service


Page 2 of 3

examination of replacement material ensures the achievement of an acceptable level of safety for the replacement material.

VI. Implementation schedule:

To be placed in effect for all Oconee Units for the remainder of the interval commencing with the upcoming, April 1990 Oconee Unit 1 end of cycle 12 refueling outage.

Page 3 of 3

CONTROL ROD DRIVE THERMAL BARRIER

MECHANISM

DUKE POWER COMPANY

Request for Relief From

Inservice Inspection Requirement

Station:

Oconee

Unit:

1, 2 and 3

Requesting Department:

Nuclear Generation Department

Reference Code:

ASME Section XI, 1980 Edition, with Winter 1980 Addenda

- I. Component for which exemption is requested:
 - a. Name and Identification Number: Letdown Coolers for Units 1, 2 and 3. The following Item Numbers are affected:

<u>UNIT 1</u>	<u>UNIT 2</u>	<u>UNIT 3</u>
B03.160.001	B03.160.001	B03.160.001
B03.160.002	B03.160.002	B03.160.002
B03.160.007	B03.160.003	B03.160.003
B03.160.008	. B03.160.004	B03.160.004

- b. Function: The letdown cooler reduces the temperature of the letdown flow from the Reactor Coolant System to a temperature suitable for demineralization.
- c. ASME Section XI Code Class: Class 1
- d. Construction Code and Class (If Applicable): NA
- e. Valve Category (If Applicable): NA
- f. Drawing Number: OM-201-3107

II. Reference Code Requirement that has been determined to be impractical:

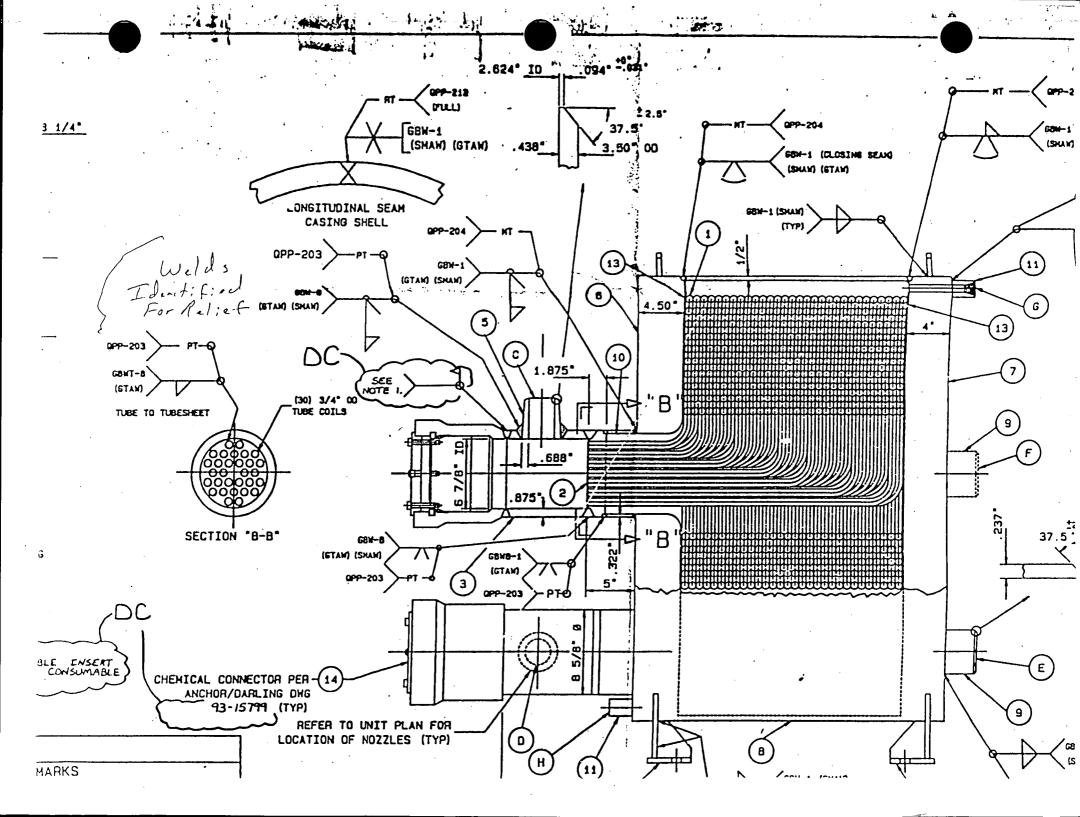
Table IWB-2500, Examination Category B-D, Item Number B3.160 This table requires that an inside radius volumetric examination be performed on heat exchanger nozzles.

III. Basis for Requesting Relief:

Due to the size and geometry of the nozzle inside radius on the Letdown Coolers we have been unable to perform a meaningful, (i.e., unable to get sound into the area of interest) volumetric examination.

IV. Alternate Examination:

Perform the volumetric examination on the weld volume, as required by ASME Section XI, Table IWB-2500-1, Examination Category B-D, Item Number B3.150. This will provide adequate assurance of the integrity of the welded connection.


The alternate proposed inservice testing will provide an acceptable level of quality and safety and ensures the level of public health and safety is not reduced.

V. Implementation Schedule:

DIIO YES				
RFO UNIT 1	RFO	UNIT 2	RFO	UNIT 3
9 B03.160.001	8	B03.160.001	11	
12 B03.160.002	13		1 11	B03.160.001
14 B03.160.007		B03.160.002	11	B03.160.002
~00.200.001	12	B03.160.003	14	B03.160.003
14 B03.160.008	13	B03.160.004	14	B03.160.004

Reviewed By: Date 11/23/92

Reviewed By: Date 11/23/92

DUKE POWER COMPANY

Request for Relief From

Inservice Inspection Requirement

Station: Oconee

Unit: 3

Requesting Department: Nuclear Generation

Reference Code: ASME Section XI, 1980 Edition, with the Winter 1980 Addenda

- I. Component for which exemption is requested:
 - a. Name and Identification Number:

Pressurizer Nozzle To Vessel Welds

Weld Numbers	Item Numbers
3PZR-WP26-1	B03.110.009
3PZR-WP26-3	B03.110.011
3PZR-WP26-7	B03.110.012

Pressurizer Nozzles, Inside Radius

Weld Numbers	Item Numbers
3PZR-WP26-1	B03.120.009
3PZR-WP26-3	B03.120.011
3PZR-WP26-7	B03.120.012

Steam Generator Nozzles, Inside Radius

Weld Numbers	Item Numbers
3SGA-WG50-1	B03.140.002
3SGA-WG25	B03.140.005
3SGB-WG25	B03.140.006

Core Flood Tank Nozzle, Inside Radius

Weld Number	Item Number
3-CFTB-Outlet	C02.022.006

Reactor Vessel

Weld Numbers	Item Numbers	Weld Numbers	Item Numbers
3RPV-WR18	B01.011.003	3RPV-WR12C	B03.090.006A
3RPV-WR34	B01.021.002	3RPV-WR54	B03.090.007
3RPV-WR19	B01.030.001	3RPV-WR54	B03.090.007A
3RPV-WR13	B03.090.001	3RPV-WR54A	B03.090.008
3RPV-WR13	B03.090.001A	3RPV-WR54A	B03.090.008A
3RPV-WR13A	B03.090.002	3RPV-WR12	B03.100.003
3RPV-WR13A	B03.090.002A	3RPV-WR12A	B03.100.004
3RPV-WR12	B03.090.003	3RPV-WR12B	B03.100.005
3RPV-WR12A	B03.090.003A	3RPV-WR12C	B03.100.006
3RPV-WR12A	B03.090.004	3RPV-WR54	B03.100.007
3RPV-WR12A	B03.090.004A	3RPV-WR54A	B03.100.008
3RPV-WR12B	B03.090.005		
3RPV-WR12B	B03.090.005A		
3RPV-WR12C	B03.090.006		

b. Function:

Pressurizer - Maintains the RCS pressure during operation & limits pressure changes during transients.

Steam Generator - Provides steam to the turbine.

Core Flood Tank - Core flooding tanks are provided as part of the ECCS to reflood the core during the initial stages of a LOCA resulting from large pipe breaks.

Reactor Vessel - Contains the fission process.

c. ASME Section XI Code Class:

Pressurizer, Steam Generator and Reactor Vessel - Class 1

Core Flood Tank - Class 2

d. Construction Code and Class (If Applicable):

Pressurizer (ASME Section III, 1965 with Summer 1967 Addenda, Class 1), Steam Generator (ASME Section III, 1965 with Summer 1967 Addenda, Class 1) Core Flood Tank, (USAS - B31.7, 1967 Class II) and Reactor Vessel, (ASME Section III, 1965 with Summer 1967 Addenda, Class 1)

e. Valve Category (If Applicable):

Not Applicable

II. Reference Code Requirement that has been determined to be impractical:

Figure IWB-2500-7, Examination Category B-D, Nozzle-to-Shell or Head Weld Joints - 100 % examination coverage.

Table IWB 2500-1, Examination Category B-A, Pressure Retaining Welds in Reactor Vessel, "Note 2: Includes 100% of the weld length"

Figure IWB-2500- 8, Examination Category B-J, Pressure Retaining Welds in Piping, "Note 3: Includes 100% of the weld length"

Figure IWC-2500-4, Examination Category C-B, Nozzle-to-Shell or Head Weld Joints - Inside Radius Section

III. Basis for Requesting Relief:

The Construction Permit for Oconee was issued on November 6, 1967. 10 CFR 50.55a(g) allows for plants whose Construction Permit was issued prior to January 1, 1971 to meet the requirements of ASME Section XI to the extent practical within the limitations of design, geometry and materials of construction of the components.

Due to part geometry and actual physical barriers, obtaining examination coverage on at least 90% of the weld volume as required by ASME Section XI, 1980 Edition as modified by Code Case N-460 was not possible.

The attached examination reports document the amount of Code required examination coverage obtained. To supplement this coverage, additional non-Code examination UT techniques were used in an effort to obtain as much examination coverage as possible.

The Reactor Coolant System meets the design requirements specified in 10 CFR 50 Appendix A (addressed in Chapter 3 of Oconee's Final Safety Analysis Report) and is constructed so as to have an exceedingly low probability of a gross rupture or significant leakage throughout its design life. Additionally, the reactor containment building is designed to sustain the initial effects of gross equipment failure. Technical Specification 3.1.6 limits the amount of acceptable leakage in the reactor containment building. Specifically, Technical Specification 3.1.6.2 limits unknown reactor coolant leakage to 1 gallon per minute, if that value is exceeded, then the reactor must be brought to cold shutdown within 24 hours.

All of the welds contained in this request are located within the reactor containment building. The reactor containment building is designed to contain any leakage, so if these were to fail any release would be contained within the reactor containment building. Section 15.14 of the FSAR addresses the loss of coolant accident and documents that any releases that

Based on the above evaluations, not meeting the requirements of ASME Section XI while performing these examinations will not endanger the health and safety of the general public.

IV. Alternate Examination:

The Class 1 welds will be included in the Class 1 pressure test performed at the end of each refueling outage. The Class 2 weld on the Core Flood Tank Nozzle has been examined by means of the system pressure test as required by Paragraph IWC-5000, ASME Section XI, 1980 Edition with Winter 1980 Addenda.

The use of radiography as an alternate volumetric examination method is not possible on pressure vessel welds, due to the impracticality of using double wall technique, no location to place film, etc.). Additionally, inservice radiography on pipe welds, in some cases will not be feasible due to physical barriers that would prohibit gaining access for the placement of number bands, film, etc.

Ultrasonic examinations will continued to be performed to the maximum extent possible during future inservice inspections.

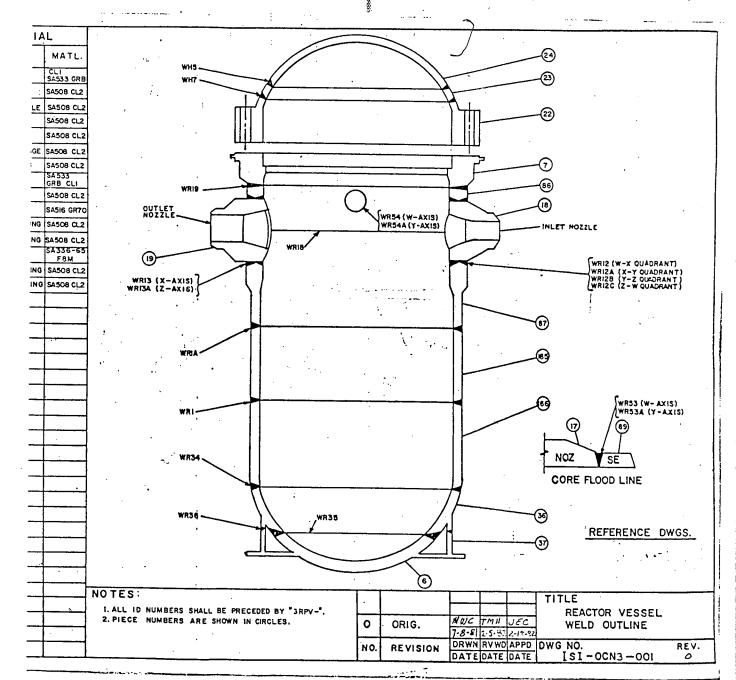
V. Implementation Schedule:

Unit 3, Refueling Outage 14 (current outage December 1993 thru February 1994).

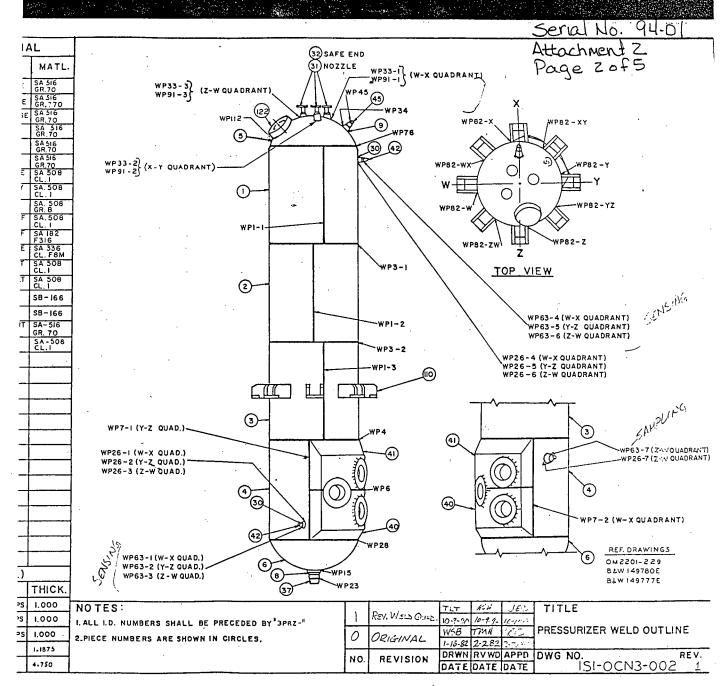
Evaluated By:	R/8 Rouse	_ Date	3/24/94
Level III Review:	James Mc Galler	Date	3/28/94
Component Engineering Review:	1. J. Coleman	Date	4/4/94
Reviewed By:	20Bardiour	Date	3/24/94

Item No.	Exam Category/	System Or		Area To Be		Proposed Alternate
B01.011.003	Figure No.	Component	Function	Examined	Reason for Request	Examination
	B-A Figure IWB-2500-1	Reactor Vessel	Contains the fission process	Circ, Shell Weld	Limited scan due to weld location being between nozzles, 13" below the nozzle centerline. Actual coverage obtained = 73,4%.	None
B01.021.002	B-A Flgure IWB-2500-3	Reactor Vessel	Contains the fission process	Circ. Head Weld	Limited scan due to Core catcher lugs Actual coverage obtained = 43.5%.	None
B01.030.001	B-A Flgure IWB-2500-4	Reactor Vessel	Contains the fission process	Shell to Flange Weld	Limited scan due to location of clad patches. Actual coverage obtained in the areas of thlese patches= 67.9%.	None
B03.090.001	B-D Flgure IWB-2500-7	Reactor Vessel	Contains the fission process	Outlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 47.6%.	None
B03.090.001A	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Outlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 47.6%.	None
B03.090.002	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Outlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 47.6%.	None
B03.090.002A	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Outlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 47.6%.	None
B03.090.003	B-D Flgure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 71.7%.	None
B03.090.003A	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 71.7%.	None
B03.090.004	B-D Flgure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 71.7%.	None
B03.090,004A	B-D Flgure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 71,7%.	None
B03.090.005	B-D Flgure IWB-2500-7	Reactor Vessel	Contains the fission process	inlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 71.7%.	None
B03.090,005A	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 71.7%.	None

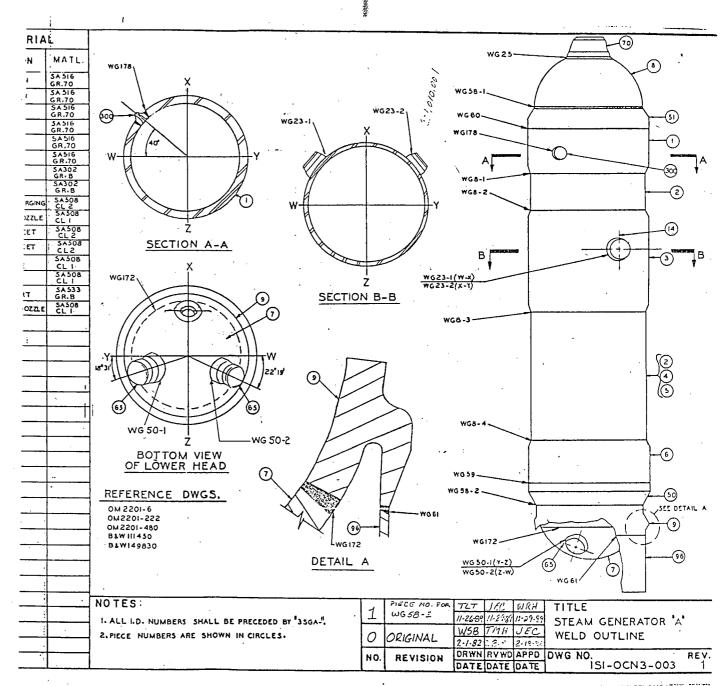
Item NoI	Exam Category Flgure No.	System Of Component	Function	Area To Be Exalmined	Reason for Request	Proposed · Alternate Examination
B03.090.006	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 71.7%.	None
B03.090.006A	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 71.7%.	None
B03.090.007	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Core Flood Nozzle to Shell Weld	Limited scan due to part geometry (Core Flood Nozzle is blocked by flange taper on top side). Actual coverage obtained = 87.9%.	None
B03.090.007A	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Core Flood Nozzle to Shell Weld	Limited scan due to part geometry (Core Flood Nozzle is blocked by flange taper on top side). Actual coverage obtained = 87.9%.	None
B03.090.008	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Core Flood Nozzle to Shell Weld	Limited scan due to part geometry (Core Flood Nozzle is blocked by flange taper on top side). Actual coverage obtained = 87,9%.	None
B03.090.008A	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Core Flood Nozzle to Shell Weld	Limited scan due to part geometry (Core Flood Nozzle Is blocked by flange taper on top slde). Actual coverage obtained = 87.9%.	None
B03.100.003	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld Inside Radius	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 68.4%.	None
B03.100.004	B-D Flgüre IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld Inside Radius	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 68.4%.	None
B03.100.005	B-D Flgure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld Inside Radius	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 68.4%.	None
B03.100.006	B-D Flgure IWB-2500-7	Reactor Vessel	Contains the fission process	Inlet Nozzle to Shell Weld Inside Radius	Limited scan due to part geometry (nozzle configuration). Actual coverage obtained = 68.4%.	None
B03.100.007	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Core Flood Nozzle to Shell Inside Radius	Limited scan due to part geometry (Core Flood Nozzle is blocked by flange taper on top side). Actual coverage obtained = 50%.	None

