

200 Exelon Way Kennett Square, PA 19348 www.exeloncorp.com

10 CFR 50.55a

July 29, 2015

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

> Peach Bottom Atomic Power Station, Units 2 and 3 Renewed Facility Operating License Nos. DPR-44 and DPR-56 <u>NRC Docket Nos. 50-277 and 50-278</u>

Subject: Proposed Relief Request associated with the Common Emergency Service Water (ESW) System Piping

Attached for your review and approval is a proposed alternative in accordance with 10 CFR 50.55a(z)(2) concerning a through-wall leak identified in the common unit Emergency Service Water (ESW) system piping at the Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3. This relief applies to the fourth 10-year Inservice Inspection (ISI) interval. The fourth interval for Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3, began on November 5, 2008, and will conclude on November 4, 2018. The fourth 10-year ISI interval complies with the ASME Boiler and Pressure Vessel Code, Section XI, 2001 Edition through 2003 Addenda.

As noted in the attached relief request, on May 3, 2015, a through-wall leak was discovered in a segment of the ESW system that is common to Unit 2 and Unit 3. The next scheduled time at which a repair can be performed without a dual unit shutdown is during the PBAPS, Unit 2, refueling outage which is scheduled for October 2016. In order to prevent an unwarranted Unit 2 shutdown during the upcoming Unit 3 refueling outage, we are requesting your review and approval by September 21, 2015.

U.S. Nuclear Regulatory Commission Peach Bottom Atomic Power Station, Units 2 and 3 Proposed Relief Request associated with the Common Emergency Service Water (ESW) System Piping July 29, 2015 Page 2

There are no regulatory commitments contained in this letter.

If you have any questions or require additional information, please contact Stephanie J. Hanson at (610) 765-5143.

Respectfully,

D. B. Helky

David P. Helker Manager - Licensing & Regulatory Affairs Exelon Generation Company, LLC

Attachment: Relief Request I4R-56

cc: USNRC Region I, Regional Administrator USNRC Senior Resident Inspector, PBAPS USNRC Project Manager, PBAPS R. R. Janati, Pennsylvania Bureau of Radiation Protection S. T. Gray, State of Maryland

ATTACHMENT

PEACH BOTTOM ATOMIC POWER STATION UNITS 2 AND 3

PROPOSED RELIEF REQUEST ASSOCIATED WITH THE COMMON EMERGENCY SERVICE WATER (ESW) SYSTEM PIPING

RELIEF REQUEST I4R-56

1. ASME CODE COMPONENTS AFFECTED

Code Class:	3
Examination Category:	D-B
Item Number:	D2.10
Design Pressure and Temperature:	150 psig and 100°F
Maximum Operating Pressure:	58 psig
Maximum Operating Temperature:	92°F (governed by river temperature)
Piping Size:	12"
Piping thickness:	0.375"
Description:	This relief request is associated with the Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3, common Emergency Service Water (ESW) system piping adjacent to valve MO-2-33-2972 (see Enclosure 1).

2. APPLICABLE CODE EDITION AND ADDENDA

The current edition for the Inservice Inspection (ISI) interval is the ASME Section XI, 2001 Edition through 2003 Addenda. Code Case N-513-3 ("Evaluation Criteria for Temporary Acceptance of Flaws in Moderate Energy Class 2 or 3 Piping Section XI, Division 1") with the associated Regulatory Guide 1.147, Revision 17 condition has been applied to address acceptability of a through-wall leak in the affected piping.

3. APPLICABLE CODE REQUIREMENT

Code Case N-513-3 Section 2(h) states:

"Repair or replacement shall be performed no later than when the predicted flaw size from either periodic inspection or by flaw growth analysis exceeds the acceptance criteria of 4, or the next scheduled outage, whichever occurs first."

NRC Regulatory Guide 1.147, ("Inservice Inspection Code Case Acceptability, ASME Section XI, Division 1") dated August 2014, contains the following provision regarding Code Case N-513-3:

"The repair or replacement activity temporarily deferred under the provisions of this Code Case shall be performed during the next scheduled outage."

4. REASON FOR REQUEST

On May 3, 2015, during routine operator rounds, a pinhole leak was identified in a vertical run of 12" piping on the ESW system.

ESW is a safety-related support system which is common to PBAPS, Units 2 and 3 (see Enclosure 1). The system consists of two independent loops (A and B), with one 100% capacity pump per loop. Cooling water is pumped from the Conowingo Pond, which is the normal (primary) heat sink, and is discharged back to the pond subsequent to heat removal from essential components. Each ESW pump is capable of aligning supply and return flow paths to

Relief Request I4R-56 Concerning the Common Emergency Service Water System Piping in accordance with 10 CFR 50.55a(z)(2) (Page 2 of 7)

an emergency heat sink (Emergency Cooling Towers) during a Loss of Conowingo Pond special event.

Each ESW pump is also designed to supply cooling water to selected essential equipment during a design basis accident (DBA) or transient. Both pumps start upon receipt of a Loss of Offsite Power (LOOP), or whenever any diesel generator starts. In accordance with the acceptance criteria in the surveillance tests for the In-Service Testing program, during the most limiting conditions possible per Technical Specification (TS) 3.7.2 (i.e., 92 °F river temperature and 98.5' river level) the combined minimum accident flow rate required by components dependent upon the ESW cooling water is 3133 gpm. This flow rate is based on the worst-case accident scenario for each heat exchanger and is representative of ESW system balanced flow with 100% flow to the Unit 2 and Unit 3 Emergency Core Cooling System (ECCS) unit coolers and the diesel generator coolers. This flow is sufficient to mitigate the consequences of a design basis accident on one unit while bringing the other unit to a safe shutdown condition.

The piping pinhole leak is located very close to the ceiling of the Unit 2 Reactor Building Sump Room. This section of piping is part of the main ESW header that provides ESW flow to the Unit 2 ECCS room coolers. However, it is physically connected to common piping which also provides flow to the Unit 3 ECCS room coolers and to the common Emergency Diesel Generators (EDGs). The piping under review is line class 33HB-12", which is carbon steel, ASTM A106 Gr. B, 12", with a wall thickness of 0.375". The minimum allowable wall thickness for this piping was determined to be 0.063" (see Enclosure 2).

This location was evaluated for repair by branch connection, weld overlay, and pipe sleeve. It was determined that none of those options could be performed due to the proximity of the leak to the structural penetration. As shown in Enclosure 1, closing valves MO-2-33-2972, MO-3-33-3972, HV-0-33-507B, and HV-0-33-509 would isolate this location to allow pipe replacement. Removal of this section of piping results in loss of capability of the 'B' subsystem of ESW to supply cooling to these three heat loads (i.e., Unit 2 ECCS room coolers, Unit 3 ECCS room coolers, and EDGs) via the normal flow path. However, MO-2-33-2972 currently has throughvalve leakage resulting in an inability to isolate the location and perform the repair. Additionally, it was determined that a freeze seal would not be effective for isolating this flaw location since the freeze seal location is not an adequate seismic boundary for a DBA seismic event. Also, the pipe temperature as a result of the freeze seal would be below the nil-ductility temperature and therefore, piping capability could not be assured if a DBA event were to occur. The MO-2-33-2972 valve is currently scheduled for replacement in the PBAPS Unit 2 refueling outage (P2R21) in 2016. In order to isolate the flaw with the MO-2-33-2972 valve leak-through, two additional valves (HV-2-33-502 and HV-2-33-517) would need to be closed. This results in an entry into a Unit 2 TS 3.7.2 shutdown statement due to the loss of both ESW subsystems to provide cooling to the Unit 2 ECCS room coolers. Per Code Case N-513-3 and Regulatory Guide 1.147, Revision 17, repair/replacement is required to be performed during the next scheduled outage. As this piping is considered to be common to both units, the next scheduled outage is the PBAPS Unit 3 outage scheduled to begin in September 2015. Isolating this location during the Unit 3 outage will result in a TS Required shutdown of Unit 2 in order to isolate the leak. With Unit 3 already shutdown for its refueling outage, this condition would result in a non-desirable dual unit shutdown of the PBAPS station. A dual unit shutdown is significant from a grid reliability viewpoint. In addition, a plant shutdown of Unit 2 would result in additional personnel radiological exposure and an unwarranted plant transient. Therefore, it is desirable to perform this repair during the next scheduled Unit 2 refueling outage in October 2016 to avoid an unscheduled Unit 2 outage during the September 2015 Unit 3 refueling outage.

There are no other known leaks in the ISI Class 3 segments of the ESW system.

5. PROPOSED ALTERNATIVE AND BASIS FOR USE

Exelon Generation Company, LLC (Exelon) is requesting approval to defer replacement of the leaking pipe spool until the Unit 2 outage in Fall 2016 in order to avoid an unwarranted shutdown of Unit 2. As discussed previously, a repair cannot be performed during the upcoming Unit 3 outage, scheduled for September 2015, without a dual unit shutdown. Shutdown of Unit 2 results in an unnecessary plant transient, additional personnel radiological exposure and a potential adverse effect on electrical grid stability. Therefore, Exelon proposes to repair the flaw by pipe replacement and to replace valve MO-2-33-2972 during the Unit 2 refueling outage currently scheduled for October 2016.

