NRC-090 Submitted: 6/8/2015 ### ISR Wellfield Background and Restoration Ground Water Quality Data: Collection, Statistical Analysis and Public Access Elise A. Striz, Ph.D. Hydrogeologist Uranium Recovery and Licensing Branch US Nuclear Regulatory Commission #### NRC Regulation of Ground Water at ISR Wellfields NRC Objective: Protect the public health, safety and the environment To prevent contamination of ground water at ISR wellfields, NRC regulates source and 11e(2) byproduct fluids to ensure the licensee: - Characterizes, Sites and Designs ISR wellfields to ensure conditions are adequate to contain source and byproduct fluids within the wellfield - Establishes background water quality to determine the ground water protection standards (GWPS) for the ore zone, overlying and underlying aquifers - Operates ISR wellfields so that all source and byproduct fluids are contained within the wellfield - Monitors ISR wellfields so that any ground water contamination outside wellfield from source and byproduct fluids is detected and corrected. - Restores ISR wellfields to approved ground water protection standards (GWPS) and demonstrates the restored water quality is stable. ## What are the GWPS that must be established before operation and met after restoration of an ISR wellfield? NRC Regulatory Information Summary RIS 90-05. Licensees and applicants must commit to achieve the ground water quality standards in 10 CFR Part 40, Appendix A Criterion 5B (5) for all restored aquifers which conforms to the standards promulgated by EPA in 40 CFR Part 192 Subpart D 192.32 (2). These standards state the concentration of a hazardous constituent (Criterion 13) must not exceed: - (a) the Commission approved background concentration of that constituent in ground water; - (b) the respective value in the table in paragraph 5C if the constituent is listed in the table and if the background level of the constituent is below the value listed or; - (c) an alternative concentration limit established by the Commission. #### I. ISR Wellfield Background Ground Water Quality Collection ### What ground water quality is collected in the ISR wellfield? - The background water quality of all constituents of concern (COC) in the ore zone aquifer and ore zone perimeter ring monitoring wells in the ISR wellfield. - The background water quality of all constituents of concern (COC) in the overlying and underlying aquifers in the ISR wellfields. ## Where is the ground water quality collected before operation of an ISR wellfield? **Example of ISR Wellfield** ## ISR Extraction, Injection and Overlying, Underlying and Perimeter Monitoring Wells ## How many samples are collected to assess the background ground water quality in an ISR wellfield? - Production Ore Zone Aquifer (s) 4 samples/well, at least 2 weeks apart - Perimeter Monitoring Ring Wells- 4 samples/well, at least 2 weeks apart - Overlying Aquifer(s) 4 samples/well, at least 2 weeks apart - Underlying Aquifer(s) –4 samples/well, at least 2 weeks apart - Example: For a forty acre ISR wellfield, the production ore zone aquifer would have 40 samples for each parameter (1 well/4 acres basis). ## What parameters are measured to establish the background ground water quality in an ISR wellfield? Typically measure NUREG- 1569 Table 2.7.3-1 parameters in each sample, unless non-detect in first two samples | | ng Pre-operational Dat | y Indicators to be Determined
