3H Details and Evaluation Results of Seismic Category 1 Structures

The information in this appendix of the reference ABWR DCD, including all subsections, tables, and figures as modified by the STP Nuclear Operating Company Application to Amend the Design Certification rule for the U.S. Advanced Boiling Water Reactor (ABWR), "ABWR STP Aircraft Impact Assessment (AIA) Amendment Revision 3," dated September 23, 2010 is incorporated by reference with the following departures and supplement.

STD DEP T1 2.15-1

STP DEP T1 5.0-1

STD DEP 1.8-1

STP DEP 3.5-2

STD DEP 3.8-1

STD DEP 3H-1

STD DEP 11.2-1

STD DEP 11.4-1

STP DEP Admin

3H.1 Reactor Building

3H.1.4.2 Site Design Parameters

STP DEP T1 5.0-1

(1) Soil Parameters:

- -Minimum static bearing capacity demand: Š718.20 kPa
- —In addition for the load combinations involving seismic/dynamic loads, the dynamic bearing capacity demand shall also be met.
- —Minimum shear wave velocity: 305 m/s(See FSAR Subsections 2.5S.4.4 and 2.5S.4.7)
- -Poisson's Ratio: 0.30 to 0.38
- —Unit Weight: 1.9 to 2.2 t/m³
- (3) Maximum Design Basis Flood Level
 - 0.305 m 182.9 cm below above grade

(9) Maximum Rainfall

—Design rainfall is 493503 mm/h. Roof parapets are furnished with scuppers to supplement roof drains, or are designed without parapets so that excessive ponding of water cannot occur. Such roof design meets the provision of ASCE 7-88 Section 8.

3H.1.4.4.3 Liner Plate

STD DEP 3H-1

- Liner plate for RCCV in the wetted area shall be stainless steel conforming to ASME SA-240, Type 304L.
- Liner plate for the RCCV in the non-wetted area shall be 6.35 mm thick and conform to ASME SA-516 GR. 70.
- Liner Anchors: ASTM A 633 GR. C ASME SA-36.
- Stainless steel cladding to conform to ASME SA-264.

3H.1.5.2 Foundation Soil Springs

STP DEP T1 5.0-1

The foundation soil is represented by soil springs. The spring constants for rocking and translations are determined based on the following soil parameters:

- Shear wave velocity 305 m/s(See FSAR Subsections 2.5S.4.4 and 2.5S.4.7)
- Unit weight 1.92 t/m³ 121 pcf (1.94 t/m³) to 140 pcf (2.24 t/m³)
- Shear modulus $\frac{1.8 \times 10^4 \text{ t/m}^3}{3.011 \text{ ksf}} \frac{3.011 \text{ ksf}}{(1.47 \times 10^4 \text{ t/m}^2)} \frac{1.09 \times 10^4 \text{ t/m}^2}{1.09 \times 10^4 \text{ t/m}^2}$
- Poisson's Ratio 0.38 0.46 to 0.48

For the undrained condition (i.e. Poisson's Ratio 0.46 to 0.48, the calculated vertical spring constant under the mat foundation of the Reactor Building (RB) for STP site conditions ranges from 132 kips/ft³ to 288 kips/ft³ with 197 kips/ft³ for best estimate case. The calculated horizontal spring constant for the STP site conditions ranges from 94 kips/ft³ to 211 kips/ft³ with minimum of 141 kips/ft³ for best estimate case. The potential degree of variability is indicated by the spread of values from lower range to upper range. The soil properties used to compute these spring constants are strain-compatible and were developed from the site response analyses described in Section 2.5S.2.5. Soil depths for the vertical and horizontal mode spring calculations are 2500 ft and 1300 ft, respectively. Soil layers at depths greater than these depths were ignored due to their insignificant contribution to the spring values.

The above calculated STP site-specific soil spring constants are higher than the soil spring constants used for the ABWR DCD design. For the drained condition with Poisson's Ratio of 0.15, the lower range site-specific spring constants are nearly the same as those for the standard design with a maximum difference of about 5%. Considering that the layer weighted Poisson's Ratio is between 0.15 for clay layers and 0.30 for sand layers, even for the drained condition the STP site-specific spring constants will be either the same or higher than the spring constants for the standard design. Higher soil spring constants at the STP site will result in mat design forces smaller than those used for the ABWR DCD design. Therefore, the ABWR DCD mat design is adequate for the STP site.

3H.1.6 Site Specific Structural Evaluation

STP DEP 3.5-2

The following site specific supplement addresses the structural evaluation of the site specific design parameters for STP 3 & 4.

As documented in Section 3.3 the ABWR Standard Plant Reactor Building (RB) wind loads, and tornado loads bound these site parameters for STP 3 & 4. See Section 3H.11 for hurricane winds and hurricane generated missiles.

As documented in Subsections 2.5S.4.4 and 2.4S.4.7, the shear wave velocity at STP 3&4 site varies both horizontally in a soil stratum and vertically with elevation, and is lower than the 1,000 ft/sec minimum stated in the DCD. A site specific soil-structure interation (SSI) analysis has been performed using the measured values of shear wave velocity, with appropriate variation to represent the variability at the site, and site specific SSE, to demonstrate that the results of the site-specific SSI are bounded by the standard plant results included in the DCD. This SSI analysis is described in Appendix 3A.

Figure 3A-301 provides the soil pressure profile between the RB and CB obtained from SSSI analysis for site-specific Safe Shutdown Earthquake (SSE) along with the design soil pressures reported in DCD Table 3A-18 and Figure 3H.1-11. As can be seen from this figure, the soil pressure profile from the SSSI analysis is bounded by the envelope of the certified design soil pressures from DCD Table 3A-18 and Figure 3H.1-11. Therefore, the design based on certified design soil pressures is adequate.

Figures 3H.1-1 through 3H.1-6 provide the soil pressure profiles from various SSSI analyses described in Sections 3H.6.5.3, 3H.6.7 and 3H.7.5.2.2. Also included in these figures are the design soil pressures. Figure 3H.1-2 shows minor exceedances of the SSSI seismic soil pressures beyond the DCD soil pressures for the Reactor Building west wall. However, the induced out-of-plane shear and moment in each wall panel due to the DCD soil pressures are greater than the out-of-plane shear and moment due to SSSI soil pressures. Therefore, the exceedances in the SSSI pressures are acceptable.

As noted in Section 2.5S.4.10.5.4, actual surcharge loads, structural fill properties, and final configurations of structures are not known at this time. Final earth pressure

calculations are prepared at the project detailed design stage based on the actual design conditions at each structure, on a case-by-case basis. STP commits to include the final earth pressure calculations, including actual surcharge loads, structural fill properties, and final configuration of structures, following completion of the project detailed design in an update to the FSAR in accordance with 10 CFR 50.71(e) (COM 2.5S-3).

The foundation spring constants for mat design are based on settlement calculations. In the development of settlement estimates, the representative shear wave velocity value for intervals within a soil column is only one input used in the derivation of the elastic modulus for layers within that column. Since this derived elastic modulus value is first adjusted for strain and then weighted with estimated values derived from either SPT tests (for garanular material) or undrained shear strength tests (for cohesive soils) the effect of variability of shear wave velocity upon settlement calculations is significantly attenuated.

Impact of shear wave velocity on foundation spring constants and mat design is described in Section 3H.1.5.2 where it is concluded that the standard ABWR mat design is adequate for the STP site.

The effect of settlement due to the flexibility of the structure/basemat and supporting soil is accounted for through the use of finite element analysis in conjunction with foundation soil springs, as described in Section 3H.6.6.4. The resulting maximum calculated ratio of differential foundation settlements (between adjacent points in the mat finite element model) within the boundary of the RB is 1/1697.

As documented in Subsection 3.4, the STP 3 & 4 site has a design basis flood elevation that is 182.9 cm (6 ft) above grade. This results in an increase in the flood level over what was used in the ABWR Standard Plant, however the load due to the revised flood level, including hydrodynamic drag load due to flood water flow and hydrodynamic load due to wind generated wave action as described in Section 3.4.2, on the exterior RB walls is less than the ABWR Standard Plant RB seismic or tornado loads. The design of above grade RB exterior walls for design basis tornado loading per Tier 1 Table 5.0, including tornado generated missiles, bounds the design for flood loading including impact due to floating debris. The design of below grade RB exterior walls for design basis seismic loading bounds the design for flood loading.

Hence the increased flood loading doesn't affect the Standard Plant RB structural design. Increased flood level also increases the buoyancy force resulting in a revised flotation factor of safety of 2.24. This factor exceeds required factor of safety of 1.1.

The factor of safety against floatation has been calculated and is shown in revised Table 3H.1-23.

Therefore the STP 3 & 4 RB utilizing the Standard Plant design is structurally adequate.

3H.2 Control Building

STP DEP T1 5.0-1

3H.2.4.2.1 Soil Parameters

- Minimum shear wave velocity:
- Poisson ratio:
- Unit weight
- Liquefaction potential:
- Minimum Static Soil Bearing Capacity Demand:

- 305 m/sSee FSAR Subsections 2.5S4.4 and 2.5S.4.7
- 0.3 to 0.38
- \blacksquare 1.9 to 2.2 t/m³
- None
- Š 718.20 KPa

3H.2.4.2.3 Design Basis Flood Level

Design basis flood level is at 0.305m 182.9 cm below above grade level.

3H.2.4.2.5 Maximum Rainfall

Design rainfall is 493-503 mm/h. Roof parapets are furnished with scuppers to supplement roof drains, or are designed without parapets so that excessive ponding of water cannot occur. Such roof design meets the provision of ASCE 7-88 Section 8.

3H.2.4.3.1.4 Lateral Soil Pressures (H and H')

The following parameters are used in the computation of lateral soil pressures:

- Dry unit weight:
- Shear wave velocity:
- Internal friction angle:

- \blacksquare 1.9 to 2.2 t/m³
- 305 m/s See FSAR Subsections 2.5S.4.4 and 2.5S.4.7
- 30° to 40°

3H.2.6 Site Specific Structural Evaluation

STP DEP 3.5-2

The following site specific supplement addresses the structural evaluation of the site specific design parameters for STP 3 & 4.

As documented in Subsection 3.3, the ABWR Standard Plant Control Building (CB), wind loads, and tornado loads bound these site specific parameters for STP 3 & 4. See Section 3H.11 for hurricane winds and hurricane generated missiles.

Soil spring constants for the undrained condition (i.e. Poisson's Ratio 0.46 to 0.48) are higher than spring constants for drained condition (i.e. Poisson's ratio of 0.15 for clay

layers and 0.30 for sand layers). The calculated vertical spring constant under the mat foundation of the Control Building (CB) for STP site conditions using drained Poisson's ratio of 0.15 ranges from 113 kips/ft³ to 251 kips/ft³ with 169 kips/ft³ for best estimate case. The calculated horizontal spring constant for the STP site conditions using drained Poisson's ratio of 0.15 ranges from 101 kips/ft³ to 241 kips/ft³ with minimum of 152 kips/ft³ for best estimate case. The potential degree of variability is indicated by the spread of values from lower range to upper range. The soil properties used to compute these spring constants are strain-compatible and were developed from the site response analyses described in Section 2.5S.2.5. Soil depths for the vertical and horizontal mode spring calculations are 1500 ft and 700 ft, respectively. Soil layers at depths greater than these depths were ignored due to their insignificant contribution to the spring values.

While the calculated best estimate and upper range STP site-specific soil spring constants are higher than the best estimate calculated DCD soil spring constants, the lower range STP site-specific vertical and horizontal soil spring constants are lower by about 20% and 30%, respectively.

Considering the size and geometry of the CB, arrangement of the exterior and interior shear walls, thickness of shear walls, and the basemat thickness, the CB basemat is quite rigid and not significantly sensitive to the soil spring constant values. To demonstrate this, a three dimensional parametric study was performed where the CB was subjected to its dead load along with significant seismic moments about the two horizontal axes and vertical excitation. The CB model was analyzed for two cases, once with best estimate calculated DCD soil spring constants and the second time with calculated lower range STP site-specific soil spring constants. Comparison of the resulting out-of-plane shears and moments from these two analyses show that there is no significant change in basemat design forces. Based on this parametric study and the fact that STP site-specific SSE is less than half the standard design SSE, the ABWR DCD mat design is adequate for the STP site.

As documented in Subsections 2.5S.4.4 and 2.5S.4.7, the shear wave velocity at STP 3&4 site varies both horizontally in a soil stratum and vertically with elevation, and is lower than the 1,000 ft/sec minimum stated in the DCD. A site specific soil-structure interaction (SSI) analysis has been performed using the measured values of shear wave velocity, with appropriate variation to represent the variability at the site, and site specific SSE, to demonstrate that the results of the site-specific SSI are bounded by the standard plant results included in the DCD. This SSI analysis is described in Appendix 3A.

Figure 3A-302 provides the soil pressure profile between the RB and CB obtained from SSSI analysis for site-specific Safe Shutdown Earthquake (SSE) along with the design soil pressures reported in DCD Table 3A-18 and Figure 3H.2-14. As can be seen from this figure, the soil pressure profile from the SSSI analysis is bounded by the envelope of the certified design soil pressures from DCD Table 3A-18 and Figure 3H.2-14 with one exception. The soil pressure from the SSSI analysis slightly exceeds the certified design soil pressure at a depth of about 26 to 30 feet below the ground surface. At all other elevations the DCD soil pressures are higher than the site-specific soil pressure.

Therefore, the total force due to the certified design soil pressure on the wall panel above or below it will be significantly higher than the total force due to soil pressure from the SSSI analysis. Therefore, the design based on certified design soil pressures is adequate.

As noted in Section 2.5S.4.10.5.4, actual surcharge loads, structural fill properties, and final configurations of structures are not known at this time. Final earth pressure calculations are prepared at the project detailed design stage based on the actual design conditions at each structure, on a case-by-case basis. STP commits to include the final earth pressure calculations, including actual surcharge loads, structural fill properties, and final configuration of structures, following completion of the project detailed design in an update to the FSAR in accordance with 10CFR 50.71(e) (COM 2.5S-3).

The effect of settlement due to the flexibility of the structure/basemat and supporting soil is accounted for through the use of finite element analysis in conjunction with foundation soil springs, as described in Section 3H.6.6.4. The resulting maximum calculated ratio of differential foundation settlements (between adjacent points in the mat finite element model) within the boundary of the CB is 1/928.

As documented in Subsection 3.4, the STP 3 & 4 site has a basis flood elevation that is 182.9 cm (6 ft) above grade. This results in an increase in the flood level over what was used in the ABWR Standard Plant, however the load due to the revised flood level, including hydrodynamic drag load due to flood water flow and hydrodynamic load due to wind generated wave action as described in Section 3.4.2, on the exterior CB walls is less than the ABWR Standard Plant seismic or tornado loads. The design of above grade CB exterior walls for design basis tornado loading per Tier 1 Table 5.0, including tornado generated missiles bounds the design for flood loading including impact due to floating debris. The design of below grade CB exterior walls for design basis seismic loading bounds the design for flood loading. Hence the increased flood loading does not affect the Standard Plant CB structural design. Increased flood level also increases the buoyancy force resulting in a revised floation factor of safety of 1.3. This factor exceeds required factor of safety of 1.1.

The factor of safety against floatation has been calculated and is shown in revised Table 3H.2-5.

Therefore the STP 3 & 4 CB utilizing the Standard Plant design is structurally adequate.

3H.3 Radwaste Building

This section of the reference ABWR DCD including all subsections, figures, and tables is replaced completely. This is due to departures taken in the design of the liquid and solid radioactive waste system.

STD DEP T1 2.15-1 STD DEP 11.2-1 STD DEP 11.4-1 STD DEP 3.8-1 STP DEP 3.5-2

The Radwaste Building is a reinforced concrete structure located about 20 feet west of the Reactor building. It is designed in accordance with the requirements of RG 1.143. Also, since the above grade height of this building exceeds the distance to the Reactor Building, to ensure that the integrity of the Reactor Building is maintained, the Radwaste Building design shall satisfy II/I requirements (i.e. it can not collapse or come in contact with the Reactor Building under SSE and tornado and hurricane loads).

The RWB is classified as RW-IIa (High Hazard) in accordance with RG 1.143. A summary of the extreme environmental design parameters is presented in Table 3H.9-1. See Section 3H.11 for hurricane winds and hurricane generated missiles.

The analysis and design of the Radwaste building are based on the following:

A) Criteria for Design Basis:

- Design basis analysis and design are per requirements of RG 1.143 for RW-IIa classification.
- Loads, load combinations, codes & standards, and capacity criteria are in accordance with Tables 1, 2, 3, and 4 of RG 1.143.
- Design of structural components is per ACI 349-97 and AISC/N690 (1984).
- B) Criteria for II/I evaluation:
- The II/I evaluations are performed for both SSE and Tornado.
- The II/I evaluations are based on elastic design.
- The seismic response spectra are the envelop of 0.3g RG 1.60 response spectra and the resulting SSE response spectra at the ground surface of the Radwaste Building considering the effect of presence of the Reactor Building when subjected to site-specific SSE. This satisfies the requirement noted in item (3) of DCD Tier 2 Section 3.7.2.8.
- Tornado design parameters will be those for the Standard Plant Seismic Category I structures (i.e. 300 mph tornado).

3H.3.1 Objective and Scope

The scope of this subsection is to document the structural design and analysis of the Radwaste Building (RWB) for STP Units 3 & 4. The RWB is not a Seismic Category I structure. The RWB is classified as RW-IIa (High Hazard) for STP 3 & 4 site per Regulatory Guide (RG) 1.143 and designed to meet or exceed applicable requirements of RG 1.143.

Due to its close proximity to safety-related seismic category I structures, the RWB structure is also designed to meet Seismic II/I requirements to ensure that the building does not collapse on the nearby safety-related buildings.

3H.3.2 Summary

The following are the major summary conclusions on the design and analysis of the Radwaste Building:

- The provided concrete reinforcement listed in Tables 3H.3-3 and 3H.3-4 meet the requirements of the design codes and standards listed in Section 3H.3.4.
- The provided structural steel listed in Table 3H.3-5 meets the requirements of the design codes and standards listed in Section 3H.3.4.
- The factors of safety against flotation, sliding, and overturning of the structure under various loading combinations are higher than the required minimum factors of safety as shown in Table 3H.6-14.

