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APPLICATION OF THE COUPLED FLUID-STRUCTURE

CODE PELE-IC TO PRESSURE-SUPPRESSION

ANAYLSIS--ANNUAL REPORT TO NRC FOR 1979

ABSTRACT

This report concludes a developmental effort to obtain a two-dimensional

or axisymmetric computer code that calculates fluid-structure interaction

problems in boiling-water-reactor (BWR) pressure-suppression systems. In this

report several verification problems are concluded and applications to the

Mark I and Mark II pressure-suppression systems are presented.
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EXECUTIVE SUMMARY

A coupled fluid-structure computer program, PELE-IC, has been written at

Lawrence Livermore Laboratory (LLL) to analyze boiling-water-reactor (BWR)

pressure-suppression systems. The code has been thoroughly verified both

against existing exact solutions as well as against experimental data.

Applications have revealed development areas which must be pursued if PELE-IC

is to be a sufficiently general code. In particular the following code efforts

are recommended for future work: (1) coupling PELE-IC to the thermodynamics of

the condensation events, and (2) including three-dimensional effects to

accommodate multiple downcomers.

In November 1979, the PELE-IC code was released to the National Energy

Software Center at Brookhaven National Laboratory, Upton, New York. A code

release document and PELE-IC user's manual have been published.

This report presents additional PELE-IC verification and simulation

problems that were not reported in our 1978 report. New code features have

been added and are described in this report. We again present the PELE-IC

code physics. The verification problem reported here is that of a vibrating

submerged cylinder which tests fluid-structure coupling for curved shells.

The PELE-IC code applications include simulations of the LLL 1/5-scale torus

experiments, a harmonically-driven water-filled tank experiment, and the

General Electric (GE4T) chugging experiments.

E. Y. Gong, E. E. Alexander, W. M. McMaster, and D. F. Quifiones, PELE-IC

Test Problems, Lawrence Livermore Laboratory, Livermore, Calif., UCRL 52835

(1979).

W. H. McMaster and E. Y. Gong, User's Manual for PELE-IC: A Computer

Code for Eulerian Hydrodynamics, Lawrence Livermore Laboratory, Livermore,

Calif., UCRL-52609 (1979).



1.0 INTRODUCTION

The discharge of safety relief valves or a severe loss-of-coolant event

in a boiling-water-cooled reactor steam-supply system triggers a complex

pressure suppression system that is based upon sub-surface steam condensation

in large pools of water. Figure 1 shows three typical geometries for pressure
2

suppression designs--the Mark I, Mark II, and Mark III systems. The Mark I

is characterized by a partially water-filled toroidal shell. Steam is fed into

the toroidal shell (wetwell) by a series of large vent pipes that connect the

reactor cavity (drywell) to a manifold (or ring header) with pairs of pipes

(downcomers) that extend below the water surface. Additional features of the

Mark I and Mark II designs will be discussed later in the report.

From Fig. 1, we observe that the design of the Mark II system is

considerably different from that of the Mark I because of its vertical

downcomer vents and somewhat larger drywell volume. Here the vents extend

downward from the bottom of the drywell into a wetwell cavity of rectangular

torodial cross section. The Mark III system is characterized by horizontal

vents and a much larger wetweli airspace than either the Mark I or Mark II

system.

The physical problems associated with these designs fall into two

categories. The first category is referred to as vent clearing, the process

of expelling noncondensables from the system prior to steam flow. When these

noncondensables--principally air--are expelled they create a subsurface bubble

of substantial size which moves the water surface upward. The impact of this

water surface on exposed structures, such as the ring header on the Mark I

system, can produce consequential loading. The second category covers a

variety of phenomena related to the transient overexpansion of a condensable

volume and the subsequent inertially-driven volume decrease. Under some

conditions the dynamics of the process are stable, and condensation

oscillation results. Under other conditions, the dynamics are unstable, and

chugging takes place. The dynamic loading of either event, depending upon

fluid-structural design parameters, can be of concern in safety analysis.

Further discussion of condensation events may be found in Appendix A.

2



.3This report is the second in a series that describes the development

of a method for calculating the loads and the structural response in pressure-

suppression systems. The method is embedded in a computer code, called

PELE-IC, that couples a two-dimensional Eulerian fluid algorithm to a finite

element shell algorithm. The fluid physics equations are solved by use of the
4

SOIA finite difference algorithm, which uses a Newton Rhapson iteration

technique to solve the Navier-Stokes and continuity equations. The iteration

is continual until the continuity, fluid-structure interface compatibility,

and free and rigid surface boundary conditions are satisfied. These fluid and

fluid-structure algorithms have been extensively verified through calculations

of known solutions from the classical literature, and by comparison to air-

and steam-blowdown experiments. One verification example is based upon

mechanically-driven fluid-structure vibration experiments.

The verification exercises indicated the need for a more rational

methodology for supplying the loading functions that drive the vent clearing,

condensation oscillation, and chugging processes. As a result, a vent flow

model has been developed that couples the drywell pressure history to the pool

by treating compressibility effects (e.g., choked flow) in noncondensable

gases. This model has been used to improve the comparisons with air-blowdown

experiments in both rigid and flexible water-filled containers. Similar

development efforts have not been undertaken with repect to computing local

pressure perturbations associated with stable and unstable condensation

events. Instead, artificial pressure-time histories were prescribed to

precleared steam bubbles, with no attempt made to examine the heat transfer

process at the bubble surface or the inertial overexpansion of the bubble into

the water pool. A modification to this model, which takes compressibility of

the steam column in the downcomer into account, reproduced the same structural

frequencies observed in steam-blowdown experiments.

Early in the fiscal year, two-and-a-half and three-dimensional extensions

of the PELE-IC code were studied. We considered rather modest code extensions,

such as a generalized circumferential harmonic dependence, as well as

*

The pressure is applied to a portion of the surface of the water--that

portion coincident with the exit plane of the downcomer.
Experimental chugging results are proprietary information and are not

presented in this report.

3



significant development efforts, such as a three-dimensional finite element

fluid and shell modeling code patterned after the LLL NIKE-3D5 package.

Since the manpower estimates for the various options ranged from a low of one

man-year to a high of four man-years, it was decided that an attempt should be

made to explore the limitations of the existing two-dimensional code, as

applied to three-dimensional problems, before recommending further development.

The vehicle chosen for these applications was the Mark I LLL one-fifth-
6

scale PSE geometery and experimental results. The object of the study, in

addition to two-dimensional simulation of three-dimensional events, was to

investigate the sensitivity of response measurements, such as vent-clearing

time and peak-bottom pressure, to variations in downcomer submergence, drywell

pressurization rate, torus pool level, downcomer fill level, and initial

wetwell pressure. Selected downcomer pressure-time histories were used. The

results of this study are discussed in detail in Sec. 5.

The major finding relative to two-dimensional simulation of three-

dimensional events was that, up to the time of vent clearing, an axisymmetric

model provides a good estimate of bottom center-pressure history. This is,

early time axisymmetric calculations model three-dimensional vent exit pressure

relief as water emerges from the end of the downcomer (a plane-strain model

would tend to overpredict the bottom center-pressure because the fluid

particles are constrained to move in the plane).

In the sections that follow, the general development of the PELE-IC code

is described. Then, the verification exercises are discussed in such a way

that the strengths and shortcomings of the code are demonstrated. Finally, we

present a set of problems applicable to present-day safety issues with respect

to existing or planned BWR pressure-suppression systems.

4
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2.0 DESCRIPTION OF THE PELE-IC COMPUTER CODE

2.1 INTRODUCTION

The PELE-IC code couples a two-dimensional, semi-implicity, Eulerian

fluid-dynamics (SOLA) algorithm to a Lagrangian finite element shell algorithm

for the analysis of fluid-structure interactions. The PELE-IC code is quasi-

two phase since we can couple to either a one-dimensional or a lumped parameter

description of compressible gases. The code is written in both plane and

cylindrical coordinates in order to handle a variety of geometrical

configurations and is capable of following large interface motions through the

calculational grid. By the use of a variable time step we are able to

accommodate varying flow conditions and maintain computational stability.

The basic semi-implicit solution algorithm contained in the SOLA code 3

was used as a foundation for the development of the PELE-IC code. We track

the movement of free surfaces using a full donor cell treatment based on a

combination of void fractions and interface orientation. This gives us great

versatility in following fluid-gas interfaces for bubble definition and water

surface motion without the use of marker particles.

The structural motion is computed by a finite element code7 from the

applied fluid pressure at the fluid structure interface. The finite element

shell structure algorithm used conventional thin-shell theory with transverse

shear. The spacial discretization employs piecewise-linear interpolation

functions and one-point quadrature applied to conical frustra. We use the

Newark implicit time integration method implemented as a one step module. The

fluid code then used the structure's resultant position and velocity as

boundary conditions. The fluid pressure field and the structure's response

are corrected iteratively until the normal velocities of the fluid and

structure are equal. This results in a strong coupling between the two

algorithms.

2.2 GENERAL DESCRIPTION OF THE SOLUTION ALGORITHMS

The underlying approach used by PELE-IC for the solution of general flow

fields is the use of the semi-implicit SOLA algorithm. The basic assumption

6



of this approach is that all flow variables within the computational grid

satisfy the continuity equation for each cell, regardless of whether or not

the computational cell contains a free surface or a moving structure. For

imcompressible fluids this means that all cells are divergence free. (The

code also has a compressible fluid option based upon the acoustic wave

equation.) This assumption permits freedom of motion for all surfaces

throughout the grid. Superimposed on this basic algorithm we have applied the

boundary conditions for free surfaces, compressible gases, and moving

structures.

In this section we give a brief description of the solution algorithms.

A more detailed coverage is given by McMaster, et al.3 ,8

2.3 SOLA SOLUTION ALGORITHM

The SOLA algorithm uses a Newton-Raphson iteration on the pressure field

to solve the mass conservation equation. At each iterative step the pressure

in each fluid cell is adjusted to satisfy the divergence criteria. In this

algorithm the pressure is a cell centered varible and the velocity components

are specified on cell sides.

The algorithm is solved by first writing the conservative form of the

Navier-Stokes equation for the fluid velocity (u) in terms of time level:

2 n n+lau/At = (-V*uu + g vV u) - Vp

where the superscript n indicates the time level and p = P/p is the ratio of

the pressure to the density of the fluid. The body acceleration is given by g

and the kinematic viscosity is specified by the constant v.

Setting

n+l n
p =p +6p

gives

n+l + g + V2 U•)]n
u = [u + 6t(-V*uu - Vp + g + u + 6t(6Vp)

7



If we define the term inside the brackets as 75, then the equation to be solved

is
n+l

u = ' + 6t(6Vp)

where V is found using the finite difference formulation of Hirt, et al. 4

This equation is solved iteratively where we define the divergence error

(Di) for each cell at the ith iteration as

V*u. = D. ,
%1

and -u is used as the first trial velocity to start the iteration process. The

pressure increment necessary to update the velocity field is given by

-(1 + ý)Di_ ,
1 aD/ap

where * is a correction term (0 < ý < 1) dependent upon adjacent cells in the

direction of the sweep through the grid, and 3D/ap is a constant dependent only

upon the cell size, the time step, and the presence of a structural boundary.

We update the velocity field in each cell with the pressure increment, using

Suzi = ±6Pi6t/Sz ,

where 6z is the cell side in the direction of the velocity component (uz),

and the sign is chosen dependent upon which side centered velocity component

is being adjusted. Satisfaction of the continuity equation in any particular

cell perturbs the velocity field of its neighbors. Hence the method is

applied in sweeps throughout the grid until the divergence error satisfies

V* u.=D < E

where C is a preset convergence tolerance which should be set according to

the minimum flow field of interest expected in the solution. The final

velocity and pressure field are then

8



u = + 6u. and p p n+

V61 3.

Since the solution procedure is a Newton Raphson iteration, the rate of

convergence is dependent upon the magnitude of WD/ap which has the form

_D = 26t [ + Y

where F and F are dependent upon structural interfaces coupled to the fluidx y

cell. If there is no structure, then F = F 1=-l. From the formula for 6D/6px y
we see that convergence is accelerated by the use of large time steps and small

cell sizes. However, the user is limited in his choice by the physics of the

problem. In general, we require that

u 6StUz•
-- < 0.4 ,

6z

where 6z is the component 6x or 6y in the direction of the maximum velocity u .z

2.3.1 Thin Shell Algorithm

The finite element module used simple shell theory with transverse shear

(see Kraus 9) . The element formulation was described by Hughes and Taylor 1 0

for beams and plates and was extended to axisymmetric and plane shells by

Goudreau. (Similar results were obtained by Zienkiewicz, et al.12 at

about the same time.) The element is a two-node, conical frustrum with three

degrees of freedom per node. Shape functions are piecewise-linear for

displacements and rotations. The shear locking associated with low-order

interpolation functions is removed by one-point quadrature. Large deformation

(here two to three shell thicknesses) is accounted for in an approximate way

by reformulating the stiffness matrix at every time step. By the use of

Lagrangian equations, it may be shown that the behavior of the structure is

described by

Mg + C4 + Kq = P(t),

9



where M is the mass matrix, q is the vector of generalized acceleration, C is

the damping matrix, q is the vector of generalized velocity, K is the stiffness

matrix, q is the vector of generalized displacement, and P is the fluid and

other loads on the structure.

The Newmark implicit time integration scheme (see Goudreau and TaylorII)

is used at each time step to move the shell. The algorithm has the form

(K + 4M/(6t) 2)qn+l = p - 4M An/(6t) 2

where
An n *n+ nt + 4n(,t)2/4

Goudreau2 gives the derivation of effective stiffness matrix K and a FORTRAN

listing of the one-step module.

The thin-shell algorithm has been made more general by the addition of

the following four features:

1. Each element may have its own thickness.

2. Each node can be specified to have its own separate restraints and

prescribed initial displacement.

3. The code computes the static deflection of the structure as a result

of the initial loading before beginning the dynamic solution.

4. The gas pressure in the ullage region as well as all fluid pressures

are applied to the shell.

2.3.2 Fluid-Structure Interface Algorithm

This algorithm couples the fluid's motion to the structure's motion

within the SOLA iteration loop. Normal velocity compatibility between the

structure and fluid is required where the Lagrangian shell crosses either the

I-line or J-line intercept which defines the centroid of the Eulerian cell.

The choice depends on the angular orientation of the structure. The finite

element module used the pressure field supplied by the fluid and provides the

fluid code with the resultant position and velocity of the interface. Each

change in the pressure field causes a different structural response, and each

different response changes the flow field of the fluid. Therefore, the

iteration proceeds until both conditions are satisfied. Within a single

10



iteration, all Eulerian fluid zones are adjusted one by one, using the latest

values available, and then all the Lagrangian shell nodes are simultaneously

adjusted by the implicit time-step solution.