Leakage Analysis:

The leakage rate was originally identified as 18 ml/min, equivalent to 0.0048 gpm. Based on the leak rate and the known standby system pressure of 45 psig, the size of the pinhole orifice was computed to be approximately 0.0064". With an ESW system pump in operation, the maximum operating pressure in the system is 58 psig. Based on the computed orifice size, it is anticipated that the leak rate during operation of a pump would increase to 0.009 gpm, or 34 ml/min.

The flaw area has been re-inspected since performance of the original Ultrasonic Test (UT) and no changes have been identified in the degraded area. A review of the operator logs was performed for re-inspection of the leak as required by ASME Code Case N-513-3. The highest identified leakage through the flaw during re-inspections at both system standby and operating conditions was 44 ml/min. There have been no significant changes in leakage considering the standby mode (non-safety related service water) and the safety related ESW mode.

As discussed in Enclosure 2, the as-found condition of the pinhole leak does not adversely impact the ability of the piping to perform its intended safety function. Ample flow is available for the ESW system to meet the minimum safety related flow requirements for the EDGs and ECCS systems. Recent testing has shown that the ESW system flow rate was measured to be 3824 gpm from the 'A' ESW pump alone and 3851 gpm for the 'B' ESW pump alone. The ESW minimum required system flow rate at maximum river temperature of 92 °F, is 3133 gpm, which results in a 691 gpm flow margin when compared to the measured pump flow.

A leak rate limit of 5 gpm or 18,927 ml/min has been conservatively established. Given that the maximum safety-related leakage currently identified on the ESW system is 44 ml/min (0.0117 gpm), there is substantial margin remaining in the allowable leakage of the system.

An analysis was performed that supports that the pipe will continue to perform its safety function until the Unit 2 October 2016 outage. Based on a review of historical PBAPS-specific corrosion data, the corrosion rate for the leak was determined to be 12 mils per year (mpy) in each direction, or a total diameter growth of the flaw of 24 mpy. Based on the corrosion rate, the through-wall flaw is expected to increase by 34 mils before the

start of the Unit 2 outage, for a final hole diameter of 0.0404", which will ensure that any postulated increases in leakage will remain well below the 5 gpm leakage limit.

Structural Integrity Analysis:

Code Case N-513-3 was used to evaluate continued operation without repair. This evaluation is provided in Enclosure 2. This evaluation provided in Enclosure 2 for the as-found flaw dimensions as well as the predicted flaw in October 2016 demonstrates that the piping will remain structurally sound and safe for continued operation through the proposed period of operation. As determined in Enclosure 2, the calculated stress intensity factors (SIFs) for normal/upset and emergency/faulted conditions were well below the allowable fracture toughness both at the time of discovery of the flaw on May 3, 2015 as well as what is projected to be the flaw in October 2016. Similarly, the calculated axial flaw SIF was also shown to be well below the allowable fracture toughness. The calculations performed in the evaluation utilized the maximum design pressure of the piping, 150 psi, as the anticipated load. This provides additional conservativism given that the maximum operating pressure expected is 58 psi.

Non-Destructive Examination (NDE) was performed in the vicinity of the pinhole and an area with a diameter of 0.75" surrounding the pinhole was identified to be below minimum allowable wall thickness (see Enclosure 2). Based on the flaw characterization, the failure mode appears to be under-deposit corrosion influenced by microbial activity. As required by ASME Code Case N-513-3, shear wave UT was performed around the area of the flaw and it was verified that there are no crack-like indications present. UT was also performed around the area surrounding the leak. From this inspection, it was identified that the size of the area surrounding the flaw that is below 87.5% of nominal wall thickness (i.e., 0.328") is 4.60" x 5.30". The surrounding band area was also inspected with 100% scanning coverage as required by ASME Code Case N-513-3. A total of 36 measurements were reported, the results of which showed that 35 of the 36 measurements were below 87.5% of nominal wall thickness. The NDE report from UT examination of the surrounding band area is included in Enclosure 2.

Enclosure 2 includes an ASME Code Case N-513-3 analysis using a flaw size of 0.75". As discussed above, the corrosion rate for the leak was determined to be 12 mpy in each direction, or a total diameter growth of the flaw of 24 mpy. Based on the corrosion rate, the area that is below minimum wall thickness is expected to grow by 34 mils before the start of the next Unit 2 refueling outage resulting in a flaw size of 0.784". Based on the geometry of the flaw characterization depicted in Enclosure 2, additional flaw growth that could occur until October 2016 was analyzed using a conservative, bounding flaw size of 1.5" in the axial and circumferential directions (i.e., double the current flaw size of 0.75"). Using a bounding flaw size of 1.5" in place of the 0.75" flaw size used in Enclosure 2 yields results that are well within the acceptance limits of ASME code requirements. Therefore, from a structural integrity perspective, there is reasonable assurance that the piping will remain operable and within all system limits until the proposed time for repair/replacement.

Corrosion analysis was also performed on surrounding and similar piping. Of the five areas inspected as extent of condition as required by ASME Code Case N-513-3, none have an expected life below nine years based on a low reading of 0.134".

Relief Request I4R-56 Concerning the Common Emergency Service Water System Piping in accordance with 10 CFR 50.55a(z)(2) (Page 5 of 7)

Summary:

Exelon is requesting a proposed alternative in accordance with 10 CFR 50.55a(z)(2) on the basis that a shutdown of Unit 2 during the upcoming Unit 3 refueling outage would result in a hardship without a compensating increase in the level of quality or safety. Because the leak exists on piping that is considered as common to both Units 2 and 3, Code Case N-513-3 requires the leak to be repaired in the next refueling outage (which would be the upcoming Unit 3 refueling outage scheduled to begin in September 2015). However, by doing so, the isolation points to perform the work on this common piping would result in isolation of the Unit 2 ECCS unit coolers, which would result in a 12-hour TS-required Unit 2 shutdown. Since the clearance, tagging and maintenance evolutions would take significantly more time than the TS Required Action shutdown time of 12 hours, it is appropriate to seek relief to allow the leak repair to occur during the next scheduled Unit 2 refueling outage (October 2016). A Unit 2 shutdown during the Unit 3 refueling outage is unwarranted due to the hardship of an unnecessary Unit 2 plant transient, additional personnel radiological exposure and a potential adverse effect on electrical grid stability for no compensating increase in the level of quality or safety. The assurance of auality and safety in the extended period of time between September 2015 and October 2016 is based on: 1) the small size of the indication, 2) the results of the Code Case N-513-3 evaluation which demonstrates the structural integrity of the pipe, 3) the large capacity of the current flow margin, 4) the flaw growth analysis demonstrating that the flaw will not grow beyond any current acceptance criteria, and 5) Code Case N-513-3 required daily leak check and UT flaw examination every 30 days. Based on this, there is reasonable assurance that this leak will not exceed any system leakage limits, nor will the structural integrity of the piping be challenged prior to startup from the Unit 2 refueling outage in October 2016.

6. DURATION OF PROPOSED ALTERNATIVE

This relief request will be applied through the current PBAPS, Unit 2 operating cycle and refueling outage currently scheduled to begin October 2016. In addition, if system leakage exceeds 5 gpm, this relief request will no longer be applied.

Relief Request I4R-56 Concerning the Common Emergency Service Water System Piping in accordance with 10 CFR 50.55a(z)(2) (Page 6 of 7)

Relief Request I4R-56 Concerning the Common Emergency Service Water System Piping in accordance with 10 CFR 50.55a(z)(2) (Page 7 of 7)

Enclosure 2 N-513-3 Evaluation including the Nondestructive Examination Sheets Title: Perform Code Case N-513 evaluation to support Operability.

ADMINISTRATIVE:

This evaluation was prepared in accordance with Exelon procedure CC-AA-309-101, revision 14, Engineering Technical Evaluations.

A technical task risk/rigor assessment was performed for this activity in accordance with HU-AA-1212, revision 6. Risk rank was determined to be '1' with a medium consequence (C.7, Safety System Loss), 1 human performance risk factor (H.10, Group Think), and 1 process risk factor (P.3, Fast Track). Therefore, per table 5.1 of attachment 5 to HU-AA-1212 existing process reviews are adequate.

This conclusion was discussed with Jeff Chizever, Manager PEDM on 05/05/2015.

An impact review per CC-AA-102, revision 28 was performed and it was concluded that procedure revisions are not required. However, the Raw Water Program is impacted by this evaluation. Assignments 2494904-04 and 2494904-05 have been created for the program manager to incorporate any changes into the Raw Water Program.

Safety Classification:

This evaluation is associated with safety-related equipment and therefore the evaluation is classified as safety-related. This technical evaluation will be submitted to Records Management for retention.

REASON FOR EVALUATION/SCOPE:

An Emergency Service Water (ESW) piping leak was discovered in the Unit 2 Reactor Building Sump room. The leak is directly below the Unit 2 Reactor Building Closed Cooling Water (RBCCW) room floor, upstream of MO-2-33-2972 which is located in the RBCCW room. The leakage was approximately 30 DPM at the time of discovery.

