5.3.18 Mixed ANSTO-DIDO Payload Configuration

Previous sections have demonstrated the acceptability of transporting DIDO (annular ring), MOATA (MTR plate) and spiral assemblies. MOATA plate element and spiral assemblies have been defined to be ANSTO basket module payloads.

This section evaluates the placement of an ANSTO basket top module onto a DIDO basket stack. The DIDO baskets are loaded with DIDO fuel elements, while the ANSTO basket module may contain DIDO, MOATA or spiral fuel elements. The mixed payload ANSTO top module may also be located in the ANSTO basket assembly. Fuel elements may be disassembled and/or segmented and placed into an aluminum damaged fuel can (DFC) prior to placement within the ANSTO top basket module.

All three payloads are limited to their respective source (i.e., burnup and cool time limits) defined in their analysis sections. The DIDO elements placed within the ANSTO basket top module are limited to the 10 W payload limit, which is lower than the 18 W heat load defined in Section 5.3.9, to not require a top spacer.

Shielding discussions are divided into a basket comparison documenting acceptability of loading DIDO fuel into an ANSTO basket, a mixed payload discussion, and a canistered fuel discussion.

5.3.18.1 Basket Comparison

Based on the tube dimensions listed in the following table, the modeled basket for the DIDO payload evaluation bounds the ANSTO tube configuration. The ANSTO basket contains slightly larger and thicker tubes than the DIDO basket, providing a small increase in shield material. The aluminum components of the DIDO basket were not included in the DIDO shielding evaluations.

Parameter	DIDO Basket	ANSTO Basket
Fuel Assembly Openings	7	7
Fuel Tube OD (inch)	4.25	4.375
Fuel Tube Wall Thickness (inch)	0.120	0.125

5.3.18.2 Mixed Payload Discussion

All fuel types are comprised of uranium metal within an aluminum matrix, with ²³⁵U being the fissile isotope. The neutron source as the result of (alpha, n) production is accounted for in each fuel type source definition. The cask is transported in a dry configuration, with a corresponding high neutron energy spectrum in the cavity, minimizing the effect of secondary particle

5.3.18-1

production. Loading mixed payloads, therefore, does not result in adverse effects on system dose rates.

5.3.18.3 Canistered Fuel Element Discussion

Shielding evaluations of the bounding MEU DIDO payload, specified as bounding for the ANSTO spiral and plate fuels, applied the homogenized source region within an inch of the cask cavity lid (for a heat load of 18 W per basket module opening) and placed the source into a cylindrical shell near the tube surface. In addition, the homogenized density applied for self-shielding was significantly reduced in the DIDO models (volume fractions were calculated for a solid cylinder, while the material smear was then applied to a cylindrical shell extending from the inner to outer plate). As the aluminum DFC restrains fuel within a 9.84 cm envelope (5 mm larger than the modeled fuel region) and provides an offset from the lid of 3.8 cm, no adverse effects on dose rates occur due to loading of the material within the aluminum DFC.

Canned DIDO and ANSTO spiral fuel elements are further limited to a maximum heat load of 10 W per canister (MOATA elements are limited to less than 1 W per Section 5.3.16). This heat load reduction from the uncanistered configuration provides significant additional margin to the shielding evaluations.

5.3.18.4 Conclusions

Neither stacking ANSTO and DIDO baskets within the same basket assembly, nor including a mixed payload, nor the use of DFCs for compromised clad fuel results in increased dose rates. Conservatively, the DIDO MEU Transport Index (TI) may be assigned to the mixed and/or canned payloads.

5.3.18-2

5.3.19 Irradiated Hardware Shielding Evaluation

Irradiated hardware is evaluated for transport in the LWT cask. The irradiated hardware represents a potentially significant gamma source when compared to fuel material payloads due to the high energy spectrum feasible from activated materials. Typical irradiated hardware is irradiated steel where cobalt activation, and subsequent ⁶⁰Co decay, produces two gamma rays, each over 1 MeV in energy.

A source term for typical irradiated hardware is established by activating one kilogram of stainless steel with a 1.2 g/kg cobalt impurity in a PWR in-core neutron spectrum (PWR fuel assembly burnup to 45, 000 MWd/MTU at a 3.5 wt % ²³⁵U initial enrichment, followed by a 90-day cool time). This material will represent a baseline to establish source limits in terms of gammas per second and energy per second (γ /s and MeV/s). The gamma source activity is determined in the SCALE 27-group neutron and 18-group gamma structures using the SAS2H sequence of SCALE 4.3. The activated hardware may contain surface contamination (including actinides), but this component has no significant effect on cask surface dose rates compared to the activated material itself and is, therefore, neglected from the analysis. The SAS2H input for the gamma source generation is listed in Figure. The resulting gamma spectrum is summarized in Figure 5.3.19-1.

A radial one-dimensional shielding analysis is performed using SAS1 with a void source region. A void source region is by default conservative since it neglects the substantial self-shielding of the activated hardware. A sample radial SAS1 input for irradiated hardware evaluations is shown in Figure 5.3.19-2 with material compositions for the cask given in Table 5.3.19-2. Note that various irradiated hardware heights (and two radial configurations) are evaluated using SAS1. The buckling height in each case is set to the source region height of the particular analysis. The same conservative assumptions used in previous radial shielding analysis were applied, i.e., minimum shield dimensions, lead gap, a 0.94 g/cm³ neutron shield solution density, and no boron in the neutron shield solution. In the accident analysis, the neutron shield is modeled as void. A one-dimensional sketch of the modeled cask geometry is shown in Figure 5.3.19-3. As demonstrated in the shielding evaluations for various other payloads (e.g.., fuel skeleton with activated hardware), the axial dose of the NAC-LWT cask is not limiting. Therefore, only radial dose rates are evaluated in this section.

SAS1 dose rates are calculated using the SAS2H-generated gamma source (1 kg activated hardware). Dose rates are then scaled up to represent an increased source with a magnitude of 2×10^{14} y/sec or 2.2×10^{14} MeV/sec (equivalent of 10 kg of the SAS2H activated stainless).

This source represents a radionuclide content of approximately 8.9×10^3 Ci, with a ⁶⁰Co portion of 2×10^3 Ci. Normal condition transport cask surface and 2 meter dose rates, as well as accident condition 1 meter dose rates, are plotted in Figure 5.3.19-4 through Figure 5.3.19-6 for the increased source. Dose rates are well below regulatory limits at the surface (300 mrem/hr) and 2 meters from the truck bed (7.6 mrem/hr). The transport index, based on the normal condition of transport dose rate at 1 meter from the package, is less than 35.

Figure 5.3.19-1 SAS2H Input for Irradiated Hardware (on a per kg basis)

PARM= (HALTO3, SKIPSHIPDATA) =SAS2H WEST 15X15 3.5 WT % U235, 45000 MWd/MTU 5.0-10.0 YEAR COOLING 27GROUPNDF4 LATTICECELL 1 0.95 900 92235 3.5 92238 96.5 END UO2 ZIRCALLOY 2 1.0 620 END H2O 3 DEN=0.725 1.0 580 END ARBM-BORMOD 0.725 1 1 0 0 5000 100 3 550.0E-6 580 END END COMP SQUAREPITCH 1.43 0.9294 1 3 1.0719 2 0.9489 0 END NPIN=204 FUEL=365.76 NCYC=3 NLIB=1 PRIN=6 LIGH=5 INPL=1 NUMH=20 NUMI=1 ORTU=0.6922 SRTU=0.6541 END POWER=16.28 BURN=428.0692 DOWN=60.0 END POWER=16.28 BURN=428.0692 DOWN=60.0 END POWER=16.28 BURN=428.0692 DOWN=0.0 END FE 0.672 CR 0.190 NI 0.115 MN 0.020 CO 0.0012 END =ORIGENS 0\$\$ A4 21 A8 26 A10 51 71 E 1\$\$ 1 1T COOLING 0.25-4 YEARS AND LIGHT ELEMENT GAMMA REBIN 3\$\$ 21 0 1 A33 -86 E 54\$\$ A8 1 E T 35\$\$ О Т 56\$\$ 0 6 A13 -2 5 3 E 57** 0.0 E T COOLING 0.25-4 YEARS AND LIGHT ELEMENT GAMMA REBIN SINGLE REACTOR ASSEMBLY 60** 0.25 0.5 0.75 1.0 1.5 2.0 65\$\$ A4 1 A7 1 A10 1 A25 1 A28 1 A31 1 A46 1 A49 1 A52 1 E 61** F.01 81\$\$ 2 51 26 1 E 82\$\$ F4 T LIGHT ELEMENT SCALE GROUP STRUCTURE 56\$\$ F0 T END

Figure 5.3.19-2 Sample SAS1 Input for Irradiated Hardware (Source 1 kg Material)

```
SAS1
Irradiated Hardware - Nrm Model - 16 cm Radius Source - 150cm Height Source
27N-18COUPLE
              INFHOMMEDIUM
AL 2 1.0 END
SS304 3 1.0 END
PB 4 1.0 END
ARBMGLYC 0.9437 3 0 1 0 6012 2 1001 6 8016 2 5 .585 END
Н2О
       5 0.4160 END
END COMP
END
LAST
Irradiated Hardware in the NAC-LWT - GAMMA SOURCE
CYLINDRICAL
0 8 30 -1 0 0.0 0.0 6.678E+08
0 16.9863 1 0
3 18.8214 4 0
4 33.2890 60 0
0 33.4264 1 0
3 36.3728 12 0
5 49.0728 30 0
3 49.1338 4 0
END ZONE
27z
0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.631E-15 1.195E+05
7.709E+07 9.199E+09 3.249E+12 1.150E+13 3.950E+12 6.266E+08
5.980E+11 4.581E+11 5.615E+09 2.643E+10 6.543E+10 2.763E+11
DY=150 NDETEC=5
READ XSDOSE
150 49.1338 75 149.1338 75 249.1338 75
321.92 75 349.1338 75
END
```


Figure 5.3.19-3 Irradiated Hardware One-Dimensional Radial Model of NAC-LWT

Dimensions in cm.

Figure 5.3.19-4 Irradiated Hardware Normal Condition Surface Dose Rate as a Function of Irradiated Hardware Height

Figure 5.3.19-5 Irradiated Hardware Normal Condition 2 Meter Dose Rate as a Function of Irradiated Hardware Height

Figure 5.3.19-6 Irradiated Hardware Accident Condition 1 Meter Dose Rate as a Function of Irradiated Hardare Height

Energy	Source	
Group	[gamma/sec]	[MeV/sec]
1	0.000E+00	0.000E+00
2	0.000E+00	0.000E+00
3	0.000E+00	0.000E+00
4	0.000E+00	0.000E+00
5	2.631E-15	9.209E-15
6	1.195E+05	3.287E+05
7	7.709E+07	1.735E+08
8	9.199E+09	1.683E+10
9	3.249E+12	4.857E+12
10	1.150E+13	1.340E+13
11	3.950E+12	3.555E+12
12	6.266E+08	4.386E+08
13	5.980E+11	2.990E+11
14	4.581E+11	1.603E+11
15	5.615E+09	1.404E+09
16	2.643E+10	3.964E+09
17	6.543E+10	4.907E+09
18	2.763E+11	8.290E+09
Total	2.014E+13	2.231E+13

Table 5.3.19-1Irradiated Hardware Gamma Spectra in SCALE Format (1 kg Activated
Stainless Steel)

August 2015

Material	SCALE Isotope/Element	Number Density [atom/b-cm]
Stainless Steel	CHROMIUM (SS304)	1.74286E-02
	MANGANESE	1.73633E-03
	IRON (SS304)	5.93579E-02
	NICKEL (SS304)	7.72070E-03
Lead	LEAD	3.29690E-02
Neutron Shield	HYDROGEN	5.99351E-02
	CARBON-12	1.07197E-02
	OXYGEN-16	2.46077E-02

Table 5.3.19-2 Material Compositions of the NAC-LWT

NAC International

_ - _ _ - - - - - -

5.3.19-9

5.3.20 SLOWPOKE Fuel Configuration

Results of a shielding analysis for up to 800 fuel rods in the LWT cask are presented in this section. Maximum dose rates are calculated to demonstrate that dose rate limits of 10 CFR 71.47 are not exceeded.

Dose rates are calculated using the MCNP (MCNP5, Version 1.30) three-dimensional transport code. Source terms are calculated using the TRITON/NEWT module of the SCALE package (SCALE 6.1). Cross section tables used in the MCNP analysis are the default provided in the MCNP5 1.30 distribution and draw on mcplib04 for gamma analysis and isotope dependent data from actia, rmccs, or t16_2003 data for neutron evaluations.

5.3.20.1 SLOWPOKE Fuel Source Term

Source terms are calculated to bound the irradiation history of the SLOWPOKE fuel rods. Fuel rod characteristics are summarized in Table 5.3.20-1. Inputs for irradiation and material parameters required by TRITON are given in Table 5.3.20-2. Key parameters differing between the input and analysis are reduced enrichment, increased fuel mass, and increased irradiation time. All parameters revised to produce bounding source terms. Each of the modified parameters is described below as to its effect on source:

- Increased fuel mass at a fixed depletion value (% ²³⁵U depletion) increases source as the total amount of ²³⁵U depleted increases, thereby increasing fission product sources.
- Reduced enrichment has opposing effects on source due to its relative effects on fission
 product versus higher actinide sources. For a fixed depletion percentage, a reduction in ²³⁵U
 percentage will reduce the amount of material depleted, thereby reducing fission product
 sources, but increasing source as higher actinides are formed by parasitic absorption at a
 higher rate increasing both neutron and gamma sources. Overall, the source effect from
 enrichment variations is minor as the enrichment is decreased by only 3% for a high >90%
 enriched fuel source. This effect is significantly more pronounced for low enrichment fuels.
- Increased irradiation time, in conjunction with a continuous burn at full core power, increases source as it raises the depletion percentage with corresponding increases in both fission products and higher actinides generated. Overall, the conservative irradiation time and fuel core power depletion resulted in a core average ²³⁵U depletion of 4.5% versus ~2% average reported for the cores to be transported.

TRITON input is shown in Figure 5.3.20-3, with the resulting TRITON material model shown in Figure 5.3.20-2. Neutron and gamma source terms for a cool time of 14 years from discharge are

presented in Table 5.3.20-3 and Table 5.3.20-4, respectively. The calculated heat load at this cool time is 0.0027 W/rod or 2.17 W/cask (800 rods).

The SLOWPOKE core is designed to be critical using fixed beryllium reflectors surrounding the radial extent of the core and the core bottom. The beryllium reflector top, also referred to as beryllium shim, is adjusted to maintain a critical configuration. Top and bottom reflectors are not included within the scope of the 2-D Triton evaluation. A critical core was modeled by adjusting fuel rod pitch (actual pitch not available; core average source changes by less than 1% over evaluated range of pitch). By setting the system to critical (keff =1) at beginning of life assures that the neutron spectrum is representative of that in the actual core. keff decreased during the modeled burnup from 1.0 to 0.99. This minor decrease is not expected to significantly effect neutron spectrum or source produced by the calculation. As a full core was modeled, fuel source was extracted at three radial locations (inner, middle, outer ring) to determine which location produces maximum source. The maximum gamma source (controlling for shielding) was obtained from the middle ring location. The middle ring source was then applied to all fuel rods. While the 2-D analysis cannot capture axial distribution of source in a rod, loading of rods in 5x5 arrays four high will assure that the source is relatively uniformly spread through the axial extent of the cask. Any postulated localized peaking in source will be further reduced after penetrating through the radial shield of the NAC-LWT cask. No dose peaking is expected on the cask surface as a result of axial burnup profile of the individual SLOWPOKE rods.

The effect of subcritical neutron multiplication is directly computed in the MCNP analysis.

5.3.20.2 SLOWPOKE Fuel Shielding Model

MCNP three-dimensional shielding analysis allows detailed modeling of the fuel, basket, and cask shield configurations. Some fuel rod detail is homogenized in the model to simplify model input and improve computational efficiency. The basket and cask body details are explicitly modeled, including the axial extents described by the License Drawings.

The geometric description of a MCNP model is based on the combinatorial geometry system embedded in the code. In this system, bodies such as cylinders and rectangular parallelepipeds, and their logical intersections and unions, are used to describe the extent of material zones.

Source and Canister Models

Options for loading include fuel rod arrays of 4x4 and 5x5 rods. Only the 5x5 array is modeled as it contains maximum fuel/source inventory. These arrays are stacked four high within a canister that also contains a handle. The canister is made of aluminum. Dimensions for the tube array and canister are shown in Table 5.3.20-7. The source region is modeled as a smear within

the canister tubes. The fuel homogenization, shown in Table 5.3.20-5, is based on an area bounded by the aluminum tube. The source height is the active fuel height, 22 cm.

While the fuel rods may be damaged, the results of this model will bound both normal and accident conditions. Aluminum metallic fuel, even when damaged, will not disperse through the canister. The material is also placed into individual tubes which will retain larger fuel sections. Shifts in the material within the canister will also be well bounded by having shifted the canister and payload.

Cross section of the VISED model of the source region are shown in Figure 5.3.20-4 and Figure 5.3.20-5. As shown, the model is moved to its maximum axial elevation which brings it closest to the reduced shielding area of the NAC-LWT. The lowest shielding region is the tapered area of the lead gamma neutron shield, the area below the cask cavity top with no lead shielding.

Basket Model

For a given fuel type, the MCNP description of the basket stack forms a common sub-model employed in the analysis. The key features of the model are the detailed representation of the basket structural members, base plates, and support plates. Basket models are identical to those described in Section 5.3.14. Only four of the basket openings are loaded with SLOWPOKE fuel and only the top two baskets are loaded. The lower two baskets are modeled as void, conservatively removing shielding material and increasing dose rates. Maximum of eight canisters per cask.

MCNP NAC-LWT Model

The three-dimensional model of the NAC-LWT cask is based on the following features.

Normal conditions:

- Radial neutron shield and shield shell
- Aluminum impact limiters with 0.5 g/cm³ density (calculated based on the impact limiter weight and dimensions) and a diameter equal to the neutron shield shell diameter

Accident conditions:

- Removal of radial neutron shield and shield shell
- Loss of upper and lower impact limiters

Common to both the normal and accident conditions models is a 0.1374 cm gap between the lead outer diameter and the cask outer shell. As stated previously, the elevation of the source regions is set at its maximum axial extent. Detailed model parameters used in creating the three-dimensional model are taken directly from the License Drawings. Elevations associated with the three-dimensional features are established with respect to the center bottom of the NAC-LWT

cask cavity for the MCNP combinatorial model. The cask model is identical to that described in Section 5.3.14. A sample input file is provided in Figure 5.3.14-5.

Shield Regional Densities

Based on the homogenization described for the source, the resulting fuel regional densities are shown in Table 5.3.20-5. Material compositions for structural and shield materials are shown in Table 5.3.20-6.

5.3.20.3 SLOWPOKE Fuel Shielding Evaluation

Calculational Methods

The shielding evaluation is performed using MCNP.

The MCNP shielding model described in Section 5.3.20.2 is utilized with the source terms described in Section 5.3.20.1 to estimate the dose rate profiles at various distances from the side, top and bottom of the cask for both normal and accident conditions. The method of solution is continuous energy Monte Carlo with a Monte Carlo based weight window generator to accelerate code convergence. Weight window and problem convergence is verified by the 10 statistical checks performed by MCNP. Radial or axial biasing is performed depending on the desired dose location.

Significant validation literature is available for MCNP as it is an industry standard tool for spent fuel cask evaluations. Available literature covers a range of shielding penetration problems ranging from slab geometry to spent fuel cask geometries. Confirmatory calculations against other validated shielding codes (SCALE and MCBEND) on NAC casks have further validated the use of MCNP for shielding evaluations.

MCNP Flux-to-Dose Conversion Factors

The ANSI/ANS 6.1.1-1977 flux-to-dose rate conversion factors are employed in the MCNP analysis.

Three-Dimensional Dose Rates for SLOWPOKE Fuel

Table 5.3.20-8 provides maximum and average dose rates for the tabulated distances and transport conditions (normal and accident). Table 5.3.20-9 contains key results.

Calculated normal condition radial surface dose rates are below 200 mrem/hr, therefore do not require an exclusive use designation for the NAC-LWT. The maximum dose rate is dominated by the gamma component. The radial surface dose rate profile is shown in Figure 5.3.20-7. The normal condition maximum radial 2-meter dose rate is 0.002 mrem/hr. The dose rate profile is skewed towards the top of the cask, as shown Figure 5.3.20-8.

Accident condition radial 1-meter dose rates are well below the 1,000 mrem/hr limit. The dose rate profile is shown in Figure 5.3.20-9.

As shown in the dose summary table (Table 5.3.20-9), axial surface dose rates are well below limits for all three source models. Significant margin is present for the normal condition 2-meter and accident condition 1-meter dose rate limits.

NAC International

5.3.20-6

Figure 5.3.20-2 SLOWPOKE Core Model

Figure 5.3.20-3 TRITON Input for SLOWPOKE Fuel

=t-depl SLOWPOKE CORE NEWT / CENTRM Depletion - 0.85 cm Rod Pitch - 30 GWD/MTU V7-238 read comp U 1 DEN=3.51 0.288 373.0 92235 90.0 92238 10.0 END AL 1 DEN=3.51 0.712 373.0 END AL 2 1.0 363.0 END H2O 3 1.0 313.0 END 4 DEN=3.51 0.288 373.0 92235 90.0 92238 10.0 END U AL 4 DEN=3.51 0.712 373.0 END AL 5 1.0 363.0 END H2O 6 1.0 313.0 END 7 DEN=3.51 0.288 373.0 92235 90.0 92238 10.0 END U 7 DEN=3.51 0.712 373.0 END AL 8 1.0 363.0 END AL H2O 9 1.0 313.0 END U 10 DEN=3.51 0.288 373.0 92235 90.0 92238 10.0 END AL 10 DEN=3.51 0.712 373.0 END AL 11 1.0 363.0 END H2O 12 1.0 313.0 END BE 13 1.0 313.0 END end comp read celldata latticecell triangpitch pitch=0.85 3 fueld=0.422 1 cladd=0.524 2 end latticecell triangpitch pitch=0.85 6 fueld=0.422 4 cladd=0.524 5 end latticecell triangpitch pitch=0.85 9 fueld=0.422 7 cladd=0.524 8 end latticecell triangpitch pitch=0.85 12 fueld=0.422 10 cladd=0.524 11 end end celldata read depletion 1 4 7 10 end depletion read opus matl= 1 4 7 10 0 end units=grams new case units=watts new case typarams=gspectrum units=part new case typarams=nspectrum units=parts end opus read burndata ' 980 gram fuel - 20kW/Core - Core Diameter 22 cm - 7.8 1 Water in Core power=20 burn=1470 down=5100 end end burndata read model SLOWPOKE 315 Rod Assembly - Berylium Reflector - Collapse 44-group read parm prtflux=no drawit=yes collapse=yes xnlib=4 run=yes prtmxsec=no prtbroad=no prtmxtab=yes cmfd=no echo=yes end parm read materials 1 1 !majority of core - fuel u-al! end 2 1 !fuelclad! end

Figure 5.3.20-3 TRITON Input for SLOWPOKE Fuel (continued)

```
3 2 !light water! end
  4 1 !near center fuel u-al! end
  5 1 !fuelclad! end
  6 2 !light water! end
  7 1 !mid - fuel u-al! end
  8 1 !fuelclad! end
  9 2 !light water! end
  10 1 !near perimiter - fuel u-al! end
  11 1 !fuelclad! end
  12 2 !light water! end
  13 2 !berylium - reflector! end
end materials
read collapse
7r1 2 3 2r4 5 6 7 8 8 8r9 14r10 6r11 10r12 13 7r14 11r15 12r16 30r17 16r18 2r19
6r20 3r21 6r22 14r23 3r24 5r25 4r26 5r27 5r28 5r29 10r30 5r31 32 33 34 2r35
36 37 38 2r39 2r40 3r41 2r42 43 44 45 46 47 3r48 9r49 end collapse
read geom
' Balance Core
unit 1
cylinder 10 0.2011
cylinder 20 0.262
hexprism 30 0.425
media 1 1 10
media 2 1 20 -10
media 3 1 30 -20
boundary 30 2 2
' Near Center
unit 2
cylinder 10 0.2011
cylinder 20 0.262
hexprism 30 0.425
media 4 1 10
media 5 1 20 -10
media 6 1 30 -20
boundary 30 2 2
' Mid Range
unit 3
cylinder 10 0.2011
cylinder 20 0.262
hexprism 30 0.425
media 7 1 10
media 8 1 20 -10
media 9 1 30 -20
boundary 30 2 2
' Near Perimeter
unit 4
cylinder 10 0.2011
cylinder 20 0.262
hexprism 30 0.425
media 10 1 10
media 11 1 20 -10
media 12 1 30 -20
boundary 30 2 2
global unit 10
cylinder 110 11.0
```

August 2015

NAC-LWT Cask SAR Revision 44

```
Figure 5.3.20-3 TRITON Input for SLOWPOKE Fuel (continued)
```

```
cylinder 120 21.0
cuboid 130 23.0 -23.0 23.0 -23.0
array 1 110 place 10 10 -0.425 -0.850
media 3 1 110
media 13 1 120 -110
media 3 1 130 -120
boundary 130 40 40
end geom
read array
ara=1 typ=shexagonal nux=21 nuy=21
fill
0 0 0 1 1 1 1 1 1 3 1 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
end fill
end array
read bounds all=vacuum end bounds
end model
end
```


Figure 5.3.20-4 VISED X-Y Slice – SLOWPOKE – Normal Conditions

Figure 5.3.20-5 VISED Y-Z Slice – SLOWPOKE – Normal Conditions

Note: Conservatively moved material to cask cavity top.

```
NAC-LWT Cask - Assy_30b90e14y - Normal Transport Conditions
C Radial Biasing - Fuel Gamma Source
C Fuel Assembly Cells
1 1 -0.8543 -1 +3 u=7 $ Homogenized Fuel Meat + Clad
        -1 -3 u=7 $ Void
20
3 4 -2.7000 -2 +1 u=7 $ Tube OD
4 0
       +2 u=7 $ Outside Tube
5 4 -2.7000 -5 u=6 $ Tube Base Plate
60
        -4 fill=7 trcl = (-2.5400 2.5400 0.6351) u=6 $ Tube 1
7 like 6 but fill=7 trcl = (-1.2700 2.5400 0.6351) u=6 $ Tube 2
8 like 6 but fill=7 trcl = (0.0000 2.5400 0.6351) u=6 $ Tube 3
9 like 6 but fill=7 trcl = (1.2700 2.5400 0.6351) u=6 $ Tube 4
10 like 6 but fill=7 trcl = (2.5400 2.5400 0.6351) u=6 $ Tube 5
11 like 6 but fill=7 trcl = (-2.5400 1.2700 0.6351) u=6 $ Tube 6
12 like 6 but fill=7 trcl = (-1.2700 1.2700 0.6351) u=6 $ Tube 7
13 like 6 but fill=7 trcl = (0.0000 1.2700 0.6351) u=6 $ Tube 8
14 like 6 but fill=7 trcl = (1.2700 1.2700 0.6351) u=6 $ Tube 9
15 like 6 but fill=7 trcl = ( 2.5400 1.2700 0.6351 ) u=6 $ Tube 10
16 like 6 but fill=7 trcl = (-2.5400 0.0000 0.6351) u=6 $ Tube 11
17 like 6 but fill=7 trcl = (-1.2700 0.0000 0.6351) u=6 $ Tube 12
18 like 6 but fill=7 trcl = ( 0.0000 0.0000 0.6351 ) u=6 $ Tube 13
19 like 6 but fill=7 trcl = (1.2700 0.0000 0.6351) u=6 $ Tube 14
20 like 6 but fill=7 trcl = (2.5400 0.0000 0.6351) u=6 $ Tube 15
21 like 6 but fill=7 trcl = (-2.5400 -1.2700 0.6351) u=6 $ Tube 16
22 like 6 but fill=7 trcl = (-1.2700 -1.2700 0.6351) u=6 $ Tube 17
23 like 6 but fill=7 trcl = ( 0.0000 -1.2700 0.6351 ) u=6 $ Tube 18
24 like 6 but fill=7 trcl = (1.2700 -1.2700 0.6351) u=6 $ Tube 19
25 like 6 but fill=7 trcl = ( 2.5400 -1.2700 0.6351 ) u=6 $ Tube 20
26 like 6 but fill=7 trcl = (-2.5400 -2.5400 0.6351) u=6 $ Tube 21
27 like 6 but fill=7 trcl = (-1.2700 -2.5400 0.6351) u=6 $ Tube 22
28 like 6 but fill=7 trcl = ( 0.0000 -2.5400 0.6351 ) u=6 $ Tube 23
29 like 6 but fill=7 trcl = (1.2700 - 2.5400 0.6351) u=6 $ Tube 24
30 like 6 but fill=7 trcl = (2.5400 - 2.5400 0.6351) u=6 $ Tube 25
31.0
          #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18
        #19 #20 #21 #22 #23 #24 #25 #26 #27 #28 #29 #30
             u=6 $Void
32 4 -2.7000 -7
                   u=5 $ Can Base Plate
33 4 -2.7000 -9 +8 +7 u=5 $ Can
         -6 fill=6 trcl = ( 0.0000 0.0000 3.0924 ) u=5 $ Tube Assy 1
34 0
35 like 34 but fill=6 trcl = ( 0.0000 0.0000 27.2225 ) u=5 $ Tube Assy 2
36 like 34 but fill=6 trcl = ( 0.0000 0.0000 51.3526 ) u=5 $ Tube Assy 3
37 like 34 but fill=6 trcl = ( 0.0000 0.0000 75.4827 ) u=5 $ Tube Assy 4
38 4 -2.7000 -10
                  u=5 $ Can Lid Bottom Plate
39 4 -2.7000 -11
                  u=5 $ Can Lid Top Plate
40 0
         #32 #33 #34 #35 #36 #37 #38 #39 u=5 $ Void
C Cells - MTR 7 Element Basket
41 6 -7.9400 -13 +16 +17 +18 +19 +20 +21 +22 u=4 $ Base plate
42 6 -7.9400 -14 +23 +27 u=4 $ Support plate
43 6 -7.9400 -15 +23 +27 u=4 $ Support plate
44 6 -7.9400 -23 +24 #41 #42 #43 u=4 $ Center column
```


45 6 -7.9400 -25 #41 #42 #43 u=4 \$ Center divider upper 46 6 -7.9400 -26 #41 #42 #43 u=4 \$ Center divider lower 47 6 -7.9400 -27 +28 +23 #41 #42 #43 u=4 \$ Small side 48 6 -7.9400 -29 #41 #42 #43 u=4 \$ Left divider 49 6 -7.9400 -30 #41 #42 #43 u=4 \$ Right divider 50 0 #41 #42 #43 #44 #45 #46 #47 #48 #49 u=4 \$Void C Cells - Basket Cavity -12 fill=5 trcl = (-9.5250 4.6990 3.1877) u=3 \$ UL 51 0 52 like 51 but fill=5 trcl = (-9.5250 -4.6990 3.1877) u=3 \$ LL 53 like 51 but fill=5 trcl = (9.5250 4.6990 3.1877) u=3 \$ UR 54 like 51 but fill=5 trcl = (9.5250 - 4.6990 3.1877) u=3 \$ LR 55 0 #51 #52 #53 #54 fill=4 u=3 \$ Void C Cells - LWT Cavity 56 0 -38 u=2 57 0 -39 u=2 58 0 -40 fill=3 (0.0000 0.0000 227.3300) u=2 59 0 -41 fill=3 (0.0000 0.0000 339.0900) u=2 60 0 #56 #57 #58 #59 u=2 C Cells - LWT Cask Normal Conditions 61 5 -11.344 -45 u=1 \$ BotPb 62 0 -44 fill=2 u=1 \$ Cavity 63 6 -7.9400 -42 -43 +45 u=1 \$ Bottom 64 6 -7.9400 -42 +43 +47 +50 +44 u=1 \$ OuterShell 65 6 -7.9400 -46 +49 +44 u=1 \$ InnerShellTaper 66 6 -7.9400 -48 +44 u=1 \$ InnerShell 67 5 -11.344 -49 +48 u=1 \$Lead 68 5 -11.344 -47 +46 +49 u=1 \$ LeadTaper 69 0 -50 +49 u=1 \$ LeadGap 70 3 -0.9669 -52 +42 u=1 \$ NeutronShield 71 6 -7.9400 -51 +42 +52 u=1 \$ NSShell 72 7 -0.4997 -53 +42 u=1 \$ UpperLimiter 73 7 -0.4997 -54 +42 u=1 \$ LowerLimiter 74 0 -55 +42 +51 +53 +54 u=1 \$ Container +55 u=1 \$ Outside 75 0 C Detector Cells - Radial Biasing 100 0 -100 fill=1 \$ Surface 200 0 -200 +100 \$1ft 300 0 -300 +100 +200 \$1m 400 0 -400 +100 +200 +300 \$ 2m 500 0 -500 +100 +200 +300 +400 \$ 2m+Convey 600 0 +100 +200 +300 +400 +500 \$ Exterior C Fuel Assembly Surfaces