The pressure applied to an element is determined by an interpolation

along each intersecting I or J line to the neighboring full fluid cell. These

interpolated values are weighted by the liquid content of the cell so that the

proper pressure is applied when a free surface is in the same cell. The

interpolation procedure provides a smooth pressure history whenever the

structure crosses a grid line.

The solution strategy is to first set the normal fluid velocity equal to

the normal structure velocity at the coupling point. The structure's normal

velocity is found by an interpolation between nodal values and the intercept

angle. The normal fluid velocity is found by an interpolation between all

four of the cell side velocities. This determines the cell side velocity

which is coupled to the structure. This first step of setting the coupled

Eulerian cell velocity to satisfy the boundary conditions imposed by the

structure causes the cell not to satisfy the divergence criteria; therefore,

the second step is to adjust the cell pressure using the SOLA algorithm so

that the cell is divergence free. This two-step process is repeated each

iteration.

The coupled velocity is chosen to be on the cell side nearest the

structure. In this way no discontinuities arise when the structure crosses a

grid line.

2.3.3 The Free Surface Algorithm

Accurate free surface tracking is necessary to allow the application of

velocity and pressure boundary conditions at fluid-gas interfaces. We track

the free surface by a combination of void fraction and surface orientation in

each cell. The void fraction provides for the conservation of mass and the

surface orientation allows us to apply the proper boundary conditions and

follow the flow from cell-to-cell.

The free surface algorithm performs four functions:

1. Determines the surface orientation within the calculational cell

based upon its fluid content and that of neighboring cells. This orientation

is specified by its intercepts on two sides of the cell. Within the cell, the

11



interface is considered to be a straight line segment. Thus, the surface is

tracked by its intersection of grid lines.

2. Applies to the prescribed boundary pressure to the fluid surface.

This is done by finding the appropriate cell centered pressure by an

interpolation from the nearest fluid cell to the boundary pressure. Recent

additions to the code also allow the application of a prescribed velocity

boundary condition in lieu of a prescribed boundary pressure to the fluid

surface. This option allows one to drive the surface with a moving piston.

Both these options allow the boundary conditions to be a function of time.

3. Calculates the fluid advection based on surface orientation using the

donor cell method where the amount of liquid advected is determined from the

contents of the upstream cell, the orientation of the surface, and the

velocity of the common liquid side. This method guarantees the conservation

of mass during advection.

4. Uses velocity boundary conditions for the void sides of the cell to

maintain continuity of the flow field. This assures the continuity of flow

when a surface crosses grid lines.

2.4 SPECIAL FEATURES

2.4.1 Downcomer Pipes

Downcomer pipes are modeled by specifying the bounding grid lines as

rigid. A special differencing algorithm has been added to the code to allow

this option. In this manner, pipe wall thicknesses, small in comparison with

a calculational cell, can be correctly modeled. For vent clearing problems,

the specified driving pressure is applied as a boundary condition between the

grid lines defining the pipe. The code has the capability of handling up to

two rigid downcomer pipes in this manner.

2.4.2 Obstacles and Baffles

Obstacles and baffles which restrict the flow can be modeled by

specifying portions of grid lines as rigid boundaries. The code will then

apply the boundary condition of zero normal velocity at this boundary. The

number of such obstacles that can be specified is unrestricted.

12



2.4.3 Coupling to Compressible Gas Flow

In many applications the downcomer is driven from a drywell with either

variable or constant pressure. Sometimes this flow is further controlled by

the use of an orifice. To provide for these situations a flow model coupled

to the fluid dynamics was developed (see Appendix B). This model couples the

adiabatic bubble pressure to the drywell and current bubble volume by the

equation

P(t) = Pu ) 1 + - f VY- 1 dT

1

where

m = Mass flow rate through the orifice as specified in Vennard13 (The

formula used depends upon whether the flow is choked or unchoked.),

V = Original downcomer volume from the orifice to the water level,o

V = Current volume including the bubble,

Pui = Initial ullage pressure corresponding to density Pui.

The time of integration, t, covers vent clearing and subsequent adiabatic

bubble formation and growth.

In application, we find that the mass flow is frequently initially choked

and dependent upon only upon the drywell pressure and density. Subsequently,

during vent clearing, the flow becomes unchoked and is dependent upon both the

drywell pressure and the bubble pressure. Since the bubble pressure is

dependent upon the bubble growth in the pool, there is a coupling between the

suppression pool and the drywell.

2.4.4 Acoustic Pipe Boundary Conditions

During the steam flow phase through a downcomer, the steam vapor condenses

and gives rise to the phenomenon called chugging. These chugs at the end of a

downcomer pipe give rise to reflected pressure pulses characteristic of the
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organ pipe frequencies of the downcomer. We have written a simple one-

dimensional acoustic model code to calculate these pulses. These reflected

pulses provide the driving source to investigate the chugging problem in the

PELE-IC code (see Appendix C).

2.4.5 Variable Ullage Pressure

During a vent-clearing event the bubble growth causes a pool swelling in

the confined ullage region. This compressed air region then provides an

upload on the confining structure. We derive this pressure pulse from the

perfect gas law using the ullage volume change as calculated from the rise of

the water surface. In the MIT experimental configuration this ullage pressure

is also applied to the bottom flexible plate. The code has been modified to

simulate these experiments.

2.4.6 Collapsing Bubbles

In chugging studies of collapsing adiabatic bubbles (e.g. the G.E. belljar

calculations) we apply a boundary pressure derived from the perfect gas law

dependent upon the current bubble volume and the vapor pressure of the water.

The use of the void fraction technique allows us to monitor the corresponding

bubble volume accurately.

2.4.7 Frequency Analysis

We are interested in a frequency analysis of the resultant flexible

structure vibrations when loaded by a vent clearing pulse or chugging pulses.

To do this we have written a Fourier transform code using the method of
14

Goertzel. This code accepts the output fluid pressure or structure

displacement time histories from the PELE-IC code and provides the frequency

content (sca Appendix D).
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3.0 VERIFICATION OF COUPLING ALGORITHM FOR CURVED SURFACE:

THE SUBMERGED CYLINDER

3.1 INTRODUCTION

Several previous verification problems have been calculated to test

individual physical representations which PELE-IC must accommodate for general
3

fluid-structure phenomenology. These have included draining tanks,

submerged disks, and spherically growing bubbles in an unconfined liquid.

These respective problems, each having an exact solution, were chosen to

verify the wetwell fluid dynamics, fluid-structure coupling for a simple

surface, and void-liquid interface dynamics. Additionally, separate

calculations were performed to check the accuracy of the finite element shell

code alone. In these calculations (not reported here) the static deflection

of various shell geometries (under various boundary supports for prescribed

uniform static pressure loads) compare to theoretical solutions within 0.23%.
3

Previous cases for verifying the fluid-structure coupling algorithm

considered only flat structural surfaces adjacent to fluid flow fields. The

following work verifies the PELE-IC coupling algorithm for a curved structural

shell neighboring the flow field.

Figure 2a shows the indefinitely long (plane strain), thin, cylindrical

steel sheel (r = R) encompassed on its outer surface by an annulus of liquid

whose outer boundary (r = b) is a free surface (zero pressure). All

gravitational and fluid viscous forces are ignored. Only the inextensible

elliptical bending mode for the shell is considered (i.e., n = 2, see

Appendix E). Only incompressible flow within the liquid annulus is permitted;

that is, the fluid sound speed is taken to be infinite. Accommodation of

fluid compressibility is not warranted for our purposes of verifying fluid-

structure coupling for a curved surface.

Love15 has presented the natural frequency solution for the structure

alone in absence of the fluid, and Schroeder and Markus16 and Nickell and

Dunham17 for the case of a compressible fluid surrounding the shell.

References 16 and 17 give some numerical eigenvalue results for the implicit,

exact solution to the compressible flow problem for various vibrational

modes. The governing derivations are presented in Appendix E and are
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specialized to the applicable incompressible solutions for natural frequencies

as well as corresponding flow field, these having explicit solutions in the
b

incompressible limit, wn + ÷)0, where wn is the circular frequency for the nth

for the nth mode and c is the sound speed in the fluid.

3.2 MODEL

The system whose dimensions (shown in Fig. 2a) were chosen to conform to

previous calculations (Refs. 14 and 15), was excited by the used of nodal

forces applied to the shell to push inward at the minor axis and pull outward
*

at the major axis. These forces were chosen to be equal and temporally

ramped for the first 2 ms of the transient after which they were released.

The 90o segment formed by the intersection of the elliptical axes was

composed of an 80 x 80 Eulerian fluid mesh and 8-shell finite elements (see

Figs. 2a and 2b).

The 1.07-cm fluid grid size was chosen small enough to resolve the steep

fluid velocity gradient near the shell surface. The 2-ms time step was chosen

large enough to progress in reasonable computation times, yet small enough to

resolve the period sought (27-28 ms). Preliminary calculations using a coarse

fluid grid (4.29 cm), four times the dimension ultimately used (1.07 cm), with

a small time step (0.2 ms) proved unsuccessful in spatially resolving the

unsteady flow field near the shell surface. Care was taken to choose the nine

shell nodal points so that sufficient J or I line fluid-to-structure coupling

occurred (Fig. 2b). Also, geometric symmetry in shell nodal point placement

was enforced (used as a test condition for the results) about the 450 line

dissecting the elliptical axes. Along this line the fluid motion must contain

no radial components (not enforced), and at the intersection of the 450 line

with the shell, the shell must not be displaced (not enforced). A typical

calculation using a 2-ms time step and E = 10-3 ms required 10.7 min of

CDC 7600 CPU time to run to 70 ms.

The magnitude of the two nodal forcing functions was chosen to provide a

maximum shell deflection of about 0.085 cm or 13% of the shell thickness. The

In the n = 2 mode, the cylindrical shell is perturbed into an elliptical

bending mode.
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shell deflection owing to the two localized forces was found to be very nearly

elliptical. The maximum fluid velocities occur at the elliptical axes of the

shell where the shell and fluid velocities are identical and are about 0.085

cm/ms. For these maximum conditions, and for the aforementioned grid size and

time step used, the advection parameter (X = U max(At/Ax) = 0.16. The magnitude

of a emphasized the unstable center-spaced advection differencing ((1 4 0) rather

than the stable donor cell differencing ((I + 1). Consequently, our weighted

advection differencing scheme3 was updated in each time step by use of variable

a computed from the flow field. Additionally, to assist in stabilizing the

numerics a viscosity was prescribed but was small (0.001-to-0.0001 cm 2/ms

compared to the maximum allowable value, (Ax)2/(4At) = 0.14 cm2/ms above

which vorticity would diffuse between fluid cells. 1 8  Systematic changes in

viscosity were not found to affect the computed flow field.
+

The flow field computations converge when the velocity u is such that the

divergence constraint is tolerable; i.e., Idiv ul < E. In these calculations a

value of C = 103 ms-I was first used to obtain a solution; however, owing to

the difficulty in resolving the very small velocities as the free surface was

approached (r = b), this value of E was found to be too large. Consequently, a-4i-
value of C = 10-4 ms proved to be satisfactory in computing the total flow

field. It is this smaller value of e on which the results presented here were-4i-
computed. At 6 = 10 ms , the error in computed fluid pressure was about

0.3% near the shell surface where the velocities are large. The error in

computed fluid pressure was found to be about 4% half-way through the liquid

annulus (where the velocities are much less than near the shell surface) and

about 9% at the free surface (where the velocities are two orders of magnitude

less than at the shell surface). For the grid size used (80 x 80 Eulerian

mesh), the computational time became very large for c smaller than 10-4

(ms-1 ). We noted, however, that the shell response, and, therefore, the-4 -i

natural frequency sought, was insensitive to E for all E < 10 ms . This

conclusion agrees with physical reasoning that errors in the near quiescent

velocity field far from the shell are unimportant with respect to the shell

response.
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3.3 COMPARISON WITH EXACT SOLUTION

A computed, two-dimensional flow field, which reverses direction in each

oscillatory cycle of the shell, is shown in Fig. 3. In Fig. 4 the computed,

normalized radial fluid velocity distributions along the elliptical axes are

compared to the exact profile, derived in Appendix E

u(r) = r { n = 2, 1_< r _<

where u5 is the shell velocity at either axis. The computed velocity

distributions approach the exact, quasi-steady distribution long after the

initial excitation ends. Figure 5 shows that the amplitude of the computed,

nodal-shell response at either elliptical axis likewise also approaches an

asymptotic limit long after the initial excitation ends. These coincident

results are a consequence of the adjustment of the potential energy of the

shell and the kinetic energy of the liquid-to-portioned energy exchanges

associated with periodic motion of the two. Because of the excitation used, a

greater portion of the total energy is given initially to the shell than to

the fluid. Consequently, the shell amplitude asymptotically decays through

readjustments in the shell potential energy and through the supply of kinetic

energy to the massive quantity of liquid (see Fig. 4).

The natural frequency f for the system vibrating in the inextensible

elliptical bending mode (n = 2) with the fluid assumed incompressible is

derived in Appendix E and is given by

1 -1/2

f 5

fot h P [+ 1i
R =s [1 40 b
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where f is the n = 2 frequency (Hz) for the structure in absence of the0
fluid:

S
2 1/2

o 2Tr [5 R 4 ( 2

where

E = Young's modulus of elasticity (2.0685 x 106 bars),

Ps = shell density (7.803 gm/cm ,

R = shell radius (25.72 cm),

v = Poisson's ratio (0.3),

h = shell thickness (0.635 cm),

b = free surface radius (82.8 cm).

For a fluid density of Po 1 g/cm , the following result from the exact
solution:

f = 63.9 Hz
0 (36.6 Hz for b = 82.8 cm

36.4 Hz for b ÷ •

Because the shell thickness (h) is small compared to the shell radius (R), the

analysis presented in Appendix E does not distinguish between the mean radius

of the shell, upon which the shell equilibrium equations are written, and the

outer surface of the shell, to which the fluid motion equations are coupled.

If the difference between mean and outer radius is accommodated in the

analysis, the above frequency for b = 82.8 cm decreases from 36.6 Hz to

36.3 Hz and the corresponding periods are 27.3 ms and 27.6 ms, respectively.

Either of these values compares favorably with the 27-ms PELE-IC computed

period for the cycle demonstrated in Fig. 5.

The submerged cylinder's n = 2 wavelength of 1300 cm (assuming the fluid

in water) is an order of magnitude larger than the outer-fluid-boundary radius

(b = 82.8 cm). Consequently, the incompressible assumption for the fluid is

justifiable. It was also necessary to justify the omission of the advection
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term within the momentum equations on the computed PELE-IC frequency since

these terms were also omitted in the exact solution given in Appendix E.