3H.3.3 Structural Description

The Radwaste Building (RWB) for each STP unit houses the liquid and solid radwaste treatment and storage facilities, and radwaste processing and handling areas. The RWB is a reinforced concrete structure consisting of walls and slabs supported by a mat foundation. Liquid radwaste storage tanks are housed inside concrete cubicles located below grade at basement level. These cubicles are lined with steel liner plates to eliminate migration of any liquid outside the concrete cubicles. Metal decking supported by steel framing is used as form work to support the slabs during construction.

Radwaste Building floor plans and sections are shown in Figures 3H.3-54 through 3H.3-60. The minimum thickness of the below grade exterior walls of the RWB is 4 ft. The above grade exterior walls are 3 ft thick. The slab at elevation 35 ft MSL is comprised of 2 ft, 4 ft and 5 ft thick slabs. The foundation mat is 12 ft thick. The roof is 1.25 ft thick slab on metal decking.

3H.3.4 Structural Design Criteria

3H.3.4.1 Design Codes and Standards

The RWB is designed to meet the design requirements of RG 1.143 Revision 2 and also satisfy the Seismic II/I requirements that it does not collapse on the adjacent safety related structures in the proximity of the RWB under seismic and tornado loadings. The following codes, standards, and regulatory documents are applicable for the design of the RWB.

 ASCE 4-98, "Seismic Analysis of Safety-Related Nuclear Structures and Commentary"

- ACI 349-97, "Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary"
- ANSI/AISC N690, 1984 "Specifications for the Design, Fabrication and Erection of Steel Safety-Related Structures for Nuclear Facilities"
- AWS D1.1 "Steel Structural Welding Code", 2000
- ASCE 7-95, "Minimum Design Loads for Buildings and Other Structures"
- NRC RG 1.143, "Design Guidance for Radioactive Waste Management Systems, Structures, and Components Installed in Light-Water-Cooled Nuclear Power Plants," Rev. 2, November 2001
- NUREG-0800 SRP 3.3.2, "Tornado Loadings," Rev. 2, July 1981
- NRC RG 1.142, "Safety-Related Concrete Structures for Nuclear Power Plants (Other Than Reactor Vessels and Containments)," Rev 2, November 2001
- NRC RG 1.76, "Design-Basis Tornado and Tornado Missiles for Nuclear Power Plants," Rev 1, March 2007.

3H.3.4.2 Site Design Parameters

3H.3.4.2.1 Soil Parameters

•	Poisson's ratio (above groundwater)	0.42
•	Poisson's ratio (below groundwater)	0.47
•	Unit Weight (moist)	120 pcf
•	Unit Weight (saturated)	140 pcf
•	Liquefaction potential	None
•	Static Soil Bearing Pressure (plus weight of 2 ft of fill concrete):	9.8 ksf
•	Ultimate Static Soil Bearing Capacity	91.1 ksf
•	Static Soil Bearing Capacity Factor of Safety	≥ 9.3
•	Dynamic Soil Bearing Pressure:	11.0 ksf
•	Ultimate Dynamic Soil Bearing Capacity	.71.4 ksf
•	Dynamic Soil Bearing Capacity Factor of Safety	≥ 6.5

The soil bearing pressure capacities noted above are determined using the methodology described in Section 2.5S.4.

3H.3.4.2.2 Design Ground Water Level

Design groundwater level is at elevation 32 feet MSL, as shown in DCD, Tier 1, Table 5.0. This value bounds the groundwater elevations discussed in Section 2.4S.12.

3H.3.4.2.3 Design Flood Level

Design flood level is 33 feet MSL, as shown in DCD, Tier 1, Table 5.0. This flood level is above the level resulting from one-half of the PMF (RG 1.143 requirement) described in Section 2.4S.3.

3H.3.4.2.4 Maximum Snow Load

Roof snow load is 50 psf (2.39 kPa) as shown in DCD Tier 1 Table 5.0. This snow load is very conservative for the STP 3 & 4 site. This load is not combined with normal roof live load.

3H.3.4.2.5 Maximum Rainfall

Design rainfall is 19.4 in/hr (50.3 cm/hr) as shown in COLA Part 2 Tier 1 Table 5.0. This load is not combined with normal roof live load.

3H.3.4.3 Design Loads and Load Combinations

The RWB is not subjected to any accident temperature or pressure loading. Under ambient conditions, the uniform temperature changes and thermal gradients within the structure are less than 50°F and 100°F, respectively. Referring to article 1.3 of ACI 349.1R-07, for such thermal conditions explicit consideration of ambient temperature effects is not warranted.

3H.3.4.3.1 Normal Loads

Normal loads are those that are encountered during normal plant startup, operation, and shutdown.

3H.3.4.3.1.1 Dead Loads (D)

Dead loads include the weight of the structure, permanent equipment, and other permanent static loads. An additional 50 psf (2.39 kPa) uniform load is considered to account for dead loads due to piping, raceways, grating, and HVAC duct work.

3H.3.4.3.1.2 Live Loads (L)

Live loads include floor and roof area live loads, movable loads, and laydown loads. A minimum normal floor live load of 200 psf (9.6 kPa) is considered for all floors of the RWB. A normal live load of 50 psf (2.39 kPa) is considered for the roof. The floor area live load shall be omitted from areas occupied by equipment whose weight is included in the dead load.

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the normal floor

and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load.

3H.3.4.3.1.3 Snow Loads

The normal roof snow load is 50 psf. This load is not combined with normal roof live load.

3H.3.4.3.1.4 Lateral Soil Pressures (H and H')

Lateral soil pressures are calculated using the following soil properties.

•	Unit weight (moist):	120 pcf (1.92 t/m ³)
•	Unit weight (saturated):	140 pcf (2.24 t/m ³)
•	Internal friction angle:	30°
•	Poisson's ratio (above groundwater)	0.42
•	Poisson's ratio (below groundwater)	0.47

Figure 3H.3-1 shows the at-rest lateral soil pressures. Figure 3H.3-2 shows the dynamic at-rest lateral soil pressures. Figure 3H.3-3 shows the active lateral earth pressures. Figure 3H.3-4 shows the passive lateral earth pressures.

The RWB east wall is designed for lateral seismic soil pressures shown in Figure 3H.3-50. These soil pressures consider the structure-soil-structure interaction (SSSI) between the RWB, RSW piping Tunnel, and RB. For details of this SSSI analysis, see Section 3H.6.5.3.

Figure 3H.3-51 shows seismic soil pressure used for the design of RWB west wall and the seismic soil pressure considering the SSSI between the RWB, RSW Piping Tunnel, and RB described in Section 3H.6.5.3. This figure shows a minor exceedance of the SSSI seismic soil pressure beyond the design dynamic soil pressure. However, the induced out-of-plane shear and moment in each wall panel due to the design soil pressures are greater than the out-of-plane shear and moment due to SSSI soil pressures. Therefore, the exceedance in the SSSI pressures is acceptable.

3H.3.4.3.2 Severe Environmental Load

Severe environmental loads consist of loads generated by wind and earthquake.

3H.3.4.3.2.1 Wind Load (W)

The following parameters are used in the computation of the wind loads.

•	Exposure:	D
•	Importance factor:	1.15
•	Velocity pressure exposure coefficient per ASCE 7 Table 6-3, but ≥ 0.87	
•	Topographic factor	1.0
•	Wind directionality factor	1.0

Wind loads are calculated in accordance with the provisions of Chapter 6 of ASCE 7-95.

3H.3.4.3.2.2 Earthquake (E_0)

The earthquake loads are those due to one-half of the Safe Shutdown Earthquake (SSE) defined in DCD Tier 1, Table 5.0. This corresponds to the Regulatory Guide 1.60 response spectra anchored to 0.15g. The earthquake loads are applied in all three orthogonal directions. The total structural response is predicted by combining the applicable maximum co-directional responses by the square root of the sum of the squares (SRSS) method.

3H.3.4.3.2.3 Flood Load (FL)

The flood level is at 33 feet MSL, as stated in Section 3H.3.4.2.3 above.

3H.3.4.3.3 Extreme Environmental Load

Extreme environmental loads consist of loads generated by tornado.

3H.3.4.3.3.1 Tornado Loads

The tornado load effects consist of wind pressure, differential pressure, and tornado generated missile loads. The tornado parameters are as follows:

- Tornado parameters are equal to three-fifths of the Region 1 tornado parameters defined in Table 1 of RG 1.76, Rev. 1. The Region 1 maximum tornado wind speed and pressure drop per Table 1 of RG 1.76, Rev. 1 are 230 mph and 1.2 psi, respectively. Three-fifths of 230 mph equals 138 mph and three-fifths of 1.2 psi equals 0.72 psi.
- Tornado missile parameters are in accordance with Table 2 of RG 1.143 Revision 2 for RW-IIa classification

3H.3.4.3.3.2 Malevolent Vehicle Assault

The RWB is protected from malevolent vehicle assault in accordance with Regulatory Guide 5.68.

3H.3.4.3.3.3 Accidental Explosion

In accordance with Table 2 of RG 1.143 Revision 2 for RW-IIa classification, accidental explosion hazards have been evaluated and found not to pose any hazards to the Radwaste Building.

3H.3.4.3.3.4 Small Aircraft Crash

As discussed in FSAR Section 2.2S.2.7, the methodology described in NUREG-0800 section 3.5.1.6, RG 1.117 and DOE-STD-3014-96 was used to determine that the risks due to aircraft hazards are sufficiently low and are not considered in the design of SSCs at the STP 3&4 site.

3H.3.4.3.4 Load Combinations

3H.3.4.3.4.1 Notations

S = Normal allowable stress for allowable stress design method

U = Required strength for strength design method

D = Dead load

F = Load due to weight and pressure of fluid with well-defined density and controllable maximum height

FL = Hydrostatic and hydrodynamic load due to flood

L = Live load

R_o = Piping and equipment reaction under normal operating condition (excluding dead load, thermal expansion and seismic)

T_o = Normal operating thermal expansion loads from piping and equipment

T_b = Upset thermal expansion loads from piping and equipment

H = Lateral soil pressure and groundwater effects

H' = Lateral soil pressure and groundwater effects, including dynamic effects

W = Wind load

W_t = Total tornado load, including missile effects

 E_0 = Earthquake load

3H.3.4.3.4.2 Structural Steel Load Combinations

$$S = D + L + F + H + R_{o} + T_{o}$$

$$1.33S = D + L + F + H + R_{o} + T_{b}$$

$$1.33S = D + L + F + H + R_{o} + T_{o} + W$$

$$1.33S = D + L + F + H' + R_{o} + T_{o} + E_{o}$$

$$1.33S = D + L + F + H + R_{o} + T_{o} + FL$$

$$1.6S^{\text{(Note 1)}} = D + L + F + H + R_0 + T_0 + W_t$$

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the normal floor and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load.

Note 1: The stress limit coefficient in shear shall not exceed 1.4 in members and bolts.

3H.3.4.3.4.3 Reinforced Concrete Load Combinations

$$U = 1.4D + 1.7L + 1.4F + 1.7H + 1.7R_o + 1.7T_o$$

$$U = 1.4D + 1.7L + 1.4F + 1.7H + 1.7R_o + 1.7T_b$$

$$U = 1.4D + 1.7L + 1.4F + 1.7H + 1.7R_o + 1.7T_o + 1.7W$$

$$U = 1.4D + 1.7L + 1.4F + 1.7H' + 1.7R_o + 1.7T_o + 1.7E_o$$

$$U = D + L + F + H + R_o + T_o + FL$$

$$U = D + L + F + H + R_o + T_o + W_t$$

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the normal floor and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load

3H.3.4.4 Materials

Structural materials used in the design of RWB are as follows:

3H.3.4.4.1 Reinforced Concrete

Concrete conforms to the requirements of ACI 349. Its design properties are:

•	Compressive strength	4.0 ksi (27.6 MPa)
---	----------------------	--------------------

3H.3.4.4.2 Reinforcement

Deformed billet steel reinforcing bars are considered in the design. Reinforcement conforms to the requirements of ASTM A615. Its design properties are:

3H.3.4.4.3 Structural Steel

High strength, low-alloy structural steel conforming to ASTM A572, Grade 50 is considered in the design for wide-flange sections. The steel design properties are:

3H.3.4.4.4 Steel Grating

Bearing bars conforming to ASTM A1011 are considered in the design. The design property is:

3H.3.4.4.5 Anchor Bolts

Material for anchor bolts conforms to the requirements of ASTM F1554 (preferred anchor bolt material endorsed by ANSI/AISC N690-12), Grade 36. Its design properties are:

3H.3.5 Structural Design and Analysis Summary

3H.3.5.1 Seismic Analysis

Two types of seismic analyses are performed for the RWB. The analysis and design of the RWB as well as the II/I design is performed using response spectrum analysis of a SAP2000 3D finite element model described in Section 3H.3.5.2. The II/I stability evaluation of the RWB is performed using the base shears and moments obtained from response spectrum analysis of a fixed base stick model described below. This fixed base stick model is also used for obtaining the seismic in-plane shears and moments of the exterior walls reported in Table 3H.3-1 and the structural frequencies reported in Table 3H.3-2.

In the fixed base stick model, the structure is represented by a lumped-mass model consisting of structural masses lumped at selected nodes which are connected by massless elements representing the stiffness properties of the shear walls between the nodes. The building masses are lumped at elevations where the building weights are concentrated such as the floors and roof.

For modeling reinforced concrete shear wall elements, the shear walls in each particular vibration direction are identified. The stiffness of a shear wall along its length consists of a combination of its shear stiffness and its flexural stiffness, both of which are calculated individually and combined to obtain the stiffness of the wall.

3H.3.5.2 Analysis and Design

The analysis and design of the RWB is performed using a SAP2000 3D finite element model with shell and frame elements, as shown in Figures 3H.3-5 through 3H.3-7. The seismic loads are obtained from response spectrum analysis of this model. The input motion for this response spectrum analysis is the Regulatory Guide 1.60 response spectra for 0.15g.

The RWB SAP2000 finite element model includes uniform foundation soil springs. The RWB basemat is 12 ft. thick and it is stiffened with interior shear walls arranged approximately every 30 ft. in both the east-west and the north-south directions. Therefore, no significant dishing of the mat is expected and the use of uniform foundation soil springs is appropriate. The static subgrade reaction modulus for the vertical springs is 50 kips/ft/ft². The dynamic subgrade reaction modulus for the vertical springs is 184 kips/ft/ft².

Per Table 1 of RG 1.143 Revision 2, all concrete and steel designs are in accordance with the ACI 349-97 and ANSI/AISC N690, 1984 code requirements, respectively.

The forces and moments at critical locations in the Radwaste Building along with the provided longitudinal and transverse reinforcement are included in Table 3H.3-3 for the exterior walls and Table 3H.3-4 for the basemat, roof slab, and operating floor (elevation 35'-0") slab. Figures 3H.3-8 through 3H.3-27 show the location of the reinforcement zones listed in Table 3H.3-3 for the exterior walls. Figures 3H.3-28 through 3H.3-42 show the location of the reinforcement zones listed in Table 3H.3-4 for the basemat, roof slab, and operating floor slab. Figure 3H.3-53 shows the labeling convention for the walls and slabs of the RWB used for presenting the analysis results.

The structural steel member sizes, critical forces, safety margins, and governing load combinations for the operating floor beams, roof truss members, and roof purlins are shown in Table 3H.3-5. The layout of the operating floor steel beams is shown in Figures 3H.3-43 through 3H.3-46. The layout of the roof truss members and roof purlins are shown in Figure 3H.3-47. The typical east-west spanning truss and typical north-south spanning truss are shown in Figures 3H.3-48 and 3H.3-49, respectively.

3H.3.5.3 Seismic II/I Evaluation

The seismic II/I evaluation for the RWB is performed to ensure that the RWB will not collapse on the nearby Category I structures. The analysis and design for II/I is performed using a SAP2000 3D finite element model with shell and frame elements, as shown in Figures 3H.3-5 through 3H.3-7. The seismic loads are obtained from response spectrum analysis of this model. The earthquake input used at the foundation level is the envelope of 0.3g RG 1.60 response spectrum and the induced acceleration response spectrum due to site-specific SSE that is determined from an SSI analysis which accounts for the impact of the nearby Reactor Building (RB). In this SSI analysis, five interaction nodes at ground surface are added to the three dimensional SSI model of the RB. These five interaction nodes correspond to the four corners and the center of the RWB foundation. The average response of these five interaction nodes is enveloped with the 0.3g RG 1.60 spectra to determine the SSE

input at the foundation level. The structure is conservatively designed to remain elastic for this evaluation.

For tornado parameters, including the missiles, the same parameters as those defined in DCD Tier 1 Table 5.0 are used. For flood, the extreme flood level of 40 ft (12.2 m) MSL is used, which is caused by the Main Cooling Reservoir dike breach. The evaluation requirements for this flood, including hydrodynamic and flooding debris loading, are included in Section 3.4.2.

The II/I stability evaluations for sliding and overturning are performed using the seismic input motion described in Section 3.7.2.8 and 3.7.3.16 and other site-specific parameters such as soil properties. The seismic demands for II/I stability evaluation are determined by response spectrum analysis of the fixed base stick model described in Section 3H.3.5.1. Figure 3H.3-52 outlines the methodology followed for the seismic II/I stability evaluation of the RWB.

3H.3.5.3.1 Load Combinations

The following load combinations, in addition to the extreme environmental load combinations from Sections 3H.3.4.3.4 are used for Seismic II/I considerations.

3H.3.5.3.1.1 Notations

E' = Safe Shutdown Earthquake load (as discussed in Section 3H.3.5.3 above) Other loads are as defined in Section 3H.3.4.3.4.1.

3H.3.5.3.1.2 Structural Steel Load Combinations

$$1.6S^{\text{(Note 1)}} = D + L + F + H' + Ro + To + E'$$

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the normal floor and roof live loads.

Note 1: The stress limit coefficient in shear shall not exceed 1.4 in members and bolts.