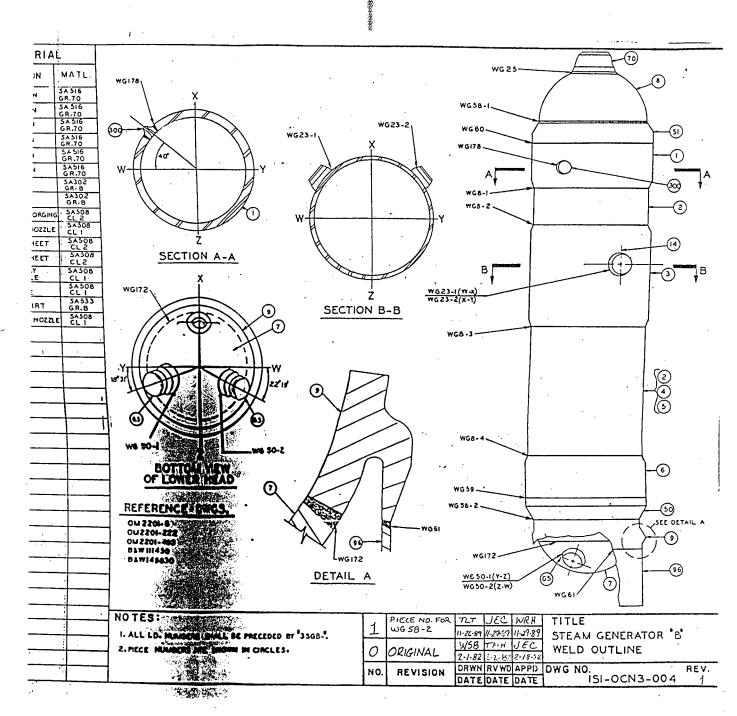


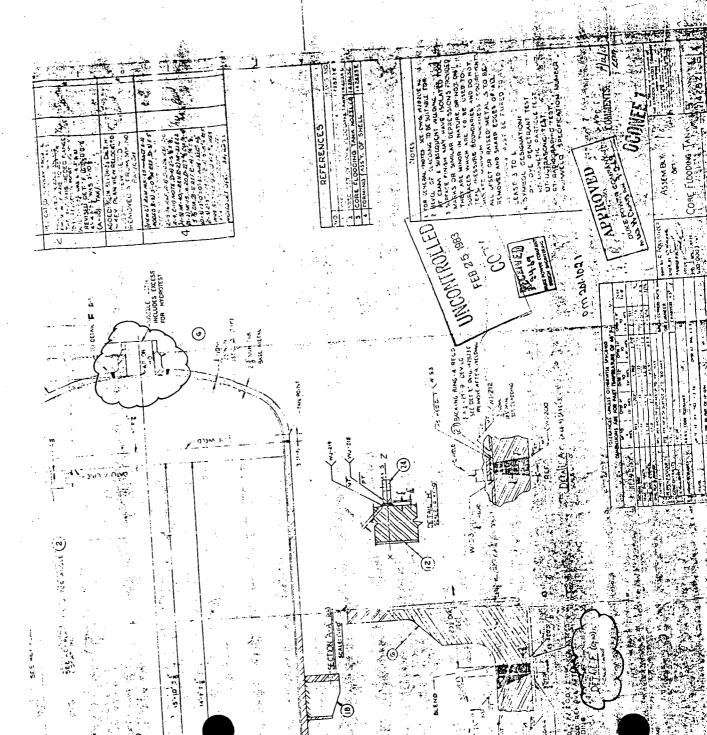
Item No.	Exam Category/ Flgure No.	System Or Component	Function	Area To Be Examined	Reason for Request	Proposed Alternate Examination
B03.100.008	B-D Figure IWB-2500-7	Reactor Vessel	Contains the fission process	Core Flood Nozzle to Shell inside Radius	Limited scan due to part geometry (Core Flood Nozzle Is blocked by flange taper on top side). Actual coverage obtained = 50%.	None
B03.110.009	B-D Flgure IWB2500-7	Pressurizer	Maintains the RCS pressure during operation & limits pressure changes during transients	Nozzle to vessel weld	Limited scan due to part geometry (nozzle configuration, heater bundle and lower head), Actual coverage obtained = 34,39%.	None
B03.110.011	B-D Figure IWB2500-7	Pressurizer	Maintains the RCS pressure during operation & limits pressure changes during transients	Nozzle to vessel weld	Limited scan due to part geometry (head configuration). Actual coverage obtained = 35.5%.	None
B03.110.012	B-D Flgure IWB2500-7	Pressurizer	Maintains the RCS pressure during operation & ilmits pressure changes during transients	Nozzle to vessel weld	Limited scan due to part geometry ((nozzle configuration, heater bundle and lower head). Actual coverage obtained = 34.39%.	None
B03.120.009	B-D Flgure IWB2500-7	Pressurizer	Maintains the RCS pressure during operation & limits pressure changes during transients	Nozzle inside radius	Limited scan due to part geometry (heater bundle). Actual coverage obtained = 60.6%.	None
803.120.011	B-D Flgure IWB2500-7	Pressurizer	Maintains the RCS pressure during operation & limits pressure changes during transients	Nozzle Inside radius	Limited scan due to part geometry (heater bundle). Actual coverage obtained = 66.7%.	None
B03.120.012	B-D Figure IWB2500-7	Pressurizer	Maintains the RCS pressure during operation & limits pressure changes during translents	Nozzle Inside radius	Limited scan due to part geometry (heater bundle). Actual coverage obtained = 60.6%.	None
B03. 140.002	B-D Flgure IWB2500-7	Steam Generator A	Provides steam to the turbine	Outlet nozzle Inside radius	Limited scan due to part geometry (support skirt). Actual coverage obtained = 80%.	None
303.140.005	B-D Figure IWB2500-7	Steam Generator A	Provides steam to the turbine	Inlet nozzle inside radius	Limited scan due to part geometry (support skirt). Actual coverage obtained = 74%,	None
B03. 140.006	B-D Flgure IWB2500-7	Steam Generator B	Provides steam to the turbine	Inlet nozzle Inside radius	Limited scan due to part geometry (support skirt). Actual coverage obtained = 74%.	None



Item No.	Exam Category / Figure No.	System Or Component	Function	Area To Be Examined	Feason for Request	Proposed Alternate Examination
C02.022.006	C-B Flgure IWC-2500-4		Part of the ECCS to re-flood the core during the initial stages of a LOCA resulting from large pipe breaks	Nozzle to Shell Inside radius	Limited scan due to part geometry. Actual coverage obtained = 72%.	None


Serial No. 74.01 Attachment 2 Page 1 of 5


UNCONTROLLED


Serial No. 94=01 Attachment 2 Page 3 of 5

Serial No. 94-01 Attachment 2 Page 4 of 5

CORE FLOODING TANK

Attachment 3
Page 10f 8

Station Marche Unit 3 I.D. # 3 Per-WP2G-1 By Date Date Date Page 3 of 10 DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME INSPECTED (in percentage) Total Cross Sectional Area@///x (Number of Scans)_// = 622.2/ (% Factor) Vessels: Area Loss : Zone #1 83./3 Zone #2 94.82 Zone #3 255.84 Total Zone Loss 433.79 /(% Factor) 622.2/ x 100 = 64.5 % of Loss Lump Sum Loss From Other Limitations + /.// % Total Loss 65.6/ = 34.37.% of Coverage (Additional 0.9% of Partial Coverage) Qualifies for Request for Relief Yes No Piping: xial Scan (Loss) // (% Factor) x 100 = % of Loss Axial Loss + Circ. Loss // (% Factor) x 100 = % of Loss Axial Loss + Circ. Loss // (% Factor) x 100 = % of Loss Axial Loss + Circ. Loss // (% Factor) x 100 = % of Loss Axial Loss + Circ. Loss // (% Factor) x 100 = % of Loss Axial Loss + Circ. Loss // (% Factor) x 100 = % of Loss Axial Loss + Circ. Loss // (% Factor) x 100 = % of Loss Axial Loss + Circ. Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss Axial Loss // (% Factor) x 100 = % of Loss
Date Page 3 of 10 Determining the Cumulative total of weld volume inspected (in percentage) Total Cross Sectional Area@///x (Number of Scans)_//_ = &22,21 (% Factor) Vessels: Area Loss: Zone #1 83./3 Zone #2 94.82 Zone #3 255.84 Total Zone Loss 433.79 /(% Factor) 622.21 x 100 = 64.5 % of Loss Lump Sum Loss From Other Limitations + //// % Total Loss 6.60 % 100% - (Total Loss) 65.61 = 34.39 % of Coverage (Additional % of Partial Coverage) Qualifies for Request for Relief
DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME INSPECTED (in percentage) Total Cross Sectional Area@///_x (Number of Scans)_// = 622.2/_ (% Factor) Vessels: Area Loss: Zone #183./3
Total Cross Sectional Area X (Number of Scans) = 672.21 (% Factor) Vessels: Area Loss: Zone #1 83.73 Zone #2 94.82 Zone #3 255.84 Total Zone Loss 433.79 /(% Factor) 622.21 x 100 = 64.5 % of Loss Lump Sum Loss From Other Limitations + 1.77 % Total Loss 65.67 = 34.39.% of Coverage (Additional 0 % of Partial Coverage) Qualifies for Request for Relief Yes No Piping: xial Scan (Loss) / (% Factor) x 100 = % of Loss Circumferential Scan Over Root Area Yes No % of Loss Axial Loss + Circ. Loss = /2 = % Karlon Axial Loss / (2 = /2 = % Karlon King percentage) // (% Factor) x 100 = % of Loss Axial Loss
Vessels: Area Loss: Zone #1
Zone #2 94.82 Zone #3 255.84 Total Zone Loss 433.79 /(% Factor) 672.21 x 100 = 64.5 % of Loss Lump Sum Loss From Other Limitations + /.// % Total Loss 65.6/ % 100% - (Total Loss) 65.6/ = 34.39.% of Coverage (Additional 0% of Partial Coverage) Qualifies for Request for Relief ⊠ Yes □ No Piping: xial Scan (Loss) / (% Factor) x 100 = % of Loss Circumferential Scan Over Root Area □ Yes □ No — % of Loss Axial Loss + Circ. Loss = /2 = % Loss Additional Losses (Due to hangers, restraints, etc.) + % Loss Explain: □ Total % Loss
Zone #2 94.82 Zone #3 255.84 Total Zone Loss 433.79 /(% Factor) 672.21 x 100 = 64.5 % of Loss Lump Sum Loss From Other Limitations + /.// % Total Loss 65.6/ % 100% - (Total Loss) 65.6/ = 34.39.% of Coverage (Additional 0% of Partial Coverage) Qualifies for Request for Relief ⊠ Yes □ No Piping: xial Scan (Loss) / (% Factor) x 100 = % of Loss Circumferential Scan Over Root Area □ Yes □ No — % of Loss Axial Loss + Circ. Loss = /2 = % Loss Additional Losses (Due to hangers, restraints, etc.) + % Loss Explain: □ Total % Loss
Total Zone #3 255.84 Total Zone Loss \(\frac{\f
Total Zone Loss \(\frac{\sqrt{33.79}}{3.79} \) /(% Factor) \(\frac{\sqrt{22.21}}{3.29} \) x 100 = \(\frac{\sqrt{4.5}}{9.60} \) % of Loss Lump Sum Loss From Other Limitations \(\frac{1.60}{9.60} \) % Total Loss \(\frac{1.60}{9.60} \) % of Coverage (Additional \(\frac{1.00}{9.60} \) % of Partial Coverage) Qualifies for Request for Relief \(\frac{1.000}{9.60} \) Yes \(\sqrt{100} \) No \(\frac{1.000}{9.60} \) Piping: xial Scan \(\frac{1.000}{9.60} \) (Sector) \(\frac{1.000}{9.60} \) (% Factor) \(\frac{1.000}{9.60} \) % of Loss Circumferential Scan Over Root Area \(\frac{1.000}{9.60} \) Yes \(\frac{1.000}{9.60} \) No \(\frac{1.000}{9.60} \) % of Loss Axial Loss \(\frac{1.000}{9.60} \) + Circ. Loss \(\frac{1.000}{9.60} \) = \(\frac{1.000}{9.60} \) (Due to hangers, restraints, etc.) \(\frac{1.000}{9.60} \) Hoss Explain: \(\frac{1.000}{9.60} \) Total % Loss
Total Loss
Total Loss
Comparison of Coverage Covera
Qualifies for Request for Relief ☑ Yes ☐ No Piping: xial Scan(Loss)/(% Factor) x 100= % of Loss Circumferential Scan Over Root Area ☐ Yes ☐ No % of Loss Axial Loss+ Circ. Loss =/2= % Loss Additional Losses (Due to hangers, restraints, etc.) + % Loss Explain: Total % Loss
Qualifies for Request for Relief Yes No Piping: xial Scan(Loss)/(% Factor) x 100= % of Loss Circumferential Scan Over Root Area Yes No % of Loss Axial Loss + Circ. Loss =/2= % Loss Additional Losses (Due to hangers, restraints, etc.) + % Loss Explain: Total % Loss
Piping: xial Scan
xial Scan(Loss)/(% Factor) x 100= % of Loss Circumferential Scan Over Root Area
100% - (Total Loss)=% of Coverage Qualifies for Request for Relief Yes No
Disposition:

Sta	atic bje	on <u>(</u> ect_)C	ONG - 1	M l	Æ	ð	E	XA	Un <i>M</i>	it	3	R	4				0												
Pro	ob.	No.		\mathcal{B}	0.3	. 1)	10,0	DO 9)			<u> </u>	Cł	neci	 ked	By. By.		<u>CLN</u>	ry		<u> </u>	(de)	<i>γ</i> υ	_ D	ate ate	 P4	-20 GE	9.99 401	- 10	
				Ī																										_
			0	mi	MA.	er.																								
		tO)	7	E	7 E	R	me	uc		%	<u> </u>	F	1C7	ער		70	37/	د	E	<i>کر</i> x	m	A	RE.	ر ۾	r N	um.	aen	ol	امده ک	us
	_								<u>(e</u> .	1. 1	<i>V</i>	9	K.	 	1	1	5 C	a r	<u>-</u> ک		6	72	2	,		% -	FAC	D)	e	
					<u> </u>		<u> </u>																						-	
		D	RE	A	1	کن.	<u>اح</u>	5 :			Z	U	-	0		W	122	ده		C	210	Pro	s U	P.A.T	7Y	¥				
			Ì						<i>[]</i>	RE	74_		Po	R	7	0	VE VE	1	L		1	18	S. /	7	0	11	le.			
								,							7	0,	NE	_3			2	55	. g	4	7.	6. D 11	1.			
																	-								2	2.1	KI.			
							4: 	<u>33.</u>	79	÷	G	7	2.2	//_	X	100) =		64	5	%		2 م	2						
		/_	2.5	2	2	a	0	טד		2	m	1 7	74	10	105											1				
				<u>D</u> c	,	70	4	CA	rei	2	20	1.N	DC	=				<u>-</u>		1,0	49	%_								
				<u>Du</u> 	<u>æ</u>	10	_	ou	ے د	72	IJ€	AI	<u> </u>						/	,0	79	<u>/</u>								
				-																										
								6	4.	5 :	+ 1	, /	/ -		65	. 6	2/	0/			2-2	2								
									00	12	6	5	. 6	1/2	1	=	3	4	3	2 6	<u> </u>		()/	/ ==	P	1G	سي.			
			-											-	3=											- C2.0				
														<u></u>																
													-	-			<u> </u> 													-
		-																				,								
																														!
							<u> </u>						-			ļ														

Form (3184 (R4-88)

DUKE POWER COMPANY

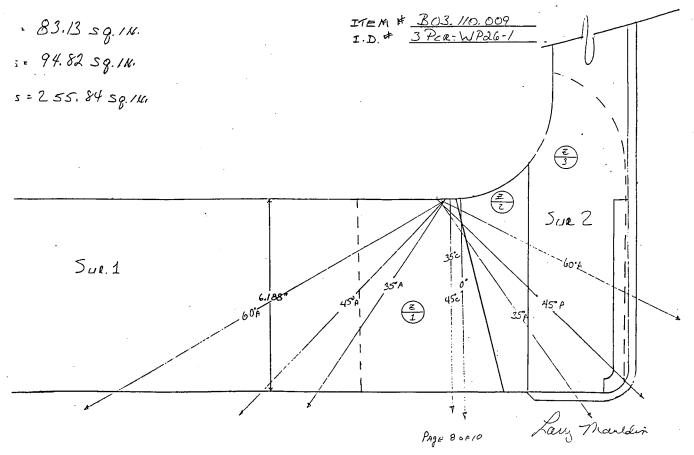
Serial No. 74-UI Attachment 3

Page 3 of 8 ICONEC Unit_3__Rev.____File No.3Per-WP26-/_Sheet____Of___ Station EXAM DATA Subject_ (IMITED By Law Mauder Date 1.28.94 Prob No. Ba3.110.009 ____ Checked By_ Date Page 5 of 10 ZONE PEA of 4055: 1.5 1.9 35° 10 618 X 8 41 X 6.8 g IN. 35 2 to Q 1K. 4 X1.1 6.8 x 1.4 ¥ 4.1×6.8 2 70 16 x. 25 170 6.8 X19 4.1 ×6.8 20 6.5x 2 6.5 x 1.6 C04 rew 5.5 × 1.7 TOTAL AREA OLLOSS 83.13 30110 ZONE HREA Of Coss: Z = 4.7 x.3, 4.7 x 2.3 /1.8 x 1 350 7.01 Sp M. 357 TUTAL Spre 0.05 3.7 x 35 2 3 x 2.7 1.8 x1 / 7b 210 707AC COSS 2.8 X.2 2.8 X 1.4 1.8 X 1 2 1 2 4 2 60 10 5g W 60 2 70 TUTTAK SQVW. 35° 04 707BC cdss 5911 ac/6 625 TUTAL COSS 10.05 59 CK 45 TOTAL 2005 10.65 = 10 10.02

DUKE POWER COMPANY

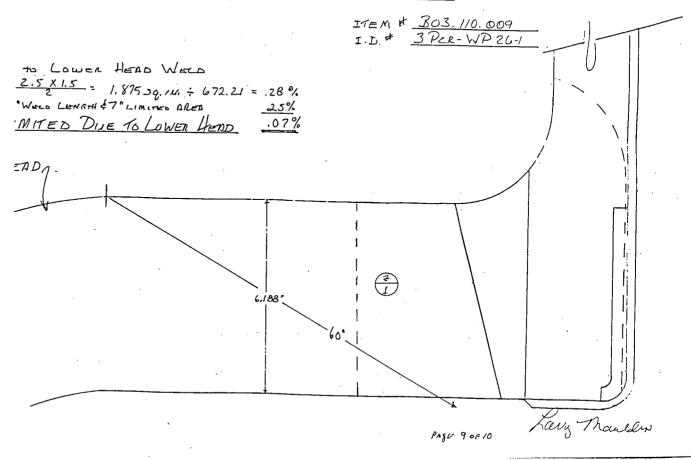
Serial No. 74-UI Attachment 3

Page 4 of 8 Station OCOMEE Unit 3 Rev. File No. 3Per-WP26-1 Sheet Of Subject (MITED EYAM DATA By Lary Mauden Date 1.28.94 Prob No. 303. 110.009 _____ Checked By____ Date Page 60F10 Zone (Court) HREA OLGOS 9 4 82 59 14. Jones AREA OF COSS: 354 1.4x 2.0 = 1,4(000 RARE) 27.7-26.3 50 ck. 2 10 27.7 2 72 22,5 TOTAL COSS 4.8x3.1 + 5.7x25 = 14.865 27.7-14.565= 00 TOTAL COS3 SPILE COW CW clcw 27.7 27.7 TOTAL AREA of LOSS 255184 SQ. /K.