PELE-IC was run with and without advection present and no discernable

frequency shift was noted (see Fig. 5).

3.4 CONCLUSIONS

The advantage of treating the fluid in an Eulerian coordinate system is

shown by our success in accommodating large relative tangential motions

between shell and fluid. (In the n = 2 mode the two tangential motions are

always opposed.) Such cases have escaped previous solution because of

numerical problems encountered when the finite-element method is applied to

the relatively large tangential motion between fluid and structure. These

problems are discussed in a survey paper by Nickell and Carey. 1 9
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FIG. 2. (a) Geometry and dimensions used when modeling a submerged

cylindrical shell. (b) Shell elements used and their relationship to the

Eulerian fluid grid selected.
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compared to those computed for three different times after excitation.
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4.0 COMPARISON WITH LABORATORY AIR-BLOWDOWN

EXPERIMENTS CONDUCTED AT MIT

These experiments by Javadi and Huber20 use a rigid, cylindrical tank

(see Fig. 6) with a central downcomer whose exit is submerged below the water

surface. A fast-opening valve releases (from a pressurized drywell) air that

flows through an orifice and down the pipe into the water. The flow is

initially choked by the orifice, but the dynamic pressure rises in a few

milliseconds to that of the drywell. This pressure is applied to the water

surface and pushes the water out of the pipe in about 20 ms. The peak dynamic

pressure occurs at the center of the bottom plate shortly after this time.

The drywell pressure in the downcomer at vent clearing time is suddenly

reduced by the growing bubble. As the bubble expands toward the water surface

the pressure rises again to that of the drywell.

Tests were made with rigid and flexible bottom plates. Pressure was

recorded in the downcomer (see gage A in Fig. 6), in the wetwell air space

above the water surface, and in the water. The air in the wetwell was

pressurized to 5.7 kPa (absolute) initially, and the pressure was balanced on

the flexible bottom plate so that it registered only the weight of the water.

The drywell pressure was 17.1 kPa. The water was cooled to just above

freezing to lower the vapor pressure, and a surfactant was added to remove

trapped air bubbles.

We found that computer simulations using the experimental downcomer

pressure trace predicted smaller bubble volumes than those given by Javadi and

Huber. Hence, we replaced this pressure forcing-function with a computer

model of the orifice flow (see Appendix B). This flow calculation couples the

bubble volume pressure to the drywell by the equation

V°=(P )) 0 + 1 V f r VY- 1 
dT (1)p = u\ýV _(t) ) P u.V 0yf

where the symbols are defined in Appendix B. The flow rate (;n) through the

orifice is specified in Vennard. 2 1
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The differences between the measured downcomer pressures and the pressure

predictions of the revised computer model are shown in Fig. 7. The calculation

reveals a strong coupling between the start of bubble growth and the driving

pressure decay. Incompatibilities in prescribed bubble pressure, however,

introduce instabilities in the calculation.

Results for the rigid-bottom calculation are given in Fig. 8. Calculated

pressures at three different locations are compared with the Javadi and Huber

data from the pressure transducer. These calculated traces are almost

identical except for the vertical shift caused by the static head. In Figs. 8

through 11 we have enforced agreement in measured and calculated vent clearing

times. Calculated bubble growth is shown in Fig. 9. Figure 10 compares the

computed increase of ullage pressure from pool swell with the Javadi and Huber

data. The good agreement in wetwell pressure confirms accuracy of the

calculated bubble volume.

A second calculation, using a flexible, 1-mm-thick aluminum bottom plate

(Fig. 11), reveals the strong effect of the fluid-structure interaction. The

computed pressure at three different locations in the water varies considerably

incontrast to that of the rigid base plate. The measured pressure, also

plotted on this figure, agrees well both in amplitude and frequency with the

calculations. The spatial dependence of pressure appears again in the pressure

contours of Fig. 12. The peak response shows a dynamic amplification of 68%

above the drywell pressure. Hence, both calculations and experiments imply

that the phasing of the structural response and the driving pressure can cause

large dynamic amplifications.

Calculated bottom plate displacement as a function of time is shown in
Fig. 13. We predict a peak displacement of 0.75 mm for the 1-mm-thick plate.

This is large compared to the plate thickness and results in substantial

deviations from the linear theory which excludes the effects of membrane

stresses (e.g., Timoshenko and Woinowsky-Krieger 22). The natural frequency

is increased by the plate membrane stresses but decreased by the fluid-

structure interactions. We calculated a peak strain of 364 microstrain,

compared with 300 microstrain obtained by Javadi and Huber.

We have given considerable attention to the differences in vent clearing

times between the calculations and the experiments. It may be shown (see

Kang 23) that for a constant pressure differential (AP) the vent clearing
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time is given by

t L 7LP (2)2 Ap

where L is the submerged vent length and p is fluid density.

If we assume a constant backpressure that is equal to the wetwell

pressure plus the static head at the end of the downcomer, Eq. (2) gives the

vent clearing time at 19.4 ms. Javadi and Huber give 21 ms, whereas we

calculate about 24 ms. The PELE-IC calculation shows that considerable dynamic

backpressure develops at the bottom of the vent. The backpressure is ignored

in Eq. (2), which therefore becomes a lower bound to the actual vent clearing

time. We therefore conclude that the empirical origin for time differs from

that used in our calculations.
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FIG. 6. Apparatus used for the MIT tank air-blowdown experiments.
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FIG. 7. Comparison of measured downcomer pressure and the bubble pressure

calculated from an orifice-flow computer model for the MIT tank air-blowdown

experiment.
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FIG. 11. Calculated fluid pressure-time histories at three locations in the

MIT tank with the flexible 1-mm-thick bottom and experimental pressures

measured 50 mm above the tank bottom.
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5.0 APPLICATION TO MARK I BWR PRESSURE SUPPRESSION SYSTEMS

ANALYZING 1/5-SCALE EXPERIMENTS CONDUCTED AT LLL

5.1 INTRODUCTION

A series of air blowdown tests were conducted on the 90°- and 7.50-

wetwell torus sectors of the LLL 1/5-scale Mark I pressure-suppression system

to determine the effects of initial conditions and wetwell water levels on the

tank pressures, the uploads, and the downloads. We developed the PELE-IC

models in order to understand how vent clearing, bubble expansion, and pool

swelling affect the torus sector loads. A computer parameter study determines

the effects of pressurization rate, wetwell pressure, and downcomer fill level

are also presented, and the three-dimensional effects for the 1/5-scale tests

are discussed. The main focus of this section is the download and upload

computations.

5.2 DESCRIPTION OF EXPERIMENTAL APPARATUS ANALYZED

Figure 14 is a model of the Peachbottom Mark I BWR pressure-suppression

system with a cross sectional view of the toroidal wetwell and drywell. The

48 downcomer pairs are unevenly spaced due to the presence of the eight vent

lines and the torus/flange connections. Figure 15a shows the LLL 1/5-scale

test facility. Experimental tests with both the 7.5 -torus sector with one

downcomer pair and the 90 -torus sector with 12 downcomer pairs were

conducted simultaneously.6 (The 7.5°-torus sector is actually a closed

cylinder rather than a torus sector.) Both the 7.5- and 900- 1/5-scale torus

sectors are three dimensional because the downcomer vents are bent, round pipes

rather than toroidal channels. Details of the experimental facility are

covered in the 1/5-scale facility report24 and are summarized in Table 5.1.

The roughly half-filled torus has a major diameter of 6.8 m and a wetwell

diameter of about 1.9 m. The downcomers of a given pair are separated by

4.9 m and are submerged 0.25 m into the pool. All steel used in the vessel is

ASTM A537, Class 1, Grade A.

The 7.5°-torus sector is supported at the midsection by two steel

structural legs bolted directly to a rigid reinforced concrete slab (see

Fig. 15a bottom left corner). The 900 sector (see Fig. 15a right side) is
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partially supported by trunnions on both sides of a center ring between the

two dissected 450 sectors (see Fig. 15b) by a pair of steel columns bolted

to the concrete slab. These columns, in addition to four ringheader support

struts, contain load cells. The third 90 °-se :tor detwell support is below

the left-end flange of the 900 assembly. The right-end flange is unsupported.

Pressure transducers were located at several locations including the bottom

torus center location, inside the downcomer pipe above the waterline, and in

the ullage space and drywell. The initial ullage pressure is about one-fifth

of an atmosphere and the pressurization rate of air blowdown is about

190 KPa/s.

We calculated the 1/5-scale tests conducted on both the 900 and 7.50

sectors. A plane strain model with channel downcomers was used with a

vertical axis of symmetry containing the torus cross section centerline as

shown in Fig. 16a. One pair of calculations was done in a donut configuration

with the axis of symmetry at the torus center.

PELE-IC calculations* were done for the rigid- and flexible-wall toroids.

The rigid-wall calculations were done with and without calling the finite

element s. Ali subroutine. The flexible-wall torus calculations with vertical

suppor, springs are shown in Fig. 17. The effects of the ringheader are not
25

included here, but are discussed in a separate report. The previous champ

ringheader calculations with and without the ringheader impact showed the

bottom pressure to be essentially the same but that the calculations with the

ringheader indicated additional uploads from 214 to 250 ms. Typical

rigid-wall, inviscid PELE-IC calculations ran to 200 ms using a time step of-4 -i
0.2 ms and a convergence criterion of 10-4 ms with CDC 7600 CPU run

times of about 1.5 min. Donut calculations with flexible structure used about

3.0 min of Cray-i time.

5.3 PARAMETRIC SENSITIVITY ANALYSIS

Our first set of rigid-wall calculations was a parameter study for

drywell pressurization rate, downcomer submergence, torus pool level, downcomer

fill level, and initial wetwell pressure. Calculations with +25% variations

in the above parameters were compared to a nominal calculation using the

We assumed synchronous downcomer discharge.
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smoothed-downcomer pressure-time histories of experiment 1.3.1 (90 sector).

We defined time zero to be experimental time (2.9875 s) when the pressurization

starts. Runs with an unsmoothed-downcomer history showed little difference in

terms of vent clearing time and peak bottom pressure.

The downcomer pressure was used as a driver at the moving water interface

in either the downcomer prior to vent clearing or in the bubble after vent

clearing. It should be noted that the parameter studies did not attempt to

adjust or compensate the downcomer driver pressure for its dependence on the

variables being perturbed. Details of the parameter study are given in

Appendix F. This parameter study showed that a 25% change in downcomer

submergence, pressurization rate, and change in wetwell pressure resulted in

about a 10% change in the peak bottom pressure. The code version used for

these calculations did not have provisions for calculating structural loads.

Subsequent runs calculated load/time histories.

Our plane strain calculation of 1/5-scale experiment 1.3.1, the base case

for the parameter study, is reported in Appendix F. In addition to a 16%

increase in peak bottom pressure as compared to experiment, the PELE-IC

results show vent clearing between 14- and 30-ms late. Similar discrepancies

were found when we calculated 1/5-scale experiment 2.10 which had 6% less

downcomer submergence than experiment 1.3.1. These differences can be traced

to the assumption of plane strain behavior. Because of the out-of-plane

restraint against wetwell fluid motion for this model, the fluid leaving the

downcomer during vent clearing does not have the freedom of dispersion present

in the actual three-dimensional geometry. An axisymmetric (donut) calculation

of the torus did not produce any detectable change with respect to the plane

strain calculation in vent clearing time, since the downcomers are modeled as

toroidal channels rather than plane channels and the out-of-plane restraint is

still present with respect to the fluid departing the downcomer. Additionally,

the ratio of fluid volume in the downcomers to the fluid volume in a tributary

segment of the torus is too large when plane strain behavior is assumed. The

factor by which this volume ratio exceeds the actual ratio is approximately

equal to s/d, where s is the length along the torus between downcomer pairs

and d is the downcomer diameter.

A proper three-dimensional simulation of these two effects will permit a

more accurate computation of experiment 1.3.1.
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5.4 DEPARTURE FROM PLANE-STRAIN CALCULATIONS

5.4.1 Plane-Strain vs. Axisymmetric Calculations

To test our hypotheses of three-dimensional effects two single pipe

geometries were analyzed. Both involved single on-axis downcomers, but one

was plane strain (the downcomer is represented by a long channel and the major

torus radius is infinite) and the other axisymmetric* (torus modeled as a

sphere and downcomer represented by a round pipe). The two wetwell diameters

were the same as were the flow width openings for the two downcomers. The

exit velocity at vent clearing for the axisymmetric case was 30% greater than

that for plane strain (10.3 m/s compared to 7.6 m/s) and the vent cleared

11 ms earlier than the plane strain case. A common vent pressure was used for

each case. A plot of axial velocity and radial velocity (see Fig. 18) beneath

the downcomer at the time of vent clearing illustrates the geometric effect.

The velocity for the axisymmetric case is larger, but tends to decay faster as

a function of distance from the end of the downcomer. These findings are in

qualitative agreement with free jet theory (i.e., with momentum exchange

arguments for unconfined jets). Peak bottom center pressures for the plane

strain and axisymmetric geometries with the downcomer on axis were 52 KPa and

44 KPa, respectively. The corresponding peak dynamic pressures (obtained by

subtracting the wetwell static ullage air pressure and the fluid gravity

pressure from the total pressure) are 27 KPa and 19 KPa, respectively. Direct

comparison between computed single-downcomer pressures (downcomer on axis)

with experiment 1.3.1 are not too meaningful, because the additional fluid

momentum from the other downcomer of the pair has not been accounted for.

Some estimate of this effect can be obtained by examining the double-downcomer

plane-strain (see Fig. 16) and the single-downcomer (on axis) plane-strain

results and comparing the peak bottom center pressures from the two cases. In

the single downcOmer case, the bottom center pressure is calculated directly

beneath the downcomer as 52.1 KPa, while for the double downcomer the bottom

center pressure is calculated midway between the two downcomers at the bottom

of the torus as 56.8 KPa. Based upon this ratio, the increase in pressure at

the bottom center (due to an adjacent downcomer clearing simultaneously) is on

Not to be confused with the axisymmetric donut calculation.
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the order of 5 KPa. Adding this pressure increment to the axisymmetric

single-downcomer on-axis result gives approximately 49 KPa (experiment 1.3.1

peak bottom pressure is 49.3 KPa); this indicates almost perfect agreement

with the experiment in terms of vent-clearing hydrodynamics.