ta Collection | | |------------------------|-------------------------|--|--| | 11 | A. Trace and Minor El | lements | | | Arsenic | Iron | Selenium | | | Barium | Lead | Silver | | | Boron | Manganese | Uranium | | | Cadmium | Mercury | Vanadium | | | Chromium | Molybdenum | Zinc | | | Copper | Nickel | 11 12 | | | Fluoride | Radium-226 ^a | | | | | B. Common Constit | uents | | | Alkalinity | Chloride | Sodium | | | Bicarbonate | Magnesium | Sulfate | | | Calcium | Nitrate | | | | Carbonate | Potassium | | | | | C. Physical Indica | tors | | | Specific Conductivity* | | Total Dissolved Solids [#] | | | pH* | | | | | | D. Radiological Para | meters | | | Gross Alpha† | Gross Beta | | | ^{*}Field and Laboratory determination. [#]Laboratory only. [†]Excluding radon, radium, and uranium. in If site initial sampling indicates the presence of Th-232 then Ra-228 should be considered in the base line sampling or an atternative may be proposed. #### II. Statistical Analysis of ISR Wellfield Water Quality ### How should the ISR wellfield water quality be analyzed? - Apply appropriate statistics to ground water quality measurements - Graphical analysis of data distribution to assess if water quality parameter is from same population in a wellfield or different water zones (different sample populations). - Graphical and other tests for same population and outlier determination - General statistics- mean, median, standard deviation, etc. - Goodness of Fit (GOF) tests to select appropriate probability distribution - Upper Tolerance Limits (UTLs) and upper percentiles - Upper Confidence Limits (UCLs) of the Mean - Accepted statistical methods can be found in EPA-530-R-09-007, "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance," March 2009. ## What software applications are useful for statistical analysis of ISR wellfield ground water quality? LOCKHEED MARTIN #### ProUCL 4.1.00 Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations http://www.epa.gov/osp/hstl/tsc/software.htm 3 Free Download ProUCL 4.1 (http://www.epa.gov/osp/hstl/tsc/software.htm), Free Webinar Training can be found at http://www.clu-in.org/conf/tio/ProUCLBasic_030911/prez/1280x1024/ppframe.cfm?date=504&simul=1 ## ProUCL 4.1 Features User Friendly Spreadsheet Interface #### Import Excel files (Excel 2003 *.xls format) and export output files #### Spreadsheet pull-down menus to perform statistical analyses # Pro UCL 4.1 Example ISR Wellfield Ore Zone TDS data set Box plot to demonstrate distribution, median and presence of outliers - Apparent normal probability distribution - Presence of two potential outliers - TDS appears to come from same water zone (population) # ProUCL 4.1 Example ISR Wellfield Ore Zone TDS data set QQ plot to demonstrate probability distribution and presence of outliers Conclusion - can use normal probability distribution to evaluate outliers, mean, standard deviation, etc. for ISR wellfield TDS ## ProUCL 4.1 Example ISR Wellfield Ore Zone Uranium data set Box Plot for uranium distribution and outliers - Uranium data do not appear to follow a normal distribution data skewed - Appear to be numerous potential outliers - Appear to have different water zones (populations) # ProUCL 4.1 Example ISR Wellfield Ore Zone Uranium data set QQ plot to demonstrate probability distribution and presence of outliers Question – Does that make sense when compared to same TDS data for same ISR wellfield? # ProUCL 4.1 Example ISR Wellfield Ore Zone Uranium data set Box Plot for uranium distribution and outliers for individual wells Answer: Yes –would expect large heterogeneity in uranium- individual well data show ore zones are naturally heterogeneous in the wellfield Conclusion- should not use statistics which use normal probability distribution for uranium ProUCL 4.1 Example ISR Wellfield Ore Zone Uranium data setGeneral background statistics and probability distribution for uranium Provides min, max, mean, quartiles, median, standard