3H.3.5.3.1.3 Reinforced Concrete Load Combinations

$$U = D + L + F + H' + Ro + To + E'$$

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the normal floor and roof live loads.

3H.5 Structural Analysis Reports

STD DEP T1 2.15-1

- 3H.5.3 Structural Analysis Report for the Reactor Building, Control Building and Radwaste Building Substructure (Including Seismic Category 1 Tunnels) and Diesel Generator Fuel Oil Tunnels
- 3H.5.4 Structural Analysis Report For the Reactor Building, and Control Building and Radwaste Building Foundation

3H.5.5 Structural Analysis Report For The Radwaste Building (Including Radwaste Tunnels) and The Turbine Building

STD DEP 1.8-1

STD DEP T1 2.15-1

The RW/B (including Radwaste Tunnels) and T/B isare not classified as a-Seismic Category 1 structures. However, the buildings The T/B is designed such that damage to safety-related functions does not occur under seismic loads corresponding to the safe shutdown earthquake (SSE) ground acceleration. The RW/B (including Radwaste Tunnels) is designed per Regulatory Guide 1.143 with Ila Classification.

For material properties and dimensions, assess compliance of the as-built structure with design requirements in Section 3.7.3.16, Table 3.2-1 and the International Building Code (IBC) Uniform Building Code (UBC) for the Turbine Building and Regulatory Guide 1.143 for the Radwaste Building (including Radwaste Tunnels) and in the Table 3.2-1 and paragraph 3.7.3.16.

Construction deviations and design changes will be assessed to determine appropriate disposition.

This disposition will be accepted "as-is," provided the following acceptance criteria are met:

■ The structural design meets the acceptance criteria and load combinations of Section 3.7.3.16 and the IBCUBC code for the Turbine Building and Regulatory Guide 1.143 for the Radwaste Building (including Radwaste Tunnels).

3H.5.6 Structural Analysis Report For The Ultimate Heat Sink/ Reactor Service Water Pump House Structure, Reactor Service Water Piping Tunnel and Diesel Generator Fuel Oil Storage Vault

A structural analysis report will be prepared. It will document the following activities associated to the construction materials and as-built dimensions of the structures:

- (1) Review of construction records for material properties used in construction (i.e., in-process testing of concrete properties and procurement specifications for structural steel and reinforcing bars).
- (2) Inspection of as-built structure dimensions.

For material properties and dimensions, assess compliance of the as-built structure with design requirements in the Subsection 3H.6 and in the detail design documents.

Construction deviations and design changes will be assessed to determine appropriate disposition.

This disposition will be accepted "as-is," provided the following acceptance criteria are met:

- The structural design meets the acceptance criteria and load combinations of Appendix 3H, Section 3H.6.
- The dynamic responses (i.e., spectra, shear forces, axial forces and moments) of the as-built structure are bounded by the spectra in Appendix 3H, Section 3H.6.

Depending upon the extent of the deviation or design changes, compliance with the acceptance criteria can be determined by either:

- (a) Analyses or evaluations of construction deviations and design changes, or
- (b) The design basis analyses will be repeated using the as-built condition.

3H.6 Site-Specific Seismic Category I Structures

The following site-specific supplement addresses site specific Seismic Category I structures.

3H.6.1 Objective and Scope

The objective of this appendix is to describe the structural analysis and design of the STP 3 & 4 site-specific seismic Category I structures that are identified below.

- (1) Ultimate Heat Sink (UHS) for each unit consists of a water retaining basin with enclosed cooling towers situated above the basin and a Reactor Service Water (RSW) pump house that is integral with the UHS basin.
- (2) RSW piping tunnel for each unit.
- (3) Diesel Generator Fuel Oil Storage Vault for each unit.

The details of analysis and design for Items (1) and (2) are provided in Sections 3H.6.2 through 3H.6.6. The details for Item (3) are provided in Section 3H.6.7.

3H.6.2 Summary

A summary of the extreme environmental design parameters is presented in Table 3H.9-1. See Section 3H.11 for hurricane winds and hurricane generated missiles.

For the design of the UHS basin and the pump house of each unit, the seismic effects were determined by performing a soil-structure interaction (SSI) analysis, as described in Subsection 3H.6.5. The free-field ground response spectra used in the analysis are described in Subsection 3H.6.5.1.1.1. The resulting seismic loads were used in combination with other applicable loads to develop designs of the structures.

Hydrodynamic effects of the water in the basin were considered. The following results for the UHS/RSW Pump House are presented in tables and figures, as indicated. Results for the RSW Piping Tunnel are presented in Sections 3H.6.5.3 and 3H.6.6.2.2.

- Natural frequencies (Table 3H.6-3).
- Seismic accelerations (Table 3H.6-4).
- Seismic displacements (Table 3H.6-4).
- Floor response spectra (Figures 3H.6-16 through 3H.6-39).
- Factors of safety against sliding, overturning, and flotation (Table 3H.6-5).
- Combined forces and moments at critical locations in the structures along with required and provided rebar (Tables 3H.6-7 through 3H.6-9 and Figures 3H.6-51 through 3H.6-136).
- Lateral soil pressures for design (Figures 3H.6-41 through 3H.6-43, Figures 3H.6-218 through 3H.6-220, and Figures 3H.6-232 through 3H.6-240).
- Lateral soil pressures for stability evaluation during normal operation (Figures 3H.6-45 through 3H.6-50)
- Tornado evaluation results (Table 3H.6-10)

The final combined responses are used to evaluate the designs against the following criteria:

- Stresses in concrete and reinforcement are less than the allowable stresses in accordance with the applicable codes listed in Subsection 3H.6.4.1.
- The factors of safety against flotation, sliding, and overturning of the structures under various loading combinations are higher than the required minimum values identified in Subsection 3H.6.4.5.
- The calculated static and dynamic soil bearing pressures/displacements are less than the allowable values.
- The thickness of the roof slabs and exterior walls are more than the minimum required to preclude penetration, perforation, or spalling resulting from impact of design basis tornado and hurricane missiles. In addition, the passage of tornado and hurricane missiles through openings in the roof slabs and exterior walls is prevented by the use of missile-proof covers and doors, or the trajectory of missiles through ventilation openings is limited by labyrinth walls configured to prevent safety-related substructures and components from being impacted.

The RSW piping tunnel seismic analysis has been performed using SSI analysis, as discussed in Section 3H.6.5.3.

3H.6.3 Structural Descriptions

The site-specific Seismic Category I structures at STP 3 & 4 consist of one set of the following for each unit: UHS basin, enclosed UHS cooling towers located on top of the basin, RSW pump house contiguous with and adjacent to the UHS basin, and buried RSW piping tunnels and access shafts to the tunnels (see Figures 1.2-34 through 1.2-36). Each UHS basin and RSW pump house has a 10-ft (3.05-m) thick foundation mat and are connected at a common wall; and the RSW piping tunnels extend from the pump house to the Control Buildings. Each of these structures is described in more detail in the following subsections.

3H.6.3.1 Ultimate Heat Sink Basin

The UHS basin is a rectangular reinforced concrete structure with inner dimensions of 280 ft (85.34 m) by 132 ft (40.23 m) and serves as the reservoir for the RSW system. The walls of the basin are 6 ft (1.83 m) thick and extend from an elevation of 97.5 ft (29.72 m) MSL down to an elevation of 14 ft (4.27 m) MSL. The walls are braced by 6 ft (1.83m) thick buttresses spaced at a maximum of 50 ft (15.24 m) and are supported on a 312 ft (95.10 m) by 164 ft (49.99 m) by 10 ft (3.05 m) thick mat foundation, poured on a lean concrete mud mat. The mud mat is poured directly on the in-situ soil. Each UHS includes three independent divisions of mechanical cooling towers, with two dedicated cooling towers in each division. Plans and sections of the UHS basin and cooling towers are shown in Figures 3H.6-259 through 3H.6-262. The pump house is contiguous with the UHS basin and its walls extend from an elevation of -18 ft (-5.49 m) MSL to an elevation of 50 ft (15.24 m) MSL.

As noted in Subsection 9.2.5.5.2, the seepage loss estimated during the 30 days of operation following a design basis accident, with no makeup available, is within the acceptance criteria for standard hydrostatic test HST-025, as defined in ACI 350.1.

3H.6.3.2 Ultimate Heat Sink Cooling Tower Enclosures

The cooling tower enclosure for each unit is a reinforced concrete structure housing the equipment used to cool the water for the RSW system. The enclosure is located above the UHS basin and is supported by reinforced concrete columns anchored to the basin mat foundation. All of the columns are 5 ft (1.52 m) by 5 ft (1.52 m), except for three which are 5 ft (1.52 m) by 12 ft (3.66 m), see Figure 3H.6-259. The enclosure is 292 ft (89.0 m) long by 52 ft (15.85 m) wide and extends from the top of the UHS basin walls to elevation 153 ft (46.63 m) MSL. See Figure 3H.6-260 for a plan view of the cooling tower and Figures 3H.6-261 and 3H.6-262 for section views. The exterior east-west walls of the enclosure are 2 ft (0.61 m) thick, and the exterior north-south walls are 6 ft (1.83 m) thick. Each enclosure is divided into six compartments or cells. with each compartment housing a fan and associated equipment. The interior walls dividing the compartments are 2 ft (0.61 m) thick. The concrete beams spanning below each interior wall are 4 ft (1.22 m) by 4.5 ft (1.37 m). Openings are provided at the base of each compartment to allow for the flow of water. Each compartment includes a common basin at the base of the structure, air intake, and substructures and components used to cool the water (fill, drift eliminators, spray system piping and nozzles, and the associated concrete support beams). The air intakes for each

compartment are located at the bottom of the enclosures and are configured to eliminate the trajectory of tornado and hurricane missiles into the enclosures, thereby preventing damage to safety-related components. In addition, each compartment includes a reinforced concrete fan deck that supports the fan and the associated motor. Finally, heavy steel grating, which is supported by structural steel beams, is installed at the top of each compartment. This grating allows for the passage of air out of the compartment and prevents the intrusion of tornado and hurricane wind-borne missiles. The clear spacing of the grating bars is 15/16 inch to prevent entrance of 1 inch steel sphere missiles.

3H.6.3.3 Reactor Service Water Pump Houses

The two RSW pump houses are reinforced concrete structures that are continguous with the UHS basins and house the RSW pumps (six pumps per pump house, with three RSW divisions, and two pumps per division) and their associated auxiliaries. Plan views of the RSW Pump houses are shown in Figures 3H.6-258 through 3H.6-260. A section view is shown in Figure 3H.6-261. Each set of pumps extracts water for the RSW system from the basin. The operating floor of each pump house is divided into three separate rooms (one per RSW division), each containing two pump drivers and associated equipment, including self-cleaning strainers. There is also an access tunnel through which the RSW system piping is routed to and from the corresponding control building.

The exterior walls of each pump house and the interior walls dividing the pump bay are integral with the UHS basin walls. The exterior walls of the pump house are 6 ft thick (1.83 m), and the interior walls are 4 ft (1.22 m) thick. The pump bay for each pump house measures approximately 44 ft (13.41 m) by 72 ft (21.95 m) in plan with the top of the bay slab being located at elevation -18ft (-5.49 m). The operating floor is at elevation 14 ft (4.27 m) and measures 138 ft (42.06 m) by 72 ft (21.95 m) in plan. The pump house operating floor is 1.75 ft (0.53 m) thick. Covered openings are provided in the roof of each pump house, which is located at elevation 50 ft (15.24 m), to allow for the removal of the six pumps. The pump house roof is 1.75 ft (0.53 m) thick.

3H.6.3.4 Reactor Service Water Piping Tunnels

The three RSW piping tunnels, one for each RSW division, are reinforced concrete structures configured in a stacked arrangement. The tunnel is 17'-0" (5.18 m) wide and has an overall height of 40'-0" (12.2 m). They extend from each pump room to the control building. The three tunnels are separated by reinforced concrete slabs, which serve to isolate the supply and return lines and associated equipment for each of the three divisions. Access to the tunnels from the surface, for inspections and maintenance activities, is provided by reinforced concrete personnel access shafts. The interfaces between the tunnels and the pump houses and control buildings are configured to allow relative movement between the tunnels and structures. Figure 3H.6-248 provides a plan view of the RSW piping tunnels, and Figure 3H.6-249 provides a typical section of the main tunnel. Figures 3H.6-258 through 3H.6-261 provide plan and section views of the RSW piping tunnels adjacent to the RSW Pump House.

3H.6.4 Structural Design Criteria

3H.6.4.1 Design Codes and Standards

- Code Requirements for Nuclear Safety-Related Concrete Structures (ACI 349), as supplemented by RG 1.142
- Code Requirements for Environmental Engineering Concrete Structures (ACI 350)
- American National Standard Specification for the Design, Fabrication, and Erection of Steel Safety-Related Structures for Nuclear Facilities (ANSI/AISC N690)
- Tightness Testing of Environmental Engineering Concrete Structures (ACI 350.1)
- Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7)
- Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4)
- Structural Welding Code Steel (AWS D1.1)
- Regulatory Guide 1.76, Design Basis Tornado and Tornado Missiles for Nuclear Power Plants
- Regulatory Guide 1.61 Damping Values for Seismic Design of Nuclear Power Plants

3H.6.4.2 Site Design Parameters

3H.6.4.2.1 Soil Parameters

•	Poisson's ratio (above groundwater):	0.42
•	Poisson's ratio (below groundwater):	
-	Unit weight (moist):	120 pcf (1.92 t/m ³)
•	Unit weight (saturated):	140 pcf (2.24 t/m ³)
-	Liquefaction potential:	None
•	Static Soil Bearing Capacity:	. See FSAR Subsection 2.5S.4.10
	*Dynamic Soil Bearing Capacity:	. See FSAR Subsection 2.5S.4.10

3H.6.4.2.2 Design Groundwater Level

Design groundwater level is at elevation 28 (8.53 meters) MSL. This elevation bounds the groundwater elevation defined in FSAR Subsection 2.4S.12.

3H.6.4.2.3 Design Basis Flood Level

Design basis flood level is at 12.2 meters MSL. This elevation is defined in Subsection 2.4S.2.2.

3H.6.4.2.4 Maximum Snow Load

Normal roof snow load is 6.6 psf. Extreme roof snow load is 13.2 psf.

3H.6.4.2.5 Maximum Rainfall

Design rainfall is 19.8 in/hr (503 mm/hour) in accordance with Subsection 2.3S.1.3.4. The roof of each pump house is designed without parapets so that excessive ponding of water cannot occur. Such roof design meets the provisions of RG 1.102.

3H.6.4.3 Design Loads and Load Combinations

3H.6.4.3.1 Normal Loads

Normal loads are those that are encountered during normal plant startup, operation, and shutdown.

3H.6.4.3.1.1 Dead Loads (D)

Dead loads include the weight of the structure, permanent equipment, and other permanent static loads. An additional 50 psf (2.39 kPa) uniform load is considered to account for dead loads due to piping, raceways, grating, and HVAC duct work.

3H.6.4.3.1.2 Live Loads (L and L_0)

Live loads include floor and roof area loads, movable loads, and laydown loads. The only areas of the site-specific Category I structures requiring consideration of a live load are the floors of RSW Tunnels and the operating floor and roof of the pump houses. While a normal live load of 200 psf (9.6 kPa) is defined for the floors of RSW Tunnels and the operating floor of pump houses, a live load of 50 psf (2.4 kPa) is defined for the roof of pump houses.

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation, $L_{\rm o}$. This load has been defined as 25% of the operating floor and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load.

3H.6.4.3.1.3 Snow Loads

The normal roof snow load is 6.6 psf.

3H.6.4.3.1.4 Lateral Soil Pressures (H)

Lateral soil pressures are calculated using the following soil properties.

•	Unit weight (moist):	120 pcf (1.92 t/m ³)
•	Unit weight (saturated):	140 pcf (2.24 t/m ³)
-	Internal friction angle:	30°
•	Poisson's ratio (above groundwater)	0.42
•	Poisson's ratio (below groundwater)	0.47

Surcharge load including the effect of adjacent structures, where applicable.

The calculated lateral soil pressures are presented in figures as indicated:

- Lateral soil pressures for design of UHS/RSW Pump House: Figures 3H.6-232 through 3H.6-240.
- Lateral Soil pressures for design of RSW Piping Tunnels: Figures 3H.6-245 through 3H.6-247.

3H.6.4.3.1.5 Thermal Loads (T_o)

The RSW piping tunnels are not subjected to accident temperature loading. Under ambient conditions, the uniform temperature changes and thermal gradients within the RSW piping tunnels are less than 50°F and 100°F, respectively. Referring to article 1.3 of ACI 349.1R-07, for such thermal conditions explicit consideration of ambient temperature effects is not warranted.

Thermal gradient loads and thermal axial loads are applied to the UHS/RSW Pump House finite element model for six (6) separate thermal conditions.

The following temperature values are applicable to all six (6) thermal conditions:

•	Reference concrete placement temperature	.60°F
•	Soil temperature	.70°F
	Pump house inside air temperature	.90°F

The basin water temperature and the outside air temperature for the six (6) thermal conditions are as follows:

(1) Winter – Accident Basin Water Temperature

•	Basin water temperature	95°F
	Outside air temperature	24°F

Winter - Minimum Basin Water Temperature

(2)

	- 1	Basin water temperature	50°F
	- (Outside air temperature	24°F
(3)	Win	nter - Typical Operating Temperatures	
	• 1	Basin water temperature	55°F
	•	Outside air temperature	45°F
	below Sectic chang servic asses	thermal condition is applicable only for the basin basemat and basin wall the 71 ft maximum water level with ACI 350-01 durability factors. Per on 9.2.7 of ACI 350-01, estimation of contraction, expansion, and temperage should be based on realistic assessment of such effects occurring in ce. Section R.9.2.7 of ACI 350-01 specifically states that the term "realisment" is used to indicate the most probable values rather than the upper discussion.	ature stic
(4)	Sum	mmer - Accident Basin Water Temperature	
	• 1	Basin water temperature	95°F
	- (Outside air temperature	90°F
(5)	Sum	mmer – Minimum Basin Water Temperature	
	- 1	Basin water temperature	60°F
	- (Outside air temperature	90°F
(6)	Sum	mmer – Typical Operating Temperatures	
	• 1	Basin water temperature	95°F
	- (Outside air temperature	90°F

This thermal condition is applicable only for the basin basemat and basin walls below the 71 ft maximum water level with ACI 350-01 durability factors. Conservatively, the summer accident temperatures are considered as the typical summer operating temperatures.