5.4.2 Finite Torus Diameter

One further comparison of peak bottom center pressure can be made between

a plane strain calculation (infinite torus diameter with a single downcomer

centered in torus cross section)* and an axisymmetric donut calculation

(finite torus diameter and a single downcomer centered in torus cross

section). This pair of calculations, unlike others, modeled both halves of

the torus cross section. The axisymmetric calculation, therefore, did not

assume an infinite major diameter. The peak bottom pressure for the donut

calculation was found to be 3.6% lower than that of the plane-strain problem.

As stated earlier, the vent clearing times were identical. A small portion of

the 16% discrepancy between experiment 1.3.1 and our plane strain calculation

is thus due to curvature of the wetwell torus.

5.5 LOADING RESULTS

Our final set of calculations investigated downloads and uploads in the

90 - and 7.5 -torus sectors. The downloads are produced by the momentum

of the water at vent clearing. As the bubble expands and the water surface

rises, the net load on the torus shifts upward until it reaches a peak before

returning to the static condition. We computed the 1/5-scale uploads to gain

insight into the physical mechanisms involved so that the unexpectedly higher

(-20%) experimental uploads found in the 900 sector, relative to the 7.50
26

sector, might be explained.

A plane strain model (see Fig. 16) was used with a vertical axis of

symmetry containing the torus cross section center line. The torus was

supported as shown in Fig. 17. Our calculations investigated the influence of

both torus stiffness and flexible supports on uploads. Three typical vertical

This calculation is the same as the plane strain (downcomer on axis

calculation) except symmetry is not assumed.
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load histories, computed from integration of the pressure distributions, are

shown in Figs. 19a, b, c.

Figure 19a shows our calculated results for a rigid structure and

support. A low-frequency response showing download and upload follows the

initial static deflection. Figures 19b and c show our results for a

flexible structure and support, where support motion was allowed only in the

vertical direction. We obtained the same low-frequency response as the rigid

calculation but with a high-frequency component superimposed. The latter

frequency corresponds to that of a simple spring-mass system with a spring

constant equal to the support stiffness and a mass equal to that of the

structure plus a calculated effective water mass (about half the total water

mass). This mass remains approximately constant for hard and soft spring

supports. The support spring constant for Fig. 19b is about 16 times larger

than that for Fig. 19c, and the calculated frequency differs by a factor of 4

as expected. The superposition of the three calculations (Fig. 19d), reveals

that the response of the rigid structure represents the mean of the

flexible-structure responses.

Figure 20 shows the interrelation between bubble dynamics and upload and

the pressure contours at different periods of bubble growth. Important to the

understanding of the upload phenomenon is the phasing between the bubble and

pool pressure and the ullage pressure. In Fig. 20a the early pressure

contours show a net downward force. The dynamics are still dominated by the

force of the water pushing down as vent clearing occurs and the bubble starts

to grow. As the bubble expands, the path of least resistance is towards the

surface. A net upward force clearly appears in Fig. 20b. A high pressure

region is located in the upper portion of the torus because of ullage

compression. The lower section of the torus is now at a lower pressure.

Later, the phase difference disappears, and the forces equilibrate as shown in

Fig. 20c.

These calculations explain the upload phenomenon. Uploads are caused by

bubble growth toward the free surface. This bubble growth produces a higher

pressure region in the upper part of the torus. The movement of the structure

and support contributes a relatively small high-frequency component to this

main load time history. The distribution of the pressure contours of Fig. 20

shows that the geometry of the structure plays an important role in the

magnitude of these loads.! Hence, careful design can reduce them.
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The two-dimensional nature of these calculations limits the conclusions

that can be drawn. Extrapolating the computer results to a full 900-torus

sector, for example, gives downloads much larger and uploads smaller than the

experimental results. Such an extrapolation implies much more water

displacement than is actually the case. The downcomers are circular and

discretely placed, but in the plane-strain analysis the downcomer is a

continuous channel. So in our calculations bubbles cannot expand and interact

in three dimensions. The calculations reported here, however, are sufficient

to describe the general upload phenomenology.

5.6 DISCUSSIONS AND CONCLUSIONS

We have demonstrated the versatility of PELE-IC in calculating LLL

1/5-scale experiments with varying initial conditions or changes in the

geometry. All calculations are two dimensional and our results are

conservative with respect to the experimental bottom pressure associated with

the downloads. In terms of uploads, PELE-IC is nonconservative with respect

to experiment. Our calculations demonstrate the limitations of modeling a

three-dimensional geometry with a two-dimensional computer code.

Three-dimensional vent clearing and pool swell hydrodynamics have been

successfully calculated with two-dimensional models by proper consideration of

two effects: (1) the geometric decay of fluid velocity near the downcomer for

plane strain and axisymmetric calculations, and (2) the ratio of the initial

fluid mass in the downcomers to the total fluid mass in a tributary volume of

the torus. Plane-strain models are substantially in error on both counts,

because of out-of-plane restraint against fluid motion and because of

downcomers being treated as channels.

Axisymmetric models with downcomers on axis or with downcomers treated as

equivalent annuli proved to be successful in predicting vent clearing time and

peak bottom center pressure. As a result, it is suggested that a combination

of two-dimensional (early time) and three-dimensional (structural response

time) fluid-structure analysis may accurately and economically provide vent

clearing and pool swell evaluations without recourse to a fully coupled

three-dimensional treatment.

We have shown that uploads are neither dependent on the stiffness of the

torus shell nor on the stiffness of the supports, but are a consequence of
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wetwell liquid being accelerated upward by the growing bubble. Wetwell design

contours can control upload magnitudes.

Shell flexibility affects the load-time histories by the addition of

oscillations to the main signal after vent clearing.

The greatest limitation of PELE-IC in performing Mark I safety analyses

is the code's inability to calculate three-dimensional fluid-structure

problems. On the other hand, great care must be taken in attempting to

substitute other computational devices (e.g., acoustic models) for PELE-IC

which may be able to treat the three-dimensional aspects of the problem at the

expense of neglecting bubble dynamics and other nonlinear fluid phenomena.

Such phenomena control both the download and upload histories.
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TABLE 5.1. Geometry material properties

torus.

and initial conditions of 1/5-scale

Experiment (1.3.1) Calculation

Geometry

Torus wetwell inside diameter (2R), cm

Torus major diameter, cm

Pipe diameter, cm

Downcomer submergence, cm

Spacing between downcomers, cm

Wall thickness (h), cm

Water depth, cm

190.0

680 (900 sector)

12.2

24.67

48.77

1.905

90.67

189.0

680 or

12.0

24.38

48.20

1.905

90.67

infinity

Material properties

Poisson's ratioa
Mass density, a kg/m3

a
Young's modulus, GPa

Water temperature, °C

0.29

7.86

2.06 x 106

21.70

0.29

7.86

2.06 x 106

Initial conditions

Initial wetwell pressure, KPa

Initial downcomer pressure, KPa

Drywell pressurization rate, KPa/s

20.3

20.3

187.8

-20.4

-20.4

187.8

aASTM1 A537 Class I, Grade A steel.
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Cross sectional view

rNuclear reactor core

FIG. 14. Scale model (1/64 size) of the Peachbottom Mark I BWR pressure-

suppression system.

42

I



(a)

(b)

FIG. 15. LLL 1/5-scale experimental facility. (a) 7.5°- and 90 -wetwell

torus sectors, vent lines and drywell. (b) Cross section of toroidal wetwell.
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FIG. 16. tILL 1/5-scale torus calculated geometry. (a) Torus walls and

downcomer vents. (b) Eulerian grid overlaying shell--648 cells and 30 shell

elements.
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FIG. 17. LLL 1/5-scale plane strain model of the Mark I BWR. (a) Basic

geometry showing a cross section of the torus to be modeled. (b) Calculated

geometry showing typical bubble shape with arrows representing velocity

vectors.
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FIG. 19. Calculated uploads and downloads during vent clearing in the LLL

1/5-scale torus. (a) For rigid structure and supports. (b) Flexible

structure and supports. (c) For flexible structure with 1/16 the support

stiffness of (b). The sharp pressure spikes result from numerical difficulties

absent in subsequent calculations. (d) Superposition of previous three cases.
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FIG. 20. Calculated bubble growth and pressure contours in the LLL 1/5-scale

torus during air blowdown. (a) After 200 ms. (b) After 260 ms. (c) After

280 Ms. The pressure contours are in kPa. The horizontal line is the initial

water level.
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6.0 APPLICATION TO MARK II BWR PRESSURE-SUPPRESSION

SYSTEMS ANALYZING SCALED EXPERIMENTS

6.1 SIMULATION OF A HARMONICALLY DRIVEN WATER TANK

A test of the low-amplitude, long wavelength acoustic capability of the

PELE-IC code was provided by the problem of dynamic response prediction for a

cylindrical, water-filled tank harmonically excited by a top surface piston.

The tank bottom is closed by a rigid plate mounted on hinged supports.

Fluid-structural interaction experiments on this system were conducted for the

Electric Power Research Institute by the Aeronautical Research Associates of

Princeton (ARAP)27 and offer a geometric similarity useful for verifying the

PELE-IC code for calculations of the General Electric (GE4T) (Mark II) tests

described in the next section. For the present problem we calculate the

second symmetric wall-bending mode and compare our results with ARAP

experiments.

ARAP's experimental apparatus, which includes an aluminum tank and an

electromagnetic shaker-driven piston, is shown in Fig. 21a. Of the three

tanks tested--steel, aluminum, and acrylic--we chose the aluminum tank because

.of its intermediate rigidity. This tank has a column of piezoelectric

transducers located 4.13 cm from the centerline, which allows pressure to be

measured as a function of height. The piston was located approximately 3-cm

below the waterline and had a clearance of about 0.5 cm between the outer

periphery of the piston and the cylinder wall. A 520-Hz sinusoidal frequency

was applied just below the water surface; the frequency represents a resonance

discovered in the ARAP experiments by a discrete frequency sweep (i.e.,

altering the electromagnetic shaker driving frequency in discrete jumps while

monitoring vibrational amplitude of several points in order to detect

resonance). The tank bottom is a rigid, substantially thick steel plate

hinged by means of a thin, circumferential flexure strip, as shown in Fig. 21b.

The strip is wedged to a base flange that is screwed to the sub-base plate

which is, in turn, bolted to the concrete floor.

Table 6.1 gives the material properties and geometry of the slender ARAP

tank. The tank's inside diameter (2R) is 0.18 m and the height (H) is 0.93 m.

The geometry ratio (H/R) and the sidewall thickness-to-radius ratio indicates

that the bending terms are small. The Strouhal number (WR/a), together with
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the (H/R) ratio, provide clues on acoustic wavelength effects and radial

variations in the water pressure.

For the PELE-IC calculations we modeled the tank walls and bottom as a

continuous aluminum shell overlaid with a rectangular Eulerian grid, as shown/
in Figs. 22a and 22b. At the present time, PELE-IC can model only one shell

material; therefore, the tank bottom thickness was scaled by 1.44 to maintain

the same bending stiffness as steel. Calculations with the bottom plate

thickness scaled by a factor of three gave the same mode shape. However, a

calculation with the bottom plate thickness of about the same thickness as the

side wall produced the next higher axisymmetric (sidewall) mode. The bottom

hinged edge supports were modeled by placing a single extremely rigid vertical

stiffener ring on the outer bottom shell node. A velocity (piston) boundary

condition corresponding to an experimental acceleration history (Fig. 23) was

applied to the top row of Eulerian cells. Note that the water surface was

excited in the PELE-IC analysis, whereas the piston lies somewhat below the

surface water level. All axisymmetric calculations using a time step size of

0.05 ms were run out to four milliseconds and consumed two minutes of Cray-i

CPU computer time. A viscosity corresponding to that of room temperature

water was used in the calculations.

The calculated bottom center pressure for the aluminum ARAP tank excited

at 520 Hz is shown in Fig. 24a. Note that the initial pressure reflects the

gravitational head about which the pressure oscillates. The radial variation

in pressure is less than 2% at the tank bottom but as much as 8.3% at the

water surface. A comparison of the normalized axial pressure distribution

(pressure mode shape) is shown in Fig. 24b. Calculated data at times of peak

compression and tension are compared to experimental data taken in

compression. The pressure plotted is the calculated pressure minus the local

static gravity head, which is then normalized to the maximum pressure

occurring at that time. A null modal circle for this pressure occurs at an

elevation of 0.5H at t = 2.25 ms and at 0.6L at t = 3.25 ms. Cylinder wall

motion is represented by the velocity plots in Figs. 25a and 25b for these

same two times, respectively. Null radial displacement modal circles occur at

an elevation of about 0.33H at t = 2.25 ms and at 0.66H at t = 3.25 ms. Note

that while the pressure mode shape is approximately symmetric about a

mid-height plane, the velocity mode shapes are inverted images of each other.
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The ARAP calculation is a useful exercise of PELE-IC because it

demonstrates the capability of the code to calculate long wavelength

axisymmetric acoustic modes in a cylindrical geometry, similar to the GE4T

tank. The fluid-structure iteration effect can be appreciated by observing

that the corresponding in-vacuo natural frequency of the aluminum cylindrical

shell is about 9000 Hz, and the interaction reduces this to about 500 Hz. At

the same time the acoustic wavelength is about three meters or about thirty

times the tank radius--indicating the validity of our incompressibility

assumption-yet the flexible structure contributes an apparent acoustic effect

as evidenced by the axial variation in pressure. In summary, an

incompressible calculation has accurately predicted an n = 2 wall bending mode

seen in ARAP's harmonically driven tank experiment at 520 Hz.

6.2 THE GENERAL ELECTRIC TALL TEMPORARY TEST TANK (GE4T) EXPERIMENTS

In order to control the pressure in the reactor cavity (drywell)

following a loss-of-coolant accident (LOCA), some General Electric BWR designs

incorporate a pressure suppression pool with vertical downcomers (the Mark II

system). A set of phenomenological experiments characterizing the Mark II

design has been conducted in the General Electric Temporary Tall Test Tank

(GE4T) which resulted in a variety of stable and unstable steam condensation

events in the pool. The dynamic response of the GE4T during these events was

measured, and these data, together with analytical models, are being used to

develop design criteria and loading functions for Mark II equipment.

The purpose of these PELE-IC calculations is to compare the

fluid/structural dynamic response characteristics for variations in wall

stiffness, the type of pressure signature, various downcomer vent lengths,

the effects of the vent acoustics, and compressibility effects.

The PELE-IC results in this section focus mainly on the GE4T parameter

studies rather than comparisons with experimental data. Most of the

experimental data28-30 are proprietary. Reference 31 is a non-proprietary

summary report.