 1
 RCC
 0.0000
 0.0000
 0.0000
 23.4950
 0.5080
 \$ Tube ID

 2
 RCC
 0.0000
 0.0000
 0.0000
 23.4950
 0.6349
 \$ Tube OD

 3
 PZ
 1.4950
 \$ Fuel Cut Plain
 \$
 \$ RCC
 0.0000
 0.0000
 0.0000
 23.4951
 0.6350
 \$ Tube
 \$

 5
 RPP
 -3.1750
 3.1750
 3.1750
 0.0000
 0.6000
 0.6350
 \$ Tube Base Plate

 6
 RPP
 -3.1751
 3.1751
 3.1751
 0.0000
 24.1301
 \$ Tube Container

 7
 RPP
 -4.1910
 4.1910
 4.1910
 0.0000
 0.4699
 \$ Can Base Plate

 8
 RPP
 -3.5560
 3.5560
 3.5560
 0.0000
 100.6475
 \$ Can ID

9 RPP -4.1910 4.1910 -4.1910 4.1910 0.0000 100.6475 \$ Can OD 10 RPP -3.4925 3.4925 -3.4925 3.4925 99.6823 100.6475 \$ Can Lid Lower Plate 11 RPP -4.1910 4.1910 -4.1910 4.1910 100.6475 102.2223 \$ Can Lid Upper Plate 12 RPP -4.1911 4.1911 -4.1911 4.1911 0.0000 102.2223 \$ Container C Surfaces - MTR 7 Element Basket 13 RCC 0.0000 0.0000 0.0000 0.0000 1.2700 16.8466 \$ Base plate 14 RCC 0.0000 0.0000 52.0700 0.0000 0.0000 1.2700 16.8466 \$ Support plate 15 RCC 0.0000 0.0000 104.1400 0.0000 0.0000 1.2700 16.8466 \$ Support plate 16 CZ 1.2700 \$ Hole CC 17 C/Z 0.0000 9.5250 1.2700 \$Hole UC 18 C/Z 0.0000 -9.5250 1.2700 \$ Hole LC 19 C/Z -9.5250 4.6990 1.2700 \$ Hole UL 20 C/Z -9.5250 -4.6990 1.2700 \$ Hole LL 21 C/Z 9.5250 4.6990 1.2700 \$ Hole UR 22 C/Z 9.5250 -4.6990 1.2700 \$ Hole LR 23 RPP -5.1604 5.1604 -14.6939 14.6939 1.2700 111.7600 \$ Center column outer 24 RPP -4.3667 4.3667 -13.9002 13.9002 1.2700 111.7600 \$ Center column inner 25 RPP -4.3667 4.3667 4.3688 5.1626 1.2700 111.7600 \$ Center divider upper 26 RPP -4.3667 4.3667 -5.1626 -4.3688 1.2700 111.7600 \$ Center divider lower 27 RPP -14.1986 14.1986 -9.3599 9.3599 1.2700 111.7600 \$ Small side outer 28 RPP -13.8938 13.8938 -9.0551 9.0551 1.2700 111.7600 \$ Small side inner 29 RPP -13.8938 -5.1604 -0.3175 0.3175 1.2700 111.7600 \$ Left divider 30 RPP 5.1604 13.8938 -0.3175 0.3175 1.2700 111.7600 \$ Right divider C Surfaces - Basket Cavity 31 RPP -4.3667 4.3667 -4.3688 4.3688 1.2700 111.7600 \$CC 32 RPP -4.3667 4.3667 5.1626 13.9002 1.2700 111.7600 \$UC 33 RPP -4.3667 4.3667 -13.9002 -5.1626 1.2700 111.7600 \$LC 34 RPP -13.8938 -5.1604 0.6350 9.3726 1.2700 111.7600 \$UL 35 RPP -13.8938 -5.1604 -9.3726 -0.6350 1.2700 111.7600 \$LL 36 RPP 5.1604 13.8938 0.6350 9.3726 1.2700 111.7600 \$UR 37 RPP 5.1604 13.8938 -9.3726 -0.6350 1.2700 111.7600 \$LR C Surfaces - LWT Cavity 38 RCC 0.0000 0.0000 3.8100 0.0000 0.0000 111.7600 16.8467 \$ Basket 39 RCC 0.0000 0.0000 115.5700 0.0000 0.0000 111.7600 16.8467 \$ Basket 40 RCC 0.0000 0.0000 227.3300 0.0000 0.0000 111.7600 16.8467 \$ Basket 41 RCC 0.0000 0.0000 339.0900 0.0000 0.0000 111.7600 16.8467 \$ Basket C Surfaces - LWT Cask Normal Conditions 42 RCC 0.0000 0.0000 -26.6700 0.0000 0.0000 507.3650 36.5189 \$ Lwt 43 RCC 0.0000 0.0000 -26.6700 0.0000 0.0000 26.6700 36.5189 \$ Bottom 44 RCC 0.0000 0.0000 0.0000 0.0000 452.1200 16.9863 \$ Cavity 45 RCC 0.0000 0.0000 -17.7800 0.0000 0.0000 7.6200 26.3525 \$ Bottom gamma shield 46 RCC 0.0000 0.0000 0.0000 0.0000 444,5000 20,1740 \$ Lead id - taper 47 RCC 0.0000 0.0000 0.0000 0.0000 0.0000 444.5000 31.5976 \$ Lead od - taper 48 RCC 0.0000 0.0000 13.8176 0.0000 0.0000 416.8648 18.9103 \$ Lead id 49 RCC 0.0000 0.0000 13.8176 0.0000 0.0000 416.8648 33.3271 \$ Lead od 50 RCC 0.0000 0.0000 13.8176 0.0000 0.0000 416.8648 33.4645 \$ Lead gap 51 RCC 0.0000 0.0000 3.8100 0.0000 0.0000 419.1000 49.8183 \$ Neutron shield shell 52 RCC 0.0000 0.0000 5.0800 0.0000 0.0000 416.5600 49.2189 \$ Neutron shield 53 RCC 0.0000 0.0000 450.2150 0.0000 0.0000 70.5612 49.8183 \$ Upper limiter 54 RCC 0.0000 0.0000 -68.0212 0.0000 0.0000 71.8312 49.8183 \$ Lower limiter 55 RCC 0.0000 0.0000 -68.0212 0.0000 0.0000 588.7974 49.8183 \$ Container

C Radial Detector DRA (Surface) 100 RCC 0.0000 0.0000 -68.1212 0.0000 0.0000 588.9974 49.9184 101 PZ -38.6713 102 PZ -9.2215 103 PZ 20.2284 104 PZ 49.6783 105 PZ 79.1282 106 PZ 108.5780 107 PZ 138.0279 108 PZ 167.4778 109 PZ 196.9276 110 PZ 226.3775 111 PZ 255.8274 112 PZ 285.2772 113 PZ 314.7271 114 PZ 344.1770 115 PZ 373.6269 116 PZ 403.0767 117 PZ 432.5266 118 PZ 461.9765 119 PZ 491.4263 C Radial Detector DRB (1ft) 200 RCC 0.0000 0.0000 -98.6012 0.0000 0.0000 649.9574 80.2984 201 PZ -66.1033 202 PZ -33.6055 203 PZ -1.1076 204 PZ 31.3903 205 PZ 63.8882 206 PZ 96.3860 207 PZ 128.8839 208 PZ 161.3818 209 PZ 193.8796 210 PZ 226.3775 211 PZ 258.8754 212 PZ 291.3732 213 PZ 323.8711 214 PZ 356.3690 215 PZ 388.8669 216 PZ 421.3647 217 PZ 453.8626 218 PZ 486.3605 219 PZ 518.8583 C Radial Detector DRC (1m) 300 RCC 0.0000 0.0000 -168.1212 0.0000 0.0000 788.9974 149.8184 301 PZ -135.2463 302 PZ -102.3714 303 PZ -69.4965 304 PZ -36.6216 305 PZ -3.7467 306 PZ 29.1282 307 PZ 62.0030

308 PZ 94.8779
309 PZ 127.7528
310 PZ 160.6277
311 PZ 193.5026
312 PZ 226.3775
313 PZ 259.2524
314 PZ 292.1273
315 PZ 325.0022
316 PZ 357.8771
317 PZ 390.7520
318 PZ 423.6269
319 PZ 456.5017
320 PZ 489.3766
321 PZ 522.2515
322 PZ 555.1264
323 PZ 588.0013
C Radial Detector DRD (2m)
400 RCC 0.0000 0.0000 -268.1212 0.0000 0.0000 988.9974 249.8184
401 PZ -226.9130
402 PZ -185.7048
403 PZ -144.4965
404 PZ -103.2883
405 PZ -62.0801
406 PZ -20.8719
407 PZ 20.3364
408 PZ 61.5446
409 PZ 102.7528
410 PZ 143.9611
411 PZ 185.1693
412 PZ 226.3775
413 PZ 267.5857
414 PZ 308.7940
415 PZ 350.0022
416 PZ 391.2104
417 PZ 432.4186
418 PZ 473.6269
419 PZ 514.8351
420 PZ 556.0433
421 PZ 597.2515
422 P2 638.4598
423 P2 679.6680
C Radial Detector DRE (2m+convey)
500 RCC 0.0000 0.0000 -209.1212 0.0000 0.0000 990.9974 521.9200
502 P7 _186 5381
503 P7 -145 2465
504 PZ -103 9550
505 PZ -62.6634
506 PZ -21.3719
507 PZ 19.9197
508 PZ 61.2113


```
509 PZ 102.5028
510 PZ 143.7944
511 PZ 185.0859
512 PZ 226.3775
513 PZ 267.6691
514 PZ 308.9606
515 PZ 350.2522
516 PZ 391.5437
517 PZ 432.8353
518 PZ 474.1269
519 PZ 515.4184
520 PZ 556.7100
521 PZ 598.0015
522 PZ 639.2931
523 PZ 680.5846
С
C Materials List
С
C Homogenized U-AI Fuel
m1 92235 -1.7661E-01 92238 -1.9624E-02 13027 -8.0376E-01
C Water
m2 1001 6.6667E-01 8016 3.3333E-01
mt2 lwtr.01
C Water/Glycol
m3 1001 -1.03651E-01 8016 -6.75619E-01 6000 -2.20730E-01
C Aluminum
m4 13027 -1.0
C Lead
m5 82000 -1.0
C Stainless Steel 304
m6 26000 -0.695 24000 -0.190 28000 -0.095
   25055 -0.020
C Aluminum Honeycomb Impact Limiter
m7 13027 -1.0
С
C Cell Importances
imp:p 1 79r 0
С
C Source Definition - Fuel Gamma
C 30% burnup, wt % U-235, 14-year cool time, 2.786 g U-235 per rod, 0.003 W/rod
sdef RAD=d1 EXT=d2 ERG=d3 cell=100:62:d4:d5:d6:d7:1
  POS= 0.0000 0.0000 1.4950
  AXS= 0.0000 0.0000 1.0000
si1 0 0.5080
sp1 -21 1
si2 0 22.0000
sp2 -21 1
si3 1.000E-02 4.500E-02 1.000E-01 2.000E-01 3.000E-01 4.000E-01
  6.000E-01 8.000E-01 1.000E+00 1.330E+00 1.660E+00 2.000E+00
  2.500E+00 3.000E+00 4.000E+00 5.000E+00 6.500E+00 8.000E+00
```

```
Figure 5.3.20-6 Sample MCNP Input File – Normal Conditions (continued)
```

```
1.000E+01
sp3 0.0000E+00 4.6619E+09 1.6170E+09 9.2992E+08 2.9371E+08 2.1001E+08
  1.5357E+08 6.8443E+09 3.0713E+07 1.9365E+07 3.4947E+06 5.3655E+05
  3.1683E+04 1.8502E+02 1.2818E+01 1.1290E-03 4.3894E-04 8.3643E-05
  1.7944E-05
si41 58 59
sp4 1.0 1.0
si5 | 51 52 53 54
sp5 1.0 1.0 1.0 1.0
si61 34 35 36 37
sp6 1.0 1.0 1.0 1.0
si7 | 6 7 8 9 10 11
   12 13 14 15 16 17
   18 19 20 21 22 23
   24 25 26 27 28 29
   30
sp7 1.0 1.0 1.0 1.0 1.0 1.0
  1.0 1.0 1.0 1.0 1.0 1.0
  1.0 1.0 1.0 1.0 1.0 1.0
  1.0 1.0 1.0 1.0 1.0 1.0
  1.0
mode p
nps 160000000
С
C ANSI/ANS-6.1.1-1977 - Gamma Flux-to-Dose Conversion Factors
C (mrem/hr)/(photons/cm2-sec)
de0 0.01 0.03 0.05 0.07 0.1 0.15 0.2
  0.25 0.3 0.35 0.4 0.45 0.5 0.55
  0.6 0.65 0.7 0.8 1 1.4 1.8
  2.2 2.6 2.8 3.25 3.75 4.25 4.75
  5 5.25 5.75 6.25 6.75 7.5 9
  11 13 15
df0 3.96E-03 5.82E-04 2.90E-04 2.58E-04 2.83E-04 3.79E-04 5.01E-04
  6.31E-04 7.59E-04 8.78E-04 9.85E-04 1.08E-03 1.17E-03 1.27E-03
  1.36E-03 1.44E-03 1.52E-03 1.68E-03 1.98E-03 2.51E-03 2.99E-03
  3.42E-03 3.82E-03 4.01E-03 4.41E-03 4.83E-03 5.23E-03 5.60E-03
  5.80E-03 6.01E-03 6.37E-03 6.74E-03 7.11E-03 7.66E-03 8.77E-03
  1.03E-02 1.18E-02 1.33E-02
С
C Weight Window Generation - Radial
wwg 20000
wwp:p 5350-10
mesh geom=cyl ref=0 13 243 origin=0.1 0.1 -568
  imesh 16.8 17.0 18.9 33.3 36.5 49.2 49.8 549.8
  iints 11151111
  jmesh 500 541 550 558 568 577 1019 1020 1049 1089 1589
  jints 111111111111
  kmesh 1
  kints 1
wwge:p 1e-3 1 20
fc2 Radial Surface Tally
```

f2:p +100.1 fm2 1.18116E+13 fs2 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 T tf2 fc12 Radial 1ft Tally f12:p +200.1 fm12 1.18116E+13 fs12 -201 -202 -203 -204 -205 -206 -207 -208 -209 -210 -211 -212 -213 -214 -215 -216 -217 -218 -219 Т tf12 fc22 Radial 1m Tally f22:p +300.1 fm22 1.18116E+13 fs22 -301 -302 -303 -304 -305 -306 -307 -308 -309 -310 -311 -312 -313 -314 -315 -316 -317 -318 -319 -320 -321 -322 -323 T tf22 fc32 Radial 2m Tally f32:p +400.1 fm32 1.18116E+13 fs32 -401 -402 -403 -404 -405 -406 -407 -408 -409 -410 -411 -412 -413 -414 -415 -416 -417 -418 -419 -420 -421 -422 -423 T tf32 fc42 Radial 2m+Convey Tally f42:p +500.1 fm42 1.18116E+13 fs42 -501 -502 -503 -504 -505 -506 -507 -508 -509 -510 -511 -512 -513 -514 -515 -516 -517 -518 -519 -520 -521 -522 -523 T tf42 С C Print Control prdmp -30 -60 1 2 print C Random Number Generator

Figure 5.3.20-6 Sample MCNP Input File – Normal Conditions (continued)

NAC International

rand gen=2 seed=15617098509349 stride=152917 hist=1

Figure 5.3.20-7 Normal Condition Radial Surface Dose Rate Profile by Source Type – SLOWPOKE Fuel

Figure 5.3.20-8 Normal Condition 2-m Radial Surface Dose Rate Profile by Source Type – SLOWPOKE Fuel

5.3.20-22

Figure 5.3.20-9 Accident Condition Radial 1m Dose Rate Profile by Source Type – SLOWPOKE

Fuel Element Type		Rod
Chemical Form		U-Al Alloy
Active Fuel Length	cm	22
Active Fuel Diameter	cm	0.422
Weight of U-235	g	2.786
Weight of total U	g	2.990
Alloy or compound material weight	g	7.688
Total weight of fuel meat	g	10.678
Clad Thickness	cm	0.051
Clad Weight (including caps)	g	4.981
Clad Material		Aluminum
Element Length	cm	22.83
Diameter (endcaps)	cm	0.61
Diameter (clad)	cm	0.53
Total weight of fuel element	g	15.659
Enrichment %	%	93
Burn Time	hrs	32000
Core Maximum Power	kW	20
Maximum Burnup (²³⁵ U depletion)	%	2

 Table 5.3.20-1
 SLOWPOKE Fuel Geometry and Materials

Table 5.3.20-2	Source Term	Generation	Parameters	for	SL	OWP	OKE	Fuel	l

Parameter	Value
U Mass Per Rod (grams)	3.1
Core Power (kW)	20
Number of Hours Burned	35280
Number of Years Cooled	14
Number of Rods / Core	315
Initial Enrichment (wt % ²³⁵ U)	90
Burnup (% ²³⁵ U)	4.5
Burnup (GWd/MTU)	30
Moderator/Box Temperature (C)	40
Clad Temperature (C)	90
Fuel Temperature (C)	100

NAC International

5.3.20-24

	E Lower	E Upper	Source
Group	[MeV]	[MeV]	[neutrons/sec]
1	6.380E+00	2.000E+01	8.392E+01
2	3.010E+00	6.380E+00	1.239E+03
3	1.830E+00	3.010E+00	2.221E+04
4	1.420E+00	1.830E+00	5.368E+04
5	9.070E-01	1.420E+00	9.340E+04
6	4.080E-01	9.070E-01	8.055E+04
7	1.110E-01	4.080E-01	3.950E+04
8	1.500E-02	1.110E-01	4.675E+03
9	3.040E-03	1.500E-02	1.404E+02
10	5.830E-04	3.040E-03	1.121E+01
11	1.010E-04	5.830E-04	1.063E+00
12	2.900E-05	1.010E-04	2.284E-02
13	1.070E-05	2.900E-05	3.852E-03
14	3.060E-06	1.070E-05	1.625E-04
15	1.860E-06	3.060E-06	1.011E-05
16	1.300E-06	1.860E-06	3.875E-06
17	1.130E-06	1.300E-06	1.030E-06
18	1.000E-06	1.130E-06	6.480E-07
19	8.000E-07	1.000E-06	1.132E-06
20	4.140E-07	8.000E-07	1.586E-06
21	3.250E-07	4.140E-07	2.069E-07
22	2.250E-07	3.250E-07	3.119E-07
23	1.000E-07	2.250E-07	2.064E-07
24	5.000E-08	1.000E-07	6.687E-08
25	3.000E-08	5.000E-08	3.531E-08
26	1.000E-08	3.000E-08	9.255E-11
27	1.000E-11	1.000E-08	5.251E-11
Total			2.955E+05

Table 5.3.20-3SLOWPOKE Neutron Source Term (per MTU)
	E Lower	E Upper	Source
Group	[MeV]	[MeV]	[photons/sec]
1	8.00E+00	1.00E+01	5.7677E+00
2	6.50E+00	8.00E+00	2.6885E+01
3	5.00E+00	6.50E+00	1.4109E+02
4	4.00E+00	5.00E+00	3.6288E+02
5	3.00E+00	4.00E+00	4.1202E+06
6	2.50E+00	3.00E+00	5.9472E+07
7	2.00E+00	2.50E+00	1.0184E+10
8	1.66E+00	2.00E+00	1.7246E+11
9	1.33E+00	1.66E+00	1.1233E+12
10	1.00E+00	1.33E+00	6.2244E+12
11	8.00E-01	1.00E+00	9.8721E+12
12	6.00E-01	8.00E-01	2.2000E+15
13	4.00E-01	6.00E-01	4.9361E+13
14	3.00E-01	4.00E-01	6.7505E+13
15	2.00E-01	3.00E-01	9.4406E+13
16	1.00E-01	2.00E-01	2.9890E+14
17	4.50E-02	1.00E-01	5.1975E+14
18	1.00E-02	4.50E-02	1.4985E+15
Total			4.7457E+15

Table 5.3.20-4SLOWPOKE Fuel Gamma Source Term (per MTU)

NAC International

5.3.20-26

Component	Area	Area
	[cm ²]	Fraction
Fuel	1.3987E-01	1.7252E-01
Gap	4.0055E-03	4.9406E-03
Clad	7.6746E-02	9.4663E-02
Void	5.9011E-01	7.2788E-01
Total	8.1073E-01	1.0000E+00

Table 5.3.20-5Fuel Homogenization for SLOWPOKE Fuel

Note: Homogenization limited to smear of fuel rod within aluminum canister tube.

	Table 5.3.20-6	Canister/Basket/Cask]	Material Descriptions	for SL	OWPOKE Fuel
--	----------------	------------------------	-----------------------	--------	--------------------

		Density	Number Density
Material	Element	[g/cm ³]	[atom/b-cm]
Aluminum	Al	2.67	7.278E-02
Stainless Steel 304	Fe	7.94	5.9505E-02
	Cr		1.7472E-02
	Ni		7.7392E-03
	Mn		1.7407E-03
Lead	Pb	11.34	3.2967E-02
Neutron Shield	Н	0.97	5.9884E-02
	0		2.4595E-02
	С		1.0701E-02
Impact Limiter	Al	0.50	1.1153E-02

_ -

Description	Dimension
	[in]
CANISTER:	
Bottom Plate Thickness	0.375
Lid Thickness	1.00
OD	3.30
ID	2.80
Side Wall Height	39.44
Bottom Plate Inset 1	0.130
Bottom Plate Inset 2	0.060
Lid Lower Bottom Thickness	0.38
Lid Top Width	3.30
Lid Bottom Width	2.75
Lid Handle Height	2.500
CANISTER INSERT:	
Tube Length	9.25
Tube OD	0.50
Tube ID	0.40
Base Plate Thickness	0.25
Base Plate Width	2.50

Table 5.3.20-7Canister Dimensions SLOWPOKE Fuel

5.3.20-28

Transport	Dose Rate Location	Maxim	ım	Averag	ge
Condition		[mrem/hr]	FSD	[mrem/hr]	FSD
Normal	Side Surface of Cask	0.14	7.6%	0.01	23.0%
	Top Surface of Cask	0.004	8.4%	0.002	14.9%
	Bottom Surface of Cask	< 0.00001		< 0.00001	
	Side 1m (Transport Index)	0.01	7.1%	0.002	12.6%
	2m from Truck - Radial	0.002	7.6%	0.001	9.8%
	2m from Top	0.0004	58.3%	0.0004	47.7%
	2m from Bottom	< 0.00001		< 0.00001	
	Edge of Truck - Top	0.0001	30.1%	0.00004	36.2%
	Edge of Truck - Bottom	< 0.00001		< 0.00001	
	Dose at Cab of Truck	0.00005	37.2%	0.00003	46.0%
Accident	Side Surface of Cask	0.29	8.8%	0.02	24.5%
	Top Surface of Cask	0.03	8.6%	0.01	12.6%
	Bottom Surface of Cask	< 0.00001		< 0.00001	
	Side 1m	0.02	7.9%	0.004	12.5%
	Top 1m	0.002	7.4%	0.001	9.7%
	Bottom 1m	< 0.00001		< 0.00001	

Table 5.5.20-6 Infaximum and Average Dose Rates for SLOWFORE F	Table 5.3.20-8	Maximum and Average Dose Rates for SLOWPOKE	l Fuel
--	----------------	---	--------

 Table 5.3.20-9
 Summarized Maximum Dose Rates for SLOWPOKE Fuel

Transport	Dose Rate Location	Maximum	Limit
Condition		[mrem/hr]	[mrem/hr]
Normal	Side Surface of Cask	0.14	200
	Side 1m (Transport Index)	0.01	10
	2m from Truck - Radial	0.002	N/A
Accident	Side 1m	0.02	1000

5.3.21 NRU and NRX Fuel Assemblies

Results of the shielding evaluation for up to 18 NRU (HEU or LEU) or up to 18 NRX fuel assemblies in the LWT cask are presented in this section. Fuel in undamaged and damaged configuration was considered for the shielding evaluation. The undamaged fuel configuration considers structurally sound rod or assemblies (i.e., any fuel not composed of rod section / broken rods). The NRU/NRX fuel is composed of a metal alloy and is not expected to fail during transport and will not produce rubble. Also included is a conservative damaged fuel configuration that analyzes the fuel collapsed at the top of the basket tubes to bound any hypothetical fuel reconfiguration. Both undamaged and damaged configuration are analyzed under normal and accident operating conditions to demonstrate compliance with 10 CFR 71.47 and 10 CFR 71.51.

NRU HEU, NRU LEU, and NRX HEU Source Terms

Source terms are calculated to bound the NRU and NRX assemblies using TRITON in SCALE 6.1. The TRITON models use the 238 group ENDF/B-VII library. Single unit cells were used for the TRITON source term calculation. The single unit cell (assembly reflected) was compared against a model using supercells (assembly plus surrounding incore material) to define surrounding fuel assemblies. The single unit cell was determined to be more conservative for neutron source terms and is not significantly different for gamma source terms which dominate dose rate contributions for the material. Unit cells were modeled using dimensions specified in AECL provided drawings. The assemblies are shown in Figure 5.3.21-1 and Figure 5.3.21-2 for the NRU and NRX assemblies, respectively. Key assembly dimensions are provided in Table 5.3.21-2 for the NRU and Table 5.3.21-2 for the NRU and NRX assemblies.

NRU source terms are calculated using detailed operating histories for HEU and LEU fuel provided by AECL. NRX source terms are calculated using the maximum reactor power and ²³⁵U Core Loading. The evaluated fuel material properties are provided in Table 5.3.21-3. The fuel material composition for the bounding properties is shown in Table 5.3.21-4. All sources are calculated for a ²³⁵U depletion of greater than 80%. NRU LEU is composed of U₃-Si-Al. All Si is modeled as Al as aluminum will produce bounding neutron source terms due to (alpha,n) neutron production.

The TRITON inputs for all source term calculations are provided in Figure 5.3.21-3 through Figure 5.3.21-6. The comparison of neutron and gamma source terms for the single cell and supercell TRITON models are provided in Table 5.3.21-5 and Table 5.3.21-6, respectively. All source spectra are provided for each fuel type in Table 5.3.21-7 through Table 5.3.21-12.

For NAC thermal evaluations an alternative heat load for NRU LEU fuel is calculated that models a burnup of 347 MWd as oppose to the 363 MWd burnup for shielding evaluations. The burnup of 347 MWd still bounds the actual NRU LEU burnup of 327 MWd. The final burnup calculated in TRITON for the thermal evaluation heat load is 80.4%. The calculated heat load for thermal evaluations is 34 W/assembly (612 W for the loaded LWT). All shielding evaluations use the more conservative higher burnup source terms.

NRU and NRX Shielding Models

MCNP three dimensional shielding analysis allows detailed modeling of the source material, basket assembly, and cask shield configurations. The basket and cask are modeled as described in the license drawings. The basket spacer and lid collar have been conservatively omitted, but all axial extents are included to retain source position.

The geometric description of a MCNP model is based on the combinatorial geometry system embedded in the code. In this system, bodies such as cylinders and rectangular parallelepipes and their logical intersections and unions are used to describe the extent of material zones.

Both undamaged and damaged fuel configurations are analyzed under normal and accident operating conditions. The undamaged fuel configuration includes NRU and NRX pins modeled as cropped for loading in the LWT. The damaged fuel configuration collapses the fuel in the basket tubes fully. Collapsed fuel is modeled at the nominal fuel density. The fuel meat alloy will not compact as a result of any transport condition. Collapsed models do not include clad or end plug material. The fuel and basket have been shifted towards the top of the LWT cavity. The radial lead gamma shield extends from the bottom of the NAC-LWT cavity to approximately 3 inches (7.62 cm) below the top of the cavity. Positioning the fissile material closest to the point of minimum gamma shielding is conservative.

The accident conditions of transport include the loss of neutron shielding material. The neutron shielding shell and the impact limiters are also removed while modeling accident conditions.

While normal conditions include a gap between the lead and outer shell, lead slump is not evaluated for accident conditions as NAC procedures dictate that the lead is allowed to cool from the lowest point with molten lead from the top filling gaps formed during solidification. Therefore no gap is expected to occur and further accident analyses detailing potential shifting of the lead gap are not necessary.

Detailed model parameters used in creating the three-dimensional model are taken directly from the License Drawings. Elevations associated with the three-dimensional features are established with respect to the center bottom of the NAC-LWT cask cavity for the MCNP combinatorial model. Material compositions for structural and shield materials are shown in Table 5.3.21-13. The three-dimensional NAC-LWT MCNP models are shown in Figure 5.3.21-7 through Figure

5.3.21-9 while sketches are shown in Figure 5.3.21-11 and Figure 5.3.21-12. Figure 5.3.21-10 shows a VISED comparison of the fuel detail for the undamaged and collapsed fuel models. Selected basket dimensions critical to model and dose results are listed in Table 5.3.21-14. A sample MCNP input file is provided in Figure 5.3.21-13.

NRU and NRX Fuel Shielding Evaluation

The shielding evaluation is performed using MCNP5 v1.60. The MCNP shielding model is utilized with the source terms to estimate the dose rate profiles at various distances from the side, top and bottom of the cask for both normal and accident conditions. The method of solution is continuous energy Monte Carlo with a Monte Carlo based weight window generator to accelerate code convergence. Weight window and problem convergence is verified by the 10 statistical checks performed by MCNP. Radial or axial biasing is performed depending on the desired dose location.

The ANSI/ANS 6.1.1-1977 flux-to-dose rate conversion factors are employed in the MCNP analysis. The ANSI/ANS neutron and gamma dose conversion factors are shown in Table 5.3.21-15 and Table 5.3.21-16, respectively.

NRU and NRX Dose Rates

Dose rates were computed for the three fuel sources (NRU HEU, NRU LEU, and NRX HEU) for both undamaged and collapsed configurations. NRU HEU dose rates (normal and accident) for both the undamaged and collapsed fuel configurations are summarized in Table 5.3.21-17 and Table 5.3.21-18, respectively. NRU LEU dose rates (normal and accident) for both the undamaged and collapsed fuel configurations are summarized in Table 5.3.21-19 and Table 5.3.21-20, respectively. NRX dose rates (normal and accident) for both the undamaged and collapsed fuel configurations are summarized in Table 5.3.21-20, respectively. NRX dose rates (normal and accident) for both the undamaged and collapsed fuel configurations are summarized in Table 5.3.21-20, respectively. NRX dose rates (normal and accident) for both the undamaged and collapsed fuel configurations are summarized in Table 5.3.21-22, respectively.

Results are summarized and compared to dose rate limits in Table 5.3.21-23 and Table 5.3.21-24 for undamaged and collapsed fuel, respectively. NRU LEU fuel provides the maximum dose rates for all dose rate limits. A payload of 18 assemblies for NRU or NRX fuel is found to be in compliance of 10 CFR 71.47 and 10 CFR 71.51 for an exclusive use shipment. Dose rate profiles for the maximum dose rate cases are provided Figure 5.3.21-14 through Figure 5.3.21-16.

Figure 5.3.21-1 Sketch of NRU Assembly

Figure 5.3.21-3 TRITON Input for NRU HEU Single Unit Cell

```
=t-depl
NRU CORE NEWT / CENTRM Depletion
V7-238
read comp
WTPTUAL 1 3.288 3 13000 77.570 92235 20.411 92238 2.019 1.0 373.0 END
AL 2 1.0 363.0 END
H2O 3 DEN=1.1 0.0015 311 END
D2O 3 DEN=1.1 0.9985 311 END
AL 4 1.0 309 END
H2O 5 DEN=1.1 0.00150 307 END
D20 5 DEN=1.1 0.9984 307 END
b
    5 DEN=1.1 0.0001 307 END
end comp
read celldata
latticecell triangpitch pitch=1.133 3 fueld=0.5486 1 cladd=0.7101 2 end
end celldata
read depletion -1 end depletion
read opus
matl= 1 end units=grams
new case
units=watts
new case
typarams=gspectrum
units=part
new case
typarams=nspectrum
units=part
end opus
read burndata
' power history
Power=2.321E+03 Burn=45 Down=0 nlib=5 end
Power=2.708E+03 Burn=135 Down=0 nlib=5 end
Power=1.355E+03 Burn=120 Down=6935 nlib=5 end
end burndata
read timetable
density 5 1 5010
0.0 1.08
22.50 0.96
92.50 0.75
150.50 0.50
250.5 0.25
280.0 0.13
320.0 0.05 end
end timetable
read model
NRU Core
read parm
 prtflux=no drawit=yes collapse=yes
 xnlib=4 run=yes prtmxsec=no prtbroad=no
 prtmxtab=yes cmfd=no echo=yes
end parm
read materials
  1 1 !fuel u-al! end
  2 1 !fuel clad! end
 3 2 !heavy water! end
 4 1 !flow tube! end
  5 2 !heavy water! end
end materials
read geom
' Fuel Pin
unit 1
cylinder 1 0.2745
cylinder 2 0.3761
media 1 1 1
media 2 1 2 -1
boundary 2 4 4
' Global unit
```


global unit 10 cylinder 10 2.4994 cylinder 20 2.6327 hexprism 50 9.85 hole 1 origin x=0.6502 hole 1 origin x=-0.3251 y=0.5631 hole 1 origin x=-0.3251 y=-0.5631 hole 1 origin x=1.6183 y=0.5890 hole 1 origin x=0.8611 y=1.4914 hole 1 origin x=-0.2990 y=1.6960 hole 1 origin x=-1.3192 y=1.1070 hole 1 origin x=-1.7221hole 1 origin x=-1.3192 y=-1.1070 hole 1 origin x=-0.2990 y=-1.6960 hole 1 origin x=0.8611 y=-1.4914 hole 1 origin x=1.6183 y=-0.5890 media 3 1 10 media 4 1 20 -10 media 5 1 50 -20 boundary 50 50 50 end geom read bounds all=white end bounds end model end

Figure 5.3.21-4 TRITON Input for NRU HEU Supercell Model

=t-depl NRU CORE NEWT / CENTRM Depletion V7-238 read composition WTPTUAL 1 3.288 3 13000 77.570 92235 20.411 92238 2.019 1.0 373.0 END AL 4 1.0 363.0 END H2O 7 DEN=1.1 0.0015 311 END D20 7 DEN=1.1 0.9985 311 END AL 10 1.0 309 END H2O 11 DEN=1.1 0.0015 307 END D20 11 DEN=1.1 0.9985 307 END WTFTscl 2 1.1 4 1002 19.62 1001 0.01 8016 78.61 92235 1.76 1.0 307 END AL 5 1.0 363.0 END H2O 8 DEN=1.1 0.0015 311 END D20 8 DEN=1.1 0.9985 311 END WTFTsc2 3 1.1 4 1002 19.65 1001 0.02 8016 78.74 92235 1.59 1.0 307 END AL 6 1.0 363.0 END H2O 9 DEN=1.1 0.0015 311 END D2O 9 DEN=1.1 0.9985 311 END WTPTb1 13 1.1 4 1002 19.97 1001 0.02 8016 80.00 5010 0.01 1.0 307 END end composition read celldata latticecell triangpitch pitch=1.133 7 fueld=0.5486 1 cladd=0.7101 4 end latticecell triangpitch pitch=1.133 8 fueld=0.5486 2 cladd=0.7101 5 end latticecell triangpitch pitch=1.133 9 fueld=0.5486 3 cladd=0.7101 6 end end celldata read depletion -1 2 3 end depletion read opus matl= 1 end units=grams new case units=watts new case typarams=gspectrum units=part new case typarams=nspectrum units=part end opus read burndata ' power history Power=2.321E+03 Burn=45 Down=0 nlib=10 end Power=2.708E+03 Burn=135 Down=0 nlib=10 end Power=1.355E+03 Burn=120 Down=6935 nlib=10 end end burndata read timetable density 13 1 5010 0.0 1.26 22.50 0.94 92.50 0.67 150.50 0.25 200.0 0.15 250.5 0.10 290.0 0.00 end end timetable read model NRU Core read parm

NAC International

Figure 5.3.21-4 TRITON Input for NRU HEU Supercell Model (continued)

prtflux=no drawit=yes collapse=yes xnlib=4 run=yes prtmxsec=no prtbroad=no prtmxtab=yes cmfd=no echo=yes outers=500 end parm read materials 1 1 !fuel u-al! end 4 1 !fuel clad! end 7 2 !heavy water! end 10 1 !flow tube! end 11 2 !heavy water! end 2 1 !supercell 1! end 3 1 !supercell 2! end 13 2 !boron ring! end end materials read geom ' Fuel Pin unit 1 cylinder 1 0.2745 cylinder 2 0.3761 media 1 1 1 media 4 1 2 -1 boundary 2 4 4 ' Fuel Assembly unit 2 ' Flow Tube cylinder 10 2.4994 cylinder 20 2.6327 hole 1 origin x=0.6502 hole 1 origin x=-0.3251 y=0.5631 hole 1 origin x=-0.3251 y=-0.5631 hole 1 origin x=1.6183 y=0.5890 hole 1 origin x=0.8611 y=1.4914 hole 1 origin x=-0.2990 y=1.6960 hole 1 origin x=-1.3192 y=1.1070 hole 1 origin x=-1.7221hole 1 origin x=-1.3192 y=-1.1070hole 1 origin x=-0.2990 y=-1.6960 hole 1 origin x=0.8611 y=-1.4914 hole 1 origin x=1.6183 y=-0.5890 media 7 1 10 media 10 1 20 -10 boundary 20 50 50 ' Global unit global unit 10 ' Unit Cell hexprism 50 9.85 ' Supercell 1 - 2.394g U235/cm cylinder 60 19.2 cylinder 70 20.2 ' Supercell 2 - 4.341g U235/cm cylinder 80 38.9 cylinder 90 39.9 ' Boron ring to adjust k-eff cylinder 100 60.0 cylinder 110 61.0 hexprism 120 70.0 hole 2

Figure 5.3.21-4 TRITON Input for NRU HEU Supercell Model (continued)

media 11 1 50
media 11 1 60 -50
media 2 1 70 -60
media 11 1 80 -70
media 3 1 90 -80
media 11 1 100 -90
media 13 1 110 -100
media 11 120 -110
boundary 120 10 10
end geom
read bounds all=white end bounds
end model
end