3H.6.4.3.1.6 Hydrostatic Loads(F)

This load is only applicable to UHS/RSW Pump House. The hydrostatic load due to water inside the UHS basin is calculated considering the maximum water height of 71 ft above the top of the UHS basin basemat. The maximum hydrostatic pressure is 4.43 ksf at the top of UHS basin basemat elevation. An empty basin case is also considered with the UHS basin conservatively considered completely empty.

3H.6.4.3.2 Severe Environmental Load

The severe environmental load considered in the design is that generated by wind. The following parameters are used in the computation of the wind loads:

•	Basic wind speed (100 year recurrence interval, 3-second gust): 134 mph
	(215 km/h)

- Importance factor: 1.0

(Importance Factor of 1.15 is used to convert the velocity pressure due to 50-year wind speed to the velocity pressure due to the 100-year wind speed of 134 mph in accordance with the requirements of ASCE 7-05. In calculating the velocity pressure with the ASCE 7-05 Equation 6-15, Importance Factor of 1.0 is used with the 100-year wind speed of 134 mph.)

- Velocity pressure exposure coefficient as per ASCE 7 Table 6-3, but ≥ 0.87

Wind loads will be calculated in accordance with the provisions of Chapter 6 of ASCE 7.

3H.6.4.3.3 Extreme Environmental Load

Extreme environmental loads consist of loads generated by the tornado, extreme snow load, flooding and safe shutdown earthquake (SSE).

3H.6.4.3.3.1 Tornado Loads (Wt)

The following tornado load effects are considered in the design:

- Wind speed (W_w)
- Differential pressure(W_p)
- Missile impact.....(W_m)

Parameters used in computation of tornado loads are as follows (see Tables 1 and 2 of RG 1.76, for Region II):

- Missile spectrum: (See Table 2 of RG 1.76)
 - (1) Tornado Wind Pressure (W_w)

With the exception of the RSW piping tunnel, which does not require the consideration of a tornado wind pressure, tornado wind pressures are computed using the procedure described in Chapter 6 of ASCE 7, in conjunction with the maximum wind speed defined above and the following parameters:

- - (2) Tornado Differential Pressure (W_p)

The designs of the UHS basin, UHS cooling tower, and the RSW piping tunnel do not require the consideration of a tornado differential pressure. RSW pump house and RSW piping tunnel access shafts are evaluated for the specified differential pressure.

(3) Tornado Missile Impact (W_m)

All structures are evaluated for the effects of missile impact.

Tornado missile impact effects on the UHS basin and cooling tower enclosures, RSW pump houses, and RSW tunnels including access shafts are evaluated for the following two conditions:

- (a) For concrete barriers, local damage in terms of penetration, perforation, and spalling, is evaluated using the TM 5-855-1 formula (Reference 3H.6-1). For steel barriers, local damage prediction is performed using the Ballistic Research Laboratory (BRL) formula (Reference 3H.6-2).
- (b) Global overall damage evaluations are performed in accordance with Revision 3 of SRP 3.5.3. In these evaluations, the tornado loads (i.e. W_t) to be included in combination with other applicable loads are per combination $W_t = W_w + 0.5W_p + W_m$.

For any critical missile hit location considered, the structure is analyzed for the resulting equivalent static load due to tornado missile impact in conjunction with tornado wind pressure and 50% of tornado differential

pressure. The resulting induced forces and moments from this analysis are combined with the induced forces and moments due to other applicable loads within the load combination to determine the total demand for design of the structural elements.

(4) Tornado Load Combinations

Tornado load effects are combined as follows:

$$W_t = W_p$$

$$W_t = W_w + 0.5W_p + W_m$$

3H.6.4.3.3.2 Safe Shutdown Earthquake Loads (E')

The SSE loads are applied in three mutually orthogonal directions— two horizontal directions and the vertical direction. The total structural response is predicted by combining the applicable maximum co-directional responses in accordance with RG 1.92.

The SSE loads are based on seismic analysis using the ground motion response spectra defined in Subsection 3H.6.5.1.1.1. The loads consist of vertical forces, horizontal forces, torsional moments, and overturning moments.

The SSE induced loads also include the hydrodynamic effect of the water in the UHS basin. This hydrodynamic effect was calculated based on the methodology included in Section 3.1.6.3 of ASCE 4 and TID 7024, referenced in the commentary section of ASCE 4.

3H.6.4.3.3.3 Lateral Soil Pressures Including the Effects of SSE (H')

The calculated lateral soil pressures including the effects of SSE are presented in figures as indicated:

- Lateral soil pressures for design of UHS/RSW Pump House: Figures 3H.6-41 through 3H.6-43 and Figures 3H.6-218 through 3H.6-220. Figure 3H.6-219 shows exceedances of the SSSI seismic soil pressures beyond the design dynamic soil pressures on the north wall of the Reactor Service Water Pump House. However, the induced out-of-plane shear and moment in each wall panel due to the design soil pressures are greater than the out-of-plane shear and moment due to SSSI soil pressures. Therefore, the exceedances in the SSSI pressures are acceptable.
- Lateral Soil pressures for design of RSW Piping Tunnels: Figure 3H.6-44 and Figures 3H.6-212 through 3H.6-217.

3H.6.4.3.3.4 Extreme Environmental Flood (FL)

The design basis flood level is 40.0 ft MSL, in accordance with Subsections 2.4S.2.2 and 3H.6.4.2.3. The flood water unit weight, considering maximum sediment

concentration, is 63.85 pcf per Section 2.4S.4.2.2.4.3. The design requirements for this flood, including hydrostatic, hydrodynamic, and floating debris loading, are included in Section 3.4.2.

3H.6.4.3.3.5 Extreme Snow Load (S_E)

Per FSAR Section 2.3S.1.3.4, the ground snow load for both normal winter precipitation event and extreme frozen winter precipitation is 5.5 psf. ISG-7 provides guidance for converting the ground snow load to roof snow load using methodology provided in ASCE 7-05. ASCE 7-05 utilizes an exposure factor (C_e), a thermal factor (C_t), and an importance factor (C_t) as multipliers for converting ground snow load to roof snow load using Equation 7-1 in Section 7.3. ISG-7 also provides recommended values for these three coefficients to be used in Equation 7-1. As noted in ISG-7, pages 9 and 10, the coefficients to be used in Equation 7-1 of ASCE 7-05 are (C_e =1.1), (C_t =1.0), and (C_t =1.2). Using these values for the coefficients in Equation 7-1 of ASCE 7-05, and the limitation for minimum value provided in Section 7.3 of ASCE 7-05, the roof snow load is determined to be 6.6 psf, corresponding to a ground snow load of 5.5 psf.

Per ISG-7, the extreme winter precipitation shall be the larger of the following two cases:

Case 1: Normal winter precipitation + Extreme frozen winter precipitation

Case 2: Normal winter precipitation + Extreme liquid winter precipitation

Per FSAR Section 2.3S.1.3.4, the extreme liquid winter precipitation is 34 inches (or 177 psf). Assuming that both the roof drains and scuppers are clogged, Case 1 will yield a loading of 6.6 + 6.6 = 13.2 psf and Case 2 will yield a loading of 6.6 + 177 = 183.6 psf. However, since the roofs of site-specific structures are designed without parapets (see Section 3H.6.4.2.5), for site-specific Category I structures, the extreme winter precipitation can not exceed Case 1 loading of 13.2 psf

3H.6.4.3.3.6 Accident Temperature (Ta)

UHS Basin Water temperature (95°F) during accident condition.

3H.6.4.3.4 Load Combinations

The load combinations and structural acceptance criteria used to evaluate the site-specific Category I concrete structures are consistent with the provisions of ACI 349, as supplemented by RG 1.142 as well as ACI 350. Loads R_a , P_a , Y_r , Y_j , and Y_m , as defined in ACI 349, are not applicable to the evaluation of the site-specific seismic Category I structures since there are no high energy line breaks associated with the site-specific Category I concrete structures; therefore these loads are not included in the load combinations defined below.

3H.6.4.3.4.1 Notation

S = Allowable stress for allowable stress design method

U = Required strength for strength design method

D = Dead load

F = Hydrostatic load

L = Live load

 L_0 = Live load concurrent with SSE

FL = Static and dynamic effects due to extreme environmental flood

 S_F = Extreme snow load

H = Lateral soil pressure and groundwater effects

H' = Lateral soil pressure and groundwater effects, including dynamic

effects of SSE

W = Wind load

Wt = Tornado load

E' = SSE load, including associated hydrodynamic loads

 R_0 = Piping and equipment reactions

T_o = Internal moments and forces caused by temperature distributions

T_a = Accident temperature

3H.6.4.3.4.2 Structural Steel Load Combinations

$$S = D + L + H + F + R_0 + T_0$$

$$S = D + L + W + R_0 + H + F + T_0$$

$$1.6S^{\text{(Note 1)}} = D + L + Wt + H + R_0 + F + T_0$$

$$1.6S^{(Note 1)} = D + L + FL + H + R_o + F + T_o$$

$$1.6S^{\text{(Note 1)}} = D + L + E' + H' + R_0 + F + T_0$$

$$1.6S^{\text{(Note 1)}} = D + L + S_F + R_0 + H + F + T_0$$

For the computation of global seismic loads the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the operating

floor and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load.

Note 1: The stress limit coefficient in shear shall not exceed 1.4 in members and bolts.

3H.6.4.3.4.3 Reinforced Concrete Load Combinations

For the computation of global seismic loads the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the operating floor and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load.

3H.6.4.3.4.4 ACI 350 Reinforced Concrete Load Combinations for UHS Basin Design

ACI 350 requirements are applicable to portions of environmental engineering concrete structures where durability, liquid-tightness, or similar serviceability are considerations. Therefore, the ACI 350 requirements and load combinations listed in this section are applicable only to the UHS basemat and basin walls below the maximum water level elevation.

Per ACI 350, although fluid densities and heights are usually well known, the load factor for fluid loads should be taken as 1.7 as part of the concept of environmental durability and long-term serviceability. ACI 350 states that the required strength from ACI 350 load combinations shall be multiplied by the following environment durability factors:

 In addition to the reinforced concrete load combinations listed in Section 3H.6.4.3.4.3, the UHS basemat and basin walls below the maximum water level elevation are also designed for the load combinations listed below with ACI 350 durability factors applied. Except durability factors need not be applied for the hydrostatic leak-tightness testing condition, which is a temporary loading where environmental durability and long term serviceability are not required. The hydrostatic leak-tightness testing load combination uses a load factor of 1.4 on the fluid load because it is not a long-term serviceability condition that requires a load factor of 1.7. Per ACI 350, durability factors need not be applied to load combinations that include earthquake loads. As stated in Section 3H.6.4.3.1.5, the design thermal loads used in ACI 350 load combinations should be based on most probable temperature values, rather than the upper bound temperature values.

U = 1.4D + 1.7F + 1.7L + 1.7H U = 1.4D + 1.7F + 1.7L + 1.7H + 1.7W U = 1.4D + 1.4F + 1.7W (Hydrostatic leak-tightness testing) $U = 1.4D + 1.7F + 1.4 T_0 + 1.3H$

3H.6.4.4 Materials

Structural materials used in the design of the site-specific Category I structures are as follows:

3H.6.4.4.1 Reinforced Concrete

Concrete conforms to the requirements of ACI 349. Its design properties are:

•	Compressive strength	4.0 ksi (27.6 MPa)
•	Modulus of elasticity	3,597 ksi (24.8 GPa)
•	Shear modulus	1,537 ksi (10.6 GPa)
	Poisson's ratio	0.17

3H.6.4.4.2 Reinforcement

Deformed billet steel reinforcing bars are considered in the design. Reinforcement conforms to the requirements of ASTM A615. Its design properties are:

•	Yield strength	60 ksi (414 MPa)
•	Tensile strength	90 ksi (621 MPa)

3H.6.4.4.3 Structural Steel

High strength, low-alloy structural steel conforming to ASTM A572, Grade 50 is considered in the design. The steel design properties are:

- Yield strength 50 ksi (345 MPa)

3H.6.4.4.4 Steel Grating

Bearing bars conforming to ASTM A1011 are considered in the design. The design property is:

3H.6.4.4.5 Anchor Bolts

Material for anchor bolts conforms to the requirements of ASTM F1554 (preferred anchor bolt material endorsed by ANSI/AISC N690-12), Grade 36. Its design properties are:

3H.6.4.4.6 Testing and ISI Requirements

Site-specific Seismic Category I structures have been included in the scope of the Design Reliability Assurance Program. Per Section 17.6S1.1b, all systems, structures, components identified as risk-significant via the Reliability Assurance Program for the design phase are included within the initial maintenance rule scope. As such these site-specific Seismic Category I structures are included in the Maintenance Rule Program. The Maintenance Rule, including monitoring and maintenance requirements for the structural materials used in the design of the site-specific Seismic Category I structures, will be implemented in accordance with 10CFR50.65 and Regulatory Guide 1.160, as described in Section 17.6S and Table 13.4S-1.

For periodic site monitoring of ground water chemistry, see Section 2.4S.12.4.

3H.6.4.4.7 Materials and Quality Control

Concrete ingredients and reinforcing bar splices will meet the requirements of ACI 349, supplemented by the Reg. Guides, Codes and Standards found in DCD Tables 1.8-20 and 1.8-21 and in Tables 1.8-21, 1.8-21a, and 1.9S-1.

Nondestructive examination of the materials to determine physical properties, placement of concrete, and erection tolerances; will meet the requirements of ACI 349, supplemented by the Reg. Guides, Codes and Standards found in DCD Tables 1.8-20 and 1.8-21 and in Tables 1.8-21, 1.8-21a, and 1.9S-1.

The materials and quality control programs comply with ACI 349, with additional criteria provided by RG 1.142 for concrete and ANSI/AISC N690-1994 including Supplement 2 (2004) for steel. These codes are included in DCD Tables 1.8-20 and 1.8-21 and in Tables 1.8-21, 1.8-21a, and 1.9S-1.

Welded rebar splices will not be used for STP 3&4.

3H.6.4.5 Stability Requirements

The following minimum factors of safety are required against overturning, sliding, and flotation:

Load Combination	Overturning	Sliding	Flotation
D + F'	_	_	1.1
D + H + W	1.5	1.5	_
$D + H + W_t$	1.1	1.1	_
D + H' + E'	1.1	1.1	_

Loads D, H, H', W, W_t, and E' are defined in Subsection 3H.6.4.3.4.1. F' is the buoyant force corresponding to the flood water level.

3H.6.5 Seismic Analysis

3H.6.5.1 Seismic Design Parameters

3H.6.5.1.1 Design Ground Motion

3H.6.5.1.1.1 Design Response Spectra

Site-specific horizontal and vertical ground motion response spectra (GMRS) for the SSE are developed for the STP 3 & 4 site. The development of these spectra is documented in Subsection 2.5S.2.

For the seismic analysis of the site-specific structures, free field ground surface response spectra (Input Spectra) were developed, in the horizontal and vertical directions, by modifying the 0.13g Regulatory Guide 1.60 response spectra. The Input Spectra are the same as the 0.13g Regulatory Guide 1.60 spectra for frequencies equal to and higher than 2.5 Hz for the horizontal spectrum, and 3.5 Hz for the vertical spectrum. For frequencies lower than 2.5 Hz for the horizontal spectrum, and 3.5 Hz for the vertical spectrum, the Regulatory Guide spectra were increased to envelop the GMRS. These Input Spectra are defined as the site specific design SSE spectra (see Section 3.7.1) and were developed to meet the following requirements:

- a. The Input Spectra shall envelop the GMRS. See Figures 3H.6-1 and 3H.6-2 showing that the Input Spectrum envelops the GMRS in the horizontal and vertical directions, respectively.
- b. When a deconvolution analysis is performed in the SHAKE program with the Input Spectrum applied at the free field ground surface, the resulting response spectrum at the outcrop of each Seismic Category I foundation will envelop the foundation input response spectrum (FIRS) developed using the same probabilistic approach and model which was used to develop the

GMRS. A detailed description of the seismic wave transmission of the site, and the procedure used to calculate the GMRS, which is the same for the development of FIRS, is provided in FSAR Sections 2.5S.2.5 and 2.5S.2.6, respectively. See Figures 3H.6-3a, 3b & 3c through 3H.6-10a, 10b & 10c and 3H.6-11a through 3H.6-11L for a comparison of the outcrop response spectra, resulting from the application of the time histories consistent with the Input Spectra at the free field ground surface in SHAKE, and the FIRS for the UHS basin, RSW tunnel, and RSW pump house foundations, in the two horizontal and vertical directions. These figures show that the FIRS are enveloped by the foundation outcrop spectra in all cases.

c. The response spectrum at the SHAKE outcrop of each Seismic Category I foundation envelops a broad band spectrum anchored at 0.1g. This is the minimum requirement as stated in SRP 3.7.1 and Appendix S to 10 CFR 50, "Earthquake Engineering Criteria for Nuclear Power Plants". The broad band spectrum used in our analysis is conservatively defined as the Regulatory Guide 1.60 spectrum anchored at 0.1g. See Figures 3H.6-3 through 3H.6-11, which demonstrate that this requirement is met for the UHS basin, RSW tunnel, and RSW pump house foundations, in the two horizontal and vertical directions.

It should be noted that the embedment depths shown in Section 3H.6.5.1.3 for the RSW Pump House and RSW Piping Tunnel are based on the current design. For the SSI analysis of UHS/RSW Pump House these elevations were used. However, the comparisons shown in Figures 3H.6-3 through 3H.6-11 are at elevations based on the design when the FIRS were developed. Although there is some difference in these elevations, from the review of Figures 3H.6-3 through 3H.6-11, and Figures 3A-233 through 3A-250 in Appendix 3A, it is evident that the requirements stated in (b) and (c) above are met for a wide range of elevations, starting from the deepest embedment of the Reactor Building to the shallowest embedment of the UHS Basin. Therefore, it is concluded that these two requirements are also met for the current embedment depths for the RSW Pump House and RSW Piping Tunnel, shown in Section 3H.6.5.1.3.