The partially filled cylindrical GE4T tank is a single vent chugging

facility operated by General Electric that may simulate the performance of a

Mark II BWR pressure-suppression system under LOCA conditions. This facility

approximates a unit cell of a full-scale Mark II containment system. The GE4T
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tank is a tall, thin-walled, upright cylinder with thick end plates, several

circumferential stiffeners, and a single central downcomer.

6.2.1 Experimental Apparatus and Computer Model

Figure 26 shows the GE4T experimental apparatus and a diagram of the

actual multivent torus configuration. Table 6.2 gives details of the GE4T

geometry and material properties. The sealed steel tank is 16-m high, roughly

38% water filled, and has a tank height to radius ratio of about 15. The

downcomer pipe is submerged about 2.5 m, and the tank walls are 1.59-cm

thick. The 10.2-cm-thick base is secured to a concrete pad through the flange

at the bottom of the cylinder walls.

For one set of tests air and steam are injected from the drywell into the

downcomer causing chugging/condensation oscillation to occur at the downcomer

exit. Chugging is an unstable, irregular steam condensation process

associated with an oscillatory motion of the steam-water interface occurring

at the end of the blowdown process. Condensation oscillation, another

chugging type, has regular pressure oscillations but with frequencies

corresponding to the vent acoustic frequencies. A more detailed description

of chugging is given in Appendix A. Typical experimental pressure time

histories for these tests ran to 768 ms. Other tests designed to simulate a

single chugging ev&'•t were driven by a collapse of a partially evacuated

belljar placed under the downcomer exit. Pressure transducers were located at

the bottom center, bottom half-radius, at the downcomer and at several

locations on the cylinder wall. Because we have calculated the collapsing

belljar experiments with rigid walls these calculations are of little

interest. In this section, we present only the chugging/condensation

oscillation calculations with flexible walls and ends.

Axisymmetric PELE-IC calculations of the GE4T tank used a continuous

flexible finite-element shell of variable thickness and a rigid downcomer, as

shown in Fig. 27a. Extra shell zones were added at the tank side corners

where sharp gradients in bending deformation occur. A rectangular Eulerian

mesh (see Fig. 27b) consisting of 972 cells overlaid the shell. Void cells in

the ullage airspace are automatically deleted during the calculation. The

bottom flange support was modeled as an extremely stiff vertical stiffener

placed at the outermost base plate node. Ring stiffeners on the side walls
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were used in only one calculation. The kinematic viscosity corresponded to

water at room temperature and was used for all calculations. No shell damping

was added.

The initial ullage pressure was 275 kPa. The downcomer is assumed to be

precleared, i.e., a mass flow rate of steam sufficient to clear the vent of

water prior to the chug/condensation oscillation was assumed. Then a

prescribed pressure time history is applied to the moving free surface in the

initially precleared downcomer.

The actual pressure time history (pressure source function) at the

liquid-vent interface is coupled to the interfacial thermal-hydraulics there

and to the flow field within the liquid occupying the wetwell. The

possibility of a change in the prescribed source pressure as the result of

liquid-vent interface motion has not been considered in these calculations.

We recognize that the simultaneous prescription of an initially precleared

downcomer (with no bubble volume) and a source pressure overspecifies the

initial condition of the problem. However, use of both prescriptions will not

influence the fluid-structure frequency response for any prescribed pressure

history provided the prototypical bubbles for the GE4T tests (and bubbles from

our calculations) displace little liquid within the wetwell. Our calculations

have demonstrated that the liquid-vent gas interface moves little for all

pressure histories considered.

A typical GE4T calculation, using a time step of 0.05 ms and a convergence
-6 -i

criterion c = 10 ms ran to 200 ms using 22 minutes of Cray-i CPU

time. Calculated pressures were selected at the bottom half-radius and on the

side wall at an elevation of 465 cm, and Fourier transforms of these PELE-IC

pressure histories were performed by the method discussed in Appendix D.

6.2.2 Calculations

The two forcing functions used in the PELE-IC calculations are shown in

Fig. 28. The first forcing function is a 50-ms triangular pulse, rising

6.9 KPa above the reference pressure. The reference pressure is the sum of

the initial ullage pressure and the static pressure corresponding to the

downcomer submergence. The second forcing function is a 55-ms pressure pulse

consisting of a sharp, 5-ms negative pressure spike, which models the bubble

collapse, followed by a 50-ms triangular pulse, which models fluid leaving the
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downcomer. This pulse, called the WPPSS (Washington Public Power Supply

System) pulse, has been suggested as being representative of chugging/

condensation oscillation and has been constructed, in terms of amplitude and

pulse shape, to conservatively bound an experimental amplitude-frequency

envelope formed from 137 preselected GE4T chug pulses. The GE4T data base

used a 29.3-m downcomer, whereas the actual Mark II containment has a

downcomer length of about 12.2 m.

We modeled vent acoustics in some of the PELE-IC calculations by

including the organ pipe reflections of the input pulses (see Fig. 28) in the

pressure time history applied at.the vent exit. Details of the acoustic pipe

model used to calculate the acoustic reflections are given in Appendix C.

Our first set of calculations examined the static gravitational and

dynamic deflections of the GE4T tank shell. Axial deflections of the thick

end plates and the radial deflections of the thin side wall are shown in

Fig. 29. Static end plate axial deflections are an order of magnitude larger

than the radial deflection of the side wall, but the dynamic axial deflections

of the end plates are two orders of magnitude larger than the dynamic radial

side deflections. Also, the dynamic axial motion of the side walls dominates

the radial motion. The displacement profiles at the top and bottom corners

spatially oscillate due to the discontinuity in bending stiffness between the

end plates and the thin cylindrical shell. In order to examine the effects of

these spatial oscillations on the fluid-structure vibrational characteristics,

a model with separate end plates and a cylinder (see Fig. 29) was constructed.

Either this model or the continuous shell provided approximately the same

deflections and pressure histories. In subsequent calculations we used a

continuous steel shell.

Our second set of PELE-IC calculations was designed to isolate the GE4T

frequency components associated with the cylinder wall and tank bottom. (An

earlier attempt to perform an eigenvalue analysis using a Lagrangian finite

element code was unsuccessful due to ill-conditioned matrices and spurious

modes.) For one calculation, calculation A, the axial motion of the bottom

plate was constrained. Calculation B constrained the radial motion of the

cylinder walls and is the limiting case for continuous ring stiffeners. Both

calculations A and B used the WPPSS pulse without acoustic reflections as a

forcing function in a precleared downcomer. Figure 30 compares the bottom

pressure-time histories and the Fourier spectra of these two histories. These
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Fourier spectra were calculated only for a partial history--after the driving

pulse has ended-in order to exclude the contribution from the driving

transient. Note that a 42-Hz frequency component is associated with the bottom

plate and the 57- and 68-Hz components are associated with the cylinder walls.

An examination of deflection component histories for the center of the bottom

plate and for points both above and below the water surface on the cylindrical

shell for the fully flexible GE4T geometry supports this observation. For

instance, the axial deflection at the center of the bottom plate shows a

pronounced 38-to-40-Hz signal, whereas the wall axial deflections exhibit

predominantly 60-Hz motion. Radial deflections of the wall below the water

surface display the effects of fluid loading and, therefore, are similar to

the bottom plate 38-to-40-Hz response; above the water surface, on the other

hand, radial deflections conform to wall axial 60-Hz vibrations. The fluid

velocities are almost entirely vertical, so that radial shell motion below the

water surface appears to be a function of pressure coupling through the fluid

to the bottom plate.

A point of interest is the approximately 5-Hz (see the partial time

histories in Fig. 30a) modulation of the 65-Hz carrier frequency when the

bottom plate is restrained against axial motion. In this example, the fluid

velocity is no longer virtually vertical, but includes conversion from

vertical to radial motion as the fluid particles stagnate against the rigid

bottom plate. The modulation is associated with a beat frequency between a

radial breathing mode (-70 Hz) and the longitudinal vibration mode (-60 Hz).

The radial and axial deflections of the cylindrical shell wall below the water

surface are 900 out of phase with each other, rather than the 1800 out of

phase that is typical for a fully flexible calculation. We find the 5-Hz

frequency component to be independent of kinematic viscosity, but dependent

upon compressibility. A compressible calculation (sound speed equal to

740 m/s) with a rigid bottom had no detectable modulation.

Frequency data for the two partially-flexible calculations--rigid bottom

plate, flexible side wall; rigid side wall, flexible bottom plate--are

summarized in Table 6.3. The amplitudes are listed from largest to smallest,

reading from left to right. Typical error bounds on the frequency components

are from ±2 to ±4 Hz, depending on the temporal duration of the sampling

interval. Data in Table 6.3 are given for two locations: the bottom half

radius location and at an elevation of 465 an on the side wall. Note that the
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15- and 25-Hz frequency components occur in each of the two calculations.

These frequency components of lesser magnitude are of the same order of

magnitude as the spurious contents introduced as a result of finite time

domain sampling during the determination of the Fourier spectrum, as discussed

in Appendix D. Because of this similarity, the smaller amplitude peaks in the

spectra should not be given too great an emphasis.

The next pair of calculations compared the GE4T dynamic response for the

triangular and WPPSS pulses (see Fig. 28) without vent acoustics. Bottom

pressure-time histories for these calculations and their Fourier spectra are

presented in Fig. 31. Note that the triangular pulse tends to excite the

bottom plate and side walls, whereas the WPPSS pulse excites mainly the bottom

plate. Again, the spectra were calculated for the portion of the response

after the input pulse has ended.

The Fourier spectra of the triangular and WPPSS pulses were computed

separately so that the transient contributions of the forcing function to the

fluid-structure response could be evaluated. The WPPSS pulse frequencies are

given in Table 6.4. Next we used an acoustic pipe model (see Appendix C) to

compute the acoustic pressure reflections and the Fourier spectra of these

reflections. Reflected organ pipe pressures of the triangular pulse for the

28.6- and 14.3-meter downcomer vents are shown in Fig. 32. Fourier spectra of

the reflected pressures are shown in Fig. 32b and 32d. The downcomer was

assumed to be open at one end (simulating a drywell pressure boundary

condition) and closed at the other end where the chugging pressure pulse is

applied (simulating the high impedance of the wetwell water). Note that the

29-m vent length corresponds to the GE4T configuration, whereas the 14-m vent

corresponds roughly to the Mark II vent length.

The reflected pressure time history shown in Fig. 32a and 32b begins at

about 118 ms, approximately equal to the round-trip travel time for the pulse

up and down the pipe. Each pulse reflection at the water surface causes a sign

change in the signal. Frequencies of the reflected pressure are indicated next

to its corresponding peaks in Fig. 32b and 32c. Theoretical frequencies shown

in parentheses correspond to the classical organ pipe frequencies given by

f (2n - l)c
n 4L n =, 2, 3, . . .,

where the steam sound speed c is 488 m/s and L is the downcomer length.
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Reflected pressures and their Fourier spectra for the WPPSS pulse are

shown in Fig. 33. Again, the calculated and theoretical frequency components

are shown in Fig. 33b and 33d for the two vent lengths, with a summary in

Table 6.4. Note that the reflected triangular pulse is masked somewhat by the

higher frequency oscillations. Both the triangular and WPPSS organ pipe

calculations were run for 270 ms with a Courant number of 0.6. Note that the

Fourier amplitudes for the shorter vent length are roughly 30% higher than

those of the longer vent length. The characteristics of the Fourier

amplitudes can be modified by either changing the chugging forcing function

(pressure pulse) shape or the vent length.

Our next pair of PELE-IC calculations included the reflected acoustic

signal for the WPPSS pulse in the forcing function applied at the downcomer

exit. For the first 55 ms the forcing function is as shown in Fig. 28b; then,

at the time of arrival of the reflected signal, the time history is as shown

in Fig. 33a for L = 29 m, and Fig. 33c for L = 14 m. As mentioned previously,

these vent lengths roughly correspond to either the GE4T or the Mark II

downcomer lengths, respectively. Results for these calculations are shown in

Fig. 34. Here we show the bottom pressure-time history at half radius

location out to 274 ms, with the Fourier spectra of these pressures calculated

for the entire response history. The dominant fluid-structure frequency is

about 39 Hz. Note that the effect of the shorter downcomer length is to

increase the Fourier amplitude of this particular frequency component by about

80%. The bottom pressure amplitude is also larger for the shorter vent length.

Prior to the time of arrival of the acoustic reflection (indicated by the

arrows in Fig. 34a and 34c), the response histories show a mixture of

predominantly 39- and 63-Hz frequency components. After the acoustic

reflection is applied, more of the 39-Hz bottom plate contribution is present.

Shortening the downcomer length further increases the 39-Hz amplitude since

the time of arrival of the reflected pressure occurs earlier in the response

history. These effects are listed in the last three rows of Table 6.4. The

frequency components of the forcing functions by themselves and the frequency

components of just their acoustic reflections are shown in the first two

rows. The frequency components are listed largest to smallest in terms of

Fourier amplitude from left to right. Because the PELE-IC calculations were

run to only 274 ms, frequencies less than 4 Hz are absent. Most of the

frequency components listed in Table 6.2 are also present in Table 6.4.
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6.3 COMPRESSIBLE CALCULATIONS

Our final pair of fully flexible calculations used the compressibility

option in PELE-IC to determine the effects of water compressibility on the

fundamental fluid-structure frequency. Steam injection into the wetwell and

partial entrainment in the water is believed to reduce the fluid sound speed

substantially. We ran two cases, one with the sound speed of pure liquid

water c = 1480 m/s and another calculation with half this sound speed.

Figure 35 shows the Fourier spectra of the bottom pressure from 100-200 ms

after the impulse function has ended. For a water sound speed of 1480 m/s the

fundamental fluid-structure frequency is essentially unchanged in comparison

to the incompressible calculation. However, when the sound speed is halved

the fundamental fluid-structure frequency is reduced to 26 Hz. Also a 95-Hz

frequency component (Fig. 35a) is reduced to a 72.5-Hz component (Fig. 35b).

The 62.5 Hz (Fig. 35a) component associated with the side wall is not present

in the second calculation (Fig. 35b). A separate rigid-bottom compressible

calculation (c = 740 m/s) showed that the 62-Hz component is reduced to 31 Hz.

These results indicate that steam entrainment may have a considerable

effect on the reduction of the fundamental fluid-structure interaction mode.

Further verification efforts are underway to enhance our confidence in the

compressible calculations.

6.4 DISCUSSION AND CONCLUSIONS

We have associated various GE4T frequencies with the vibration of either

the bottom plate or the cylinder walls. The bottom plate frequency of 42 Hz

reduces to about 39 Hz due to interactions of the base plate edges with the

side wall. Similarly the 57- and 68-Hz frequency components associated with

the side wall appear as a single 63-Hz component due to interactions with the

end plate. The beat frequency of approximately 5 Hz is indiscernible for the

fully flexible PELE-IC calculations. We have also shown that the effect of

wall ring stiffeners is to enhance the 39-Hz fundamental fluid-structure

frequency component that is associated with the bottom plate.