Figure 5.3.21-5 TRITON Input for NRU LEU Single Unit Cell

=t-depl NRU CORE NEWT / CENTRM Depletion v7-238 read comp WTPTUAL 1 3.288 3 13000 37.838 92235 11.811 92238 50.351 1.0 373.0 END AL 2 1.0 363.0 END H2O 3 DEN=1.1 0.0015 311 END D2O 3 DEN=1.1 0.9985 311 END AL 4 1.0 309 END H2O 5 DEN=1.1 0.00150 307 END D2O 5 DEN=1.1 0.9984 307 END b 5 DEN=1.1 0.0001 307 END end comp read celldata latticecell triangpitch pitch=1.133 3 fueld=0.5486 1 cladd=0.7101 2 end end celldata read depletion -1 end depletion read opus matl= 1 end units=grams new case units=watts new case typarams=gspectrum units=part new case typarams=nspectrum units=part end opus read burndata ' power history Power=4.844E+02 Burn=45 Down=0 nlib=2 end Power=5.667E+02 Burn=135 Down=0 nlib=2 end Power=2.783E+02 Burn=120 Down=1095 nlib=2 end end burndata read timetable density 5 1 5010 0.0 0.75 22.50 0.65 92.50 0.52 150.50 0.30 250.5 0.18 280.0 0.09 end end timetable read model NRU Core read parm prtflux=no drawit=yes collapse=yes xnlib=4 run=yes prtmxsec=no prtbroad=no prtmxtab=yes cmfd=no echo=yes end parm read materials 1 1 !fuel u-al! end 2 1 !fuel clad! end 3 2 !heavy water! end 4 1 !flow tube! end 5 2 !heavy water! end end materials

read geom ' Fuel Pin unit 1 cylinder 1 0.2745 cylinder 2 0.3761 media 1 1 1 media 2 1 2 -1 boundary 2 4 4 ' Global unit global unit 10 cylinder 10 2.4994 cylinder 20 2.6327 hexprism 50 9.85 hole 1 origin x=0.6502 hole 1 origin x=-0.3251 y=0.5631 hole 1 origin x=-0.3251 y=-0.5631 hole 1 origin x=1.6183 y=0.5890 hole 1 origin x=0.8611 y=1.4914 hole 1 origin x=-0.2990 y=1.6960 hole 1 origin x=-1.3192 y=1.1070 hole 1 origin x=-1.7221hole 1 origin x=-1.3192 y=-1.1070 hole 1 origin x=-0.2990 y=-1.6960 hole 1 origin x=0.8611 y=-1.4914 hole 1 origin x=1.6183 y=-0.5890 media 3 1 10 media 4 1 20 -10 media 5 1 50 -20 boundary 50 50 50 end geom read bounds all=white end bounds end model end

Figure 5.3.21-5 TRITON Input for NRU LEU Single Unit Cell (continued)

```
Figure 5.3.21-6 TRITON Input for NRX Single Unit Cell
```

=t-depl NRX CORE NEWT / CENTRM Depletion V7-238 read comp WTPTUAL 1 3.2088 3 13000 68.929 92235 28.275 92238 2.796 1.0 373.0 END AL 2 1.0 363.0 END H2O 3 DEN=1.1 0.0015 311 END D2O 3 DEN=1.1 0.9985 311 END AL 4 1.0 309 END H2O 5 DEN=1.1 0.00150 307 END D20 5 DEN=1.1 0.9984 307 END b 5 DEN=1.1 0.0001 307 END AL 6 1.0 307 END end comp read celldata latticecell triangpitch pitch=1.054 3 fueld=0.635 1 cladd=0.8181 2 end end celldata read depletion -1 end depletion read opus matl= 1 end units=grams new case units=watts new case typarams=gspectrum units=part new case typarams=nspectrum units=part end opus read burndata ' power history Power= 1.685E+03 Burn=365 Down=6570 nlib=10 end end burndata read timetable density 5 1 5010 0.0 1.22 22.50 1.06 92.50 0.93 150.50 0.82 250.5 0.55 280.0 0.42 320.0 0.32 365.0 0.15 end end timetable read model NRX Core read parm prtflux=no drawit=yes collapse=yes xnlib=4 run=yes prtmxsec=no prtbroad=no prtmxtab=yes cmfd=no echo=yes outers=500 end parm read materials 1 1 !fuel u-al! end 2 1 !fuel clad! end 3 2 !heavy water! end 4 1 !flow tube! end 5 2 !heavy water! end

6 1 !guide tube! end
end materials
read geom
' Fuel Pin
unit 1
cylinder 1 0.3175
cylinder 2 0.4090
media 1 1 1
media 2 1 2 -1
boundary 2 4 4
' Global unit
global unit 10
cylinder 10 1.5761
cylinder 20 1.7539
cylinder 30 2.8573
cylinder 40 3.0163
hexprism 50 8.6519
hole 1
hole 1 origin x=1.0541
hole 1 origin x=0.5271 y=0.913
hole 1 origin x=-0.5271 y=0.913
hole 1 origin x=-1.0541 y=0.000
hole 1 origin x=-0.5271 y=-0.913
hole 1 origin x=0.5271 y=-0.913
media 3 1 10
media 4 1 20 -10
media 5 1 30 -20
media 6 1 40 -30
media 5 1 50 -40
boundary 50 50 50
end geom
read bounds all=white end bounds
end model
end

Figure 5.3.21-6 TRITON Input for NRX Single Unit Cell (continued)

NAC International

Figure 5.3.21-7 VISED Sketch of LWT with NRU Fuel Radial Detail

August 2015

Figure 5.3.21-8 VISED Sketch of LWT with NRX Fuel Radial Detail

August 2015

Figure 5.3.21-10 VISED Comparison of Collapsed Fuel (Left) and Undamaged Fuel (Right)

August 2015

Figure 5.3.21-12 VISED Sketch of LWT Axial Detail

NAC International

Figure 5.3.21	-13 Sample MCNP	' Input for NRU	or NRX Fuel
NAC-IWE Coole - NOU - Normal E	rangement Conditions		

NAC	-LWT C	ask ·	- NRU	- Normal	Transport Conditions	
CF	adiai Nol Po	Blas:	ing - G	amma sou	rce	
1	uer Ro	a ce. 7000	115 _1 •	_2 .	-3 u-5 \$ Pottom Plug	
2	4 -2. 1 _3	2880	-1 +	3 15	u=5 \$ Eucl Meat	
2	4 -2	2000	-5 -	-6	u=5 \$ Top Plug	
4	4 -2.	7000	-11	+4 +2	+6 +9 -10 = 5 \$ Clad	
5	1 2.	,000	+7 -	9 <u>#</u> 1	-11 $u=5$ \$ Outside Lower Plug	
6	ñ		+10	-8 +6	-11 u=5 \$ Outside Top Plug	
7	0 0		+11	· -7 ·	+8 u=5 \$ Outside Fuel Rod	
C F	uel As	semb	lv Cell	• / •		
14	0	o ento.	-14	+15	u≓4 SAssembly Tube	
15	Õ		-16	fill=5	trcl = (0.6502, 0.000, 0.0000) u=4 \$ Fuel Rod - Inner	
16	like	15	but	trcl =	$(-0.3251 \ 0.5631 \ 0.0000)$ $u=4$ \$ Fuel Rod - Inner	
17	like	15	but	trcl =	(-0.3251 - 0.5631 0.0000) $u=4$ \$ Fuel Rod - Inner	
18	like	15	but	trcl =	(1.6183 0.5890 0.0000) u=4 \$ Fuel Rod - Outer	
19	like	15	but	trcl =	(0.8611 1.4914 0.0000) u=4 \$ Fuel Rod - Outer	
20	like	15	but	trcl =	(-0.2990 1.6960 0.0000) u=4 \$ Fuel Rod - Outer	
21	like	15	but	trcl =	(-1.3192 1.1070 0.0000) u=4 \$ Fuel Rod - Outer	
22	like	15	but	trcl =	(-1.7221 0.0000 0.0000) u=4 \$ Fuel Rod - Outer	
23	like	15	but	trcl =	(-1.3192 -1.1070 0.0000) u=4 \$ Fuel Rod - Outer	
24	like	15	but	trcl =	(-0.2990 -1.6960 0.0000) u=4 \$ Fuel Rod - Outer	
25	like	15	but	trcl =	(0.8611 -1.4914 0.0000) u=4 \$ Fuel Rod - Outer	
26	like	15	but	trcl =	(1.6183 -0.5890 0.0000) u=4 \$ Fuel Rod - Outer	
27	0 -1	5 #:	15 #16	#17 #18	#19 #20 #21 #22 #23 #24 #25 #26 u=4 \$ Inside Tube	
Ass	emblv					
28	0		+14		u=4 \$ Outside Tube Assembly	
СЕ	asket	Tube	Cells			
31	6 -7	.9400	0 -33	+32	u=3 \$ Basket Tube	
32	0		-31	fill=4	trcl = (0.0000 0.0000 16.5100) u=3 \$ Basket Tube Cavi	ty
33	0		-32	#32	u=3 \$ Inside Tube Cavity	-
34	0		+33		u=3 \$ Outside Basket Tube	
СЕ	asket	Asser	mbly Ce	lls		
41	0		-69	fill=3	trcl = (6.4262 0.0000 1.9050) u=2 \$ Assembly Inner Tu	ıbe
42	like	41	but	trcl =	(3.2131 5.5653 1.9050) u=2 \$ Assembly Inner Tube	
43	like	41	but	trcl =	(-3.2131 5.5653 1.9050) u=2 \$ Assembly Inner Tube	
44	like	41	but	trcl =	(-6.4262 0.0000 1.9050) u=2 \$ Assembly Inner Tube	
45	like	41	but	trcl =	(-3.2131 -5.5653 1.9050) u=2 \$ Assembly Inner Tube	
46	like	41	but	trcl =	(3.2131 -5.5653 1.9050) u=2 \$ Assembly Inner Tube	
47	like	41	but	trcl =	(11.9974 3.2147 1.9050) u=2 \$ Assembly Outer Tube	
48	like	41	but	trcl =	(8.7827 8.7827 1.9050) u=2 \$ Assembly Outer Tube	
49	like	41	but	trcl =	(3.2147 11.9974 1.9050) u=2 \$ Assembly Outer Tube	
50	like	41	but	trcl =	(-3.2147 11.9974 1.9050) u=2 \$ Assembly Outer Tube	
51	like	41	but	trcl =	(-8.7827 8.7827 1.9050) u=2 \$ Assembly Outer Tube	
52	like	41	but	trcl =	(-11.9974 3.2147 1.9050) u=2 \$ Assembly Outer Tube	
53	like	41	but	trcl =	(-11.9974 -3.2147 1.9050) u=2 \$ Assembly Outer Tube	
54	like	41	but	trcl =	(-8.7827 -8.7827 1.9050) u=2 \$ Assembly Outer Tube	
55	like	41	but	trcl =	(-3.2147 -11.9974 1.9050) u=2 \$ Assembly Outer Tube	
56	like	41	but	trcl =	(3.2147 -11.9974 1.9050) u=2 \$ Assembly Outer Tube	
57	like	41	but	trcl =	(8.7827 -8.7827 1.9050) u=2 \$ Assembly Outer Tube	
58	like	41	but	trcl =	(11.9974 -3.2147 1.9050) u=2 \$ Assembly Outer Tube	
59	0		-50	#41	u=2 \$ Assembly Inner Tube	
60	0		-51	#42	u=2 \$ Assembly Inner Tube	
61	0		-52	#43	u=2 \$ Assembly Inner Tube	
62	0		-53	#44	u=2 \$ Assembly Inner Tube	
63	0		-54	#45	u=2 \$ Assembly Inner Tube	
64	0		-55	#46	u=2 \$ Assembly Inner Tube	
65	0		-56	#47	u=2 \$ Assembly Outer Tube	
66	0		-57	#48	u=2 \$ Assembly Outer Tube	
67	0		-58	#49	u=2 \$ Assembly Outer Tube	
68	0		-59	#50	u=2 \$ Assembly Outer Tube	
69	0		-60	#51	u=2 \$ Assembly Outer Tube	
70	0		-61	#52	u=2 \$ Assembly Outer Tube	
71	0		-62	#53	u=2 \$ Assembly Outer Tube	
72	0		-63	#54	u=2 \$ Assembly Outer Tube	
73	0		-64	#55	u=2 \$ Assembly Outer Tube	
74	U		-65	#56	u=2 \$ Assembly Outer Tube	
75	U		-66	#5/ #50	u=2 \$ Assembly Outer Tube	
76	0		-67	#58	u=2 \$ Assembly Outer Tube	

\$ Bottom Disk 77 6 -7.9400 -41 u=2 78 6 -7.9400 -43 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +42 u=2 \$ Intermediate Disk 1 6 -7.9400 -44 +50 +51 +52 +53 +54 +55 79 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +42 u=2 \$ Intermediate Disk 2 6 -7.9400 -45 +50 +51 +52 +53 +54 +55 80 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +42 u=2 \$ Intermediate Disk 3 81 6 -7.9400 -46 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +42 u=2 \$ Intermediate Disk 4 6 -7.9400 -47 +50 +51 +52 +53 +54 +55 82 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +42 u=2 \$ 6 -7.9400 -49 +50 +51 +52 +53 +54 +55 \$ Intermediate Disk 5 83 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +48 u=2 \$ Top Disk -68 +50 +51 +52 +53 +54 +55 84 0 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 #77 #78 #79 #80 #81 #82 #83 #86 u=2 \$ Inside Basket +68 u=2 \$ Outside Basket 85 0 6 -7.9400 -70 u=2 \$ Basket Lid 86 C Cells - LWT Cask Normal Conditions u=1 \$ BotPb 91 5 -11.344 -94 -93 fill=2 (00133.35) 92 0 u=1 \$ Cavity -7.9400 -91 -92 +94 u=1 \$ Bottom 93 6 6 -7.9400 -91 +92 +96 +99 +93 6 -7.9400 -95 +98 +93 u=1 u=1 \$ OuterShell 94 u=1 \$ InnerShellTaper 95 6 -7.9400 -97 +93 u=1 \$ InnerShell 96 u=1 \$ Lead 97 5 -11.344 -98 +97 5 -11.344 -96 +95 +98 u=1 \$ LeadTaper 98 u=1 \$ LeadGap 99 0 -99 +98 100 3 -0.9669 -101 +91 u=1 \$ NeutronShield u=1 \$ NSShell u=1 \$ UpperLimiter 101 6 -7.9400 -100 +91 +101 102 7 -0.4997 -102 +91 103 7 -0.4997 -103 +91 u=1 \$ LowerLimiter -104 +91 +100 +102 +103 u=1 \$ Container 104 0 105 0 +104u=1 \$ Outside C Detector Cells - Radial Biasing 250 0 -250 fill=1 \$ Surface 275 0 -275 +250 \$ PbSlumpAzi 350 0 -350 +250 +275 \$ 1ft 450 0 -450 +250 +275 +350 \$ 1m 550 0 -550 +250 +275 +350 +450 \$ 2m 650 0 -650 +250 +275 +350 +450 +550 \$ 2m+Convey 750 0 +250 +275 +350 +450 +550 +650 \$ Exterior C Fuel Rod Surfaces \$ Bottom Plug - Lower Section 1 RCC 0.0 0.0 0.0000 0.0 0.0 1.1100 0.2350 0.0 0.0 1.1100 0.0 0.0 7.7800 0.2743 2 RCC \$ Bottom Plug - Mid Section 3 RCC 0.0 0.0 8.8900 0.0 0.0 0.9525 0.1905 \$ Bottom Plug - Tip RCC0.00.08.89000.00.0274.32000.2743RCC0.00.0283.21000.00.0-0.95250.1905 \$ Fuel Meat \$ Top Plug - Tip 4 5 6 RCC 0.0 0.0 283.2100 0.0 0.0 8.8900 0.2743 \$ Top Plug - Mid Section 7 PZ 0.0000 \$ Bottom of Pin 8 PZ 292.1000 \$ Top of Pin 9 PZ 2.3019 \$ Bottom of Clad 10 PZ 290.8300 \$ Top of Clad 11 CZ 0.3505 \$ Clad C Fuel Assembly Surfaces 14 RCC 0.0 0.0 0.0 0.0 0.0 292.1000 2.6264 \$ Assembly Tube OD 15 RCC 0.0 0.0 0.0 0.0 0.0 292.1000 2.4994 \$ Assembly ID 16 RCC 0.0 0.0 0.0000 0.0 0.0 292.1000 0.3510 \$ Rod Outline C Basket Tube Surfaces 31 RCC 0.0 0.0 0.0000 0.0 0.0 308.6100 3.0094 \$ Assembly Outline

NAC International

32	RCC	0.0 0.0 0.0000 0.0 0.0 308.6100 3.0099 \$ Tube Inner Diameter
33	RCC	0.0 0.0 -0.6350 0.0 0.0 309.2450 3.1750 \$ Tube Outer Diameter
CB	asket	Assembly Surfaces
41	RCC	0.0 0.0 0.000 0.0 0.0 1.2700 10.0529 \Rightarrow BOLCOM DISK 0.000 0
43	RCC	0.0 0.0 50.1650 0.0 0.0 -1.2700 16.8529 \$ Intermediate Disk 1
44	RCC	0.0 0.0 102.2350 0.0 0.0 -1.2700 16.8529 \$ Intermediate Disk 2
45	RCC	0.0 0.0 154.3050 0.0 0.0 -1.2700 16.8529 \$ Intermediate Disk 3
46	RCC	0.0 0.0 206.3750 0.0 0.0 -1.2700 16.8529 \$ Intermediate Disk 4
47	RCC	0.0 0.0 258.4450 0.0 0.0 -1.2700 16.8529 \$ Intermediate Disk 5
48	RCC	0.0 0.0 310.5150 0.0 0.0 -1.2700 13.0810 \$ Top Disk ID
49	RCC	0.0 0.0 310.5130 0.0 0.0 -1.2/00 16.8229 \$ TOD DISK OD
51	RCC	3.2131 5.5653 1.2700 0.0 0.0 309.2450 3.1760 \$ Assembly Inner Tube
52	RCC	-3.2131 5.5553 1.2700 0.0 0.0 309.2450 3.1760 \$ Assembly Inner Tube
53	RCC	-6.4262 0.0000 1.2700 0.0 0.0 309.2450 3.1760 \$ Assembly Inner Tube
54	RCC	-3.2131 -5.5653 1.2700 0.0 0.0 309.2450 3.1760 \$ Assembly Inner Tube
55	RCC	3.2131 -5.5653 1.2700 0.0 0.0 309.2450 3.1760 \$ Assembly Inner Tube
56	RCC	11.9974 3.2147 1.2700 0.0 0.0 309.2450 3.1760 \$ Assembly Outer Tube
57	RCC	8.7827 8.7827 1.2700 0.0 0.0 309.2450 3.1760 \$ Assembly Outer Tube
58	RCC	3.214/ 11.99/4 1.2/00 0.0 0.0 309.2450 3.1/60 \$ Assembly Outer Tube
59	RCC	-3.2147 11.3374 1.2700 0.0 0.0 309.2450 3.1760 \Rightarrow Assembly Outer Tube
61	RCC	-11 974 3,2147 1,2700 0.0 0.0 309,2450 3,1760 \$ Assembly Outer Tube
62	RCC	-11.9974 -3.2147 1.2700 0.0 0.0 309.2450 3.1760 \$ Assembly Outer Tube
63	RCC	-8.7827 -8.7827 1.2700 0.0 0.0 309.2450 3.1760 \$ Assembly Outer Tube
64	RCC	-3.2147 -11.9974 1.2700 0.0 0.0 309.2450 3.1760 \$ Assembly Outer Tube
65	RCC	3.2147 -11.9974 1.2700 0.0 0.0 309.2450 3.1760 \$ Assembly Outer Tube
66	RCC	8.7827 -8.7827 1.2700 0.0 0.0 309.2450 3.1760 \$ Assembly Outer Tube
67	RCC	11.9974 -3.2147 1.2700 0.0 0.0 309.2450 3.1760 \$ Assembly Outer Tube
68	RCC	0.0 0.0 0.0000 0.0 0.0 311.850 16.8534 \$ Basket Outline
70 70	RCC	0.0 0.0 -0.0530 0.0 0.0 509.2430 5.1735 \$ Tube Outline
C S	urface	Se - LWT Cask Normal Conditions
91	RCC	0.0000 0.0000 -26.6700 0.0000 0.0000 507.3650 36.5189 \$ Lwt
92	RCC	0.0000 0.0000 -26.6700 0.0000 0.0000 26.6700 36.5189 \$ Bottom
93	RCC	0.0000 0.0000 0.0000 0.0000 452.1200 16.9863 \$ Cavity
94	RCC	0.0000 0.0000 -17.7800 0.0000 0.0000 7.6200 26.3525 \$ Bottom gamma shield
95	RCC	0.0000 0.0000 0.0000 0.0000 444.5000 20.1740 \$ Lead id - taper
96	RCC	0.0000 0.0000 0.0000 0.0000 0.0000 444.5000 31.5976 \$ Lead od - taper
97	RCC	0.0000 0.0000 13.8176 0.0000 0.0000 416.8648 18.9103 \$ Lead 1d
90	RCC	0.0000 0.0000 13.5176 0.0000 0.0000 416.8648 33.4645 \$ Lead da
100	RCC	0.0000 0.0000 3.8100 0.0000 0.0000 419.1000 49.8183 \$ Neutron shield shell
101	RCC	0.0000 0.0000 5.0800 0.0000 0.0000 416.5600 49.2189 \$ Neutron shield
102	RCC	0.0000 0.0000 450.2150 0.0000 0.0000 70.5612 49.8183 \$ Upper limiter
103	RCC	0.0000 0.0000 -68.0212 0.0000 0.0000 71.8312 49.8183 \$ Lower limiter
104	RCC	0.0000 0.0000 -68.0212 0.0000 0.0000 588.7974 49.8183 \$ Container
CR	adial	Detector DRA (Surface)
250	RCC	0.0000 0.0000 -68.1212 0.0000 0.0000 588.9974 49.9184
251	PZ PZ	-9.2215
253	г 2 Р7.	20.2284
254	PZ	49.6783
255	ΡZ	79.1282
256	ΡZ	108.5780
257	ΡZ	138.0279
258	PZ	167.4778
259	PZ PZ	190.9270
260	г 2 Р7	255 8274
262	PZ	285.2772
263	PZ	314.7271
264	ΡZ	344.1770
265	D7	373.6269
266	ΕΔ	
200	PZ	403.0767
267	PZ PZ PZ	403.0767 432.5266 461.0765

269 PZ 491.4263 C Radial Detector DRAA (PbSlumpAzi) 275 RCC 0.0000 0.0000 275.4825 0.0000 0.0000 30.4800 49.9284 PX 0.0000 276 277 1 PX 0.0000 278 3 PX 0.0000 279 5 PX 0.0000 280 6 PX 0.0000 281 9 PX 0.0000 282 10 PX 0.0000 283 11 PX 0.0000 284 14 PX 0.0000 285 PY 0.0000 286 16 PX 0.0000 287 18 PX 0.0000 288 19 PX 0.0000 289 20 PX 0.0000 290 21 PX 0.0000 291 23 PX 0.0000 292 25 PX 0.0000 293 27 PX 0.0000 C Radial Detector DRB (1ft) 350 RCC 0.0000 0.0000 -98.6012 0.0000 0.0000 649.9574 80.2984 351 PZ -66.1033 352 PZ -33.6055 353 PZ -1.1076 354 PZ 31.3903 355 PZ 63.8882 356 PZ 96.3860 357 PZ 128.8839 358 PZ 161.3818 359 PZ 193.8796 360 PZ 226.3775 361 PZ 258.8754 362 PZ 291.3732 363 PZ 323.8711 364 PZ 356.3690 365 PZ 388.8669 366 PZ 421.3647 367 PZ 453.8626 368 PZ 486.3605 369 PZ 518.8583 C Radial Detector DRC (1m) 450 RCC 0.0000 0.0000 -168.1212 0.0000 0.0000 788.9974 149.8184 451 PZ -135.2463 452 PZ -102.3714 453 PZ -69.4965 454 PZ -36.6216 455 PZ ~3.7467 456 PZ 29.1282 457 PZ 62.0030 458 PZ 94.8779 459 PZ 127.7528 460 PZ 160.6277 461 PZ 193.5026 462 PZ 226.3775 463 PZ 259.2524 464 PZ 292.1273 465 PZ 325.0022 466 PZ 357.8771 467 390.7520 \mathbf{PZ} 468 PZ 423,6269 469 PZ 456.5017 470 PZ 489.3766 471 PZ 522.2515 472 ΡZ 555.1264 473 PZ 588.0013 C Radial Detector DRD (2m)

NAC International

550	RCC	0.0000 0.0000	-268.1212	0.0000	0.0000	988.9974	249.8184
551	\mathbf{PZ}	-226.9130					
552	\mathbf{PZ}	-185.7048					
553	 P7	-144 4965					
554	- <u>-</u>	-103 2993					
555	E 41	-62 0801					
555	F 4	-62.0801					
556	PZ	-20.8/19					
557	ΡZ	20.3364					
558	PZ	61.5446					
559	ΡŻ	102.7528					
560	\mathbf{PZ}	143.9611					
561	\mathbf{PZ}	185.1693					
562	PZ	226.3775					
563	P7	267.5857					
564	P7.	308 7940					
565	D7	350 0022					
505	E 21	301 0104					
500	PZ	391.2104					
567	PZ	432.4186					
568	PZ	473.6269					
569	\mathbf{PZ}	514.8351					
570	\mathbf{PZ}	556.0433					
571	\mathbf{PZ}	597.2515					
572	\mathbf{PZ}	638.4598					
573	P7.	679.6680					
C Ray	dial	Detector DBE (2m	+Convey)				
650	PCC		-269 1212	0 0000	0 0000	990 9971	321 9200
651	D7	-227 8296	203.1212	0.0000	0.0000	JJ0.JJ74	521.5200
001	24 52	-227.0296					
652	PZ	-186.5381					
653	PZ	-145.2465					
654	ΡZ	-103.9550					
655	PZ	-62.6634					
656	PZ	-21.3719					
657	PZ	19.9197					
658	PZ	61.2113					
659	PZ	102.5028					
660	P7.	143 7944					
661	27	185 0859					
662	12 D7	226 2775					
662	F Z	220.3773					
003	22	207.0091					
664	PZ	308.9606					
665	ΡZ	350.2522					
666	ΡZ	391.5437					
667	PZ	432.8353					
668	PZ	474.1269					
669	ΡZ	515.4184					
670	\mathbf{PZ}	556.7100					
671	PZ	598.0015					
672	 P7	639 2931					
672	107	690 5946					
075	ЕД	000.0040					
~							
C							
C Ma	teria	als List					
С							
C U-2	Al						
m1	92	2235 -2.0411E-01					
	92	2238 -2.0187E-02					
	13	3027 -7.7570E-01					
C Wat	ter						
m2	11	101 6 6667E-01	9016 3 333	38-01			
mt?	1-	atr 01		10 10			
mc2	\⊥ \\	WCL.UL					
u wa	uer/(PTACOT	0010 0		1 6000	0 00-00	0.1
m3	. 1(JUL -1.03651E-01	8010 -0.	/2019E-0	T 0000	-2.20730E	-01
CAL	uminu	um					
m4	13	3027 -1.0					
C Lea	ad						
m5	82	2000 -1.0					
C Sta	ainle	ess Steel 304					
mб	20	5000 - 0.695 240	00 -0.190	28000 -	-0.095		

Figure 5.3.21-13 Sample MCNP Input for NRU or NRX Fuel (continued)


```
25055 -0.020
C Aluminum Honeycomb Impact Limiter
       13027 -1.0
m7
С
C Cell Importances
imp:p 1 92r 0
С
C Source Definition - Gamma
С
sdef RAD=d1 EXT=d2 ERG=d3 cell=250:92:d4:32:d5:2
      POS= 0.0000 0.0000 0.0000
      AXS= 0.0000 0.0000 1.0000
si1 0 0.5486
sp1 0 1
si2 8.89 283.2100
sp2 0 1
si3 1.000E-02 4.500E-02 1.000E-01 2.000E-01 3.000E-01 4.000E-01
     6.000E-01 8.000E-01 1.000E+00 1.330E+00 1.660E+00 2.000E+00
     2.500E+00 3.000E+00 4.000E+00 5.000E+00 6.500E+00 8.000E+00
     1.000E+01
sp3 0.0000E+00 2.7550E+16 9.5130E+15 5.6100E+15 1.7620E+15 1.2380E+15
     1.0040E+15 4.0800E+16 3.5190E+14 3.3890E+14 3.3730E+13 3.1660E+12
1.6300E+11 4.1940E+08 6.5250E+06 1.4530E+05 5.7290E+04 1.1060E+04
     2.3940E+03
si4 1 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
sp4 11111111111111111111
si5 1 15 16 17 18 19 20 21 22 23 24 25 26
sp5 111111111111
mode p
nps 100000000
С
C ANSI/ANS-6.1.1-1977 - Gamma Flux-to-Dose Conversion Factors
C (mrem/hr)/(photons/cm2-sec)
de0 0.01 0.03 0.05 0.07 0.1 0.15 0.2
     0.25 0.3 0.35 0.4 0.45 0.5 0.55
     0.6 0.65 0.7 0.8 1 1.4 1.8

      2.2
      2.6
      2.8
      3.25
      3.75
      4.25
      4.75

      5
      5.25
      5.75
      6.25
      6.75
      7.5
      9

     11 13 15
df0 3.96E-03 5.82E-04 2.90E-04 2.58E-04 2.83E-04 3.79E-04 5.01E-04
6.31E-04 7.59E-04 8.78E-04 9.85E-04 1.08E-03 1.17E-03 1.27E-03
     1.36E-03 1.44E-03 1.52E-03 1.68E-03 1.98E-03 2.51E-03 2.99E-03
     3.42E-03 3.82E-03 4.01E-03 4.41E-03 4.83E-03 5.23E-03 5.60E-03
5.80E-03 6.01E-03 6.37E-03 6.74E-03 7.11E-03 7.66E-03 8.77E-03
     1.03E-02 1.18E-02 1.33E-02
C
C Weight Window Generation - Radial
wwg 20000
wwp:p 5 3 5 0 -1 0
mesh geom=cyl ref=0 14 292 origin=0.1 0.1 -668
       imesh 16.9 17.0 18.9 33.3 36.5 49.2 49.8 549.8
       iints 6 1 1 5 1 1 1 1
jmesh 600 641 650 658 668 799 1110 1120 1149 1189 1989
       jints 11111111111
       kmesh 1
      kints
              1
wwge:p 1e-3 1 20
fc2 Radial Surface Tally
f2:p +250.1
fm2 9.14508E+14
fs2 -251 -252 -253 -254 -255 -256
     -257 -258 -259 -260 -261 -262
     -263 -264 -265 -266 -267 -268
     -269
           т
tf2
fc12 Radial PbSlumpAzi Tally Q1 (+x+y)
f12:p +275.1
fm12 9.14508E+14
```

```
fs12 -276 -285
     -277 -278
                 -279 -280 -281 -282
     -283 -284
                 т
sd12 4.7809E+03 2.3905E+03 2.6561E+02 8r 9.5619E+03
tf12
fc22 Radial PbSlumpAzi Tally Q2 (-x+y)
f22:p +275.1
fm22 9.14508E+14
fs22 +276 -285
     +286 +287
                 +288 +289 +290 +291
     +292 +293 т
sd22 4.7809E+03 2.3905E+03 2.6561E+02 8r 9.5619E+03
tf22
fc32 Radial PbSlumpAzi Tally Q3 (-x-y)
f32:p +275.1
fm32 9.14508E+14
fs32 +276 +285
     +277 +278 +279 +280 +281 +282
     +283 +284 T
sd32 4.7809E+03 2.3905E+03 2.6561E+02 8r 9.5619E+03
tf32
fc42 Radial PbSlumpAzi Tally Q4 (+x-y)
f42:p +275.1
fm42 9.14508E+14
fs42 -276 +285
-286 -287
                 -288 -289 -290 -291
     -292 -293 т
sd42 4.7809E+03 2.3905E+03 2.6561E+02 8r 9.5619E+03
tf42
fc52 Radial 1ft Tally
f52:p +350.1
fm52 9.14508E+14
fs52 -351 -352 -353 -354 -355 -356
     -357 -358 -359 -360 -361 -362
-363 -364 -365 -366 -367 -368
     -369 т
tf52
fc62 Radial 1m Tally
f62:p +450.1
fm62 9.14508E+14
fs62 -451 -452 -453 -454 -455 -456
    -457 -458 -459 -460 -461 -462
-463 -464 -465 -466 -467 -468
     -469 -470 -471 -472 -473 T
tf62
fc72 Radial 2m Tally
f72:p +550.1
fm72 9.14508E+14
fs72 -551 -552 -553 -554 -555 -556
    -557 -558 -559 -560 -561 -562
-563 -564 -565 -566 -567 -568
     -569 -570 -571 -572 -573 т
tf72
fc82 Radial 2m+Convey Tally
f82:p +650.1
fm82 9.14508E+14
fs82 -651 -652 -653 -654 -655 -656
     -657 -658 -659 -660 -661 -662
     -663 -664 -665 -666 -667 -668
-669 -670 -671 -672 -673 T
tf82
Ċ
C Print Control
prdmp -30 -60 1 2
print
C Random Number Generator
rand gen=2 seed=33613157428409 stride=152917 hist=1
С
```

Figure 5.3.21-13	Sample MCNP In	put for NRU or	NRX Fuel ((continued)
------------------	----------------	----------------	------------	-------------

C Rotation Matrix C

-														
*TR1	0.0	0.0	0.0	10	100	90	- 8	30 1	.0	90	90	90	0	
*TR2	0.0	0.0	0.0	12	102	90		78 1	.2	90	90	90	0	
*TR3	0.0	0.0	0.0	20	110	90		70 2	20	90	90	90	0	
*TR4	0.0	0.0	0.0	24	114	90	- 6	66 2	24	90	90	90	0	
*TR5	0.0	0.0	0.0	30	120	90	- (60 3	30	90	90) 90	0	
*TR6	0.0	0.0	0.0	40	130	90	- 5	50 4	10	90	90	90	0	
*TR7	0.0	0.0	0.0	45	135	90		45 4	15	90	90	90	0	
*TR8	0.0	0.0	0.0	48	138	90	~ 4	42 4	18	90	90	90	0	
*TR9	0.0	0.0	0.0	50	140	90		40 5	50	90	90	90	0	
*TR10	0.0	0.0	0.0	60	150) 9	0 -	-30	60	9	0 9	90 9	0 0)
*TR11	0.0	0.0	0.0	70	160	9	0 -	-20	70	9	0 9	90 9	0 ()
*TR12	0.0	0.0	0.0	72	162	9	0 -	-18	72	9	0 9	90 9	0 ()
*TR13	0.0	0.0	0.0	78	168	9	0 -	-12	78	9	0 9	90 9	0 ()
*TR14	0.0	0.0	0.0	80	170	9	0 -	-10	80	9	0 9	90 9	0 0)
*TR15	0.0	0.0	0.0	96	186	5 9	0 (696	5 9	0	90	90	0	
*TR16	0.0	0.0	0.0	10	0 19	0	90	10	10	0	90	90	90	0
*TR17	0.0	0.0	0.0	10	2 19	2	90	12	10:	2	90	90	90	0
*TR18	0.0	0.0	0.0	11	0 20	00	90	20	11	0	90	90	90	0
*TR19	0.0	0.0	0.0	12	0 21	.0	90	30	12	0	90	90	90	0
*TR20	0.0	0.0	0.0	13	0 22	20	90	40	13	0	90	90	90	0
*TR21	0.0	0.0	0.0	14	0 23	30	90	50	14	0	90	90	90	0
*TR22	0.0	0.0	0.0	14	4 23	34	90	54	14	4	90	90	90	0
*TR23	0.0	0.0	0.0	15	0 24	0	90	60	15	0 :	90	90	90	0
*TR24	0.0	0.0	0.0	15	6 24	6	90	66	15	6	90	90	90	0
*TR25	0.0	0.0	0.0	16	0 25	6 0	90	70	16	0	90	90	90	0
*TR26	0.0	0.0	0.0	16	8 25	8	90	78	16	B :	90	90	90	0
*TR27	0.0	0.0	0.0	17	0 26	50	90	80	17	0 :	90	90	90	0
*TR28	0.0	0.0	0.0	19	2 28	12	90	102	2 1	92	90	90	90) 0
*TR29	0.0	0.0	0.0	21	6 30)6	90	126	5 2	16	90	90	90) 0
*TR30	0.0	0.0	0.0	24	0 33	30	90	150) 2	40	90) 90	90) 0
*TR31	0.0	0.0	0.0	26	4 35	54	90	174	1 2	64	90	90	90) 0
*TR32	0.0	0.0	0.0	28	8 37	8 8	90	198	3 2	88	90	90	9(0 נ
*TR33	0.0	0.0	0.0	31	2 40)2	90	222	2 3	12	9(90	9(0 נ
*TR34	0.0	0.0	0.0	33	0 42	20	90	240) 3	30	90	90	90) 0
*TR35	0.0	0.0	0.0	33	6 42	26	90	246	5 3	36	9(90	90) 0
*TR36	0.0	0.0	0.0	34	8 43	88	90	258	3 3	48	90	90	90) 0
*TR37	0.0	0.0	0.0	35	0 44	0	90	260	3:	50	90) 90	90) (

Figure 5.3.21-14 Maximum Radial Surface Dose Rate Profile for Normal Conditions – NRU LEU Fuel – Collapsed

ı.