Serial No. 94-01 Attachment 3 Page 5 of 8

PRESSURIZER SAMPLING NOZZLE

ITEM # <u>BO3. 110. 009</u> I.D. # <u>3 PER-WP 264</u> · Per SiDe -p L Nozzce SiDE + 6.188 x 1.35 = 23.36 = 9.1 N. 188+ 6.188 x 1.7 + 1.1 x 1.1 + 1.6 x . 2 = 10.05 5 g.1 4. 3x3.1 + 1.3x2.9 + 3.8x.6 + 7x1.7: 27.7 59.1K. - XAM AREA: 23.36 10.05 27.7 $\left(\frac{Z}{L}\right)$ $\frac{z}{3}$ $\frac{z}{1}$ 61.11 sq.1K. 6.188" Lary Thoulder PAGE 70F10


Serial No. 94-01 Attachment 3 Page 6 of 8

PRESSURIZER SAMPLING NOZZLE

Serial No. 94-01 Attachment 3 Page 7 of 8

RESSURIZER SAMPLING NORZEE

Serial No. 94-01 Attachment 3 Page 8 of 8

RESSURIZER SAMPLING NORZEE

```
ITEM # <u>BO3.110.009</u>
I.D. # <u>3 Per-WP 261</u>
                      HEATER RUNDLE
          Due to
           33.35 sq. 14, + 672.21 x 100 = 4.96
  LENGTH of WILLD 28 & 6" LIMITED AREA = 21% of WELD
                                              1.04 ADDITIONAL LOSS
+ 6.5 x.5 = 6.455 - .375 = 6.08 5 g/k. BST
 = 2.4 -.22
                            2.18 sq 1N. (45)
 = 1.125 - .075 =
                            1.05 39 NC (60°)
DDITIONAL LOSS
                          9.31 59.1N
  POR HENTER BUNDLE
7.01 : 3.04 sq. 1k. (35)
                                                                                 (<u>I</u>
                                                                                           \left(\frac{Z}{3}\right)
71 = 9.14 - 4.65 = 4.49 3 g/N (45)
3.2 x.8 = 6.03
..03 = 402 - 2.79 = 1.23 = 9 14 (60°)
                  8.76 sq.114
 4.3 x . 5 = . 5. xx
                                                                                         600
5.88: 21.82-13.14: 8.68 59.14. (60)
                                                                (<del>2</del>)
L-3 =
                     1.4 59.11. (35)
22.5 :
                    5.2 Sq.14. (45°)
                    15.28 S9,111
                                                                                            Ley Mauser
                                                                            PAGE
10 OF10
```

Serial No. 44.01

orm 00184 (R4-	38)			<u></u>	_	DU	JKE PC	WER	СОМ	PANY	Atto age			4					
Station_	Oca	VEC			Jņit	3	Rev	•						P26:	3 Sh	eet		Of_	
Subject_		NITE	Δ		W Vu		JA-1	<i>≱</i>	By_	La	W	11	aul	Sep	Da	ite	22	.94	
Prob No.	B	03.	110.	011			Chec									ate 🏨			
														T					
	0																		
	<u>()</u>	1MI	MA	<u> </u>	<u>.</u>														
				<u> </u>			31.6		! 										<u> </u>
1	17)	De	TE	12.33	116		_دې	1	40	IUR	<u> </u>					7			<u> </u>
				101	AC	EX	ABL	1A	RE	4	-1/	S	Um	BER	0/	<u>\\$c</u>	ANCS		
	1 1			1/	// ~			<u> </u>	//				- /	77	7				
				<u> () () </u>	<u>، کہ //</u> ا	9 14	<u>'. </u>	4_	//	12.0	<u> </u>	(5	= <i>(</i> 2	, 1 <u>C.</u>	<u>. </u>	474	(77)	R:	- !
.					<u>'</u>			<u> </u>				:				<u> </u>			<u>:</u>
					<u> </u>			$\dot{\top}$			1					- 	$\dot{\parallel}$		
	AR	7/1	51	/ /	22	6 5	•	\dagger				<u> </u>					 		
								laz	76	re .	Ca	w) BU	ATA	10			1	
			ξ.																
	1				-011				ھ ا	3.1	3	30	11.6						
	_ }				SOM	_	2	-	9	4.8	2	59	115.	İ					
				<u> Z</u>	0 11	ح	<u>.3</u>	<u> </u>	25	13.1. 24.8 15.8	γ¢	59	111.	1.					
	<u> </u>							<u> </u>	43	3.7	9_	59	_//<						-
- ! !		1	<u> </u>			! !	-		:	:								- -	
			122	70	: /	47	2 0		!	/o 2	<u> </u>	: : 	· · ·						
		1 27	33.	17	<u> </u>	1 /	<u> </u>	<u>/</u>	<u>X /</u>	00 :	=(ب <u>4 و</u>	3 7	6 (<u> </u>	2		_	<u> </u>
				1	100	- 6	46			35.		! !/	7	,					
				 _		<u>ري </u>	110				, 5 /	J	۲۵	UE	<i>e4 e</i>	ž <u>e</u>	<u> </u>	-	
								i										+	
								İ										\dashv	
																		,	
											<u> </u>								
							_						_						
				-				<u> </u>						-					
					-		- -	-			-			_					1_
				-				+-			-								ļ.
		_ _		-															

Serial No. 94.01 Attachment 4 Page 4 of 5

PRESSURIZER SAMPLING NOZZLE

PER SIDE ITEM # <u>RO3. 110.011</u> I.D. # <u>3 P22-WP26-3</u> AL NOZZLE SIDE 38 + 6.188 x 1.35 = 23.36 = q.1 N. 6.188+ 6.188 x 1.x + 1.1 x11 + 1.6x. 2 = 10.05 x g.1 u. $7.3 \times 3.1 + \frac{2.3 \times 2.9}{2} + \frac{3.8 \times .6}{2} + \frac{2 \times 1.7}{2} = 27.7 \le 9.1$ EXAM AREA: 23.36 10.05 27.7 (2) $\left(\begin{array}{c} \mathbb{Z} \\ \mathbb{I} \end{array}\right)$ 6.188" Lavy Mauldir

Pag = 6 0=7

Serial No. 94-01 Attachment 4 Page 5 of 5

PRESSURIZER SAMPLING NOZZLE

xs: 83.13 sq.11. ITEM # <u>BO3. //0.0//</u> I.D. # <u>3-P2R-WP263</u> 055 = 94.82 Sq. IN. css = 2 55. 84 sq.14. $\left(\frac{\varepsilon}{3}\right)$ Size. 2 Sur.1 $\left(\frac{\mathcal{E}}{\mathcal{I}}\right)$ Larry Moulden Derial No. 74-U1 Attachment 5 page 1 of 8

Limited Exam Data Sheet
Station Unit 3 I.D. # 3 P2R-WP26-7
Date 128.94 Item # 803.110.012
Checked By Date Page 3 Of 10
DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME INSPECTED
(in percentage) Total Cross Sectional Area $6/4/4$ x (Number of Scans) $4/4$ = 672.24 (% Factor)
<u>Vessels:</u>
Area Loss: Zone #1 83/3
Zone #2 <u>94.82</u>
Zone #3 <u>255.89</u>
Total Zone Loss $\frac{433.79}{100}$ /(% Factor) $\frac{672.21}{100}$ x 100 = $\frac{64.5}{100}$ % of Loss
Lump Sum Loss From Other Limitations +//// %
Total Loss 65.61 %
100% - (Total Loss) <u>65.6/</u> = <u>34.39</u> % of Coverage
(Additional $\underline{\hspace{0.1cm}}^{\hspace{0.1cm} \varrho}$ of Partial Coverage)
Qualifies for Request for Relief ☑ Yes ☐ No
Piping:
xial Scan(Loss)/(% Factor) x 100= % of Loss
Circumferential Scan Over Root Area
Axial Loss + Circ. Loss = /2= % Loss
Additional Losses (Due to hangers, restraints, etc.) + % Loss
Explain: Total % Loss
100% - (Total Loss)=% of Coverage
Qualifies for Request for Relief
Disposition:
Disposition.
Ru
by Date:

Form 00184 (R4-98)

Serial No. 74-UI DUKE POWER COMPANY Attachment 5 Page 2 of 8

St	atio	on <u>(</u>	P.	OM	L'E					Un	it_	3	_ R	ev.			File	No	:,3	PET	2-\W	P2	6-1	⁷ _Sł	neet			Of_		·
Sı	ıbje	ect.	(MI	1E	<u> </u>	ے	XA	m		<u>D</u>	177					0	1.	18	011	. IA.					20	Cele		
		No		70	?	///		12								By.	0	<u>O</u>	ry	/1	<u>(L</u> LL	<u>(Wes</u>	<u>v </u>	[ate	00	×07	.94		
PI	00	NO	•		<u> </u>	<i>// U</i>	. 0	/ <u>C</u>	1			.		1eci	cea ——	By.		1						_	ate	144	Æ	40F	10	
	,																													
		\supseteq	0	mi	MA	RY.					<u> </u>	<u> </u>		<u> </u>																
			ļ 		-	_	<u> </u>				<u> </u>				ļ							ļ						$-\downarrow$		
		10)	1	DE	7 E	R	me	uc	<u> </u>	9	<u> </u>	71	CI	UR		7	TA	ر_	E	XA	m	A	lE.	ρ.	XN	UM.	osr	of	مصما	<u>w</u>
				-					(/	// 5			L		/	50				_	72	2		-	0/	7-4	°70/0		
			-		-				Le.	-	7 3	8	1/2.	1	1	/	3 <u>C</u>	<i>M</i> /U	7 -		٥	<i>/ C</i>	12		<u> </u>	7 6/	730	10/0	-	
																							-			-		_	_	
		A	Re	A	1	کن	S €.	5:			2	ue		70	1	Voz	20	۳		Co	47	18	UR	171	W	-				
			<u> </u>	ļ	_				Ŋ	RE	A		Po	R	2	10	ve	1								2/1	0,			
			-	-	-		<u> </u>	<u> </u>					-	·			Ve					99	1.8	2	S	b 11	c,			
	_				-								_		7	10,	VE	_3			2	55	. 8	4	2	21	(ı			
			-		-	-	-	<u> </u>			_			_							4	3.3	3.7	79	2	2.1	t/.	\dashv		
			 				y.	33.	79	<u> </u>	6	7	7.2	/	У	101			14	5	0/	/			-			+	_	—
	-								/								, <u>-</u> 		7 /		10		07	7	-			-		
		/	25	7	2	a	0	70		2	m	1 7	747	10	105					_						<u> </u>				
		ļ. ———		ļ		<u> </u>	ļ			<u> </u>	<u> </u>			<u> </u>														1	<u>_</u>	
				Dc. Du	100	10	4	<u>A</u>	rei	<u> </u>	30	1.N	مے	=_		-	, 23	·	: 4	1,0	49	%_	ļ 							
			<u></u>	<u>Du</u> 	<u> ce </u>	10		du	ے) د	72	₩E	AI	<u>\</u>			-	-			ه ,	7	<u>/</u>							_	
				<u> </u>	-		<u> </u>				<u> </u>	<u> </u>		<u> </u>		-				/_	12	<u> </u>						\dashv	-	
		!										 								<u> </u>					<u> </u>			_		
						·		6	4.	5	+1	1.1	/ -	F (65	. 6	/	0	. (5-	<u></u> 2						-		
				_									<u> </u>	-														\dashv		_
									00	1/2	6	2	6	12	\ <u></u>	=	3	4.	33	2 6	b		01	15	RI	1G	ت			_
				-						<u>.</u>					-													-	1	
				-		_					_	-																	_	
		_		-	-	-	-		,	1 	-			<u> </u>	 	<u> </u>									_			_	_	
						_					-	_				-												+	+	
																		-										-		
																												+		
			<u></u>	ļ			<u> </u>																							
				-								<u> </u>																		_

DUKE POWER COMPANY Attachment 5
Page 3 of 8

Form 00184 (R4-88)

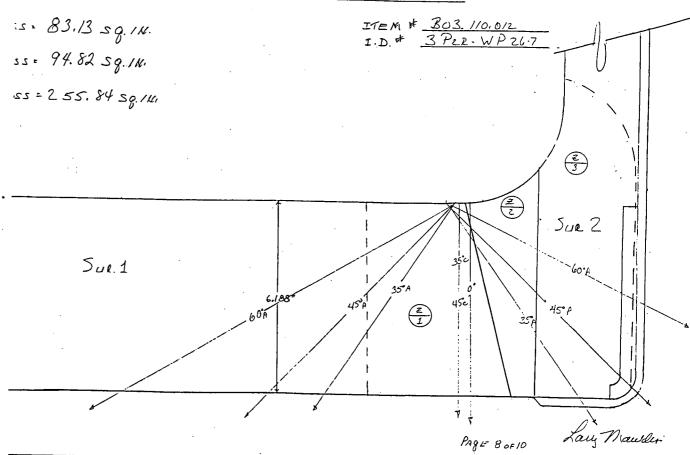
	<u></u>											0 8					
Station()co	NEC	_	Ur	it_3	_ Re	v		File	No. <u>3</u>	PZR.	WPZ	.6-7	_Shee	et	0	f
Subject		1m1	TED	E	XA M		1.71								•		
								Ву	Za	Mg	1) l	aull	<u>//</u> \	Dat	e <u>/</u> :	28-9	4
Prob No	<i>3</i> o	13.11	10.012			Che	cked	Βv		0				Dat	ρ_{AC}	a: 5	0F 10
																	
Zon	114	1															
								 			-				ŀ		+
		ARE	nel	40.	-		-	1			-						+-+-
		1 7 / C C	4 01	40.	33.1						-			 -			+-+
	++		2	73				1.5	7.9				_	-			++
				53	1 70	2		18 2	2	= 41 X	9 9			-	3 75	58	XX.
	\dashv		3		210	/	<u> </u>	100	1	*// ^	ψ. α	1		16.	66	38	XX.
			4	ۍ 📗	10	1 2	2	7	2	=					22	50	14.
			- 43	70	2 70	/	=0	10 %	1. 4	+ 4.1	76.	-		18.	7	30	14.
			60	•	110	2	-	10.	K, C P	=	. 1				a 75		w.
			60	-	20	1	- -	4.1	X6.8	16	1 X/	9		20.	4	59	
			34		10.0		36.	5X	2	6.5	× 1.6			1	85	28	
			33	ر د-	00	6,								4	ے ہ	36	
			4/4	-5	C	1,					 				0.5	<u> </u>	1.
			ZA	-0	1	26		\top			+			1 1 _	85		1/1
				0	 	5.5	× /.1	2	-		+	-	-		85	7	
			1				7	_	 		-	-		3.	3	<u> </u>	YK.
						 - 		+			Da	-	1,				
	+					-	_		101	146	HK	EAC	01 <u>L</u>	055	83	<u>ر ۲۷.</u>	9/10.
						-		-			-					_	
								ļ. 									
70	NE	2			 		· ·										
	_	A															
	/	4RET	9 01	Cos	1:2	-											
			35	೮	10	2	= 4.	7 X.	3 4	7 X Z	.3	1,8 X	1	7.	01	Sø	
			35	ا ھ	2 70		=	ł	TAC	ŀ	033			10.	715-	0	1 1
			45	•	100	2		7 x	35	2.3	(2.7	,1.81	1/	1/2		39	1 1
			145		210			1					= =		65	_\$8	YXC,
			60	- -	1 10	2	12	18)	1.2	2.8 X	1.4	1.811		1	25		M.
	_		60			+ +	, –	1 2		1 2	4	2	-		79	\$8	IK.
	+	-		0	2 70	 -	<u> </u>	70	774K	4	220			10.	25		111
	+++		35		94			1	720		022			10.	95	وعا	7/1/
			35		1 G C	(4)		170	FA	<u> </u>	220-			10.	05	_ 50	7/4
	-		4/5		J 4	-		7	UT	4	05-	\$		10.	05	1 '	g ch
			45	- 1	I C C	W 6		1	270	14	405	2		1 1	05	- 1	110-
			0	•	1/4.6	= ,b	3		10.	05-	03	=			02	50	11.
3 1 1 1	1 1	1		1	1 1	1 1					1						

DUKE POWER COMPANY Attachment 5

Page 4 of 8 Station OCOUEE Unit 3 Rev. File No 3Per-WP26-7 Sheet Of Subject (1MITED EXAM DATA By Larry Maudin Date 1-28-94 Prob No. 303. 1/0. 0/2 Checked By_____ Date Page 60F10 TOME 9 4 82 59 14. AREA OF GOIS TOTAL oned AREA OF C055: 1.4×2.0 = 1 4(cocerage) 350 27.7 72 22,5 27.7 ヹ 5816. 27.7-14.565= 13.14 Sq /u. 35. TOTAL COSS SOIK Cow 06 CCW TOTAL AREA of LOSS -S8.1K.

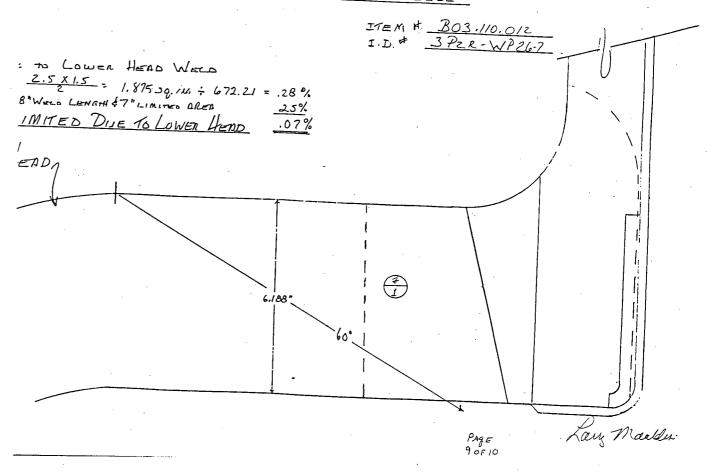
Serval No. 94-01 Attachment 5 page 5 of 8

PRESSURIZER SAMPLING NOZZLE


Den SiDE ITEM # <u>BO3. 110.012</u> I.D. # <u>3P2R-WP26.7</u> -04 . Nozzce Side + 6.108 x 1.35 = 23.36 = q./N. 188+ 6188 x 1.5 + 112/11 + 1.6x.5 - 10.05 - 9.1 w. 3x3.1 + 2.3x2.9 + 3.8x.6 + 2x1.7 = 27.7 59.18. XAM AREA: 23.36 10.05 27.7. 2 (<u>₹</u> (Z) 61.11 sq./K.