3H.6.5.1.1.2 Design Time Histories

Synthetic acceleration time histories consistent with the Input Spectra defined and discussed in Subsection 3H.6.5.1.1.1 were developed, using the 1952 Taft Earthquake Time Histories as seed, for use as input to the seismic analysis. A single set of time histories (two horizontal and one vertical) was developed satisfying the enveloping requirements of Option 1, Approach 2 of SRP 3.7.1, Section II (Acceptance Criteria), Revision 3. Per paragraph 2(d) of Approach 2, in lieu of the power spectrum density requirement, the requirement that the computed 5% damped response spectrum of the Synthetic time history does not exceed the target response spectrum at any frequency by more than 30% was met. In the time history method of analysis, the two horizontal and the vertical time histories were applied separately (not applied simultaneously) and the maximum responses were combined using the square-root-of-the-sum-of-the-squares (SRSS) or the 100-40-40 percent spatial combination rule. Therefore, per

Regulatory Guide 1.92, Revision 2, statistical independence of the three time histories (cross-correlation coefficient requirement) is not required.

Figures 3H.6-12 through 3H.6-14 show the comparison of the response spectrum for the Synthetic time history, the Input Spectrum, and 1.3 times the Input Spectrum, in the two horizontal and vertical directions. The response spectra of synthetic time histories were calculated for comparison with target spectra at 275 frequency points with spacing as shown in Tables 3H.6-2d through 3H.6-2f. As shown in Tables 3H.6-2d through 3H.6-2f, the 5% damped response spectra of the synthetic time histories do not fall more than 10% below the target response spectrum at any frequency.

The time step and duration of the synthetic time histories are 0.005 seconds and 22 seconds, respectively. When the time histories are input in SSI analysis using SASSI2000 program, trailing zeros are added at the end of 22 seconds to yield a total duration of 40.96 seconds (the time step of trailing zeros is also 0.005 seconds).

The duration of the time histories for Arias Intensity to rise from 5% to 75% is 11.2 seconds for the two horizontal design time histories and 12.2 seconds for the vertical design time history. For the characteristic earthquake time history this duration is calculated to be 20 to 45 seconds. The shorter duration for the design time histories is acceptable because:

- (a) The SRP requires that synthetic time histories be derived from recorded time histories from recorded earthquakes. Strong motion recorded earthquake with a 20 45 seconds duration of the time histories for Arias Intensity to rise from 5% to 75% are not readily available to be used for the seed time histories to generate the synthetic time histories.
- (b) The time histories are being used for linear elastic analyses. For linear analysis, the duration of the time histories is not critical provided the duration is comparable to recorded strong motion earthquakes and the time history spectra closely matches the target response spectra. For the design time histories, the duration is consistent with the Taft Earthquake and the time history closely matches the target response spectra.

For the characteristic earthquake V/A is calculated as 52 to 115 cm/sec/g and AD/V 2 is calculated as 2.03 to 5.28. For the design time histories, the V/A is 230, 288, and 167 cm/sec/g for the two horizontal and the vertical time histories respectively and the AD/V 2 values are 2.08, 1.89, and 3.02 respectively. This variation between the design time histories and the characteristic earthquake is due to the conservative design response spectra described in Section 3H.6.5.1.1.1. The design response spectra is a 0.13g RG 1.60 spectra with enhanced low frequency content to account for the very deep soil site. The comparison of the V/A and the AD/V 2 value of the characteristic earthquake and the conservative design response spectra shows that the design response spectra has a higher energy (greater maximum Velocity).

3H.6.5.1.2 Percentage of Critical Damping Values

The percentages of critical damping values considered in the seismic analysis for site-specific seismic Category I structures and associated systems and components are the same as listed in DCD Table 3.7-1. The damping values are the same as in Regulatory Guides 1.61 and 1.84, except for the cable trays and conduits, as explained in DCD Section 3.7.1.3. The OBE damping values were used for the generation of in-structure response spectra (ISRS) for all site-specific seismic Category I structures. The only exception is the cracked case SSI analysis for the Reactor Service Water (RSW) Piping Tunnels where SSE damping (i.e. 7%) was used because of high stress levels. All other SSI analysis cases of RSW Piping Tunnels used OBE damping (i.e. 4%) damping.

The strain-compatible, soil-damping values considered in the seismic analysis are discussed in Subsection 3H.6.5.2.4.

3H.6.5.1.3 Supporting Media for Seismic Category I Structures

Soil conditions at the STP 3 & 4 site are described in Subsection 2.5S.4. The soil at the site extends down several thousand feet and consists of alternating layers of clay, silt, and sand. Soil layering characteristics, geophysical shear wave velocity, unit weight, and Poisson's ratio are included in Table 2.5S.4-27. Based on the site groundwater conditions originally described in Section 2.4S.12, the groundwater elevation of approximately 8 ft below grade (26 feet MSL) was used in computing soil properties for the SSI analysis. Subsection 2.4S.12 and Table 2.0-2 now state the groundwater elevation as 28 feet MSL. The implementation of this change in the seismic analysis is discussed in Sections 3H.6.5.2.4.3 and 3H.6.5.3.

The SASSI2000 soil model, for the UHS basin and RSW pump house, included soil down to a minimum of two times the maximum plan dimension of the building below the basemat. The bottom boundary of the model was considered to have an elastic half space condition.

The characteristic dimensions of the above grade site-specific seismic Category I structures are summarized below:

Structure	Embedment Depth to Bottom of Foundation Mat [1]	Maximum Height[1]	Base Dimensions
UHS Basin	32 ft (9.75 m)	95.5 ft (29.1 m)	312 ft (95.10 m) x 164 ft (49.99 m) x 10 ft (3.05 m) thick foundation
UHS Cooling Towers	[2]	151 ft (46.0 m)	N/A

RSW Pump Houses Pump Bays	64 ft (19.5 m)	80 ft (24.4 m)	94 ft (28.65 m) x 170 ft (51.82 m)
RSW Piping Tunnel	44 ft (13.4 m)	42 ft (12.8 m) [3]	17 ft (5.2 m) wide

- [1] As measured from the bottom of the foundation mudmat.
- [2] Located above the basin and supported on columns.
- [3] The access shafts for the tunnels extends to a maximum height of approximately 66 ft above the bottom of the foundation mudmat.

3H.6.5.2 Seismic System Analysis

The following Subsections 3H.6.5.2.1 through 3H.6.5.2.14 describe the seismic analysis of the UHS and RSW pump house structures. Subsection 3H.6.5.3 describes the seismic analysis of the RSW piping tunnel.

3H.6.5.2.1 Seismic Analysis Methods

The seismic analysis of the UHS basin and RSW pump house structures was performed using a frequency-domain time history analysis as described in DCD Appendix 3A using SASSI2000. Analyses were performed for three orthogonal (two horizontal and one vertical) directions and account for the translational, rocking, and torsional responses of the structures and foundations.

3H.6.5.2.2 Natural Frequencies and Responses

The natural frequencies up to 33 Hz for the UHS/RSW Pump House are presented in Table 3H.6-3. Accelerations and displacements at key locations are provided in Table 3H.6-4. The SSE loads at select locations are provided in Table 3H.6-4a. Response spectra at the major equipment elevations and support points are provided in Figures 3H.6-16 through 3H.6-39. Combined forces and moments at critical locations, along with required and provided reinforcements, are provided in Tables 3H.6-7 through 3H.6-9.

The analysis of RSW Piping Tunnels is presented in Section 3H.6.6.2.2.

3H.6.5.2.3 Procedures for Analytical Modeling

The seismic analysis of the UHS basin and enclosed cooling tower as well as RSW pump house for each unit was performed using a three-dimensional finite element model presented in Figure 3H.6-40. The material properties for concrete elements of the model are presented in Section 3H.6.4.4.1. Uncracked concrete section was used for member stiffness. Another case with cracked concrete section properties was analyzed. The section modulus of the cracked concrete was based on 50% of the uncracked section modulus. For structural steel elements the Young's Modulus of $29x10_6$ psi and Poisson's ratio of 0.3 was used. The model consists primarily of plate elements that represent the reinforced concrete walls, buttresses, and foundation as well as the walls and slabs of the basin, cooling towers, and pump house. Beam

elements were used to represent concrete columns and beams. Finally, solid elements were used to represent the basin and pump houses house basemat. The floor and wall flexibility was modeled in the finite element model. The structural model mesh size is detailed enough to model the principal features of the structure and transmit frequencies of at least 33 Hz. The analysis was performed in the frequency domain as described in DCD Appendix 3A. The input time histories were defined at a time step of 0.005 seconds. The same time step was used for generation of the instructure response spectra.

The mass of the structures was represented primarily by the density of the plate, beam, and solid elements comprising the model. The dead load of the structures and major equipment (fans and pumps) was included along with a 50 psf load to account for the attached piping, grating, electrical cable trays and conduits, HVAC duct work etc., as described in Section 3H.6.4.3.1.1. In addition, as described in Section 3H.6.4.3.1.2, 25% of the floor live load was also included. The damping values consistent with Regulatory Guide 1.61 were used as described in Section 3H.6.5.1.2. The impulsive water mass was calculated using the procedure described in Commentary Subsection C3.5.4 of ASCE 4-98, and was included in the model.

3H.6.5.2.4 Soil-Structure Interaction

The following describes the soil-structure-interaction (SSI) analysis for the UHS/RSW Pump House.

SSI effects were accounted for by the use of the SASSI2000 computer program using subtraction method of analysis, in conjunction with time histories described in Subsection 3H.6.5.1.1.2 and the structural model described in Subsection 3H.6.5.2.3 and shown in Figures 3H.6-15 and 3H.6-15a through 3H.6-15g. For resolution of issues with the subtraction method of analysis identified by the Defense Nuclear Facilities Safety Board (DNFSB) see Section 3H.10. The input ground motion time histories described in Section 3H.6.5.1.1.2 were applied at the finished grade in the free field. SASSI2000 implicitly considers transmitting boundaries in the formulation of impedance calculation. SASSI2000 sub-structuring method was used and no boundary condition besides the standard SASSI2000 elastic half space at the bottom of the site soil layering was used. The SASSI2000 analysis addresses the embedment of the structure, groundwater effects, the layering of the soil, and variations of the strain-dependent soil properties. A separate SSI analysis for effects of side soil-wall separation during the seismic event was performed for mean in-situ soil profile using the method in Section 3.3.1.9 of ASCE 4-98. Results of this analysis were enveloped with other SSI analyses.

The strain-compatible soil shear wave velocity and damping values for the SSI analysis were obtained from the same site response analysis which was used to develop the GMRS, as described in Section 2.5S.2.5. The seismic site response analysis was conducted using P-SHAKE computer program, which also provided the strain-compatible soil properties for the SSI analysis. A set of mean strain-compatible shear wave velocity and damping profiles along with the associated standard deviations was calculated. The calculated mean properties and associated standard

deviations were used to develop the best estimate (BE), upper bound (UB), and lower bound (LB) profiles. While the BE profile is the mean profile, the UB and LB profiles are the median +/- one standard deviation, respectively, maintaining the minimum variation of 1.5 on soil shear modulus, per the guidance provided in SRP 3.7.2. The corresponding compression wave velocity profiles were calculated using the shear wave velocity and the Poisson's ratio.

For saturated soil, the Poisson's ratio was capped at 0.48 to avoid any potential numerical instability that might be caused if a larger value is used in soil-structure interaction analysis using the SASSI2000 program. A sensitivity study was performed to assess the effect of capping the Poisson's ratio in the seismic SSI results. Control Building (CB) SSI model was used to perform this sensitivity study. SSI analysis results using Poisson's ratio limit of 0.495 were compared with the analyses results which used the Poisson's ratio limit of 0.48. The responses compared were (a) transfer functions, (b) total seismic forces, (c) maximum nodal accelerations and (d) response spectra. The comparisons were performed for the lower bound soil and the upper bound soil.

Based on these comparisons, it was concluded that the results obtained from Poisson's ratio capped at 0.495 are in general close to the corresponding enveloped responses obtained from the Poisson's ratio capped at 0.48, except for some of the responses in the vertical direction, especially for the vertical responses of the floor slabs. The following considerations apply to these exceedances.

- For the Control and Reactor Buildings, where the original site-specific SSI analyses used 0.48 as the Poisson's ratio cut-off, as described in Appendix 3A, it was shown that the DCD responses were higher than the site-specific responses. Even the modified responses, with 0.495 as the Poisson's ratio cut-off, show similar margins in comparison to the DCD responses. Therefore, the increases in vertical responses shown in this sensitivity study, as discussed above, are not significant to the conclusion that the DCD responses significantly envelop the site-specific responses for the Reactor and Control Buildings.
- For the new SSI analyses of the site-specific structures, a Poisson's ratio of 0.495 has been used. Therefore, the conclusions derived from the new analyses include the effect of higher Poisson's ratio cut-off.

The resulting strain-compatible properties for the three profiles, which were used in the SSI analysis, are presented in Table 3H.6-1. The soil layer thicknesses used in the SSI model were sufficiently small to transmit frequencies up to 33 Hz for mean soil properties in the vertical direction (i.e. SASSI2000 interaction nodes spacing in the vertical direction).

The layer thicknesses used for both in-situ soil and back fill soil, in the SSI model, were modified from those shown in Tables 3H.6-1 and 3H.6-2 to have thicknesses sufficiently small enough to conservatively transmit frequencies up to 33 Hz in the vertical direction for the corresponding mean soil properties. Tables 3H.6-1a, b, and c provide the actual layer thicknesses, along with the strain-compatible soil properties

data and passing frequency values for the three in-situ soil profiles, i.e., mean, upper bound, and lower bound, respectively. Similar data for the backfill are provided in Tables 3H.6-2a, b, and c. The layer thicknesses, H, were computed using the following equation:

$$H = V_{s}/(5*F_{t-s})$$

where V_s is the shear wave velocity and F_{t-s} is the transmittal frequency.

In the SSI model, the layer thicknesses used for the mean soil case were also used for the lower bound in-situ and back fill soil. Based on the above equation, the transmittal frequencies for the lower bound soil layers are 26 Hz or higher in the vertical direction. ASCE 4-98, Section 3.3.3.5 recommends that "The cutoff frequency may be taken as twice the highest dominant frequency of the coupled soil-structure system for the direction under consideration, but not less than 10 Hz." The dominant frequency of coupled soil-structure system has been calculated using the procedure recommended in ASCE 4-98, Section 3.3.3.5. Based on this calculation the highest frequency of the coupled soil-structure system is less than 6 Hz. Thus, the cutoff frequency is required to be at least 12 Hz. The lower bound soil model's lowest transmittal frequency of 26 Hz is larger than the required 12 Hz, and therefore is acceptable.

In order to account for the backfill placed adjacent to the walls, an additional set of SSI analyses was performed by modeling the backfill as the soil horizon above the foundation level in the SASSI2000 model. The soil layer thicknesses used for the back fill were sufficiently small to transmit the required frequencies as explained in the above paragraph. The responses obtained from this set of SSI analyses and the analyses using in-situ soil as the horizon were enveloped.

The following properties were used for the backfill to obtain shear wave and compression wave velocities, and damping ratios used in the SSI analysis:

- Unit Weight:120 pcf (1,922 kg/m³)

Based on the physical properties of the backfill described above, its strain compatible dynamic soil properties are estimated using the following steps:

(1) Determine SSE compatible soil shear strains in the backfill

It is assumed that the strains in the backfill are same as in the surrounding soil (in-situ soil). This assumption is reasonable because the extent of the backfill is small as compared to the surrounding soil and the primary motion

of the backfill will be about the same as the surrounding soil. The strain in the in-situ soil is calculated using the following steps:

(a) The ratio G / Gmax for an in-situ stratum is calculated using the mean strain compatible shear wave velocity (V_{- strain}) in layers (from Table 3H.6 1) within the stratum and the average field measured shear wave velocity (V_{-field}, from Table 2.5S.4-27) in the following equation:

G / Gmax =
$$[V_{-strain} / V_{-field}]^2$$

- (b) Using the shear modulus degradation curve (see Table 2.5S.4-32) of the soil stratum and the above calculated G / Gmax ratio, the SSE induced shear strain is calculated for the stratum.
- (c) An average value of shear strain is calculated for the entire backfill depth by averaging the strain values for all the strata.
- (2) Determine the strain compatible shear modulus and damping values of the backfill

The backfill is granular soil compacted to 95% Modified Proctor (85% relative density). Based on this, shear modulus degradation curve for the 85% relative density sand from Earthquake Engineering Research Center (EERC) Report 70–10 (Soil Moduli and Damping Factors for Dynamic Response Analysis, by Seed and Idriss) is used for calculating the strain compatible shear modulus, for the strain calculated in Step 1. The strain compatible shear modulus of the backfill , G_{backfill} is calculated using the following equation:

$$G_{\text{backfill}} = 1000 \text{ K}_2 \sigma_{\text{m}}^{\frac{1}{2}} \text{ psf}$$
 (EERC Report 70-10)

Where the coefficient K_2 is from the EERC Report 70-10 degradation curve for the calculated shear strain, and σ_m is the effective mean principal stress in the soil.

The damping value of the backfill is estimated using the sand strain dependent damping curve provided in EERC Report 70-10.

The above strain compatible shear modulus is the best estimate values (G_m). To consider the variability in shear modulus values, the lower bound (G_{LB}) and upper bound (G_{UB}) values are calculated using SRP Section 3.7.2 criteria.

$$G_{LB} = G_m / 1.5$$

$$G_{UB} = 1.5 \times G_{m}$$

The corresponding strain compatible shear wave velocities (V_S) and compression wave velocities (V_P) are calculated using the general equations:

 $V_S = [G/\rho]^{1/2}$ where G is the shear modulus and ρ is the mass density of soil.

$$V_P = V_S [(2-2 v)/(1-2 v)]^{1/2}$$

Where, v is the Poisson's Ratio values equal to 0.42 and 0.47 for the backfill above groundwater and below groundwater table, respectively.

