CRISIS MANAGEMENT PLAN

IMPLEMENTING PROCEDURE

EDA - 02

"Off-Site Dose Projections for Catawba Nuclear Station"

an 12 Approved By

Daté

8909080160 890830 PDR ADOCK 05000269 F PDR

Rev. 4 August 28, 1989 :::-

OFFSITE DOSE PROJECTIONS FOR CATAWBA NUCLEAR STATION

1.0 PURPOSE

To describe a method for projecting dose commitment from a noble gas and/or iodine release, through the containment, the unit vent and/or the steam relief valves, during an emergency.

2.0 REFERENCES

- 2.1 HP/0/B/1000/10, Determination of Radiation Monitor Setpoints
- 2.2 HP/0/B/1009/06, Alternative Method for Determining Dose Rate Within the Reactor Building
- 2.3 HP/0/B/1009/14, Health Physics Actions Following an Uncontrolled Release of Liquid Radioactive Material
- 2.4 HP/0/B/1009/17, Unit 1 Post-Accident Containment Air Sampling System
- 2.5 HP/0/B/1009/21, Abnormal Unit Vent Sampling
- 2.6 CNS Technical Specification 3.6.1.2
- 2.7 Offsite Dose Calculation Manual (ODCM)
- 2.8 Regulatory Guide 1.4, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Pressurized Water Reactors"
- 2.9 Regulatory Guide 1.109, "Calculations of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR Part 50, Appendix I"
- 2.10 NuReg-0396, EPA 520/1-78-016, "Planning Basis for the Development of State and Local Government Radiological Emergency Response Plans in Support of Light Water Nuclear Power Plants"
- 2.11 NuReg-0654, FEMA-REP-1, Rev. 1, "Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants"
- 2.12 Letter from F. G. Hudson, September 30, 1985, re: Release Rate Information for McGuire and Catawba Nuclear Station (File: CN-134.10)
- 2.13 Catawba Nuclear Station Class A Computer Model Validation (File: NUC-0306)
- 2.14 Letter from J. E. Thomas, May 19, 1987, File: CN-1346.05 and personal conversation with Frank Poley
- 2.15 Radioiodine and Particle Transmission Through Plant Vent Sampling Lines at Catawba Nuclear Station, prepared by SAIC, dated July 1989.

3.0 LIMITS AND PRECAUTIONS

- 3.1 This procedure is an alternative method of dose assessment to the Catawba Class A Atmospheric Dispersion Model computer code.
- 3.2 This procedure applies to releases made from Catawba Nuclear Station only. Many of the values contained in this procedure are site specific.
- 3.3 It is assumed that the whole body dose from an iodine release is very small compared to the thyroid dose; therefore, iodine whole body dose is not considered here.
- 3.4 This procedure considers all releases to be ground level releases and that meteorological data are 15 minute averages.
- 3.5 Once a zone has been added to the list of affected zones, it shall not be removed except under the direction of the Dose Assessment Coordinator.
- 3.6 Once the Crisis Management Center (CMC) has been activated, the doses calculated by the Technical Support Center (TSC) dose assessment group, should be compared with those calculated by the CMC before an evacuation recommendation is made.

4.0 PROCEDURE

- 4.1 Meteorology Assessment
 - 4.1.1 Acquire the following information and record on the Dose Assessment Worksheet (Enclosure 5.1):
 - 4.1.1.1 Lower tower wind speed (WS) in miles per hour.

4.1.1.1.1 Use upper tower wind speed if lower tower wind speed is not available.

- 4.1.1.2 Upper tower wind direction in degrees from North (North = 0).
 - 4.1.1.2.1 Use lower tower wind direction if upper tower wind direction is not available.
 - 4.1.1.2.2 If the wind speed or wind direction cannot be obtained from plant systems, obtain them from the National Weather Service (phone 704-359-8466). If the NWS information is unavailable, then obtain data from McGuire Nuclear Station Control Room (73 or 78, then 875, then ext. 4262, or 4263, or 4264).

4.1.1.3 Temperature gradient (ΔT) in degrees centigrade.

4.1.1.4 Using Enclosure 5.2, record the stability class based on ΔT .

4.1.1.4.1 If the temperature gradient is unknown, the following applies:

If between 1000 - 1600 hours, use stability class D;

If between 1600 - 1000 hours, use stability class G.

- 4.1.1.5 If necessary, use forecasted meteorological data for calculating doses due to changing meteorological conditions.
- 4.1.2 Determine the atmospheric dispersion parameter, $\overline{X/Q}$ (sec/m³), for .5, 2, 5 and 10 miles (record on Enclosure 5.1, page 2):
 - 4.1.2.1 Use ΔT , determine the two hour relative concentration value ($C_{\rm H}$) from Enclosure 5.2.
 - 4.1.2.2 Convert the $C_{\rm H}$ values to $\overline{\rm X/Q}$:

$$\overline{X/Q} = C_{H}$$

4.2 Source Term Assessment - Steam Relief Valve (Enclosure 5.4)

4.2.1

Determine the Sub-Noble Gas Release Rates, SQ_{NG} (Ci/sec), by the following method:

4.2.1.1 For Unit 1-EMF26, EMF27, EMF28 and EMF29 or for Unit 2-EMF10, EMF11, EMF12, EMF13:

$$SQ_{NG} = R/hr \times \frac{1}{VOPEN} \times LBM \times CF \frac{Ci}{1bm R/hr}$$

where:

R/hr	=	EMF26, EMF27, EMF28, EMF29, EMF10,
VOPEN	=	EMF11, EMF12, EMF13 reading time the valve is open in seconds
LBM	=	lbm released for the time the
		valve was open
CF	=	the correction factor per
	•	Enclosure 5.5.

4.2.2 Determine the Noble Gas Release Rate, Q_{NG}(Ci/sec):

 $Q_{NG} = SQ_{NG}(EMF26) + SQ_{NG}(EMF27) + SQ_{NG}(EMF28) + SQ_{NG}(EMF29)$ 4.2.3 Determine the Iodine release rate, $Q_{I}(Ci/sec)$:

> $Q_{I} = Q_{NG} \times Irat$ where:

Irat = ratio of I131 eqv./Xe133 eqv. from Enclosure 5.6. 4.2.4 Record Q_{NG} and Q_{I} on Enclosure 5.1, page 2.