Page 70F10

Lavy Mouldy


Serial No. 94-01 Attachment 5 Page 6 of 8

PRESSURIZER SAMPLING NOZZLE

Serial No. 94-01 Attachment 5 Page 7 38

PESSURIZER SAMPLING NORZEE

Serial No. 94-01 Attachment 5 Page 8 98

RESSURIZER SAMPLING NOZZEE

ITEM # <u>BO3. 110. 012</u> I.D. # <u>3PZR-WP2C.7</u> DUE TO HEATER BUNDLE 33.35 sq. 14. ÷ 672.21 x 100 = 4.96 LENGTH of WILLD 28 & 6" LIMITED AREA = 21% of WELD 1.04 ADDITIONAL LOSS + 6.5 x.5 = 6.455 - .375 = 6.08 sq 14. BS) = 2.4 -.22 2.18 sq M. (45) = 1.125 - .075 = 1.05 59. NC (60°) 2207 JOHOL LOSS <u>9.31 sq.18</u> POR HEATER BULLDLE 7.01 : 3.04 sq. 1k. (35) . (Z) $\left(\frac{\mathbb{Z}}{3}\right)$ - .9/ . 91 = 9.14 - 4.65 = 4.49 sq/4 (45) 3.2 x.8 . 6.03 5.03 = 402 - 2.79 = 1.23 39 14 (60) 8.76 sq.114 4.3 x .5 = 5. XX 600 35°A 5.88= 21.82-13.14 = 8.68 sq.14, (60) ₹ 1 <u>- 3-2</u> 1.4 59.14 (35) 22.5: 5.2 Sq.11. (45) 15.28 SQ, IK Law Maulli PAGE 10 0F10

Serial No. 44-01 Attachment 6 Page 1 & 4

Limited Exam Data Sheet
Unit 3 LD # 3 PER - WP26-1
Date 1-28-98 Item # 303. 120.008
Checked By Date Page 3 Of 6
DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME INSPECTED (in percentage) Total Cross Sectional Area 4,47 x (Number of Scans) 4,47 (% Factor)
Vessels:
Area Loss: Zone #1
Qualifies for Request for Relief Yes No Piping:
Axial Scan(Loss)/(% Factor) x 100= % of Loss Circumferential Scan Over Root Area
100% - (Total Loss)=% of Coverage Qualifies for Request for Relief □ Yes □ No
Disposition:
Date:

Station CONFE Unit 3 Rev. File No. 3 Per-WP26-1 Sheet Of Subject LIMITED EXAM DATA By Larry Mariller Date 1-28.94 Prob No. <u>B03./20.009</u> Checked By____ Jerial No. 94-01 Jummare: Attachment 6 Page 2 9, 4 EXAM AREA 4.47 SQ.18. WADITIONA COSS DOIE TO HENTER BUNDLE 2759 10. (6.04%) TOTAL AREA of Coss 1.76 = 447 × 100 = 39.4% Loss 100 - 39.4 = 60.6% COVERAGE

Serial No. 94-01 Attachment 6 Page 3 of 4

PRESSURIZER SAMPLING NOZZCE

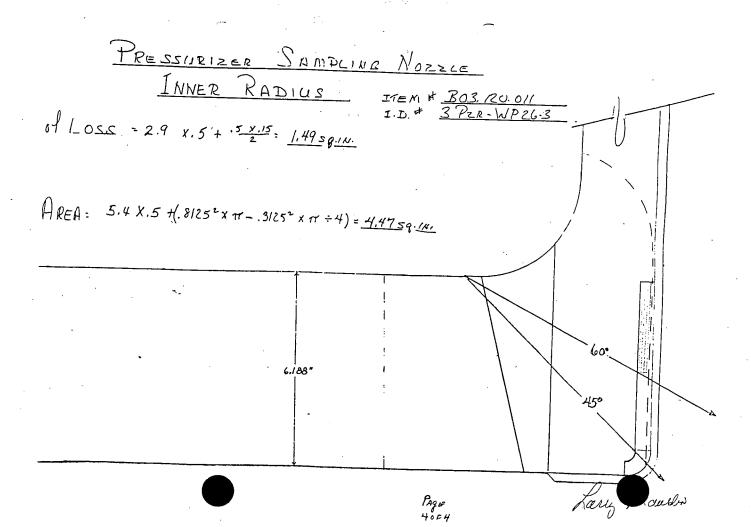
INNER RADIUS ITEM # BO3. 120.009

1.D. # 3 PZR-WP26-1

DITIONAL LOSS DUE 10 HEATER BUNDLE

4X.5 + 15 X.2 = 2.75 - 1.49 = 1.26 sq. "Limited PREA OUT of 28" LENGTH

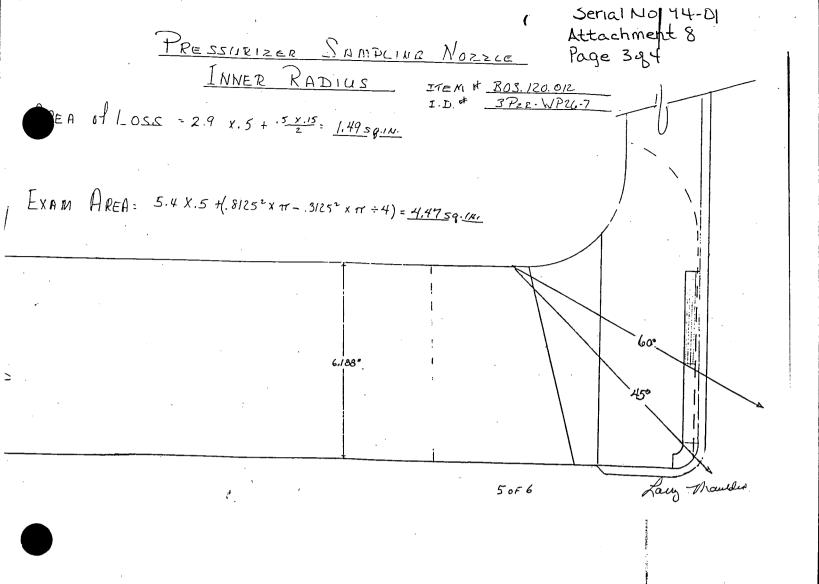
6=28 × 100 ×1.26 = .27 5 9.14.


Lan Marker

Serial No. 94-01 Attachment 6 Page 434

PRESSURIZER SAMPLING NOZZLE INNER RADIUS ITEM + <u>BO3. 120.009</u> I.D. # <u>3Per-WP26-1</u> of 1-05.5 = 2.9 x.5 + 15 x.15 = 1.49 sq.1N. AREA: 5.4 X.5 H.81252 x 17 - .31252 x 17 ÷4) = 4.47 59.14. Lary Maulder

	s	tati	on_		ی و	011	ماس				Ur	nit -	 3	R	ev.			File	e No	 2	Pz	R-14	fP.	26-	g _{St}	neet			Of		
.{	s	ubj	on_ ect_		_	IN	un	<u> </u>		E	XA	m		$\overline{\mathbb{Q}}$	AT.	0) -		1/1		11						04	_	
<u>بر</u> ق																	Ву	L.	<u> </u>	ι <u>ς</u> ,		CLL	ble	<u>rc </u>	_ D	ate		.2	94		
		rob	No	•	30)3.	. 12	<u>. o.</u>	0/					Ct	neci	ked	Ву					-			c	ate	PA	g F	30	F H	
																									S	erk	al	No	.91	4-0	1
						(<u>)</u> C	177	277	AK	م و																		t		
			<u> </u>	<u> </u>									<u> </u>												Po	lae	. 1	1)_		
			<u> </u>			<u> </u>			E	XI	91	<u>/</u>	BA	PEL	9_		-	40	49	ی	9.1	15.				1		U			
		<u> </u>		-		<u> </u>		ļ.																						<u> </u>	
					<u> </u>	ļ	<u> </u>		14	RE	79	0-1	1	05	2			<u>L</u>	49	2 5	9	K.								<u> </u>	_
	· 	ļ	-			ļ	<u> </u>			10		1.1							_											<u> </u>	
				-			<u> </u>	1	, (/	9:	<u>e</u> ,	<u>ξ, ξ</u>	17	11	00	ε	3	<u>3.3</u>	%		<u> </u>							,		_	
			-								<u> </u>	<u> </u>			<u> </u>								·							<u> -</u>	L
			<u> </u>		<u> </u>			<u> </u>	<u> </u>	1/0	<u> 00</u>	- 3	3.	3	=		6	17	%	<u></u>	2	00	ER	AC	36						_
				-		-	ļ. 									<u> </u>			<u> </u>	_		ļ									
			-		-	<u> </u> 		_		-		<u> </u>	-		<u> </u>		_		_							,				<u> </u>	-
			<u> </u>	_	<u> </u>	<u> </u>				ļ.,	<u> </u>	<u> </u>	<u> </u>								_									<u> </u>	<u> </u>
 (-	 				1.2.	<u> </u>		<u> </u>	<u> </u> 	<u> </u>	<u> </u>					-	-	<u> </u>									<u> </u>
(-		<u> </u>	-			<u> </u>	-		<u> </u> 	1	<u> </u>	<u> </u>					<u> </u>											<u> </u>
				_			\vdash		<u> </u>		-	1	<u> </u> 	<u> </u>	_				<u> </u>		_										<u> </u>
1		-				<u> </u>	-		-	<u> </u>	<u> </u>			<u>i </u>	 	1		<u> </u>			-										_
		-		-		<u> </u>	 	-	<u> </u>			<u> </u>	<u>!</u> 	! !	<u> </u>	<u> </u>				\vdash											-
1		!		<u> </u>			<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u>!</u>					<u> </u>	-		-									1
		<u> </u>		<u>' </u>		<u> </u>			<u> </u>	<u></u>	<u> </u>	<u>:</u>		<u> </u>				<u> </u>		<u> </u>		<u> </u>									<u> </u>
								-	<u> </u>	<u> </u>	L 	<u>!</u>	<u> </u>					l			_				-						<u> </u>
					_	<u> </u>	<u> </u>				<u> </u>			<u> </u>						-	-	-									<u> </u>
	•														-				,		-										<u> </u>
								İ		_	<u> </u>				<u> </u>												_			•	<u> </u>
														İ							-										
																															\vdash
											.,		,																		-
		_																				-									
	_																													 -	-
																										-					
		_																													
								L	L_			<u> </u>	L																		


Seral No. 94-01 Attachment 7 Page 2012

Attachment 8 Page 10/4

Limited Exam Data Sheet
Station Unit 3 I.D. # 3PCR-WP26-7
Date 1-28-94 Item # 303, 120, 012
Date Page 3 Of 6
DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME INSPECTED
(in percentage) Total Cross Sectional Area $\frac{4.47}{}$ x (Number of Scans) $\frac{\frac{1}{4}}{}$ = $\frac{4.47}{}$ (% Factor)
<u>Vessels:</u>
Area Loss: Zone #1 $\frac{N}{\rho}$
Zone #2 <u>//p</u>
Zone #3 N/n (INNER RADIUS INSDECTION)
Total Zone Loss /// / // // \times 100 = 33.33 % of Loss
Lump Sum Loss From Other Limitations + 6.04 96 ROUNDED 644
Total Loss 39 4 of
100% - (Total Loss) $39.4 = 60.6$ % of Coverage
(Additionalo_% of Partial Coverage)
Qualifies for Request for Relief Yes No
Piping:
Axial Scan(Loss)/(% Factor) x 100= % of Loss
The state of the s
Axial Loss + Circ. Loss = /2= % Loss Additional Losses (Due to hangers, restraints, etc.) + % Loss Explain:
Total % Loss
100% - (Total Loss) =% of Coverage
Qualifies for Request for Relief Yes No
Disposition:
<i>by</i> : Date:

Stat Sub	ion_ ject		CO;	UES	2.17	ED		X	_Ur <i>4 /</i> /	nit	3 D	F	lev.				_											
															Ву		as	My-	10	las	Ыl	40	c	ate	_/	-28	9.94	1
Prot	No		<u>B</u> C)3.	12	<u>.o.</u>	013	2				Cł	nec	ked	Ву								[Date		40	OFE	6_
																						15	er	al	No	91	H-C	1
	-		14	12	178)	n A	20:	-		-	ļ	<u> </u>		<u> </u>	<u> </u>							A	tt	<u>act</u>	me	ent	8	
-	-	-	-	<u> </u>	\vdash	 	14 1/	1 40		-	na	-0	<u> </u>	-	15				-			P	19		20	14		_
+	-	-	<u> </u>		+	<u> </u>		1//		-4	4 <i>1</i> 2	A		<u> </u>	4.	4	7	56	.//					-	<u> </u>	1		
						DA	RET	47	0/	/	0	1		-	1.	40	9	50	111	_		1	22	3.3	d			
				222	11	HOM	A	1	6	7							1	19	./,4	1		1	32	2.7	10			
	_	<u> </u>		<u> </u>	\mathcal{D}_{i}	de	1	6	H	en:	TER	R	IN	100		,2	7.	59	14			(6.	04	%)			
	-	-				-	1		_	1	_	<u> </u>					į											
+-		-	-	10	1	AL	H	KE	<i>p</i> (<u>H_</u>	L	22		_	/,	10	b	ļ										_
-						-	-		-	_		-			-					-				_				_
1						1.	7/.	-	4	4	7	V	//	0	= ,	7	7 (10		1	5 6	_						_
													10		 		. ,						-				-	_
ļ	_						00) -	- (39	4	-		6	0.	6	/	7	0	Vε	ER	10	يير					-
	-				=																7=7			-				
+-	<u> </u>				-	<u> </u>																						
	-			<u> </u>	-												<u>.</u>										-	
-										l																		
																							2					
											 													,				
╂						-												i										
-	<u> </u>					-																						
+-			_		-															_								
+-						-					-														_	_		
																_									-			_
-]					.*																				
-		_																									+	
-												-																
+-		$-\parallel$																	_									
+	-																		_			_		_				
																										_		
										_						_	\dashv	\dashv								_	_	

Serial No. 94-94 Attachment 8 Page 4 of 4

Lavy Markelir

6 UF 6

PRESSURIZER SAMPLING NOZZLE INNER RADIUS ITEM # BO3. 120. 0/2 I.D. # 3 PZR-WP26-7 SITIONAL LOSS DUE HEATER BUNDLE X.5 + 15 x.2 = 2.75 - 1.49 = 1.26 sq. Limited AREA out of 28° LENGTH = 28 × 100 ×1.26 = .27 39.14.

Limited Exam Data Sheet
Station Unit 3 I.D. # 3SGA - WG50-1
Date 1-10-94 Item # BO3. 140.002
Checked By Date Page 4 Of 4
DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME INSPECTED
(in percentage) Total Cross Sectional Area $\frac{498}{}$ x (Number of Scans) $\frac{1}{4}$ = $\frac{1}{4}$ (% Factor)
Vessels:
Area Loss: Zone #1 $\frac{N}{n}$
Area Loss: Zone #1//n Zone #2//n
70ne #3 14/1
Total Zone Loss /(% Factor) \times x 100 = \times % of Loss
Lump Sum Loss From Other Limitations + 20 %
Total Loss <u>20 %</u>
100% - (Total Loss) <u>20</u> = <u>80</u> % of Coverage
(Additional <u>o</u> % of Partial Coverage) Qualifies for Request for Relief ⊠ Yes □ No
Piping:
Axial Scan (Loss) (% Factor) x 100= % of Loss
Circumferential Scan Over Root Area
[AOOIIIONOIIIOOOOOOOOOOOOOOOOOOOOOOOOOOO
Explain: % Loss Total % Loss
100% - (Total Loss)=% of Coverage
Qualifies for Request for Relief
Disposition:
Jy: Date:

Serial. No. 94-01 Attachment 9 Page 282

CROSS SECTIONAL AREA = 8"X.5" + 1.5"2X x - 1.0" Xx ÷ 4 = 4.9859.1K.

AREA NOT SCANNED

2"X.5 = 1.0 = q.1M.

1.0" ÷ 4.98 "X100 = 20%

100-20 -80%

80% COLERAGE

I.D#3SGA-WG 50-1

ITEM# BO3.140.002

Larry Moules

STEAM GENERATOR DUTLET NOZZLE

60.

SUPPORT SKIRT

Derial No. 74-UI Attachment 10 Page 192

Limited Exam Data Sheet
Station UCONEE Unit 3 I.D. # 35GA-WG25
Date 1.6.94 Item # BO3 140 005
Date 1-10-94 Page Of
DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME INSPECTED
Total Cross Sectional Area $\frac{(\text{in percentage})}{x}$ (Number of Scans) $\frac{N}{A} = \frac{N}{A}$ (% Factor)
<u>Vessels:</u>
Area Loss: Zone #1//
Zone #2
Zone #3
Total Zone Loss $\frac{N/A}{A}$ /(% Factor) $\frac{N/A}{A}$ x 100 = $\frac{N/A}{A}$ % of Loss
Lump Sum Loss From Other Limitations + 26 %
Total Loss <u>26%</u> 100% - (Total Loss) <u>26 = 74</u> % of Coverage
(Additional 0 % of Partial Coverage)
Qualifies for Request for Relief Yes No
Piping:
xial Scan(Loss)/(% Factor) x 100= % of Loss Circumferential Scan Over Root Area ☐ Yes ☐ No % of Loss
Axial Loss + Circ. Loss = /2= % Loss
Additional Losses (Due to hangers, restraints, etc.) + % Loss
Explain: Total % Loss
1000/ / / / / / / / / / / / / / / / / /
100% - (Total Loss)=% of Coverage
Qualifies for Request for Relief
Disposition:
Date:

MUST MOZZLE MMER RADIUS EXAM VOLUME

Serial No. 74-01 Attachment 11 Page 1022 Limited Exam Data Sheet Station_ Unit 3 I.D. # 35 CB - WG 25 Checked By Date _______ Page _4_ Of _4____ DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME INSPECTED (in percentage) Total Cross Sectional Area $\frac{N/4}{x}$ (Number of Scans) $\frac{N/4}{x} = \frac{N/4}{x}$ (% Factor) Vessels: Area Loss: Zone #1 ______ */A Zone #2 _____*N*/_A Zone #3 ________//a Total Zone Loss $\frac{4}{A}$ /(% Factor) $\frac{1}{A}$ x 100 = $\frac{1}{A}$ % of Loss Lump Sum Loss From Other Limitations + 26 % Total Loss 26 % 100% - (Total Loss) 2 = 74% of Coverage (Additional _____ % of Partial Coverage) Qualifies for Request for Relief

☐ Yes ☐ No Piping: □ No ___ % of Loss Axial Loss _____ + Circ. Loss ____ = ___ /2= ____ % Loss Additional Losses (Due to hangers, restraints, etc.) +____ % Loss Explain: _____ _____ Total % Loss 100% - (Total Loss)______ = ____% of Coverage Qualifies for Request for Relief ☐ Yes ☐ No Disposition:

Date: _

Attachment 11 TOTAL EXAM AREA - 9.5X.5= 4.75 IN 2 TOTAL AREA NOT SCAUNED . . 5X2.5= 1.25112 TOTAL PERCENT OF LOSS 1.25 - 475=. 263 X 100= 26% TOTAL LOSS of 26% By: Lany Marden 1-6-94 I.D. # 35GB-6625-ITEM # BO3.140.006 INLET MOZZLE INNER RADIUS EXAM VOLUME

Serial No. 74-01

Jerial No. 44-01 Attachment 12 Page 10) Limited Exam Data Sheet Oconee Unit 3 I.D. # 3CFTB-OUTCET Date 1-13-94 Item # C02.022.06 hecked By . ___ Date ___ Page 3 Of 4 DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME INSPECTED (in percentage) Total Cross Sectional Area \sqrt{x} (Number of Scans) $\sqrt{x} =$ (% Factor) Vessels: Area Loss: Zone #1 \ Zone #2 Zone #3 ___ Total Zone Loss ______ /(% Factor)_____x 100 =_____% of Loss Lump Sum Loss From Other Limitations * Total Loss 28 % 100% - (Total Loss) <u>28</u> = <u>72</u>% of Coverage (Additional <u>na</u>% of Partial Coverage) Qualifies for Request for Relief Yes Piping: xial Scan _____(Loss)___/__(% Factor) x 100=___ % of Loss Axial Loss _____ + Circ. Loss ____ = ___ /2= ____ % Loss Additional Losses (Due to hangers, restraints, etc.) +____ % Loss Explain: _____ ____ Total % Loss 100% - (Total Loss)_______% of Coverage Qualifies for Request for Relief ☐ Yes ☐ No Disposition: _____

Date: ____

Serial No. 94-01 Attachment 13 Page 10f8

DEFINITIONS APPLICABLE TO THE REACTOR VESSEL EXAMINATION

AGGREGATE - Combined coverage using different transducers and different directions due to problems scanning the welds.