Figure 5.3.21-16 Maximum Radial 1m Dose Rate Profile for Accident Conditions – NRU LEU Fuel – Collapsed

NAC International

Description	Value [in]	Value [cm]
Fuel Meat Length	108	274.32
Fuel Rod Diameter	0.216	0.5486
Clad Thickness	0.03	0.0762
Top End Plug Length	3.5	8.89
Bottom End Plug Length	3.5	8.89
Assembly Tube Wall Thickness	0.050	0.127
Assembly Tube ID	1.9680	4.9987

 Table 5.3.21-1
 NRU Fuel Assembly Dimensions

Table 5.3.21-2	NRX Fuel	Assembly	Dimensions
----------------	----------	----------	------------

Description	Value [in]	Value [cm]
Fuel Meat Length	108	274.32
Fuel Rod Diameter	0.25	0.6350
Clad Thickness	0.03	0.0762
Top End Plug Length	4.00	10.16
Bottom End Plug Length	4.00	10.16
Assembly Tube OD	1.3810	3.5077
Assembly Tube ID	1.2410	3.1521

 Table 5.3.21-3
 NRU and NRX Evaluated Fuel Material Properties

PARAMETER	NRU HEU	NRU LEU	NRX
Weight of ²³⁵ U (g per pin)	43.7	43.7	79.2
Weight of Total U (g per pin)	48.0	230	87.0
Enrichment (%)	91.0	19.0	91.0
Burnup (MWd)	364	363	375
²³⁵ U Depletion (%)	87.4	83.6	85.1
Minimum Cool Time (years)	19	3	18
Max Decay Heat (W/cask)	162	641	171

Table 5.3.21-4 \mathbf{F}	uel Material	Compositions
-----------------------------	--------------	--------------

Element	NRU HEU Wt %	NRU LEU Wt %	NRX Wt %
²³⁵ U	20.411	11.811	28.275
²³⁸ U	2.019	50.351	2.796
Al	77.570	37.838	68.929

NAC International
NAC-LWT Cask SAR Revision 44

. .

			-		•
	E Lower	E Upper	Single Cell Source	Supercell Source	Percent
Group	[MeV]	[MeV]	[n/sec-MTU]	[n/sec-MTU]	Difference
1	6.38E+00	2.00E+01	3.9105E+01	9.1798E+00	-76.5%
2	3.01E+00	6.38E+00	4.1109E+02	1.0543E+02	-74.4%
3	1.83E+00	3.01E+00	9.1987E+03	4.6275E+03	-49.7%
4	1.42E+00	1.83E+00	1.3219E+04	6.7836E+03	-48.7%
5	9.07E-01	1.42E+00	1.9198E+04	9.8613E+03	-48.6%
6	4.08E-01	9.07E-01	1.9509E+04	1.0014E+04	-48.7%
7	1.11E-01	4.08E-01	8.5190E+03	4.3704E+03	-48.7%
8	1.50E-02	1.11E-01	1.3876E+03	7.1183E+02	-48.7%
9	3.04E-03	1.50E-02	4.3073E+01	2.1978E+01	-49.0%
10	5.83E-04	3.04E-03	3.5136E+00	1.7896E+00	-49.1%
11	1.01E-04	5.83E-04	2.8702E-01	1.4610E-01	-49.1%
12	2.90E-05	1.01E-04	2.4486E-02	1.2558E-02	-48.7%
13	1.07E-05	2.90E-05	3.8771E-03	1.9841E-03	-48.8%
14	3.06E-06	1.07E-05	3.7135E-05	1.2127E-05	-67.3%
15	1.86E-06	3.06E-06	2.1928E-06	6.0681E-07	-72.3%
16	1.30E-06	1.86E-06	8.2886E-07	2.2720E-07	-72.6%
17	1.13E-06	1.30E-06	2.2810E-07	6.2452E-08	-72.6%
18	1.00E-06	1.13E-06	1.7407E-07	4.4165E-08	-74.6%
19	8.00E-07	1.00E-06	2.1421E-07	6.4780E-08	-69.8%
20	4.14E-07	8.00E-07	3.6300E-07	9.5193E-08	-73.8%
21	3.25E-07	4.14E-07	5.3205E-08	1.7026E-08	-68.0%
22	2.25E-07	3.25E-07	6.0826E-08	1.6177E-08	-73.4%
23	1.00E-07	2.25E-07	6.6240E-08	1.6427E-08	-75.2%
24	5.00E-08	1.00E-07	1.0858E-08	4.0357E-09	-62.8%
25	3.00E-08	5.00E-08	1.0944E-08	2.8958E-09	-73.5%
26	1.00E-08	3.00E-08	9.1411E-11	2.5999E-11	-71.6%
27	1.00E-11	1.00E-08	2.5569E-10	8.0739E-11	-68.4%
Total			7.1529E+04	3.6507E+04	-49.0%

 Table 5.3.21-5
 Neutron Source Term Comparison for NRU HEU Fuel Assembly

	E Lower	E Upper	Single Cell Source	Supercell Source	Percent
Group	[MeV]	[MeV]	[g/sec-MTU]	[g/sec-MTU]	Difference
1	8.00E+00	1.00E+01	2.3940E+03	7.0612E+02	-70.5%
2	6.50E+00	8.00E+00	1.1060E+04	3.2906E+03	-70.2%
3	5.00E+00	6.50E+00	5.7290E+04	1.7259E+04	-69.9%
4	4.00E+00	5.00E+00	1.4530E+05	4.4338E+04	-69.5%
5	3.00E+00	4.00E+00	6.5250E+06	6.1054E+06	-6.4%
6	2.50E+00	3.00E+00	4.1940E+08	2.9798E+08	-28.9%
7	2.00E+00	2.50E+00	1.6300E+11	1.6329E+11	0.2%
8	1.66E+00	2.00E+00	3.1660E+12	3.1706E+12	0.1%
9	1.33E+00	1.66E+00	3.3730E+13	3.1693E+13	-6.0%
10	1.00E+00	1.33E+00	3.3890E+14	3.1146E+14	-8.1%
11	8.00E-01	1.00E+00	3.5190E+14	3.2636E+14	-7.3%
12	6.00E-01	8.00E-01	4.0800E+16	4.0797E+16	0.0%
13	4.00E-01	6.00E-01	1.0040E+15	9.7981E+14	-2.4%
14	3.00E-01	4.00E-01	1.2380E+15	1.2400E+15	0.2%
15	2.00E-01	3.00E-01	1.7620E+15	1.7613E+15	0.0%
16	1.00E-01	2.00E-01	5.6100E+15	5.6001E+15	-0.2%
17	4.50E-02	1.00E-01	9.5130E+15	9.5202E+15	0.1%
18	1.00E-02	4.50E-02	2.7550E+16	2.7567E+16	0.1%
Total			8.8205E+16	8.8138E+16	-0.1%

Table 5.3.21-6 Gamma Source Term Comparison for NRU HEU Fuel Assembly

5.3.21-34

i.

	E Lower	E Upper	Source
Group	[MeV]	[MeV]	[neutrons/sec-MTU]
1	6.38E+00	2.00E+01	6.7890E+04
2	3.01E+00	6.38E+00	7.1370E+05
3	1.83E+00	3.01E+00	1.5970E+07
4	1.42E+00	1.83E+00	2.2950E+07
5	9.07E-01	1.42E+00	3.3330E+07
6	4.08E-01	9.07E-01	3.3870E+07
7	1.11E-01	4.08E-01	1.4790E+07
8	1.50E-02	1.11E-01	2.4090E+06
9	3.04E-03	1.50E-02	7.4780E+04
10	5.83E-04	3.04E-03	6.1000E+03
11	1.01E-04	5.83E-04	4.9830E+02
12	2.90E-05	1.01E-04	4.2510E+01
13	1.07E-05	2.90E-05	6.7310E+00
14	3.06E-06	1.07E-05	6.4470E-02
15	1.86E-06	3.06E-06	3.8070E-03
16	1.30E-06	1.86E-06	1.4390E-03
17	1.13E-06	1.30E-06	3.9600E-04
18	1.00E-06	1.13E-06	3.0220E-04
19	8.00E-07	1.00E-06	3.7190E-04
20	4.14E-07	8.00E-07	6.3020E-04
21	3.25E-07	4.14E-07	9.2370E-05
22	2.25E-07	3.25E-07	1.0560E-04
23	1.00E-07	2.25E-07	1.1500E-04
24	5.00E-08	1.00E-07	1.8850E-05
25	3.00E-08	5.00E-08	1.9000E-05
26	1.00E-08	3.00E-08	1.5870E-07
27	1.00E-11	1.00E-08	4.4390E-07
Total			1.2418E+08

Table 5.3.21-7Neutron Source Terms for NRU HEU Fuel Assembly

ł.

	E Lower	E Upper	Source
Group	[MeV]	[MeV]	[photons/sec-MTU]
1	8.00E+00	1.00E+01	2.3940E+03
2	6.50E+00	8.00E+00	1.1060E+04
3	5.00E+00	6.50E+00	5.7290E+04
4	4.00E+00	5.00E+00	1.4530E+05
5	3.00E+00	4.00E+00	6.5250E+06
6	2.50E+00	3.00E+00	4.1940E+08
7	2.00E+00	2.50E+00	1.6300E+11
8	1.66E+00	2.00E+00	3.1660E+12
9	1.33E+00	1.66E+00	3.3730E+13
10	1.00E+00	1.33E+00	3.3890E+14
11	8.00E-01	1.00E+00	3.5190E+14
12	6.00E-01	8.00E-01	4.0800E+16
13	4.00E-01	6.00E-01	1.0040E+15
14	3.00E-01	4.00E-01	1.2380E+15
15	2.00E-01	3.00E-01	1.7620E+15
16	1.00E-01	2.00E-01	5.6100E+15
17	4.50E-02	1.00E-01	9.5130E+15
18	1.00E-02	4.50E-02	2.7550E+16
Total			8.8205E+16

Table 5.3.21-8	Gamma Source Terms for NRU HEU Fuel Assembly
----------------	--

5.3.21-36

	E Lower	E Upper	Source
Group	[MeV]	[MeV]	[neutrons/sec-MTU]
1	6.38E+00	2.00E+01	9.4220E+04
2	3.01E+00	6.38E+00	1.0060E+06
3	1.83E+00	3.01E+00	3.6630E+06
4	1.42E+00	1.83E+00	4.3320E+06
5	9.07E-01	1.42E+00	6.5140E+06
6	4.08E-01	9.07E-01	6.4600E+06
7	1.11E-01	4.08E-01	2.9010E+06
8	1.50E-02	1.11E-01	4.3960E+05
9	3.04E-03	1.50E-02	1.4680E+04
10	5.83E-04	3.04E-03	1.2240E+03
11	1.01E-04	5.83E-04	1.0320E+02
12	2.90E-05	1.01E-04	7.1260E+00
13	1.07E-05	2.90E-05	1.1320E+00
14	3.06E-06	1.07E-05	8.9590E-02
15	1.86E-06	3.06E-06	8.8510E-03
16	1.30E-06	1.86E-06	3.3040E-03
17	1.13E-06	1.30E-06	5.6500E-04
18	1.00E-06	1.13E-06	4.3130E-04
19	8.00E-07	1.00E-06	5.2580E-04
20	4.14E-07	8.00E-07	9.0870E-04
21	3.25E-07	4.14E-07	1.1730E-04
22	2.25E-07	3.25E-07	1.6490E-04
23	1.00E-07	2.25E-07	1.5810E-04
24	5.00E-08	1.00E-07	2.7700E-05
25	3.00E-08	5.00E-08	2.6320E-05
26	1.00E-08	3.00E-08	2.3080E-07
27	1.00E-11	1.00E-08	7.2050E-07
Total			2.5426E+07

Table 5.3.21-9Neutron Source Terms for NRU LEU Fuel Assembly

	E Lower	E Upper	Source
Group	[MeV]	[MeV]	[photons/sec-MTU]
1	8.00E+00	1.00E+01	3.3110E+03
2	6.50E+00	8.00E+00	1.5150E+04
3	5.00E+00	6.50E+00	7.7470E+04
4	4.00E+00	5.00E+00	1.9370E+05
5	3.00E+00	4.00E+00	8.7460E+10
6	2.50E+00	3.00E+00	1.0900E+12
7	2.00E+00	2.50E+00	1.8520E+14
8	1.66E+00	2.00E+00	2.6290E+13
9	1.33E+00	1.66E+00	2.6780E+14
10	1.00E+00	1.33E+00	5.5510E+14
11	8.00E-01	1.00E+00	2.2570E+15
12	6.00E-01	8.00E-01	1.7910E+16
13	4.00E-01	6.00E-01	6.1870E+15
14	3.00E-01	4.00E-01	1.5540E+15
15	2.00E-01	3.00E-01	2.0350E+15
16	1.00E-01	2.00E-01	8.5930E+15
17	4.50E-02	1.00E-01	9.9880E+15
18	1.00E-02	4.50E-02	2.7200E+16
Total			7.6760E+16

|--|

	E Lower	E Upper	Source
Group	[MeV]	[MeV]	[neutrons/sec-MTU]
1	6.380E+00	2.000E+01	8.7730E+04
2	3.010E+00	6.380E+00	9.0610E+05
3	1.830E+00	3.010E+00	1.5140E+07
4	1.420E+00	1.830E+00	2.1460E+07
5	9.070E-01	1.420E+00	3.1170E+07
6	4.080E-01	9.070E-01	3.1670E+07
7	1.110E-01	4.080E-01	1.3840E+07
8	1.500E-02	1.110E-01	2.2530E+06
9	3.040E-03	1.500E-02	7.0200E+04
10	5.830E-04	3.040E-03	5.7350E+03
11	1.010E-04	5.830E-04	4.6860E+02
12	2.900E-05	1.010E-04	3.9750E+01
13	1.070E-05	2.900E-05	6.2990E+00
14	3.060E-06	1.070E-05	7.5330E-02
15	1.860E-06	3.060E-06	4.7510E-03
16	1.300E-06	1.860E-06	1.7990E-03
17	1.130E-06	1.300E-06	4.9550E-04
18	1.000E-06	1.130E-06	3.8450E-04
19	8.000E-07	1.000E-06	4.5430E-04
20	4.140E-07	8.000E-07	7.9620E-04
21	3.250E-07	4.140E-07	1.1080E-04
22	2.250E-07	3.250E-07	1.3320E-04
23	1.000E-07	2.250E-07	1.4690E-04
24	5.000E-08	1.000E-07	2.1630E-05
25	3.000E-08	5.000E-08	2.4010E-05
26	1.000E-08	3.000E-08	1.7980E-07
27	1.000E-11	1.000E-08	4.7410E-07
Total			1.1660E+08

 Table 5.3.21-11
 Neutron Source Terms for NRX Fuel Assembly

	E Lower	E Upper	Source
Group	[MeV]	[MeV]	[photons/sec-MTU]
1	8.00E+00	1.00E+01	2.9410E+03
2	6.50E+00	8.00E+00	1.3550E+04
3	5.00E+00	6.50E+00	7.0020E+04
4	4.00E+00	5.00E+00	1.7700E+05
5	3.00E+00	4.00E+00	1.2010E+07
6	2.50E+00	3.00E+00	6.6300E+08
7	2.00E+00	2.50E+00	1.6340E+11
8	1.66E+00	2.00E+00	3.1520E+12
9	1.33E+00	1.66E+00	3.5670E+13
10	1.00E+00	1.33E+00	3.5100E+14
11	8.00E-01	1.00E+00	3.7940E+14
12	6.00E-01	8.00E-01	4.0630E+16
13	4.00E-01	6.00E-01	1.0520E+15
14	3.00E-01	4.00E-01	1.2330E+15
15	2.00E-01	3.00E-01	1.7560E+15
16	1.00E-01	2.00E-01	5.5950E+15
17	4.50E-02	1.00E-01	9.4790E+15
18	1.00E-02	4.50E-02	2.7460E+16
Total			8.7974E+16

 Table 5.3.21-12
 Gamma Source Terms for NRX Fuel Assembly

 Table 5.3.21-13
 Cask/Basket Material Descriptions for NRU/NRX

Material	Element	Density [g/cm³]	Number Density [atom/b-cm]
Aluminum	Al	2.70	6.0265E-02
Stainless Steel 304	Fe	7.94	5.9505E-02
	Cr		1.7472E-02
	Ni		7.7392E-03
	Mn		1.7407E-03
Lead	Pb	11.34	3.2967E-02
Neutron Shield	H	0.97	5.9884E-02
	0		2.4595E-02
	С		1.0701E-02
Impact Limiter	Al	0.50	1.1153E-02

Description	Value [in]	Value [cm]
Bottom Spacer Length	51.75	131.445
Basket Length	122.25	310.515
Tube Wall Thickness	0.065	0.1651
Tube OD	2.50	6.35
Tube Length	121.50	308.61
Tube Inner PCD	5.06	12.8524
Tube Outer PCD	9.78	24.8412
Lid Collar Height	2.50	6.985
Lid Plate Thickness	0.50	1.27

Table 5.3.21-14 NRU/NRX Basket Dimensions

Table 5.3.21-15 ANSI/ANS 6.1.1-1977 Neutron Flux-to-Dose Conversion Factors

Energy	Response			
[MeV]	[(rem/hr)/(n/cm²/sec)]			
20.0	2.27E-04			
14.0	2.08E-04			
10.0	1.47E-04			
7.0	1.47E-04			
5.0	1.56E-04			
2.5	1.25E-04			
1.0	1.32E-04			
5.0E-01	9.26E-05			
1.0E-01	2.17E-05			
1.0E-02	3.56E-06			
1.0E-03	3.76E-06			
1.0E-04	4.18E-06			
1.0E-05	4.54E-06			
1.0E-06	4.46E-06			
1.0E-07	3.67E-06			
2.5E-08	3.67E-06			

Energy, E	Response	Energy, E	Response
[MeV]	$[(rem/hr)/(\gamma/cm^2/sec)]$	[MeV]	[(rem/hr)/(γ/cm ² /sec)]
15.0	1.33E-05	1.0	1.98E-06
13.0	1.18E-05	0.8	1.68E-06
11.0	1.03E-05	0.7	1.52E-06
9.0	8.77E-06	0.65	1.44E-06
7.5	7.66E-06	0.6	1.36E-06
6.75	7.11E-06	0.55	1.27E-06
6.25	6.74E-06	0.5	1.17E-06
5.75	6.37E-06	0.45	1.08E-06
5.25	6.01E-06	0.4	9.85E-07
5.0	5.80E-06	0.35	8.78E-07
4.75	5.60E-06	0.3	7.59E-07
4.25	5.23E-06	0.25	6.31E-07
3.75	4.83E-06	0.2	5.01E-07
3.25	4.41E-06	0.15	3.79E-07
2.8	4.01E-06	0.1	2.83E-07
2.6	3.82E-06	0.07	2.58E-07
2.2	3.42E-06	0.05	2.90E-07
1.8	2.99E-06	0.03	5.82E-07
1.4	2.51E-06	0.01	3.96E-06

 Table 5.3.21-16
 ANSI/ANS 6.1.1-1977
 Gamma Flux-to-Dose Conversion Factors

 Table 5.3.21-17
 Undamaged NRU HEU Fuel Dose Rate Summary

Transport	Dose Rate Location	Max	imum	Ave	rage
Condition		[mrem/hr]	FSD	[mrem/hr]	FSD
Normal	Side Surface of Cask	2.28	2.5%	0.444	3.9%
	Top Surface of Cask	0.191	17.0%	0.079	13.8%
	Bottom Surface of Cask	0.003	17.0%	0.001	15.7%
	Side 1m (Transport Index)	0.219	2.1%	0.089	2.5%
	2m from ISO - Radial	0.064	1.5%	0.030	2.1%
	Dose at Cab of Truck	0.001	26.4%	0.001	20.9%
Accident	Side Surface of Cask	4.52	3.0%	2.36	2.1%
	Top Surface of Cask	1.99	21.3%	0.530	22.0%
	Bottom Surface of Cask	0.036	25.2%	0.013	37.2%
	Side 1m	0.463	1.2%	0.236	1.9%
	Top 1m	0.095	11.1%	0.045	10.5%
	Bottom 1m	0.020	73.0%	0.006	103.5%

- -

Transport	Dose Rate Location	Maxi	mum	Ave	rage
Condition		[mrem/hr]	FSD	[mrem/hr]	FSD
Normal	Side Surface of Cask	30.3	0.4%	2.26	1.5%
	Top Surface of Cask	1.48	4.4%	0.710	4.0%
	Bottom Surface of Cask	< 0.001	27.7%	< 0.001	28.1%
	Side 1m (Transport Index)	2.23	0.5%	0.453	1.0%
	2m from ISO - Radial	0.450	0.6%	0.152	0.9%
	Dose at Cab of Truck	0.010	26.1%	0.007	11.3%
Accident	Side Surface of Cask	61.3	1.2%	5.25	5.8%
	Top Surface of Cask	13.7	5.5%	4.02	5.7%
	Bottom Surface of Cask	0.001	19.4%	0.001	23.9%
	Side 1m	3.75	2.4%	0.700	4.7%
	Top 1m	0.903	39.1%	0.478	22.2%
	Bottom 1m	0.002	2.8%	0.001	4.0%

Table 5.3.21-18	Collapsed NRU	HEU Fuel Dose	Rate Summary
-----------------	---------------	----------------------	---------------------

 Table 5.3.21-19
 Undamaged NRU LEU Fuel Dose Rate Summary

Transport	Dose Rate Location	Max	Maximum		rage
Condition		[mrem/hr]	FSD	[mrem/hr]	FSD
Normal	Side Surface of Cask	41.5	0.8%	21.5	1.3%
	Top Surface of Cask	4.65	8.4%	2.00	7.9%
	Bottom Surface of Cask	0.088	24.7%	0.036	30.6%
	Side 1m (Transport Index)	11.69	0.5%	4.81	0.8%
	2m from ISO - Radial	4.02	0.4%	1.72	0.7%
	Dose at Cab of Truck	0.057	64.4%	0.025	33.9%
Accident	Side Surface of Cask	113.4	1.2%	64.0	1.6%
	Top Surface of Cask	34.7	11.6%	10.6	13.3%
	Bottom Surface of Cask	0.594	28.7%	0.175	46.5%
	Side 1m	25.1	0.7%	10.7	1.1%
	Top 1m	2.48	7.4%	0.898	32.7%
	Bottom 1m	0.035	27.1%	0.013	33.3%

Transport	Dose Rate Location	Maxi	Maximum		rage
Condition		[mrem/hr]	FSD	[mrem/hr]	FSD
Normal	Side Surface of Cask	313.3	0.4%	26.7	1.1%
	Top Surface of Cask	24.2	2.8%	11.6	2.8%
	Bottom Surface of Cask	0.002	52.3%	0.001	66.7%
	Side 1m (Transport Index)	30.74	0.4%	5.99	0.8%
	2m from ISO - Radial	6.59	0.4%	2.10	0.7%
	Dose at Cab of Truck	0.153	3.9%	0.132	4.0%
Accident	Side Surface of Cask	626.5	0.7%	54.9	3.3%
	Top Surface of Cask	164.1	3.4%	56.4	4.8%
	Bottom Surface of Cask	0.027	74.2%	0.006	148.2%
	Side 1m	41.6	1.0%	8.90	2.7%
	Top 1m	11.8	2.4%	5.47	8.2%
	Bottom 1m	0.108	98.2%	0.023	210.2%

Table 5.3.21-20 Collapsed NRU LEU Fuel Dose Rate Su	bummarv
---	---------

 Table 5.3.21-21
 Undamaged NRX Fuel Dose Rate Summary

Transport	Dose Rate Location	Maxi	Maximum		aximum Average		rage
Condition		[mrem/hr]	FSD	[mrem/hr]	FSD		
Normal	Side Surface of Cask	1.98	2.5%	0.437	3.6%		
	Top Surface of Cask	0.148	11.1%	0.075	13.0%		
	Bottom Surface of Cask	0.002	3.5%	0.001	3.7%		
	Side 1m (Transport Index)	0.206	2.1%	0.087	2.3%		
	2m from ISO - Radial	0.065	1.3%	0.030	1.9%		
	Dose at Cab of Truck	0.001	37.7%	0.001	22.2%		
Accident	Side Surface of Cask	4.15	1.5%	2.38	2.1%		
	Top Surface of Cask	1.55	15.9%	0.439	21.1%		
	Bottom Surface of Cask	0.020	23.5%	0.008	27.8%		
	Side 1m	0.481	1.4%	0.240	1.9%		
	Top 1m	0.152	79.6%	0.045	48.7%		
	Bottom 1m	0.009	36.0%	0.004	35.8%		

Transport	Dose Rate Location	Maxi	Maximum		rage
Condition		[mrem/hr]	FSD	[mrem/hr]	FSD
Normal	Side Surface of Cask	39.9	0.4%	2.93	1.5%
	Top Surface of Cask	1.79	3.4%	0.901	3.6%
	Bottom Surface of Cask	< 0.001	7.4%	< 0.001	7.8%
	Side 1m (Transport Index)	2.98	0.5%	0.597	1.0%
	2m from ISO - Radial	0.595	0.6%	0.202	0.9%
	Dose at Cab of Truck	0.011	20.6%	0.009	11.5%
Accident	Side Surface of Cask	78.3	1.3%	6.43	6.1%
	Top Surface of Cask	17.2	5.1%	5.21	5.4%
	Bottom Surface of Cask	0.006	72.9%	0.002	117.0%
	Side 1m	4.68	2.4%	0.885	4.9%
	Top 1m	1.25	51.1%	0.608	25.4%
	Bottom 1m	0.077	97.3%	0.016	206.8%

 Table 5.3.21-22
 Collapsed NRX Fuel Dose Rate Summary

 Table 5.3.21-23
 Summarized Maximum Dose Rates for Undamaged Fuel

Transport	Dose Rate Location	NRU	NRU	NRX	Limit
Condition		HEU	LEU	HEU	[mrem/hr]
Normal	Side Surface of Cask	2.28	41.5	1.98	1000
	2m from Truck - Radial	0.064	4.02	0.065	10
	Dose at Cab of Truck	0.001	0.057	0.001	2
Accident	Side 1m	0.463	25.1	0.481	1000

 Table 5.3.21-24
 Summarized Maximum Dose Rates for Collapsed Fuel

Transport	Dose Rate Location	NRU	NRU	NRX	Limit
Condition		HEU	LEU	HEU	[mrem/hr]
Normal	Side Surface of Cask	30.3	313.3	39.9	1000
	2m from Truck - Radial	0.450	6.59	0.595	10
	Dose at Cab of Truck	0.010	0.153	0.011	2
Accident	Side 1m	3.75	41.6	4.68	1000

. .

5.3.22 <u>HEUNL</u>

Results of the shielding evaluation for four HEUNL containers in the LWT cask are presented in this section. An inventory of gamma-emitting radionuclides is used with the actinide and nitrate contents to calculate gamma and neutron source terms. HEUNL containers are analyzed under normal and accident operating conditions to demonstrate compliance with 10 CFR 71.47 and 10 CFR 71.51.

HEUNL Source Terms

HEUNL source terms are calculated using an inventory of gamma-emitting radionuclides, actinide contents, and nitrate contents. The ORIGEN-S control module in SCALE 6.1 is used to calculate neutron and gamma source spectra.

Analysis reference composition of the HEUNL material is provided in Table 5.3.22-1. Analysis reference actinide concentrations (2003) are provided in Table 5.3.22-2. The reference inventory of gamma-emitting radionuclides (2012) is provided in Table 5.3.22-3 and consists of all fission products. There have been no additions of radioactive liquid containing fission products or fissile material since 2003.

Data provided in Tables 5.3.22-1, Table 5.3.22-2, and Table 5.3.22-3 are representative values applied as a starting point for the analysis presented in this chapter. Variations in the listed values do not impact the conclusion drawn from this evaluation to any significant extent provided the maximum curie per liter gamma emitter content specified later in this section is maintained. Material composition not producing gamma sources (e.g., inorganic content breakdown specified in Table 4.3.22-1) has no impact on the analysis. As this type of solution has no significant neutron emitter content, the actinide content used as reference data has a negligible effect on the conclusions of the chapter.

Actinides listed in Table 5.3.22-2 are the only neutron source producers of the HEUNL material and minor gamma source contributors. The primary gamma source contributors are fission products listed in the gamma-emitting radionuclide inventory in Table 5.3.22-3. There is no significant light element gamma source in the material. Actinide source calculations require the inclusion of the light element materials to accurately calculate the (alpha, n) component of the neutron source. Therefore, two ORIGEN-S calculations are used for the source term calculation, one for fission products and another for actinides and light elements. All results are provided on a "per liter" basis.

The fission product inventory credits some short-lived or metastable radionuclides to their parent radionuclide. In order to calculate source spectra, all gamma-emitting radionuclides must be accounted for in ORIGEN-S. Using a decay period in ORIGEN-S to achieve equilibrium

NAC-LWT Cask SAR Revision 44

between parent and daughter radionuclide is not desirable as some short-lived gamma producers (e.g. ¹⁴⁰La) who lack their long-lived parent radionuclides will be non-conservatively removed. Therefore, all undefined radionuclides are identified using an ORIGEN-S test case and are evaluated at 100% of the parent radionuclide activity. Undefined radionuclides are identified using the nuclide gamma power in the output.

Defined and undefined fission product Curie contents are provided in Table 5.3.22-4 and Table 5.3.22-5, respectively. Conversion from Bq/g to Ci/L is performed using the HEUNL density of 1.30 g/cc. A 50% increase in Curie content is applied to the uncertainty adjusted reference values as additional conservatism for the source term calculation. The reference concentration and uncertainty input values listed in Table 5.3.22-4 and Table 5.3.22-5 have no significant safety importance provided the Ci/liter limit, based on the evaluated column in Table 5.3.22-4, is met. The Curie limit for the source term evaluation is 9.0 Ci/L and determined using the defined fission product evaluated activity. The ORIGEN-S input used for determining undefined gamma emitters is shown in Figure 5.3.22-1. The ORIGEN-S output gamma power by radionuclide used for determining undefined gamma emitters is shown in Figure 5.3.22-3.

Calculation of the (alpha, n) neutron source in ORIGEN-S requires the light element nuclide concentrations of the nitrate solutions and actinide concentrations. The shielding model HEUNL material content evaluated is shown in Table 5.3.22-6. The isotopic content of actinides and light elements for insertion into ORIGEN-S is provided in Table 5.3.22-7. Decay time has negligible effects for the actinide contributions. A decay time of one year is applied to the calculation to allow for minor actinides not defined to be accounted for in the ORIGEN-S gamma spectra. Actinide gamma source is negligible in the results. The ORIGEN-S input for actinides and light elements is shown in Figure 5.3.22-4.

The neutron and gamma source terms per liter of HEUNL material are provided in Table 5.3.22-8 and Table 5.3.22-9, respectively. Neutron source terms are minor and primarily from (alpha, n) contributions from the actinide alpha interaction with light elements in the material. Gamma source terms are primarily from fission products. The source is applied in the shielding model for a container volume of 64.3 L.

HEUNL Shielding Models

MCNP three dimensional shielding analysis allows detailed modeling of the HEUNL containers and cask. The containers and cask are modeled as described in the license drawings. Tube quick disconnect fittings, the bottom portion of the container outer shell that rests on the shoulder and axially overlaps the container and neck, and base plate are conservatively omitted from the shielding model. Containers are shifted towards the top of the cask cavity. The radial lead

NAC-LWT Cask SAR Revision 44

gamma shield extends from the bottom of the NAC-LWT cavity to approximately 3 inches (7.62 cm) below the top of the cavity. Positioning the HEUNL material closest to the point of minimum gamma shielding is conservative.

The geometric description of an MCNP model is based on the combinatorial geometry system embedded in the code. In this system, bodies such as cylinders and rectangular parallelepipeds and their logical intersections and unions are used to describe the extent of material zones. The shielding evaluation considers both normal and accident conditions. The accident conditions of transport include the loss of neutron shielding material and lead slump. The neutron shielding shell and the impact limiters are also removed while modeling accident conditions.

While normal conditions include a gap between the lead and outer shell, lead slump is not evaluated for accident conditions as NAC procedures dictate that the lead is allowed to cool from the lowest point with molten lead from the top filling gaps formed during solidification. Therefore, no gap is expected to occur and further accident analyses detailing potential shifting of the lead gap are not necessary.

Detailed model parameters used in creating the three-dimensional model are derived from the license drawings. Elevations associated with the three-dimensional features are established with respect to the center bottom of the NAC-LWT cask cavity for the MCNP combinatorial model.

Material representation of the HEUNL material is modeled using the material content listed in Table 5.3.22-6. The isotopic content of the HEUNL material used as input into MCNP is provided in Table 5.3.22-10. ²³⁷Np, ²³⁹Pu, and ²⁴⁰Pu are not included in the shielding model as they are minor constituents. Water content of the solution is calculated using the difference of the solution density and mass concentrations of all nitrates.

Material compositions for structural and shield materials are shown in Table 5.3.22-11. The three-dimensional NAC-LWT MCNP models are shown in Figure 5.3.22-5 through Figure 5.3.22-7, while sketches are shown in Figure 5.3.22-8 and Figure 5.3.22-9. Selected basket dimensions critical to model and dose results are listed in Table 5.3.22-12. A sample MCNP input file is provided in Figure 5.3.22-10.

HEUNL Shielding Evaluation

The shielding evaluation is performed using MCNP5 v1.60. The MCNP shielding model is utilized with the source terms to estimate the dose rate profiles at various distances from the side, top and bottom of the cask for both normal and accident conditions. The method of solution is

continuous energy Monte Carlo with a Monte Carlo based weight window generator to accelerate code convergence. Weight window and problem convergence is verified by the 10 statistical checks performed by MCNP. Radial or axial biasing is performed depending on the desired dose location.

The ANSI/ANS 6.1.1-1977 flux-to-dose rate conversion factors are employed in the MCNP analysis. The ANSI/ANS neutron and gamma dose conversion factors are shown in Table 5.3.22-13 and Table 5.3.22-14, respectively.

HEUNL Dose Rates

Dose rates were computed for the HEUNL containers for both normal and accident conditions. HEUNL dose rates (normal and accident) are summarized in Table 5.3.22-15. The Transportation Index (TI) for the package is 1.5.

Results are summarized and compared to dose rate limits in Table 5.3.22-16. Gamma dose primarily from fission product sources is the dominant contributor to dose rates. A payload of 4 HEUNL containers is found to be in compliance of 10 CFR 71.47 and 10 CFR 71.51. Dose rate profiles for the maximum dose rate cases are provided in Figure 5.3.22-11 through Figure 5.3.22-13.