4.3 Source Term Assessment - Containment (Enclosure 5.7)

4.3.1 Determine the Noble Gas Release Rate, Q_{NG}(Ci/sec) based on one of the following methods;

4.3.1.1 Based on and EMF reading, where;

 $Q_{NG} = EMF \times CF \times LR$

Where;

EMF = 39(L), if EMF39(L) <1E7 cpm and flowpath not isolated, EMF = 39(H), if EMF39(L) is offscale and EMF39(H) > 100 cpm and flowpath not isolated, EMF = 53A or 53B, if EMF39(H) is offscale,

CF = the correction factor per Enclosure 5.8.

LR = Leak Rate x BYPASS, Leak Rate, (ml/hr), by one of the following methods:

> based on containment pressure: LR = RLR (from Enclosure 5.9)

based on an opening in containment: LR = OIC (from Enclosure 5.10)

based on design leak rate: LR = 2.449E6 (Reference 2.13)

BYPASS = Bypass leakage, default is 7% or 0.07 (Reference 2.6) 4.3.1.2 Based on PACS sample, where;

 $Q_{NG} = PACS \times CF \times LR$

where;

PACS = μ Ci/ml (Reference 2.4)

 $CF = 2.78E-10 \frac{Ci hr}{sec \ \mu Ci}$

LR = Leak rate, as determined in Step 4.3.1.1 above

.2 Detemine the Iodine Release Rate, Q_I (Ci/sec) based on one of the following methods:

4.3.2.1 Based on Q_{NC};

 $Q_{I} = Q_{NG} \times Irat$

where:

Q_{NG} = Noble Gas Release Rate as determined in Step 4.3.1 above

Irat = ratio of I131 eqv./Xe 133 eqv. from Enclosure 5.6.

4.3.2.2 Based on EMF 40 (if flowpath is not isolated);

 $Q_{I} = \Delta CPM \times 9.82E-20 Ci hr min x LR$ $\Delta min x ER$

where:

ΔCPM = reading from EMF40
Δmin = the time interval for EMF40
observation (normally 15 minutes)

4.0E-5 = correlation factor for EMF40 from Reference 2.1.

LR = Leak rate, as determined in Step 4.3.1.1 above

4.3.2

4.3.2.3 Based on PACS sample;

 $Q_T = PACS \times CF \times LR$

where;

PACS =
$$(\mu Ci/ml)$$
 (Reference 2.4)

 $CF = 2.78E-10 \frac{Ci hr}{sec \ \mu Ci}$

LR = Leak rate as determined in Step 4.3.1.1 above

4.3.3 Record Q_{NG} and Q_T on Enclosure 5.1, page 2.

4.4 Source Term Assessment - Unit Vent (Enclosure 5.11)

4.4.1 Determine the Noble Gas Release Rate, Q_{NG}(Ci/sec) based on one of the following methods:

4.4.1.1 Based on as EMF reading, where;

 $Q_{NG} = EMF \times CF \times CFM$

where:

EMF = 36(L) if EMF36(L) < 1E7 cpm, EMF = 36(H) if EMF36(L) is offscale and EMF36(H) > 100 cpm and compressor not tripped, EMF = 54 if EMF36(H) is offscale, CF = unit vent factor per Enclosure 5.12 CFM = unit vent flow rate (ft³/min)

4.4.1.2

.2 Based on unit vent sample, where;

 Q_{NG} = Unit Vent Sample x CF x CFM

where:

Unit Vent Sample = $(\mu Ci/m1)$ per Reference 2.5

 $CF = 4.72E-4 \frac{Ci \min ml}{sec ft^3 \mu ci}$

CFM = unit vent flow rate (ft³/min)

4.4.2

Determine the Iodine Release Rate, Q_I (Ci/sec), based on one of the following methods:

4.4.2.1 Based on Q_{NG};

 $Q_{I} = Q_{NG} \times Irat$

where:

Q_{NG} = Noble Gas Release Rate as determined in Step 4.4.1 above

Irat = ratio of I131 eqv./Xe133 eqv. from Enclosure 5.6.

4.4.2.2 Based on EMF 37 (if compressor not tripped);

 $\frac{\Delta CPM}{\Delta min} \times 1.33E-13 \quad \underbrace{Ci \ min \ min}_{sec \ ft^3 \ cpm} \times CFM = Q_{I}$

where:

ΔCPM = reading from EMF37
Δmin = the time interval from EMF37
observation (normally 15 minutes)

1.33E-13 = 4.0E-5 µCi/cpm x 0.1667 min/ft³ (inverse of EMF flow rate) x 1Ci/1E6 µCi x 1 min/60 sec. x 1.2

where:

- 4.0E-5 = correlation factor for EMF37 from Reference 2.1.
- 1.2 = inverse of iodine transmission factor (see Reference 2.15)

CFM = unit vent flow rate (ft^3/min)

4.4.2.3 Based on unit vent sample:

 Q_{I} = Unit vent sample x 4.72E-4 <u>Ci min ml</u> x CFM sec ft³ µCi where:

Unit vent sample = $(\mu Ci/ml)$ (Reference 2.5)

CFM = unit vent flow rate (ft³/min)

4.4.3 Record Q_{NG} and Q_{I} on Enclosure 5.1, page 2.

4.5 Dose Assessment (Enclosure 5.1)

4.5.1 Determine the total Noble Gas and Iodine Release Rates $(TQ_{NG} \text{ and } TQ_{I})$ from all releases and record on Enclosure 5.1, page 1.