PARTIAL AGGREGATE COVERAGE - The amount of coverage obtained had there been no physical interferences. This includes but is not limited to configuration, surface condition (i.e. clad patches), etc.

ACTUAL AGGREGATE COVERAGE - The amount of coverage obtained due to the physical interferences.

Serial No. 94-01 Attachment 13 Page 2 of 8

Formula:

Aggregate Coverage =

[(% 70° Axial + % 70° Circ) x in2 NS

NDE SERVICES

+ (% 60° Circ + % 45° Circ + % 0°) x Total Area

+ (% 60° + % 45°) Axial x (in² Weld x 2 + in² T/2)] /

[in^2 NS x 2 + in^2 Total Area x 3 + (in^2 Weld x 2 + in^2 T/2) x 2]

Notes:

Weld volumes do not include the clad region.

The Near Surface Area extends 1" into the base metal.

Angle requirements are as follows:

- 0° 100 % of Total Volume,
- 45° & 60° 100 % of Weld from 4 directions, 100 % of T/2 from 2 Circ directions, 100 % of T/2 from 1 Axial direction,
- 70° 100 % of Near Surface from 1 Axial & 1 Circ directions,
- 70° 100 % of Inside Radius from 1 Axial & 1 Circ directions.

The 45° is used from the Nozzle Bore to examine the Near Surface of the Nozzle-to-Shell Weld in the Axial direction. Additionally only one direction is possible from the Nozzle Bore, and the 0° (or 15°) replaces the 60°.

MAR Ø8 '94 Ø9:42

Serial No. 94-01 Attachment 13 Page 3 of 8

WR19 (BO1.030.001)

Total Exam Area = 184.56 in² (Near Surface + Weld + T/2)

Near Surface Area = 15.40 in² (Cross-Section)

> Weld Area = 24.14 in² (Cross-Section)

 $T/2 \text{ Area} = 160.42 \text{ in}^2$ (Cross-Section)

0° Gets 101.06 in2 of Total Exam Area CIRC (54.8 %)

60° & 45° Get 138.27 in2 of Weld & T/2 Areas (74.9 %)

Gets 11.52 in' of Near Surface Area

Gets 13.14 in2 of Near Surface Area - AXIAL

> 45° Gets 122.43 in2 of T/2 Area

> > Gets 22.02 in of Weld Area 45°-UP

> > 45°-DOWN Gets 2.44 in2 of Weld Area

 45° Coverage = 22.02 + 2.44 + 122.43 = 70.4 %24.14 + 24.14 + 160.42

Gets 135.74 in2 of T/2 Area 60°

> 60°-UP Gets 23.12 in2 of Weld Area

> 60°-DOWN Gets 5.75 in2 of Weld Area

 60° Coverage = 23.12 + 5.75 + 135.7478.9 % 24 14 + 24 14 + 160 42

Serial No. 94-01 Attachment 13 Page 4 of 8

(Bol. 030.001)

NDE SERVICES

	LAIXA			C	IRC	
70_	60	45	_70_	_60_	45	0
85.3	78.9	70.4	74.8	74.9	74.9	5 4. 8

Aggregate Coverage

 $[(85.3 + 74.8) \times 15.40 + (74.9 + 74.9 + 54.8) \times 184.56$ + $(78.9 + 70.4) \times (24.14 \times 2 + 160.42)$ / [14.50 x 2 + 184.56 x 3 + (24.14 x 2 + 160.42) x 2]

Partial Aggregate Coverage

(MAXIMUM COVERAGE SCANNING OVER CLAD PATCHES)

Serial No. 94-01 Attachment 13 Page 5 of 8

WR19 (BOI.030.001)

Due to Clad Patches, the entire circumference of the vessel could not be scanned. One side of the vessel was completly scanned, however. On the other side, only 1/2 of an Axial scan was performed over a clad patch. The circumferential distance lost due to each patch was 8 degrees. The partial Axial scan resulted in a loss of only 4 degrees. There are 3 clad patches on each side of the vessel, one over each nozzle.

The 70° Axial, the 0° and the 45° & 60° Axial-UP lost 20 degrees of circumference (5.6 %). The Circ Scans lost 24 degrees (6.7 %). Axial-DOWN scans (from the Taper) were not affected. In the area of the clad patches, the following coverages were obtained:

AXIAL 70° Gets 3.07 in² of Near Surface Area (19.9 %)

45° Gets 49.73 in² of T/2 Area

45°-UP Gets 0.61 in² of Weld Area

45°-DOWN Gets 2.44 in² of Weld Area

45° Coverage = 0.61 + 2.44 + 49.73 = 25.3 % 24.14 + 24.14 + 160.42

60° Gets 73.85 in² of T/2 Area
60°-UP Gets 13.42 in² of Weld Area
60°-DOWN Gets 5.75 in² of Weld Area
60° Coverage = 13.42 + 5.75 + 73.85 = 44.6 %
24.14 + 24.14 + 160.42

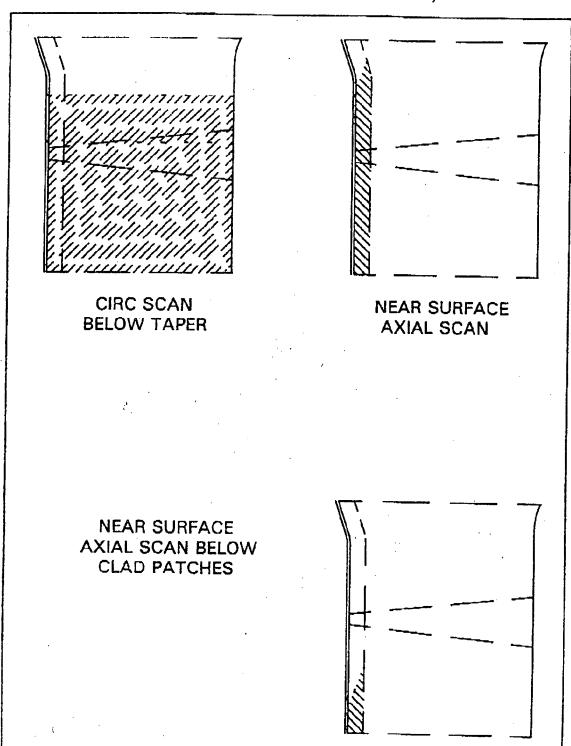
70° Axial Coverage = 340 x 85.3 + 20 x 19.9 / 360 = 81.7 % 60° Axial Coverage = 340 x 78.9 + 20 x 44.6 / 360 = 77.0 % 45° Axial Coverage = 340 x 70.4 + 20 x 25.3 / 360 = 67.9 %

Serial No. 94-01 Attachment 13 Page 6 of 8

<u>WR19</u> (BOI.030.001)

NDE SERVICES

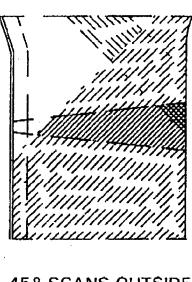
	AXIAL			c:	IRC	
70_	60	45	70_	_60	45	
81.7	77.0	67.9	70.6	69.8	69.8	51.8

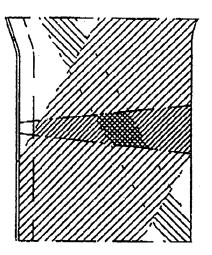

Aggregate Coverage

[$(81.7 + 70.6) \times 15.40 + (69.8 + 69.8 + 51.8) \times 184.56$ + $(77.0 + 67.9) \times (24.14 \times 2 + 160.42)] /$ [$14.50 \times 2 + 184.56 \times 3 + (24.14 \times 2 + 160.42) \times 2$]

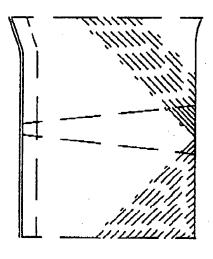
Actual Aggregate Coverage

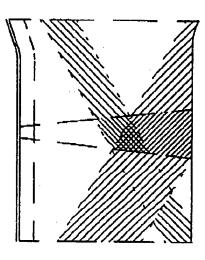
(ACTUAL COVERAGE OBTAINED DUE TO CLAD PATCHES)


Serial No.94-01 Attachment 13 Page 7 of 8


FLANGE TO SHELL WELD

(BOI.030.001)


Serial No. 94-01 Attachment 13 Page 8 of 8


45° SCANS OUTSIDE CLAD PATCH AREAS

60° SCANS OUTSIDE CLAD PATCH AREAS

45° SCAN IN CLAD PATCH AREAS

60° SCAN IN CLAD PATCH AREAS

FLANGE TO SHELL WELD AXIAL SCAN

(BOI.030.001)

MAR 08 '94 09:44

Serial No. 94-01 Attachment 14 Page 1 of 5

(BOI. 021.00Z)

Total Exam Area = 53.27 in² (Near Surface + Weld + T/2)

Near Surface Area = 8.31 in² (Cross-Section)

Weld Area = 7.59 in² (Cross-Section)

 $T/2 \text{ Area} = 45.68 \text{ in}^2$ (Cross-Section)

CIRC 0° Gets 16.89 in³ of Total Exam Area (31.7%)

60° & 45° Get 35.69 in2 of Weld & T/2 Areas (67.0 %)

70° Gets 5.58 in² of Near Surface Area (67.1 %)

AXIAL 70° Gets 7.24 in² of Near Surface Area (87.1 %)

45° Gets 100 % Coverage of T/2 Area

45°-UP Gets 100 % Coverage of Weld Area

45°-DOWN Gets 7.55 in of Weld Area

45° Coverage = 7.59 + 7.55 + 45.68 = 99.9 %

7.59 + 7.59 + 45.68

60° Gets 45.59 in² of T/2 Area
60°-UP Gets 100 % of Weld Area
60°-DOWN Gets 6.28 in² of Weld Area
60° Coverage = 7.59 + 6.28 + 45.59 7.59 + 7.59 + 45.68

Serial No. 94-01 Attachment 14 Page Z of 5

WR34

(BOI. 021. 002)

·	AXIAL			C	IRC	·
70	60	45	_70_	60	_45	0_
87.1	97.7	99.9	67.1	67.0	67.0	31.7

Aggregate Coverage =

[$(87.1 + 67.1) \times 8.31 + (67.0 + 67.0 + 31.7) \times 53.27$

+ $(97.7 + 99.9) \times (7.59 \times 2 + 45.68)] /$

[8.31 x 2 + 53.27 x 3 + (7.59 x 2 + 45.68) x 2]

Partial Aggregate Coverage = 74.2 %

Serial No. 94-01 Attachment 14 Page 3 of 5

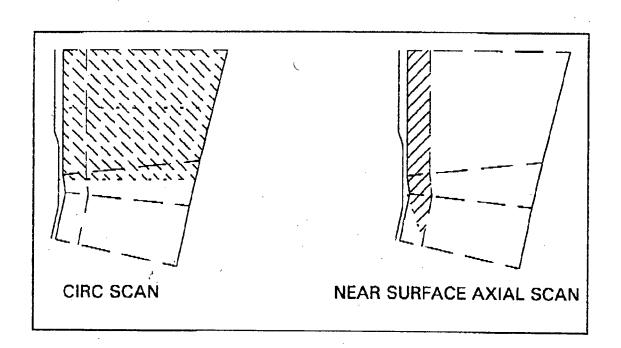
WR34 (BOI.021.002)

Due to the Core Catcher Lugs the entire circumference of the vessel could not be scanned. Scanning was conducted between each of the 12 lugs. Based on the configuration of the alternate head, the 0°, 70° Axial and all Circ scans obtained 15.3 degrees out of 30 (51 %). The 45° & 60° Axial scans obtained 19.5 degrees out of 30 (65 %).

Actual Coverage was as follows:

WR34

AXIAL					C;	IRC	
70	60.	45		70	60	45	0_
44.4	63.4	64.8	•	34.2	34.2	34.2	16.2

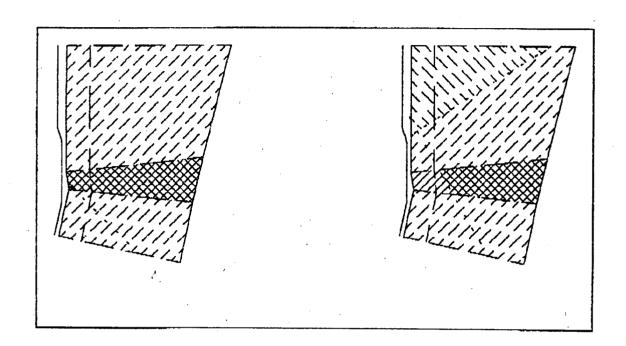

Aggregate Coverage =

[
$$(44.4 + 34.2) \times 8.31 + (34.2 + 34.2 + 16.2) \times 53.27$$

+ $(63.4 + 64.8) \times (7.59 \times 2 + 45.68)$] /

[$8.31 \times 2 + 53.27 \times 3 + (7.59 \times 2 + 45.68) \times 2$]

Actual Aggregate Coverage = 43.5 %


Serial No. 94-01 Attachment 14 Page 4 of 5

LOWER HEAD TO SHELL

(BOI.021.002)

Senal No. 94-01 Attachment 14 Page 5 of 5

NDE SERVICES

LOWER HEAD TO SHELL WELD AXIAL SCAN

(Bol. 021. 002)

3852232

Serial No. 94-01 Attachment 15 Page 1 of Z

(BD1.011.003)

Total Exam Area = 183.27 in^2 (Near Surface + Weld + T/2)

Near Surface Area = 15.27 in^2 (Cross-Section)

Weld Area = 24.14 in (Cross-Section)

T/2 Area = 159.13 in² (Cross-Section)

CIRC 70° Gets 100 % Coverage of Near Surface Area

60° & 45° Get 100 % Coverage of Weld & T/2 Areas

0° Gets 100 % Coverage of Total Exam Area

AXIAL 70° Gets 100 % Coverage of Near Surface Area

45° Gets 100 % Coverage of Weld & T/2 Areas

60° Gets 100 % Coverage of Weld & T/2 Areas

WR18

. ,	IRC	CI		AXIAL		
0	45	60	_70_	45	60	_70_
100	100	100	100	100	100	100

Aggregate Coverage =

[$(100 + 100) \times 15.27 + (100 + 100 + 100) \times 159.13$

+ $(100 + 100) \times (24.14 \times 2 + 159.13)$ /

[15.27×2 + 159.13×3 + (24.14 x 2 + 159.13) x 2]

Partial Aggregate Coverage = 100 %

Page 13

Serial No. 9401 Attachment 15 Page 2 of 2

WR18 (BOI.011.003)

NDE SERVICES

This weld is located between nozzles, 13" below the nozzle The nozzles themselves form obstructions to 100 % centerline. coverage.

Between Inlet Nozzles, below the Core Flood Nozzle (2 regions), 25.7 degrees out of 32.5 degrees was scanned. The weld extends out on either side of this region intersecting the Inlet Nozzleto-Shell welds.

Between each Inlet Nozzle and Outlet Nozzle (4 regions) 19.6 degrees out of 27.8 degrees was scanned. The weld extends out on either side of this region intersecting the Inlet and Outlet Nozzle-to-Shell welds. Extra coverage was lost in these regions due to the Outlet Nozzle lip.

Actual Aggregate Coverage=[$25.7 / 32.5 \times 2 + 19.6/27.8 \times 4]/6$

73.4 %

Serial No. 94-01 Attachment 16 Page 1 of 9

Nozzle Formula:

Aggregate Coverage =

```
[ % 70° Circ x in² NS + (% 0°/15°/45° Axial
+ % 60° Circ + % 45° Circ + % 0°) x Total Area ] /
[ in² NS + in² Total Area x 4 ]
```

Nozzle Notes:

Weld volumes do not include the clad region.

The Near Surface Area extends 1" into the base metal.

The Inside Radius Area extends 1/2" into the base metal.

Angle requirements are as follows:

- 0° 100 % of Total Volume,
- 45° & 60° 100 % of Weld from 4 directions, 100 % of T/2 from 2 Circ directions, 100 % of T/2 from 1 Axial direction,
- 70° 100 % of Near Surface from 1 Axial & 1 Circ directions,
- 70° 100 % of Inside Radius from 1 Axial & 1 Circ directions.

Only one angle direction is required from the Nozzle Bore, and coverage is estimated based on the combined extent of the 0° , 15° & 45° . Additionally, there is no near surface requirement from the Vessel ID for the Axial direction.