deviation, etc. Provides normal, lognormal and Gaussian distribution goodness of fit to choose appropriate probability distribution Provides nonparametric statistics for skewed data and no underlying distribution | | eneral Background St | atistics fo | r Full Data | Sets | | | | |--|----------------------|-------------|--|----------------|-------------------------|-------------------|---| | User Selected Options | | | | | | | | | | seine ore body.wst | | | | | | | | Full Precision OF | | | | | | | | | Confidence Coefficient | 95% | | | | | | _ | | Coverage | 90% | | | | | | | | Different or Future K Values | 1 | | | | | | _ | | Number of Bootstrap Operations | 2000 | U (mg/l) | | | | | | | | | | | | | | | | | | General Statistics | | | | | recommon and the second | | | | Total Number of Observations | | | | Distinct Ob | servations | | 90 | | Tolerance Factor | | 1.52 | | | | | | | | | | _ | | | | | | Raw Statistics | | | | sformed Sta | tistics | | | | Minimum | 1 | | Minimum | | | | -5.426 | | Maximum | | | Maximum | | | | -0.819 | | Second Largest | | | Second La | | | | -0.942 | | First Quartile | 1 | | First Quart | tile | | | -3.888 | | Median | | | Median | | | | -3.297 | | Third Quartile | / | | Third Qua | tíe | | | -2.685 | | Mean | | 0.0645 | | | | | -3.25 | | Geometric Mean | | 0.0388 | SD | | | | 0.978 | | SD / | | 0.081 | | | | | | | Coefficient of Variation | | 1.255 | | | | | | | Skewness | | 2.672 | | | | | | | | | | | | | | | | Background Statistics | | | | | | | | | Normal Distribution Test | | | The state of s | d Distribution | on Test | | / - / - / - / - / - / - / - / - / - / - | | Lilliefors Test Statistic | | | | est Statistic | | | 0.075 | | Lilliefors Critical Value | | 0.0872 | The state of s | ritical Value | | | 0.0873 | | Data not Normal at 5% Significance | Leve | _ | Data appe | ar Lognorma | at 5% Si | gnificance Level | | | A No Distribution | | | | | Distribus | | | | Assuming Normal Distribution | | 0.400 | | Lognormal | | | 0.172 | | 95% UTL with 90% Co | | | | with 90% | Coverage | | 0.172 | | | | | 95% UP | | | | 0.136 | | 90% Percentile (z) | | | 90% Perce | | | | 0.136 | | 95% Percentile (z) | | | 95% Perce | | | | 0.194 | | 99% Percentile (z) | | 0.253 | 99% Perce | entile (2) | | | 0.378 | | Gamma Distribution Test | | | Data Dist | bution Test | | | | | Committee of the Commit | | 4.000 | | | 1 -1 FW O | - Francis I mad | | | k star | | | | a Lognorma | a at 5% Si | ignificance Level | | | Theta Star | | 0.059 | | | | | | | MLE of Mean | | 0.0645 | | | | | | | MLE of Standard Deviation | | 225.2 | | | | | | | nu star | | 225.2 | | | | | | | A.D Test Statistic | | 2.02 | Mannagar | antein Ctatio | tion | | | | | | | | netric Statis | ucs | | 0.143 | | 5% A-D Critical Value | | | 90% Perce
95% Perce | | | | 0.143 | | K-S Test Statistic | | | 95% Perci | | | | 0.253 | | 5% K-S Critical Value Data not Gamma Distributed at 5% | Cionificance Level | 0.091 | 99% Perci | SHURE | | | 0.368 | | ata not Gamma Distributed at 5% | aignificance Level | | | | | | | | Assuming Gamma Distribution | | | Q504 LIT | with 90% | Coverses | | 0.241 | | 90% Percentile | | 0.145 | | | | with 90% Coverage | 0.241 | | 90% Percentile