Figure 5.3.22-1 ORIGEN-S Input for Determining Undefined Fission Products

```
=ORIGENS
' 71 is FT71 temporary files for storing concentration
0$$ A11 71 E T
DECAY CASE
' Item 1: 21 - Library Unit number
' Item 2: 1 - Not used
' Item 3: 1 - Binary library position - no multiple libraries
' Item 4: -82 - xn27g19v7 energy group structure
' Item 11: 0 - print suppressed for for nuclear data library calculation
' Item 16: 4 - material input in Curies
' Item 33: -82 - xn27g19v7 energy group structure
3$$ 21 1 1 -82 A11 0 A16 4 A33 -82 E T
' Block not used - left for backward compatibility
35$$ 0 T
' Item 8: 1 - specify cut as percent of total
' Item 11: 0 - problem dependent material for alpha, n (0 would be UO2, 2 for problem dependent)
54$$ A8 1 A11 2 E
' Item 2: 6 - number of time intervals
' Item 6: 1 - continuation problem control (block 5 used) - not applicable here
' Item 10: 0 - new concentration input
' Item 13: 14 - number of nuclides input into 73,74,75 arrays
' Item 14: 2 - decay time unit control (Min)
' Item 15: 3 - input cards both title and basis entered
56$$ A2 6 A6 1 A10 0 A13 14 A14 2 A15 3 E
' Item 1: 0 - Time subtracted from 60* Array values
 Item 2: 1.30 - Density of material - Should not be needed in this case
' Item 3: 1e-05 alpha-n control for cut-off for determining important nuclides
57** 0 1.3 1E-05 E T
HEUNL MATERIAL
Curies PER Liter
' Decay time
60** 0.5 15 60 1440 43200 525600
' Cut-off for output table significance (fill array)
61** F1E-08
' Print all available data gram-atoms, grams, curies, watts but no m3
' GRAM-ATOMS GRAMS CURIES
                                WATTS-ALL WATTS-GAMMA
65$$
15R1 6R0
15R1 6R0
15R1 6R0
' Item 1: 2 - Apply line energy yield from master photon library
' Item 2: 0 - No longer used
' Item 3: 26 - Master photon library (default value is 26)
' Item 4: 1 - library is in binary format (2 for ascii)
81$$ 2 0 26 1 E
' Gamma source print-out trigger - 2 for total source per second (4/LE, 5/ACT, 6/FP)
82$$ 2 2 2 2 2 2 2
' Nuclide ids for input concentration - FP
73$$ 410950 400950 441030 441060 531310 521320 551370 561400
571400 581410 581440 601470 631540 631550
' Material quantities of each nuclide - FP
74** 1.792E-01 6.851E-01 4.901E-01 1.476E-02 5.270E-01 2.793E-01
1.897E+00 1.581E+00 1.528E+00 1.159E+00 2.214E-01 4.269E-01
2.266E-03 5.270E-03' Determines library of each nuclide (1 for LE, 2 for Act, 3 for FP)
75$$ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 T
56$$ F0 T
END
```

Figure 5.3.22-2 ORIGEN-S Output Gamma Power for Determining Undefined Fission Products

F	IEUNL M	ATERIAL						
fissio	on prod	lucts	page 5	57				
0					nuclio	de gamma po	ower, watts	5
		basis =Curies PER Liter						
		initial	0 m	15 m	60 m	1440 m	43200 m	525600 m
2	zr 95	2.973E-03	2.973E-03	2.973E-03	2.972E-03	2.941E-03	2.149E-03	5.719E-05
r	nb 95	8.121E-04	8.121E-04	8.125E-04	8.139E-04	8.561E-04	1.615E-03	1.272E-04
r	nb 95m	0.000E+00	7.140E-10	2.140E-08	8.532E-08	1.861E-06	8.167E-06	2.183E-07
נ	cu103	1.441E-03	1.441E-03	1.441E-03	1.440E-03	1.416E-03	8.487E-04	2.291E-06
נ	ch103m	0.000E+00	7.028E-07	1.930E-05	5.973E-05	1.123E-04	6.728E-05	1.816E-07
נ	ch106	0.000E+00	9.057E-06	1.803E-05	1.803E-05	1.800E-05	1.705E-05	9.159E-06
	i131	1.195E-03	1.195E-03	1.194E-03	1.190E-03	1.096E-03	8.940E-05	2.388E-17
2	ke131m	0.000E+00	1.484E-11	4.450E-10	1.776E-09	3.976E-08	1.501E-07	8.046E-16
t	e132	3.863E-04	3.863E-04	3.854E-04	3.828E-04	3.111E-04	5.865E-07	0.000E+00
	i132	0.000E+00	9.415E-06	2.721E-04	9.718E-04	3.107E-03	5.862E-06	0.000E+00
c	cs137	1.849E-08	1.849E-08	1.849E-08	1.849E-08	1.849E-08	1.845E-08	1.807E-08
ł	5a137m	0.000E+00	8.069E-04	6.247E-03	6.355E-03	6.354E-03	6.343E-03	6.210E-03
ł	ba140	1.706E-03	1.706E-03	1.705E-03	1.703E-03	1.616E-03	3.341E-04	4.127E-12
נ	La140	2.091E-02	2.091E-02	2.091E-02	2.092E-02	2.094E-02	4.878E-03	6.025E-11
Ċ	ce141	5.252E-04	5.252E-04	5.251E-04	5.247E-04	5.141E-04	2.770E-04	2.189E-07
c	ce144	2.521E-05	2.521E-05	2.521E-05	2.521E-05	2.515E-05	2.344E-05	1.038E-05
F	pr144	0.000E+00	7.451E-07	1.704E-05	3.444E-05	3.778E-05	3.521E-05	1.559E-05
F	or144m	0.000E+00	3.504E-08	5.697E-07	7.433E-07	7.439E-07	6.932E-07	3.068E-07
r	nd147	3.532E-04	3.531E-04	3.529E-04	3.522E-04	3.315E-04	5.315E-05	3.475E-14
e	eu154	1.675E-05	1.675E-05	1.675E-05	1.675E-05	1.675E-05	1.664E-05	1.545E-05
e	eu155	1.902E-06	1.902E-06	1.902E-06	1.902E-06	1.901E-06	1.879E-06	1.644E-06
tot	al	3.034E-02	3.117E-02	3.692E-02	3.778E-02	3.970E-02	1.676E-02	6.450E-03

1

NAC-LWT Cask SAR Revision 44

```
Figure 5.3.22-3 ORIGEN-S Input for Fission Products
```

```
=ORIGENS
' 71 is FT71 temporary files for storing concentration
0$$ A11 71 E T
DECAY CASE
' Item 1: 21 - Library Unit number
' Item 2: 1 - Not used
' Item 3: 1 - Binary library postiion - no multiple libraries
' Item 4: -82 - xn27g19v7 energy group structure
' Item 11: 0 - print suppressed for for nuclear data library calcualtion
' Item 16: 4 - material input in Curies
' Item 33: -82 - xn27g19v7 energy group structure
3$$ 21 1 1 -82 A11 0 A16 4 A33 -82 E T
' Block not used - left for backward compatibility
35$$ 0 T
' Item 8: 1 - specify cut as percent of total
' Item 11: 0 - problem dependent material for alpha,n (0 would be UO2, 2 for problem dependent)
54$$ A8 1 A11 2 E
' Item 2: 6 - number of time intervals
' Item 6: 1 - continuation problem control (block 5 used) - not applicable here
' Item 10: 0 - new concentration input
' Item 13: 21 - number of nuclides input into 73,74,75 arrasy
' Item 14: 1 - decay time unit control (sec)
' Item 15: 3 - input cardsboth title and basis entered
56$$ A2 6 A6 1 A10 0 A13 21 A14 1 A15 3 E
' Item 1: 0 - Time subtracted from 60* Array values
' Item 2: 1.30 - Density of material - Should not be needed in this case
' Item 3: 1e-05 alpha-n control for cut-off for determining important nuclides
57** 0 1.3 1E-05 E T
HEUNL MATERIAL
Curies PER Liter
' Decay time
60** 0 1 60 1E3 1E4 1E5
' Cut-off for output table significance (fill array)
61** F1E-08
' Print all available data gram-atoms, grams, curies, watts but no m3
' GRAM-ATOMS
              GRAMS CURIES
                                   WATTS-ALL WATTS-GAMMA
65$$
15R1 6R0
 15R1 6R0
15R1 6R0
' Item 1: 2 - Apply line energy yield from master photon library
' Item 2: 0 - No longer used
' Item 3: 26 - Master photon library (default value is 26)
' Item 4: 1 - library is in binary format (2 for ascii)
81$$ 2 0 26 1 E
' Gamma source print-out trigger - 2 for total source per second (4/LE, 5/ACT, 6/FP)
82$$ 2 2 2 2 2 2 2
' Nuclide ids for input concentration - FP
73$$ 410950 410951 400950 441030 441060 451060 451031
531310 541311 521320 551370 561371 561400 571400 581410
581440 591440 591441 601470 631540 631550
' Material quanties of each nuclide - FP
74** 1.792E-01 6.851E-01 6.851E-01 4.901E-01 1.476E-02 1.476E-02 4.901E-01
5.270E-01 5.270E-01 2.793E-01 1.897E+00 1.897E+00 1.581E+00 1.528E+00
1.159E+00 2.214E-01 2.214E-01 2.214E-01 4.269E-01 2.266E-03 5.270E-03
' Determines library of each nuclide (1 for LE, 2 for Act, 3 for FP)
75$$ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3333333T
56$$ FO T
END
```

Figure 5.3.22-4 ORIGEN-S Model for Actinides and Light Elements

```
=ORTGENS
' 71 is FT71 temporary files for storing concentration
0$$ A11 71 E T
DECAY CASE
' Item 1: 21 - Library Unit number
' Item 2: 1 - Not used
' Item 3: 1 - Binary library postiion - no multiple libraries
' Item 4: -82 - xn27g19v7 energy group structure
' Item 11: 0 - print suppressed for for nuclear data library calcualtion
' Item 16: 2 - material input in Grams
' Item 33: -82 - xn27g19v7 energy group structure
3$$ 21 1 1 -82 A11 0 A16 2 A33 -82 E T
' Block not used - left for backward compatibility
35$$ 0 T
' Item 8: 1 - specify cut as percent of total
' Item 11: 0 - problem dependent material for alpha,n (0 would be UO2, 2 for problem dependent)
54$$ A8 1 A11 2 E
' Item 2: 4 - number of time intervals
' Item 6: 1 - continuation problem control (block 5 used)- not applicable here
' Item 10: 0 - new concentration input
' Item 13: 35 - number of nuclides input into 73,74,75 arrasy
' Item 14: 4 - decay time unit control (Days)
' Item 15: 3 - input cardsboth title and basis entered
56$$ A2 4 A6 1 A10 0 A13 35 A14 4 A15 3 E
' Item 1: 0 - Time subtracted from 60* Array values
' Item 2: 1.30 - Density of material - Should not be needed in this case
' Item 3: 1e-05 alpha-n control for cut-off for determining important nuclides
57** 0 1.3 1E-05 E T
HEUNL MATERIAL
MASS PER LR
' Decay time
60** 1 365 3288 3653
' Cut-off for output table significance (fill array)
61** F1E-08
' Print all available data gram-atoms, grams, curies, watts but no m3
' GRAM-ATOMS GRAMS CURIES WATTS-ALL WATTS-GAMMA
65$$
15R1 6R0
 15R1 6R0
15R1 6R0
' Item 1: 2 - Apply line energy yield from master photon library
' Item 2: 0 - No longer used
' Item 3: 26 - Master photon library (default value is 26)
' Item 4: 1 - library is in binary format (2 for ascii)
81$$ 2 0 26 1 E
 Gamma source print-out trigger - 2 for total source per second (4/LE, 5/ACT, 6/FP)
82$$ 2 2 2 2
' Nuclide ids for input concentration
73$$ 10010 10020 130270 801960 801980 801990 802000 802010
802020 802040 260540 260560 260570 260580 240500 240520
240530 240540 280580 280600 280610 280620 280640 70140
70150 80160 80170 80180 922340 922350 922360 922380
932370 942390 942400
' Material quanties of each nuclide - LE and Actinides
74** 9.675E-01 1.451E-04 4.047E+01 1.595E-02 1.060E+00
1.793E+00 2.456E+00 1.401E+00 3.174E+00 7.304E-01
 6.154E-02 9.732E-01 2.334E-02 2.971E-03 1.130E-02
2.178E-01 2.470E-02 6.149E-03 1.199E-01 4.617E-02
 2.007E-03 6.399E-03 1.631E-03 7.968E+01 2.927E-01
2.744E+02 1.073E-01 5.530E-01 1.230E-01 7.000E+00
1.530E-01 4.490E-01 1.720E-04 5.630E-04 1.070E-05
' Determines library of each nuclide (1 for LE, 2 for Act, 3 for FP)
2 2 2 2 2 2 2 T
56$$ F0 T
END
```

NAC-LWT Cask SAR Revision 44 August 2015

Figure 5.3.22-5 Axial VISED Slice of LWT with HEUNL Container Detail

NAC International

NAC-LWT Cask SAR Revision 44 August 2015

Figure 5.3.22-6 Axial VISED Slice of LWT with HEUNL Containers

NAC International

NAC-LWT Cask SAR Revision 44 August 2015

- ~~

		,

Figure 5.3.22-7 Radial VISED Slice of LWT with HEUNL Containers

NAC International

NAC-LWT Cask SAR Revision 44 August 2015

Figure 5.3.22-8 Axial Sketch of LWT with HEUNL Containers

NAC International

NAC-LWT Cask SAR Revision 44

August 2015

		·

Figure 5.3.22-9 Radial Sketch of LWT with HEUNL Containers

NAC International

NAC-LWT Cask SAR Revision 44 August 2015

NAC International

5.3.22-14

NAC-LWT Cask SAR Revision 44

---- ---

August 2015

NAC International

NAC-LWT Cask SAR Revision 44

August 2015

NAC International

NAC-LWT Cask SAR Revision 44 August 2015

NAC International

|

NAC-LWT Cask SAR Revision 44

August 2015

Figure 5.3.22-11 Radial Surface Dose Rate Profile for Normal Conditions – HEUNL

Figure 5.3.22-12 Radial 1 m Dose Rate Profile for Normal Conditions – HEUNL

Figure 5.3.22-13 Radial 1m Dose Rate Profile for Accident Conditions – HEUNL

NAC International

Table 5.3.22-1	
----------------	--

Composition of Solution Inorganic Chemicals

Chemical	Concentration	Concentration of	
Compound	(mol/L)	Metal Ion (g/L)	
HNO3	0.96	N/A	
AI(NO3)3	1.5	40.5	
Hg(NO ₃) ₂	0.053	10.6	
Fe(NO ₃)3	0.019	1.06	
Cr(NO3)3	0.005	0.26	
Ni(NO3)2	0.003	0.18	

Table 5.3.22-2

Actinide Concentrations in the Solution

	Initial Concentration		
Nuclide	Bq/mL	g/L	
234	2.84E+04	1.23E-01	
235	5.59E+02	7.00E+00	
236	3.66E+02	1.53E-01	
238	5.59E+00	4.49E-01	
²³⁷ Np	4.51E+00	1.72E-04	
²³⁹ Pu	1.30E+03	5.63E-04	
²⁴⁰ Pu	8.99E+01	1.07E-05	
Radionuclide	Conc. (Bq/g)	σ ¹ (Bq/g)	
-------------------	-----------------	--------------------------	
⁹⁵ Nb	3.2E+06	1.0E+05	
⁹⁵ Zr	1.1E+07	1.0E+06	
¹⁰³ Ru	8.7E+06	3.0E+05	
¹⁰⁶ Ru	1.8E+05	5.0E+04	
131]	9.2E+06	4.0E+05	
¹³² Te	4.3E+06	5.0E+05	
¹³⁷ Cs	3.4E+07	1.0E+06	
¹⁴⁰ Ba	2.8E+07	1.0E+06	
¹⁴⁰ La	2.7E+07	1.0E+06	
¹⁴¹ Ce	2.0E+07	1.0E+06	
¹⁴⁴ Ce	3.8E+06	2.0E+05	
¹⁴⁷ Nd	7.3E+06	4.0E+05	
¹⁵⁴ Eu	2.7E+04	8.0E+03	
¹⁵⁵ Eu	8.0E+04	1.0E+04	

Table 5.3.22-3

Inventory of Gamma-Emitting Radionuclides

¹Uncertainty of measured content

NAC International

		1 1001011	roduct content	Ior Denneu Rudio	in u chiuch
Isotope	Total	σ	Conc. + 2σ	Eval. Conc.	Eval. Conc.
	(Bq/g)	(Bq/g)	(Bq/g)	(Bq/g)	(Ci/L)
⁹⁵ Nb	3.2E+06	1.0E+05	3.4E+06	5.1E+06	1.792E-01
⁹⁵ Zr	1.1E+07	1.0E+06	1.3E+07	2.0E+07	6.851E-01
¹⁰³ Ru	8.7E+06	3.0E+05	9.3E+06	1.4E+07	4.901E-01
¹⁰⁶ Ru	1.8E+05	5.0E+04	2.8E+05	4.2E+05	1.476E-02
131	9.2E+06	4.0E+05	1.0E+07	1.5E+07	5.270E-01
¹³² Te	4.3E+06	5.0E+05	5.3E+06	8.0E+06	2.793E-01
¹³⁷ Cs	3.4E+07	1.0E+06	3.6E+07	5.4E+07	1.897E+00
¹⁴⁰ Ba	2.8E+07	1.0E+06	3.0E+07	4.5E+07	1.581E+00
¹⁴⁰ La	2.7E+07	1.0E+06	2.9E+07	4.4E+07	1.528E+00
¹⁴¹ Ce	2.0E+07	1.0E+06	2.2E+07	3.3E+07	1.159E+00
¹⁴⁴ Ce	3.8E+06	2.0E+05	4.2E+06	6.3E+06	2.214E-01
¹⁴⁷ Nd .	7.3E+06	4.0E+05	8.1E+06	1.2E+07	4.269E-01
¹⁵⁴ Eu	2.7E+04	8.0E+03	4.3E+04	6.5E+04	2.266E-03
¹⁵⁵ Eu	8.0E+04	1.0E+04	1.0E+05	1.5E+05	5.270E-03
Total	1.6E+08		1.7E+08	2.6E+08	8.998E+00

 Table 5.3.22-4
 Fission Product Content for Defined Radionuclides

Table 5.3.22-5

Fission Product Content for Undefined Radionuclides

Isotope	Parent	Total	σ (Pa/a)	Conc. + 2σ	Eval. Conc.	Eval. Conc.
	isotope	<u>(</u> ¤q/y)	(Pq/g)	(Þq/y)	(Þq/y)	
^{95m} Nb	⁹⁵ Zr	1.1E+07	1.0E+06	1.3E+07	2.0E+07	6.851E-01
¹⁰⁶ Rh	¹⁰⁶ Ru	1.8E+05	5.0E+04	2.8E+05	4.2E+05	1.476E-02
^{103m} Rh	¹⁰³ Ru	8.7E+06	3.0E+05	9.3E+06	1.4E+07	4.901E-01
^{131m} Xe	131	9.2E+06	4.0E+05	1.0E+07	1.5E+07	5.270E-01
^{137m} Ba	¹³⁷ Cs	3.4E+07	1.0E+06	3.6E+07	5.4E+07	1.897E+00
¹⁴⁴ Pr	¹⁴⁴ Ce	3.8E+06	2.0E+05	4.2E+06	6.3E+06	2.214E-01
^{144m} Pr	¹⁴⁴ Ce	3.8E+06	2.0E+05	4.2E+06	6.3E+06	2.214E-01
Total		7.1E+07		7.7E+07	1.2E+08	4.057E+00

			_	Concentration (g/L)			
Solution	Metal Ion	mol/L	A _r (metal)	lon	N	0	Total
HNO ₃	Н	0.96	1.00794	0.97	13.45	46.08	60.49
AI(NO3)3	AI	1.5	26.982	40.5	63.03	215.99	319.50
Hg(NO ₃) ₂	Hg	0.053	200.59	10.6	1.48	5.09	17.20
Fe(NO3)3	Fe	0.019	55.845	1.06	0.80	2.74	4.60
Cr(NO ₃) ₃	Cr	0.005	51.9961	0.26	0.21	0.72	1.19
Ni(NO3)2	Ni	0.003	58.6934	0.18	0.08	0.29	0.55
UO2(NO3)2	U	0.0328	235.1783	7.73	0.92	4.20	12.85
				Total:	79.97	275.11	416.37

Table 5.3.22-6

Modeled HEUNL Nitrate Contents

Isotopic Contents of Actinides and Light Elements for ORIGEN-S Source Term Calculation

Element	lsotope	NA (%)	Conc. (g/L)
Н	1	99.985	9.675E-01
	2	0.015	1.451E-04
Al	27	100	4.047E+01
Hg	196	0.15	1.595E-02
	198	9.97	1.060E+00
	199	16.87	1.793E+00
	200	23.1	2.456E+00
	201	13.18	1.401E+00
	202	29.86	3.174E+00
	204	6.87	7.304E-01
Fe	54	5.8	6.154E-02
	56	91.72	9.732E-01
	57	2.2	2.334E-02
	58	0.28	2.971E-03
Cr	50	4.345	1.130E-02
	52	83.789	2.178E-01
	53	9.501	2.470E-02
	54	2.365	6.149E-03
Ni	58	68.077	1.199E-01
	60	26.223	4.617E-02
	61	1.14	2.007E-03
	62	3.634	6.399E-03
	64	0.926	1.631E-03
N	14	99.634	7.968E+01
	15	0.366	2.927E-01
0	16	99.76	2.744E+02
	17	0.039	1.073E-01
	18	0.201	5.530E-01
U	234		1.230E-01
	235		7.000E+00
	236		1.530E-01
	238		4.490E-01
Np	237		1.720E-04
Pu	239		5.630E-04
	240		1.070E-05

NAC International

			*
	E Lower	E Upper	Source
Group	[MeV]	[MeV]	[neutrons/sec/L]
1	6.380E+00	2.000E+01	1.9390E-04
2	3.010E+00	6.380E+00	1.0150E-01
3	1.830E+00	3.010E+00	5.0590E-01
4	1.420E+00	1.830E+00	1.6400E-01
5	9.070E-01	1.420E+00	2.3570E-01
6	4.080E-01	9.070E-01	1.9990E-01
7	1.110E-01	4.080E-01	6.2580E-02
8	1.500E-02	1.110E-01	1.0690E-02
9	3.040E-03	1.500E-02	6.0760E-04
10	5.830E-04	3.040E-03	5.1430E-05
11	1.010E-04	5.830E-04	4.2930E-06
12	2.900E-05	1.010E-04	3.2370E-07
13	1.070E-05	2.900E-05	1.0470E-08
14	3.060E-06	1.070E-05	2.5070E-09
15	1.860E-06	3.060E-06	3.7860E-10
16	1.300E-06	1.860E-06	1.7290E-10
17	1.130E-06	1.300E-06	5.4000E-11
18	1.000E-06	1.130E-06	3.8430E-11
19	8.000E-07	1.000E-06	6.1730E-11
20	4.140E-07	8.000E-07	1.1760E-10
21	3.250E-07	4.140E-07	2.6730E-11
22	2.250E-07	3.250E-07	3.0320E-11
23	1.000E-07	2.250E-07	3.1420E-11
24	5.000E-08	1.000E-07	9.3470E-12
25	3.000E-08	5.000E-08	3.7480E-12
26	1.000E-08	3.000E-08	2.8070E-12
27	1.000E-11	1.000E-08	6.3210E-16
Total			1.2811E+00

Table 5.3.22-8

Neutron Source Terms per Liter

August 2015

			*
	E Lower	E Upper	Source
Group	[MeV]	[MeV]	[photons/sec/L]
1	1.00E+01	2.00E+01	3.5920E-07
2	8.00E+00	1.00E+01	2.2040E-05
3	6.50E+00	8.00E+00	1.1990E-04
4	5.00E+00	6.50E+00	7.5230E-04
5	4.00E+00	5.00E+00	2.2670E-03
6	3.00E+00	4.00E+00	1.4540E+07
7	2.50E+00	3.00E+00	1.8860E+09
8	2.00E+00	2.50E+00	5.7190E+08
9	1.66E+00	2.00E+00	3.8810E+07
10	1.33E+00	1.66E+00	5.7640E+10
11	1.00E+00	1.33E+00	1.5950E+08
12	8.00E-01	1.00E+00	2.0900E+10
13	6.00E-01	8.00E-01	9.9190E+10
14	4.00E-01	6.00E-01	6.4380E+10
15	3.00E-01	4.00E-01	3.1060E+10
16	2.00E-01	3.00E-01	1.8480E+10
17	1.00E-01	2.00E-01	3.2181E+10
18	4.50E-02	1.00E-01	1.9170E+10
19	1.00E-02	4.50E-02	1.1040E+11
Total	· _ · · · · · · · · · · · · · · · · · ·		4.5607E+11

Table 5.3.22-9Gamma Source Terms per Liter

____ __

	·	r	·····	
Element	Ζ	A	Conc. (g/L)	wt.%
Н	1	1	9.676E-01	0.074%
AI	13	27	4.047E+01	3.113%
Hg	80	NA ¹	1.063E+01	0.818%
Fe	26	NA	1.061E+00	0.082%
Cr	24	NA	2.600E-01	0.020%
Ni	28	NA	1.761E-01	0.014%
Ν	7	14	7.997E+01	6.152%
0	8	16	2.751E+02	21.162%
U	92	234	1.230E-01	0.009%
	92	235	7.000E+00	0.538%
	92	236	1.530E-01	0.012%
	92	238	4.490E-01	0.035%
Np	93	237	1.720E-04	0.000%
Pu	94	239	5.630E-04	0.000%
	94	240	1.070E-05	0.000%
Total - Nitrates			4.164E+02	32.029%
Water Content				
Н	1	1	9.818E+01	7.552%
0	8	16	7.854E+02	60.419%
Total - Water			8.836E+02	67.971%
Total - HEUNL			1.300E+03	

Table 5.3.22-10Isotopic Contents of HEUNL Materials for MCNP Shielding
Evaluation

¹ Natural abundance

Table 5.3.22-11	Cask/Container Material Descriptions for HEUNL
-----------------	--

Material	Element	Density [g/cm³]	Number Density [atom/b-cm]
Aluminum	Al	2.70	6.0265E-02
Stainless Steel 304	Fe	7.94	5.9505E-02
	Cr		1.7472E-02
	Ni		7.7392E-03
	Mn		1.7407E-03
Lead	Pb	11.34	3.2967E-02
Neutron Shield	Н	0.97	5.9884E-02
	0		2.4595E-02
	С		1.0701E-02
Impact Limiter	Al	0.50	1.1153E-02

"NAC PROPRIETARY INFORMATION REMOVED"

_ _ _

NAC-LWT Cask SAR Revision 44

August 2015

 Table 5.3.22-12	HEUNL Container Dimensions	

NAC International

August 2015

Table 5.3.22-13 ANSI/ANS 6.1.1-1977 Neutron Flux-to-Dose Conversion Factors

Energy	Response
[MeV]	[(rem/hr)/(n/cm²/sec)]
20.0	2.27E-04
14.0	2.08E-04
10.0	1.47E-04
7.0	1.47E-04
5.0	1.56E-04
2.5	1.25E-04
1.0	1.32E-04
5.0E-01	9.26E-05
1.0E-01	2.17E-05
1.0E-02	3.56E-06
1.0E-03	3.76E-06
1.0E-04	4.18E-06
1.0E-05	4.54E-06
1.0E-06	4.46E-06
1.0E-07	3.67E-06
2.5E-08	3.67E-06

Energy, E [MeV]	Response [(rem/hr)/(γ/cm²/sec)]	Energy, E [MeV]	Response _[(rem/hr)/(γ/cm²/sec)]
15.0	1.33E-05	1.0	1.98E-06
13.0	1.18E-05	0.8	1.68E-06
11.0	1.03E-05	0.7	1.52E-06
9.0	8.77E-06	0.65	1.44E-06
7.5	7.66E-06	0.6	1.36E-06
6.75	7.11E-06	0.55	1.27E-06
6.25	6.74E-06	0.5	1.17E-06
5.75	6.37E-06	0.45	1.08E-06
5.25	6.01E-06	0.4	9.85E-07
5.0	5.80E-06	0.35	8.78E-07
4.75	5.60E-06	0.3	7.59E-07
4.25	5.23E-06	0.25	6.31E-07
3.75	4.83E-06	0.2	5.01E-07
3.25	4.41E-06	0.15	3.79E-07
2.8	4.01E-06	0.1	2.83E-07
2,6	3.82E-06	0.07	2.58E-07
2.2	3.42E-06	0.05	2.90E-07
1.8	2.99E-06	0.03	5.82E-07
1.4	2.51E-06	0.01	3.96E-06

 Table 5.3.22-14
 ANSI/ANS 6.1.1-1977 Gamma Flux-to-Dose Conversion Factors

ľ

. . .

August 2015

Transport	Dose Rate Location	Maximum		Average	
Condition		[mrem/hr]	FSD	[mrem/hr]	FSD
Normal	Side Surface of Cask	6.05E+00	0.2%	3.99E+00	0.2%
	Top Surface of Cask	5.37E-02	2.8%	3.25E-02	3.3%
	Bottom Surface of Cask	3.66E-01	1.9%	2.05E-01	2.1%
	Side 1m (Transport Index)	1.43E+00	0.1%	8.90E-01	0.2%
Accident	Side Surface of Cask	1.59E+01	0.2%	1.20E+01	0.2%
	Top Surface of Cask	4.08E-01	5.2%	1.30E-01	5.2%
	Bottom Surface of Cask	2.54E+00	2.2%	1.01E+00	3.0%
	Side 1m	3.13E+00	0.1%	2.03E+00	0.2%

Table 5.3.22-15 H

HEUNL Dose Rate Summary

Table 5.3.22-16 Summarized Maximum Dose Rates for HEUNL Transport

Transport Condition	Dose Rate Location	Maximum [mrem/hr]	Limit [mrem/hr]
Normal	Surface of Cask	6.05	200
	1m (Transport Index)	1.5	10
Accident	1m	3.13	1000

5.3.23 SLOWPOKE Core Configuration

Results of a shielding analysis for one SLOWPOKE core (up to 298 fuel rods and 930 g U) in the LWT cask are presented in this section. Maximum dose rates are calculated to demonstrate that dose rate limits of 10 CFR 71.47 and 10 CFR 71.51 are not exceeded.

Dose rates are calculated using the MCNP (MCNP5, Version 1.60) three-dimensional transport code. Source terms are calculated using the TRITON module of the SCALE package (SCALE 6.1).

5.3.23.1 SLOWPOKE Core Source Term

Source terms are calculated to bound the irradiation history of the SLOWPOKE core. A sketch of the fuel rod is shown in Figure 5.3.23-1. Reference fuel design characteristics, i.e., those documented in available references, are summarized in Table 5.3.23-1. Depletion and shielding evaluation code input characteristics, i.e., input data applied in TRITON depletion/irradiation and MCNP shielding model parameters, are given in Table 5.3.23-2. Key parameters differing between the reference information code and input are reduced enrichment, increased fuel mass, and increased irradiation time. All parameters are revised to produce bounding source terms. Each of the modified parameters is described below as to its effect on source:

- Increased fuel mass at a fixed depletion value (% ²³⁵U depletion) increases source as the total amount of ²³⁵U depleted increases, thereby increasing fission product sources.
- Reduced enrichment has opposing effects on source due to its relative effects on fission
 product versus higher actinide sources. For a fixed depletion percentage, a reduction in ²³⁵U
 percentage will reduce the amount of material depleted, thereby reducing fission product
 sources, but increasing source as higher actinides are formed by parasitic absorption at a
 higher rate, increasing both neutron and gamma sources. Overall, the source effect from
 enrichment variations is minor, as the enrichment is decreased by only 3% for a high >90%
 enriched fuel source. This effect is significantly more pronounced for low enrichment fuels.
- Increased irradiation time, in conjunction with a continuous burn at full core power, increases source as it raises the depletion percentage with corresponding increases in both fission products and higher actinides generated.

As the exact configuration of the rods in the core is unknown, two configurations were evaluated; a reference core and a compact core. The configuration shown in Figure 5.3.23-2 is referred to as the reference configuration in which the rods are symmetrically distributed through the core. Figure 5.3.23-3 displays the compact core in which the rods are all shifted towards the center of the core. As the reference core configuration produces maximum gamma source spectra, it is used for the dose rate evaluation.

The SLOWPOKE core is designed to be critical, using fixed beryllium reflectors surrounding the radial extent of the core and the core bottom. The beryllium reflector top, also referred to as beryllium shim, is adjusted to maintain a critical configuration. Top and bottom reflectors are not included within the scope of the 2-D TRITON evaluation.

As a full core was modeled, fuel source was extracted at each ring of the core to determine which location produces maximum source spectra. The maximum gamma source (controlling for shielding) was obtained from the inner ring location (ring 1). This source was then applied to all fuel rods for the dose rate analysis. Gamma source from ring 1 (adjust on a per rod basis) is 24 percent higher for the reference core than the compact core model. The ring 1 per rod source of the reference model is 44 percent higher than the core average per rod source of the reference model.

No axial burnup profile for the SLOWPOKE core is available in open literature. Burnup profile impacts gamma and neutron source shape. The primary impact of a burnup profile is neutron source shape because burnup impacts fuel neutron source significantly faster than gamma source. SLOWPOKE HEU cores do not produce a significant neutron source. SLOWPOKE cores apply beryllium reflectors which will reduce axial shape effects. Radial core burnup studies demonstrate a slightly higher power in the periphery rather than a typical drop off. This type of effect from the axial reflectors would produce a slight flattening of the axial dose profile. Furthermore, as the core is ~22 cm in diameter versus a ~100 cm diameter, cask surface geometry effects/dispersion will assure that any minor axial profile on the core will not result in any significant cask surface dose changes.

TRITON input is shown in Figure 5.3.23-4, with the resulting TRITON material model shown in Figure 5.3.23-2. Neutron and gamma source terms for a cool time of 14 days from discharge are presented in Table 5.3.23-3 and Table 5.3.23-4, respectively. The modeled heat load in the dose rate analysis is 56.6 W. The calculated core average heat load at this cool time is 39.3 W or 42.2 kW/MTU.

The effect of subcritical neutron multiplication is directly computed in the MCNP analysis.

5.3.23.2 SLOWPOKE Core Shielding Model

MCNP three-dimensional shielding analysis allows detailed modeling of the fuel, basket, and cask shield configurations. The geometric description of a MCNP model is based on the combinatorial geometry system embedded in the code. In this system, bodies such as cylinders and rectangular parallelepipeds, and their logical intersections and unions, are used to describe the extent of material zones.

Fuel Models

The SLOWPOKE core is modeled in MCNP in the same configuration which produced the bounding source spectra. The fuel rods are explicitly modeled.

Cross-section of the VISED model of the source region are shown in Figure 5.3.23-5 and Figure 5.3.23-6 under normal conditions and Figure 5.3.23-8 and Figure 5.3.23-9 under accident conditions. As shown, the model is moved to its maximum axial elevation which brings it closest to the reduced shielding area of the NAC-LWT. The lowest shielding region is the tapered area of the lead gamma neutron shield, the area below the cask cavity top with no lead shielding.

Basket Model

For a given fuel type, the MCNP description of the basket stack forms a common sub-model employed in the analysis. For the SLOWPOKE core analysis, only the top basket containing the SLOWPOKE fuel is modeled. The remaining baskets are modeled as void, conservatively removing material from the shielding model. Similarly, the basket handle structure is modeled as void.

The characteristics of the analyzed SLOWPOKE core basket are summarized in Table 5.3.23-6. The analyzed design for the basket contains a 3-inch steel shield plug attached to the bottom (inside) of the basket lid and a separate spacer to push the fuel down in the basket. The design was updated to incorporate the shield plug and spacer into a single piece. The resulting spacer has a 2.5-inch top plate and a 1.5-inch bottom plate and maintains the 15.75-inch total spacing from the bottom of the lid to the top of the SLOWPOKE core. The modeled basket is conservative as the updated spacer contains an additional inch of shielding material as well as placing shielding directly above the core.

The as modeled basket can be seen in Figure 5.3.23-9, while a sketch of the updated lid design is shown in Figure 5.3.23-10.