3RPV-WRIZ (B03.090.003 \$ 003A)
3RPV-WRIZA (B03.090.004 \$ 004A)

PV-WRIZB (B03.090.005 \$ 005A)
WRIN

3RPV-WRIZC (B03.090.006 \$ 006A)
VERTICAL SECTION

NDE SERVICES

Serial No. 94-01 Attachment 16 Page Z of 9

Total Exam Area = 292.94 in^2 (Near Surface + Weld + T/2)

Near Surface Area = 15.06 in² (Cross-Section)

Weld Area = 24.34 in^2 (Cross-Section)

 $T/2 \text{ Area} = 268.60 \text{ in}^2$ (Cross-Section)

Inside Radius Area = 6.83 in² (Cross-Section)

CIRC 0° Gets 219.74 in of Total Exam Area (75.0 %)

60° & 45° Get 219.74 in² of Weld & T/2 Areas (75.0 %)

70° Gets 100 % Coverage of Near Surface Area

70° Gets 5.03 in² of Inside Radius Area (73.6 %)

AXIAL 0°, 15° & 45° Get 281.98 in² of Weld & T/2 Area (96.3 %)
70° Gets 100 % Coverage of Inside Radius Area

3RPV-WRIZ (B03.100.003) 3RPV-WRIZA (B03.100.004) 3RPV-WRIZB (B03.100.005)

3RPV-WRIZC (BO3.100.006)

3852232

NDE SERVICES

F-722 T-349 P-018

MAR 08 '94 09:46

3RPV-WRIZ (B03.090.003 \$003A) 3RPV-WRIZA (B03.090.004 \$004A) PV-WRIZB (B03.090.005 \$005A)

3RN-WRIZC (B03.090.006 \$ 006A)

Serial No. 94-01 Attachment 16 Page 3 of 9

WRIN

HORIZONTAL SECTION

Total Exam Area = 269.15 in^2 (Near Surface + Weld + T/2)

Near Surface Area = 13.97 in² (Cross-Section)

Weld Area = 22.72 in² (Cross-Section)

T/2 Area = 246.43 in² (Cross-Section)

Inside Radius Area = 7.20 in² (Cross-Section)

CIRC 0° Gets 153.64 in² of Total Exam Area (57.1 %)

60° & 45° Get 153.64 in² of Weld & T/2 Areas (57.1 %)

70° Gets 100 % Coverage of Near Surface Area

70° Gets 0 % Coverage of Inside Radius Area

AXIAL 0°, 15° & 45° Get 210.63 in² of Weld & T/2 Area (78.3 %)
70° Gets 100 % Coverage of Inside Radius Area

3RPV-WRIZ (BO3.100.003)

3RN-WRIZA (BO3100.004)

3RPV-WRIZB (B03.100.005)

3RPV-WRIZC (B03.100.006)

3RPV-WRIZA (BO3.090.004 \$004A)

3RPV. WR 12B (BO3.090.005 \$ 005A)

3PM. WRIZC (BO3.090.006 & 006A)

F-722 T-349 P-019

MAR 08 '94 09:46

Serial No. 94.01 Attachment 16 Page 4 of 9

WRIN

3RPY-WRIZ (BD3.100.003)

3RPV-WRIZA (B03.100.004) 5RPV-WRIZB (B03.100.005)

, RPV-WRIZC (B03.100.006)

VERTICAL SECTION

AXIAL	CIRC				
0/15/45	_70_	60	45	0_	
96.3	100	75.0	75.0	75.0	

Aggregate Coverage =

 $[100 \times 15.06 + (96.3 + 75.0 + 75.0 + 75.0) \times 292.94]$

Actual Aggregate Coverage = 80.6 %

HORIZONTAL SECTION

AXIAL		ÇI	RC	
0/15/45	70	60	45_	0_
78.3	. 100	57.1	57.1	57.1

Aggregate Coverage =

[$100 \times 13.97 + (78.3 + 57.1 + 57.1 + 57.1) \times 269.15$] / [$13.97 + 269.15 \times 4$]

Actual Aggregate Coverage = 62.9 %

3852232 NDE SERVICES SRPV-WRIZ (BO3.090.003 \$ 003A) SRPV-WRIZA (BO3.090.004 \$004A) SRPV-WRIZB (BO3.090.005 \$ 005A)

MAR 08 '94 09:46 Serial No. 94-01 Attachment 16

Page 5 of 9

F-722 T-349 P-020

; RD WRIZE (BOS. 090.006 4 006A)

; RANKIZ (BO3.100.003)

WRIN

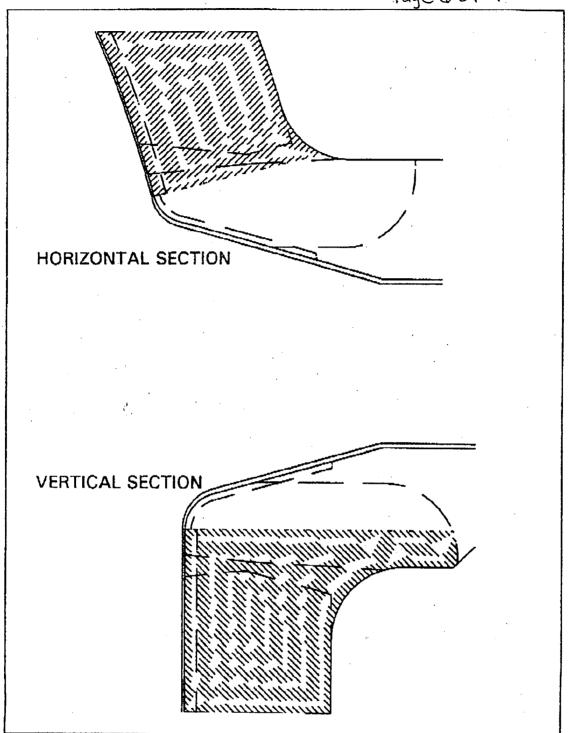
RPV-WRIZA (803.100.004) RPV-WRIZB (803.100.005) RPV-WRIZC (803.100.006)

Nozzle-to-Shell Weld

Actual Average Coverage = [80.6 + 62.9] / 2 = 71.7 %

Additionally, Coverage of the Inside Radius is as follows:

Axial Coverage = [100 + 100] / 2 = 100 %

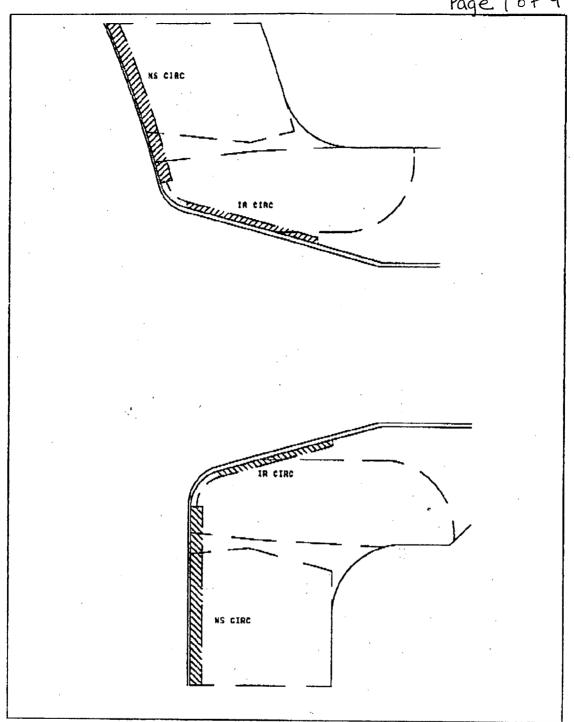

Circ Coverage = [73.6 + 0] / 2 = 36.8 %

Actual Average Coverage = 68.4 %

Coverage of the Nozzle-to-Pipe Weld is 100 %

NDE SERVICES

Serial No. 94-01 Attachment 16 Page 6 of 9


INLET NOZZLE TO SHELL WELD CIRC SCAN FROM VESSEL ID

3RPV-WRIZ (BO3.090.003 & 003A) PV-WRIZA (BO3.090.004 & 004A) 3RPV-WRIZB (BO3.090.005 & 005A) 3RPV-WRIZC (BO3.090.006 & 006A)

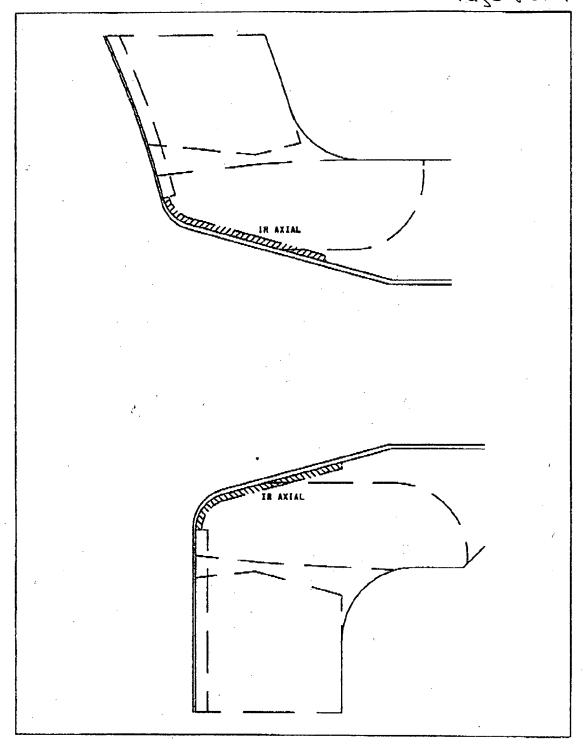
3RPV-WRIZ (803.100.003) 3RPV-WRIZA (803.100.004) 3RPV-WRIZB (803.100.005) 3RPV-WRIZC (803.100.006)

Page 20

Serial No. 94.01 Attachment 16 Page 7 of 9

INLET NOZZLE TO SHELL WELD NEAR SURFACE FROM VESSEL ID AND INNER RADIUS CIRC SCAN FROM NOZZLE ID

3RPV-WR12 (B03.090.003 \$003A) RPV-WRIZA (BO3.090.004 \$ 004A) 3RPV-WRIZB (BO3.090.005 & 005A) 3RPV-WRIZC (BO3.090.006 \$006A)


3RPV-WRIZ (B03.100.003) 3RPV-WRIZA (BO3.100.004)

Page 21

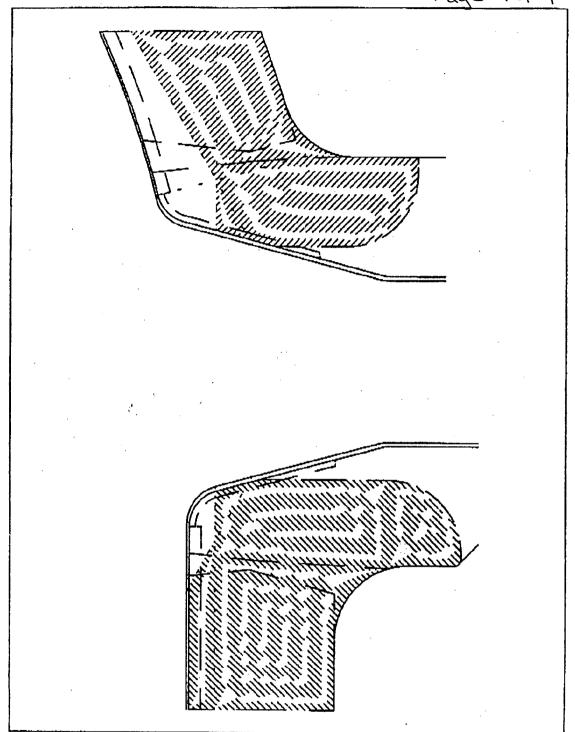
3RPV-WRIZB (B03.100.005)

3RN-WRIZC (B03.100.006)

Serial No. 94-01 Attachment 16 Page 8 of 9

INLET NOZZLE INNER RADIUS AXIAL SCAN FROM NOZZLE ID

3RPV-WR12 (B0309D.003 \$003A) 3RPV-WR12 (B03.100.003)


WRIZA (BO3090.004 & 004A) 3RPV-WRIZA (BO3.100.004)

3RN. WRIZB (B03.090.005 +005A) 3RN-WRIZB (B03.100.005)

3RPV-WRIZC (BO3.090.006 \$006A) 3RPV-WRIZC (BO3.100.006)

Page 22

eral No. 94-01 Attachment 16 Page 9 of 9

INLET NOZZLE TO SHELL WELD **SCAN FROM NOZZLE ID**

3RPV-WRIZ (BO3.090.003 \$003A) 3RPV-WRIZ (BO3.100.003) 3821. WRIZA (BO3.090.004 4004A) 3RPY-WRIZA (BO3.100.004) 3 EN-WRIZB (BO3.090.005 & 005A) 3RN-WRIZB (BO3.100.005) 3RPV-WRIZC (BO3090:006 \$006A) 3RPV-WRIZC (BO3.100.006)

Page 23

Serial No. 94-01 Attachment 17

Page 1 of 8

3RPV-WR13 (B03090.00) \$001A) 3 RPV-WEI3A (BO3.090.00Z \$ 00ZA)

V-WR13 (B03.100.001)

WROUT

3RPV-WRISA (BO3.100.00Z)

VERTICAL SECTION

Total Exam Area = 301.06 in^2 (Near Surface + Weld + T/2)

Near Surface Area = 14.02 in² (Cross-Section)

NDE SERVICES

Weld Area = 25.52 in^2 (Cross-Section)

 $T/2 \text{ Area} = 275.54 \text{ in}^2$ (Cross-Section)

Inside Radius Area = $7.26 in^{2}$ (Cross-Section)

Gets 95.16 in2 of Total Exam Area CIRC (31.6 %)

> 60° & 45° Get 136.87 in² of Weld & T/2 Areas (45.5 %)

> Gets 11.03 in2 of Near Surface Area (78.7 %)

70° Gets 100 % Coverage of Inside Radius Area

0°, 15° & 45° Get 295.92 in² of Weld & T/2 Area (98.3 %) AXIAL

70° Gets 100 % Coverage of Inside Radius Area

Senal No. 94-01

Attachment 17

tage 2 of 8

3RPV-WR13 (B03.090.001 +001A) 3RN-WR13A (BO3.090.002 & 002A)

WR13 (BO3.100.001). 3 RPV- WRI3A (BO3.100.002)

WROUT

HORIZONTAL SECTION

Total Exam Area = 298.71 in^2 (Near Surface + Weld + T/2)

Near Surface Area = 13.62 in² (Cross-Section)

> Weld Area = 23.45 in^2 (Cross-Section)

T/2 Area = 275.26 in² (Cross-Section)

Inside Radius Area = $8.02 in^{2}$ (Cross-Section)

Gets 47.69 in2 of Total Exam Area CIRC (16.0 %)

60° & 45° Get 87.46 in2 of Weld & T/2 Areas (29.3 %)

70° Gets 11.33 in2 of Near Surface Area (83.2 %)

70° Gets 6.88 in2 of Inside Radius Area (85.8 %)

0°, 15° & 45° Get 247.16 in of Weld & T/2 Area (82.7 %) AXIAL

> 70° Gets 7.74 in² of Inside Radius Area (96.5 %)

F-722 T-349 P-027

MAR 08 '94 09:48

3RPV-WR13 (B03.090.001 \$001A) 3RPV-WR13A (B03.090.002 \$002A) 3RPV-WR13 (B03.100.001) 3RPV-WR13A (B03.100.002)

WROUT

Serial No. 94-01 Attachment 17 Page 3 of 8

VERTICAL SECTION

AXIAL	CIRC					
0/15/45	_70_	_60	4.5	0_		
98.3	78.7	45.5	45.5	31.6		

Aggregate Coverage =

[$78.7 \times 14.02 + (98.3 + 45.5 + 45.5 + 31.6) \times 301.06$] / [$14.02 + 301.06 \times 4$]

Actual Aggregate Coverage = 55.5 %

HORIZONTAL SECTION

AXIAL		CIRC				
0/15/45	_70	60	45	0		
82.7	83.2	29.3	29.3	16.0		

Aggregate Coverage =

[$83.2 \times 13.62 + (82.7 + 29.3 + 29.3 + 16.0) \times 298.71$] / [$13.62 + 298.71 \times 4$]

Actual Aggregate Coverage = 39.8 %

3RPV-WR13 (BO3.090.001 \$001A)

3RD-WRI3A (BO3.090.002 &002A)

-WR13 (BO3,100,001) 3RPV. WR 13A (BO3. 100.002)

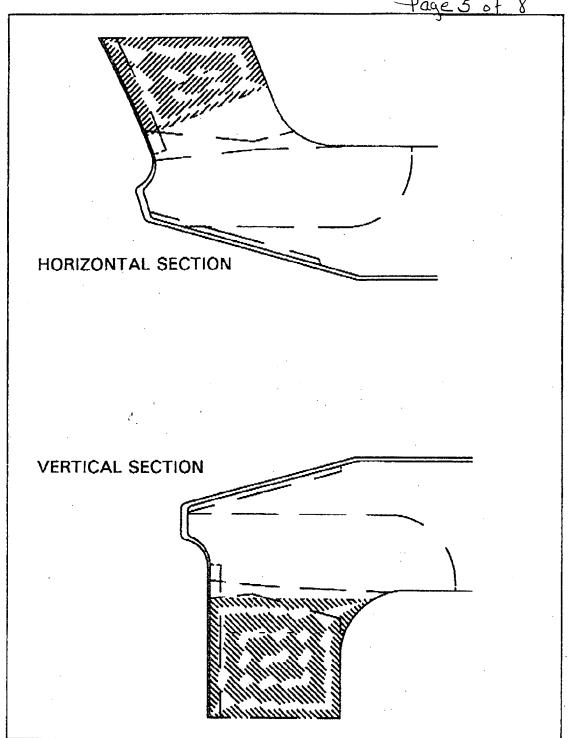
WROUT

Nozzle-to-Shell Weld

Serial No. 94-01 Attachment 17 Page 4 of 8

Actual Average Coverage = [55.5 + 39.8] / 2 = 47.6 %

Additionally, Coverage of the Inside Radius is as follows:

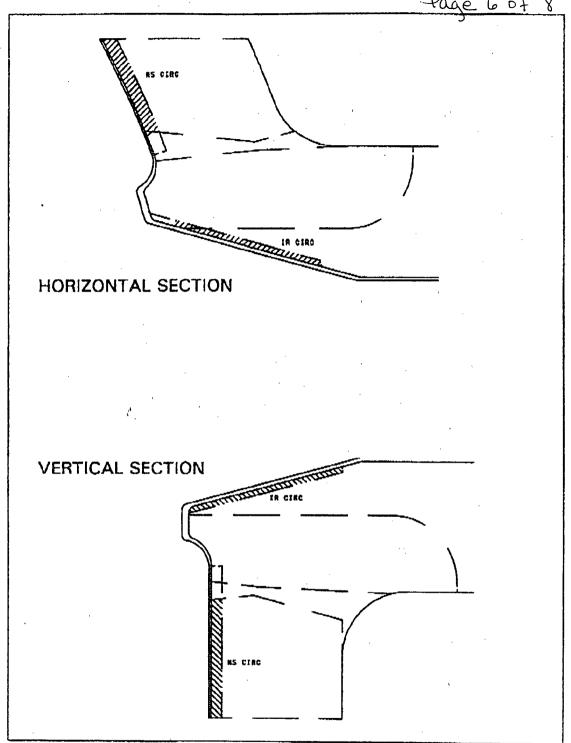

Axial Coverage = [100 + 96.5] / 2 = 98.2%

Circ Coverage - [100 + 85.8] / 2 = 92.9 %

Actual Average Coverage = =

Coverage of the Nozzle-to-Pipe Weld is 100 %

Serial No. 94-01 Attachment 17 Page 5 of 8

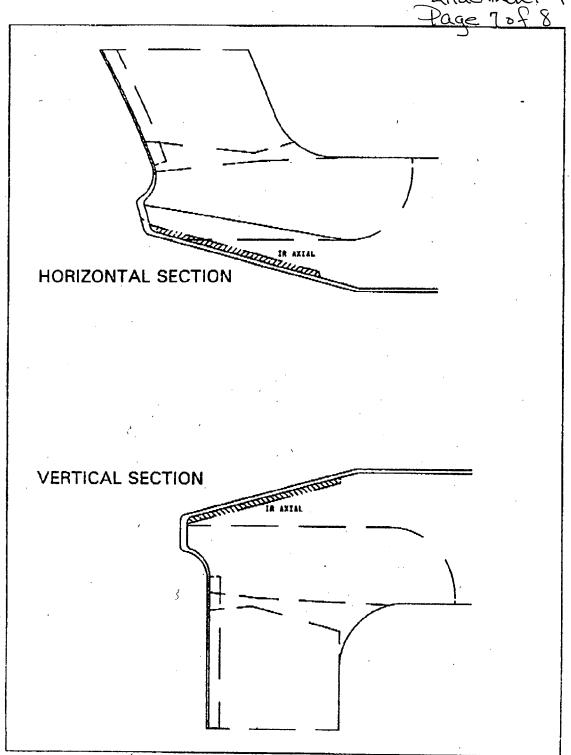


OUTLET NOZZLE TO SHELL WELD CIRC SCAN FROM VESSEL ID

Page 28

3RPV-WRI3A (BO3.090.001 & DOIA) 3RPV-WRI3A (BO3.090.002 & DOZA) 3RPV-WRI3 (BO3.100.001) 3RPV-WRI3A (BO3.100.002)

Servel No. 94.01 Attachment 17 Page 6 of 8

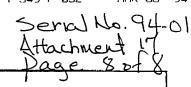

OUTLET NOZZLE TO SHELL WELD NEAR SURFACE FROM VESSEL ID AND INNER RADIUS CIRC SCAN FROM NOZZLE ID

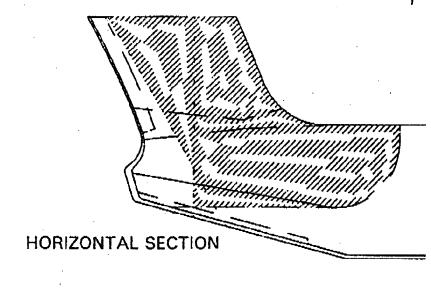
3RPV-WR13 (B03.090001 \$001A)