95% Percentile | | 0.145 | | | | 90% Coverage | 0.241 | | | | 0.187 | | | OTL WITH | 90% Coverage | 0.241 | | 99% Percentile | | 0.284 | | | | | 0.419 | | 050/ 14/11 000000 0000000 1/50 | | 0.404 | | ebyshev UPI | | on IOP | | | 95% WH Approx. Gamma UPL | | | | eshold Limit | pased up | ONIGR | 0.14 | | 95% HW Approx. Gammel 94 | th 000/ Causara - | 0.182 | | | | | | | 95% WH Approx. Gamma UTL wi | | 0.164 | | | | | | | 95% HW Approx. Gamma UTL wit | n 90% Coverage | 0.164 | | | | | | ## ProUCL 4.1 Example ISR Wellfield Uranium Data Set Upper Tolerance Limit (UTL) Upper Tolerance Limit (UTL)-A UTL 95%-90% represents a 95% Upper Confidence Limit (UCL) of the value of the upper 90th percentile. #### WHAT DOES IT MEAN? This is upper limit of the interval which contains the measured value for which 90% of the samples will be less, 95% of the time (WY Guideline 4 outlier "k test" which is based on normal distribution). Lognormal uranium probability distribution gives UTL95%90% =0.172 mg/l Non-parametric – no underlying distribution gives UTL95%90% =0.241 mg/l Choice: You can say with 95% confidence that 90% of the measured values will be less than 0.241 or 0.172 mg/l. | | General Background S | Statistics fo | or Full Data Sets | | |--|--|------------------------|--|--------------------------| | User Selected Options | | | | | | From File | Baseline ore body.wst | | | | | Full Precision | OFF | | | | | Confidence Coefficient | 95% | | | | | Charles and the th | 77 (A) | | | | | Coverage | 90% | | | | | Different or Future K Values | 1 | | | | | Number of Bootstrap Operations | 2000 | | | | | | | | | | | U (mg/l) | | | | | | General Statistics | | | | | | Total Number of Observations | | 103 | Number of Distinct Observations | 90 | | Tolerance Factor | | 1.52 | | - 00 | | Raw Statistics | | | Log-Transformed Statistics | | | Minimum | | 0.0044 | 4 Minimum | -6.426 | | Maximum | | | | -0.819 | | Second Largest | | | | -0.942 | | First Quartile | | | | -3.888 | | Median | | | | The second second second | | Median
Third Quartile | | | | -3.297 | | | | | | -2.685 | | Mean | | The Laboratory and the | 5 Mean | -3.25 | | Geometric Mean | | 0.0388 | | 0.978 | | SD | | 0.081 | 1 | | | Coefficient of Variation | | 1 255 | 5 | | | Skewness | | 2.672 | 2 | | | Background Statistics | | | | | | Normal Distribution Test | | | I Division T | | | | | | Lognormal Distribution Test | | | Lilliefors Test Statistic | | | 5 Lilliefors Test Statistic | 0.075 | | Lilliefors Critical Value | | 0.0873 | 3 Lilliefors Critical Value | 0.0873 | | Data not Normal at 5% Significan | nce Level | | Data appear Lognormal at 5% Significance Level | | | Assuming Normal Distribution | | | Assuming Lognormal Distribution | | | | | 0.400 | | 0.470 | | 95% UTL with 90% Coverage | | | 8 95% UTL with 90% Coverage | 0.172 | | 95% UPL (t) | | | 2 95% UPL (t) | 0.198 | | 90% Percentile (z) | | | 8 90% Percentile (z) | 0.136 | | 95% Percentile (z) | | 0 198 | 8 95% Percentile (a) | 0.194 | | 99% Percentile (z) | | 0.253 | 3 good Scentile (2) | 0.378 | | Gamma Distribution Test | | | Data Distribution Test | | | k star | | 1 093 | 3 Data appear Lognormal at 5% Significance Level | | | Theta St. | | 0.059 | | | | WLE of Mean | | 0.0645 | | - | | MLE of Standard Deviation | | 0.0645 | | | | | | | | | | nu star | | 225.2 | | | | A-D Test Statistic | | 3.023 | Nonparametric Statistics | | | 5% A-D Critical Value | | | 8 90% Percentile | 0.143 | | K-S Test Statistic | | | 1 95% Percentile | 0.253 | | 5% K-S Critical Value | | | 1 99% Percentile | 0.388 | | Data not Samue | W Significance Level | 0.0011 | 1 00/01 Greenule | 0.000 | | | | | OFFICIAL NA COOL C | | | Assuming Gamma Distribution | | | 95% LTL with 90% Coverage | 0.241 | | 90% Percentile | | 0.145 | 5 95% Percentile Bootstrap UTL with 90% Coverage | 0.241 | | 95% Percentile | | 0.187 | 7 95% BCA Bootstrap UTL with 90% Coverage | 0.241 | | 99% Percentile | | | 4 95% UPL | 0.275 | | | | | 95% Chebyshev UPL | 0.419 | | 95% WH Approx. Gamma UPL | | 0.191 | Upper Threshold Limit Based upon IQR | 0.14 | | 95% HW Approx. Gan 204PL | | 0.182 | | 0.14 | | | | 0.164 | | | | 95% WH Approx. Gamma UTL | | | | | | 95% HW Approx. Gamma UTL | with 