4.5.2

Determine the Projected Whole Body Dose Rate, DRwb (rem/hr), due to the noble gases for .5, 2, 5 and 10 miles:

DRwb = 33.6
$$\frac{\text{rem m}^3}{\text{hr Ci}} \times \text{TQ}_{\text{NG}} \times \overline{X/Q}$$

where:

33.6 is the adult whole body dose conversion factor from Reference 2.9 in $\frac{\text{rem } \text{m}^3}{\text{hr Ci}}$

4.5.3

3 Determine the Projected Whole Body Dose, Dwb(rem), due to noble gases for .5, 2, 5 and 10 miles:

 $Dwb = DRwb \times 2 hr$

where:

dose is integrated over 2 hour time period

4.5.4

Determine the Projected Thyroid Dose Rate, DRct (rem/hr), due to iodine for .5, 2, 5 and 10 miles:

$$DRct = \overline{X/Q} \times TQ_{I} \times 2.26E6 \frac{rem m^{3}}{hr Ci}$$

where:

2.26E6 is the child thyroid dose conversion factor from Reference 2.13 in $\frac{\text{rem } \text{m}^3}{\text{hr Ci}}$

4.5.5 Determine the Projected Thyroid Dose, Dct(rem), due to iodine for .5, 2, 5 and 10 miles:

 $Dct = DRct \times 2 hr$

where:

dose is integrated over 2 hour time period

- 4.6 Protective Action Recommendations (Enclosure 5.1):
 - 4.6.1 Circle on Enclosure 5.1 the Protective Action Zones (PAZ), based upon 1) the wind speed and wind direction, using Enclosure 5.3; and 2) the projected dose from Enclosure 5.1 compared to the following.
 - 4.6.2 If the projected dose in a PAZ is < 1 rem whole body or <5 rem thyroid, then recommend no protective action (action A).
 - 4.6.3 If the projected dose in a PAZ is 1 5 rem whole body or 5 25 rem thyroid, then recommend evacuate children and pregnant women and shelter others (actions B and E).

. - . .

- 4.6.4 If the projected dose in a PAZ is > 5 rem whole body or
 > 25 rem thyroid, then recommend evacuate everyone (action C).
- 4.6.5 Recheck meteorology conditions approximately every 15 minutes to ensure that other sectors have not been affected.
- 4.7 Emergency Classification (Enclosure 5.1)
 - 4.7.1 Check the box indicating the emergency classification based upon the following.
 - 4.7.2 If the dose rate at the site boundary is $\geq 5.0E-4$ rem/hr whole body then recommend an Alert.
 - 4.7.3 If the dose rate at the site boundary is > .05 rem/hr whole body or > .25 rem/hr thyroid, then recommend a Site Area Emergency if readings last 30 minutes.
 - 4.7.4 If the dose rate at the site boundary is \geq .5 rem/hr whole body or \geq 2.5 rem/hr thyroid, then recommend a Site Area Emergency if readings last 2 minutes.
 - 4.7.5 If the dose rate at the site boundary is > 1 rem/hr whole body or > 5 rem/hr thyroid, then recommend a General Emergency.

5.0 ENCLOSUES

- 5.1 Sample of Meteorology Source Term and Dose Assessment Worksheet
- 5.2 Two-hour Relative Concentration Factors (C_{μ})
- 5.3 Protective Action Zones Determination
- 5.4 Sample of Source Term Assessment Steam Relief Valves
- 5.5 EMF26, EMF27, EMF28, EMF29 or EMF10, EMF11, EMF12, EMF13 Noble Gas Correction Factor
- 5.6 I131 eqv./Xe 133 eqv. Ratio
- 5.7 Sample of Source Term Assessment Containment
- 5.8 Containment Noble Gas Correction Factor
- 5.9 Containment Leakage Rate versus Pressure
- 5.10 Containment Leakage Rate versus Pressure and Size Opening
- 5.11 Sample of Source Term Assessment Unit Vent
- 5.12 Unit Vent Noble Gas Correction Factor

Page 🔅	l of 2	
--------	--------	--

. '

DUKE POWER COMPANY CATAWBA NUCLEAR STATION EDA-2 ENCLOSURE 5.1

-		CATAWBA NUCLEAR STATION	Page 1 of 2
	-	EDA-2 ENCLOSURE 5.1	
		METEOROLOGY, SOURCE TERM AND DOSE ASSESSMENT	
	Cäta	tawba Nuclear Station	ency 🗆 Drill
-		eteorology, Source Term and Dose Assessment Report	
<u>-</u>	App	proved for release to state/counties by nit Date/Time of reactor trip Prepared by cojection based on data on Time since trip	
	Pro	Direction based on data on the second s	
	,		hrs.
		RT 1	
	7.		· _
		 (a) Does not involve the release of radioactive materials (b) Involves the potential for a release, but no release (c) Involves the release of radioactive materials. 	from the plant. is occurring.
· _	8.	Recommended Protective Actions (based on Dose Projections onl	v)
		(a) - In zones AO, B1, E1, A1, C1, D1, F1, B2, A2, C2, D2, E2	, F2, F3, A3
		no action is recommended.	
		(b) - In zones AO, B1, E1, A1, C1, D1, F1, B2, A2, C2, D2, E2 remain indoors with the doors and windows closed, turn	, F2, F3, A3
		conditioners and other ventilation monitor EBS stations	
		(c) - In zones AO, B1, E1, A1, C1, D1, F1, B2, A2, C2, D2, E2	, F2, F3, A3
		evacuate their homes and businesses and go to a designa	ted shelter.
		(e) - In zones A0, B1, E1, A1, C1, D1, F1, B2, A2, C2, D2, E2	, F2, F3, A3
	NOT	pregnant women and children evacuate and go to a design OTES: 1) For all evacuations, recommend that the remainder of th	ated shelter.
		emergency planning zone stay indoors.	
		2) Compare these recommendations with other groups' recomm	endations
		that the Emergency Coordinator/Recovery Manager reviews	•
	4.	RT 2 Dose Projection Data	
		Windspeed mph Wind Direction degrees from No	rth
		Release Type: Ground Weighted Dose 33.6 (R/hr/Ci/m ³) who	le body
	i	Conversion Factor 2.26E6 (R/hr/Ci/m	
		Stability Class	•
		Radiological Release: Noble Gas Equivalent Ci/ Iodine Equivalent Ci/	sec
	5.	The type of actual or projected release is:	sec
	5.	(a) Airborne (b) Waterborne (c) Surface Spill (d) 0	ther
		(e) No release is in progress or expected at this time.	
			· ·
	6.	Release (a) will begin/ (b) began at:	
	7.	The estimated duration of the release is hours.	· ·
	8.	The source and description of the release is:	
		The source and description of the release is:	······
	0		
	9.		
		Dose Commitment Base on hrs whole Body Child Thyroid Whole Body Child Thyroid Whole Body Child Th	of release
	Di	Whole Body Child Thyroid Whole Body Child Thy Distance rem/hr rem/hr rem rem	
		te Boundary	
		2 miles	
		5 miles	