The presence of this leak warrants an evaluation in accordance with ASME Code Case N-513-3 (Evaluation Criteria for Temporary Acceptance of Flaws in Moderate Energy Class 2 or 3 Piping, Mandatory Appendix I) in order to allow the associated piping to remain operable until a permanent ASME Section XI Code repair can be completed.

DETAILED EVALUATION;

Engineering has performed an analysis of the degraded areas in accordance with ASME Code Case N-513-3. This piping is 12-inch diameter, 0.375 inch wall thickness carbon steel piping, A-106 grade B as shown in Peach Bottom specification M-300 (Piping Materials) and P&ID M-315, sheets 4 and 5 for 33HB class pipe. The design pressure is 150 psig and the design temperature is 100°F. As shown on attached pages 13 and 14, the areas found to be less than the minimum wall thickness value of 0.063 inch are approximately 0.75 inch in the axial and circumferential directions. In accordance with CC N-513-3, the pipe circumference at the location of the flaw was examined volumetrically to characterize the length and depth of all flaws in the pipe section. The results of the circumferential examination show that there are no other flaws in the area that are below the minimum wall thickness and need to be considered in this evaluation. Additionally, shear wave UT performed around the area of the flaw verified that there are no crack-like indications present. See the completion remarks for work-order activity C0257348-06 for documentation of this result.

Forces, moments, and stresses for the subject piping were extracted from reference 5 between node points 201 and 206. They are shown on pages 9 to 12 of the attachment.

The approach to the evaluation methodology included in CC N-513-3 is to compute a static fracture toughness factor, K1c for the circumferential and axial flaw evaluations. For this evaluation, as shown on attached page 2, the value of K1c is $37.111 \text{ ksi}^{\pm}\text{in}^{0.5}$. The evaluation then computes the stress intensification factors, K1 for the circumferential and axial flaws for the various design modes (normal/upset and emergency/faulted) and then compares them to the previously calculated value for K1c. If K1 is less than or equal to K1c then the acceptability of the through wall flaw is demonstrated. The following is a summary of the results of the attached CC N-513-3 evaluation.

 $K1c = 37.111 \text{ ksi}^{*}\text{in}^{0.5}$

K1 Circ. Normal/Upset = $5.036 \text{ ksi}^{*} \text{in}^{0.5} < 37.111 \text{ ksi}^{*} \text{in}^{0.5}$, therefore acceptable.

K1 Circ. Emer. /Fault = $4.426 \text{ ksi}^{\pm} \text{in}^{0.5} < 37.111 \text{ ksi}^{\pm} \text{in}^{0.5}$, therefore acceptable.

K1 Axial = 7.643ksi^{*}in^{0.5} < 37.111 ksi^{*}in^{0.5}, therefore acceptable.

For simplification, the maximum safety factor of 2.7 for Normal/Upset was used in the computation of all K1 Axial, and the maximum safety factors for either the membrane or bending stress was used for the Ki Circ. Normal/Upset and Emer. /Faulted computations.

Additionally the subject location was evaluated for the effect of thin wall on the normal piping stress and compared to the established design allowable stress for the piping. In this comparison, the allowable stress of 17,100 psi for the piping material (A-106, Grade B) was used. The results of this portion of the analysis, shown on attached pages 5 through 7, demonstrate that a uniform pipe wall thickness of 0.063 inch is acceptable to provide adequate structural integrity for the design basis loadings.

CONCLUSIONS/FINDINGS:

This evaluation of the discovered min-wall area indicates that the size of the flaw and the surrounding wall thickness is acceptable for continued operation of the associated ESW system piping within the requirements of ASME Code Case N-513-3.

۰,

REFERENCES:

- 1. ASME Code Case N-513-3, Evaluation Criteria for Temporary Acceptance of Flaws in Moderate Energy Class 2 or 3 Piping
- 2. ASME B31.1, Power Piping, 1967
- 3. ASME Section XI, Rules for In-Service Inspection of Nuclear Power Plant Components, 2001 Edition plus addenda through and including 2003
- 4. Crane Technical Paper 410, Flow of Fluids
- 5. PBAPS Calculation 33-32, rev. 1B, Pipe Stress Analysis ESW System Unit 2 RBCCW Room
- 6. Technical Evaluation A1998930-01, Request Min Wall
- 7. PBAPS Specification M-300, Piping Materials, Instrument Piping Standards & Valve Classifications
- 8. P&ID M-315, sh. 4 & 5, Emergency Service Water And High Pressure Service Water Systems

ATTACHMENTS:

Pages 1-8:	ASME Code Case N-513-3 Evaluation	
Pages 9-12:	Excerpts from calculation 33-32	
Pages 13-14:	NDE Report	
Page 15:	Calc 33-32 page 19, Stress ISO	
Prepared By:	Ken Hudson RAH	05/05/2015
Reviewed By:	Doug Lord DBL	05/05/2015

Reviewer Comments:

Performed independent review of this technical evaluation and concur that the piping system remains acceptable for continued operation with the identified flaw.

Approved By:	Jeff Chizever, Manager PEDM	05/06/2015
Ť	fsc	

Technbical Evaluation 2494904-03

Attachment

1	of	15

	Planar Flaw Evaluation in ferritic piping IAW Code Case N-513-3									
							17			
	Definitions:									
						0.010				
	Flaw depth				a=	0.312	in			
	Pipe wall thi	ckness			t=	0.375	in			
	p					0.010				
	Maximum a	ssumed circumfe	rential flaw len	gth:	1=	0.750	in			
	Pipe outside	diameter:			D=	12.75	in			
	Maan nina n	dina		$R = \frac{D-t}{2}$	D	6 10	1			
		adius.		2	K=	0.19				
	Piping bend	ing moment of in	ertia:	$I = \frac{\pi [D^4 - (D - 2t)^4]}{T}$	J=	279.34	in^4			
				64 <u>—</u>						
	Flaw half-an	gle per Figure 1,	N-513:	$\theta = \frac{1}{2R}$	θ=	0.061	rad			
				2.K						
	Unit definiti	on for kips:				1 kip = 1000 lb	of			
	TTulk definiti	f				1 1 1000				
	Unit definit	on for psi:				1 ksi = 1000 ps				
	Piping Load	ls (Moments Inc	reased by 25%	6 for Uncertainties):						
	Maximum o	perating pressure	:		OP=	150.00	psi			
				$(\mathbf{p}_{1})^{2}$						
	Maximum o	perating pressure	axial force:	$P_{OP} = \pi (\frac{D}{2} - t)^2 \cdot OP$	P _{OP} =	16964.60	lbs			
						100.00				
	Axial load o	n pipe for Norma	I/Upset conditi	on forces:	Pnu =	109.00	lbs			
_	Avial load o	n nine for Emerg	ency/Faulted co		Pnf -	261.60	lbs			
	Aniai Ioad U	in pipe for Energ			111-	201.00	105			
	Total axial l	oad on pipe, inclu	iding pressure	from piping						
	analysis for	normal/upset con	dition forces:	$P_n = P_{OP} + P_{nu}$	Pn =	17073.60	lbs			
	Total axial l	oad on pipe, inclu	iding pressure	from piping analysis						
	for emergen	cy/faulted conditi	on forces:	$P_f = P_{OP} + P_{nf}$	Pf =	17226.20	lbs			
-16-m				<u> </u>						
	Applied ben	ding moment on	the pipe from p	MC) for WT01 - SELSO	Mn =	2206.25	tt-lbf			
	for normal/	pset condition (S	oroo(MA, MB	, IVIC) FOR WIUT+SEISO	(a		······			
	Applied ben	ding moment on	the pipe from n	iping analysis	Mf =	4328.02	ft-lbf			
- P.	for emerger	cy/faulted condit	ion (SRSS(MA	, MB, MC) for WT01+S	EISSS)	7520.02				
	3	-	, , , -		-/					
	Pipe thermal	expansion stress	from piping ar	nalysis:	Pe =	0.000	ksi			