We find that the WPPSS forcing function also enhances the 39-Hz frequency

component. We have demonstrated that the Fourier amplitude-frequency envelope

is strongly affected by the downcomer vent length. Shorter downcomers, as in
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the actual Mark II configuration, produce higher Fourier amplitudes for the

fundamental fluid-structure 39-Hz frequency component.

The effect of the fluid-structure interaction for the GE4T tank can be

seen by the reduction of the frequency of the dry GE4T cylinder from about

800 Hz to 63 Hz and the frequency of the dry bottom plate from about 190 to

39 Hz. This reduction in frequency has been demonstrated using an

incompressible representation of the wetwell liquid. Liquid (wetwell)

compressibility effects introduced through entrainment of noncondensables have

a potential for significant reduction of the effective liquid wave speed.

Such compressibility effects can reduce the computed incompressible fluid-

structure frequencies.

Two primary system characteristics appear important in achieving a match

between experimental and computed Fourier spectra for GE4T bottom center

pressures:

1. Liquid compressibility effects decreased the calculated primary

fluid-structure frequency downward from 39 Hz computed on the basis of an

incompressible wetwell liquid to 26 Hz when the water sound speed was halved.

2. The temporal shape of the specified pressure-history at the downcomer

exit as well as the duration of this source are important in the excitation of

the fluid-structure frequency components when downcomer vent acoustics are

included. (a) For the 29-m GE4T vent length, the triangular pressure pulse

duration of 50 ms has the effect of exciting the 13.2-Hz frequency (second-

vent acoustic mode). For a 25-ms pressure pulse, the 21-Hz frequency (third-

vent acoustic mode) has the greatest Fourier amplitude; this frequency is

closer to the natural frequency of the fluid-structure system. (b) At half

the total GE4T vent length (prototypical of Mark II), the 50-ms pressure pulse

duration has a predominant 25.5-Hz content which approaches the natural

frequency of the GE4T system.

The GE4T system is sensitive to downcomer vent acoustic effects and to

the prescribed vent exit pressure-forcing functions. The reason for this

sensitivity is that the reflected acoustic pressure pulse traversing the

downcomer has a strong frequency component only slightly below the dominant

fluid-structure natural frequency of the GE4T system. Shortening the GE4T

downcomer to a prototypical Mark II length and decreasing the 50-to-55-ms

duration of the pressure source will produce a near resonant condition in the

20-to-30-Hz range when wetwell liquid compressibility effects are included.
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Because of the system sensitivity to this resonant or potentially near

resonant condition, it may be concluded that the envelope of experimental

response spectra obtained from GE4T tests is heavily influenced by the

particular GE4T system characteristics--downcomer length, bottom plate

thickness and radius, entrained noncondensables, and all other Mark II

nonscaleable parameters. Therefore, the use of such an enveloped response

spectra cannot be considered conservative unless near prototypical test

configurations and conditions were obtained. Such prototypical conditions

were not established for the GE4T apparatus.

Further work on the Mark II (GE4T) is needed. It is obvious from the

above discussion that we need to reassess the data obtained from the GE4T or a

similar apparatus using the shorter, more prototypical downcomer. Just as

important, however, is the need to eliminate the use of an artificially

prescribed pressure history. Such a nonphysical temporal prescription

provides a net vent forcing function whose Fourier spectra can be as

arbitrarily close or remote as desired to the physically derivable dominant

spectra of the fluid-structure system. Instead, further investigation of

generic, mechanistically derived source function signatures is recommended.

This work should reflect the thermal-hydraulics associated with the steam

bubble overexpansion and collapse as they relate to the stable and unstable

events.
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TABLE 6.1 Geometry and material properties of ARAP aluminum tank.

Experiment Calculation

Geometry

Tank height (H), cm 92.7 92.3

Water depth (H w), cm 90.0 92.3

Piston height, cm 87.0 92.3

Tank inside diameter (2R), cm 17.78 17.78

Side wall thickness (h), cm 0.318 0.318

Steel tank bottom thickness, cm 3.20 4.61a

h/R 0.036 0.036

H/R 10.4 10.4

Material properties

Poisson's ratiob 0.29 0.29

Mass density, b Kg/m3 2700.0 2700.0

Young's modulus, b GPa 68.95 68.95

Water temperature, °C 20-22 -

aBottom plate thickness scaled (see text).

bASTM 6061-T6 aluminum.
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TABLE 6.2 Geometry and material properties of GE4T steel tank.

GE4T experiment Calculation

Geometry

Tank height (H), cm

Water depth (H w), cm

Downcomer submergence, cm

Tank inside diameter (2R), cm

Sidewall thickness (h), cm

End plate thicknesses, cm

Downcomer diameter, cm

Vent length, cm

Ullage pressure, kPa

h/R

H/R

H /Hw

1600

609.6 - 701.4

274 - 411.5

213.4

1.59

10.16

50.8 and 61.0

2926

100 - 275

0.015

14.9

0.38 - 0.44

1584.8

609.6

359.8

213.4

1.59

10.16

56.0

2865 and 1432a

275

0.015

14.8

0.38

Material Properties

Poisson's ratio

Mass density, Kg/mi3

Young's modulus, GPa

Water temperature, °C

-0.29

-7.86

-206

21 - 65

0.29

7.86

206

aThe actual Mark II vent length is approximately 1220 cm.
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TABLE 6.3 GE4T fluid-structure frequenciesa from Fourier transform of

pressure histories.

Calculation A: No axial motion allowed at bottom plate

bottom 67.6 56.6 14 . 2 b 24.2

side wall 67.6 57.2 14 .2b 24.2]

Calculation B: No radial motion allowed on cylinder wall

bottom 41.8 15 .4b 26 .7b 41.8

side wall 42.4 27.6 16 .3b 57.2

aFrequencies (Hz) associated with amplitudes are progressively listed from

left to right. Those having the largest amplitudes appear on the left with

those having the smallest on the right.

bsee text.
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TABLE 6.4 GE4T frequency components Fourier transform of pressure histories.

a
Pulse description Frequencies , Hz

WPPSS input pulse alone 13.5 53.4 38.7 - -

Reflected WPPSS pulse alone

(vent acoustics) 12.5 20.7 37.2 29.0 3.9

PELE-IC bottom pressure for WPPSS

pulse (no reflection) (100-200 ms) 38.4 62.6 15.2 25.5 52.6

PELE-IC bottom pressure for WPPSS

pulse with its acoustic reflection

(L = 28.6 m) (100-273 ms) 39.1 25.4 18.7 53.0 11.5

(0-273 ms) 37.6 25.8 10.5 63.0 18.0

PELE-IC bottom pressure for WPPSS

pulse with its acoustic reflection

(L = 14.3 cm) (0-273 ms) 39.8 45.7 31.5 8.2 64.0

aFrequencies associated with amplitudes are progressively listed from left to

right. Those having the largest amplitudes appear on the left with those

having the smallest on the right.
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APPENDIX A

A.1.0 DESCRIPTION OF CONDENSATION EVENTS

A.1.1 STABLE AND UNSTABLE CONDENSATION LOADS

The oscillatory pressure-time histories that are observed at the wall of

a partially-water-filled tank subjected to stable steam condensation loads
1-3have been explained by a number of investigators. At a sufficiently high

steam mass flux from the drywell into the downcomer, the dynamics can be

described by the thermal-hydrodynamic exchange of energy between inertially-

driven steam bubble expansion into a cool, incompressible water pool and the

surface-area-driven condensation of this steam bubble. Figures A.la and A.lb

show the individual characteristics of these two processes, while Fig. A.lc

indicates their interaction on a temporal scale. This model results in

relatively small pressure oscillations and fluid displacements in the water

adjacent to the steam bubble.

As the steam mass flux into the downcomer is reduced, the process becomes

unstable. The precise mechanics of unstable condensation are not known for

certain; however, the wall pressure traces from chugging events have been

correlated with a variety of assumed downcomer pressure traces in order to

arrive at a reasonable judgment. The following summary of the possible steps

involved represents one such judgmental estimate:

1. We begin the event with the downcomer and wetwell water surfaces in

equilibrium and with the steam mass flux at the entrance to the downcomer

exactly balanced by condensation along the downcomer walls and on the

downcomer water surface; this equilibrium mass flux is less than the chugging

mass flux, and significantly less than stable condensation mass fluxes.

2. The steam mass flux at the entrance to the downcomer is increased to

levels associated with chugging, and the steam begins to push the water from

the downcomer and form a steam bubble outside the downcomer exit plane;

because of the excess pressure from the chugging mass flux, the water near the

end of the downcomer is accelerated to some velocity that depends upon the

ratio of downcomer area to wetted pool area and other factors. One should
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assume that these velocities are smaller than those generated by the higher

steam mass fluxes associated with condensation oscillation.

3. The steam bubble is able to overexpand because of the inertia of the

retreating fluid, until it reaches a critical size such that surface heat

transfer and condensation begin to dominate. At this point, unlike the

condensation oscillation event, the dynamic head is reversed, causing the

bubble to collapse. A number of possible physical mechanisms could be

contributing to this reversal of both velocity and pressure gradient. The

pool temperature could be increasing (thus decreasing the surface heat

transfer rate) while the steam mass flow is decreasing, leading to more

favorable conditions for bubble over-expansion. Another possibility is that,

during condensation oscillation, the higher steam mass flux maintains a

sufficiently high bubble pressure so that flow reversal in the adjacent water

does not coincide with a reversal in pressure gradient. A third possibility

is that a second-order effect, such as surface tension and/or acceleration of

the bubble toward the free surface of the pool, could be dominating the

physics at neutral equilibrium between surface heat transfer and adjacent

water inertia. Regardless of the mechanism, the collapse of the bubble

produces a sharp local impulse. This impulse appears as a negative pressure

(relative to initial pressure) to the water lateral to and below the bubble,

but the impulse would do work on any fluid volume above it, driving some

portion of water up the downcomer.

4. When the water volume driven up the downcomer reaches its highest

point, the flow reverses again (gravity head is now the dominant term) and the

fluid drops almost to the equilibrium position, creating a small positive

pressure on fluid particles at the exit plane of the downcomer. Visual

examination of chugs would indicate, however, that the downcomer water level

returns to equilibrium in an oscillatory fashion, indicating that acoustic

waves in the downcomer are interacting with the gravity head dynamics.

This four-step scenario agrees qualitatively with pressure-time histories

that have been proposed by a number of investigators for application as

forcing functions to the pool, with the pressure being applied to the water

surface at the exit plane of a precleared downcomer. These proposed pressure

traces tend to be either positive triangular pulses or a combination of a

negative pressure spike followed by the positive triangular pulse. In

Sec. 6.2 of this report we investigated these pulses for a particular
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application to assess their capability in replacing the complex thermal-

hydrodynamics of steam bubble expansion and collapse.
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APPENDIX B

B.1.0 BUBBLE PRESSURE MODEL FOR PELE-IC WITHOUT CONDENSATION

B.1.1 INTRODUCTION

The PELE-IC code used to determine fluid-structure interaction problems

will accommodate submerged voided regions (e.g., air bubbles) provided that

the pressure within the voided regions is specified. When the void is a

submerged bubble eminating from the end of the downcomer and is fed by a mass

injected from the drywell, the drywell and bubble pressures are not equal.

This Appendix formulates a compressible flow model which couples drywell and

bubble pressures to PELE-IC calculations of local pool pressure.

Consider the model illustrated in Fig. B.1. The control volume is

defined as the downcomer air volume below the orifice plate plus any volume of

bubble formed. The pressure (P) and temperature (T) are assumed to be uniform

within the control volume at each instant of time. The initial pressure Pu.
of the gas is initial ullage pressure, and the gas at that time is assumed 1

at ambient temperature (T0 ) which is the drywell temperature. The following

analysis holds during vent clearing and during subsequent bubble growth.

After the valve between the orifice and drywell is opened at time t = 0

(see Fig. B.ld), the following constraints on the control volume are

formulated:

B.1.2 MASS BALANCE

d
m = (PV) with V = V at t = 0 , (B.1)

dt 0

where the flow rate (ri) is subsequently given across the orifice separating

the drywell and the bubble. The frictional pressure drop through the

downcomer pipe is negligible.

B-1



B.1.3 ENERGY BALANCE

d d
(PVT) =YT,&- (y _,) d (B.2)

where heat transfer has been ignored and ideal gas behavior has been assumed and

=RT
Cp/Cv = y

R
C =- Rv y -i " (B.3)

Perform the indicated differentiation of Eq. (B.2) to obtain

PV q--+ d(PV) = yT0I1 (y-1) (B.4)

After dividing through by pV, place Eqs. (B.l) and (B.3) into Eq. (B.4) to

obtain

dT
dt Td - 1)](ln pV) + (y -) (ln V) T = yT° ddt(in pV). (B.5)

Note that Eq. (B.5) is linear in temperature (T) and may be solved

accordingly. Let

B d n (pV)] + (y -1) dB t -=dt( - • (nV

and

C=dC (ln pV)

If the solution of Eq. (B.5) is of the form

- f B(T)dt
T = u(t) 9 e (B.6)
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then u(t) must satisfy

t

+f0 B(T)dT
du0

= yToC e

so that upon integration

t

u = yT 0 f (t)

T
+f B(t ')dT'

0
e d& + const . (B. 7)

Therefore since T = T0 when t = 0, the constant is T and the formal
solution is by Eqs. (B.6) and (B.7)

T0= 1 + Y C (T) e

T - t
+f B V - fB([ -

(B.8)

Now since B has been previously defined, we have

fB(r)d¶ = ln(pV) + (y - 1) ln V] = POvOY)

so that

t
- f B(r)&d

0
e

_P 0 VT
0 0

pvY

Also,
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T

S+ f Bf(T ')dt

J C(T) e

0

t
Y f [- - (lnpv • PV Y. ae

PO V00

t

0 v(y-1) d (VPo Vo f-(va
p0 vy0

dt
But by q. B.1 , (pV) = ii(p(t)), so that Eq. ( .) is

Ty = PO VYo + t i V1(-1)
To P V [ Po V f

T0~~~ VY 0~~jm U

The state equation along with the initial condition requires

PO Pui T
p p T 0

Hence, the result throughout vent clearing and bubble formation is

pu_

Pui
()Y~ ~ ~ [t+~ ~ Vr~ ¶

0 0

(B.9)

where

Pui
Pui = PO = 'T0RT 0

Pui = initial ullage pressure corresponding to density Pui,

V0 = air volume of downcomer at initial pressure Pui,

A

B-4



V

= specific heat ratio; y = 1.4 for air,

= flow rate through orifice,

= current steam volume,

The expressions for the choked and unchoked flows (see Ref. 1) are

combined into Eq. (B.9). Equation (B.9) was numerically evaluated in parallel

with the PELE-IC calculations. The mass flow is calculated as follows. If

the flow is choked, it will choke at the orifice whose flow area is A . If
c

the flow is unchoked, allowance is made for bi-directional flow; i.e., either

drywell to bubble or bubble to drywell.