Page 2 of 2

DUKE POWER COMPANY CATAWBA NUCLEAR STATION EDA-2

ENCLOSURE 5.1 METEOROLOGY, SOURCE TERM AND DOSE ASSESSMENT

10. Field measurement of dose rate (mr/hr) or contamination $(dpm/100 \text{ cm}^2)$ Time Zone Distance Direction Whole Body Child Thyroid 222222222222222222 Miles .5 1 2 4 5 7 8 PAZ **A**0 B1 E1 A1 C1 D1 F1 B2 A2 C2 D2 E2 F2 F3 A3. Total Source Term Assessment 🗆 Current 🗆 Hypothetical Steam Relief Containment Unit Vent Encl. 5.4 Encl. 5.11 Encl. 5.7 _Ci/sec + ____Ci/sec + ____Ci/Sec = Ci/Sec (TQ_{NG}) $\underline{Ci/sec} + \underline{Ci/Sec} = \underline{Ci/Sec}$ Ci/Sec (TQ_I) Ci/sec + Source Term Based on 1. LOCA 5. Tube Rupture 1. Local2. LOCA (charcoal)3. Maltad Care7. Old Fuel Accident (> 100 days old)7. Old Fuel Accident (> 100 days old) 3. Melted Core7. Old Fuel Accident (> 100 days old)4. Melted Core (charcoal)8. Waste Gas Decay Tank $\frac{C_{H}}{H} = \overline{X}/Q$ Dose Assessment <----> Adult whole body <----> Child thyroid >----> 2 hr 2 hr Dose = 2 x DRwb = 33.6 x TQ_{NG} x \overline{X}/Q x TQ_T x 2.26E6 = DRct x 2 = Dose (rem) (rem/hr) (C1/sec) (sec/m³) (C1/sec) (rem/hr) (rem) Distance miles $\begin{array}{c} =2 \ x \\ =2 \ x \\ =2 \ x \\ = 33.6 \ x \\ TQ_{NG} \\ = 33.6 \ x$ $TQ_{I} \times 2.26E6 =$.5 x 2= 2 _____ 5 _____ $=2 \times = 33.6 \times TQ_{NG}^{NG}$ ____x 2= $\begin{array}{c} =2 \ x \\ =33.6 \ x \ TQ_{NG} \\ =2 \ x \\ =33.6 \ x \ TQ_{NG} \\ =2 \ x \\ =33.6 \ x \ TQ_{NG} \\ =2 \ x \\ =33.6 \ x \ TQ_{NG} \\ =2 \ x \\ =33.6 \ x \ TQ_{NG} \\ =2 \ x \\ =33.6 \ x \ TQ_{NG} \\ =2 \ x \\ =33.6 \ x \ TQ_{NG} \\ =2 \ x \\ =33.6 \ x \ TQ_{NG} \\ =2 \ x \\ =33.6 \ x \ TQ_{NG} \\ =2 \ x \\ =33.6 \ x \ TQ_{NG} \ TQ_{NG} \\ =33.6 \ x \ TQ_{NG} \ TQ_$ ___=2 x 10 _____ $\frac{1}{4}$ _____ $TQ_{I} \times 2.26E6 = TQ_{I} \times 2.26E6 = TQ_{I} \times 2.26E6 = TQ_{I} \times 2.26E6 = -$ _____ _____ x 2= 7 x 2= $=2 \times$ $= 33.6 \times TQ_{NG}^{NG}$ _x 2= 8 Review with Emergency Coordinator the recommended Emergency Classification. Recommend Alert Recommend Site Area Emergency if readings last 30 minutes Recommend Site Area Emergency if readings last 2 minutes Recommend General Emergency

DUKE POWER COMPANY ENCLOSURE 5.2 TWO-HOUR RELATIVE CONCENTRATION FACTORS(C_H) EDA-2

Temperature	Stability	1			Di	stance (miles)	٠,	<u> </u>			
Gradient (C)	Class 	.5 		2	3	4	5	6	7	8	9	10
1) ΔT<-0.6	A	 1.4E-5 	1.2E-6	5.9E-7	 4.1E-7	3.2E-7	 2.5E-7 	2.0E-7	1.9E-7	1.8E-7	1.6E-7	1.5E-7
2) -0.6 <u><</u> ∆T<-0.5	C	 1.5E-4 	4.5E-5	 1.3E-5	6.3E-6	3.9E-6	 2.7E-6	1.9E-6	1.4E-6	1.1E-6	8.3E-7	7.8E-7
3) -0.5 <u><</u> ∆T<-0.2	D	 3.8E-4 	 1.4E-4	 4.9E-5 	2.7E-5	1.7E-5	1.2E-5	9.2E-6	7.3E-6	6.0E-6	5.0E-6	4.3E-6
4) -0.2 <u><</u> ΔT<+0.4	Ε	6.9E-4	 2.5E-4 	 9.6E-5	5.5E-5	3.5E-5	2.5E-5	2.0E-5	1.6E-5	1.3E-5	1.1E-5	9.7E-6
5) +0.4 <u><</u> ∆T<+1.2	F	1.1E-3	5.1E-4	2.0E-4	1.2E-4	8.2E-5	6.3E-5	 5.1E-5 	4.3E-5	3.8E-5	3.3E-5	3.0E-5
6) +1.2 <u><</u> ∆T	G	1.8E-3	 1.1E-3	 4.3E-4 	2.7E-4	2.0E-4	1.7E-4	 1.3E-4	1.2E-4	8.6E-5	7.8E-5	7.35-5