Technbical Evaluation 2494904-03 Attachment 2 of 15

	С	ircumferentia	Flaw Evaluation Using	N-513		
 					and the second	
 Pining Mate	rial Properties	(Ref. ASME B	31.1):		· · · · · · · · · · · · · · ·	
 Young's Mo	dulus:	E=	27850	ksi		
Poisson's Ra	tio:	· u=	0.30			
 . 01000110		F				
 $E' = (E/(1 u^2))$		 E'	20604 40	leni		
 $\mathbf{E} = (\mathbf{E}/(1-\mu))$		E=		KSI		
 Madanial Da		IT 4000				
 Material Pr	operties for Fla	ws per H-4000	<u> </u>			
From ASM	E XI C-8322			J _{Ic} =	45	in*lbf/in*
Allowable F	racture Toughnes	s, KIc:		$K_{Ic} =$	37.111	ksi*in ^{0.5}
 KIC - ((L *	E) / (1000 lbf/ki	n)) ^{0.5}				
 $Ric = ((J_{Ic}))$		P))	· · · · · · · · · · · · · · · · · · ·			
 N 612 A		nential Flam a	aug tion as			
 <u>N-515 Appe</u>	ndix I Circumie	rential Flaw e	quations:			
 A	5 100			D/4	16 500	A
 Accurate be	ween 5 and 20.	Conservative of	ver 20.	R/t=	16.500	Acceptable
 	L					8
Am = -2.029)17 + 1.67763*(R	/t) - 0.07987*($R/t)^{2} + 0.00176^{*}(R/t)^{3}$			
				Am=	11.81	
Bm = 7.0998	87 - 4.42394*(R/	t) + 0.21036*(F	$(t)^2 - 0.00463 * (R/t)^3$			
				Bm=	-29.42	
Cm = 7.7960	51 + 516676*(R)	(t) - 0 24577*(F	$(t)^2 + 0.00541 * (R/t)^3$			
 Cin = 7.750				Cm-	50.44	
 E. 10.	4	*(0(-)25 . C	¥/0/_\3.5	Cin-		
 Fm = 1.0 + 1	$Am^{+}(\theta/\pi) + Bm$	$1^{+}(\theta/\pi) + Cm^{-}$	*(θ/π)		1.00	
 				Fm=	1.03	
					· · · ·	
Ab = -3.265	43 + 1.52784*(R	(t) - 0.072698*	$(\mathbf{R/t})^2 + 0.0016011*(\mathbf{R/t})$	3		
				Ab=	9.34	
Bb = 11.363	22 - 3.91412*(R/	't) + 0.18619*($(R/t)^2 - 0.004099*(R/t)^3$			
			,	Bb=	-20.94	
Ch = -3.186	10 + 3 84763*(P)	(t) - 0 18304*/T	$2/t^2 \pm 0.00403*(R/t)^3$		Alexa de la constanción de la constancición de la constanción de la constanción de la constanción de l	
 C0 = -5.100	07 + 5.04705 (10	() - 0.10504 (1		Ch-	29 57	
 		25			20.37	
 Fb = 1.0 + A	$b^*(\theta/\pi)^* + Bb^*(\theta/\pi)$	$(\theta/\pi)^{-2} + Cb^*(\theta$	/π) ³²			
 				Fb=	1.02	
		1				

Technbical Evaluation 2494904-03 Attachment <u>3</u> of <u>15</u>

					<u> </u>		
	Applied Str	ess Intensity Fac	tor, KI, for C	ircumferential Flaw:			
	N-513 Appe	ndix I requires th	at the flaw dep	th in the H-7300 stress in	tensity equ	ations	
	be changed t	to the flaw half-le	ngth, c:				
	Maximum as	ssumed circumfer	ential flaw len	gth:	l=	0.75	in
	Flaw half-ler	ngth, $c = 1/2$:			c=	0.38	in
	Note: Units	are converted aut	omatically.				
	Normal/Uns	set Condition:					
dada ana da ana ana ana ana ana ana ana	Normav Cps						
	(27.P \	105				0.5
	$K_{\rm Tm} = -$	$\frac{2 \cdot l \cdot l_n}{n}$ · (1)	$(\tau \cdot c)^{0.5} \cdot F_{}$		K _{Im} =	3.536	ksi-in ^{0.5}
	2	$\cdot \pi \cdot R \cdot t$, m.				
		· · · · ·					
	1 (2)	3. M		· · · · · · · · · · · · · · · · · · ·			•
	$K_n = \int \frac{Z_n}{dr}$	$\frac{1}{2} + P_{a} + P_{a}$	$(\pi \cdot c)^{0.5} \cdot F_{\mu}$				1 • • 0.5
	π	$\cdot R^2 \cdot t \epsilon$			$K_{Ib} =$	1.501	ksi-in
		Ĺ.					
	$K_{t} = K_{tm} + K$	TL.			K, =	5.036	ksi-in ^{0.5}
		10				5.050	
				Therefore	$e, K_{I} < KIc$:	Acceptable	
	Emergency/	Faulted Conditi	on:				
		$1.8 \cdot P_f$	-)0.5 E			0.070	1
	$\Lambda_{\rm Im} = \begin{bmatrix} - \\ - \end{bmatrix}$	$\overline{\mathcal{D}}, \pi, R, t$	$(\cdot c) \cdot r_m$		$K_{Im} =$	2.378	KSI-III
	(4	, new j					
	[(1	$.6 \cdot M_f$) ()0.5				
	$ K_{lb} = -$	$\frac{1}{r P^2} + P_e$	$ \cdot(\pi\cdot c)^{\circ\circ}$	$\cdot F_b$	K	2 048	ksi-in ^{0.5}
		$I \cdot K \cdot I$)		IZIP -	2.040	
							0.6
	$K_I = K_{Im} + K$	-Ib			$K_I =$	4.426	ksi-in ^{0.5}
in distriction (74							
	· · ·			Therefore	Ki< Kley	Accentable	
					,	Tresopratio	
						1	

 the second s	the second se			and the second design of the	and the second	the second s
	Axi	al Through-wa	alll Flaw Evaluation	ation Using N-513		
Stress Inten	sity Factor, KI,	for an axial fla	aw subject to th	e bounding conditi	ion:	
Axial flaw le	ength:			l=	0.75	in
Flaw half-ler	ngth, $c = 1/2$:			C=	0.375	in
 Maximum o	perating pressure	:		OP=	150	psi
 Safety Factor	r for normal/upse	t conditions fro	om C-2622:	SF=	2.7	
N-513 Appe	ndix I assigned fl	aw shape parar	neter			
for a through	n-wall flaw:			Q=	1.00	
$\lambda = c/(R^*t)^{0.2}$	5			λ=	0.246	
 			1 A 1000000 24 3	Therefore, $0 < \lambda < 5$:	Acceptable	
 Note: Units	are converted aut	omatically				
$E = 1.0 \pm 0.0$	77449*3 + 0 648	156*3 ² - 0 2327	$*\lambda^{3} \pm 0.038154$	*3 ⁴ - 0 0023487*3 ⁵		
 1 - 1.0 + 0.0	72447 76 4 0.040	50 1 - 0.2521	X + 0.050154	K - 0.0023407 K	1.054	
 					1.054	
 		- 0.5				
 IZ OF	$OP \cdot R (\pi \cdot $	c)				1 0.5
 $K_1 = SF$.		- ·F		$K_{I} =$	7.643	KS1-1N
)				
				Therefore, $K_I < KIc$:	Acceptable	
			14			
	END OF A	SME CODE	CASE N-513-3	EVALUATION		

Technbical Evaluation 2494904-03 Attachment _5_ of _15_

	Code Minin	num Wall Req	uirement Based on AS	ME III, ND	-3640:	
Joint efficier	ncy factor:			E =	1.00	
Corrosion al	lowance used:			A =	0.00	in
Maximum al	lowable stress fo	r pipe material				
from Section	II, Part D:			S =	17.10	ksi
				y =	0.40	
Design Press	sure:			PD =	150	psi
Minimum A	SME pipe wall th	nickness require	ed, not including any			
corrosion all	owance.				<i>3</i>	
 _	' ס ּסק					
$t_m = -$		$- + A_{$		t _m =	0.056	in
- 2.	$(S \cdot E + PD \cdot)$)				

		Minimum	Wall Thickne	ess Evaluation @ 0.063	inch Thick	ness	
	Outside dian	neter of pipe:			D =	12.75	in
	As analyzed	pipe wall thickne	ess:		t =	0.375	in
	Allowable pi	ipe wall thickness	s - Code minim	um:	t1 =	0.063	in
	(Use trial an	d error until satis	fying modified	stresses below)			
	Design insid	e pipe diameter:		$d = D - 2^* t$	d =	12.00	in
	New inside p	pipe diameter:		d1 = D - 2 t1	d1 =	12.624	in
				-4 14			
	As analyzed	Section Modulus	: Z=	$0.0982 \frac{D^{+}-d^{+}}{D}$	Z =	43.829	in ³
				. D —	1		
	New Section	Modulus:	Z1 = 0	$0.0982 \frac{D^4 - d1^4}{D^4 - d1^4}$	Z1 =	7.927	in ³
				D			
	Design Press	sure:			Pd =	150	psig
							<u>r0</u>
	Maximum P	ressure:			Pm =	150	psig
							10
		ME101 Out	put Stress Sun	nmary - Input from Ca	lculation 33	-32, Revision	lB:
	Design Press	sure Stress:			SPd =	1164	psi
							-
	Maximum P	ressure Stress:			SPm =	1164	psi
	Equation 11	Stress:			Eqn 11 =	1336	psi
2010							
	Equation 12	B Stress:		· · · ·	Eqn 12B =	1751	psi
	Equation 12	C Stress:			Eqn 12C =	0	psi
	Equation 12	D Stress:			Eqn 12D =	2262	psi
	Equation 13	Stress:			Eqn 13 =	0	psi
	Equation 14	Stress:			Eqn 14 =	1336	psi
				<u></u>			