Page 29

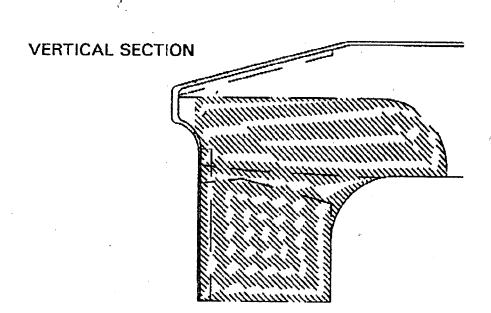
2PV-WRI3A (BO3.090.002 & 002A) 3RPV-WRI3 (BO3.100.001) 3RPV-WRI3A (BO3.100.002)

Serval No. 94-01 Attachment 17




OUTLET NOZZLE INNER RADIUS AXIAL SCAN FROM NOZZLE ID

3PN-WR13 (BO3.890.001 & 001A) 3PN-WR13A (BO3.090.002 & 002A)


Page 30

3RPV-WR13 (B03.100.001) 3RPV-WR13A (B03.100.002)

NDE SERVICES

OUTLET NOZZLE TO SHELL WELD SCAN FROM NOZZLE ID

3RPV-WRI3 (BO3.090.001 & COIA) 3PJ-WRI3A (BO3.090.002 & COZA) 3RPV-WRI3 (BO3.100.001) 3RPV-WRI3A (BO3.100.002)

Page 31

F-722 T-349 P-033

MAR 08 '94 09:50

3RPV-WR 54 (BO3.090.007 &007A)
3RPV-WR 54 (BO3.00.007 &007A)
3RPV-WR 54 (BO3.100.007 &007A)
PAR

1. WR 54A (BO3.100.008 &008A)
PAR

Servel No. 94-01 Attachment 18 Page 1 of 12

WRCF

VERTICAL SECTION

Total Exam Area = 189.61 in^2 (Near Surface + Weld + T/2)

Near Surface Area = 12.98 in² (Cross-Section)

Weld Area = 19.01 in² (Cross-Section)

T/2 Area = 170.60 in² (Cross-Section)

CTRC 0° Gets 170.69 in² of Total Exam Area (90.0%)

60° & 45° Get 170.69 in2 of Weld & T/2 Areas (90.0 %)

70° Gets 100 % Coverage of Near Surface Area

AXIAL 70° Gets 100 % Coverage of Near Surface Area

45° Gets 162.44 in2 of T/2 Area

45°-IN Gets 100 % Coverage of Weld Area

45°-OUT Gets 7.92 in2 of Weld Area

45° Coverage = $\frac{19.01 + 7.92 + 162.44}{19.01 + 19.01 + 170.60}$ = 90.8 %

 60° Gets 161.18 in of T/2 Area

60°-IN Gets 100 % Coverage of Weld Area

60°-OUT Gets 5.02 in2 of Weld Area

60° Coverage = <u>19.01 + 5.02 + 161.18</u> = 88.8 % 19.01 + 19.01 + 170.60

F-722 T-349 P-034

MAR 08 '94 09:50

3RPV-WR54 (BO3.090.007 & 007A) 3RPV. WR54A (BO3.090:008 & 008A) 3 WR St (BO3.100.007 FOOTA) RAP 3RN-WRSHA (BD3.100.008 +008A) RKR

Serial No. 94-01 Attachment 18 Page 2 of 12

HORIZONTAL SECTION

WRCF

Total Exam Area = 222.71 in² (Near Surface + Weld + T/2)

Near Surface Area = 15.50 in² (Cross-Section)

> Weld Area = 21.32 in^2 (Cross-Section)

 $T/2 Area = 201.39 in^2$ (Cross-Section)

0° Gets 191.77 in² of Total Exam Area CIRC (86,1%)

60° & 45° Get 191.77 in2 of Weld & T/2 Areas (86.1 %)

70° Gets 100 % Coverage of Near Surface Area

Gets 100 % Coverage of Near Surface Area AXIAL

Gets 199.35 in2 of T/2 Area

45°-IN Gets 100 % Coverage of Weld Area

45°-OUT Gets 8.72 in2 of Weld Area

 45° Coverage = 21.32 + 8.72 + 199.35 = 94.0 %21.32 + 21.32 + 201.39

Gets 198.96 in2 of T/2 Area

60°-IN Gets 100 % Coverage of Weld Area.

60°-OÙT Gets 5.74 in2 of Weld Area

60° Coverage = 23.12 + 5.74 + 198.96 = 93.423.12 + 23.12 + 201.39

3RPV-WR 54 (BO3.090.007 \$007A)

3RPV-WR54A (BO3.090.008 4008A)

Serial No. 94-01 Attachment 18 Page 3 of 12

3 RPV-NR 54 (BO3.100.007-4007A) RAP 3RN-WR54A (BO3.100.008 & 008A)

VERTICAL SECTION

AXIAL				C:	IRC	
70	60	45	70	60	4.5	0_
100	88.8	90.8	100	90.0	90.0	90.0

Aggregate Coverage

 $(100 + 100) \times 12.98 + (90.0 + 90.0 + 90.0) \times 189.61$

+ (88.8 ÷ 90.8) x (19.01 x 2 + 170.60)] /

 $[12.98 \times 2 + 189.61 \times 3 + (19.01 \times 2 + 170.60) \times 2]$

Partial Aggregate Coverage

HORIZONTAL SECTION

	AXIAL			C.	IRC	
70	60	45	70	60	45	0_
100	93.4	94.0	100	86.1	86.1	86.1

Aggregate Coverage =

[$(100 + 100) \times 15.50 + (86.1 + 86.1 + 86.1) \times 222.71$

 $+ (93.4 + 94.0) \times (21.32 \times 2 + 201.39)] /$

[$15.50 \times 2 + 222.71 \times 3 + (21.32 \times 2 + 201.39) \times 2$]

Partial Aggregate Coverage Page 34

3RPV-WRSYA (BO3.100.008 & 008A X

3RPV-MR 54 (BO3.090.007 ; 007A) 3RPV-MR54A (BO3.090.008 ; 008A) 3 WR 54 (BO3.100.007 ; 007A)

WRCF

Serial No. 94.01 Attachment 18 Flage 4 of 12

Coverage of the Core Flood Nozzle is blocked by the flange taper on the top side. 114 degrees of coverage is reduced. Coverage is also blocked on both sides by the adjacent inlet nozzles. 60 degrees of coverage is reduced on each side. Reduction in the top coverage affects the vertical section only. Reduction in the side coverage affects both the horizontal and vertical coverage.

REDUCED VERTICAL SECTION

AXIAL 60° Gets 132.28 in² of T/2 Area

60°-IN Gets 16.16 in2 of Weld Area

60°-OUT Gets 5.02 in2 of Weld Area

60° Coverage = $\frac{16.16 + 5.02 + 132.28}{19.01 + 19.01 + 170.60}$ = 73.6 %

AXIAL				C	IRC	·
70	60	45	70_	60	45	_ 0_
100	73.6	90.8	100	90.0	90.0	90.0

Aggregate Coverage =

[$(100 + 100) \times 12.98 + (90.0 + 90.0 + 90.0) \times 189.61$ + $(73.6 + 90.8) \times (19.01 \times 2 + 170.60)$] / [$12.98 \times 2 + 189.61 \times 3 + (19.01 \times 2 + 170.60) \times 2$]

Actual Aggregate Coverage = 87.0 %

3RPV-WR SHA (BO3.090.001 \$001A)
3RPV-WR SHA (BO3.090.008 \$008A)
3RPV-WR SH (BO3.100.007 \$009A)
3RPV-WR SH (BO3.100.007 \$009A)
4008A)

Serial No. 94-01 Attachment 18 Page 5 of 12

REDUCED HORIZONTAL SECTION

AXIAL 70° Gets 11.93 in of Near Surface Area (77.0 %)

60° Gets 166.86 in² of T/2 Area
60°-IN Gets 19.83 in² of Weld Area
60°-OUT Gets 5.74 in² of Weld Area
60° Coverage = 19.83 + 5.74 + 166.86 = 78.9 %
23.12 + 23.12 + 201.39

AXTAL			4	CIRC			
70	<u>60</u>	_45_	_70_	60	45_	0	
77.0	78.9	94.0	100	86.1	86.1	86.1	

Aggregate Coverage =

[$(77.0 + 100) \times 15.50 + (86.1 + 86.1 + 86.1) \times 222.71$ + $(78.9 + 94.0) \times (21.32 \times 2 + 201.39)$] / [$15.50 \times 2 + 222.71 \times 3 + (21.32 \times 2 + 201.39) \times 2$]

Actual Aggregate Coverage = 86.3 %

Actual Coverage is as follows:

- [Reduced Vertical (A) x 94° + Vertical (B) x 48° + Horizontal (C) x 98°
- + Reduced (Vertical + Horizontal)(D) / 2 x 120°] / 360 =
- = $87.0 \times 94^{\circ} + 90.2 \times 48^{\circ} + 89.6 \times 98^{\circ} + (87.0 + 86.3) \times 60^{\circ}/360$

Total Actual Coverage = 88.0 %

Total Actual Coverage = 88.0%

Page 36

Serial No. 94.01 Attachment 18 Page 6 of 12

Additionally, Coverage of the <u>Inside Radius</u> is as follows:

WRCF

Axial Coverage - 100 %

Circ Coverage = 0 %

Actual Average Coverage = 50 %

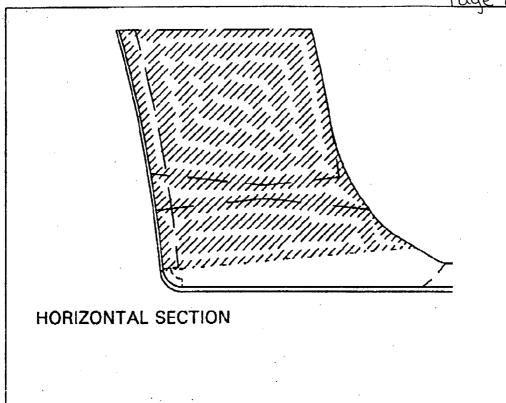
Additionally, Coverage of the <u>Nozzle-to-Safe End Weld</u> is limited by the counterbore. Coverage is as follows:

Circ Coverage

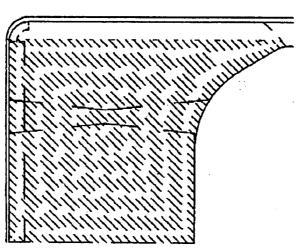
Inner T/3 1.804 in² out of 2.587 in² (69.7 %)

couter T/3 .986 in² out of 1.343 in² (73.4 %)

Axial Coverage


Inner T/3 2.428 in² out of 2.587 in² (93.9 %) (Limited in OUT direction only)

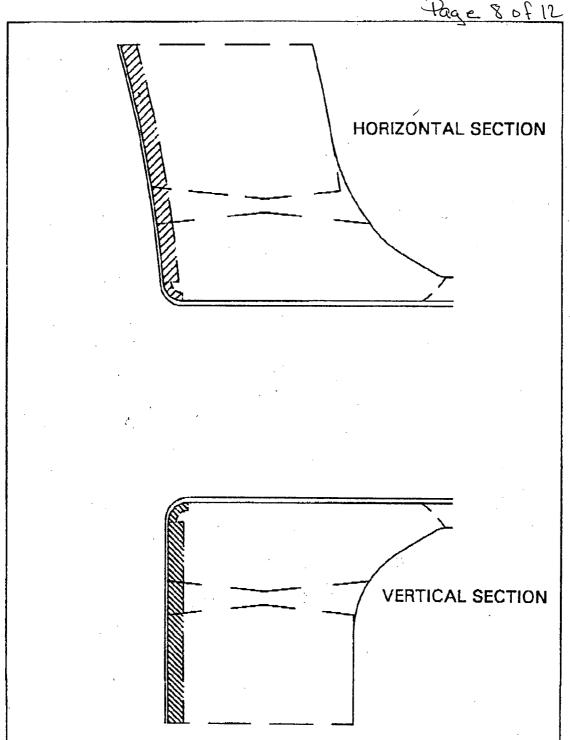
Actual Average Coverage = [69.7 + 69.7 + 73.4 + 73.4 + 73.4 + 93.9 + 100 + 100 + 100] / 8 = 85.0 %


Additionally Coverage of the Safe End-to-Pipe Weld is 100 %

MAR Ø8 '94 Ø9:51

Serial No. 94-01 Attachment 18 Page 7 of 12

VERTICAL SECTION

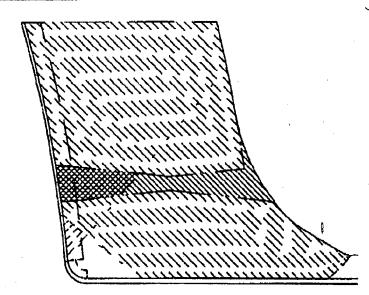

CORE FLOOD NOZZLE TO SHELL WELD CIRC SCAN FROM VESSEL ID

3RPV-WRS4 (BO3.090.007 \$ 007A)

Page 38

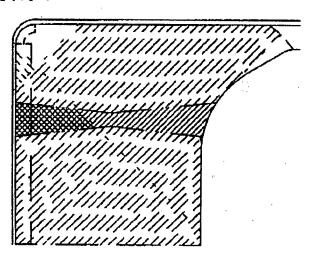
3 RPV-WR54A (BO3.090.008 & 008A) 3 RPV-WR54 (BO3.100.007 & 007A) RSR 3 RPV-WR54A (BO3.100.008 & 008A)

Senal No. 94-01 Attachment 18


CORE FLOOD NOZZLE TO SHELL WELD NEAR SURFACE AND INNER RADIUS FROM VESSEL ID

3RPV-WR 54 (BD3.090.007 2007A)

Page 39

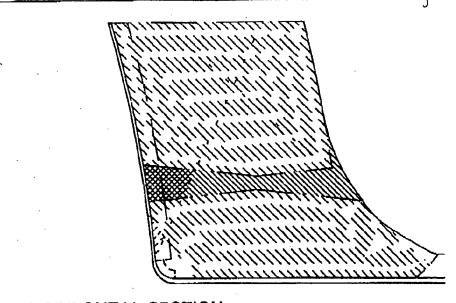

3RPV-WRSHA (BO3.090.008 & 008A) 3RPV-WR54 (BO3.100.007 & 009A) RAR 3RPV-WRSHA (BO3.100.008 & 008A) RAR

Serial No. 94-01 Attachment 18 Page 9 of 12

HORIZONTAL SECTION

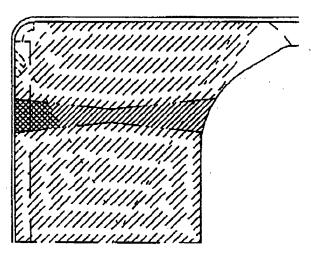
VERTICAL SECTION

CORE FLOOD NOZZLE TO SHELL WELD 45° AXIAL SCAN FROM VESSEL ID


3RPV-WRS4 (BO3.000.007 \$ 007A)

Page 40

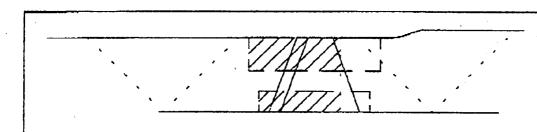
RPV-WR54A (BO3.090.008 & 008A) 3RPV-WR54 (BO3.100.007-4009A) RYR 3RPV-WR54A (BO3.100.008 & 008A) RYR NDE SERVICES


F-722 T-349 P-042 MAR 08 '94 09:52

Serval No 94-01 Attachment 18 Page 10 of 12

HORIZONTAL SECTION

VERTICAL SECTION



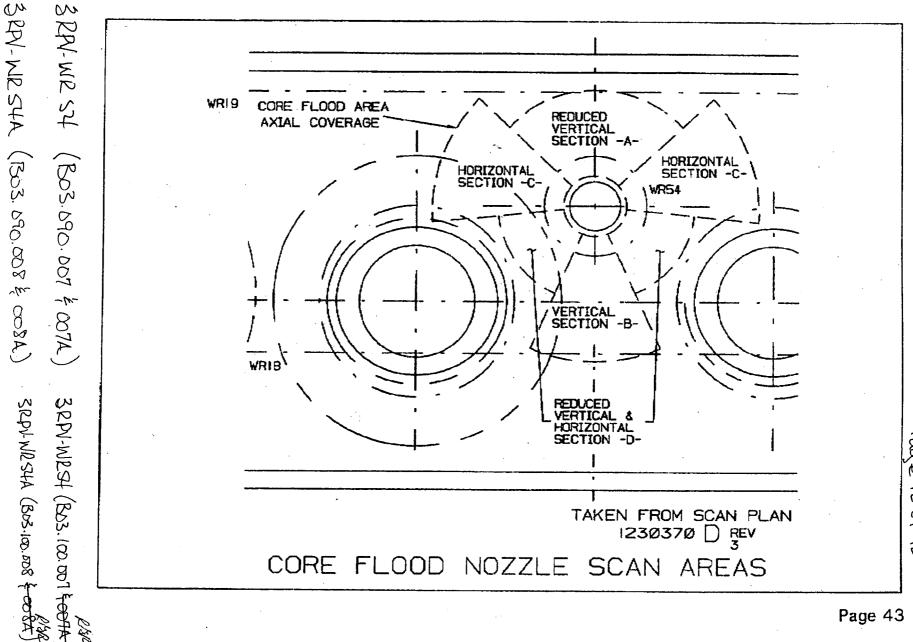
CORE FLOOD NOZZLE TO SHELL WELD 60° AXIAL SCAN FROM VESSEL ID

3RPV-WR54 (BOD.090.007 & 007A)

3RPV-WR54A (BO3.090.008 \$ 008A) 3RPV-WR54 (BO3.100.007 + 007A) RISE 3RPV-WR54A (BO3.100.008 + 008A) RISE Page 41

Serial No. 94-01 Attachment 18 Page 11 of 12

NOZZLE-TO-SAFE END WELD


CORE FLOOD NOZZLE TO SAFE END WELDS FROM ID

3RPV-WR 54 (BO3.090.007 \$007A)

3RPV-WR 54A (BO3.090 008 \$008A)

3RPV-WR SH (BO3.100.007 40074) RYSP

3 RPV-WR54A (BO3.100.008. 4008A) RSR

Page 43

3.4.3.4 <u>Hydrostatic Testing of Class 3 Purification Demineralizer Piping.</u> <u>Units 1, 2, and 3, IWA-5240</u>

Code Requirements

IWA-5241 requires visual examination (VT-2) to be conducted by examining the accessible external exposed surfaces of pressure-retaining components for evidence of leakage. For components whose external surfaces are inacessible for direct visual examination, only the examination of surrounding area, including floor areas or equipment surfaces located underneath the components, for evidence of leakage shall be required.

Code Relief Request

Relief is requested from visual examination of Purification Demineralizer Piping during hydrostatic testing.

Proposed Alternative Examination

Piping will be hydrostatically tested during the 10-year inservice inspection by performing a pressure drop test.

Licensee's Basis for Requesting Relief

Piping from the demineralizer to the point where the piping penetrates the floor cannot be inspected due to the fact that radiation dose at the demineralizer is in excess of 250 R.

Evaluation

Visual examination of the Purification Demineralizer Piping cannot be performed due to the unacceptably high radiation dosage that would be received by inspectors. The licensee has proposed as an alternate to perform a pressure drop test on the subject piping. IWA-5244 addresses such a test to be performed on buried components. A pressure loss test is an acceptable alternative for the inaccessible Purification Demineralizer Piping.