NOTE:

If ΔT is unavailable use: 1000-1600 hours Use S

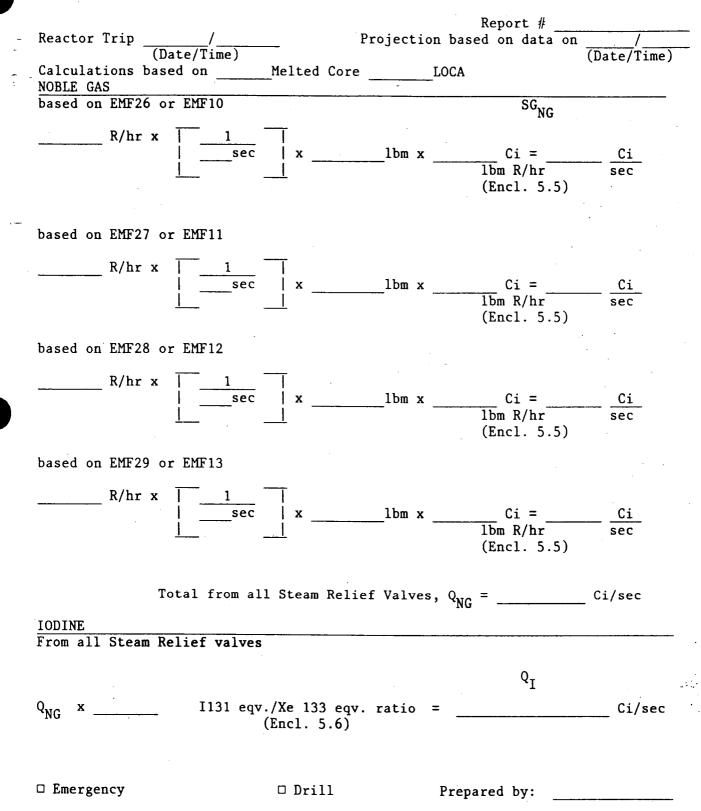
1

Use Stability Class D

1600-1000 hours Use Stability Class G

DUKE POWER COMPANY CATAWBA NUCLEAR STATION EDA-2 ENCLOSURE 5.3 PROTECTIVE ACTION ZONES DETERMINATION

Determine the affected zones (based on wind direction) from the table below and record on Enclosure 5.1.


NOTE:

If wind speed is less than or equal to 5 mph, the affected zones for 0-5 miles shall be AO, A1, B1, C1, D1, E1, F1.

Wind Direction	PAZ's				
(degrees from North)	0-5 miles	5-10 miles			
0.0 - 22	A0, C1, D1	C2, D2			
22.1 - 73	A0, C1, D1, E1	C2, D2, E2, F2			
73.1 - 108	AO, C1, D1, E1, F1	D2, E2, F2, F3			
108.1 - 120	AO, D1, E1, F1	D2, E2, F2, F3			
120.1 - 159	AO, E1, F1	D2, E2, F2, F3, A2			
159.1 - 207	AO, E1, F1, A1	E2, F2, F3, A2, B2			
207.1 - 247	AO, F1, A1, B1	F2, F3, A2, B2			
247.1 - 265	AO, A1, B1	F3, A2, B2, A3, C2			
265.1 - 298	AO, A1, B1, C1	A2, B2, A3, C2			
298.1 - 338	AO, B1, C1	B2, A3, C2, D2			
338.1 - 359.9	AO, B1, C1, D1	B2, C2, D2			
		····			

DUKE POWER COMPANY CATAWBA NUCLEAR STATION EDA-2 ENCLOSURE 5.4

SOURCE TERM ASSESSMENT - STEAM RELIEF VALVES

CATAWBA NUCLEAR STATION EDA-2 ENCLOSURE 5.5 EMF26, EMF27, EMF28, EMF29 or EMF10, EMF11, EMF12, EMF13 NOBLE GAS CORRECTION FACTOR

DUKE POWER COMPANY

Time Since Trip (hrs)	Correction Factor based on Melted Core or LOCA
≥0	-3.622
≥2	3.971
<u>>4</u>	4.041 v
<u>></u> 8	4.029
≥24	3.332
≥48	2.647
≥100	2.438
≥250	2.438
≥500	2.438
≥720	2.438

* units in <u>Ci</u> 1bm R/hr

* Enclosure 5.5 is the correlation factor per Reference 2.13 x 2.83E4 $\frac{ml}{ft^3}$ x .41 $\frac{ft^3}{lbm}$ x $\frac{m^3}{1E6 ml}$

÷.,~

.41 = specific gravity of steam per Reference 2.13.

DUKE POWER COMPANY CATAWBA NUCLEAR STATION EDA-2 ENCLOSURE 5.6 I131 eqv./Xe133 eqv. RATIO

Time Since Trip (hrs)	Ratio based on LOCA (Column 1)	Ratio based on Melted Core (Column 2)
≥ 0	2.74E-3	2.24E-3
≥ 2	3.42E-3	9.66E-3
≥4	3.82E-3	1.59E-2
≥8	4.34E-3	2.85E-2
≥24	4.79E-3	7.52E-2
≥48	4.84E-3	1.11E-1
≥100	5.06E-3	1.33E-1
≥250	6.55E-3	1.80E-1
≥500	1.02E-2	2.90E-1
≥720	1.44E-2	4.33E-1

* Enclosure 5.6 is from Reference 2.13.

NOTE:

E: For <u>unit vent</u> releases in which Irat is utilized to determine I-131 equiv. concentration, apply the appropriate correction from the table below:

- 1. LOCA, use column 1 (based on LOCA).
- 2. LOCA through charcoal filters, divide column 1 value by 100.
- 3. Core damage, use column 2 (based on Core Melt).
- 4. Core damage through charcoal filters, divide column 2 value by 100.
- 5. <u>Tube rupture</u>, use 1.44E-5
- 6. New fuel accident, use 2.217E-4
- 7. Old fuel accident, use 7.217E-4
- 8. <u>Gas decay tank</u>, assume no radioiodine released, only noble gases are considered to be released from gas tank, use 0.
- NOTE: For steam releases in which Irat is utilized to determine I-131 equiv. concentration, apply the appropriate correction from the table below:
- 1. LOCA divide column 1 value by 100.
- 2. Core damage, divide column 2 value by 100.