90% Coverage | 0.164 | 1 | | ProUCL 4.1 Example ISR Wellfield Ore Zone Uranium Data Set Upper Confidence Limit (UCL) of the Mean Upper Confidence Limit (UCL) of the mean is the upper limit of the interval which contains the mean at some confidence level (e.g. 95%) Normal Distribution Students t UCL95 of the mean =0.0777 mg/l (not appropriate) Lognormal Distribution H-UCL95 of the mean = 0.0773 mg/l (not recommended in ProUCL) > Non-parametric Chebyshev UCL of the mean = 0.0993 mg/l (recommended for skewed datasets In ProUCL) | | General UCL Statistic | es for Full Da | ata Sets | | | | |---|--|---|---|----------|--|--| | User Selected Options | | | | | | | | From File | | | | | | | | Full Precision | | | | | | | | Confidence Coefficient | 95% | | | | | | | Number of Bookstrap Operations | 2000 | | | | | | | | | | | | | | | mg/l) | | | | | | | | | | General St | 2202 | | | | | | | | | | | | | Nu | mber of Valid Observations | 103 | Number of Distinct Observations 90 | , | | | | Raw S | Ratistics | | Log-transformed Statistics | | | | | | Momun | 0.0044 | Minimum of Log Data -5. | 425 | | | | | Vacoun | 0.441 | Maximum of Log Data -0. | 819 | | | | | Mean | 0.0645 | Mean of log Data -3. | 25 | | | | | Geometric Mean | 0.0388 | SD of log Data 0: | 978 | | | | | Medan | 0.037 | | | | | | | SD | 0.081 | | | | | | | Std. Error of Mean | 0.00798 | | | | | | | Coefficient of Variation | | | | | | | | Skewness | | | | | | | | Jaciwiess. | EUL | | | | | | | | Relevant UCL | | | | | | Normal Dis | Inhution Test | 200000 | Lognormal Distribution, Test | | | | | | Lifiefors Tes Statistic | | Liftefors Test Statistic 0 | | | | | | Liftefors Critical Value | 0.0873 | Littefore Critical Value 0.0 | 0873 | | | | Data not Normal at | 5% Significance Level | | Data appear Legnormal at 5% Significance Leve | d | | | | Assuming No | mal Distribution | | Assuming Lognormal Distribution | | | | | | 95% Student's t UCL | 0.0777 | 95% H-UCL 0 | 0773 | | | | | sted for Skewness) | 0.0177 | 95% Chebyshev (MVUE) UCL 0 | | | | | | ted-CLT UCL (Chen-1995) | 0.0700 | 97.5% Chebyshev (MVUE) UCL 0 | | | | | | fied t UCL (Johnson-1978) | | 99% Chebyshev (MVUE) UCL 0. | | | | | 30.4 Mod | med-t OCL (Johnson-1978) | 0.0781 | 59% Chebyanev (NVOE) GCL V. | 100 | | | | Gamma Dia | tribution Test | | Dela Distribution | | | | | | k star (blas corrected) | 1.093 | Dat Appear Lognormal at 5% Significance Leve | el . | | | | | Trete S | | | | | | | | or Mean | 0.0645 | | | | | | | ac of Standard Deviation | 0.0617 | | | | | | | nu star | 225.2 | | | | | | Anomylin | ate Chi Square Value (05) | 191.5 | Nonpassetric Statistics | | | | | | isted Level of Sgrificance | | 95% CLT UCL 0 | 0776 | | | | | Adjusted Chi Square Value | | 95% Jackkinfe UCL 0: | | | | | | rajusted Cri Square Value | 191 | 95% standard Bootstrap UCL 0 | | | | | 4 | | 0.000 | | | | | | | erson-Darling Tes: Statistic | | 95% Bootstrap I UCL 0 | | | | | | n-Daring 5% Ortical Value | | 95% Hall's Bootstrap UCL 0 | | | | | | prov-Smimov Tea Statistic | | 95% Percentile Bootstrap UCL 0 | | | | | | r-Smirnov 5% Cat | 0.0911 | 95% BCA Bootstrap UCL 0 | | | | | Data not Gamma Distribut | ed at agrificance | Level | 95% Chebyshev(Mean, Sd) UCL 0 | | | | | | | | 97.5% Chebyshev(Mean, 5d) UCL 0 | 114 | | | | wing Gar | mma Distribution | | 39% Chebyshev (Mean, Sd.) UCL 0 | 144 | | | | Approximate Gamm | a UCL (Use when n >= 40) | 0.0759 | | | | | | 95% Adjusted Gamr | na UCL (Use when n < 40) | 0,076 | | | | | | | ucc - u | | FIL APPLICATION IN | 6775 | | | | Potential | UCL to Use | | Use 95% H-UCL 0 | 0/13 | | | | 1,100,000 | | | based UCLs for historical reasons only. | | | | | | . computes and output | a H-statistic | | | | | | ProUCI | | | s of UCL95 as shown in examples in the Technical Go | uide. | | | | ProUCI