Conclusions and Recommendations

Based on the above evaluation, it is concluded that for the piping discussed above, the Code requirements are impractical. It is further concluded that the proposed alternative examination will provide adequate assurance of structural reliability. Therefore, relief is recommended as requested.

References

References 28 and 29.

Time : 13:42
Page No.: 1

PIP Serial No.: 3-094-0150

MSE Serial No.: LER Serial No.: Other Rpt. No.:

OCONEE NUCLEAR STATION
Problem Investigation Process
Problem Investigation Form

I. Problem ID

Occurred Time/Date: 16:00 01/18/94 Discovered Time/Date: 10:59 01/24/94

Unit(s): 3

Status at Time Discovered:

Unit 1 Unit 2

Unit 3

onic(b). J

Mode: N/A

N/A

NO MODE

% Power:

N/A

N/A

N/A

Unit Status Remarks: ALL FUEL IS REMOVED FROM THE REACTOR VESSEL

System(s) Affected:

1). RX = Reactor Building

Problem Found While Working With Work Order No.:

Location of Problem - Bldg: R Elev: 816'6" Column Line: Location Remarks: REACTOR VESSEL FLANGE

Method Used To Discover Problem:

DISCUSSION WITH ROD EMORY (REACTOR VESSEL ENGINEER)

Brief Problem Description:

ARIS ORIENTED 180 DEGREES FROM DESIRED LOCATION

<u>Detailed Problem Description:</u>

DURING DISCUSSION WITH ROD EMORY (REACTOR VESSEL ENGINEER) IT WAS DETERMINED THAT THE ARIS INSPECTION TOOL WAS ORIENTATED 180 ° FROM ITS INTENDED LOCATION.

Originated by: TJCOLEM Group: CES Date: 01/27/94

Other Units/Components/Systems/Areas Affected (Y,N,U): UNK

Immediate Corrective Actions:

No immediate actions taken.

Originated by: TJCOLEM Group: CES Date: 02/14/94

Corrective Action Work Order No.:

Problem Identified By: TJCOLEM Group: CES Date: 01/27/94
Problem Entered By: TJCOLEM Group: CES Date: 01/27/94

Time : 13:42 Page No.: 2

PIP Serial No.: 3-094-0150

MSE Serial No. : LER Serial No.: Other Rpt. No. :

OCONEE NUCLEAR STATION Problem Investigation Process Problem Investigation Form

II. Significance

Is the Problem Significant? N

Action Category: 3

MSE No.:

LER No.:

Other Report No.:

OEP No.:

Event Code(s) :

1). M2a = Wrong or did not know location

Screening Remarks:

Responsible Group(s) for Proposed Resolution:

Original Current Due Date Due Date

Ext.

1). CES = Component Engineering

02/23/94

02/23/94

Responsible Group for Cause Code Evaluation : CES Due Date: 02/23/94

Responsible Group for Overall PIP Approval : CES Due Date: 05/01/94

Screened By: TKROYAL

Group: CES

Date: 01/28/94

III. Problem Evaluation

System(s) Affected:

1). RX = Reactor Building

Affected Equipment:

Comp.

Manufacturer

Code

Name

Most Probable Group Causing Event

Status: CLSRDY

Group INPO Cause Code(s):

WMS Equipment ID No.

CES - A3f = Pertinent information not transmitted
 VEN - B4c = Omission of relevant information

Cause(s) of Problem:

ARIS II Examination Tool was placed on the Reactor Vessel 180 degrees from its intended location. The reasons that this happened is because of a procedure deficiency, no documented evidence that proper location drawings were used. Verbial

Time : 13:42

Page No.: 3

PIP Serial No.: 3-094-0150

MSE Serial No. : LER Serial No.: Other Rpt. No. :

OCONEE NUCLEAR STATION Problem Investigation Process Problem Investigation Form

communication was used to establish the O degree reading on the Reactor Vessel that most drawing reference with W, X, Y and Z coordinates.

Originated by: TJCOLEM Group: CES Date: 02/09/94

Is Cause Determination Complete (y,n): Yes

Assigned To : TJCOLEMA / TKROYAL MORIG Due Date: 02/23/94 Curr Due Date: 02/23/94 Mgmt Exception: No

of Ext.:

Approved By Group: CES App Date :

Proposed Resolution From: CES Grp Status: CLSRDY

B&W Nuclear Technologies will revise their inspection procedure providing a step to verify proper placement of the ARIS tool on the Reactor Vessel. The Inservice Inspection (ISI) Plan will be revised by the Quality Assurance Technical Services (QATS) Section indicating the appropriate drawings to be used for verifing proper positioning of the ARIS tool. B&W and the appropriate Duke personnel will decide on the resolution for inspection data that references the incorrect item number (weld number).

Originated by: TJCOLEM Group: CES Date: 02/09/94

Is Proposed Resolution ready for approval? (y,n): Yes

Assigned To : TJCOLEMA / TKROYAL Mgmt Exception: No

Orig Due Date: 02/23/94 Curr Due Date: 02/23/94 # of Ext.: 0

Approved By Group: App Date :

Remarks:

Time : 13:42

Page No.: 4

MSE Serial No. : LER Serial No.: Other Rpt. No. :

PIP Serial No.: 3-094-0150

OCONEE NUCLEAR STATION Problem Investigation Process Problem Investigation Form

IV. Corrective Actions

Resp Grp: DTD

Brief Proposed Corrective Action:

Orig Grp: CES

1 B&W to revise their procedure to address obtaining written d irection as to the reactor building/reactor vessel coordinat es prior to installing reactor vessel inspection tool. This change to be reviewed by GSD/DTD/NDE.

Prop CAC: A3

Actual CAC:

Outage :

Work Orders/Requests:

MOD Info:

Mode:

RGC Item :

RGC Item:

SRG Item :

QVD Item:

INPO Item:

Actual Corrective Action Resolution From: DTD Grp Status: OPEN

Is Corrective Action ready for approval? (y,n): No

Assigned To :

Mgmt Exception: No

Orig Due Date : 04/24/94 Curr Due Date: 06/30/94 # of Ext.: 0

Approved By

Group:

App Date :

Brief Proposed Corrective Action:

Resp Grp: CES Orig Grp: CES

2 Revise Oconee 3rd period 10 year ISI plan to include referen ce to a drawing which identifies the reactor building, react or vessel, and other components' WXYZ coordinantes.

Prop CAC: A

Actual CAC:

Outage:

Work Orders/Requests:

MOD Info:

Mode:

RGC Item :

RGC Item:

SRG Item :

QVD Item:

INPO Item:

Actual Corrective Action Resolution From: CES

Grp Status: OPEN

Is Corrective Action ready for approval? (y,n): No

Time : 13:42

Page No.: 5

PIP Serial No. : 3-094-0150

MSE Serial No. : LER Serial No.: Other Rpt. No. :

OCONEE NUCLEAR STATION Problem Investigation Process Problem Investigation Form

Assigned To Mgmt Exception: No Orig Due Date : 04/24/94 Curr Due Date: 06/30/94 # of Ext.: 0

Approved By Group: App Date : / /

Resp Grp: CES

Brief Proposed Corrective Action:

Orig Grp: CES

3 Verify information taken during Unit 3 cycle 14 refueling ou tage on the reactor vessel is in a format that a person revi ewing the information in 2004 will know where to look for id entified indications.

Prop CAC: A1 Actual CAC:

Outage :

Work Orders/Requests:

MOD Info:

Mode:

RGC Item :

RGC Item:

SRG Item :

QVD Item:

INPO Item:

Actual Corrective Action Resolution From: CES Grp Status: OPEN

Is Corrective Action ready for approval? (y,n): No

Assigned To :

Mgmt Exception: No

Orig Due Date : 04/24/94 Curr Due Date: 06/30/94 # of Ext.: 0

Approved By :

Group:

App Date: / /

V. Final and Overall PIP Approval

Criterion XVI Review:

XVI Review Not Required for this PIP

Overall PIP Approval:

Assigned To: TJCOLEMA / TKROYAL

Approved By:

Group: CES

Due Date: 05/01/94

Date: / /

End of the Document FOR PIP No.: 3-094-0150 The Status of this PIP No. is : OPEN

PIP Serial No. : 0-094-0155

Time : 13:43

Page No.: 1

MSE Serial No.: LER Serial No.:

Other Rpt. No.: NRC INSPECTION 287/94-400 & 0

OCONEE NUCLEAR STATION Problem Investigation Process Problem Investigation Form

I. Problem ID

Occurred Time/Date: / / Discovered Time/Date: 01/27/94

Unit(s): 0 Status at Time Discovered: Unit 1 Unit 2 Unit 3

Mode: 1 1 6

% Power: 100 100 0

Unit Status Remarks:

System(s) Affected:

1). N/A = Not Related to a Unit's System.

Problem Found While Working With Work Order No.:

Location Remarks:

Elev:

Column Line:

Method Used To Discover Problem:

Location of Problem - Bldg:

NRC Inspection 287/94-400 and 94-03

Brief Problem Description:

UT Examination Sketches do not reflect actual conditions

Detailed Problem Description:

During NRC Inspections 287/94-400 and 94-03 the NRC inspectors noted several examples of where UT Examination sketches were not accurate representations of the conditions found during the examination. This was cited as a Deviation from Code based on IWA-2232 of ASME Section XI and Procedure NDE-600. One of the Inspectors indicated this problem had been identified previously. The NDE Level III indicated training had been performed to correct this weakness, but based on NRC's review of documentation generated during the current Unit 3 outage, it appears this was ineffective in resolving this concern.

Three weaknesses were also identified which need to be evaluated and the appropriate action taken.

- 1) RT Film packages reviewed for the Unit 3 outage had more than expected artifacts.
- Procedure NDE-940 does not provide guidance on how to document UT readings when scanning an area.
- 3) From the review of UT documentation it appeared there was inconsistencies in classifing Beam Re-direction and Mode

Time : 13:43

Page No.: 2

PIP Serial No.: 0-094-0155

MSE Serial No.: LER Serial No.:

Other Rpt. No.: NRC INSPECTION 287/94-400 & 0

OCONEE NUCLEAR STATION Problem Investigation Process Problem Investigation Form

Conversion. It was also unclear as to the process used by the inspectors to reach their conclusions for these calls.

Originated by: DWDALTON Group: RGC Date: 01/27/94

Revised by: DWDALTON Group: RGC Date: 01/28/94

Other Units/Components/Systems/Areas Affected (Y,N,U): YES

Immediate Corrective Actions:

No immediate action is needed. This concern involves a documentation problem and the results of previous examinations are not being questioned. The NRC Inspectors did indicate this had been identified previously and at other Duke locations.

Originated by: DWDALTON Group: RGC Date: 01/27/94

Revised by: DWDALTON Group: RGC Date: 01/28/94

Corrective Action Work Order No.:

Problem Identified By: DWDALTON Group: RGC Date: 01/27/94
Problem Entered By : DWDALTON Group: RGC Date: 01/27/94

II. Significance

Is the Problem Significant? N

MSE No.:

OEP No.:

LER No.:

Action Category: 3

Other Report No.: NRC INSPECTION 287/94-400

Event Code(s) :
 1). O1 = NRC

Screening Remarks:

This concern was raised during an NRC Inspection. It was also indicated this had been observed at other Duke locations.

Responsible Group(s) for Proposed Resolution :

Original Current #
Due Date Due Date Ext.

1). DTD = Diversified Technology 02/26/94 02/26/94 0

Today's Date : 04/07/94 MSE Serial No. : Time : 13:43 LER Serial No.: Page No.: 3 Other Rpt. No.: NRC INSPECTION 287/94-400 & 0 PIP Serial No.: 0-094-0155 OCONEE NUCLEAR STATION Problem Investigation Process Problem Investigation Form Responsible Group for Cause Code Evaluation : DTD Due Date: 02/26/94 Responsible Group for Overall PIP Approval : RGC Due Date: Screened By: DWDALTON Group: RGC Date: 01/27/94 III. Problem Evaluation System(s) Affected: 1). N/A = Not Related to a Unit's System. Affected Equipment: Comp. Manufacturer WMS Equipment ID No. Code Name

Status: OPEN

Cause(s) of Problem:

Most Probable Group Causing Event

INPO Cause Code(s):

Is Cause Determination Complete (y,n): No
Assigned To: / Mgmt Exception: No
Orig Due Date: / / Curr Due Date: 02/26/94 # of Ext.: 0
Approved By: Group: DTD App Date: / /
Proposed Resolution From: DTD Grp Status: OPEN

Is Proposed Resolution ready for approval? (y,n): No
Assigned To : / Mgmt Exception: No
Orig Due Date : 02/26/94 Curr Due Date : 02/26/94 # of Ext.: 0
Approved By : Group : App Date : /

Remarks:

IV. Corrective Actions

V. Final and Overall PIP Approval

Time : 13:43

Approved By:

Page No.: 4

PIP Serial No. : 0-094-0155

MSE Serial No.: LER Serial No.:

Date:

Other Rpt. No. : NRC INSPECTION 287/94-400 & 0

OCONEE NUCLEAR STATION
Problem Investigation Process
Problem Investigation Form

Criterion XVI Review:

XVI Review Not Required for this PIP

Overall PIP Approval:
Assigned To: / Due Date: / /

Group: RGC

End of the Document FOR PIP No.: 0-094-0155 The Status of this PIP No. is: OPEN

Time : 13:43

Page No.: 1

PIP Serial No.: 3-094-0425

MSE Serial No.: 3-094-0425

LER Serial No.:

Other Rpt. No. : N/A

OCONEE NUCLEAR STATION Problem Investigation Process Problem Investigation Form

I. Problem ID

Occurred Time/Date: / / Discovered Time/Date: 15:30 03/23/94

Elev: ?

Unit(s): 3 Status at Time Discovered: Unit 1 Unit 2 Unit 3

Mode: N/A N/A 5 % Power: N/A N/A 0

Column Line: ?

Unit Status Remarks:

System(s) Affected:

1). PR = Purge

Problem Found While Working With Work Order No.: N/A

Location of Problem - Bldg: R Location Remarks: Penetration #20

Method Used To Discover Problem:

Data Review

Brief Problem Description:

VT-2 Inspection Not Performed on Penetration #20

Detailed Problem Description:

During EOC14 for Unit 3, a performance test (Appendix J) was used in lieu of a System Pressure Test (Item Number CO7.021.019, Drawing OFD-116A-3.1, Penetration #20) without filing for a Request for Relief or requesting use of Code Case N-522 from the NRC. This problem was identified during the review of Pressure Test documentation at the end of the outage. This situation may also be applicable to other penetrations tested during EOC13 and EOC14 for Unit 3.

Originated by: JMBOUGHM Group: QAT Date: 03/28/94

Other Units/Components/Systems/Areas Affected (Y,N,U): YES

Immediate Corrective Actions:

None

Originated by: JMBOUGHM Group: QAT Date: 03/28/94

Time : 13:43

Page No.: 2

PIP Serial No. : 3-094-0425

MSE Serial No.: 3-094-0425

LER Serial No.:

Other Rpt. No.: N/A

OCONEE NUCLEAR STATION Problem Investigation Process Problem Investigation Form

Corrective Action Work Order No.:

Problem Identified By: JMBOUGHM Group: QAT Date: 03/28/94 Group: QAT Date: 03/28/94 Problem Entered By : JMBOUGHM

II. Significance

Is the Problem Significant? Y Action Category: 2 Significance Code: 2 - Reportable to regulatory agencies

MSE No.: 3-094-0425 LER No.:

Other Report No.: N/A

OEP No.: N/A

Event Code(s):

1). O3 = Industry Codes

Screening Remarks:

This item is POTENTIALLY REPORTABLE because NRC has not approved the ASME code case however the ASME code case was used by ONS personnel to avoid the penetration inspections.

Originated by: RFCOLE Group: QAT Date: 03/28/94

Screened By: KWSCHMID Group: QAT Date: 03/28/94

Operability: Status: CLOSED

Sys/Comp PRESENT Operable?(Y,N,C,E): Rqd Mode:

Resp. Grp for Present Operability : Due Date: Evaluated By : HDUMEYER Group : SRG Act Date: 03/29/94

Comments:

Sys/Comp PAST Operable ?(Y,N,C,E) : Y Status: CLOSED Resp. Grp for Past Operability : Due Date: Evaluated By : HDUMEYER Group : SRG Act Date: 03/29/94

Comments:

Reportability:

Problem Reportable? (Y,N,E)

Reportable Per:

Time : 13:43

Page No.: 3

PIP Serial No.: 3-094-0425

MSE Serial No.: 3-094-0425

LER Serial No.:

Other Rpt. No. : N/A

Status: OPEN

OCONEE NUCLEAR STATION Problem Investigation Process Problem Investigation Form

Responsible Group for Reportability Evaluated By : HDUMEYER Group		Due Date: Act Date: 03	/ / /29/94
Comments: Per conver. with D. Dalto	on of RGC		
Notifications Made: Regulatory Agency Contactee : Duke Power Company Contactor : Date NRC Res. Inspector Notified: Date Notified VP or Sta. Mgr. : Date Notified NS Duty Engineer :	/ / / /	Date	: / /
Investigation Report: Resp. Group for Invest. Report: Investigator: Group: Date Due to V.P. or Station Mgr.: Date Regulatory Agency Rpt. Due:	/ /	Date Act Date	: / /
Date Investigation Report Apprvd:	1 1		
NRC Cause Code(s):	•		
	Original Due Date	Current Due Date	# Ext.
1). CES = Component Engineering	04/22/94	04/22/94	0
Responsible Group for Cause Code Evalua	tion : CE	S Due Date:	04/22/94
Responsible Group for Overall PIP Appro	val : SR	G Due Date:	/ /
III. Problem Evaluation	-		•
System(s) Affected: 1). PR = Purge			
	Comp.	Manufacturer Name	1

Cause(s) of Problem:

Group

Most Probable Group Causing Event

INPO Cause Code(s):

Today's Date : 04/07/94 MSE Serial No.: 3-094-0425 Time : 13:43 LER Serial No.: Page No.: 4 Other Rpt. No. : N/A PIP Serial No.: 3-094-0425 OCONEE NUCLEAR STATION Problem Investigation Process Problem Investigation Form Is Cause Determination Complete (y,n) : No Assigned To : VBDIXON / TKROYAL Mgmt Exception: No # of Ext.: 0 Approved By : Group: CES App Date : SRG Concurrence: Date: Proposed Resolution From: CES Grp Status: OPEN Is Proposed Resolution ready for approval? (y,n): No Assigned To : VBDIXON / TKROYAL Mgmt Exception: No Orig Due Date : 04/22/94 Curr Due Date : 04/22/94 # of Ext.: 0 Mgmt Exception: No Approved By : Group : App Date: SRG Concurrence: Date : Remarks: IV. Corrective Actions V. Final and Overall PIP Approval Criterion XVI Review: XVI Status : Required - Not Under Review Yet GO PIP No.: Assigned To: Due Date: Approved By: Group: Date: Overall PIP Approval:

Due Date:

Date:

End of the Document FOR PIP No.: 3-094-0425 The Status of this PIP No. is: OPEN

Group: SRG

Assigned To:

Approved By:

Microfilm Roll/Frame:

Today's Date : 04/07/94 Time : 13:43

Page No.: 5
PIP Serial No.: 3-094-0425

MSE Serial No. : 3-094-0425

LER Serial No.:

Other Rpt. No. : N/A

OCONEE NUCLEAR STATION Problem Investigation Process Problem Investigation Form

10.0 Class 1 and 2 Repairs and Replacements

As required by ASME Section XI 1980 Edition, a record of the Class 1 and Class 2 Repairs and Replacements for work performed from September 26, 1992 through February 24, 1994 is provided and is included in this section of the report. The individual work request documents are on file at Oconee Nuclear Station.