Technbical Evaluation 2494904-03 Attachment 7______ of <u>15____</u>

ME101 Mod	dified Stresses					
						Allowable Stress
Equation 11	Stress = (Equ	$n 11 - SPd) \cdot \frac{4}{7}$	$\frac{2}{(1)} + Pd \cdot \frac{D}{(4*t1)} = $	8540	psi	17,100
			z D —			
 Equation 12	B Stress = (Eqn 1)	$2B - SPm \cdot \frac{2}{7}$	$\frac{1}{1} + Pm \cdot \frac{1}{(4*t1)} =$	10835	psi	20520
			- () 7 D —			
Equation 120	C Stress = (Eqn 1	$2C - SPm$) $\frac{4}{7}$	$\frac{2}{1} + Pm \cdot \frac{D}{(4*t1)} =$	N/A	psi	N/A
Equation 12	D Stress = (Eqn 12	$2D - SPm) \cdot \frac{2}{7}$	$\frac{D}{(4*t1)} =$	13660	psi	41040
		2				
						N

	Evaluation Input Data From Calculation 33-32 Rev 1B, Node Points 201-206									
	Fa	Fb	Fc	Ma	Mb	Mc	Mr	PSI s		
Weight	848	255	56	70	346	424	551.72			
Thermal	0	0	0	0	0	0	0.00			
OBE	109	210	227	672	693	735	1213.28			
SSE	261	505	546	1613	1662	1763	2910.70			
		S	Allow s							
Pressure s	5	1164								
Equ. 11 s		1336	17,100							
Equ. 12b	s	1751	20,520							
Equ. 12d	S	2262	41,040							
Equ. 13 s		N/A								

.

.

33-32	WT01	STRESSES A	AND LOCAL FO	RCES AND MOMENTS	5	ME101/N	9 EXELON,	/824 (PM1107)	05/25/12 PM	11107 P.	AGE 67
ELEMENT	TYPE/TITLE	I	LOCAL FORCES	(LB)	LOCA	L MOMENTS	(FT-LB)	STRESS (PSI .75IM/Z) STRESS INT.FAC.	FLEX. IN	FLEX. CODE OUT AND
то		FA	FB	FC	MA	MB	MC		(I)	PLANE	PLANE CLASS
198	TNGT	-1055	-56	-56	70	459	-539	189.	1.000	1.000	1.000 B31S73
201	a de caracter de sa	848	56	56	50	(346)	(424)	147.	1.000	1.000	1.000
201	TNGT	-848	-56	-56	70	346	-424	147.	1.000	1.000	1.000 B31S73
200 8	NUMPE STATES	424	5)1000000000000000000000000000000000000	2.5.6.6.36.57.8.8.	-70	-112	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	02.	1.000	1.000	1.000
206 B 206 M	BEND	-424 175	56 -255	56 -56	70 7	-115 72	190 21	133. 43.	2.862	9.359	9.359 B31S73 9.359
0000111					And the second					0.050	0.250.001002
206 M 206 E	BEND	-175	-184	-56	-/ 31	-72	-21 301	43.	2.862	9.359	9.359 831573
206 8	TINICUT.	EC	_104	- CEC - SAMA		CALIFORNIA AND	2018201	90	1 000	1 000	1 000 031073
206 £	/ING1	-56	-402	56	31	333	326	124.	1.000	1.000	1.000 831373
207	TNGT	402	-56	-56	-333	31	-326	181.	1.000	1.000	1.000 B31S73
208		-484	56	56	333	81	212	156.	1.000	1.000	1.000
171	TNGT	-2459	-69	-72	90	-44	121	68.	2.172	1.000	1.000 B31S73
209		2807	69	72	-90	290	-358	125.	1.000	1.000	1.000
209	TNGT	-2807	-72	69	90	358	290	125.	1.000	1.000	1.000 B31S73
211		3137	72	-69	-90	-582	-523	341.	2.172	1.000	1.000
211 216 P	TNGT	-4054	-53	42	330	883	-605	486.	2.172	1.000	1.000 B31S73
210 D		4133	22	- 12	-000	- 510	500	255.	1.000	1.000	1.000
216 B 216 M	BEND	4 53	42 -112	53 -53	330 139	-560 573	-918 995	643. 661.	2.862	9.359	9.359 B31S73 9.359
21.6 M		53	110	53	100		0.05				
216 M 216 E	BEND	-53	-236	-53	480	-573	-995	661. 754.	2.862	9.359	9.359 B31873 9.359
216 E	TNGT	42	-236	-53	-480	250	1204	351	1 000	1 000	1 000 831973
221		-42	253	53	480	-241	-1245	459.	1.696	1.000	1.000
221	TNGT	42	-253	-53	-480	241	1245	459.	1.696	1.000	1.000 B31S73
223		-42	338	53	480	-197	-1491	420.	1.000	1.000	1.000
223	TNGT	42	602	-53	-480	197	1491	420.	1.000	1.000	1.000 B31573
226		-42	-449	53	480	-117	-704	229.	1.000	1.000	1.000
226	TNGT	42	449	-98	-480	117	704	229.	1.000	1.000	1.000 B31573
231 B		-42	-137	20	480	183	193	146.	T.000	T.000	1.000
231 B 231 M	BEND	42 -70	-27 -11	166 -81	-480 91	266	7 -12	313. 378	2.862	9.359	9.359 B31S73 9.359
222 1				01				570.	2.002		
231 M 231 E	BEND	-142	42	4	-423	656 -567	-18	378. 404.	2.862	9.359 9.359	9.359 B31S73 9.359
										ಂ ಸರ್ವಾಸ್	

Attachment to:

Page q of 15

Non Record Content

33-32	SEISDE	STRESSES AI	ND LOCAL FO	RCES AND MOM	ENTS	ME101/N	9 EXELON	/824 (PM1107)	05/25/12 PM	11107 P.	AGE 349
ELEMENT FROM	TYPE/TITLE	L	OCAL FORCES	(LB)	LOCAL	MOMENTS	(FT-LB)	STRESS (PSI) STRESS INT.FAC.	FLEX. IN	FLEX. CODE OUT AND
TO		FA	FB	FC	MA	MB	MC		(I)	PLANE	PLANE CLASS
198	TNGT	109	168	104	469	841	1073	384.	1.000	1.000	1.000 B31S73
201		(109)	168	104	469	(693)	(735)	296.	1.000	1.000	1.000
201	TNGT	108	(210)	106	469	693	735	296.	1.000	1.000	1.000 B31S73
206 8		C	94	14/	546	421	122	187.	T.000	1.000	1.000
206 B	BEND	56	98		546	427	122	402.	2.862	9.359	9.359 B31S73
206 M		109	IN THE DI SLOW	104	612	204	174	431.	4.004	9.359	9.339
206 M	BEND	109	31	184	672	284	194	431.	2.862	9.359	9.359 B31S73
200 E		90	50	104	007	330	7/0	2012 Contract 414 - Co	2.002	9.359	9.335
206 E	TNGT	99	58	227 '	607	356	176	193.	1.000	1.000	1.000 B31S73
207		99	58	221	607	1190	128	308.	1.000	1.000	1.000
207	TNGT	58	99	231	1190	607	158	522.	1.000	1.000	1.000 B31S73
208		58	99	231	1190	982	48	599.	1.000	1.000	1.000
171	TNGT	508	155	165	541	781	581	483.	2.172	1.000	1.000 B31S73
209		508	155	165	541	1135	318	345.	1.000	1.000	1.000
209	TNGT	508	151	140	541	318	1135	345.	1.000	1.000	1.000 B31S73
211		508	151	140	541	600	1433	713.	2.172	1.000	1.000
211	TNGT	534	466	138	922	481	1045	639.	2.172	1.000	1.000 B31S73
216 B		534	466	138	922	468	667	327.	1.000	1.000	1.000
216 B	BEND	237	120	492	922	667	468	703.	2.862	9.359	9.359 B31S73
216 M		231	135	492	565	572	474	533.	2.862	9.359	9.359
216 M	BEND	231	135	492	565	572	474	533.	2.862	9.359	9.359 B31S73
216 E		120	237	492	236	554	560	470.	2.862	9.359	9.359
216 E	TNGT	105	242	500	236	554	560	219.	1.000	1.000	1.000 B31S73
221		105	242	500	236	553	579	282.	1.696	1.000	1.000
221	TNGT	100	244	504	236	553	579	282.	1.696	1.000	1.000 B31S73
223		100	244	504	236	695	692	269.	1.000	1.000	1.000
223	TNGT	89	167	508	236	695	692	269.	1.000	1.000	1.000 B31S73
226		89	167	508	236	1324	446	377.	1.000	1.000	1.000
226	TNGT	81	134	319	236	1324	446	377.	1.000	1.000	1.000 B31S73
231 B		212	104	369	211	879	348	258.	1.000	1.000	1.000
231 B	BEND	277	318	212	211	390	861	553.	2.862	9.359	9.359 B31873
231 M		400	131	212	379	386	991	645.	2.862	9.359	9.359
231 M	BEND	400	131	212	379	386	991	645	2.862	9,359	9.359 831972
231 E		318	277	212	589	230	817	590.	2.862	9.359	9.359
								At	achment	to:	