DUKE POWER COMPANY CATAWBA NUCLEAR STATION EDA-2 ENCLOSURE 5.7 SOURCE TERM ASSESSMENT - CONTAINMENT

		Report		
Reactor Trip/		jection based on d		
(Date/Time)		•	(Date/Ti	ime)
Calculations based on	Melted Core	LOCA	· •	
Containment pressure	psig	· · · · · ·		
$LR =ml/hr \times BYPAS$	SS (default	= .07)	· · · · · · · · · · · · · · · · · · ·	
LR based on Realisti	ic Leak Rate	· .		
(check one)				
1"2"	4" 6" 8" 12" 18	3" 34" diameter o	pening	
(circle one) Personnel	l Hatch opening	, , , , , , , , , , , , , , , , , , ,		
Equipment	t Hatch opening		•	
Design Le	eak Rate (2.449E6)	· · · · ·		
IOBLE GAS				
based on (check one)				
<pre>EMF39(L) if < 1E7 cpm</pre>	□ EMF39(H) if	> 100 cpm 🖸	EMF53 if 39(H))
	94 (A)		is off scale	
	•			
MF	CF	LR	Q _{NG}	
cpm				
or x	X	ml/hr =	Ci	
R/hr ((Encl. 5.8)		sec	
		•		
Note on Encl. 5.9)	A		· · ·	
ased on	x2 ***			
ACS sample	.•		-	
- · · -		• •	· · · · · · · · · · · · · · · · · · ·	
µCi/ml x 2.78		ml/hr =	<u> </u>	
µCi/ml x 2.78	BE-10 <u>Ci hr</u> x sec µCi	ml/hr =	<u> </u>	
		ml/hr =		
ODINE		ml/hr =		
ODINE ased on		ml/hr =		
ODINE ased on		ml/hr =		
ODINE ased on NG	sec µCi	Ç		
ODINE ased on	sec μCi I131 eqv./Xe1	Q 133 eqv. =		
ODINE ased on NG	sec µCi	Q 133 eqv. =	sec I	
ODINE ased on NG <u>Ci</u> x sec	sec µCi I131 eqv./Xe1 ratio (Encl.	Q 133 eqv. =	<u>sec</u>	
ODINE ased on NG <u>Ci</u> x sec	sec μCi I131 eqv./Xe1	Q 133 eqv. =	<u>sec</u>	
ODINE ased on NG <u>Ci</u> x sec ased on EMF40	sec µCi I131 eqv./Xel ratio (Encl. LR	Q 133 eqv. =	<u>sec</u>	
ODINE ased on NG <u>Ci</u> x sec ased on EMF40 Δcpm x 9.82E-20 <u>Ci</u>	sec µCi I131 eqv./Xel ratio (Encl. LR <u>hr min</u> x	Q 133 eqv. =	<u>sec</u>	
ODINE ased on NG <u>Ci</u> x sec ased on EMF40 Δcpm x 9.82E-20 <u>Ci</u>	sec µCi I131 eqv./Xel ratio (Encl. LR	Q 133 eqv. = 5.6)	I <u>Ci</u> sec	
$\frac{\text{ODINE}}{\text{ased on}}$ NG $\frac{\text{Ci}}{\text{sec}} \times {\frac{\text{Ci}}{\text{sec}}} \times {\frac{1}{2}}$ ased on EMF40 $\frac{\Delta \text{cpm}}{\Delta \text{min}} \times 9.82\text{E-20} \frac{\text{Ci}}{\text{sec}}$	sec µCi I131 eqv./Xel ratio (Encl. LR <u>hr min</u> x	Q 133 eqv. = 5.6)	I Ci	
$\frac{\text{ODINE}}{\text{ased on}}$ NG $\frac{\text{Ci}}{\text{sec}} \times {}$ ased on EMF40 ${} \Delta \text{cpm} \times 9.82\text{E-20} \underbrace{\text{Ci}}_{\text{sec}}$	sec µCi I131 eqv./Xel ratio (Encl. LR <u>hr min</u> x	Q 133 eqv. = 5.6)	I Ci	· · · · · · · · · · · · · · · · · · ·
ODINE pased on NG <u>Ci</u> x sec pased on EMF40 <u>Δcpm</u> x 9.82E-20 <u>Ci</u> Δmin sec pased on PACS sample	sec µCi I131 eqv./Xel ratio (Encl. LR <u>hr min</u> x ec ml cpm	Q 133 eqv. = 5.6)	I Ci	
ODINE pased on NG <u>Ci</u> x sec pased on EMF40 <u>Δcpm</u> x 9.82E-20 <u>Ci</u> Δmin sec pased on PACS sample	sec µCi I131 eqv./Xel ratio (Encl. LR <u>hr min</u> x ec ml cpm	Q 133 eqv. = 5.6) ml/hr =	I <u>Ci</u> sec <u>Ci</u> sec	· · · · · · · · · · · · · · · · · · ·
ODINE ased on NG <u>Ci</u> x sec ased on EMF40 <u>Δcpm</u> x 9.82E-20 <u>Ci</u> <u>Δmin</u> se ased on PACS sample	sec μCi I131 eqv./Xel ratio (Encl. LR <u>hr min</u> x c ml cpm <u>Ci hr</u> x	Q 133 eqv. = 5.6)	I Ci Ci Ci Ci Ci	
$\frac{\text{ODINE}}{\text{pased on}}$ NG $\frac{\text{Ci x}}{\text{sec}}$ pased on EMF40 $\frac{\Delta \text{cpm x 9.82E-20 Ci}}{\Delta \text{min}}$ pased on PACS sample $\frac{\mu \text{Ci x 2.78E-10}}$	sec µCi I131 eqv./Xel ratio (Encl. LR <u>hr min</u> x ec ml cpm	Q 133 eqv. = 5.6) ml/hr =	I <u>Ci</u> sec <u>Ci</u> sec	
$\frac{ODINE}{Pased on}$ NG $\frac{Ci \times gec}{Pased on EMF40}$ $\frac{\Delta cpm \times 9.82E-20 Ci}{\Delta min se}$ Pased on PACS sample $\frac{\mu Ci \times 2.78E-10}{\mu Ci \times 2.78E-10}$	sec μCi I131 eqv./Xel ratio (Encl. LR <u>hr min</u> x c ml cpm <u>Ci hr</u> x	Q 133 eqv. = 5.6) ml/hr =	I Ci Ci Ci Ci Ci	
ODINE pased on NG <u>Ci x</u> sec pased on EMF40 <u>Acpm x 9.82E-20 Ci</u> Amin se pased on PACS sample <u>µCi x 2.78E-10</u> ml	sec μCi I131 eqv./Xel ratio (Encl. LR <u>hr min</u> x c ml cpm <u>Ci hr</u> x	Q 133 eqv. = 5.6) ml/hr =	I Ci Ci Ci Ci Ci	