For

Pd -Y--- 1) , choked,

A=CfC C-d A

0 (72
(B.1O)

For

P- ) 1 / (Y-1)Pd - +•-• , unchoked,

iA < if P--

m i

&B> if P-
- Pd

1; "A" denotes flow forward bubble,

1; "B" denotes flow away from bubble,

where
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mA = CfACCAAC (B. 11)

= CfBCcBAc (/ - [ - (p) 2/y C 2(- 2] (B.12)

where pd is the drywell pressure, pd is the drywell density (0d = Pd/RTo), Ad

is the flow area on the drywell side of the orifice, and A is the flow area on

the bubble side of the orifice (downcomer vent area). The loss coefficients

are given in Fig. B.2. All other symbols appearing in Eqs. (B.10) through

(B.12) have been previously given except for g which is gravitational

acceleration.

It should be noted that in the limit m = 0, the case corresponds to a

reversible-adiabatic (i.e., isentropic) expansion which, in conjunction with

the Rayleigh problem, has been solved in closed form if y = 4/3 (see Ref. 2).
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APPENDIX C

C.1.0 ACOUSTIC PIPE MODEL

The acoustic reflections in an open ended downcomer pipe are important

for the analysis of the effect of chugging pulses in pool suppression

systems. We have written a simple one-dimensional acoustic model code to

calculate these pulses for use as a driving source in the PELE-IC code. A

separate subroutine performs a Fourier analysis of the input and reflected

pressure signals.

The pulses are governed by the wave equation for the pressure

2p 2 2
2 = c2x2 P 

(C.1)
at a x2

for which the second order stable central differencing scheme

pn+l -2Pn + pn-1 c2 62 pn+l + 262pn + 62 pn-l)P=2 P c6 P 2P + (c.2)

(6 t) 2  4 (6 x) 2

can be used, where

2 p = Pj+I - 2Pj +j-l '

the subscript j indicates the spatial discretization, and the superscript n

indicates the temporal discretization. We solve this equation using equal

time steps (6t) and equal cell spacing (6x). If we define

c= t2 x

we may then rewrite Eq. (C.2) as

( 2 n+l n n-l 22n 2 n-l(P -X6 P) =2P - P + X(26 P + 6 P )*(C.3)
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If we define the terms on the right hand side as G, which are all evaluated at

previous time steps, we can then rewrite Eq. (C.3) in the difference form

A. P -B. P. + C. P + G. = 0,

j 3-1 3 j j j+l I

where the pressure terms (P) are all evaluated at time n + 1, and

A. =C. = ,
B 1

B. 1i + 2X
)

and

G. = 2Pn _ pn-l + (262 pn + 62 pn-lP + P

These equations form a tridiagonal matrix and can be solved by standard

techniques (see Richtmeyer and Morton or Roache2) using the recurrence formula

Pj = Ej Pj+l + Fj I

where, for the general term, we have

(C.4

C.
E. -

3 j B j Ej-1
and

A. Fj_1 + G.F. = +G

j Bj - Aj Ej_1
(C. 5)

This equation is readily solved using forward and backward sweeps when we

specify the boundary conditions at each end of the pipe. This method is a

special case of Gaussian elimination.

For the initial boundary condition we have two cases.

Prescribed Driving Pressure. For this case the boundary condition is of

the Dirichlet type and is provided by the specified input pressure time history
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Pn+l = P n+l(t)1 s

In this case

E2 = C/B and F2 = G/B ,

where

G= 2P n Pn-i + X262 n +2 -1)+2 2 2 2 s

Reflected Pulse. When the reflected pulse returns to the wetwell end of

the pipe we use the Neumann type boundary condition for a rigid wall; i.e.,

aP/ x = 0. Thus in this case we specify that

n+l n+l
P 1 =P 3 tMw 1 giv 3

which gives

E2 = (A + C)/B and F 2 = G/B ,

where now

G= 2Pn Pn-i X( 2 P2 n+ 2p i
2P - P2 + \2 + 62 -

For the drywell boundary condition, we allow the pipe to be either closed

or open and then we apply Neumann type boundary conditions.

Closed Pipe. In this case we specify that Pk+I = P- 1 , where k is the

index of the last cell. And then using Eqs. (C.3) and (C.4), we find that the

final boundary pressure is

- (A£, + CZ)F_,  + Gk

P= B- - (At + CX)Ek_1
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Open Pipe. For an open pipe the boundary condition is P =-PZ-I" And
then substituting as above, we find

(A9 - C9)F9_ 1 + C9

9, B 9. - (Az - Cj)EZ_1
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APPENDIX D

D.1.0 FOURIER ANALYSIS

In many Fourier analysis problems we are interested in the frequency

analysis of the pressure pulse or the resultant structural vibrational

response. To perform the frequency analysis we have written two small codes

using the techniques of the discrete Fourier transform. We used the

Goertzel procedure to evaluate the discrete Fourier transform. An

excellent discussion of the characteristics and limitations of the discrete
2

Fourier transform can be found in Brigham. Here we give a brief summary of

the salient features to guide the user in the use of this tool. Thus it is

useful to remind the user of the characteristics and limitations of this

method.

D.1.1 CHARACTERISTICS OF DISCRETE FOURIER TRANSFORMS

The four main topics of interest to the user for interpreting the results

of these Fourier transform codes are:

1. time domain sampling,

2. time domain truncation,

3. frequency domain sampling, and

4. time scaling.

We briefly discuss these topics and how they should be used to interpret the

code results.

D.1.1.1 Time Domain Sampling

The sampling frequency specified by the time spacing (6t) between points

on the signal determines the highest frequency (f c) in the signal that can be

determined without aliasing. As a general rule, one should pick a time spacing

of

16t <---2
c
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A time sampling interval greater than this will lead to aliasing shown by the

dotted line in Fig. D.I. Figure D.1 shows a typical frequency spectrum of a

chugging driving pulse. The time domain sampling (6t) in this case is such

that 1/6t is less than twice the maximum frequency of interest f . We findc

that aliasing occurs in the frequency region from f to fc' where fl =

(l/6t - fc). To remedy this situation, a smaller 6t must be chosen in the

time domain.

D.1.1.2 Time Domain Truncation

Usually we can only sample a portion of the entire signal we wish to

analyze. This specific time sample is, in effect, a convolution of the signal

with a unit rectangular pulse of duration t . This rectangular pulse has its

own Fourier transform of the form sin(2rr t 0 f)/t 0 f which also appears in

the analysis. The transform of the sampling truncation function is shown in

Fig. D.2, where h(t) represents the sampling truncation and H(f) is its

corresponding Fourier transform.

The side lobes showing up in the transform of the truncation function

will show up as ripples on the analyzed Fourier components and are not to be

confused as frequencies present in the signal being analyzed.

Another problem associated with time domain truncation is that the

analysis assumes that the function is periodic with period, t If this is

not the case, as is usually the situation, then additional high frequencies

will be artificially introduced in the analysis. One should always take care

to attempt to capture the periodicity of the signal, if it exists, in the

sample to be analyzed.

D.1.1.3 Frequency Domain Sampling

Figure D.2 shows that an increase in sampling time gives us more of an

impulse sampling in the frequency domain; this is what we desire for clear cut

frequency ahalysis. Thus one should use as large a time sample as possible.

D.1.1.4 Time Scaling

The time scaling property of the Fourier transform states that, if we

have the signal h(t) and its transform H(f), then we can also form the pair of
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the scaled signal h(kt) and its transform l/k*H(f/k). If we have a signal

span of time to, which we subdivide into points 6t apart, then we will have

n = t 0/6t points in the time domain from which we can extract n/2 points in

the frequency domain. Each point in the frequency domain has a frequency

given by f = i/n6t, where i is the point in frequency space. By time scaling

we can expand the display of the frequency analysis, but there is no gain in

resolution. For our codes we have chosen to expand the frequency domain by

using a scaling factor of k = 6 and thus each point on the output graph has a

frequency of

if = 6n- "
~6ntSt

D.2.1 EXAMPLE OF THE ANALYSIS OF ORGAN PIPE FREQUENCIES

To demonstrate the characteristics of our Fourier analysis code we will

investigate the analysis of a typical chugging pulse exciting the organ pipe

frequencies in a 94-ft long downcomer pipe with an assumed sound speed in

steam of 1600 ft/s. The pulse used is illustrated in Fig. D.3 along with its

discrete Fourier transform. The analysis was performed using the organ pipe

code described in Appendix C. For this pipe the drywell end is open and the

wetwell end closed. For this problem we used a spatial discretization of

sixty zones and a time step of t = 0.7 ms for a Courant number of 0.71.

When this pulse is applied to the downcomer pipe it excites the organ

pipe frequencies which are extracted from the frequency spectrum of the input

signal. The use of the code is illustrated in Fig. D.4 where we show the

results of the analysis of a single cycle. Note that the Fourier spectrum of

the multiply reflected pulse is enclosed in the envelope of the original input

signal.

In the organ pipe, the resonant frequencies are spaced at intervals of

Af = s/2L where s is the sound speed and L is the length of ther p p
pipe. In this example we have a complete cycle consisting of four pipe

transient times. Thus the first side lobe will have a null at a frequency of

2/t0, where to = 4Lp /s or Afs = 'fr and there will be no side lobes

due to the time truncation of the signal. This relationship is clearly seen

in Fig. D.4.
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As we increase the length of time in the analyzed signal, then the

frequency sampling becomes more of an impulse function and we get a sharper

determination of the frequency. As a side effect of this we begin to see the

side lobes associated with the time domain truncation function. This is

clearly shown in the examples of Fig. D.5 where we show the results of

increasing the sampling time while maintaining the same sampling frequency.

The number of side lobes in this case can be seen to be predicted by

s = t0 Af -2 .r

These examples are given to illustrate the care one must exercise in

analyzing more complex signals.
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APPENDIX E

E.1.0 DERIVATION OF EXACT SOLUTION FOR INEXTENSIBLE

ELLIPTIC BENDING MODE OF SUBMERGED SHELL

E.1.1 INTRODUCTION

The centerline coordinates of the thin cylindrical shell of thickness (h)

in its equilibrium position are r = R. The fluid surrounding the shell is

located in R + h/2 < r < b, where h is the shell thickness and r = b is the

outer free surface of the liquid (water). The dimensions are given in

Table E.l. In the analysis which follows, we assume h/r << 1 so that the fluid

is assumed located in R < r < b. Only the plane strain case is considered so

that the polar coordinates are (r,E).

As the fluid-structure system is displaced from its equilibrium position

and allowed to vibrate in an inextensible bending mode, the fluid displacement

is y(r,O,t) and the shell displacement is x(S,t), where 0 is the circumferential

dependence measured from a common axis. In each instant of time (t) we assume

that y and x may be decomposed into a radial (subscript r) and a

circumferential (subscript 0) component.

The governing equations of motion are given for the inviscid, compressible

fluid and later specialized to an incompressible fluid. Both the shell and

fluid are first assumed to vibrate in a general inextensible mode. Results

are given only for the n = 2 mode (elliptical bending mode) which is the case

to which PELE-IC is to be compared. Consideration is given to the fluid and

shell separately.

Fluid

The equation of state is

2
p = Po c s , (E.1)

where s is defined as
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s =- 1

PO
(E.2)

and p, P, PO and c are respectively the fluid pressure, density, undisturbed

density, and sound speed. The compressible form of the continuity equation is

given by

s + div y = o (E.3)

The momentum equations may be combined with Eq. (E.1) to write

D; 2 grad s. (E.4)at

Shell

If a segment of the shell of density (p s) is considered on which the fluid

pressure (p s) is exerted, the equations of motion are given by

12M
-Q -p(0,t) R + 1 a2MR

s ~ R 302

a2x
rhP5 sat2 (E.5)

and

12 IM a2x0
a e + R a e = R h a s -

30 R DO Iat 2 I (E.6)

where the shear (Q) and bending

constraints and are:

moment (M) are given through the inextensible

(hR axe +r-V2(3 r)
and

(E.7)

(E.8)
Eh 3 /R 2N Xr 'Xo•

12(1 a(1 - V E
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where E and V are Young's elastic modulus and Poisson's ratio, respectively.

The boundary condition on the outer surface of the fluid is given by

p= s=o at r = b for all G, t > o . (E.9)

The matching conditions for the inviscid fluid and shell at the interface

are given by

pS (E,t) = p(R,G,t) (E.10)

and

x r(,t) = y r(R,,t) (E.11)

Note that the relative tangential motion between shell and fluid is

unconstrained (owing to the absence of fluid viscosity). It may be shown that

the tangential motions of the two are opposite one another.

The above analysis presents the framework upon which the solution

follows. Assume the existence of a separable solution where

Yr = Hf(r) Yn(E) fl(t) ,

YE = Gf(r) 6 n(G) f 2 (t) ,

s = w(r) qn(G) f 3 (t)

Xr = Hs gn(G) f 4 (t) '

(E.12)

(E.13)

(E.14)

(E. 15)

and

X() = Gs n (G) f 5(Mt (E.16)

The product solutions, Eqs. (E.12) through (E.16), when put into the

preceding equations, have validity if the following constraints are satisfied

for circumferential dependence:
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ýn = qn = qn (E.17)

and

n = ýn n (E.18)

which for any integer n are satisfied by

n = cos ne

and

6 = sin nE.
n

Also, the temporal dependence must be common; that is

fl= f2 . . . = f 5 = f(t)

(E.19)

(E.20)

(E.21)

with

f" + W2 f = 0 ,
n (E.22)

where W is a constant of separation which is here identified as the circular
n

natural frequency sought. The general (periodic) solution to Eq. (E.22) is

f = e±iW nt .
(E. 23)

The primed quantities represent ordinary differentiation of that quantity with

respect to its sole dependent variable; in this case with respect to e.
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Equations (E.19) through (E.23) are the only conditions which permit a

separable solution. Equation (E.23) implies periodicity of circular frequency

(W n) in all variables, and, therefore, the solution developed here allows

computation of only those eigenvalues (w n) associated with a particular mode

shape, cos nG. It should be emphasized that the following solutions hold only

for periodicity in all variables. The eigenvalues are now derived.