The strain-compatible shear wave and compression wave velocities, and damping ratios calculated as above are used in the three backfill models (mean, upper bound, and lower bound) are shown in Table 3H.6-2.

3H.6.5.2.4.1 Soil-Structure Interaction Analysis for Empty UHS Basin

Section 3H.6.5.2.4 describes the SSI analysis for the full UHS basin case. An additional SSI analysis was performed for the empty UHS basin case. This analysis uses the same model and methodology as the analysis described in Section 3H.6.5.2.4 except that analyses for mean and lower bound backfill soil cases were excluded because their properties are bounded by the lower and upper bound in-situ soil cases. Also Poisson's ratio limit was set at 0.495 for calculation of compression wave velocity for soil layers below the ground water table. Results of this analysis and the analysis for the full basin case were enveloped.

3H.6.5.2.4.2 Additional Sensitivity Analysis for Refined Mesh

Additional SSI analyses were performed using a refined mesh for the soil and structural model. These analyses are described below.

Two additional UHS/RSW Pump House SSI analyses were performed for the upper bound soil profile case (UB soil case) considering both full and empty UHS basin, with a refined model shown in Figure 3H.6-15h.

The refined SSI model used for these analyses has the following passing frequency capability (passing frequency, $f = V_s / 5$ h, where Vs is the shear wave velocity of the soil layer and h is the vertical or horizontal distance between the adjacent interaction nodes):

Vertical direction: 40.4 Hz

Horizontal direction: 23.5 Hz

For soil layers below groundwater level, the Poisson's ratio was capped at 0.495 for determining the compression wave velocity. A cut-off frequency of 33 Hz was used in these analyses for transfer function calculation.

The passing frequency of about 24 Hz in the horizontal direction was selected since the site has a deep soil profile and the SSI frequencies are below 6 Hz. Also, as noted in SRP 3.7.1 Revision 3, Appendix A, the energy content of the earthquake time histories above 24 Hz is inconsequential.

Based on the results of the above refined SSI analyses, and additional structural mesh sensitivity analyses, envelope modification factors were determined for increase of the following in-structure response spectra obtained from the SSI analyses described in Section 3H.6.5.2.4 and 3H.6.5.2.4.1.

- Vertical direction spectra at the center of the Pump House Roof
- Vertical direction spectra at the center of the Pump House Operating Floor
- Vertical direction spectra of the Cooling Tower Walls
- Out-of-plane horizontal spectra of the Basin Walls

3H.6.5.2.4.3 Final In-Structure Response Spectra

In response to issues with the subtraction method of analysis identified by the Defense Nuclear Facilities Board (DNFSB) discussed in Section 3H.10, the SSI analysis for the upper bound in-situ soil case was repeated for both full and empty basin cases using the modified subtraction method of analysis. Also, in these analyses the groundwater table was changed to 6 ft below grade. Based on comparison of the resulting response spectra from these analyses to those from the subtraction method of analysis additional modification factors were determined for increase of in-structure response spectra from the subtraction method of analysis to account for the effect of using the modified subtraction method. The product of these modification factors and those described in Section 3H.6.5.2.4.2 as shown in Table 3H.6-17 were used to increase the in-structure response spectra described in Sections 3H.6.5.2.4 and 3H.6.5.2.4.1. Then, the results of the full and empty basin analyses were enveloped.

The final in-structure response spectra are shown in Figures 3H.6-16 through 3H.6-39.

3H.6.5.2.5 Development of In-Structure Response Spectra

In-structure response spectra (ISRS), shown in Figures 3H.6-16 through 3H.6-39 were developed as part of the SSI analysis in accordance with RG 1.122. The ISRS in a given direction was obtained by combining the three ISRS in that direction (developed from the separate analyses of the three directions of input motion) by the square-root-of-the-sum-of-the-squares (SRSS) method. The frequency increment for the calculation of ISRS was either smaller than or the same as provided in Table 1 of Regulatory Guide 1.122. The ISRS were broadened by $\pm 15\%$ based on the guidance provided in Regulatory Guide 1.122. See Section 3H.6.5.2.9 for the treatment of the effects due to concrete cracking.

3H.6.5.2.6 Three Components of Earthquake Motion

Separate analyses were performed in three orthogonal (two horizontal and one vertical) directions. Total structural responses (accelerations, displacements, and forces) were calculated by combining the co-directional responses as described in Subsection 3H.6.5.1.1.2.

3H.6.5.2.7 Combination of Modal Responses

Since a frequency-domain seismic analysis was performed, there were no modal responses to be combined.

3H.6.5.2.8 Interaction of Non-Category I Structures with Category I SSCs

There are no non-Category I structures near the site-specific seismic Category I structures. Consequently, there is no interaction between non-Category I and the site-specific seismic Category I structures.

3H.6.5.2.9 Effects of Parameter Variations on Floor Responses

The soil property variation described in Subsection 3H.6.5.2.4 is accounted for in the generation of the ISRS. In addition, the impact of variations in the input parameters to the seismic analysis is accounted for by broadening the FRS in accordance with RG 1.122. To account for concrete cracking, in addition to other uncertainties, the ISRS are developed with structural properties based on cracked concrete stiffness and the mean soil properties. These spectra are enveloped with the spectra from the uncracked analysis and, then, widened by $\pm 15\%$ to obtain final ISRS for use in design.

3H.6.5.2.10 Use of Equivalent Vertical Static Factors

Since a separate seismic analysis was performed for the vertical direction, equivalent static factors were not used to define the vertical seismic responses.

3H.6.5.2.11 Methods Used to Account for Torsional Effects

Inherent torsion (i.e. torsion resulting from eccentricity between the locations of the center of mass and the center of rigidity) is accounted for in the seismic analysis. Note that the structural model in the SSI analysis of the UHS/RSW pump house is a detailed 3-D finite element model which incorporates torsional degrees of freedom and eccentricities. The SSI analysis does not account for accidental torsion.

The accidental torsion is computed in accordance with the SRP Acceptance Criteria 3.7.2.II.11 considering an additional eccentricity of $\pm 5\%$ of the maximum building dimension for both horizontal directions. The magnitude and location of the eccentricities in the two horizontal directions are determined separately at each floor elevation. The induced member forces due to this accidental torsion are obtained from static analysis of the structure and are added to the induced forces due to other applicable loads whether the analysis predicts positive or negative results (i.e. absolute sum).

3H.6.5.2.12 Comparison of Responses

Since only a frequency-domain analysis is performed, comparison of responses with the response spectrum method of analysis is not applicable.

3H.6.5.2.13 Analysis Procedure for Damping

The SSI analysis accounts for the structural and soil-damping described in Subsection 3H.6.5.1.2.

3H.6.5.2.14 Determination of Seismic Overturning Moments and Sliding Forces for Seismic Category I Structures

The evaluation of seismic overturning moments and sliding accounts for the simultaneous application of seismic forces in three directions using 100%, 40%, 40% combination rule as shown below:

±100% X-excitation ±40% Y-excitation +40% Z-excitation ±40% X-excitation ±100% Y-excitation +40% Z-excitation

(Note: X & Y are horizontal axes and Z is vertical axis. Positive Z is upward. Also, ±40% X-excitation ±40% Y-excitation ±100% Z-excitation is not critical for the UHS/RSW Pump House).

The resisting forces and moments due to dead load are calculated using a reduction factor of 0.90. Resisting forces and moments due to soil are based on at-rest soil pressure, or passive soil pressure, as appropriate. The friction coefficients used for the sliding evaluation are 0.30 under the RSW Pump House and 0.40 under the UHS Basin. See Figure 3H.6-137 for formulations used for calculation of factors of safety against sliding and overturning. The calculated stability safety factors for the UHS/RSW Pump House are provided in Table 3H.6-5.

Note: Figure 3H.6-137 presents the formulations for sliding and overturning check for a single horizontal direction earthquake. When considering two horizontal (X and Y) excitations, for sliding check, the formulations of Figure 3H.6-137 remain unchanged except that the friction force (F) along the X or Y direction is replaced with Fx and Fy (friction force along the x and y axes, respectively). Fx and Fy forces are determined as follows:

Let:

Rx = Total driving sliding force along the x-axis

Ry = Total driving sliding force along the y-axis

R = Resultant driving sliding force = $[Rx^2 + Ry^2]^{1/2}$

F = Total friction force as defined in Figure 3H.6-137

Fx = Friction force along the x-axis

Fy = Friction force along the y-axis

Then,

Fx = F(Rx/R)

Fy = F(Ry/R)

For overturning check, when considering two horizontal (X and Y) excitations, the structure will tend to tip about a building corner. However, since under two simultaneous horizontal excitations there is no reduction in the resisting dead load and soil pressures against overturning about each of the two principal axes of the structure, the formulations of Figure 3H.6-137 for calculation of minimum factor of safety against overturning will remain unchanged. Depending on the magnitude of the driving and resisting forces as well as building geometry, overturning about one of the two principal axes of the structure will yield the minimum safety factor against overturning. Since the STP 3&4 overturning evaluations address overturning about each of the two principal axes of the structure, the minimum safety factor against overturning of the structure is appropriately determined.

3H.6.5.2.15 Plant Shutdown Criteria

The plant shutdown criteria described in DCD Section 3.7.4.4 will be used based on the site-specific SSE response spectra shown in Figures 3.7-1a and 3.7-2a.

3H.6.5.2.16 Seismic Category I Substructures

Analysis and design of site-specific Seismic Category I substructures (e.g., platforms, support frame structures, buried piping, tunnels, etc.) are in accordance with DCD Tier 2 Section 3.7.3, except that the site-specific SSE is used as seismic input. There is no site-specific Seismic Category I above ground tank at STP 3 & 4.

3H.6.5.3 Seismic Analysis of RSW Piping Tunnels

The RSW Piping Tunnel runs north from the UHS/RSW Pump House to Control Building (CB) and passes between the Reactor Building (RB) and Radwaste Building (RWB). Since, the tunnel is a long structure, two dimensional (2D) SSI analyses have been performed for this tunnel. The following three sections of the RSW Tunnel have been used in the SSI analyses:

- An east-west typical 2D section of the tunnel between the UHS/RSW Pump House and the RB for SSI analysis of the RSW tunnel.
- An east-west 2D section of the tunnel between the RWB and RB, for structure-soil-structure interaction (SSSI) analysis to determine the SSSI effect on the seismic soil pressures.
- A north-south 2D section of the tunnel between the Diesel Generator Fuel Oil Storage Vault (DGFOSV) and the UHS/RSW Pump House, for SSSI analysis to determine the SSSI effect on the seismic soil pressures.

All of the above SSI analyses have been performed using SASSI2000 computer program. The following summarizes the details of the above stated SSI and SSSI analyses.

SSI Analysis of the Typical 2D Section of RSW Tunnel (using the direct method of analysis)

Figure 3H.6-209 shows the structural part of the 2D plane-strain model of the reinforced concrete RSW Piping Tunnel with 2 ft thick mud mat under the base slab. The top of the tunnel is 1.75 ft below grade. The model uses 4-node plane-strain elements to model the 3 ft thick exterior walls, 3 ft thick base slab, two 2 ft thick intermediate floors, 2 ft thick mud mat and the 1.75 ft soil above the tunnel. As shown in Figure 3H.6-209, spring elements are added on the side walls of the tunnel to calculate the seismic soil pressures on the tunnel walls.

The Specifics of this 2D SSI model are as follows:

- The structural properties (i.e. mass and stiffness) for the 2D model correspond to per unit depth (1 ft dimension in the out-of-plane direction) of the tunnel.
- Layered soil is modeled up to 124 ft depth with half space below it (more than two times the horizontal dimension of RSW Piping Tunnel plus its embedment depth).
- Six cases of strain dependent soil properties representing in-situ lower bound, mean and upper bound; and backfill lower bound, mean and upper bound are considered.
- Analysis cases also include one case with cracked concrete (50% concrete modulus value) and one case with soil separation (20 ft depth). Backfill upper bound soil case was used in these analyses.
- Concrete and mud mat damping are assigned 4% for all cases, except 7% damping is assumed for the cracked case.
- Groundwater was considered at 8 ft depth (26 feet MSL). Subsection 2.4S.12 and Table 2.0-2 now state the site groundwater elevation as 28 feet MSL. Therefore, a sensitivity analysis of this change in groundwater elevation was performed using the Diesel Generator Fuel Oil Storage Vault SSI model, which showed no significant effect on the analysis results. The ground water effect is included by using minimum P-wave velocity of 5000 ft/sec except for cases where use of this minimum P-wave velocity results in Poisson's ratio in excess of 0.495.
- Model is capable of passing frequencies for both vertical and horizontal directions at least up to 32.9 Hz.
- Cut-off frequency for transfer function calculation is 33 Hz.
- Input motion is the amplified site specific SSE motion considering the effect of nearby heavy RB and UHS/RSW Pump House structures. These amplified motions were obtained from three dimensional (3D) SSI analyses of the RB and UHS/RSW PH SSI analyses as described below. For resolution of issues with

- the subtraction method of analysis identified by the Defense Nuclear Facilities Safety Board (DNFSB) see Section 3H.10.
- In the three dimensional SSI analysis of the RB for site-specific SSE, one interaction node at the ground surface and one interaction node at the depth corresponding to the bottom elevation of the RSW Piping Tunnel were located at six locations along the centerline of the RSW Piping Tunnel.
- In the three dimensional SSI analysis of the UHS/RSW Pump House for site-specific SSE, one interaction node at the ground surface and one interaction nodeat the depth corresponding to the bottom elevation of the RSW Piping Tunnel were located at one location at centerline of the Tunnel.
- The resulting amplified response spectra at the interaction nodes, representing the response of the RSW Piping Tunnel, from the above SSI analyses of RB and UHS/RSW Pump House were obtained. In order to find a reasonable envelop of these response spectra, to be used in the SSI analysis of the RSW Piping Tunnels, these spectra were compared to 1.15 x site-specific SSE to identify those exceeding 1.15 x site-specific SSE. Figures 3H.6-209a through 3H.6-209d include the response spectra which exceed 1.15 x site-specific SSE.
- Based on the comparison of the response spectra shown in Figures 3H.6-209a through 3H.6-209d, six motions were selected as envelop amplified motions for SSI analysis. These six motions correspond to 1.15 x site-specific SSE andamplified motion time histories for Nodes 29378, 29379, 29390, 29392, and 15129.
- SSI analyses of the RSW Piping Tunnel were performed, for each soil case, using 1.15 x site-specific SSE input and acceleration time histories for the five nodes, noted above, obtained from the RB and UHS/RSW Pump House SSI analyses for the corresponding soil cases.
- The horizontal direction and vertical direction input motions were applied at the grade elevation.
- The responses from the horizontal and vertical direction excitations were combined using square root of sum of square (SRSS) method.
- The responses from all SSI analyses from the six soil cases, concrete cracked case and soil separation case were enveloped.
- The in-structure response spectra were peak widened by ± 15% at frequency scale.
- Envelope of the resulting response spectra for the base slab, intermediate floors and the roof slab shown in Figures 3H.6-138 and 3H.6-139 are used as the design in-structure response spectra for the RSW Piping Tunnel.

SSSI Analysis of the East-West 2D section of the RSW piping tunnel between the RWB and RB

Figure 3H.6-210 shows the structural part of the 2D plane-strain model of RB + RSW Piping Tunnel + RWB. Specifics of this SSSI analysis are as follows:

- Subtraction method of analysis is used. For resolution of issues with the subtraction method of analysis identified by the Defense Nuclear Facilities Safety Board (DNFSB) see Section 3H.10.
- The structural properties (mass and stiffness) for the 2D model of the individual structures correspond to per unit depth (1 ft dimension in the out-of-plane direction) of the respective structure.
- Layered soil is modeled up to 551 ft depth with halfspace below it (more than two times the maximum horizontal dimension of any of the buildings plus their embedment depth).
- Lower bound in-situ, upper bound in-situ, and upper bound in-situ with upper bound backfill strain-dependent soil properties were used in the SSSI analysis.
- The damping of structural part of the model is 4%.
- Groundwater was considered at 8 ft depth (26 feet MSL). Subsection 2.4S.12 and Table 2.0-2 now state the site groundwater elevation as 28 feet MSL. Therefore, a sensitivity analysis of this change in groundwater elevation was performed using the Diesel Generator Fuel Oil Storage Vault SSI model, which showed no significant effect on the analysis results. The ground water effect is included by using minimum P-wave velocity of 5000 ft/sec except for cases where use of this minimum P-wave velocity results in Poisson's ratio in excess of 0.495.
- Model is capable of passing frequencies of at least up to 35.9 Hz in the vertical direction and 61.6 Hz in the horizontal direction.
- Cut-off frequency for transfer function calculation is 33 Hz.
- Input motion is site specific SSE motion.
- The horizontal (E-W) input motion is applied at the grade elevation.
- Figures 3H.6-212 and 3H.6-213 show the resulting soil pressures.

SSSI Analysis of the North-South 2D section of the RSW piping tunnel between the DGFOSV and UHS/RSW PH

Figure 3H.6-211 shows the structural part of the 2D plane-strain model of RB + two DGFOSVs + RSW Piping Tunnel (adjacent to UHS/RSW Pump House) + UHS/RSW PH. Specifics of this SSI analysis are as follows:

- Subtraction method of analysis is used. For resolution of issues with the subtraction method of analysis identified by the Defense Nuclear Facilities Safety Board (DNFSB) see Section 3H.10.
- The structural properties (mass and stiffness) for the 2D model of the individual structures correspond to per unit depth (1 ft dimension in the out-of-plane direction) of the respective structure.
- Layered soil is modeled up to 546 ft depth with halfspace below it (more than two times the maximum horizontal dimension of any of the buildings plus their embedment depth).
- Lower bound in-situ and upper bound in-situ strain-dependent soil properties were used in the SSSI analysis.
- The damping of structural part of the model is 4%.
- Groundwater was considered at 8 ft depth (26 feet MSL). Subsection 2.4S.12 and Table 2.0-2 now state the site groundwater elevation as 28 feet MSL. Therefore, a sensitivity analysis of this change in groundwater elevation was performed using the Diesel Generator Fuel Oil Storage Vault SSI model, which showed no significant effect on the analysis results. The ground water effect is included by using minimum P-wave velocity of 5000 ft/sec except for cases where use of this minimum P-wave velocity results in Poisson's ratio in excess of 0.495.
- Model is capable of passing frequencies of at least up to 35.9 Hz in the vertical direction and 61.6 Hz in the horizontal direction.
- Cut-off frequency for transfer function calculation is 33 Hz.
- Input motion is site specific SSE motion.
- The horizontal (N-S) input motion is applied at the grade elevation.
- Figures 3H.6-214 and 3H.6-215 show the resulting soil pressures.