H-statistic often results in
It is t | unstable (both high an
herefore recommended | d low) value
I to avoid th | is of UCL95 as shown in examples in the Technical Go
e use of H-statistic based 95% UCLs. | | | | | ProUCI
H-statistic often results in
It is t | unstable (both high an
herefore recommended | d low) value
I to avoid th | s of UCL95 as shown in examples in the Technical Go | | | | | ProUCI
H-statistic often results in
It is t
of nonparametric methods | unstable (both high an
herefore recommended
are preferred to comp | nd low) value
I to avoid the
oute UCL95 f | s of UCL95 as shown in examples in the Technical Gr
e use of H-statistic based 95% UCLs.
or skewed data sets which do not follow a gamma dist | tributio | | | | ProUCI H-statistic often results in It is t a of nenparametric methods | unstable (both high an
herefore recommended
are proforred to comp
he selection of a 95%.) | nd low) value
d to avoid the
outs UCL95 f | is of UCL95 as shown in examples in the Technical Go
e use of H-statistic based 95% UCLs. | tributio | | | General UCL Statistics for Full Data Sets ## ProUCL 4.1 Example ISR Wellfield Ore Zone Uranium Data Set Comparison of Mean, UCL, and UTL General Rule: Sample Mean < UCL 95% of Mean < UTL 95%-90% 1. Normal Distribution for Uranium (not indicated by GOF test): $0.0645 \,\mathrm{mg/l} < 0.0777 \,\mathrm{mg/l} < 0.198 \,\mathrm{mg/l}$ 2. Lognormal Distribution for Uranium (indicated by GOF test): 0.0388 mg/l < 0.0773 mg/l < 0.172 mg/l 3. Non Parametric - No Distribution for Uranium (recommended for skewed data sets): 0.037 (median) mg/l< 0.0993 mg/l < 0.241 mg/l * Question: Which is acceptable for GWPS? * Answer: NRC accepts GWPS which can be technically justified ### How is restoration ground water quality data collected and analyzed? #### The licensee collects: Restoration ground water quality of all constituents of concern (COC) at all Point of Compliance Wells (POC) for at least four quarters The licensee demonstrates and NRC reviews that: - COC meets GWPS background GWPS previously approved. - No Statistically Significant Increasing (SSI) trend for at least four consecutive quarters to demonstrate each COC GWPS will not be exceeded in POC wells after the restoration is deemed complete ### Where are the restoration water quality data collected in an ISR wellfield? ### How is restoration ground water quality data reviewed? Figure 2. Flow chart depicting Staff's review process for evaluation of a restoration report. ### How is restoration stability at ISR Wellfield POCs demonstrated? Show no statistically significant increase in constituent for at least four quarters of monitoring ## What are acceptable methods to determine the presence of a Statistically Significant Increase (SSI) trend in a COC? LOCKHEED MARTIN Pro UCL 4.1 Trend Analysis ### ProUCL 4.1.00 Trend Analysis: Linear Regression, Mann-Kendall Trend Test, and Theil-Sen Trend Line http://www.epa.gov/osp/hstl/tsc/software.htm ## ProUCL 4.1 Trend Analysis using Linear Regression Test #### Linear Regression Line Linear regression Line Test Slope of line determines trend in data Significant positive slope suggests upward trend Significant negative slope suggests downward trend Insignificant slope suggests no evidence of trend in data Significance is determined using p-value of slope test LOCKHEED MARTIN # ProUCL 4.1 Example ISR Wellfield Uranium Restoration Stability Data Trend Analysis No Statistically Significant Increase Slope is not significantly different than zero (p=0.214) # ProUCL 4.1 Example ISR Wellfield Uranium Restoration Data Stability Trend Analysis