The circumferential component of the momentum equation, Eq. (E.4), and the

continuity equation, Eq. (E.3), give the following respective constraints for

the radial components given in Eqs. (E.12)-(E.14):

G f = __ (E.24)

and

dHf Hf + n Gf
-w- d + r (E.25)

which combine into

-- + + _n () 2 Gf=O . (E.26)

If we define a displacement potential *(r) such that

H = -ýn and G rn (E.27)
n fin

then 4n satisfies the Bessel equation of order n so that

22
r 2 n + r + n n2]. (E.28)

A solution to Eq. (E.28) satisfying Eq. (E.9) is
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1w r\ r 7 (W n

y (W nn n c
j c b

n n c
y

n(- c

(E.29)

The eigenvalues ton ) are found when radial displacements (Eq. (E.11)) are
equated between fluid and shell. Application of Eq. (E.11) will require

calculating the following parameter

p (R,e ,t)/(P 2n
on

Ry r(R ,e t)

1
R

w (r)
H f(R)

1
R (c _c n (R)

Tn ) ý ' (R)

1 ýn(R)
R €I (AR)

I ýn (R)

1 . n-R n
=

1

W nR n-i (R)

c n (R) -n

1
=

c j [J n l R) .- n-

L * c - ~n.(

w nR\ Jn

)n -c )

nR Jn t(W n ) ] (E.30)

Now we consider the shell. Putting the separated variables in

Eqs. (E.17) and (E.18) gives

Eh

(1 - V

(nG + ,H 3 '4'
2H + n G 2 -hns G

R2 ;21 2 S n s
' ,.. - .•' ,7 : . ,.V

and

-Eh/R

(1- \)

(nG + HS)
RpW 2

no

2 w (R) -n 2E h/R3

12 (1 - V 2)

(n2Hs + nG s)
2on

h Ps
--- H

PO 5
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Equations (E.19) through (E.23) are the only conditions which permit a

separable solution. Equation (E.23) implies periodicity of circular frequency

(W n) in all variables, and, therefore, the solution developed here allows

computation of only those eigenvalues (w n) associated with a particular mode

shape, cos nh. It should be emphasized that the following solutions hold only

for periodicity in all variables. The eigenvalues are now derived.

The circumferential component of the momentum equation, Eq. (E.4), and the

continuity equation, Eq. (E.3), give the following respective constraints for

the radial components given in Eqs. (E.12)-(E.14):

Gf = _w (E.24)

and

dHf Hf + n Gf
-w = r + r (E.25)

which combine into

dHf Hf + nGf 2 G__nnE22r
r n(Gf = 0 . (E.26)

If we define a displacement potential f(r) such that

Hf = -4n and Gf =2 rn (E.27)

then *n satisfies the Bessel equation of order n so that

22
r c + r0 . (E.28)

A solution to Eq. (E.28) satisfying Eq. (E.9) is
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W 
n b)

nr) _ y ( nr) Jn(
n n c n c w b

y n
n( c

(E.29)

The eigenvalues n) are found when radial displacements (Eq. (E.11)) are
equated between fluid and shell. Application of Eq. (E.11) will require

calculating the following parameter

2

p (R,E), t)/ (P 2i) 2 2__ ( n) 2 (R)don _1 c) w(r) _ c n

Ryr (R,0, t) R nH(R) Rf 'n (R)

1 Cn(R)
R n'(R)9

1
R

€ (R)n

(R) (R)
[o. ]- ý w Rý (R)

n n-l " n
c ýn (R) -n

nJ l~n

j n

Now we consider the shell. Putting the separated variables.

Eqs. (E.17) and (E.18) gives

Eh (nG + H 4'
-n v 2 ) 2'1 v2 ) n Gs) nhp(i - R2 •-.

4~ n

2 G
n s

and

-Eh/R (nG + H) 2 2 E (n H + nG\ hp2- ( w(R) - - 2 -s-- H

(1 ,2) RO n2 n 12(1 R ao nPO

)



Combining the above two equations and letting

2

E:2(1 -2)c ps-" S( CR)n2
) <1 and a~ 2n2E

gives from the first

nG + H = -
s s i •-~+

and from the second, using the first,

(2 l)21E 3 1- + o [I12 R n 2 RP°
i/n2 w(R) po

1kOn Hs + - a

If the inextensible bending is considered, both C and a are much less than

unity and we have

1(C) 2 w(R) (n 2  1)2 1  _+ + 2 +
R n H-s 1 V2) R 2 P? ")nJp

- on n R1

(E.31)

Equating Eqs. (E.30) and (E.31) and recognizing Hsa Hf(R) from Eq. (E.11)

gives the eigenvalue equation from which w is obtained for any given mode

number n.

An explicit result for w may be obtained by specializing Eq. (E.30) inn
the incompressible limit, wn b/c 4 0

-E"7



lii"

(Wn4oI.

1Hf 2 (R) -

W kn) H f (R)

1
n

2 2n1 . b R 2

(E.31)

and

w•b'

c -1+ 0

Equating the incompressible result to that obtained from Eq. (E.31)

incompressible frequency as w = limnGo n 1.

gives the

(C

A) 2)_
nR

2
2 (n 

+ 1)

(E.32)

where (w2 ) is the square of the natural frequency of the shell in
n R/b= t l

absence of the liquid annulus

(W2 )Rn

2 2 21n (n -1) E

(n2 + Ri (h) 1 E (27rf o) 212 (1 - V2)PS
(E.33)

where f0 is the frequency in Hz for no liquid annulus present. Note for a

shell infinitely surrounded by an incompressible fluid

(W)
nbo

R

(W2)_
n 1

4(n2 + 1)
R 0

(E.34)
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Equations (E.32)-(E.34) were evaluated for the elliptical bending mode, n = 2,

and the results were given in the text.

In the incompressible limit the radial velocity distribution Cur)

normalized to the radial component of shell velocity at fixed e and t is given

by

u_ (r) Hf(r) *n(r)
Ushell HrfH(R) *n(R)

which for the n = 2 mode is

U (r - r/ -

shell + 4

which is the basis for the velocity profile.

1< r b
-R -R

(E.35)
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TABLE E.1 Dimensions for submerged shell.

E = Young's modulus of elasticity (2.0685 x 106 bars),

Ps = shell density (7.803 gm/cm 3),

R = shell radius (25.72 cm),

v = Poisson's ratio (0.3),

h = shell thickness (0.635 cm), and

b = free surface radius (82.8 cm).
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APPENDIX F

F.1.0 LIVERMORE ONE-FIFTH SCALE PARAMETER STUDY

F.1.1 INTRODUCTION

We conducted a parameter study of the LLL 1/5-scale pressure suppression

experiment (PSE) facility using the PELE-IC code. The object was to

investigate the sensitivity of response measurements, such as vent clearing

time and peak bottom pressure to variations in drywell pressurization rate,

downcomer submergence, torus pool level, downcomer fill level, and initial

wetwell pressure. Selected downcomer pressure time histories were used for

the calculations.

F.2.1 COMPUTER MODEL AND BASE CASE

The calculational model is shown in Fig. F.la. We assumed plane strain

conditions in all calculations and the ringheader was omitted because of

present code limitations. We considered only peak bottom pressure associated

with the download and we assumed the fluid was inviscid. Additional details

on the geometry and initial conditions used in the calculations, as well as

results for a base case discussed below, are given in Table F.1 and Fig. F.2.

All calculations used a time step of 0.2 ms and a zone size of 60 by 60 nun.

Each calculation required about 90 s of CDC 7600 CPU time. The same code

version was used for all problems.

We first calculated 900-sector experiment 1.3.1 with the nominal values

of torus water level, initial wetwell pressure, and downcomer pressure time

history. It is of interest to compare the 90°- and 7.5°-sector bottom

pressure-time histories as shown in Fig. F.2. Pressure data are very similar

for the two cases. Input description for this case is given in Table F.l. The

results are compared in Fig. F.3. This initial experimental drywell pressure

was equal to the initial wetwell pressure of about 20 kPa for the nominal case.

Figure F.3 shows that vent clearing time is about 20 ms later than

experiment and that peak bottom pressure is 16% higher. Since the calculation

is done in plane geometry the source is clearly overspecified so that an
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overpressure prediction is to be expected. We assume that the results of this

parameter study will not be greatly affected by this model since the results

are presented in a normalized way. The purpose of the comparison of Fig. F.3

is to provide information for code validation and is only indirectly related

to the parameter study.

F.3.1 RESULTS AND DISCUSSION

F.3.1.1 Downcomer Fill Level

Results were found by lowering by 25, 50, and 100% the water level in the

downcomer pipe (see Fig. F.1). The torus and downcomer water levels are

identical only for the nominal case. The downcomer pressures are identical to

that shown in Fig. F.3, except we corrected the initial downcomer pressure by

the static head to be consistent with the water depression. Data are

presented in Table F.2 for the nominal and three cases studied.

Table F.2 shows that vent clearing and peak pressure times, for the same

driving pressure, are delayed as the fill level is increased. The nominal

case (with the most fluid in the downcomer) gives the highest peak bottom

pressure. An initial overpressure that lowers the downcomer fill level will

decrease the peak bottom pressure. The data show a 13% decrease in peak

download from filled to precleared downcomer. Experiments indicate a

variation of about 45%. Lack of exact agreement is to be expected since the

downcomer pressure histories used in these calculations are only

approximations of experimental conditions. No attempt was made to simulate

each experiment.

F.3.1.2 Downcomer Submergence

Sensitivity to downcomer submergence is given in Table F.3. We

considered three cases. For these cases the initial water level in the

downcomer and torus was equal. In case A the downcomer was physically raised

or lowered by plus or minus 25% using the conditions of the nominal case.

Case B is for nominal downcomer geometry and pressure history (see Fig. F.3)
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with the torus water level raised plus or minus 25%. For case C we used the

downcomer levels of case A, but the downcomer pressure was increased at the

constant slope of the nominal case from 20 kPa until vent clearing time and

then held constant. It should be noted that for this case the downcomer

pressure history differs from the two other cases which used the nominal

pressure history of Fig. F.3. The peak downcomer pressures for case C were

57.1 kPa (-25%), 62.5 kPa (nominal submergence) and 68.0 kPa (+25%).

Cases A and B used the nominal dynamic pressure time history. Both of

these studies suffer from the inconsistency between dynamic pressure history

and vent clearing dynamics in that peak downcomer pressure time is not

coincident, or roughly coincident, with vent clearing time. Case C was done

with the dynamic downcomer pressure increased at the nominal pressurization

rate until vent clearing and held constant thereafter. The code then predicts

less peak pressure for less submergence. For this case the calculated

percentage spread in response pressure between the plus or minus 25% downcomer

extensions is 21%. By comparison the LLL experimental spread in peak pressure

between the -38 and +42% downcomer extensions was 29%. Note again that we are

not simulating actual experiments.

We found similar results for cases A and B where either the pipe or water

in the torus were moved up or down by 25%. Both cases A and B used the

nominal downcomer pressure history.

F.3.1.3 Pressurization Rate

Results are given in Table F.4. We varied the nominal pressurization

rate in the downcomer by plus or minus 25% and maintained this rate through

vent clearing. Typical downcomer pressure time histories from the PSE

experiments (see Fig. F.4) are similar to the pressure histories used in this

parameter study.

F.3.1.4 Change in Wetwell Pressure

Results are given in Table F.5. We varied the wetwell pressure plus or

minus 25% and changed the downcomer pressure to maintain the same nominal
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pressure difference. As expected, we found no change in vent clearing times

and since the dynamic bottom pressure must remain unchanged, the total bottom

pressure difference is simply due to the increase (or decrease) in the initial

wetwell pressure.

F.3.1.5 Discussion

The question of up-load sensitivity is considered in the main text. The

upload calculations in PELE-IC were implemented after these parameter studies

were completed.

This study shows that a 25% change in downcomer submergence,

pressurization rate, and change in wetwell pressure result in about a 10%

change in peak bottom pressure.
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TABLE F.l. Nominal conditions and check calculation (Exp. 1.3.1).

PELE-IC Exp (90°sector)

Geometry

Torus radius, mm

Torus water level at center, mm

Downcomer pipe dimension, mm

Spacing between downcomer pipe

centers, mm

Downcomer submergence, mm

Torus wall thickness

Initial conditions

Initial wetwell pressure, kPa

Initial downcomer pressure, kPa

Drywell pressurization rate, kPa

Results

Peak bottom pressure, kPa

Time at start of pressurization, s

Vent clearing time, s

Time increment to clear vent, s

Peak pressure time, s

945.0

90.67

60. (width)

944.9

90.67

60.96 (radius)

480. 487.7

243.8246.7

20.0

20.0

187.8

20.4

20.4

187.8

56.8

0.0

0.134

0.134

0.143

49.0

2.9875

3.1875

0.104 to 0.120

3.1935
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TABLE F. 2. Downcamer fill level.

Identical downcomer pressures

(water in static equilibrium at time zero)

Downcomer Normalized vent Normalized peak Normalized peak

fill level clearing time bottom pressure time bottom pressure

0.0a 0.00 1.01 0.870

0.50 0.724 0.853 0.933

0.75 0.866 0.874 0.982

1.00b 1.00 1.00 1.00

aprecleared.

bNoMinal.
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TABLE F. 3. Downcomer submergence (water level same in downcomer and torus).

Downcomer Normalized vent Normalized peak Normalized

submergence clearing time pressure time peak pressure

(Identical downcomer pressure histories)

0.75 0.851 0.951 1.01

1.00a 1.00 1.00 1.00

1.25 1.07 1.09 0.950

(Identical downcomer pressure histories with downcomer

fixed and torus water level raised or lowered)

0.75 0.851 0.944 1.01

1.00a 1.00 1.00 1.00

1.25 1.13 1.09 0.954

(Pressure ramps upwards until vent clearing time

and remains constant thereafter)

0.75 0.873 0.979 0.913

1.00b 1.00 1.00 1.00

1.25 1.11 1.09 1.12

aNominal case.

bSee text.
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TABLE F.4. Downcomer pressurization rate.

Normalized vent Normalized peak Normalized

Pressurization rate clearing time pressure time peak pressure

0.75 1.10 1.10 0.901

1.00a 1.00 1.00 1.00

1.25 0.918 0.928 1.100

aNominal geometry.
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TABLE F.5. Wetwell pressure.

(Downcomer pressure shifted at all times by

change in wetwell pressure)

Initial wetwell Normalized vent Normalized peak Normalized

pressure clearing time pressure time peak pressure

0.75 0.992 0.993 0.915
1.00a 1.00 1.00 1.00

1.25 1.00 0.993 1.09

aNominal geometry.
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