DUKE POW COMPANY ENCLOSURE 5.8 CATAWBA CONTAINMENT NOBLE GAS CORRECTION FACTOR EDĂ-2

Time Since Trip (hours)	EMF 39(L) based on		EMF 39(H) based on		EMF	
	LOCA	Melted Core	LOCA	Melted Core	LOCA	Melted Core
≥0	6.389E-18	6.672E-17	5.56E-14	1.429E-13	3.781E-10	1.190E-9
≥2	6.389E-18	4.448E-17	5.56E-14	1.003E-13	3.114E-10	5.894E-10
<u>≥4</u>	6.389E-18	3.058E-17	5.56E-14	1.232E-13	2.780E-10	4.726E-10
<u>≥8</u>	6.389E-18	2.113E-17	5.56E-14	1.195E-13	2.446E-10	3.392E-10
≥24	6.389E-18	1.112E-17	5.56E-14	7.339E-14	2.335E-10	1.890E-10
≥48	6.389E-18	1.056E-17	5.56E-14	6.060E-14	2.335E-10	1.668E-10
≥100	6.389E-18	1.390E-17	5.56E-14	5.699E-14	2.335E-10	1.612E-10
≥250	6.389E-18	1.446E-17	5.56E-14	5.588E-14	2.335E-10	1.557E-10
>500	6.389E-18	9.730E-18	5.56E-14	5.560E-14	2.335E-10	1.251E-10
>720	6.389E-18	6.394E-18	5.56E-14	5.560E-14	2.335E-10	1.056E-10
		<u>Ci hr</u> ml cpm	units in	<u>Ci hr</u> c ml cpm		<u>Ci hr</u> ml R/hr
	Enclosure 5.	8 is the correla	tion factor p	er Reference 2.13 x 36	<u>hr</u> x <u>Ci</u> 00 sec 1E6 µCi	

NOTE: Reference 2.14

e

- Case I) If from O-2 days since reactor trip, use EMF53A or EMF53B reading as is.
- Case II) If after 2 days since reactor trip and EMF53A or EMF53B is \leq 150 R/hr, add 150 R/hr to the reading.

. .

DUKE POWER COMPANY CATAWBA NUCLEAR STATION EDA-2 ENCLOSURE 5.9

CONTAINMENT LEAKAGE RATE VERSUS PRESSURE

PSIG	m1/hr
≥0	*2.081E5
≥2	4.536E5
≥4	8.316E5
≥8	1.397E6
≥10	1.591E6
≥11	1.663E6
≥12	1.713E6
≥13	1.764E6
<u>≥14</u>	1.800E6
≥15	1.836E6

Enclosure 5.9 is the realistic leakage rate (m³/sec) per Reference 2.12 x 1E6 ml/m³ x 3600 sec/hr.

* 2.081E5 ml/hr is derived as follows:

2.081E5 $\underline{m1}_{hr}$ = 0.017 %/day x 3.4E-3 $\underline{m^3 - day}_{\%-sec}$ x 1E6 $\underline{m1}_{m3}$ x 3600 \underline{sec}_{hr}

where:

0.017 is determined from containment leakage rate vs pressure curve from Reference 2.13 for an assumed 1 psig. 3.4E-3 is from Reference 2.12.

DUKE POWER COMPANY CATAWBA NUCLEAR STATION EDA-2

EDA-2 ENCLOSURE 5.10

CONTAINMENT LEAKAGE RATE VERSUS PRESSURE AND SIZE OPENING

For 1" ope	ening	. ·			
PSIG	ml/hr	PSIG	ml/hr	PSIG	ml/hr
>1.25	2.209E8	>5.0	3.908E8	>12.5	5.862E8
>2.50	2.889E8	>7.5	4-588E8	>15.0	6.287E8
>3.75	3.483E8	>10.0	5.268E8		
For 2" ope	ening	····			····
PSIG	ml/hr	PSIG	ml/hr	PSIG	ml/hr
>1.25	8.496E8	>5.0	1.512E9	>12.5	2.243E9
>2.50	1.121E9	>7.5	1.784E9	>15.0	2.464E9
>3.75	1.342E9	>10.0	2.022E9		
For 4" ope	3				
PSIG	ml/hr	PSIG	ml/hr	PSIG	ml/hr
>1.25	3.144E9	>5.0	5.692E9	>12.5	8.496E9
>2.50	4.248E9	>7.5	6.797E9	>15.0	9.176E9
>3.75	5.098E9	>10.0	7.731E9		
For 6" ope			· · · · · · · · · · · · · · · · · · ·		
PSIG	ml/hr	PSIG	ml/hr	PSIG	ml/hr
>1.25	7.137E9	. >5.0	1.291E10	>12.5	1.937E10
>2.50	9.516E9	>7.5	1.529E10	>15.0	2.124E10
>3.75	1.138E10	>10.0	1.716E10		,
	ening			¹	<u> </u>
PSIG	ml/hr	PSIG	ml/hr	PSIG	ml/hr
>1.25	1.257E10	>5.0	2.243E10	>12.5	3.381E10
>2.50	1.648E10	>7.5	2.634E10	>15.0	3.568E10
>3.75	1.971E10	>10.0	3.042E10		
For 12" op		·······			· · · · · · · · · · · · · · · · · · ·
PSIG	ml/hr	PSIG	ml/hr	PSIG	ml/hr
>1.25	2.719E10	>5.0	5.012E10	>12.5	7.476E10
>2.50	3.738E10	>7.5	5.947E10	>15.0	8.156E10
>3.75	4.452E10	>10.0	6.712E10		-
For 18" op	0			<u> </u>	
PSIG	ml/hr	PSIG	ml/hr	PSIG	ml/hr
>1.25	5.522E10	>5.0	1.003E11	>12.5	1.529E11
>2.50	7.476E10	>7.5	1.189E11	>15.0	1.665E11
>3.75	8.836E10	>10.0	1.351E11		