3H.6.6 Structural Analysis and Design Summary

3H.6.6.1 Analytical Models

The structural analysis and design of the UHS basin and the RSW pump house was performed using a finite element model (FEM). The FEM model is shown in Figure 3H.6-40. Two SAP2000 3D FEA models are used to calculate the element design forces; one model for short term loading (seismic) and one model for long term loading (non-seismic). The only differences between the two FEA models are the loading and soil springs applied in the global Z (i.e. vertical) direction. The stiffness of the soil springs for both the short term loading and long term loading models are determined by multiplying the corresponding foundation subgrade modulus for the short term and long term loading by the tributary area of mat elements for each spring.

The resulting element forces from the short term loading model for X, Y, and Z seismic loads are combined by the SRSS method. These SRSS'd element forces constitute the E' term in the third and fifth load combinations in Section 3H.6.4.3.4.3. The element forces that comprise the E' term are added and subtracted from the other applicable resulting element forces from the long term loading model in the load combinations defined in Section 3H.6.4.3.4.3, in a database outside of the FEA model to determine final element design forces for each load combination. Since both the accidental torsional moment and soil loads (H') are directional in nature, they are added algebraically to the seismic load combinations.

The envelope of the seismic accelerations from the refined and original SSI models considering both the full basin and the empty basin were used in the short term loading model. The enveloping SSI nodal accelerations in the global X, Y, and Z directions for both the full basin case and the empty basin case were averaged by group for each of nine groups based on the locations in the UHS / RSW pump house. The final group accelerations used in the full basin seismic load case and the empty basin seismic load case represent the envelope of the original mesh accelerations and the refined mesh accelerations. For resolution of issues with the subtraction method of analysis identified by the Defense Nuclear Facilities Safety Board (DNFSB) and its impact on design see Section 3H.10.

The mass of the structure, equipment weights, seismic live loads, and hydrodynamic forces were normalized by a factor of 1 g in the equivalent static seismic FEA model. Depending on their location in the structure, these loads were multiplied by the group acceleration corresponding to their location in the structure and combined with other seismic loads by first adding the seismic loads in each direction and then combining the X, Y, and Z components by the SRSS method. Forces and moments determined from horizontal section cuts from the equivalent static FEA model are compared to similar forces and moments determined from the horizontal section cuts from the SSI analysis model to ensure that the design forces used in the equivalent static FEA model envelope the maximum SSI analysis forces.

For the portions of the UHS basin where liquid-tightness is required (i.e., exterior walls and basemat of the basin), in addition to satisfying ACI 349 strength requirements, the required strength was increased by the environmental durability factors noted in Subsection 3H.6.4.3.4.3 per Section 9.2.8 of ACI 350-01. Detailed stability evaluations were performed for sliding, overturning, and flotation for normal operating cases and for the case of an empty UHS basin. For sliding and overturning evaluations, the 100%, 40%, 40% rule was used for consideration of the X, Y, and Z seismic excitations.

3H.6.6.2 Analytical Approach

3H.6.6.2.1 UHS Basin, UHS Cooling Tower Enclosure, and RSW Pump House

The analysis described in Subsection 3H.6.6.1 considers the following loads, combined in accordance with Subsection 3H.6.4.3.4:

- Dead and live loads on the UHS basin, UHS cooling tower enclosures, and RSW pump houses as specified in Subsection 3H.6.4.3.1, plus the weight of the UHS cooling tower fill, equipment and commodities in the RSW pump house.
- Hydrostatic and hydrodynamic (impulsive and convective) loads corresponding to the water in the basin, and on the walls and the piers of the UHS basin. The hydrodynamic loads are calculated in accordance with Subsection C3.5.4 of ASCE 4 and meet the guidance provided in SRP 3.7.3, Acceptance Criterion 14.
- Specifically the "Housner method" described in TID-7024 is used to determine the hydrodynamic impulsive and convective masses.
- The impulsive masses are applied to the walls of the UHS Soil-Structure Interaction (SSI) model. Therefore, the horizontal impulsive-mode spectral acceleration is based on consideration of the flexibility of the tank.
- The seismically induced hydrodynamic pressures on the tank walls are determined by the modal and spatial combination methods outlined in SRP Section 3.7.2 including the effects of soil-structure interaction.
- Since the fundamental sloshing (convective) frequency is so low (0.135 cycles per second in the N-S direction and 0.078 cycles per second in the E-W direction), the convective mass is not included in the SSI model but is considered in the design by employing the spectral acceleration of the horizontal convective frequency at 0.5 percent damping.
- The hydrodynamic pressure is added to the hydrostatic pressure to account for the induced tension and compression forces on basin walls in the design.
- At-rest lateral soil pressure on the walls of the UHS basin and RSW pump houses.
- Hydrostatic pressures on the walls of the UHS basin and RSW pump houses due to groundwater.
- Envelope of dynamic lateral soil pressures on the walls of the UHS basin and RSW pump houses due to an SSE, calculated from (a) methodology defined in Subsection 3.5.3.2.2 of ASCE 4, (b) SSI analysis, and (c) structure-soil-structure (SSSI) analysis. At rest lateral soil pressures are presented in Figures 3H.6-41 through 3H.6-43. Figures 3H.6-218 through 3H.6-220 provide a comparison of lateral soil pressures from SSI and SSSI analysis to those from ASCE 4 methodology.
- Surcharge pressure of 300 psf (14.4 kPa) is applied to the UHS basin and RSW pump houses.
- SSE forces corresponding to the weight of the structures being acted on by the accelerations established by the SSI analysis.

- Wind loads on the UHS basin, UHS cooling tower enclosures, and RSW pump houses calculated as indicated in Subsection 3H.6.4.3.2.
- Tornado wind and pressure loads on the UHS basin, UHS cooling tower enclosures, and RSW pump houses calculated as specified in Subsection 3H.6.4.3.3.1.
- The design flood loads on the RSW pump houses and tunnels are as stated in Subsection 3H.6.4.2.3.

3H.6.6.2.2 RSW Piping Tunnels

The individual components of the RSW Piping Tunnels (roof slab, intermediate slabs, base mat and walls) have out-of-plane frequency in excess of 33 Hz and their out-of-plane seismic loads are determined using a conservative acceleration of 0.21g which exceeds the maximum Zero Period Acceleration (ZPA) of response spectra Figures 3H.6-138 and 3H.6-139. Manual calculations are used for the analysis and design of individual components of the RSW Piping Tunnels (roof slab, intermediate slab, base mat, walls) considering all applicable loads and load combinations including dead load, live load, earth pressure loads, wind and tornado loads, SSE seismic loads, internal flood loads and external flood loads.

In general the walls and slabs are designed as one-way slabs with walls spanning in the vertical direction and the slabs spanning in the East-West direction (normal to the tunnel axis). All connections are conservatively considered pinned except for those connecting to the base mat, which are considered fixed. The resulting moments and shears from this simplified analysis along with any induced axial tension or compression due to dead load and/or reactions from adjoining elements are used to determine the required rebar in accordance with the requirements of ACI 349-97. Table 3H.6-6 provides the design summary for RSW Piping Tunnels.

The tensile axial strain on the RSW Tunnel due to Safe Shutdown Earthquake (SSE) wave propagation is determined based on the equations and commentary outlined in Section 3.5.2.1 of ASCE 4-98. Equation 3.5-1 of ASCE 4-98 is used to compute the axial strain. As this equation gives the upper bound, Equation 3.5-2 from Section 3.5.2.1.2 of ASCE 4-98 is conservatively neglected.

The maximum curvature is computed based on Equation 3.5-3 in Section 3.5.2.1.3 of ASCE 4 98. The maximum curvature is then converted into additional axial strain by multiplying the curvature by the distance from the centroid of the RSW Piping Tunnels to the extreme fiber of the RSW Tunnel. For these computations, the following parameters are considered:

- An apparent wave velocity of 3,000 ft/sec (as recommended in appendix C3.5.2.1 of ASCE 4-98)
- A maximum ground velocity of 6.24 in/sec (which is based on 48 in/sec/g and sitespecific SSE maximum ground acceleration of 0.13g)

■ A triangular soil pressure distribution on the transverse leg of the tunnel near the bend which is limited by the maximum passive pressure using passive pressure coefficient Kp = 3

The tensile axial strain and strain due to maximum curvature are conservatively added together to obtain the actual strain in the longitudinal direction of the RSW Tunnel. The actual strain is then compared to the cracking strain of concrete and maximum allowable strain of the reinforcing. The maximum computed tensile axial strain is 1.8×10^{-4} in/in which is about 9% of the rebar yield strain of 2.069×10^{-3} in/in. The design also accounts for the induced forces at tunnel bends due to SSE wave propagation. These forces are determined in accordance with Section 3.5.2.2 of ASCE 4-98 by considering the structure as a beam on elastic foundation. To determine the required reinforcement, the induced forces at the tunnel bends are considered to act simultaneously with all other applicable loads (including dynamic soil pressures) in the seismic load combinations.

This analysis considered the loads identified below, combined in accordance with Subsection 3H.6.4.3.4.

- Dead load of the tunnel walls and the soil above the tunnel.
- Live load of 200 psf (9.6 kPa) applied to the floor of the tunnels.
- At-rest lateral soil pressure on the tunnel walls.
- Hydrostatic pressures on the tunnel walls due to groundwater.
- Envelope of dynamic lateral soil pressures on the tunnel walls, due to an SSE, calculated from: (a) using the methodology defined in Subsection 3.5.3.2.2 of ASCE 4-98, (b) soil-structure interaction (SSI) analysis, and (c) the structure-soil-structure interaction (SSI) analysis. At rest lateral soil pressures for typical section of the RSW Piping Tunnels using ASCE 4-98 methodology are presented in Figure 3H.6-44. Figures 3H.6-212 through 3H.6-215 provide comparison of lateral seismic soil pressures from SSSI analysis described in Section 3H.6.5.3 to those from ASCE 4-98 methodology.
- Surcharge pressure of 500 psf (23.9 kPa) applied to the ground above the tunnels.
- SSE forces corresponding to the weight of the tunnels being acted on by the accelerations established by the SSI analysis.

3H.6.6.3 Structural Design

The strength design criteria defined in ACI 349 as supplemented by RG 1.142 as well as ACI 350 (note: ACI 350 is applicable only to the exterior walls below the 71 ft maximum water level and basemat of UHS basin), was used to design the reinforced concrete elements making up the UHS basin and cooling tower enclosures as well as the RSW pump houses and piping tunnels. Concrete with a compressive strength of

4.0 ksi (27.6 MPa) and reinforcing steel with a yield strength of 60 ksi (414 MPa) are considered in the design.

3H.6.6.3.1 UHS Basin/UHS Cooling Tower/RSW Pump House Concrete Wall and Slab Design

The design forces and provided reinforcement for UHS basin, UHS cooling tower, and RSW pump house walls and slabs are shown in Tables 3H.6-7 and 3H.6-8. Figures 3H.6-40a through 3H.6-40c show the labeling convention for the walls and slabs of the UHS/RSW Pump House used for presenting the analysis results in Tables 3H.6-7 and 3H.6-8. Each face and each direction of each wall and slab has a corresponding longitudinal reinforcement zone figure. Each wall and slab also has a corresponding transverse shear reinforcement zone figure when transverse shear reinforcement is required. The reinforcement zone figures (Figures 3H.6-51 through 3H.6-136) show the various zones used to define the provided reinforcement based on the finite element analysis results. Actual provided reinforcement, based on final rebar layout, may exceed the reported provided reinforcement and the zones with higher reinforcement may be extended beyond their reported zone boundaries.

The shell forces from every element for every load combination in the finite element analysis were evaluated to determine the provided reinforcement in each reinforcement zone. For each reinforcement zone, the following out-of-plane moment and axial force couples with the corresponding load combination are reported in Tables 3H.6-7 and 3H.6-8:

- The maximum tension axial force with the corresponding moment acting simultaneously from the same load combination.
- The maximum compression axial force with the corresponding moment acting simultaneously from the same load combination.
- The maximum moment that has a corresponding axial tension acting simultaneously in the same load combination.
- The maximum moment that has a corresponding axial compression in the same load combination.

For each reinforcement zone, the in-plane shear with the corresponding load combination are reported in Tables 3H.6-7 and 3H.6-8. The in-plane shear is the maximum average in-plane shear along a plane that crosses the longitudinal reinforcement zone. The shell forces from every element for every load combination in the finite element model were evaluated to determine the required transverse reinforcement. The transverse shear and axial force reported in Tables 3H.6-7 and 3H.6-8 correspond to the maximum required transverse reinforcement for an element within that transverse reinforcement zone.

The provided longitudinal reinforcing for each face and each direction is determined based on the out-of-plane moments, axial forces, and in-plane shears occurring simultaneously for every load combination.

The provided transverse shear reinforcing (as required) is determined based on the transverse shears and axial forces perpendicular to the shear plane occurring simultaneously for every load combination. The UHS basin and RSW pump house basemats were also evaluated for punching shear at critical locations under buttresses and columns.

The forces in the structure caused by differential settlements due to the flexibility of the basin and pump house basemats and supporting soil were accounted for through the use of foundation soil springs in the finite element model. The soil spring stiffness values used in the finite element model were based on the calculated soil subgrade modulus, which is a function of the foundation settlement.

The UHS basin basemat is supported by area springs with the following uniform spring constants in the finite element model:

Vertical springs (with static loads)	0 kips/ft/ft ²
Vertical springs (with seismic loads)	0 kips/ft/ft ²
North-south springs (with static and seismic loads)	3 kips/ft/ft ²
East-west springs (with static and seismic loads)	0 kips/ft/ft ²
The RSW pump house basemat is supported by area springs with the following spring constants in the finite element model:	ng uniform
Vertical springs (with static loads) 6	0 kips/ft/ft ²
Vertical springs (with seismic loads)	0 kips/ft/ft ²
North-south springs (with static and seismic loads)11	2 kips/ft/ft ²
East-west springs (with static and seismic loads)10	4 kips/ft/ft ²

The RSW pump house operating floor and roof were designed with composite steel beams and concrete slabs for vertical loading. The composite beams span in the east-west direction with the concrete slab designed as spanning one-way between the composite beams. The operating floor and roof slabs also act as diaphragms to transfer lateral loads. The provided reinforcing for the operating floor and roof slabs is reported in Table 3H.6-8.

3H.6.6.3.2 UHS Basin Beam and Column Design

The beams and columns in the UHS basin were represented with frame elements in the finite element model. The frame forces for every load combination in the finite element model were evaluated to determine the provided reinforcement for each beam and column in Table 3H.6-9. For resolution of issues with the subtraction method of analysis identified by the Defense Nuclear Facilities Safety Board (DNFSB) and its impact on design see Section 3H.10. For each beam and column, the following forces and the corresponding load combination are reported in Table 3H.6-9:

- The maximum axial compression force with the corresponding biaxial bending moments (M2 and M3) acting simultaneously from the same load combination.
- The maximum axial tension force with the corresponding biaxial bending moments (M2 and M3) acting simultaneously from the same load combination. Note that the columns do not have an axial tension case.
- The maximum M2 bending moment with the corresponding M3 bending moment and axial force acting simultaneously from the same load combination.
- The maximum M3 bending moment with the corresponding M2 bending moment and axial force acting simultaneously from the same load combination.
- The maximum shear V2.
- The maximum shear V3.
- The maximum torsion.

The provided longitudinal reinforcing in Table 3H.6.9 is determined based on the axial force, biaxial moments (M2 and M3), and torsion. The provided stirrup reinforcing is determined based on the axial force, shears (V2 and V3), and torsion.

3H.6.6.4 Foundations

The foundations for the UHS basin, cooling towers, and pump house consist of a reinforced concrete mat and a lean concrete mud mat supported on undisturbed soil. The RSW piping tunnels, which extend from each pump house to the corresponding control building locations, are provided with flexible connections at the building interfaces that prevent any potential movement of the buildings from creating forces or moments in the tunnels.

The loads and load combinations considered in the design of the common foundation mat are as defined in Subsection 3H.6.4.3. The design is in accordance with the strength design criteria defined in ACI 349 as supplemented by RG 1.142 as well as ACI 350, and considered concrete with a compressive strength of 4.0 ksi (27.6 MPa) and reinforcing steel with a yield strength of 60 ksi (414 MPa).

The effect of settlement due to the flexibility of the structure/basemat and supporting soil is accounted for through the use of finite element analysis in conjunction with foundation soil springs. The most common approach for this analysis is the Winkler Method. In this approach, the soil is considered to have a uniform subgrade modulus under the entire mat and the springs representing the soil are considered to be linear and act independently. In this method, the uniform subgrade modulus is calculated as the average of the subgrade moduli calculated using the settlements for nine points presented in Table 2.5S.4-42. Using the Winkler Method, a uniformly loaded flexible mat foundation will exhibit uniform settlement under the entire mat. Whereas, in reality, due to overlapping stress bulbs beneath the foundation, the springs representing the soil are not independent of each other and thus the settlement at the center of the mat

will be greater than the settlement along the mat edges. To account for this effect a "Coupled Method" may be used where dependence of adjacent soil springs is represented by additional springs. Since implementation of this approach is rather complicated and may require development of custom software, use of alternate methods such as the "Pseudo-Coupled Method", described in Section 10.2 of Reference 3H.6-3, where different subgrade modulus values are assigned to different areas (zones) of the mat foundation, have been found to yield acceptable results.

For design, both the Winkler Method and the "Pseudo-Coupled Method" were used and the results were enveloped.