Statistically Significant Increase # III. Public Access: Excel Spreadsheets for ISR Wellfield Background and Restoration Ground Water Quality ## Public Access Excel Spreadsheets for ISR Wellfield Background and Restoration Ground Water Quality #### Issue: Perception by public and others that ISR wellfield ground water quality data has not been measured or is not publicly available. #### Facts: - Large amounts of ISR wellfield ground water quality data has been provided by the licensees to NRC. - This reported ISR wellfield ground water quality is publicly available in documents in ADAMs. - Public and others have found access to ISR wellfield ground water quality data difficult as it must be "mined" out of ADAMs documents. #### NRC Objective: Improve Public Access - Develop "user friendly" Excel standard format spreadsheets of publicly available ISR wellfield background and restoration water quality data from NRC licensed sites - Post Excel spreadsheets to public NRC website to improve PUBLIC ACCESS to already publicly available data ## Public Access Excel Spreadsheets ISR Wellfield Ground Water Quality Data Format Spreadsheet Tabs for wellfield map, references, background, overlying, underlying, restoration and restoration water quality data, well completion information, etc. #### Public Access Excel Spreadsheets ISR Wellfield Map ## Public Access Excel Spreadsheets ISR Wellfield Restoration Stability Water Quality # Public Access Excel Spreadsheets ISR Wellfield Perimeter Monitoring Ring Well Descriptions #### Public Access Excel Spreadsheets ISR Wellfield Data References # Public Access Excel Spreadsheets ISR Wellfield Ground Water Quality Status - 90% of publically available background and restoration ground water quality data for three NRC licensed ISR facilities has been entered into the spreadsheets - Final data entry ongoing - All data undergoing extensive quality assurance checks - Anticipated date for posting of all spreadsheets to NRC public website -September 2013. # Public Access Excel Spreadsheets ISR Wellfield Ground Water Quality Future Actions Uranium Recovery Briefing to the Commission February 2013 NRC Staff Requirements Memorandum (SRM) (ML13067A365) The staff should continue to collect groundwater monitoring well sampling data for in-situ recovery facilities. The staff should make these data publicly available and evaluate these data for insights on performance issues related to groundwater restoration and excursions events. - Background and restoration stability water quality data will continue to be added to Excel spreadsheets for existing and new licensees. - Excursion water quality data will be added to Excel spreadsheets for all existing and new licensees. - All ISR water quality in the spreadsheets will be posted on the NRC public web site for improved public access. - Staff will evaluate the data for insights on performance issues with respect to meeting GWPS and protecting ground water at ISR wellfields # Conclusions ISR Wellfield Ground Water Quality Data Collection, Statistical Analysis and Public Access ### NRC Primary Regulatory Objective: Protect the public health, safety and the environment - Collect adequate ISR wellfield background water quality data - Use appropriate statistics (e.g. ProUCL4.1) to establish GWPS - Collect adequate ISR restoration water quality data - Use appropriate statistics (e.g. ProUCL4.1) to demonstrate restoration meets GWPS - Use appropriate statistics (e.g. ProUCL4.1) to demonstrate restoration stability Public Access- ISR wellfield background, restoration and excursion ground water quality provided to NRC by licensees will be posted to NRC public website in Excel spreadsheets