Page 10 of 15

33-32	SEIS	ME STRESSES	AND LOCAL	FORCES AND	MOMENTS	ME101/N	19 EXELON	/824 (PM1107)	05/25/12 PM	11107 H	PAGE 384
ELEMENT FROM	TYPE/TITL	E	LOCAL FORC	ES (LB)	LOCA	L MOMENTS	(FT-LB)	STRESS (PSI) STRESS INT.FAC.	FLEX. IN	FLEX. CODE OUT AND
TO		FA	. FB	FC	MA	MB	MC		(I)	PLANE	PLANE CLASS
198 201	TNGT	261 261	403 403	250 250	1126 1126	2019 1662	2575 1763	921. 711.	1.000 1.000	1.000	1.000 B31S73 1.000
201 206 B	TNGT	260 135	505 227	- 254 352	1126 1311	1662 1026	1763 293	711. 450.	1.000 1.000	1.000	1.000 B31S73 1.000
206 B 206 M	BEND	135 261	236 75	442 442	1311 (1613)	1026 681	293 465	965. 1035.	2.862 2.862	9.359 9.359	9.359 B31873 9.359
206 M 206 E	BEND	261 236	75 135	442 442	1613 1456	681 855	465 423	1035) 994.	2.862 2.862	9.359 9.359	9.359 B31873 9.359
206 E	TNGT	25) 139	(546)	1456	855	423	463.	1.000	1.000	1.000 B31S73
207		237	139	546	1456	2855	379	859.	1.000	1.000	1.000
207 208	TNGT	139 139	238 238	554 554	2855 2855	1456 2357	379 115	1253. 1438.	1.000	1.000 1.000	1.000 B31S73 1.000
171 209	TNGT	1220 1220	372 372	395 395	1299 1299	1875 2724	1395 763	1159. 828.	2.172 1.000	1.000 1.000	1.000 B31S73 1.000
209 211	TNGT	1220 1220	362 362	337 337	1299 1299	763 1440	2724 3440	828. 1712.	1.000 2.172	1.000 1.000	1.000 B31S73 1.000
211 216 B	TNGT	1281 1281	. 1118 . 1118	330 330	2212 2212	1155 1122	2507 1601	1533. 785.	2.172	1.000 1.000	1.000 B31S73 1.000
216 B 216 M	BEND	569 553	289 323	1180 1180	2212 1355	1601 1372	1122 1137	1686. 1279.	2.862 2.862	9.359 9.359	9.359 B31S73 9.359
216 M 216 E	BEND	553 289	323 569	1180 1180	1355 567	1372 1329	1137 1344	1279. 1127.	2.862 2.862	9.359 9.359	9.359 B31S73 9.359
216 E 221	TNGT	252 252	581 581	1201 1201	567 567	1329 1326	1344 1390	525. 678.	1.000 1.696	1.000 1.000	1.000 B31S73 1.000
221 223	TNGT	239 239	586 586	1209 1209	567 567	1326 1669	1390 1662	678. 644.	1.696 1.000	1.000 1.000	1.000 B31S73 1.000
223 226	TNGT	215 215	401 401	1219 1219	567 567	1669 3178	1662 1071	644. 905.	1.000	1.000 1.000	1.000 B31S73 1.000
226 231 B	TNGT	195 510	321 249	765 886	567 507	3178 2110	1071 835	905. 619.	1.000	1.000 1.000	1.000 B31S73 1.000
231 B 231 M	BEND	665 961	5 762 . 315	509 509	507 908	935 927	2067 2378	1328. 1547.	2.862 2.862	9.359 9.359	9.359 B31S73 9.359
231 M 231 E	BEND	961 762	. 315 665	509 509	908 1414	927 553	2378 1961	1547. 1416.	2.862 2.862	9.359 9.359	9.359 B31S73 9.359

Attachment to:

Page 11 of 15

CODE B31S73

EL	EMENT	SU	STAINED	LOAD		LEVI	OCCA	SIONAL I	JOAD	I.FV	ZI. D	THE	RMAL NSION	NON-R ANCH	EPEATED OR MOV
FROM	TYPE		FO	ง 11		FOI	12	FOR	1 1 2	FOI	1 1 2	FONG	12/14	FON	***
TO	TTTT.P	DD/AT	CALC	ALLOM		CALC	ALLON	CALC	ALLOW	CAIC	N 12 NILOW	CALC	13/14	CNLC	377.012
10	11100	PD/41	CALC	ALLOW	PD/41	CALC	ALLOW	CALC	ALLOW	CALC	ALLOW	CALC	ALLOW	CALC	ALLOW
		PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI
141	BEND	776	1115	15000	776	2453	18000	0	0	4327	36000	0	0	0	0
151 M			1039	15000		2619	18000	0	0	4831	36000	0	ñ	0	0
								Ŭ	0	1051	30000	v	0	0	0
151 M	BEND	776	1039	15000	776	2619	18000	0	0	4831	36000	0	0	0	0
156			922	15000		2725	18000	0	0	5248	36000	0	0	0	0
156	TNGT	335	382	15000	335	962	18000	0	0	1775	36000	0	0	0	0
161	CHK-2-33-513		529	15000		1257	18000	0	0	2276	36000	0	0	0	0
161	TNGT	776	1132	15000	776	2463	18000	0	0	4325	36000	0	0	0	0
171			1599	15000		3503	18000	0	0	6169	36000	0	0	0	0
1000-000															
171	TNGT	1164	1432	15000	1164	2115	18000	0	0	3071	36000	0	0	0	0
176			1317	15000		1737	18000	0	0	2326	36000	0	0	0	0
176	TNGT	527	609	15000	527	832	18000	0	0	1145	36000	0	0	0	0
181			604	15000		822	18000	0	0	1128	36000	0	0	0	0
220-22 M	208														
181	CMPT	0	0	15000	0	0	18000	0	0	0	36000	0	0	0	0
186	MO-2972		0	15000		0	18000	0	0	0	36000	0	0	0	0
181	TNGT	527	641	15000	527	863	18000	0	0	1175	36000	0	0	0	0
191			632	15000		843	18000	0	0	1138	36000	0	0	0	0
1.00															
191	TNGT	1164	1360	15000	1164	1757	18000	0	0	2313	36000	0	0	0	0
198			1353	15000		1736	18000	0	0	2274	36000	0	0	0	0
100	TTNT/TTT	1104	1252	15000	1164	1000	10000		-						
201	1101	1104	1000	15000	1164	1/35	18000	0	0	2274	36000	0	0	0	0
201	201006-1-11 Kipper Disch, Cristerne		1311	12000	<u> 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u>	1607	18000	0	0	2021	36000	0	ant (1. 1947) O	0	0
201	TNGT	1164	1311	15000	1164	1607	19000	1999 A.	0	20031	26000	Sales of a	and the state of the	Cardina and Card	
206 B		<u> 1107</u>	1226	15000	1104	1413	18000	0	0	2021	36000	0	0	0	0
	1996 - San Salaharan Sanatan Sanatan Sa	And a start of the second	from Carl and American Street and	20000			10000	MERLENCER L. V. P.	State of the second second	10/3	30000	U	U	Carl Constant Constant	U
206 B	BEND	1164	1297	15000	1164	1699	18000	0	0	2262	36000	0		SURVEY OF	0
206 M	and the second s	A STALLAR	1207	15000		1638	1.8000	Ő	0	2202	36000	0	0	0	0
na - e canadala mana a		<u>, 1997 (* 1998)</u>					10000		Contra Pro A sector	6631	30000	0.0	TO THE REPORT OF THE	Jan Lange	U.
206 M	BEND	1164	1207	15000	1164	1638	18000	0.	0	2241	36000	0	0.0		0
206 E		1.1.1	1336	15000	L. Margaret	1751.	18000	ō	0	2331	36000	0	0	0	0
hadonya kata kata kata kata kata kata kata ka	anna ann a staine ann an Annaichean ann a sa ann an thairte ann an Annaichean an Annaichean an Annaichean an An	and an	and a second			And in case of the local division of the loc	20000		S OF LAND	100 2 J J L	50000	U.S. Salar and U.S.	0	U	U
206 E	TNGT	1164	.1244	15000	1164	1437	18000	0	0	1707	36000	10 A 40 0	- Inton	- 0	0
207	and the second	en mundeligiket in mit sin sonderligi	1288	15000	a start and	1646	18000	0	0	2147	36000	0	0	0	0
								-	2		20000	5	5	J	U
207	TNGT	993	1174	15000	993	1696	18000	0	0	2427	36000	0	0	٥	0
208			1150	15000		1749	18000	0	0	2587	36000	õ	ō	õ	0
									2			5	5	J	0

* EXCEEDED ALLOWABLE IN EQUATION 13, EQUATION 14 USED

** EXCEEDED ALLOWABLE

Attachment to:

Page 12 of 15

[1			OPPOSIO	N	TE 2 Attac	49490 hmen	4- t	03		
	~	U	ILTRASC	ONIC EXAMINA	FION REPO	ORT FORM	Page	e 13	o	f 15 🗖	та	BOUP
Exelon Generat	ION.		w	ORK ORDER #	C0257348	-06						
STATION / UNIT	PE	BAPS UN	IT 2	EXAM AREA	WELD	STRAIGHT		MEA	SL	REMENT	/ RE	SULTS
EXAM LOCATION ID#		ISO-2-33-1	7	(X - ONE)	[]	[X]						
PIPE NOMINAL WALL		.375"		EXAM POSITION	HORIZ	VERT	Grid	BAND A		BAND B		BAND C
PIPE MINIMUM WALL		.063"		(X - ONE)	[X]	[]	1	0.268	н	0.353	н	0.270 "
PIPE DIA.	2"				ROOM	Sump Room	2	0.327	16	0.307	u	0.264 "
INSTRUMENT: Mfg	r: Oly	mpus	Model:	38DL Plus	_Serial: 140	875705	3	0.249	н	0.276	н	0.206 "
SPECIAL GRIDING: N/A							4	0.247	μ	0.136	н	0.180
SEARCH UNIT: Mfg	r: Pa	nametrics	S/N:	810220	Make:	D799	5	0.275	"	0.105	10	*0.034
Siz	e:	.434"	Freque	ency: 5 Mhz			6	0.168	и	0.254	н	0.289 "
Couplant	Humex	/ 04165	Referen	nce Block:	0002812	581	7	0.256	н	0.248	H	0.300 "
CALIBRATION TIMES:	Initial:	10:30	Final:	14:30	Other:	N/A	8	0.288	н	0.151	a	0.255 "
THERMOMETER:	0002	834215 Du	ie 6/5/15	CAL TEMP 80°	COMP TEMP	7 0°	9	0.303	16	0.266	н	0.124 "
DRAWING (If Applicable)							10	0.280	н	0.248	н	0.300 "
<u>IS0</u> -	2-33-1	7 Leak	Upstre	am of MO-2	<u>.972</u>		11	0.294	н	0.245	н	0.297 "
							12	0.305	a	0.245	н	0.273 "
For the second sec	All	E B A		Rei Ai			ASME ir found	A thru wa 50-2-33-1 Mapping Code Ca n C5 is a t ecordable to be .03	ull le 7 uj wa se hru rea 4" 1 pi	eak was ide pstream of s performe N-513-3. A wall leak, ading of the for continu- urposes. d Page Fo	entifi MC ed as Ntho the e lea ous	ied on 0-2972. s per ugh the low lowest ak was monitoring D Bar.
Grid location C5 was identifi	ed as belov	v Engineering	g Min. Wall	criteria. See attac	hed Iso bar.					Cali	bra	tion
Material: A-106 GR. B Carbo	on Steel.								-	Actual		Meas
Examination Perormed in Ac	cordance w	ith ER-AA-3	35-004 RE	V. 7					-	Actual	+	WEd3.
Heterence Min Wall Accepta	Ince Criteria	a per A19989	30-E01						-	500"	+	500"
Surface Condition = Prepped	, Paint Ren	noved.							-	.500	+-	200"
	Z,	P (4 / 4 P		600		/ .			_	.300"	+	200"
NAME / LEVEL	4 1	5/4/15 DATE		n/a NAME / Lf	EVEL	<u> </u>			-	.100"	+	.100"

 	<u>l-3</u>					
	PBAPS	ESW Min Wa	II "B" ESW (IR 249490	04-03)		
Definitions:						
 Flaw depth			-	a=	0.312	in
 D' 11.1.1	1				0.075	
 Pipe wall thi	ckness			t=	0.375	1n
 Maximum a	sumed circumfe	ential flaw len	gth.	1-	1 500	in
iviuximum a.					1.500	
 Pipe outside	diameter:			D=	12.75	in
Mean pipe ra	adius:		$R = \frac{D-t}{2}$	R=	6.19	in
Piping bendi	ng moment of in	ertia:	$I = \frac{\pi [D^{1} - (D - 2t)^{1}]}{64}$	I=	279.34	in^4
 			L			
 Flaw half-an	gle per Figure 1,	N-513:	$\theta = \frac{1}{2 \cdot R}$	θ=	0.121	rad
 Unit dofiniti	on for kins:				1 kin - 1000 lb	£
	on for kips.				1 kip = 1000 ld	
 Unit definiti	on for psi:	1.0 1.0.0.0.000			1 ksi = 1000 ps	
 	on for pon				1.101 - 1000 pt	-
 Piping Load	ls (Moments Inc	reased by 25%	6 for Uncertainties):		4	
 Maximum o	perating pressure			OP=	150.00	psi
			- (p) ²			
Maximum o	perating pressure	axial force:	$P_{OP} = \pi(\frac{D}{2} - t) \cdot OP$	P _{OP} =	16964.60	lbs
 					100.00	
 Axial load o	n pipe for Norma	l/Upset conditi	on forces:	Pnu =	109.00	lbs
 A vial load o	n nine for Emerg	anay/Eaulted or		Dof	261.60	lba
 AXIAI IOAU O	i pipe for Emerge	ency/rauteu co		rm=	201.00	105
 Total axial lo	ad on pipe, inclu	ding pressure	from piping			
analysis for i	normal/upset con	dition forces:	$P_n = P_{OP} + P_{nu}$	Pn =	17073.60	lbs
			u or nu			
Total axial lo	oad on pipe, inclu	ding pressure	from piping analysis			
for emergend	cy/faulted conditi	on forces:	$P_f = P_{OP} + P_{nf}$	Pf =	17226.20	lbs
Applied ben	ding moment on t	he pipe from p	iping analysis	Mn =	2206.25	ft-lbf
 for normal/1	pset condition (S	RSS(MA, MB	, MC) for WT01+SEISO	B)		
 Appliedh	1	ha star form		1.10	4000.00	6. 11-6
 for amoreon	ang moment on l	ion (SPSS(MA	MR MC) for WT01+S	EISCE)	4328.02	II-IDI
 tor emergen	cyriauneu condit	IOII (SICSS(IMA	, wid, wid) for w 101+3			
 Pipe thermal	expansion stress	from piping ar	nalvsis:	Pe =	0.000	ksi
		piping u				

	<u>c</u>	<u>'ircumferentia</u>	I Flaw Evaluation Using	<u>g N-513</u>		
Piping Mate	erial Properties	(Ref. ASME B	31.1):			
Young's Mo	dulus:	E=	27850	ksi		
Poisson's Ra	tio:	μ=	0.30			
$E' = (E/(1-\mu^2))$)	E'=	30604.40	ksi		
 Material Pr	operties for Fla	ws per H-4000	·		Tene is	
 From ASM	F XI C-8322	L	I., 181 1.1.5	I	45	in*lbf/in ²
 FIOII ASM	E AI C-0522			Jic -		
 		L				1
 Allowable F	racture Toughnes	ss, Klc:		$K_{Ic} =$	37.111	ksi™in
$KIc = ((J_{Ic} *$	E') / (1000 lbf/ki	p)) ^{0.5}				
<u>N-513 Appe</u>	ndix I Circumfe	erential Flaw e	quations:			
Accurate bet	tween 5 and 20.	Conservative or	ver 20.	R/t=	16.500	Acceptable
Am = -2.029)17 + 1.67763*(F	R/t) - 0.07987*($\overline{R/t}^{2} + 0.00176*(R/t)^{3}$			
				Am=	11.81	
 Bm = 7.0998	87 - 4.42394*(R/	t) + 0.21036*(R)	$(R/t)^2 - 0.00463*(R/t)^3$			
				Bm=	-29.42	
 Cm = 7.7066	$51 \pm 5.16676*/D$	(1) 0.24577*(1)	$P(t)^2 \pm 0.00541 * (P(t)^3)$	2		
 CIII = 7.7900	51 + 5.10070 (IO	() - 0.24577 (I		Cm-	50.44	
 E 10	+(01)15 . D	*(01)25	*(01) 3.5	Cm-		
 Fm = 1.0 + A	$Am^*(\theta/\pi)^{} + Bn$	$f^*(\theta/\pi)^{} + Cm^{-}$	*(θ/π)		1.00	
 				Fm=	1.08	
 				1		
Ab = -3.2654	43 + 1.52784*(R	/t) - 0.072698*($(R/t)^2 + 0.0016011*(R/t)$, 		
				Ab=	9.34	
 Bb = 11.363	22 - 3.91412*(R/	(t) + 0.18619 * (1)	$(R/t)^2 - 0.004099*(R/t)^3$			
				Bb=	-20.94	
Cb = -3.1860	09 + 3.84763*(R	/t) - 0.18304*(F	$(R/t)^{2} + 0.00403*(R/t)^{3}$			
				Cb=	28.57	
 Fb = 1.0 + A	$b^*(\theta/\pi)^{1.5} + Bb^*$	$(\theta/\pi)^{2.5} + Cb^*(\theta)$	$(\pi)^{3.5}$			
 				Fh=	1.07	· · · · · · · · · · · ·
 	<u></u>			10-	1.07	
 					· · · · · ·	
 	,					