•

9

•

				EDA-2 ENCLOSURE 5.10 Page 2 of 2	
. '					
	pening				
PSIG	ml/hr	PSIG	ml/hr	PSIG	ml/hr
>1.25	1.869E11	>5.0	3.398E11	>12.5	5.132E11
>2.50	2.583E11	>7.5	4.078E11	>15.0	5.607E11
>3.75	3.093E11	>10.0	4.588E11	/15.0	J.007E11
For Person	nnel Hatch openin			· · · · · · · · · · · · · · · · · · ·	#=
PSIG	ml/hr	PSIG	ml/hr	PSIG	ml/hr
>1.25	2.379E12	>5.0	4.690E12	>12.5	6.967E12
>2.50	3.398E12	>7.5	5.573E12	>15.0	7.646E12
>3.75	4.111E12	>10.0	6.372E12	- 10.00	7.040112
For Equips	ment Hatch openin	8			
PSIG	ml/hr	PSIG	ml/hr	PSIG	ml/hr
>1.25	1.121E13	>5.0	2.022E13	>12.5	3.059E13
>2.50	1.478E13	>7.5	2.379E13	>15.0	3.398E13
>3.75	1.767E13	>10.0	2.719E13		0.00011

* Enclosure 5.10 is the containment leakage for an opening size in standard cubic feet per min (scfm) x 2.83E4 ml/ft³ x 60 min/hr.

Ū

- ...*

DUKE POWER COMPANY CATAWBA NUCLEAR STATION EDA-2 ENCLOSURE 5.11

SOURCE TERM ASSESSMENT -- UNIT VENT

~____

		Renor	t #	
Reactor Trip/	Pro	jection based on	data on	1
(Date/Time)				e/Time
Calculations based on Meltee CFM = ft^3/min	l Core	LOCA	, ¹	
$CFM =ft^3/min$		-		
NOBLE GAS	.*			
based on (check one)				
□ EMF36(L) if < 1E7 cpm □ EMI	36(H) if	> 100 cpm	□ EMF54 if 3 is offscal	
EMF CF		CFM	Q _{NG}	
cpm or R/hr x	x	f+3 =		C ;
CEncl. 5.12	, ^	$\qquad \qquad $		$-\frac{Ci}{Sec}$
	•	m T T		sec
based on Unit Vent Sample				
µCi/ml x 4.72E-4 Ci min	ml x	ft ³ =		C i
sec ft ³		$\frac{ft^3}{min} =$	<u> </u>	$-\frac{Ci}{sec}$
	por .	urtit		sec
IODINE	•			
based on				
Q _{NG}			Q _T	
NG			I	
<u> </u>	eav./Xel	33 eav. =	Ci	
	(Encl.	5.6)	<u>er</u>	
	(,	bee	
based on	C	FM		
EMF37		 '		
Δcpm x 1.33E-13 Ci min min	х	ft ³ =	Ci	·-
$\Delta \min$ sec ft ³ cpm	 I	$\underline{\qquad \qquad ft^3 = }$	<u>51</u> sec	
· · · · · · · · · · · · · · · · ·			000	
based on Unit Vent Sample				
-				
µCi/ml x 4.72E-4 <u>Ci min ml</u>	x	$ft^3 =$	Ci	
sec ft ³ µCi		min		
		•		
		•		
e de la companya de l				

Emergency

۲

🗆 Drill

Prepared by: _____

DUKE POWERCOMPANY ENCLOSURE 5.12 CATAWBA UNIT VENT NOBLE GAS CORRECTION FACTOR EDA-2

111

Time Since Trip (hours)			EMF54 based on
	Melted Core	Melted Core	Melted Core
≥0	1.133E-10	2.426E-7	1.887E-3
≥2	7.552E-11	1.704E-7	1.179E-3
<u>≥4</u>	5.192E-11	2.091E-7	9.905E-4
<u>≥</u> 8	3.587E-11	2.030E-7	6.367E-4
≥24	1.888E-11	1.246E-7	2.931E-4
≥48	1.794E-11	1.029E-7	2.405E-4
≥100	2.360E-11	9.676E-8	2.358E-4
≥250	2.454E-11	9.487E-8	2.358E-4
≥500	1.652E-11	9.440E-8	2.358E-4
≥720	1.086E-11	9.440E-8	2.358E-4

If accident is:

1. Melted core use table.

2. Melted core through charcoal use table.

3. New Fuel Accident (less than 100 days old) use 2.358E-11 for EMF36(L), use 9.67E-8 for EMF36(H), use 2.358E-4 for EMF54.

4. All other accidents use 1.086E-11 for EMF36(L), use 9.44E-8 for EMF36(H), use 2.358E-4 for EMF54.

Units in <u>Ci min</u> sec ft ³ cpm	units in <u>Ci min</u> sec ft ³ cpm	units		Ci m s		t ³ R/hr
Enclosure 5.12 is the corre	lation factor per Reference 2.13 x 2.83E4	<u>m]</u> ft ³	× 60	<u>min</u> D sec	x	<u>Ci</u> 1E6 µCi