MCNP NAC-LWT Model

The three-dimensional model of the NAC-LWT cask is based on the following features:

Normal conditions:

- Radial neutron shield and shield shell
- Aluminum impact limiters with 0.5 g/cm³ density (calculated based on the impact limiter weight and dimensions) and a diameter equal to the neutron shield shell diameter

Accident conditions:

• Removal of radial neutron shield and shield shell

- Loss of upper and lower impact limiters
- Lead slump Radial and Axial modeled simultaneously

A 0.1374 cm gap between the lead outer diameter and the cask outer shell is applied under normal conditions of operations. A lead gap slump, based on the normal condition gap, is evaluated under hypothetical accident conditions. The lead gap volume is applied to both the axial slump and radial slump simultaneously. No lead slump is expected as the cask lead shield is poured in stages, with heaters controlling lead conditions, assuring minimal contraction gaps. The modeled top end drop gap is 2.71 inches which is conservative versus the gap calculated in Chapter 2. The radial gap modeled is 0.788 inch. The modeled radial and axial lead slump can be seen in Figure 5.3.23-8 and Figure 5.3.23-9, respectively. As stated previously, the elevation of the source regions is set at its maximum axial extent. Elevations associated with the threedimensional features are established with respect to the center bottom of the NAC-LWT cask cavity for the MCNP combinatorial model. Sample input files are provided in Figure 5.3.23-7 and Figure 5.3.23-11 for normal and accident conditions, respectively.

Tally/Detector Description

MCNP surface (F2) tallies are applied in the calculation of system dose rates. As the normal condition cask model is symmetric around the z-axis, dose rates are calculated as averages around the circumference of the cask. The dose rate profile as a function of z-elevation is generated at the radius of the neutron shield shell for normal conditions. An additional tally is placed in the gap between impact limiter and neutron shield shell on the cask outer shell. Hypothetical accident condition dose rates remove both impact limiter and neutron shield and shield shell. Axial and radial lead slumps are included. As a radial lead slump is evaluated, the tally results are not symmetric around the cask periphery (peaking at the radial slump location). Azimuthal tally divisions are applied to capture peaks around the circumference of the cask. While the plot of dose versus z-elevation for the accident condition displays circumferential average dose rates, the maximum accident condition dose rates reported in the summary table are based on the azimuthal tally results.

Shield Regional Densities

Material compositions for structural and shield materials are shown in Table 5.3.23-5.

5.3.23.3 SLOWPOKE Core Shielding Evaluation

Calculational Methods

The shielding evaluation is performed using MCNP5 v1.6.

The MCNP shielding model described in Section 5.3.23.2 is utilized with the source terms described in Section 5.3.23.1 to estimate the dose rate profiles at various distances from the side,

5.3.23-4

top and bottom of the cask for both normal and accident conditions. The method of solution is continuous energy Monte Carlo with a Monte Carlo based weight window generator to accelerate code convergence. Weight window and problem convergence is verified by the 10 statistical checks performed by MCNP. Radial or axial biasing is performed depending on the desired dose location.

Significant validation literature is available for MCNP as it is an industry standard tool for spent fuel cask evaluations. Available literature covers a range of shielding penetration problems ranging from slab geometry to spent fuel cask geometries. Confirmatory calculations against other validated shielding codes (SCALE and MCBEND) on NAC casks have further validated the use of MCNP for shielding evaluations.

MCNP Flux-to-Dose Conversion Factors

The ANSI/ANS 6.1.1-1977 flux-to-dose rate conversion factors are employed in the MCNP analysis.

Three-Dimensional Dose Rates for SLOWPOKE Fuel

Table 5.3.23-7 provides maximum dose rates for the tabulated distances and transport conditions (normal and accident). Table 5.3.23-8 contains key results. Significant margin is present for all dose rate limits.

Calculated normal condition radial surface dose rates are below 200 mrem/hr. The Transportation Index (TI) is 15.2 (dose at 1 meter). As the transport index is over 10, an exclusive use designation for the NAC-LWT is used.

The maximum dose rate is dominated by the gamma component. The radial surface dose rate profile is shown in Figure 5.3.23-12. The normal condition maximum radial 2-meter dose rate is 3.1 mrem/hr. As expected, the dose rate profile is skewed towards the top of the cask, as shown Figure 5.3.23-13.

The maximum dose rate at the exposed cask surface above the neutron shield is 42.3 mrem/hr, significantly below the maximum radial dose rate taken from the surface of the neutron shield shell.

Accident condition radial 1-meter dose rates are well below the 1,000 mrem/hr limit. The radial dose rate profile is shown in Figure 5.3.23-14, with the bounding dose rate taken from the azimuthal profile shown in Figure 5.3.23-15.

5.3.23-6

August 2015

Figure 5.3.23-2 SLOWPOKE Core TRITON Model - Reference

August 2015

Figure 5.3.23-4 TRITON Input for SLOWPOKE Fuel - Reference

=t-depl (parm=centrm) SLOWPOKE CORE NEWT / CENTRM Depletion - 1.104 cm Rod Pitch - 15 GWD/MTU V7-238 read comp U 1 DEN=3.51 0.288 373.0 92235 90.0 92238 10.0 END 1 DEN=3.51 0.712 373.0 END AL AL 11 1.0 363.0 END H20 21 1.0 313.0 END 2 DEN=3.51 0.288 373.0 92235 90.0 92238 10.0 END [] AL 2 DEN=3.51 0.712 373.0 END 12 1.0 363.0 END AL H2O 22 1.0 313.0 END 3 DEN=3.51 0.288 373.0 92235 90.0 92238 10.0 END 3 DEN=3.51 0.712 373.0 END U AL 13 1.0 363.0 END AL H2O 23 1.0 313.0 END 4 DEN=3.51 0.288 373.0 92235 90.0 92238 10.0 END 4 DEN=3.51 0.712 373.0 END IJ AL AL 14 1.0 363.0 END H20 24 1.0 313.0 END 5 DEN=3.51 0.288 373.0 92235 90.0 92238 10.0 END [] AL 5 DEN=3.51 0.712 373.0 END 15 1.0 363.0 END AL H20 25 1.0 313.0 END 6 DEN=3.51 0.288 373.0 92235 90.0 92238 10.0 END 6 DEN=3.51 0.712 373.0 END U AL AL 16 1.0 363.0 END H2O 26 1.0 313.0 END 7 DEN=3.51 0.288 373.0 92235 90.0 92238 10.0 END U 7 DEN=3.51 0.712 373.0 END AL AL 17 1.0 363.0 END H20 27 1.0 313.0 END 8 DEN=3.51 0.288 373.0 92235 90.0 92238 10.0 END U AL 8 DEN=3.51 0.712 373.0 END AL 18 1.0 363.0 END H2O 28 1.0 313.0 END 9 DEN=3.51 0.288 373.0 92235 90.0 92238 10.0 END 9 DEN=3.51 0.712 373.0 END U AT. AL 19 1.0 363.0 END H2O 29 1.0 313.0 END 10 DEN=3.51 0.288 373.0 92235 90.0 92238 10.0 END [] AL 10 DEN=3.51 0.712 373.0 END 20 1.0 363.0 END AL H2O 30 1.0 313.0 END BE 33 1.0 313.0 END end comp read celldata latticecell triangpitch pitch=1.104 21 fueld=0.422 1 cladd=0.524 11 end latticecell triangpitch pitch=1.104 22 fueld=0.422 2 cladd=0.524 12 end latticecell triangpitch pitch=1.104 23 fueld=0.422 3 cladd=0.524 13 end latticecell triangpitch pitch=1.104 24 fueld=0.422 4 cladd=0.524 14 end latticecell triangpitch pitch=1.104 25 fueld=0.422 5 cladd=0.524 15 end latticecell triangpitch pitch=1.104 26 fueld=0.422 6 cladd=0.524 16 end latticecell triangpitch pitch=1.104 27 fueld=0.422 7 cladd=0.524 17 end latticecell triangpitch pitch=1.104 28 fueld=0.422 8 cladd=0.524 18 end latticecell triangpitch pitch=1.104 29 fueld=0.422 9 cladd=0.524 19 end latticecell triangpitch pitch=1.104 30 fueld=0.422 10 cladd=0.524 20 end end celldata read depletion 1 2 3 4 5 6 7 8 9 10 end depletion read opus matl= 1 2 3 4 5 6 7 8 9 10 0 end units=grams new case units=watts new case typarams=gspectrum units=part new case

end burndata read model

read parm

end parm read materials mix=1 pn=1 end mix=11 pn=1 end mix=21 pn=2 end mix=2 pn=1 end mix=12 pn=1 end mix=22 pn=2 end mix=3 pn=1 end mix=13 pn=1 end mix=23 pn=2 end mix=4 pn=1 end mix=14 pn=1 end mix=24 pn=2 end mix=5 pn=1 end mix=15 pn=1 end mix=25 pn=2 end

typarams=nspectrum units=parts end opus read burndata

power=21.50 burn=100 down=0 end power=21.50 burn=200 down=0 end power=21.50 burn=200 down=0 end power=21.50 burn=198 down=14 end

prtmxtab=yes cmfd=no echo=yes

prtflux=no drawit=yes

August 2015

' 298rods-927 gram fuel - 20kW/Core (21.50MW/MTU) SLOWPOKE 298 Rod Assembly - Berylium Reflector - Collapse 44-group xnlib=4 run=yes prtmxsec=no prtbroad=no

mix=6 pn=1 end mix=16 pn=1 end mix=26 pn=2 end mix=7 pn=1 end mix=17 pn=1 end mix=27 pn=2 end mix=8 pn=1 end mix=18 pn=1 end mix=28 pn=2 end mix=9 pn=1 end mix=19 pn=1 end mix=29 pn=2 end mix=10 pn=1 end mix=20 pn=1 end mix=30 pn=2 end mix=33 pn=2 end end materials read geom ' Ring 1 unit 1 cylinder 10 0.211 cylinder 20 0.262 hexprism 30 0.552 media 1 1 10 media 11 1 20 -10 media 21 1 30 -20 boundary 30 2 2 ' Ring 2 unit 2 cylinder 10 0.211 cylinder 20 0.262 hexprism 30 0.552 media 2 1 10 media 12 1 20 -10 media 22 1 30 -20 boundary 30 2 2 ' Ring 3 unit 3

August 2015

cylinder	10 0 211
culinder	20 0 262
Cyrinder	20 0.202
nexprism	30 0.552
media 3	1 10
media 13	1 20 -10
media 23	1 30 -20
boundary	30 2 2
' Ring 4	
unit 4	
	10 0 011
cylinder	10 0.211
cylinder	20 0.262
hexprism	30 0.552
media 4	1 10
media 14	1 20 -10
media 14	1 20 20
media 24	1 30 -20
boundary	30 2 2
' Ring 5	
unit 5	
cvlinder	10 0.211
cylinder	20 0 262
baumaiam	20 0.202
nexprism	30 0.552
media 5	1 10
media 15	1 20 -10
media 25	1 30 -20
boundary	30 2 2
' Ring 6	
whit 6	
unic 6	
cylinder	10 0.211
cylinder	20 0.262
hexprism	30 0.552
media 6	1 10
media 16	1 20 -10
modia 26	1 30 -20
meura 20	1 30 -20
boundary	30 2 2
' Ring 7	
unit 7	
cylinder	10 0.211
cvlinder	20 0.262
hexprism	30 0 552
modia 7	1 10
media 7	1 10
media 17	1 20 -10
media 27	1 30 -20
boundary	
»o amaar j	30 2 2
' Ring 8	30 2 2
' Ring 8 unit 8	30 2 2
' Ring 8 unit 8 cylinder	30 2 2
' Ring 8 unit 8 cylinder	30 2 2 10 0.211 20 0 262
' Ring 8 unit 8 cylinder cylinder	30 2 2 10 0.211 20 0.262
' Ring 8 unit 8 cylinder cylinder hexprism	30 2 2 10 0.211 20 0.262 30 0.552
' Ring 8 unit 8 cylinder cylinder hexprism media 8	30 2 2 10 0.211 20 0.262 30 0.552 1 10
' Ring 8 unit 8 cylinder cylinder hexprism media 8 media 18	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10
' Ring 8 unit 8 cylinder cylinder hexprism media 8 media 18 media 28	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20
' Ring 8 unit 8 cylinder cylinder hexprism media 8 media 18 media 28 boundary	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2
' Ring 8 unit 8 cylinder cylinder hexprism media 8 media 18 media 28 boundary ' Ring 9	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2
' Ring 8 unit 8 cylinder cylinder hexprism media 8 media 18 media 28 boundary ' Ring 9	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2
<pre>' Ring 8 unit 8 cylinder cylinder hexprism media 8 media 18 media 28 boundary ' Ring 9 unit 9</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2
<pre>' Ring 8 unit 8 cylinder cylinder hexprism media 8 media 18 media 28 boundary ' Ring 9 unit 9 cylinder</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211
<pre>' Ring 8 unit 8 cylinder cylinder hexprism media 8 media 18 media 28 boundary ' Ring 9 unit 9 cylinder cylinder</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262
<pre>' Ring 8 unit 8 cylinder cylinder cylinder media 8 media 18 media 28 boundary ' Ring 9 unit 9 cylinder cylinder hexprism</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552
<pre>' Ring 8 unit 8 cylinder cylinder hexprism media 18 media 18 media 28 boundary ' Ring 9 unit 9 cylinder hexprism media 9</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10
<pre>' Ring 8 unit 8 cylinder cylinder hexprism media 18 media 28 boundary ' Ring 9 unit 9 cylinder cylinder hexprism media 9 media 19</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10
<pre>' Ring 8 unit 8 cylinder cylinder hexprism media 8 media 28 boundary ' Ring 9 unit 9 cylinder cylinder hexprism media 19 media 29</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 20 -10 1 30 -20
<pre>' Ring 8 unit 8 cylinder cylinder cylinder hexprism media 18 media 28 boundary ' Ring 9 unit 9 cylinder cylinder hexprism media 9 media 19 media 19 media 29</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2.2
<pre>' Ring 8 unit 8 cylinder cylinder hexprism media 18 media 18 media 28 boundary ' Ring 9 unit 9 cylinder cylinder hexprism media 9 media 19 media 29 boundary</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2
<pre>' Ring 8 unit 8 cylinder cylinder hexprism media 18 media 18 media 28 boundary ' Ring 9 unit 9 cylinder cylinder cylinder media 9 media 19 media 19 media 29 boundary ' Ring 10</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 0
<pre>' Ring 8 unit 8 cylinder cylinder hexprism media 8 media 18 media 28 boundary ' Ring 9 unit 9 cylinder cylinder hexprism media 19 media 19 media 29 boundary ' Ring 10 unit 10</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 0 .552 1 10 1 30 -20 30 2 2
<pre>' Ring 8 unit 8 cylinder cylinder hexprism media 18 media 18 media 28 boundary ' Ring 9 unit 9 cylinder cylinder nexprism media 19 media 19 media 19 media 19 boundary ' Ring 10 unit 10 cylinder</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 1 10 1 30 -20 30 2 2 1 10 1 30 -20 30 2 2 1 10 1 30 -20 30 0.552 1 10 1 30 -20 30 0.552 1 10 1 30 -20 30 0.211 2 0 0.262 1 0 1 0 0.211 2 0 0.262 1 10 1 0 0.211 2 0 0.262 3 0 0.552 1 10 1 0 0.211 2 0 0.262 3 0 0.552 1 10 1 30 -20 3 0 2 2 1 10 1 30 -20 3 0 0.552 1 10 1 30 -20 3 0 2 2 1 10 1 30 -20 3 0 0.552 1 10 1 30 -20 3 0 0.262 3 0 0.552 1 10 1 0 0.262 3 0 0.552 1 10 1 0 0.262 3 0 0.552 1 10 1 20 -10 1 20 -20 3 0 0.552 1 10 1 20 -20 3 0 0.552 1 10 1 20 -10 1 30 -20 3 0 0.552 1 10 1 30 -20 3 0 2 2 1 10 1 30 -20 1 10 1 30 -20 1 10 1 30 -20 1 10 1 30 -20 1 30 1 30 -20 1 30 1 30 -20 1 30 1 30 -20 1 30 -2
<pre>' Ring 8 unit 8 cylinder cylinder hexprism media 18 media 18 media 28 boundary ' Ring 9 unit 9 cylinder cylinder hexprism media 9 media 19 media 29 boundary ' Ring 10 unit 10 cylinder cylinder</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 1 10 1 30 -20 30 2 2 1 10 1 20 -10 1 30 -20 30 2 2 1 10 1 20 -10 1 20 -10 1 20 -20 2 2 1 10 1 20 -10 1 30 -20 3 0 2 2 1 10 1 30 -20 1
<pre>' Ring 8 unit 8 cylinder cylinder hexprism media 28 media 18 media 28 boundary ' Ring 9 unit 9 cylinder cylinder cylinder dia 19 media 29 media 19 media 29 boundary ' Ring 10 unit 10 cylinder cylinder cylinder</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 1 10 1 0.211 20 0.262 30 0.552
<pre>' Ring 8 unit 8 cylinder cylinder cylinder hexprism media 18 media 28 boundary ' Ring 9 unit 9 cylinder cylinder hexprism media 19 media 19 media 29 boundary ' Ring 10 unit 10 cylinder cylinder hexprism</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10
<pre>' Ring 8 unit 8 cylinder cylinder hexprism media 18 media 18 media 28 boundary ' Ring 9 unit 9 cylinder cylinder nexprism media 29 boundary ' Ring 10 unit 10 cylinder cylinder hexprism media 129</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 1 10 1 30 -20 30 2 2 1 10 1 20 -10 1 30 -20 30 2 2 1 10 1 20 -10 1 30 -20 30 2 2 1 10 1 20 -10 1 20 -20 3 0 .552 1 10 1 20 -10 1 20 -10 1 20 -20 3 0 .552 1 10 1 20 -10 1 20 -20 2 2 1 10 1 20 -10 1 20 -10
<pre>' Ring 8 unit 8 cylinder cylinder hexprism media 28 boundary ' Ring 9 unit 9 cylinder hexprism media 29 boundary ' Ring 10 unit 10 cylinder hexprism media 10 media 20</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 1 10 1 20 -10 1 30 -20 30 0.552 1 10 1 20 -10 1 30 -20 20 -10 1 20 -10 1 20 -20 20 -10 1 20 -10 1 20 -20 20 -10 1 20 -10 1 20 -20 20 -20
<pre>' Ring 8 unit 8 cylinder cylinder hexprism media 28 media 18 media 28 boundary ' Ring 9 unit 9 cylinder cylinder cylinder dia 19 media 29 boundary ' Ring 10 unit 10 cylinder cylinder cylinder inder media 10 media 20 media 30</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 1 20 -10 1 30 -20 30 2 2 1 20 -10 1 30 -20 3 3 2 2 1 20 -10 1 3 3 -20 3 3 2 2 1 2 -10 1 3 3 -20 3 0 2 2 1 2 -10 1 3 3 -20 3 0 2 2 1 2 -10 1 3 -20 -20 -20 -20 -20 -20 -20 -20
<pre>' Ring 8 unit 8 cylinder cylinder cylinder hexprism media 18 media 18 media 28 boundary ' Ring 9 unit 9 cylinder cylinder nexprism media 19 media 19 media 19 media 19 media 10 cylinder hexprism media 10 media 20 media 30 boundary</pre>	30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 20 -10 1 30 -20 30 2 2 10 0.211 20 0.262 30 0.552 1 10 1 30 -20 30 2 2 1 10 1 30 -20 30 2 2

NAC International

unit 11 hexprism 30 0.552 media 21 1 30 boundary 30 2 2 ' Around Center Empty unit 12 hexprism 30 0.552 media 21 1 30 boundary 30 2 2 ' Right Side Test Unit unit 14 cylinder 20 1.1684 sides=36 origin x=-1.102 chord +x=-0.20 chord +y=-0.55 chord -y=+0.55cylinder 25 1.27 sides=36 origin x=-1.102 chord +x=-0.20 chord +y=-0.55 chord -y=+0.55hexprism 30 0.552 media 21 1 20 30 media 11 1 25 30 -20 media 21 1 30 -25 -20 boundary 30 2 2 ' Bottom Right Side Test Unit unit 15 cuboid 20 0.5 0.0 0.2 0.1 rotate a1=35 cuboid 25 -0.0 -0.5 -0.00 -0.10 rotate a1=12 hexprism 30 0.552 media 11 1 20 media 11 1 25 media 21 1 30 -20 -25 boundary 30 15 15 ' Bottom Left Side Test Unit unit 16 cuboid 20 0.5 0.0 -0.0 -0.10 rotate a1=-12 cuboid 25 -0.0 -0.5 0.2 0.1 rotate a1=-35 hexprism 30 0.552 media 11 1 20 media 11 1 25 media 21 1 30 -20 -25 boundary 30 15 15 ' Left Side Test Unit unit 17 cylinder 20 1.1684 sides=36 origin x=1.102 chord -x=0.20 chord +y=-0.55 chord -y=+0.55cylinder 25 1.27 sides=36 origin x=1.102 chord -x=0.20 chord +y=-0.55chord -y=+0.55hexprism 30 0.552 media 21 1 20 30 media 11 1 25 30 -20 media 21 1 30 -25 -20 boundary 30 2 2 ' Top Right Side Test Unit unit 18
 cuboid 20
 0.5
 0.0
 -0.00
 -0.10
 rotate a1=-35

 cuboid 25
 -0.0
 -0.5
 0.2
 0.1
 rotate a1=-12
 hexprism 30 0.552 media 11 1 20 media 11 1 25 media 21 1 30 -20 -25 boundary 30 15 15 ' Top Left Side Test Unit unit 19 cuboid 20 0.5 0.0 0.2 0.1 rotate al=12 cuboid 25 -0.0 -0.5 -0.0 -0.10 rotate al=35 hexprism 30 0.552 media 11 1 20 media 11 1 25 media 21 1 30 -20 -25 boundary 30 15 15

NAC International

August 2015

August 2015

NAC-LWT Cask SAR Revision 44

August 2015

Figure 5.3.23-6 VISED Y-Z Slice – SLOWPOKE Core – Normal Conditions

Note: SLOWPOKE fuel core basket is shifted to the NAC-LWT lid. Void space indicated by model is the space occupied by the basket lid collar whose material, but not spacing, is conservatively removed from the model. Location of the fuel core near the bottom of the basket cavity is maintained by a spacer structurally evaluated to survive both normal and accident conditions of transport.

```
Figure 5.3.23-7 Sample MCNP Input File – Normal Conditions
NAC-LWT Cask - 15b90e14d - Normal Transport Conditions
C Radial Biasing - Fuel Gamma Source
C Fuel Rod Cells
1 1 -3.4819 -1 +3 -4 u=5 $ Fuel Meat
2 4 -2.7000 -2 +1 3 -4 u=5 $ Clad
3 4 -2.7000 -5 : -6
              u=5 $ Top Cap
           u=5 $ Bottom Cap
4 4 -2.7000 -7
5 0
     #1 #2 #3 #4
                 u=5 $ Outside Rod
C Fuel Core Array Cell
       -8 u=4 lat=2 fill=-15:15 -15:15 0:0 $ Core Array
6 0
   4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 4 4 4 4 4 4 4 4 4
   4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 4 5 5 4 5 5 4 5 5 5 5 5 5 4 4 4 4
   4 4 4 4 4 4 4 5 5 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 4 4 4 4
   4 4 4 4 4 4 5 5 5 5 5 5 4 5 5 4 5 5 4 5 5 5 5 5 5 4 4 4 4 4
   4 4 4 4 4 5 5 5 5 5 5 5 5 4 4 4 4 5 5 5 5 5 5 5 4 4 4 4 4
   4
   4 4 4 4 4 5 5 5 5 5 5 5 4 5 5 4 5 5 4 5 5 5 5 5 5 4 4 4 4 4 4 4
   4 4 4 4 4 5 5 5 5 4 5 5 4 5 5 4 5 5 4 5 5 5 5 4 4 4 4 4 4 4 4
   4
   C Cells - SLOWPOKE Core Basket
7 0
       -9 fill=4 ( 0.0000 0.0000 3.3274 ) u=3 $ SLOWPOKE Core
8 6 -7.9400 -10 u=3 $ Base Plate
9 6 -7.9400 -11 +12 u=3 $ Basket Tube

      10
      6
      -7.9400
      -13
      u=3 $ Shield Plug

      11
      6
      -7.9400
      -14
      u=3 $ Lid Plate

      12
      0
      -15
      u=3 $ Lid Spacer

      13
      0
      #7 #8 #9 #10 #11 #12

                        u=3 $ Void
C Cells - LWT Cavity
      -16 fill=3 ( 0.0000 0.0000 377.6980 ) u=2
14 0
15 0
       #14
            u=2
C Cells - LWT Cask Normal Conditions
16 5 -11.344 -20 u=1 $ BotPb
17 0 -19 fill=2 u=1 $ Cavity
18 6 -7.9400 -17 -18 +20 u=1 $ Bottom
19 6 -7.9400 -17 +18 +22 +25 +19 u=1 $ OuterShell
20 6 -7.9400 -21 +24 +19 u=1 $ InnerShellTaper
21 6 -7.9400 -23 +19 u=1 $ InnerShell
22 5 -11.344 -24 +23 u=1 $ Lead
23 5 -11.344 -22 +21 +24 u=1 $ LeadTaper
24 0 -25 +24 u=1 $ LeadGap
25 3 -0.9400 -27 +17 u=1 $ NeutronShield
26 6 -7.9400 -26 +17 +27 u=1 $ NSShell
27 7 -0.4997 -28 +17 u=1 $ UpperLimiter
28 7 -0.4997 -29 +17 u=1 $ LowerLimiter
        -30 +17 +26 +28 +29 u=1 $ Container
29 0
   -30 +1/ +20 .20
+30 u=1 $ Outside
30 0
C Detector Cells - Radial Biasing
```

100 0 -100 fill=1 \$ AziTrun 110 0 -110 +100 fill=1 \$ Surface 310 0 -310 +110 \$ AziSurFuel 329 0 -329 +110 +310 \$ 1ft 429 0 -429 +110 +310 +329 \$ 1m 529 0 -529 +110 +310 +329 +429 \$ Azilm 548 0 -548 +110 +310 +329 +429 +529 \$ 2m 648 0 -648 +110 +310 +329 +429 +529 +548 \$ 2m+Convey 748 0 -748 +110 +310 +329 +429 +529 +548 +648 \$ Azi2m+Con 848 0 +110 +310 +329 +429 +529 +548 +648 +748 \$ Exterior C Fuel Rod Surfaces \$ Fuel Meat OD 1 CZ 0.2108 2 CZ 0.2616 \$ Clad OD \$ Lower Fuel Cut Plain
\$ Upper Fuel Cut Plain 3 PZ 0.4572 4 PZ 22.4536 5 RCC 0.0000 0.0000 0.3302 0.0000 0.0000 0.1270 0.3048 \$ Lower Stud Rim 6 RCC 0.0000 0.0000 0.0000 0.0000 0.3302 0.1930 \$ Lower Stud Cap 7 RCC 0.0000 0.0000 22.4536 0.0000 0.0000 0.3810 0.3048 \$ Upper Stud C Fuel Core Lattice Surface 8 RHP 0.0 0.0 0.0 0.0 0.0 22.8346 0.5518 0.0 0.0 \$ Lattice Cell C Surfaces - SLOWPOKE Core Basket 9 RCC 0.0000 0.0000 3.3274 0.0000 0.0000 22.8346 12.3824 \$ Core 10 RCC 0.0000 0.0000 0.0000 0.0000 0.0000 1.2700 16.8466 \$ Base Plate 11 RCC 0.0000 0.0000 1.2700 0.0000 0.0000 64.8970 13.6525 \$ Tube OD 12 RCC 0.0000 0.0000 1.2700 0.0000 0.0000 64.8970 12.3825 \$ Tube ID 13 RCC 0.0000 0.0000 58.5470 0.0000 0.0000 7.6200 10.9982 \$ Shield Plug 14 RCC 0.0000 0.0000 66.1670 0.0000 0.0000 1.2700 16.8466 \$ Lid Plate 15 RCC 0.0000 0.0000 67.4370 0.0000 0.0000 6.9850 16.84655 \$ Lid Spacer C Surfaces - LWT Cavity 16 RCC 0.0000 0.0000 377.6980 0.0000 0.0000 74.4220 16.8467 \$ Basket C Surfaces - LWT Cask Normal Conditions 17 RCC 0.0000 0.0000 -26.6700 0.0000 0.0000 507.3650 36.5189 \$ Lwt 18 RCC 0.0000 0.0000 -26.6700 0.0000 0.0000 26.6700 36.5189 \$ Bottom 19 RCC 0.0000 0.0000 0.0000 0.0000 0.0000 452.1200 16.9863 \$ Cavity 20 RCC 0.0000 0.0000 -17.7800 0.0000 0.0000 7.6200 26.3525 \$ Bottom gamma shield 21 RCC 0.0000 0.0000 0.0000 0.0000 0.0000 444.5000 20.1740 \$ Lead id - taper 22 RCC 0.0000 0.0000 0.0000 0.0000 0.0000 444.5000 31.5976 \$ Lead od - taper 23 RCC 0.0000 0.0000 13.8176 0.0000 0.0000 416.8648 18.9103 \$ Lead id 24 RCC 0.0000 0.0000 13.8176 0.0000 0.0000 416.8648 33.3271 \$ Lead od 25 RCC 0.0000 0.0000 13.8176 0.0000 0.0000 416.8648 33.4645 \$ Lead gap 26 RCC 0.0000 0.0000 3.8100 0.0000 0.0000 419.1000 49.8183 \$ Neutron shield shell 27 RCC 0.0000 0.0000 5.0800 0.0000 0.0000 416.5600 49.2189 \$ Neutron shield 28 RCC 0.0000 0.0000 450.2150 0.0000 0.0000 70.5612 49.8183 \$ Upper limiter 29 RCC 0.0000 0.0000 -68.0212 0.0000 0.0000 71.8312 49.8183 \$ Lower limiter 30 RCC 0.0000 0.0000 -68.0212 0.0000 0.0000 588.7974 49.8183 \$ Container C Radial Detector DRA (AziTrun) 100 RCC 0.0000 0.0000 422.9200 0.0000 0.0000 27.2850 36.6189 101 PZ 425.6485 102 PZ 428.3770 103 PZ 431.1055 104 PZ 433.8340 105 PZ 436.5625 106 PZ 439.2910 107 PZ 442.0195 108 PZ 444.7480 109 PZ 447.4765 C Radial Detector DRB (Surface) 110 RCC 0.0000 0.0000 -68.1212 0.0000 0.0000 588.9974 49.9184 111 PZ -65.1762 112 PZ -62.2312 113 PZ -59.2862 114 PZ -56.3413 115 PZ -53.3963 116 PZ -50.4513 117 PZ -47.5063 118 PZ -44.5613 119 PZ -41.6163 120 PZ -38.6713 121 PZ -35.7263

August 2	2015
----------	------

-

122	P7.	-32.7814
123	P7.	-29 8364
124	PZ.	-26 8914
125	PZ.	-23 9464
126	PZ	-21 0014
127	PZ	-18.0564
128	PZ	-15,1114
129	P7.	-12 1664
130	PZ	-9.2215
131	PZ	-6.2765
132	ΡZ	-3.3315
133	PZ	-0.3865
134	PZ	2.5585
135	PZ	5.5035
136	PZ	8.4485
137	 P7	11.3934
138	PZ	14.3384
139	P7	17.2834
140	PZ	20.2284
141	P7.	23 1734
142	P7.	26 1184
143	PZ	29 0634
144	PZ	32 0084
145	D7	3/ 9533
146	22	37 8983
147	P7	40 8433
148	P7	40.0433
1/0	F 2	45.7005
150	E 2	40.7333
151	E 21	49.0703 52 6222
152	E 4	55 5602
152	E 4	59 5122
154	E 4	50.JI32 61 4592
155	22 107	61.4382
155	P2	64.4032
150	P2	07.3402
150	P 6	70.2932
150	PZ	76 1922
109	P2 DZ	70.1032
100	P4	79.1282
101	22	82.0731
162	PZ DZ	87.0181
103	P2	67.9631 00.0001
104	PZ DZ	90.9081
165	PZ	93.8531
100	PZ	96.7981
167	PZ	99.7431
168	PZ	102.6880
109	PZ	105.6330
171	PZ	108.5780
170	PZ	111.5230
172	PZ DZ	114.4680
174	PZ	117.4130
174	PZ	120.3580
175	22 DZ	123.3030
1/6	PZ	126.2479
170	PZ	129.1929
178	PZ	132.1379
1/9	PZ	135.0829
101	PZ D-	138.0279
181	PZ	140.9729
182	ΡZ	143.9179
183	ΡZ	146.8629
184	ΡZ	149.8078
185	ΡZ	152.7528
102	2Z	155.6978
187	ΡZ	158.6428
788 788	РZ	161.5878
100	PZ	167 4770
101	PZ	10/.4//8
191	ΡZ	170.4227
192	ΡZ	173.3677

NAC International

193	ΡZ	176.3127
194	\mathbf{PZ}	179.2577
195	ΡZ	182.2027
196	ΡZ	185.1477
197	ΡZ	188.0927
198	ΡŻ	191.0377
199	PZ	193.9826
200	PZ	196.9276
201	PZ DZ	199.8726
202	PZ D7	202.0170
203	P 2 D 7	203.7626
205	P7	211 6526
205	P7	214 5976
200	P7	217 5425
208	P7	220.4875
209	PZ	223.4325
210	PZ	226.3775
211	PZ	229.3225
212	\mathbf{PZ}	232.2675
213	\mathbf{PZ}	235.2125
214	\mathbf{PZ}	238.1574
215	\mathbf{PZ}	241.1024
216	\mathbf{PZ}	244.0474
217	PZ	246.9924
218	\mathbf{PZ}	249.9374
219	\mathbf{PZ}	252.8824
220	PZ	255.8274
221	PZ	258.7724
222	PZ	261.7173
223	\mathbf{PZ}	264.6623
224	\mathbf{PZ}	267.6073
225	ΡZ	270.5523
226	ΡZ	273.4973
227	PZ	276.4423
228	ΡZ	279.3873
229	PZ	282.3323
230	PZ	285.2772
231	ΡZ	288.2222
232	PZ	291.1672
233	PZ	294.1122
234	PZ	297.0572
235	PZ	300.0022
236	PZ	302.94/2
237	PZ	305.8921
238	PZ DR	308.8371
239	PZ	311.7821
240	PZ DZ	314.7271
241	P4	317.0721
242	E 4	323 5621
243	E 4 D7	326 5071
245	12 P7	329 4520
246	P7	332 3970
240	P7.	335 3420
248	P7.	338 2870
249	P7.	341 2320
250	P7.	344.1770
251	PZ	347.1220
252	PZ	350.0670
253	PZ	353.0119
254	ΡZ	355.9569
255	PZ	358.9019
256	ΡZ	361.8469
257	ΡZ	364.7919
258	ΡZ	367.7369
259	ΡZ	370.6819
260	ΡZ	373.6269
261	ΡZ	376.5718
262	ΡZ	379.5168
263	ΡZ	382.4618

Au	qus	t 2	01	5
~u	guo	ـ ـ	v i	v

264	\mathbf{PZ}	385.4068
265	P7.	388 3518
200		
200	PZ	391.2908
267	PZ	394.2418
268	PZ	397.1867
269	PZ	400.1317
270	P7.	403 0767
271	107	
271	E 2	
272	PΖ	408.9667
273	PZ	411.9117
274	PZ	414.8567
275	\mathbf{PZ}	417.8017
276	P7	420 7466
277	12	120.7300
211	24	423.0310
278	ΡZ	426.6366
279	\mathbf{PZ}	429.5816
280	ΡZ	432.5266
281	\mathbf{PZ}	435.4716
282	PZ	438 4166
202	1017	
203	P4	441.500
284	PZ	444.3065
285	PZ	447.2515
286	ΡZ	450.1965
287	PZ	453.1415
288	P2	456,0865
200	107	
209	E 4	453.0515
290	PZ	461.9765
291	PZ	464.9214
292	PZ	467.8664
293	PZ	470.8114
294	\mathbf{PZ}	473.7564
295	P7.	476 2014
200	12 D7	
290	22	4/3.0404
297	ΡZ	482.5914
298	ΡŻ	485.5364
299	ΡZ	488.4813
300	ΡZ	491.4263
301	P7	494 3713
202	10	
202	F 4	497.5105
303	ΡZ	500.2613
304	PZ	503.2063
305	PZ	506.1513
306	PZ	509.0963
307	P7	512 0412
309	107	
200	F 4	J14.5002
309	PZ	517.9312
C Ra	dial	Detector DRBA (AziSurFuel)
310	RCC	0.0000 0.0000 385.0000 0.0000 0.0000 10.0000 49.9185
311	2	2X 0.0000
312	1	22 0.0000
313	2	× 0 000
314	2 .	
514	5 1	
315	4	2 0.0000
316	5 1	× 0.0000
317	6 1	2X 0.0000
318	7 1	x 0.0000
319	8 1	2 0.0000
320		0 0000
220	10	
321	TO	
322	11	PX 0.0000
323	12	PX 0.0000
324	13	PX 0.0000
325	14	PX 0.0000
326	15	PX 0 0000
220	16	
341	10	
328	17	PX 0.0000
C Ra	dial	Detector DRC (1ft)
329	RCC	0.0000 0.0000 -98.6012 0.0000 0.0000 649.9574 80.2984
330	ΡZ	-92.1016
331	ΡZ	-85.6021
332	P7.	79.1025
	n. 64	

NAC International

August 2015

333	PZ PZ	-72.6029
335	PZ PZ	-59.6038
337	PZ	-46.6046
339	PZ	-33.6055
340	PZ	-20.6063
343	PZ	-7.6072
345	PZ PZ	5.3920
340	PZ	18.3911
348	PZ	31.3903
350 351	PZ PZ	37.8899
352	PZ PZ	50.8890 57.3886
354	PZ	63.8882
355	PZ	70.3877
356	PZ	76.8873
357	PZ	83.3869
358	PZ	89.8864
359	PZ	96.3860
360	PZ	102.8856
361	PZ	109.3852
362	PZ	115.8847
363	PZ	122.3843
364	PZ	128.8839
365	PZ	135.3835
366	PZ	141.8830
367	PZ	148.3826
368	PZ	154.8822
369	PZ	161.3818
370	PZ	167.8813
371	PZ	174.3809
372	PZ	180.8805
3 73	PZ	187.3801
374	PZ	193.8796
375	PZ	200.3792
376	PZ	206.8788
377	PZ	213.3784
378	PZ	219.8779
379	PZ	226.3775
380	PZ	232.8771
381	PZ	239.3766
382	PZ	245.8762
383	PZ	252.3758
384	PZ	258.8754
385	PZ	265.3749
386	PZ	271.8745
387	PZ	278.3741
388	PZ	284.8737
389	PZ	291.3732
390	PZ	297.8728
391	PZ	304.3724
392	PZ	310.8720
393	PZ	317.3715
394	PZ	323.87 1 1
395	PZ	330.3707
396	PZ	336.8703
397	PZ	343.3698
398	PZ	349.8694
399	PZ	356.3690
400	PZ	362.8686
401	PZ	369.3681
402	PZ	375.8677
403	PZ	382.3673

NAC International

- ____ .