Applied Str	ess Intensity Fac	ctor, KI, for C	ircumferential Flaw:			
 N-513 Appe	ndix I requires th	at the flaw dep	th in the H-7300 stress ir	ntensity equ	ations	
 be changed t	to the flaw half-le	ength, c:				
 Maximum a	sumed circumfe	rential flaw len	oth'	1=	1.50	in
				1-	1.50	
 Flow half lo					0.75	in
 Flaw nan-le	$\frac{1}{1}$			<u> </u>	0.75	
 NT						
 Note: Units	are converted aut	omatically.				
 <u>Normal/Ups</u>	set Condition:					
(
$K = \int_{-\infty}^{\infty} $	$\frac{2.1 \cdot P_n}{2.1 \cdot P_n}$ (1)	$(\tau \cdot c)^{0.5} \cdot F$		K _{im} =	5.249	ksi-in ^{0.5}
 ¹ Im (2	$\cdot \pi \cdot R \cdot t$					
 ``````````````````````````````````````						
 (2	2 1 )	1				
 $K_{n} = \begin{bmatrix} \frac{2}{n} \end{bmatrix}$	$\frac{1.5 \cdot M_n}{1.5 \cdot M_n} + P_1$	$(\pi \cdot c)^{0.5} \cdot F_{c}$				0.5
 $\pi$	$\cdot R^2 \cdot t^{-e}$			$K_{Ib} =$	2.207	ksi-in
$K_I = K_{Im} + K$	lb			K _I =	7,456	ksi-in ^{0.5}
 				V v VI-	A	
 			Inerefore	$k_{l} < K_{l}$	Acceptable	
Emergency/	Faulted Conditi	on:				
(	18.P					
$K_{I_{m}} =  -$	$\frac{1.0 \cdot I_f}{f}$ $  \cdot (j$	$(\pi \cdot c)^{0.5} \cdot F_{\dots}$		K _{tm} =	3.531	ksi-in ^{0.5}
 + 10 (2	$2 \cdot \pi \cdot R \cdot t$ )	7 11		Int		
	<u> </u>					
(1	$6 \cdot M$		-			
 $K_{\mu} = \frac{1}{-}$	$\frac{10^{-10} f}{10^{-10} f} + P_{1}$	$(\pi \cdot c)^{0.5}$	· F _h			1 0.5
 10 1	$\tau \cdot R^2 \cdot t$		<i>D</i>	$K_{1b} =$	3.012	KSI-IN
<u>`</u>						
$K_I = K_{Im} + K$	lb			$K_t =$	6.543	ksi-in ^{0.5}
 4 - 100		·				· · · · · · · · · · · · · · · · · · ·
			Therefore	K. Klo	Accentable	
 			Therefore	$\gamma$ , $\alpha_1 \sim 1000$ .	Acceptable	

	•	Axi	al Through-w	alll Flaw Eva	luation Using N-513		
	Stress Inter	nsity Factor, KI,	for an axial fl	aw subject to	the bounding cond	tion:	
	Axial flaw l	ength:			1	= 1.50	in
	Flaw half-le	ength, $c = 1/2$ :			с	= 0.75	in
	Maximum o	perating pressure	:		OP	= 150	psi
	Ì						
	Safety Facto	or for normal/upse	et conditions fro	om C-2622:	SF	= 2.7	
	1						
	N-513 Appe	endix I assigned f	law shape para	meter			
	for a through	h-wall flaw:			Q	= 1.00	
	$\lambda = c/(R^*t)^0$	.5			λ	= 0.492	
	1				Therefore, 0<λ<	: Acceptable	
						1	
	Note: Units	are converted aut	omatically			1	
				5688			
	F = 1.0 + 0.0	072449*λ + 0.648	$356*\lambda^2 - 0.2327$	$7*\lambda^3 + 0.0381$	54*λ ⁴ - 0.0023487*λ	5	
		I			F	= 1.167	
	1						
			<u>\ 0.5</u>	· · · · · ·			
	K = SE	$\frac{\text{OP} \cdot \text{R}}{\text{I}} \cdot (\frac{\pi \cdot}{1 + 1})$	$\frac{c}{c}$ · F		К.	- 11.974	ksi-in ^{0.5}
	$-\mathbf{r}_{I} - \mathbf{r}_{I}$	t Q	) `—				
	1		· · · · · · · · · · · · · · · · · · ·				
					Therefore K < KL	v Accontable	
						Acceptable	
						+	
<u> </u>			SME CODE	CASE N 512	2 EVALUATION		
			ASIVIE CODE	CASE N-313	-J EVALUATION	-1	

		Code Minin	num Wall Req	uirement Based on ASI	ME III, ND	<u>-3640:</u>	
	Joint efficien	ncy factor:			E =	1.00	
	Corrosion al	lowance used:			A =	0.00	in
ter .							
	Maximum a	llowable stress fo	r pipe material				
	from Sectior	II, Part D:			S =	15.00	ksi
					y =	0.40	
	Design Press	sure:			PD =	150	psi
	Minimum A	SME pipe wall the	ickness require	ed, not including any			
	corrosion all	owance.					
	L	РD					
	_t =	10	+ A		t_m =	0.063	in
	^m 2.1	$(S \cdot F + P \cdot y)$					
	4						

 			1			
	Minimum	Wall Thickne	ess Evaluation @ 0.0	63 inch Thick	ness	
Outside dian	neter of pipe:			D =	12.75	in
As analyzed	pipe wall thickne	ess:		t =	0.375	in
Allowable pi	ipe wall thickness	s - Code minim	ium:	t1 =	0.063	in
(Use trial and	d error until satis	fying modified	stresses below)			
Design insid	e pipe diameter:		d = D-2*t	d =	12.00	in
New inside p	oipe diameter:		d1 = D - 2 t1	d1 =	12.624	in
 			İ			
As analyzed	Section Modulus	· Z=	$0.0982 \frac{D^4 - d^4}{D^4 - d^4}$	Z =	43 829	in ³
 rib unurj200			. D —		151027	
 New Section	Modulus	Z1 = 0	$0.0982 \frac{D^4 - dl^4}{D^4 - dl^4}$	71 -	7 927	in ³
 Thew Section	Wodurds.		D —		1.521	
 Design Press	ure.			Pd =	150	nsig
 Design riese					100	2018
Maximum P	ressure:			Pm =	150	nsig
						10-8
 	ME101 Out	put Stress Sun	nmary - Input from	Calculation 33	-32, Revision	1B:
 Design Press	ure Stress:			SPd =	1164	psi
Maximum P	ressure Stress:			SPm =	1164	psi
 Equation 11	Stress:			Eqn 11 =	1336	psi
					1.00	
Equation 12	B Stress:			Eqn 12B =	1751	psi
						•
 Equation 120	C Stress:			Eqn 12C =	0	psi
 Equation 12	D Stress:			Eqn 12D =	2262	psi
						·
Equation 13	Stress:			Eqn 13 =	0	psi
						-
Equation 14	Stress:			Eqn 14 =	1336	psi
					5. 100 m li	
			· · · · ·			
		N8				

ME101 Modifi	ied Stresses					
						Allowable Stress
			7 D -			
Equation 11 Str	ress = (Eqn	$(11-SPd) \cdot \frac{2}{7}$	$\frac{D}{(4*t)} = \frac{D}{(4*t)}$	8540	psi	17,100
Equation 12B S	Stress = (Eqn 12	$(B-SPm) \cdot \frac{2}{7}$	$\frac{2}{1} + Pm \cdot \frac{D}{(4*t1)} = -$	10835	psi	20520
			7 (FU)			
Equation 12C S	Stress = (Eqn 12	$(C-SPm) \cdot \frac{2}{7}$	$\frac{D}{1} + Pm \cdot \frac{D}{(4*t)} = -$	N/A	psi	N/A
		2				
Equation 12D S	Stress = (Eqn 12	$D - SPm ) \cdot \frac{2}{7}$	$\frac{1}{1} + Pm \cdot \frac{D}{(4*t1)} = -$	13660	psi	41040
		2	(+ ti)			

Evaluation Input Data From Calculation 33-32 Rev 1B, Node Points 201-206								
	Fa	Fb	Fc	Ma	Mb	Mc	Mr	PSI s
Weight	848	255	56	70	346	424	551.72	
Thermal	0	0	0	0	0	0	0.00	
OBE	109	210	227	672	693	735	1213.28	
SSE	261	505	546	1613	1662	1763	2910.70	
		S	Allow s					
Pressure s		1164						
Equ. 11 s		1336	17,100					
Equ. 12b s		1751	20,520					
Equ. 12d s		2262	41,040					
Equ. 13 s		N/A						

Prepared By:

Jen Huckson Ken Hudson Saver B. lord Doug Lord 07-23-2015 Date

Reviewed By:

7/23/2015 Date

## **ENCLOSURE 2**



ŝ,