404	ΡZ	8.8669	8669	
405	ΡZ	05.3664	3664	
406	ΡZ	01.8660	8660	
407	PZ	08.3656	3656	
408	ΡZ	4.8651	8651	
409	\mathbf{PZ}	21.3647	3647	
410	PZ	27.8643	8643	
411	ΡŻ	34.3639	3639	
412	ΡZ	10.8634	8634	
413	ΡZ	17.3630	3630	
414	ΡZ	53.8626	8626	
415	ΡZ	50.3622	3622	
416	ΡZ	56.8617	8617	
417	\mathbf{PZ}	73.3613	3613	
418	PZ	79.8609	8609	
419	 P2	36.3605	3605	
420	 P7	2.8600	8600	
421	P7	99.3596	3596	
422	PZ	15 8592	8592	
423	PZ	2 3588	3588	
424	P7.	8 8583	8583	
425	P7	25 3579	3579	
426	77	81 8575	8575	
120	1 U D7	89 3571	3571	
427	E4 D7	14 9566	9566	
420 C Dod	74 11-1	Ntester DPD (1m)	asou DBD (1m)	
120 Kac	TTTTT	2 COCOL DED (111)	(100 0 0 000 169 1212 0 0000 0 000)	
429	RUU		1000 0.0000 - 168.1212 0.0000 0.0000	
430	22 D7		2412	
431	P2		1.3413	
432	PZ		1.4513	
433	PZ		0.5613	
434	PZ		1.6/13	
435	PZ). /814	
436	PZ	112.8914	2.8914	
437	PZ	105.0014	.0014	
438	PZ	97.1114		
439	PZ	39.2215	.2215	
440	PZ	31.3315	.3315	
441	ΡZ	73.4415	.4415	
442	ΡZ	55.5515	. 5515	
443	PZ	57.6616	.6616	
444	ΡZ	19.7716	.7716	
445	ΡZ	41.8816	.8816	
446	ΡZ	33.9916	.9916	
447	PZ	26.1017	. 1017	
448	PZ	18.2117	.2117	
449	\mathbf{PZ}	10.3217	.3217	
450	ΡZ	2.4317	1317	
451	\mathbf{PZ}	. 4582	582	
452	PZ	3.3482	3482	
453	\mathbf{PZ}	1.2382	2382	
454	\mathbf{PZ}	9.1282	1282	
455	\mathbf{PZ}	7.0181	0181	
456	\mathbf{PZ}	4.9081	3081	
457	\mathbf{PZ}	2.7981	7981	
458	\mathbf{PZ}	0.6880	5880	
459	\mathbf{PZ}	3.5780	5780	
460	PZ	6.4680	1680	
461	\mathbf{PZ}	4.3580	3580	
462	\mathbf{PZ}	2.2479	2479	
463	ΡZ	00.1379	.1379	
464	\mathbf{PZ}	08.0279	.0279	
465	ΡZ	15.9179	.9179	
466	ΡZ	23.8078	.8078	
467	ΡZ	31.6978	. 6978	
468	\mathbf{PZ}	39.5878	.5878	
469	ΡZ	47.4778	. 4778	
470	\mathbf{PZ}	55.3677	.3677	
471	\mathbf{PZ}	63.2577	.2577	
472	\mathbf{PZ}	71.1477	.1477	
473	\mathbf{PZ}	79.0377	.0377	

NAC International

		100 0000					
4/4	PZ	186.9276					
475	ΡZ	194.8176					
476	ΡZ	202.7076					
477	PZ	210.5976					
478	PZ	218.4875					
479	PZ	226.3775					
480	P7.	234 2675					
481	D7	2/2 1574					
401	E 4	242.1374					
482	PZ	250.0474					
483	PZ	257.9374					
484	ΡZ	265.8274					
485	PZ	273.7173					
486	PZ	281.6073					
487	PZ	289.4973					
488	 P7	203.1973					
400		201.3073					
409	E 4	303.2772					
490	PZ	313.1672					
491	PZ	321.0572					
492	PZ	328.9472					
493	PZ	336.8371					
494	\mathbf{PZ}	344.7271					
495	97	352 6171					
196	D7	360 5071					
407	E 2	300.3071					
497	PZ	368.3970					
498	ΡZ	376.2870					
499	PZ	384.1770					
500	PZ	392.0670					
501	PZ	399.9569					
502	ΡZ	407.8469					
503	 P7	415 7369					
504	D7	123 6269					
505	12	423.0205					
505	PZ	431.5168					
506	PZ	439.4068					
507	PZ	447.2968					
508	PZ	455.1867					
509	PZ	463.0767					
510	ΡZ	470.9667					
511	P7.	478.8567					
512	D7	196.0000					
512	12	400.7400					
515	PZ DD	494.0300					
514	PZ	502.5266					
515	PZ	510.4166					
516	ΡZ	518.3065					
517	PZ	526.1965					
518	PZ	534.0865					
519	PZ	541.9765					
520	 P2	549 8664					
520	10	545.0004					
521	F 24	507.7504					
522	PZ	565.6464					
523	PZ	573.5364					
524	PZ	581.4263					
525	PZ	589.3163					
526	PZ	597.2063					
527	ΡZ	605.0963					
528	P7.	612 9862					
C P =	dial	Detector DR	(Da (Agilm)				
E 20	DCC	Delector Di	0000 205 0000	0 0000	0 0000	15 0000	140 0105
525	RCC	0.0000 0.	0000 383.0000	0.0000	0.0000	13.0000	149.0100
530	_	2X 0.0000					
531	1	PX 0.0000					
532	2	2X 0.0000					
533	3	PX 0.0000					
534	4	PX 0.0000					
535	5	PX 0.0000					
536	6	PX 0.0000					
537	7	PX 0.0000					
538	8	PX 0.0000					
520	Ŭ,	PY 0 0000					
533	10	0.0000 py 0.0000					
04U E 4 1	1 U	IN 0.0000					
541	10	FX 0.0000					
542	TZ	FX 0.0000					
543	13	PX 0.0000					

August 2015

544	14	0000	
515	15		
545	16		
546	10		
547	1/		
C Rad	dial	Detector DRE (2m)	
548	RCC	0.0000 0.0000 -268.1212 0.0000 0.0000 988.9974 249.8184	
549	ΡZ	-258.2312	
550	PZ	-248.3413	
551	\mathbf{PZ}	-238.4513	
552	\mathbf{PZ}	-228.5613	
553	PZ	-218.6713	
554	PZ	-208.7814	
555	P7.	-198 8914	
556	107		
556	P2		
557	PZ		
558	PZ	-169.2215	
559	PZ	-159.3315	
560	PZ	-149.4415	
561	\mathbf{PZ}	-139.5515	
562	\mathbf{PZ}	-129.6616	
563	\mathbf{PZ}	-119.7716	
564	P7	-109-8816	
565	P7.		
566	12		
500	E 21		
567	P2		
568	PZ	-70.3217	
569	PZ	-60.4317	
570	PZ	-50.5418	
571	PZ	-40.6518	
572	ΡZ	-30.7618	
573	PZ	-20.8719	
574	\mathbf{PZ}	-10.9819	
575	P7	-1 0919	
576	10	2 7091	
570			
577	PZ		
578	PZ	28.5780	
579	PZ	38.4680	
580	PZ	48.3580	
581	\mathbf{PZ}	58.2479	
582	ΡZ	68.1379	
583	PZ	78.0279	
584	ΡZ	87,9179	
585	P7	97.8078	
586	D7	107 6078	
500	107	117 5070	
507	E 4	127.3070	
200	PZ		
589	ΡZ		
590	ΡZ	147.2577	
591	PZ	157.1477	
592	PZ	167.0377	
593	PZ	176.9276	
594	\mathbf{PZ}	186.8176	
595	PZ	196.7076	
596	PZ.	206.5976	
597	P7	216 4875	
500	12	210.3075	
590	E 4	220.3775	
599	PZ	236.2073	
600	ΡZ	246.1574	
601	ΡZ	250.04/4	
602	PZ	265.9374	
603	PZ	275.8274	
604	ΡZ	285.7173	
605	\mathbf{PZ}	295.6073	
606	PZ	305.4973	
607	ΡZ	315.3873	
608	Ρ7	325.2772	
600	 P7	335 1672	
610	1 2 10 7	345.0572	
611	гЪ D2	354.0372 254.0372	
C10	Г <u>4</u> Р 7	217.JT.2 264 071	
012	РZ	304.03/L	
61 3	PZ	3/4./2/1	

NAC International

Ľ

1
614	PZ	384.6171	
615	PZ	394.5071	
616	 D/2	404 2070	
010	РЪ	404.3970	
617	PZ	414.2870	
618	PŻ	424,1770	
C10	 D7	434 0670	
019	PZ	434.0070	
620	PZ	443.9569	
621	D 7	453 8469	
021	£Δ	405.0405	
622	PZ	463.7369	
623	P7.	473.6269	
CD 4	 D/2	402 5160	
624	PZ	485.5188	
625	PZ	493.4068	
626	P7	503 2968	
020	ĽΔ	505.2500	
627	PZ	513.1867	
628	P7.	523-0767	
600	 D7	522 0667	
629	P2	552.9667	
630	PZ	542.8567	
631	D 7	552 7466	
0.51	E 23	552.7400	
632	ΡZ	562.6366	
633	P7	572 5266	
600			
634	PZ	582.4100	
635	ΡZ	592.3065	
626	D 7	602 1965	
050	E 23	002.1903	
637	PZ	612.0865	
638	P7.	621 9765	
000			
639	₽Z	631.8664	
640	PZ.	641.7564	
C 4 1	 D/2		
041	P2	031.0404	
642	PZ	661.5364	
613	D7	671 4263	
045	ΕΔ	0/1.4203	
644	ΡZ	681.3163	
645	P7	691-2063	
C A C	20	701 0000	
646	PZ	/01.0963	
647	PZ	710.9862	
C Rad	3 1		
		Detector DBF (2m+Convey)	
C Rue	1141	L Detector DRF (2m+Convey)	0.0074 0.01 0.000
648	RCC	L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99	30.9974 321.9200
648 649	RCC	L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112	90.9974 321.9200
648 649	RCC PZ	L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249 2013	90.9974 321.9200
648 649 650	RCC PZ PZ	L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013	90.9974 321.9200
648 649 650 651	RCC PZ PZ PZ	L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913	30.9974 321.9200
648 649 650 651 652	RCC PZ PZ PZ PZ PZ	L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229 4813	90.9974 321.9200
648 649 650 651 652	RCC PZ PZ PZ PZ PZ	Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 210 5732	90.9974 321.9200
648 649 650 651 652 653	RCC PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713</pre>	90.9974 321.9200
648 649 650 651 652 653 654	RCC PZ PZ PZ PZ PZ PZ PZ	L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614	90.9974 321.9200
648 649 650 651 652 653 654	RCC PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514</pre>	00.9974 321.9200
648 649 650 651 652 653 654 655	RCC PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514</pre>	90.9974 321.9200
648 649 650 651 652 653 654 655 656	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414</pre>	90.9974 321.9200
648 649 650 651 652 653 654 655 656 657	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179 9314</pre>	90.9974 321.9200
648 649 650 651 652 653 654 655 656 656 657	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -179.9314</pre>	90.9974 321.9200
648 649 650 651 652 653 654 655 656 657 658	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215</pre>	00.9974 321.9200
648 649 650 651 652 653 654 655 655 656 657 658 659	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9114 -170.0215 -160.1115</pre>	90.9974 321.9200
648 649 650 651 652 653 654 655 655 655 655 655 659 659	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 150.2015	90.9974 321.9200
648 649 650 651 652 653 655 655 655 655 655 658 659 660	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015</pre>	00.9974 321.9200
648 649 650 651 652 653 654 655 655 655 655 655 659 660 661	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915</pre>	90.9974 321.9200
648 649 650 651 652 653 655 655 655 655 657 658 659 660 662	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816	90.9974 321.9200
648 649 650 651 652 653 655 655 655 655 655 655 655 655 655	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 120 4716</pre>	90.9974 321.9200
648 649 650 651 652 655 655 655 655 655 655 655 655 655	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716</pre>	90.9974 321.9200
648 649 650 651 652 655 655 655 655 655 655 655 655 661 662 663 664	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -160.1115 -150.2015 -130.3816 -120.4716 -110.5616</pre>	00.9974 321.9200
648 649 650 651 652 653 655 655 655 655 655 655 655 655 655	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616</pre>	90.9974 321.9200
648 649 650 651 652 653 655 655 655 655 655 655 655 661 662 663 664 665	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -100.6516</pre>	90.9974 321.9200
648 649 650 651 652 655 655 655 655 655 655 655 655 655	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -10.5616 -100.6516 -90.7417</pre>	90.9974 321.9200
648 649 650 651 652 655 655 655 655 655 655 661 662 6661 666 666 6667	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -80.8317</pre>	90.9974 321.9200
648 649 650 651 652 655 655 655 655 655 655 655 655 665 66	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -80.8317 -70 9217</pre>	90.9974 321.9200
648 649 650 651 652 655 655 655 655 655 655 655 655 655	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -80.8317 -70.9217 </pre>	90.9974 321.9200
648 649 650 651 652 655 655 655 655 655 655 665 666 666	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -80.8317 -70.9217 -61.0117</pre>	90.9974 321.9200
648 649 650 651 652 655 655 655 655 655 655 665 665 666 66	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018</pre>	90.9974 321.9200
648 649 6551 6552 6554 6557 89 6661 234 6667 89 0 77	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -100.6516 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 41 1019</pre>	90.9974 321.9200
648 649 650 651 652 6552 6553 6556 6559 6655 6655 6655 6655 6661 6663 6665 6667 6667 6667 6667 6670 6700 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000 70000 70000 70000 70000 700000000000000000000	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918</pre>	90.9974 321.9200
648 649 650 6552 6552 65534 6556 655789 6667 6667 6667 6667 66712	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -10.6516 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818</pre>	90.9974 321.9200
648 649 651 6551 6553 6556 6556 6556 6655 6655 6655 666123 6667 6667123 66677123 6677123 6677733 6677733 67	PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ P	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818 -21.3719</pre>	90.9974 321.9200
648 649 650 6551 6552 6552 6553 6556 6557 6656 6657 6657 6661 6663 6667 6667 6671 223 6671 223 6655 6667 6671 6671 6671 6671 6673 6673 6671 6673 6773 7773 77773 7773 7773 7773 7773 7773 7773	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818 -21.3719 </pre>	90.9974 321.9200
6 6 486 $6496551655265536556655766556655766612666766676667666766712677234$	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -100.6516 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818 -21.3719 -11.4619</pre>	90.9974 321.9200
648 649 651 6551 6552 6554 6556 6559 6655 6655 6655 6655 66612 6667 6667 66712 345 6667 66712 345 66712 345 6667 66712 345 66712 345 6667 66712 345 66712 345 66772 345 66772 57345 66772 66772 66772 7772 7	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818 -21.3719 -11.4619 -1.5519</pre>	90.9974 321.9200
6 48 6 49 6 6 51 6 6 5 53 6 6 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818 -21.3719 -11.4619 -1.5519</pre>	90.9974 321.9200
6 6 486 $6496551655265536556655666558666558666558666558666712666712367712367712367756677577556775775557755577555775555775555555555$	PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ P	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818 -21.3719 -11.4619 -1.5519 8.3581</pre>	90.9974 321.9200
6 6 6 48 6 6 49 6 551 6 552 3 6 556 6 557 8 9 6 6 6 6 6 6 6 6 6 6	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818 -21.3719 -11.4619 -1.5519 8.3581 18.2680</pre>	90.9974 321.9200
6 6 4 8 6 6 4 9 6 6 5 5 1 2 3 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -100.6516 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818 -21.3719 -11.4619 -1.5519 8.3581 18.2680 28.1780</pre>	90.9974 321.9200
6 6 486 $649655165526554655665578906655665566556665566655666766772677267734567789067723745677780777756777775677777567777756777775677777567777756777775677777567777756777775677777567777756777775$	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818 -21.3719 -11.4619 -1.5519 8.3581 18.2680 28.1780</pre>	90.9974 321.9200
6 6 4 9 6 6 4 9 6 6 4 9 6 6 5 5 1 2 3 4 5 5 6 7 8 9 7 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	RCC RCZ PZ PZ PZ PZ PZ PZ PZ PZ PZ P	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -10.6516 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818 -21.3719 -11.4619 -1.5519 8.3581 18.2680 28.1780 38.0880</pre>	90.9974 321.9200
6648 66490 6551 6552345666666666666666666666666666666666	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) C 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -00.6516 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818 -21.3719 -11.4619 -1.5519 8.3581 18.2680 28.1780 38.0880 47.9980</pre>	90.9974 321.9200
6649 6649 6551 655234566559 66657890123456778907 66773456778907 6773456778907 6773456778907	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -60.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818 -21.3719 -11.4619 -1.5519 8.3581 18.2680 28.1780 38.0880 47.9980 57.9070</pre>	90.9974 321.9200
6648 664901234656655234556789012345678901234567890123456778901234567789012345677890123456778901234567789012345677890123456778901123456778901123456778901123456778901123456778901123456778901123456778901123456778901123456778901123456778901123455677890112577890112577890112577890112577890112577890112577890112577890112577890112577890112577890112577890112577890112575778901125757789011257577890112575778901125757789011257577890112575778901125757789011257577890112575778901125757789011257577890112575778901125757789011257577890112575778901125757789001000000000000000000000000000000000	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818 -21.3719 -11.4619 -1.5519 8.3581 18.2680 28.1780 38.0880 47.9980 57.9079 </pre>	90.9974 321.9200
6648 66490 6551 655234566 665590 666666666666666666666666666666666666	RCC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -110.5616 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818 -21.3719 -11.4619 -1.5519 8.3581 18.2680 28.1780 38.0880 47.9980 57.9079 67.8179</pre>	90.9974 321.9200
6 6 4 9 6 6 4 9 0 6 6 5 5 1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	RCC RZC PZ PZ PZ PZ PZ PZ PZ PZ PZ PZ	<pre>L Detector DRF (2m+Convey) 0.0000 0.0000 -269.1212 0.0000 0.0000 99 -259.2112 -249.3013 -239.3913 -229.4813 -219.5713 -209.6614 -199.7514 -189.8414 -179.9314 -170.0215 -160.1115 -150.2015 -140.2915 -130.3816 -120.4716 -10.6516 -90.7417 -80.8317 -70.9217 -61.0117 -51.1018 -41.1918 -31.2818 -21.3719 -11.4619 -1.5519 8.3581 18.2680 28.1780 38.0880 47.9980 57.9079 67.8179 77.7279</pre>	90.9974 321.9200

Augı	ıst	20	15
------	-----	----	----

684	\mathbf{PZ}	87.6379							
685	\mathbf{PZ}	97.5478							
686	\mathbf{PZ}	107.4578							
687	PZ	117.3678							
688	PZ DZ	127.2778							
690	P2 P2	147 0977							
691	P2	157.0077							
692	PZ	166.9177							
693	ΡZ	176.8276							
694	$\mathbf{P}\mathbf{Z}$	186.7376							
695	PZ	196.6476							
696	PZ	206.5576							
697	PZ	216.4675							
699	F2 P2	226.3775							
700	PZ	246.1974							
701	PZ	256.1074							
702	\mathbf{PZ}	266.0174							
703	\mathbf{PZ}	275.9274							
704	\mathbf{PZ}	285.8373							
705	PZ	295.7473							
706	PZ DZ	305.65/3							
708	F2 P7	325 4772							
709	PZ	335.3872							
710	PZ	345.2972							
711	\mathbf{PZ}	355.2072							
712	PZ	365.1171							
713	ΡZ	375.0271							
714	PZ	384.9371							
716	P2 P7	394.8471							
717	PZ	414.6670							
718	PZ	424.5770							
719	\mathbf{PZ}	434.4870							
720	\mathbf{PZ}	444.3969							
721	PZ	454.3069							
722	PZ	464.2169						•	
723	PZ 07	4/4.1269							
725	PZ	493.9468							
726	ΡZ	503.8568							
727	\mathbf{PZ}	513.7667							
728	\mathbf{PZ}	523.6767							
729	ΡZ	533.5867							
730	PZ	543.4967							
732	P2 P2	553.4000							
733	PZ	573.2266							
734	PZ	583.1366							
735	\mathbf{PZ}	593.0465							
736	ΡZ	602.9565							
737	ΡZ	612.8665							
738	PZ	622.7765							
740	P2 P7	632.0864							
741	PZ	652.5064							
742	ΡZ	662.4164							
743	\mathbf{PZ}	672.3263							
744	\mathbf{PZ}	682.2363							
745	PZ	692.1463							
/46 7/7	PZ PZ	702.0563							
/4/ C Pa	r2 dial	Detector	DRFA (Azi2m+Con)						
748	RCC	0.0000	0.0000 390.0000	0.0000	0.0000	20.0000	321.9201		
749	1	PX 0.0000			•				
750	1 1	PX 0.0000							
751	2 1	PX 0.0000							
752 752	3 1	PX 0.0000							
100	4	FA 0.0000							

NAC International

754 5 PX 0.0000

755 6 PX 0.0000 7 PX 0 0000 756 757 8 PX 0.0000 758 ΡY 0.0000 759 10 PX 0.0000 760 11 PX 761 12 PX 0.0000 0.0000 762 13 PX 0.0000 763 14 PX 0.0000 764 15 PX 0.0000 765 16 PX 0.0000 766 17 PX 0.0000 C C Materials List С C U-Al Fuel m1 92235 -2.5201E-01 92238 -2.8001E-02 13027 -7.1999E-01 C Water m2 1001 6.6667E-01 8016 3.3333E-01 mt2 lwtr.01 C Water/Glycol m3 1001 -1.03200E-01 8016 -6.82400E-01 6000 -2.14400E-01 C Aluminum m4 13027 -1.0 C Lead m5 82000 -1.0 C Stainless Steel 304 mб 26000 -0.695 24000 -0.190 28000 -0.095 25055 -0.020 C Aluminum Honeycomb Impact Limiter m7 13027 -1.0 С C Cell Importances imp:p 1 38r 0 С C Source Definition - Fuel Gamma C 15 GWd/MTU burnup, 90 wt% U-235, 14-day cool time, 2.786 g U-235 per rod, 39 W/core sdef RAD=d1 EXT=d2 ERG=d3 cell=d4 POS= 0.0000 0.0000 0.4572 AXS= 0.0000 0.0000 1.0000 si1 0 0.2108 sp1 -21 1 si2 0 21.9964 sp2 0 1 si3 1.000E-02 4.500E-02 1.000E-01 2.000E-01 3.000E-01 4.000E-01 6.000E-01 8.000E-01 1.000E+00 1.330E+00 1.660E+00 2.000E+00 2.500E+00 3.000E+00 4.000E+00 5.000E+00 6.500E+00 8.000E+00 1.000E+01 sp3 0.0000E+00 3.1684E+11 1.0982E+11 1.3380E+11 2.3964E+10 5.7276E+10 1.5811E+11 4.3248E+11 4.1310E+10 2.5592E+09 1.0587E+11 3.5978E+08 2.0105E+09 3.4304E+09 2.6553E+07 7.9396E-04 1.8338E-04 3.4862E-05 7.4653E-06 # SI4 SP4 T, D 110:17:14:7:6:-1 1.0000 mode p nps 6.40E+07 С C ANSI/ANS-6.1.1-1977 - Gamma Flux-to-Dose Conversion Factors C (mrem/hr)/(photons/cm2-sec) de0 0.01 0.03 0.05 0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.8 1 1.4 1.8 2.2 2.6 2.8 3.25 3.75 4.25 4.75 5 5.25 5.75 6.25 6.75 7.5 9 11 13 15 df0 3.96E-03 5.82E-04 2.90E-04 2.58E-04 2.83E-04 3.79E-04 5.01E-04 6.31E-04 7.59E-04 8.78E-04 9.85E-04 1.08E-03 1.17E-03 1.27E-03 1.36E-03 1.44E-03 1.52E-03 1.68E-03 1.98E-03 2.51E-03 2.99E-03

August 2015

NAC-LWT Cask SAR Revision 44

```
3.42E-03 3.82E-03 4.01E-03 4.41E-03 4.83E-03 5.23E-03 5.60E-03
     5.80E-03 6.01E-03 6.37E-03 6.74E-03 7.11E-03 7.66E-03 8.77E-03
     1.03E-02 1.18E-02 1.33E-02
С
C Weight Window Generation - Radial
wwg 2 0 0 0 0
wwp:p 5 3 5 0 -1 0
mesh geom=cyl ref=0 13 402 origin=0.1 0.1 -568
    imesh 16.8 17.0 18.9 33.3 36.5 49.2 49.8 549.8
     iints 1 1 1 5 1 1 1 1
     jmesh 500 541 550 558 568 947 969 1020 1049 1089 1589
     jints 1 1 1 1 1 1 1 1 1 1 1
     kmesh 1
    kints 1
wwge:p 1e-3 1 20
fc2 Radial AziTrun Tally
f2:p +100.1
fm2 4.13583E+14
fs2 -101 -102 -103 -104 -105 -106
-107 -108 -109 T
tf2
fc12 Radial Surface Tally
f12:p +110.1
fm12 4.13583E+14
fs12 -111 -112 -113 -114 -115 -116
    -117 -118 -119 -120 -121 -122
-123 -124 -125 -126 -127 -128
     -129 -130 -131 -132 -133 -134
    -135 -136 -137 -138 -139 -140
-141 -142 -143 -144 -145 -146
     -147 -148 -149 -150 -151 -152
     -153 -154 -155 -156 -157 -158
     -159 -160 -161 -162 -163 -164
    -165 -166 -167 -168 -169 -170
     -171 -172 -173 -174
                            -175
                                  -176
     -177 -178 -179 -180 -181 -182
    -183 -184 -185 -186 -187 -188
     -189 -190 -191 -192 -193 -194
     -195 -196 -197 -198 -199 -200
    -201 -202 -203 -204 -205 -206
-207 -208 -209 -210 -211 -212
     -213 -214 -215 -216 -217 -218
    -219 -220 -221 -222 -223 -224
-225 -226 -227 -228 -229 -230
     -231 -232 -233 -234 -235 -236
     -237 -238 -239 -240 -241 -242
     -243 -244 -245 -246 -247 -248
     -249 -250 -251 -252 -253 -254
     -255 -256 -257 -258 -259 -260
     -261 -262 -263 -264 -265 -266
     -267 -268 -269 -270 -271 -272
     -273 -274 -275
                     -276
                            -277
                                  -278
     -279 -280 -281 -282 -283 -284
    -285 -286 -287 -288 -289 -290
     -291 -292 -293 -294 -295 -296
     -297 -298 -299 -300 -301 -302
     -303 -304 -305 -306 -307 -308
     -309 T
tf12
fc22 Radial AziSurFuel Tally Q1 (+x+y)
f22:p +310.1
fm22 4.13583E+14
fs22 -311 -320
    -312 -313 -314 -315 -316 -317
    -318 -319 T
sd22 1.5682E+03 7.8412E+02 8.7124E+01 8r 3.1365E+03
tf22
fc32 Radial AziSurFuel Tally Q2 (-x+y)
f32:p +310.1
fm32 4.13583E+14
fs32 +311 -320
```

NAC International

```
+321 +322 +323 +324 +325 +326
    +327 +328
               т
sd32 1.5682E+03 7.8412E+02 8.7124E+01 8r 3.1365E+03
tf32
fc42 Radial AziSurFuel Tally Q3 (-x-y)
f42:p +310.1
fm42 4.13583E+14
fs42 +311 +320
    +312 +313
              +314 +315 +316 +317
    +318 +319
               т
sd42 1.5682E+03 7.8412E+02 8.7124E+01 8r 3.1365E+03
+ f 42
fc52 Radial AziSurFuel Tally Q4 (+x-y)
f52:p +310.1
fm52 4.13583E+14
fs52 -311 +320
    -321 -322
              -323 -324 -325 -326
    -327 -328 т
sd52 1.5682E+03 7.8412E+02 8.7124E+01 8r 3.1365E+03
tf52
fc62 Radial 1ft Tally
f62:p +329.1
fm62 4.13583E+14
fs62 -330 -331 -332 -333 -334 -335
    -336 -337 -338 -339 -340 -341
    -342 -343 -344 -345 -346 -347
    -348 -349 -350 -351 -352 -353
    -354 -355 -356 -357 -358 -359
    -360 -361 -362 -363 -364 -365
    -366 -367
              -368 -369
                         -370
                              -371
    -372 -373 -374 -375 -376 -377
    -378 -379 -380 -381 -382 -383
    -384 -385
              -386
                   -387
                         -388 -389
    -390 -391 -392 -393 -394 -395
    -396 -397 -398 -399 -400 -401
    -402 -403 -404 -405 -406 -407
    -408 -409 -410 -411 -412 -413
    -414 -415 -416 -417 -418 -419
    -420 -421 -422 -423 -424 -425
    -426 -427 -428 т
tf62
fc72 Radial 1m Tally
f72:p +429.1
fm72 4.13583E+14
fs72 -430 -431 -432 -433 -434 -435
    -436 -437 -438 -439 -440 -441
    -442 -443 -444 -445 -446 -447
    -448 -449 -450 -451 -452 -453
    -454 -455 -456 -457 -458 -459
    -460 -461 -462 -463 -464 -465
    -466 -467 -468 -469 -470 -471
    -472 -473 -474 -475 -476 -477
    -478 -479
              -480 -481 -482 -483
    -484 -485
              -486 -487 -488 -489
    -490 -491
              -492 -493 -494 -495
    -496 -497 -498 -499 -500 -501
    -502 -503 -504 -505 -506 -507
    -508 -509
              -510 -511
                         -512
                               -513
    -514 -515 -516 -517 -518 -519
    -520 -521 -522 -523 -524 -525
    -526 -527 -528 T
tf72
fc82 Radial Azilm Tally Q1 (+x+y)
f82:p +529.1
fm82 4.13583E+14
fs82 -530 -539
    -531 -532
              -533 -534 -535 -536
    -537 -538
               т
sd82 7.0600E+03 3.5300E+03 3.9222E+02 8r 1.4120E+04
tf82
fc92 Radial Azilm Tally Q2 (-x+y)
```

NAC International

```
f92:p +529.1
fm92 4.13583E+14
fs92 +530 -539
     +540 +541 +542 +543 +544 +545
+546 +547 T
sd92 7.0600E+03 3.5300E+03 3.9222E+02 8r 1.4120E+04
tf92
fc102 Radial Azi1m Tally Q3 (-x-y)
f102:p +529.1
fm102 4.13583E+14
fs102 +530 +539
    +531 +532 +533 +534 +535 +536
+537 +538 T
sd102 7.0600E+03 3.5300E+03 3.9222E+02 8r 1.4120E+04
tf102
fc112 Radial Azilm Tally Q4 (+x-y)
f112:p +529.1
fm112 4.13583E+14
fs112 -530 +539
     -540 -541 -542 -543 -544 -545
-546 -547 T
sdl12 7.0600E+03 3.5300E+03 3.9222E+02 8r 1.4120E+04
tf112
fc122 Radial 2m Tally
f122:p +548.1
fm122 4.13583E+14
fs122 -549 -550 -551 -552 -553 -554
     -555 -556 -557 -558 -559 -560
     -561 -562 -563 -564 -565 -566
-567 -568 -569 -570 -571 -572
     -573 -574 -575 -576 -577 -578
     -579 -580 -581 -582 -583
                                    -584
     -585 -586 -587 -588 -589 -590
     -591 -592 -593 -594 -595 -596
-597 -598 -599 -600 -601 -602
                 -599 -600 -601 -602
-605 -606 -607 -608
     -603 -604
     -609 -610 -611 -612 -613 -614
-615 -616 -617 -618 -619 -620
     -621 -622 -623 -624 -625 -626
     -627 -628 -629 -630 -631 -632
-633 -634 -635 -636 -637 -638
     -639 -640 -641 -642 -643 -644
     -645 -646 -647 т
tf122
fc132 Radial 2m+Convey Tally
f132:p +648.1
fm132 4.13583E+14
fs132 -649 -650 -651 -652 -653 -654
     -655 -656 -657 -658 -659 -660
     -661 -662 -663 -664 -665 -666
     -667 -668 -669 -670 -671 -672
-673 -674 -675 -676 -677 -678
     -679 -680 -681 -682 -683 -684
     -685 -686 -687 -688 -689 -690
     -691 -692 -693 -694 -695
                                    -696
     -697 -698 -699 -700 -701
                                    -702
     -703 -704 -705 -706 -707 -708
-709 -710 -711 -712 -713 -714
     -715 -716 -717 -718 -719
                                    -720
     -721 -722 -723 -724 -725 -726
-727 -728 -729 -730 -731 -732
     -733 -734 -735 -736 -737 -738
     -739 -740 -741 -742 -743 -744
     -745 -746 -747 T
tf132
fc142 Radial Azi2m+Con Tally Q1 (+x+y)
f142:p +748.1
fm142 4.13583E+14
fs142 -749 -758
     -750 -751 -752 -753 -754 -755
     -756 -757 T
```

NAC International

August 2015

sd142 2.0227E+04 1.0113E+04 1.1237E+03 8r 4.0454E+04 tf142 fc152 Radial Azi2m+Con Tally Q2 (-x+y) f152:p +748.1 fm152 4.13583E+14 fs152 +749 -758 +759 +760 +761 +762 +763 +764 +765 +766 T sd152 2.0227E+04 1.0113E+04 1.1237E+03 8r 4.0454E+04 +f152 fc162 Radial Azi2m+Con Tally Q3 (-x-y) f162:p +748.1 fm162 4.13583E+14 fs162 +749 +758 +750 +751 +752 +753 +754 +755 +756 +757 T sd162 2.0227E+04 1.0113E+04 1.1237E+03 8r 4.0454E+04 tf162 fc172 Radial Azi2m+Con Tally Q4 (+x-y) f172:p +748.1 fm172 4.13583E+14 fs172 -749 +758 -759 -760 -761 -762 -763 -764 -765 -766 т sd172 2.0227E+04 1.0113E+04 1.1237E+03 8r 4.0454E+04 tf172 C C Print Control prdmp -30 -60 1 2 print C Random Number Generator rand gen=2 seed=33982735979567 stride=152917 hist=1 C Rotation Matrix *TR1 0.0 0.0 0.0 10 100 90 -80 10 90 90 0 *TR2 0.0 0.0 0.0 20 110 90 -70 20 90 90 0 *TR3 0.0 0.0 0.0 30 120 90 -60 30 90 90 0 *TR4 0.0 0.0 0.0 40 130 90 -50 40 90 90 0 *TR5 0.0 0.0 0.0 50 140 90 -40 50 90 90 0 *TR6 0.0 0.0 0.0 60 150 90 -30 60 90 90 0 *TR7 0.0 0.0 0.0 70 160 90 -20 70 90 90 90 0 *TR8 0.0 0.0 0.0 80 170 90 -10 80 90 90 0 *TR9 0.0 0.0 0.0 90 180 90 0 90 90 90 0 *TR10 0.0 0.0 0.0 100 190 90 10 100 90 90 0 *TR11 0.0 0.0 0.0 110 200 90 20 110 90 90 0 *TR12 0.0 0.0 0.0 120 210 90 30 120 90 90 0 *TR13 0.0 0.0 0.0 130 220 90 40 130 90 90 0 *TR14 0.0 0.0 0.0 140 230 90 50 140 90 90 0 *TR15 0.0 0.0 0.0 150 240 90 60 150 90 90 90 0 *TR16 0.0 0.0 0.0 160 250 90 70 160 90 90 0 *TR17 0.0 0.0 0.0 170 260 90 80 170 90 90 0 *TR18 0.0 0.0 0.0 180 270 90 90 180 90 90 0 *TR19 0.0 0.0 0.0 190 280 90 100 190 90 90 0 *TR20 0.0 0.0 0.0 200 290 90 110 200 90 90 0 *TR21 0.0 0.0 0.0 210 300 90 120 210 90 90 0 *TR22 0.0 0.0 0.0 220 310 90 130 220 90 90 0 *TR23 0.0 0.0 0.0 230 320 90 140 230 90 90 0 *TR24 0.0 0.0 0.0 240 330 90 150 240 90 90 0 *TR25 0.0 0.0 0.0 250 340 90 160 250 90 90 0 *TR26 0.0 0.0 0.0 260 350 90 170 260 90 90 0 *TR27 0.0 0.0 0.0 270 360 90 180 270 90 90 0 *TR28 0.0 0.0 0.0 280 370 90 190 280 90 90 0 *TR29 0.0 0.0 0.0 290 380 90 200 290 90 90 0 *TR30 0.0 0.0 0.0 300 390 90 210 300 90 90 0 *TR31 0.0 0.0 0.0 310 400 90 220 310 90 90 0 *TR32 0.0 0.0 0.0 320 410 90 230 320 90 90 90 0 *TR33 0.0 0.0 0.0 330 420 90 240 330 90 90 0 *TR34 0.0 0.0 0.0 340 430 90 250 340 90 90 0 *TR35 0.0 0.0 0.0 350 440 90 260 350 90 90 0 *TR36 0.0 0.0 0.0 360 450 90 270 360 90 90 0

Figure 5.3.23-9 VISED Y-Z Slice – SLOWPOKE – Accident Conditions

Note: SLOWPOKE fuel core basket is shifted to the NAC-LWT lid. Void space indicated by the model is the space occupied by the basket lid collar whose material, but not spacing, is conservatively removed from the model. Location of the fuel core near the bottom of the basket cavity is maintained by a spacer structurally evaluated to survive both normal and accident conditions of transport.

Figure 5.3.23-11 Sample MCNP Input File – Accident Conditions

```
NAC-LWT Cask - 15b90e14d - Accident Transport Conditions
C Top Axial Biasing - Fuel Neutron Source
C Fuel Rod Cells
1 1 -3.4819 -1 +3 -4
           u=5 $ Fuel Meat
2 4 -2.7000 -2 +1 3 -4 u=5 $ Clad
3 4 -2.7000 -5 : -6 u=5 $ Top C
4 4 -2.7000 -7 u=5 $ Bottom Cap
            u=5 $ Top Cap
      #1 #2 #3 #4
5 0
              u=5 $ Outside Rod
C Fuel Core Array Cell
      -8 u=4 lat=2 fill=-15:15 -15:15 0:0 $ Core Array
6 0
  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 4 5 5 5 4 4 4 4 4 4 4 4
  4
   4
  4 4 4 4 4 4 4 4 4 5 5 5 5 5 4 5 5 4 5 5 4 5 5 5 5 5 4 4 4 4
  4
  4 4 4 4 4 4 4 5 5 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 4 4 4 4
  4 4 4 4 4 4 5 5 5 5 5 5 5 4 5 5 4 5 5 4 5 5 5 5 5 5 4 4 4 4 4
   4
  4 4 4 4 4 5 5 5 5 5 5 5 5 5 4 4 4 4 5 5 5 5 5 5 5 5 4 4 4 4 4 4
  4 4 4 4 4 5 5 5 5 5 5 4 5 5 4 5 5 4 5 5 5 5 5 5 5 4 4 4 4 4 4 4
  4
  C Cells - SLOWPOKE Core Basket
70
      -9 fill=4 ( 0.0000 0.0000 3.3274 ) u=3 $ SLOWPOKE Core
8 6 -7.9400 -10
          u=3 $ Base Plate
9 6 -7.9400 -11 +12 u=3 $ Basket Tube
10 6 -7.9400 -13 u=3 $ Shield Plug
         u=3 $ Lid Plate
11 6 -7.9400 -14
    -15 u=3 $ Lid Spa
#7 #8 #9 #10 #11 #12
12 0
           u=3 $ Lid Spacer
13 0
                     u=3 $ Void
C Cells - LWT Cavity
      -16 fill=3 ( 0.0000 0.0000 377.6980 ) u=2
14 0
15 0
      #14
          u=2
C Cells - LWT Cask Accident Conditions
16 5 -11.344 -20 u=1 $ BotPb
17 0
      -19 fill=2 u=1 $ Cavity
18 6 -7.9400 -18 +20 u=1 $ Bottom
19 6 -7.9400 -17 +18 +22 +24 +19 u=1 $ Outer Shell
20 6 -7.9400 -21 +24 +19 u=1 $ Inner Shell Taper
21 6 -7.9400 -23 +19 u=1 $ Inner Shell
22 5 -11.344 -24 +23 -25 u=1 $ Lead
23 5 -11.344 -22 +21 +24 -27 -26 u=1 $ Lead Taper
24 0 -22 +21 +24 +27 u=1 $ Axial Lead Slump
25 0
       -24 +25 u=1 $ Radial Lead Slump - Main
26 0
       -22 +24 -27 +26 u=1 $ Radial Lead Slump - Taper
       +17 u=1 $ Outside
27 0
C Detector Cells - Axial Biasing
100 0 -100 fill=1 $ Surface
200 0 -200 +100 $ 1m
```

300 0

 $-300 +100 +200 \pm 2m$

August 2015

400 -400 +100 +200 +300 \$ 5m 0 500 0 -500 +100 +200 +300 +400 \$ Edge 600 0 -600 +100 +200 +300 +400 +500 \$ Driver 0 +100 +200 +300 +400 +500 +600 \$ Exterior 700 C Fuel Rod Surfaces \$ Fuel Meat OD 1 CZ 0.2108 \$ Clad OD 2 CZ 0.2616 \$ Lower Fuel Cut Plain 3 PZ 0.4572 4 PZ 22.4536 \$ Upper Fuel Cut Plain 5 RCC 0.0000 0.0000 0.3302 0.0000 0.0000 0.1270 0.3048 \$ Lower Stud Rim 6 RCC 0.0000 0.0000 0.0000 0.0000 0.0000 0.3302 0.1930 \$ Lower Stud Cap 7 RCC 0.0000 0.0000 22.4536 0.0000 0.0000 0.3810 0.3048 \$ Upper Stud C Fuel Core Lattice Surface 8 RHP 0.0 0.0 0.0 0.0 0.0 22.8346 0.5518 0.0 0.0 \$ Lattice Cell C Surfaces - SLOWPOKE Core Basket 9 RCC 0.0000 0.0000 3.3274 0.0000 0.0000 22.8346 12.3824 \$ Core 10 RCC 0.0000 0.0000 0.0000 0.0000 0.0000 1.2700 16.8466 \$ Base Plate 11 RCC 0.0000 0.0000 1.2700 0.0000 0.0000 64.8970 13.6525 \$ Tube OD 12 RCC 0.0000 0.0000 1.2700 0.0000 0.0000 64.8970 12.3825 \$ Tube ID 13 RCC 0.0000 0.0000 58.5470 0.0000 0.0000 7.6200 10.9982 \$ Shield Plug 14 RCC 0.0000 0.0000 66.1670 0.0000 0.0000 1.2700 16.8466 \$ Lid Plate 15 RCC 0.0000 0.0000 67.4370 0.0000 0.0000 6.9850 16.84655 \$ Lid Spacer C Surfaces - LWT Cavity 16 RCC 0.0000 0.0000 377.6980 0.0000 0.0000 74.4220 16.8467 \$ Basket C Surfaces - LWT Cask Accident Conditions 17 RCC 0.0000 0.0000 -26.6700 0.0000 0.0000 507.3650 36.5189 \$ Lwt 18 RCC 0.0000 0.0000 -26.6700 0.0000 0.0000 26.6700 36.5189 \$ Bottom 19 RCC 0.0000 0.0000 0.0000 0.0000 452.1200 16.9863 \$ Cavity 20 RCC 0.0000 0.0000 -17.7800 0.0000 0.0000 7.6200 26.3525 \$ Bottom Gamma Shield 21 RCC 0.0000 0.0000 0.0000 0.0000 0.0000 444.5000 20.1740 \$ Lead ID - Taper 22 RCC 0.0000 0.0000 0.0000 0.0000 0.0000 444.5000 31.5976 \$ Lead OD - Taper 23 RCC 0.0000 0.0000 13.8176 0.0000 0.0000 416.8648 18.9103 \$ Lead ID 24 RCC 0.0000 0.0000 13.8176 0.0000 0.0000 416.8648 33.3271 \$ Lead OD 25 PY 31.4618 \$ Radial Slump - Main 26 PY 31.4618 \$ Radial Slump - Taper 27 PZ 437.6266 \$ Top Lead Slump C Axial Detector DTA (Surface) 100 RCC 0.0000 0.0000 -26.7700 0.0000 0.0000 507.5650 36.5190 101 CZ 7.3038 102 CZ 14.6076 103 CZ 21.9114 104 CZ 29.2152 C Axial Detector DTB (1m) 200 RCC 0.0000 0.0000 -26.7700 0.0000 0.0000 607.5650 136.5190 201 CZ 27.3038 202 CZ 54.6076 203 CZ 81.9114 204 CZ 109.2152 C Axial Detector DTC (2m) 300 RCC 0.0000 0.0000 -26.7700 0.0000 0.0000 707.5650 236.5190 301 CZ 47.3038 302 CZ 94.6076 303 CZ 141.9114 304 CZ 189.2152 C Axial Detector DTD (5m) 400 RCC 0.0000 0.0000 -26.7700 0.0000 0.0000 1007.5650 236.6190 401 CZ 47.3238 402 CZ 94.6476 403 CZ 141.9714 404 CZ 189.2952 C Axial Detector DTE (Edge) 500 RCC 0.0000 0.0000 -26.7700 0.0000 0.0000 1091.6650 236.7190 501 CZ 47.3438 502 CZ 94.6876 503 CZ 142.0314 504 CZ 189.3752 C Axial Detector DTF (Driver) 600 RCC 0.0000 0.0000 -26.7700 0.0000 0.0000 1244.0650 236.8190

NAC International

601 CZ 47.3638

```
602 CZ 94.7276
603
    CZ 142.0914
604 CZ 189.4552
С
C Materials List
С
C U-Al Fuel
m1
      92235 -2.5201E-01 92238 -2.8001E-02 13027 -7.1999E-01
C Water
     1001 6.6667E-01 8016 3.3333E-01
m2
mt2
     lwtr.01
C Water/Glycol
     1001 -1.03200E-01 8016 -6.82400E-01 6000 -2.14400E-01
mЗ
C Aluminum
m4
     13027 -1.0
C Lead
      82000 -1.0
m5
C Stainless Steel 304
mб
      26000 -0.695 24000 -0.190 28000 -0.095
      25055 -0.020
C Aluminum Honeycomb Impact Limiter
m7
     13027 -1.0
С
C Cell Importances
imp:n 1 32r 0
С
C Source Definition - Fuel Neutron
C 15 GWd/MTU burnup, 90 wt% U-235, 14-day cool time, 2.786 g U-235 per rod, 39 W/core
sdef RAD=d1 EXT=d2 ERG=d3 cell=d4
     POS= 0.0000 0.0000 0.4572
     AXS= 0.0000 0.0000 1.0000
sil 0 0.2108
sp1 -21 1
si2 0 21.9964
sp2 0 1
si3
     1.000E-11 1.000E-08 3.000E-08 5.000E-08 1.000E-07 2.250E-07
     3.250E-07 4.140E-07 8.000E-07 1.000E-06 1.130E-06 1.300E-06
     1.860E-06 3.060E-06 1.070E-05 2.900E-05 1.010E-04 5.830E-04
     3.040E-03 1.500E-02 1.110E-01 4.080E-01 9.070E-01 1.420E+00
     1.830E+00 3.010E+00 6.380E+00 2.000E+01
sp3 0.0000E+00 7.7644E-17 1.7532E-16 3.4335E-14 7.9442E-14 2.6321E-13
     4.0690E-13 2.2042E-13 2.1252E-12 1.5718E-12 8.2450E-13 1.3824E-12
     6.4949E-12 1.6664E-11 1.8663E-10 2.4523E-09 1.5003E-08 1.2291E-06
     1.2619E-05 1.5888E-04 5.3354E-03 4.7898E-02 9.6974E-02 1.1373E-01
     6.2345E-02 2.3453E-02 1.4419E-03 8.5813E-05
# SI4 SP4
     L D
     100:17:14:7:6:-1 1.0000
mode n
nps 6.40E+06
С
C ANSI/ANS-6.1.1-1977 - Neutron Flux-to-Dose Conversion Factors
C (mrem/hr)/(neutrons/cm2-sec)
de0 2.5E-08 1E-07 1E-06 0.00001 0.0001 0.001 0.01
     0.1 0.5 1 2.5 5 7 10
     14 20
df0 3.67E-03 3.67E-03 4.46E-03 4.54E-03 4.18E-03 3.76E-03 3.56E-03
     2.17E-02 9.26E-02 1.32E-01 1.25E-01 1.56E-01 1.47E-01 1.47E-01
     2.08E-01 2.27E-01
C
C Weight Window Generation - Top Axial
wwg 2 0 0 0 0
wwp:n 5 3 5 0 -1 0
mesh geom=cyl ref=0 0 400 origin=0.1 0.1 -527
     imesh 16.8 17.0 18.9 33.3 36.5 536.5
     iints 1 1 1 1 1 1
     jmesh 500 509 517 527 906 928 979 1007 1507
     jints 1 1 1 1 1 12 1 1 1
     kmesh 1
```

1.00

kints 1 wwge:n 1e-5 1e-3 1 20 fc2 Axial Surface Tally f2:n +100.2 fm2 1.04728E+02 fs2 -101 -102 -103 -104 T tf2 fc12 Axial 1m Tally f12:n +200.2 fm12 1.04728E+02 fs12 -201 -202 -203 -204 T +f12fc22 Axial 2m Tally f22:n +300.2 fm22 1.04728E+02 fs22 -301 -302 -303 -304 T tf22 fc32 Axial 5m Tally f32:n +400.2 fm32 1.04728E+02 fs32 -401 -402 -403 -404 T tf32 fc42 Axial Edge Tally f42:n +500.2 fm42 1.04728E+02 fs42 -501 -502 -503 -504 T tf42 fc52 Axial Driver Tally f52:n +600.2 fm52 1.04728E+02 fs52 -601 -602 -603 -604 T tf52 C C Print Control prdmp -30 -60 1 2 print C Random Number Generator rand gen=2 seed=46929924663793 stride=152917 hist=1 C C Rotation Matrix С *TR1 0.0 0.0 0.0 10 100 90 -80 10 90 90 0 *TR2 0.0 0.0 0.0 20 110 90 -70 20 90 90 0 *TR3 0.0 0.0 0.0 30 120 90 -60 30 90 90 0 *TR4 0.0 0.0 0.0 40 130 90 -50 40 90 90 90 0 *TR5 0.0 0.0 0.0 50 140 90 -40 50 90 90 0 *TR6 0.0 0.0 0.0 60 150 90 -30 60 90 90 0 *TR7 0.0 0.0 0.0 70 160 90 -20 70 90 90 90 0 *TR8 0.0 0.0 0.0 80 170 90 -10 80 90 90 0 *TR9 0.0 0.0 0.0 90 180 90 0 90 90 90 90 0 *TR10 0.0 0.0 0.0 100 190 90 10 100 90 90 0 *TR11 0.0 0.0 0.0 110 200 90 20 110 90 90 0 *TR12 0.0 0.0 0.0 120 210 90 30 120 90 90 0 *TR13 0.0 0.0 0.0 130 220 90 40 130 90 90 0 *TR14 0.0 0.0 0.0 140 230 90 50 140 90 90 90 0 *TR15 0.0 0.0 0.0 150 240 90 60 150 90 90 0 *TR16 0.0 0.0 0.0 160 250 90 70 160 90 90 0 *TR17 0.0 0.0 0.0 170 260 90 80 170 90 90 90 0 *TR18 0.0 0.0 0.0 180 270 90 90 180 90 90 0 *TR19 0.0 0.0 0.0 190 280 90 100 190 90 90 0 *TR20 0.0 0.0 0.0 200 290 90 110 200 90 90 0 *TR21 0.0 0.0 0.0 210 300 90 120 210 90 90 0 *TR22 0.0 0.0 0.0 220 310 90 130 220 90 90 0 *TR23 0.0 0.0 0.0 230 320 90 140 230 90 90 0 *TR24 0.0 0.0 0.0 240 330 90 150 240 90 90 0 *TR25 0.0 0.0 0.0 250 340 90 160 250 90 90 0 *TR26 0.0 0.0 0.0 260 350 90 170 260 90 90 0 *TR27 0.0 0.0 0.0 270 360 90 180 270 90 90 0 *TR28 0.0 0.0 0.0 280 370 90 190 280 90 90 0 *TR29 0.0 0.0 0.0 290 380 90 200 290 90 90 0 *TR30 0.0 0.0 0.0 300 390 90 210 300 90 90 0

NAC International

0.0	0.0	0.0	310	400	90	220	310	90	90	90	0
0.0	0.0	0.0	320	410	90	230	320	90	90	90	0
0.0	0.0	0.0	330	420	90	240	330	90	90	90	0
0.0	0.0	0.0	340	430	90	250	340	90	90	90	0
0.0	0.0	0.0	350	440	90	260	350	90	90	90	0
0.0	0.0	0.0	360	450	90	270	360	90	90	90	0
	0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{cccc} 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							

NAC International

Figure 5.3.23-12 Normal Condition Radial Surface Dose Rate Profile by Source Type – SLOWPOKE Core

Note: Results based on tally located at the radius of the cask neutron shield shell. Peak dose rates occur at the SLOWPOKE core centerline elevation. Dose rates at the cask surface between impact limiter and neutron shield shell are lower than at the fuel core midplane.

Figure 5.3.23-13 Normal Condition 2-m + Conveyance Radial Surface Dose Rate Profile by Source Type – SLOWPOKE Core

Figure 5.3.23-14 Accident Condition Radial 1m Dose Rate Profile by Source Type – SLOWPOKE Core

Note: Dose rates are circumferential average. Maximum dose rate of 80.7 mrem/hr was calculated using an azimuthal tally at the location of the lead slump.

Figure 5.3.23-15 Accident Condition Radial 1m Dose Rate Azimuthal Profile at Fuel Height – SLOWPOKE Core

Fuel Element Type		Rod
Chemical Form		U-Al Alloy
Active Fuel Length	cm	22
Active Fuel Diameter	cm	0.422
Weight of U-235	g	2.795
Weight of total U	g	3.0
Alloy or compound material weight	g	7.714
Total weight of fuel meat	g	10.714
Clad Thickness	cm	0.051
Clad Weight (including caps)	g	4.981
Clad Material		Aluminum
Element Length	cm	22.83
Diameter (endcaps)	cm	0.61
Diameter (clad)	cm	0.52
Total weight of fuel element	g	15.695
Enrichment %	%	93
Core Maximum Power	kW	20
Maximum Burnup (²³⁵ U depletion)	%	0.65

Table 5.3.23-1 SLOWPOKE Fuel Geometry and Materials

Table 5.3.23-2	Source Term	Generation	Parameters	for S	SLOWPOKE F	uel

Parameter	Value
U Mass Per Rod (grams)	3.121
²³⁵ U per Core (grams)	837.1
Core Power (kW)	20
Number of Hours Burned	16752
Number of Days Cooled	14
Number of Rods / Core	298
Initial Enrichment (wt % ²³⁵ U)	90
Burnup (% ²³⁵ U)	2.12
Burnup (GWd/MTU)	15
Moderator/Box Temperature (C)	40
Clad Temperature (C)	90
Fuel Temperature (C)	100

NAC International

	E Lower	E Upper	Source
Group	[MeV]	[MeV]	[neutrons/sec]
1	6.380E+00	2.000E+01	8.581E-05
2	3.010E+00	6.380E+00	1.442E-03
3	1.830E+00	3.010E+00	2.345E-02
4	1.420E+00	1.830E+00	6.234E-02
5	9.070E-01	1.420E+00	1.137E-01
6	4.080E-01	9.070E-01	9.697E-02
7	1.110E-01	4.080E-01	4.790E-02
8	1.500E-02	1.110E-01	5.335E-03
9	3.040E-03	1.500E-02	1.589E-04
10	5.830E-04	3.040E-03	1.262E-05
11	1.010E-04	5.830E-04	1.229E-06
12	2.900E-05	1.010E-04	1.500E-08
13	1.070E-05	2.900E-05	2.452E-09
14	3.060E-06	1.070E-05	1.866E-10
15	1.860E-06	3.060E-06	1.666E-11
16	1.300E-06	1.860E-06	6.495E-12
17	1.130E-06	1.300E-06	1.382E-12
18	1.000E-06	1.130E-06	8.245E-13
19	8.000E-07	1.000E-06	1.572E-12
20	4.140E-07	8.000E-07	2.125E-12
21	3.250E-07	4.140E-07	2.204E-13
22	2.250E-07	3.250E-07	4.069E-13
23	1.000E-07	2.250E-07	2.632E-13
24	5.000E-08	1.000E-07	7.944E-14
25	3.000E-08	5.000E-08	3.433E-14
26	1.000E-08	3.000E-08	1.753E-16
27	1.000E-11	1.000E-08	7.764E-17
Total			3.514E-01

Table 5.3.23-3SLOWPOKE Neutron Source Term (per rod)

	FLower	Ellppor	Sourco
-		c opper	Source
Group	[mev]	[MeV]	[photons/sec]
1	8.00E+00	1.00E+01	7.4653E-06
2	6.50E+00	8.00E+00	3.4862E-05
3	5.00E+00	6.50E+00	1.8338E-04
4	4.00E+00	5.00E+00	7.9396E-04
5	3.00E+00	4.00E+00	2.6553E+07
6	2.50E+00	3.00E+00	3.4304E+09
7	2.00E+00	2.50E+00	2.0105E+09
8	1.66E+00	2.00E+00	3.5978E+08
9	1.33E+00	1.66E+00	1.0587E+11
10	1.00E+00	1.33E+00	2.5592E+09
11	8.00E-01	1.00E+00	4.1310E+10
12	6.00E-01	8.00E-01	4.3248E+11
13	4.00E-01	6.00E-01	1.5811E+11
14	3.00E-01	4.00E-01	5.7276E+10
15	2.00E-01	3.00E-01	2.3964E+10
16	1.00E-01	2.00E-01	1.3380E+11
17	4.50E-02	1.00E-01	1.0982E+11
18	1.00E-02	4.50E-02	3.1684E+11
Total			1.3879E+12

Table 5.3.23-4 SLOWPOKE Fuel Gamma Source Term (per rod)

		Density	Number Density
Material	Element	[g/cm ³]	[atom/b-cm]
Aluminum	Al	2.67	7.278E-02
Stainless Steel 304	Fe	7.94	5.9505E-02
	Cr		1.7472E-02
	Ni		7.7392E-03
	Mn		1.7407E-03
Lead	Pb	11.34	3.2967E-02
Neutron Shield	Н	0.94	5.7965E-02
	0		2.4151E-02
	С		1.0105E-02
Impact Limiter	Al	0.50	1.1153E-02

Table 5.3.23-5 Canister/Basket/Cask Material Descriptions for SLOWPOKE Fuel

NAC International

Description	Dimension [in]
Core Basket Base Plate Thickness	0.500
Core Basket Base Plate OD	13.265
Core Basket Spacer Height	12.750
Core Basket Lid Height	3.250
Core Basket Lid Plate Thickness	0.500
Core Basket Lid OD	13.265
Core Basket Shield Thickness	3.000
Core Basket Shield OD	8.660
Core Basket Tube Height	25.550
Core Basket Tube OD	10.750
Core Basket Tube Thickness	0.500

Table 5.3.23-6 Modeled SLOWPOKE Core Basket Dimensions

Transport	Dose Rate Location	Maxim	um
Condition		[mrem/hr]	FSD
Normal	Side Surface of Cask	175.1	0.9%
	Top Surface of Cask	3.1	1.2%
	Bottom Surface of Cask	0.29	8.2%
	Side 1ft	57.2	0.8%
	Side 1m (Transport Index)	15.2	1.0%
	2m from Truck - Radial	3.1	1.1%
	2m from Top	0.24	1.2%
	Edge of Truck - Top	0.045	2.5%
	Edge of Truck - Bottom	0.018	8.4%
	Dose at Cab of Truck	0.031	3.3%
Accident	Side Surface of Cask	2127	1.7%
	Top Surface of Cask	16.3	0.8%
	Bottom Surface of Cask	1.2	9.8%
	Side 1m	80.7	2.1%
	Top 1m	2.0	26.6%
	Bottom 1m	0.15	9.9%

 Table 5.3.23-7
 Maximum Dose Rates for SLOWPOKE Fuel

Note: The bounding accident side 1 meter dose rate is taken from the azimuthal tally at the fuel height.

Table 5.3.23-8 Sur	mmarized Maximum	Dose Rates i	for SLOWPOKE Fuel
--------------------	------------------	--------------	-------------------

Transport	Dose Rate Location	Maximum	Limit
Condition		[mrem/hr]	[mrem/hr]
Normal	Side Surface of Cask	175.1	1000
	Side 1ft	57.2	200
	Side 1m (Transport Index)	15.2	N/A
	2m from Truck - Radial	3.1	10
Accident	Side 1m	80.7	1000

Note: The side 1 ft detector is closer to the cask than the edge of the conveyance where the 200 mrem/hr limit occurs.

. . . .

5.4 Shielding Evaluation

5.4.1 Shielding Evaluation Codes

The two codes used in the shielding evaluation of the NAC-LWT cask are XSDRNPM (NUREG/CR-0200, Vol. 2, F3) and QAD-CG (Cain). XSDRNPM is a 1-dimensional multigroup code developed by Oak Ridge National Laboratories (ORNL) for reactivity calculations. In this case, it is used to perform shielding analysis by solving the Boltzmann transport equation including anisotropic scattering by the discrete ordinates method. In this analysis, the P_3S_8 approximation is used for a more accurate dose rate calculation. The SCALE (NUREG/CR-0200) 27N/18G group coupled neutron-gamma cross section master library is processed through NITAWL (NUREG/CR-0200, Vol. 2, F2) and XSDRNPM for self-shielding resonance treatment and cell weighting. This step is necessary to generate the working data library required as input for XSDRNPM to perform dose rate calculations. The QAD-CG combinatorial geometry version of QAD was also developed at ORNL. It is a 3-dimensional computer code that is used extensively in industry and yields good results for gamma-ray calculations and usually satisfactory results for neutron calculations. The code uses buildup factors based on the Goldstein and Wilkins moments method calculations for gamma-ray transport in an infinite homogeneous medium. The code uses Capo's fit to the Goldstein-Wilkins data with bivariant polynomial expressions to calculate the approximate buildup factors as a function of the gamma-ray energy and the number of mean free paths from the source to the detector. The buildup factor selected for all of the shielding calculations in this case is for iron, which yields conservative results. For neutron dose calculations, the code uses either a modified Albert-Welton kernel or kernels obtained from the moments method solution of the Boltzmann transport equation. With the moments method kernels, the neutron spectrum penetrating a shield is determined on the basis of the equivalent length of a reference material between the source point and the receiver point.

XSDRNPM has been shown to be an accurate shielding code, but it has geometrical limitations. To perform calculations with XSDRNPM, a flat source distribution along the fuel axial direction and an equivalent circularized cylindrical source core are used. For the design basis Westinghouse 15×15 PWR assembly, the fuel area is 458.05 square centimeters, which yields an effective radius of 12.07 centimeters, as shown in Figure 5.3.3-6. In actuality, an axial source distribution (Figure 3.4-2) exists, which introduces higher dose rates at the peak axial source location. Also, the circularized core underestimates the dose at points where the real source region is nearer the cask surface.

QAD-CG is used to correct for the axial source distribution and the three-dimensional effects of geometry. Calculations are done with QAD for a three-dimensional model with an axial source distribution (Table 5.4.1-1) and for a 1-dimensional model with a flat source distribution. The flux to dose conversion factors for these models are found in the <u>Radiological Health Handbook</u> and are listed in Table 5.4.1-2. The buildup factor used for both of these models is for iron, since it has the largest number of mean free paths. The detector points are placed on the surface for the flat source distribution and at 2 meters from the personnel barrier for the axial source distribution. This gives a 3-dimensional to 1-dimensional correction factor, which is applied to the XSDRNPM results to calculate the actual dose. This method is used to calculate the dose rates from the side of the cask, at the surface, and at 2 meters from the personnel barrier (Table 5.1.1-4).

For the radial dose rates, an additional correction factor is applied to account for scattering. Schaeffer's Reactor Engineering for Nuclear Engineers is used to determine the scattering factors of 5 percent for primary and secondary gammas and 45 percent for neutrons. These values are found in tables 7.10 and 7.18 (Schaeffer) generated using total albedos. The use of total albedos rather than differential albedos is conservative, since total albedos take into account scattering angles that do not allow radiation to reach the detector point. It is also important to note that since this is high energy radiation, the probability of it scattering through large angles is very low.

The end-fitting calculations are straight forward. To calculate the end-fitting gamma as well as the fuel contribution to the dose rates at the ends of the cask, a simple QAD-CG model is used. The model is an arrangement of stacked disks and uses a flat source distribution so that a correction factor is not necessary. The various contributions are added together to obtain the total dose rate. The dose rates are included in Table 5.1.1-4.

The dose rates for a loss of the neutron shield are calculated using both XSDRNPM and QAD-CG. XSDRNPM is used to calculate a ratio of the dose rate on the surface with the neutron shield to the dose rate without the neutron shield. QAD-CG is used to calculate a 3-dimensional to 1-dimensional geometrical correction factor. The QAD-CG dose points are located on the surface, with a flat source distribution, and at 1 meter using an axial source distribution (Figure 3.4-2). The dose rates at 1 meter without the neutron shield are obtained by multiplying the normal operations dose rate at the surface by the 3-dimensional to 1-dimensional geometric correction factor. This product is then multiplied by the ratio of dose rates without water to with water, to obtain the hypothetical accident dose rate at 1 meter. The dose rate at 1 meter from the surface of the cask for this accident is 77.5 mrem/hour (Table 5.1.1-5), which is well below the limits of 49 CFR 173.

The lead slump accident is analyzed using QAD-CG. Models are created for the top and bottom end-fittings of a PWR and the bottom end-fitting of a BWR. The BWR bottom end-fitting is analyzed since it is bigger and has a larger ⁶⁰Co source than the PWR bottom end-fitting. It also sits closer to the bottom of the cask and, therefore, closer to the lead slump than the PWR bottom end-fitting. The analysis is not performed for the BWR top end-fitting. Detector points are placed at various positions along the outside of the cask in order to determine if the lead "window" that could be created during the cask drop would have adverse shielding consequences. The resulting dose rates are presented in Table 5.1.1-6.

For completeness, a normal transport conditions shielding analysis is performed for the NAC-LWT cask, which takes into account the shell tolerances found in the license drawings (Section 1.4). The method used is identical to the one used for the fuel radial calculations; however, neutrons and secondary gammas are not recalculated because a small reduction in the lead thickness would not significantly affect either the neutrons or the secondary gammas. The lead density in this analysis was determined by multiplying the maximum density at room temperature (11.35 g/cc) by a ratio of the volume of lead at 620°F to the volume of lead at room temperature (335,779.9/339,930.5). A thermal insulator is used to preclude lead melt during the 10 CFR 71 hypothetical fire accident. The displacement of the lead by the thermal insulator is also taken into account. The dose rate, accounting for tolerances and thermal insulator, is 8.93 mrem/hour at the fuel midplane, 2 meters from the personnel barrier, an increase of only 0.79 mrem/hour. Therefore, under normal transport conditions, with the tolerances and the thermal insulator taken into account, the cask is within the limits of 10 CFR 71.

Axial Location Above Bottom of Active Fuel Length (cm)	Relative Axial Source Strength	Axial Location Above Bottom of Active Fuel Length (cm)	Relative Axial Source Strength
0.0	0.35	99.72	1.20
5.54	0.45	105.26	1.20
11.08	0.563	110.80	1.20
16.62	0.685	116.34	1.20
22.16	0.768	121.88	1.20
27.70	0.843	127.42	1.20
33.24	0.909	132.96	1.20
38.78	0.965	138.50	1.20
44.32	1.015	144.04	1.20
49.86	1.039	149.58	1.20
55.40	1.074	155.12	1.20
60.94	1.103	160.66	1.20
66.48	1.128	166.20	1.20
72.02	1.148	171.74	1.20
77.56	1.166	177.28	1.20
83.10	1.175	182.82	1.20
88.64	1.20	188.36	1.20
94.18	1.20	193.90	1.187

 Table 5.4.1-1
 Discrete Axial Source Distribution

Table 5.4.1-1 Discrete Axial Source Distribution (Continued)

Axial Location Above Bottom of Active Fuel Length (cm)	Relative Axial Source Strength	Axial Location Above Bottom of Active Fuel Length (cm)	Relative Axial Source Strength
199.44	1.175	288.08	1.04
204.98	1.175	293.62	0.934
210.52	1.175	299.16	0.88
216.06	1.175	304.70	0.88
221.60	1.152	310.24	0.88
227.14	1.14	315.78	0.88
232.68	1.14	321.32	0.88
238.22	1.14	326.86	0.88
243.76	1.14	332.40	0.839
249.30	1.14	337.94	0.769
254.84	1.14	343.48	0.665
260.38	1.089	349.02	0.591
265.92	1.04	354.56	0.513
271.46	1.04	360.10	0.523
277.00	1.04	365.75	0.301
282.54	1.04		

August 2015

Energy (MeV)	Flux-to-Dose
0.35	5.13E-4
0.452	8.00E-4
0.79	1.52E-3
0.90	1.67E-3
1.25	2.17E-3
1.29	2.38E-3
1.58	2.63E-3
1.74	2.86E-3
2.35	3.45E-3

Table 5.4.1-2Flux to Dose Conversion Factors

NAC International

5.4.1-6