The resulting maximum calculated ratio of differential foundation settlements (between adjacent points in the mat finite element model) within the boundary of the UHS, Pump House, and the RSW Piping Tunnel are as follows:

- Ultimate Heat Sink basin foundation 1/860
- Reactor Service Water Pump House foundation 1/1200
- Reactor Service Water Piping Tunnel foundation 1/3900

To prevent seepage of groundwater through the common foundation or through the walls of the basin and pump houses, a waterproofing membrane is applied to the exposed concrete surface of the mudmat. In addition, a waterproof membrane is installed on the walls up to one foot below grade, with a water proof coating being applied from that level up to the flood level. While, as indicated in FSAR Subsection 3.8.6.1, the waterproofing of the mudmat will not reduce the ability of the foundation to transfer horizontal shear forces to the underlying soil, the waterproof membrane will protect the walls from any possible deleterious effects from aggressive groundwater. To prevent seepage of groundwater into the tunnels, a waterproof membrane is used.

3H.6.6.5 Stability Evaluations

The factors of safety of the combined UHS basin and RSW pump house against sliding, overturning, and flotation are provided in Table 3H.6-5. The factors of safety of the RSW Piping tunnel against sliding, overturning and flotation are provided in Table 3H.6-16.

Lateral soil pressures for stability evaluation of UHS/RSW Pump House are provided in Figures 3H.6-45 through 3H.6-50.

Lateral soil pressures for stability evaluation of RSW Piping Tunnels are provided in Figures 3H.6-253 and 3H.6-254.

3H.6.7 Diesel Generator Fuel Oil Storage Vaults (DGFOSV)

STP DEP 3.5-2

The Diesel Generator Fuel Oil Storage Vaults (DGFOSV) are reinforced concrete structures, located below grade with an access room above grade. The DGFOSV

house fuel oil tanks and transfer pumps. The DGFOSV are buried in the structural back-fill. The embedment depth to the bottom of the 2 ft thick mudmat is approximately 45 ft, the maximum height from the bottom of the mudmat is approximately 61 ft, and the basemat dimensions are approximately 81.5 ft by 48 ft. Properties of the backfill are described in Section 3H.6.5.2.4. Figures 3H.6-250 and 3H.6-251 provide plan views of the DGFOSV at the basemat and the access room, respectively. Figure 3H.6-252 provides an elevation view.

A summary of the extreme environmental design parameters is presented in Table 3H.9-1. See Section 3H.11 for hurricane wind and hurricane generated missiles.

Two DGFOSV are located about 53 feet away from the south face of the Reactor Building (RB), which is a heavy multistory structure. The third DGFOSV is located approximately 40 feet away from the north face of the Reactor Service Water (RSW) Pump House. Figure 3H.6-221 shows the DGFOSV locations relative to other structures. Considering the soil profile at the STP Units 3 & 4 site, the induced acceleration at the foundation level of the DGFOSV during a safe-shutdown earthquake (SSE) event may be amplified due to their close proximity to the RB (for the two) or the RSW Pump House (for the third). To establish the input motion for the soil-structure interaction (SSI) analysis of the DGFOSV, considering the impact of the nearby heavy RB (for the two) and RSW Pump House (for the third) structures, an analysis as described below was performed.

Five interaction nodes at the ground surface and five at the depth corresponding to the bottom elevation of the DGFOSV foundations are added to the three dimensional SSI SASSI2000 model of the RB for obtaining free field responses for the three DGFOSV. These five nodes correspond to the four corners and the center of the DGFOSV. This RB SSI model is analyzed for the STP site-specific SSE. For each of these three DGFOSV, first an average of the spectra at five nodes at the surface and foundation each is calculated and then envelope of the two average spectra is calculated. Similarly, in the SSI analysis for the RSW Pump House, interaction nodes are added in the model and amplified motion for the DGFOSV close to the RSW Pump House is obtained. Since the diesel oil tank is a standard plant equipment, the input motion for the SSI analysis also considers the 0.3g Regulatory Guide 1.60 response spectra. Therefore, the envelope of the envelope average spectra for the three DGFOSV and the 0.3q Regulatory Guide 1.60 response spectra are used as the input response spectra for the SSI analysis of the DGFOSV. For resolution of issues with the subtraction method of analysis identified by the Defense Nuclear Facilities Safety Board (DNFSB) see Section 3H.10. As shown in Figures 3H.6-222a through 3H.6-222c, the 0.3g Regulatory Guide 1.60 response spectra were found to be the bounding spectra. The DGFOSV and the equipment and components inside the vault are designed using the results of the SSI analysis.

The comparison of response spectra (the minimum required 0.1g Regulatory Guide 1.60 spectra, the FIRS, and the deconvolved SHAKE outcrop spectra) at the foundation level of the DGFOSV is presented in Figures 3H.6-11d through 3H.6-11L. As can be seen from these figures, the deconvolved SHAKE outcrop spectra envelop the minimum required spectra and FIRS for the three sets of soil properties.

The following two types of soil-structure interaction (SSI) analyses are performed for DGFOSV:

- 3D SSI analyses of DGFOSV alone for calculating in-structure response spectra and design accelerations/forces of the structure. These analyses were performed considering both full and empty fuel oil tanks.
- 2D structure-soil-structure interaction (SSSI) analysis of DGFOSV and adjacent structures to obtain seismic soil pressures.

3D SSI Analysis

The SSI analyses of the 3D model of DGFOSV are performed using SASSI2000 computer program (using the modified subtraction method).

Structural Model:

The structural part of the model consists of shell elements to model the exterior walls, and the roof slabs and 3D solid elements to model the basemat and the mud mat. Structure self weight and other applicable weights of equipment, live load, piping, metal decking, missile barrier cover are included in the structural model. The fuel tank is modeled with the fuel and tank weight lumped at the center of gravity of the tank and the tank lumped weight rigidly connected to the base mat at tank saddle locations. The fuel tank procurement specification will require that the fuel tank with fuel in it should have predominant frequencies greater than 33 Hz in horizontal and vertical directions. The fuel tank portion of the model has been assigned a damping value of 0.5%. For the other parts of the structure two damping values are used; 7% damping and 4% damping. The results from the 7% structural damping are used for design of the DGFOSV. The results from the 4% damping are used for generation of in-structure response spectra. Both full and empty fuel oil tank conditions are considered in the analysis. Figure 3H.6-222 shows the typical 3D structural model of the DGFOSV for various SSI analyses. The following provides the details of the SSI model and method of analysis.

Strain Dependent Soil Properties Used in SSI Analyses:

The strain dependent soil properties used in the model are in accordance with the properties provided in Table 3H.6-1 for the in-situ soil and Table 3H.6-2 for the backfill soil, with the exception that the groundwater table is changed to 6 ft below grade and for soil layers below the ground water table, the Poisson's ratio is capped at 0.495 for determining the compression wave velocity. The shear wave velocities in backfill are also adjusted as described in Section 3H.6.5.2.4 for groundwater table at 6 ft below grade. The thickness of soil layers are adjusted to provide a vertical direction passing frequency of at least 33 Hz (based on one fifth of shear wave length criterion).

Analysis Cases, Passing Frequency and Cutoff Frequency for the SSI Analyses:

The following cases are analyzed for both 4% and 7% structural damping cases:

For full fuel oil tank case:

- Lower Bound (LB) in-situ soil
- Mean in-situ Soil
- Upper Bound (UB) in-situ soil
- LB backfill over LB in-situ soil
- Mean backfill over mean in-situ soil
- UB backfill over UB backfill
- UB in-situ soil with soil separation
- UB in-situ soil with cracked concrete

For Empty fuel oil tank case:

UB in-situ soil with empty fuel tank

Note: For soil separation, cracked concrete and empty fuel oil tank cases, the UB in-situ soil is used because the UB in-situ soil case in general governed.

- A cut-off frequency of 33 Hz was used for all SSI analyses for transfer function calculation.
- Vertical direction passing frequencies (based on one fifth of shear wave length criterion and considering lower bound in-situ soil) are equal to or greater than 33 Hz.
- Horizontal direction passing frequencies are equal to or greater than 33 Hz, except at following locations:
 - For LB in-situ soil, the passing frequency for the top 4 ft soil layer is 30.3
 Hz.

Input Motion:

In the SSI analysis, acceleration time histories, consistent with 0.3g Regulatory Guide 1.60, are used as input at the grade elevation. The response spectra from these time histories envelop the amplified response spectra at the

DGFOSV locations considering the effect of nearby heavy RB and UHS/RSW Pump House structures.

Response Combination, Enveloping and Spectra Peak Widening:

For all analysis cases, the responses due to two horizontal directions and vertical direction input motions are combined using square-root sum of squares (SRSS) method. Then, the responses from all analysis cases and all locations considered for spectra generation are enveloped to determine one set of un-widened horizontal and vertical response spectra. Finally, per Regulatory Guide 1.122, the enveloped un-widened response spectra are peak widened by plus-minus 15% on the frequency scale to obtain the final response spectra for DGFOSV. The resulting enveloping response spectra for DGFOSV are shown in Figures 3H.6-223 and 3H.6-224.

2D SSSI Analysis

Two 2D SSSI models are developed and analyzed to evaluate the effects of nearby structures on the three DGFOSV and to calculate the seismic soil pressures on the structures.

The first SSSI model is for a section cut in the North-South direction, consisting of UHS/RSW Pump house, RSW Piping Tunnel, DGFOSV 1B, DGFOSV 1C and RB. The details of this SSSI analysis are provided in Section 3H.6.5.3.

The second SSSI model is for a section cut in the East-West direction consisting of diesel generator fuel oil tunnel (DGFOT), DGFOSV 1A and the Crane Foundation Retaining Wall. The model for this SSSI analysis is shown in Figure 3H.6-225 and the details of the model are provided below.

Structural Models:

DGFOSV Model:

East-West direction of 2D DGFOSV model is idealized by a stick model of beam elements. Axial, flexural, and shear deformation effects are included in beam element stiffness. The fuel oil tank is also modeled using beam elements and its mass is lumped at its CG. The basemat and the mud mat are modeled using four node plain strain elements. The model properties (stiffness and mass) for the 2D plane analysis correspond to per unit depth (one foot dimension in the out-of-plane direction) of the DGFOSV.

DGFOT Model:

Four node plane strain elements are used to model the exterior walls, base slab, the top slab and the mud mat. Applicable weights are included at appropriate locations in the model. The structural model properties (stiffness and mass), for the 2D plane strain model correspond to per unit depth (one foot dimension in out-of-plane direction).

Crane Wall:

The Crane Wall is modeled using beam elements with nodes located 17 ft away from the DGFOSV east wall (clear distance between the DGFOSV 1A exterior wall face and the west face of the Crane Wall). Beam section properties (stiffness and mass), for the 2D plane strain model correspond to per unit depth (one foot dimension in out-of-plane direction).

The SSSI analysis of the 2D model of DGFOSV with other structures, which affects the DGFOSV in the East-West direction is performed using SASSI2000 computer program, using subtraction method. For resolution of issues with the subtraction method of analysis identified by the Defense Nuclear Facilities Safety Board (DNFSB) see Section 3H.10. The following provides the details of this SSSI analysis.

Strain Dependent Soil Properties Used in SSSI Model:

The strain dependent soil properties used in the model are in accordance with the properties provided in Table 3H.6-1 for the in-situ soil, and Table 3H.6-2 for the backfill soil, with the exception that for soil layers below the ground water table, the Poisson's ratio is capped at 0.495 for determining the compression wave velocity. The thickness of soil layers are adjusted to provide a vertical direction passing frequency of at least 33 Hz (based on one fifth of shear wave length criterion).

Based on the site groundwater conditions originally described in FSAR Subsection 2.4S.12, the groundwater elevation of approximately eight feet below grade (26 feet MSL) was used in the analysis to determine the soil properties. Subsection 2.4S.12 and Table 2.0-2 now state the groundwater elevation as 28 feet MSL. Therefore, a sensitivity analysis of this change in groundwater elevation was performed using the Diesel Generator Fuel Oil Storage Vault SSI model, which showed no significant effect on the analysis results.

To evaluate the effects of the soil variation, six soil cases are considered:

- UB in-situ soil
- UB in-situ soil with UB backfill between the structures.
- LB in-situ soil with LB backfill between the structures.
- Mean in-situ soil with Mean backfill between the structures.
- Mean in-situ soil with LB backfill between the structures.
- Mean in-situ soil with UB backfill between the structures.

Passing Frequency and Cut-off Frequency for SSSI Model:

Cut-off frequency of 33 Hz is used in the analysis.

- Vertical direction passing frequencies are equal to or greater than 33.5 Hz.
- Horizontal direction passing frequencies are equal to or greater than 30.48
 Hz

Input Motion:

STP 3&4 site specific SSE motion, as described in Subsection 3H.6.5.1.1.2, is applied at the grade elevation, in the East-West direction.

The incremental seismic soil pressures used in design, which envelope the incremental seismic soil pressures from the SSSI analyses and those computed per Subsection 3.5.3.2 of ASCE 4-98, are shown in Figures 3H.6-226 through 3H.6-231. Figures 3H.6-228 through 3H.6-231 show exceedances of the SSI seismic soil pressures beyond the design dynamic soil pressures on the walls of the Diesel Generator Fuel Oil Storage Vault at approximately 35 to 37 ft below grade. However, the induced out-of-plane shear and moment in each wall panel due to the design soil pressures are greater than the out-of-plane shear and moment due to SSI soil pressures. Therefore, the exceedances in the SSI pressures are acceptable.

The settlement information on the DGFOSV is included in Section 2.5S.4.10.

The effect of settlement due to the flexibility of the structure/basemat and supporting soil is accounted for through the use of finite element analysis in conjunction with foundation soil springs, as described in Section 3H.6.6.4. The resulting maximum calculated ratio of differential foundation settlements (between adjacent points in the mat finite element model) within the boundary of the DGFOSV is 1/4860.

Stability evaluations were performed for sliding, overturning, and flotation. These evaluations were done using the procedure described in detail in Section 3H.6.5.2.14. For sliding and overturning evaluations, the 100%, 40%, 40% rule was used for consideration of the X, Y, and Z seismic excitations. Since the orientation of the DGFOSVs in the horizontal plane can be along the East-West or North-South axes, the horizontal seismic values used in the stability calculation envelope the SSI accelerations in the X and Y directions. The calculated factors of safety against sliding, overturning, and flotation for the DGFOSV are included in Table 3H.6-12.

The tornado missile impact evaluation results for the DGFOSV are included in Table 3H.6-13.

Static lateral soil pressures used in design are shown in Figures 3H.6-241, 3H.6-243, and 3H.6-244.

Dynamic lateral soil pressures used in design are shown in Figures 3H.6-242 and 3H.6-226 through 3H.6-231.

Lateral soil pressures used for stability evaluations are shown in Figures 3H.6-255 through 3H.6-257.

The Large Equipment Access Building Foundation will be designed such that the surcharge load on the walls of the adjacent DGFOSV is insignificant.

3H.6.7.1 Applicable Codes, Standards, Specifications and Load Combinations and Materials

The applicable codes, standards, and specifications from Section 3H.6.4 are used for analysis and design of the DGFOSV.

The DGFOSV are designed to the applicable loads and load combinations specified in Section 3H.6.4.

The DGFOSV are not subjected to any accident temperature or pressure loading. Under ambient conditions, the uniform temperature changes and thermal gradients within the structure are less than 50°F and 100°F, respectively. Referring to article 1.3 of ACI 349.1R-07, for such thermal conditions explicit consideration of ambient temperature effects is not warranted.

The structural materials used in the design of the DGFOSV are specified in Section 3H.6.4.4.

3H.6.7.2 Structural Design

The structural analysis and design of the Diesel Generator Fuel Oil Storage Vault (DGFOSV) was performed using a finite element analysis (FEA). The finite element model (FEM) for this FEA is Figure 3H.6-140. The analysis for the seismic loads was performed using equivalent static seismic loads. The maximum nodal accelerations from the SSI analysis in the X, Y, and Z direction for the subgrade and above grade roofs were averaged and used as the accelerations in the X, Y, and Z directions for the entire structure to obtain the equivalent static seismic loads. The induced forces due to the X, Y, and Z seismic excitations were combined using the square-root-sum-of squares (SRSS) method.

Comparison of the seismic in-plane shear forces, axial forces and in-plane moments for the shear walls of this structure from the equivalent static method and those from the SSI analyses at a section cut just above the basemat shows that the forces and moments from the equivalent static method are in excess of those from the SSI analyses.

The strength design criteria of ACI 349, as supplemented by RG 1.142, were used for the design of the reinforced concrete elements of the DGFOSV. Concrete with minimum compressive strength of 4.0 ksi (27.6 MPa) and reinforcing steel with yield strength of 60 ksi (414 MPa) are considered in the design.

Due to difference in soil spring constants for seismic and non-seismic loads, the FEA analyses for the non-seismic loads and equivalent static seismic loads were run on different FEA models and the results from these models were combined and adjusted per Section 3H.6.7.3.1 outside the SAP2000 model to obtain the combined total design forces and moments for the seismic load combinations.

3H.6.7.2.1 Wall and Slab Design

The design forces and provided reinforcement for the DGFOSV walls and slabs are shown in Table 3H.6-11. Figure 3H.6-141 shows the labeling convention for the walls and slabs of the DGFOSV used for presenting the analysis results in Table 3H.6-11. Each face and each direction of each wall and slab has a corresponding longitudinal reinforcement zone figure. Each wall and slab also has a corresponding transverse shear reinforcement zone figure where transverse shear reinforcement is required. The reinforcement zone figures (Figure 3H.6-142 through 3H.6-208) show the various zones used to define the provided reinforcement based on the finite element analysis results. Actual provided reinforcement, based on final rebar layout, may exceed the reported provided reinforcement and the zones with higher reinforcement may be extended beyond their reported zone boundaries.

The shell forces from every element for every load combination in the finite element analysis were evaluated to determine the provided reinforcement in each reinforcement zone. For each reinforcement zone, the following out-of-plane moment and axial force coupled with the corresponding load combination are reported in Table 3H.6-11:

- The maximum tension axial force with the corresponding moment acting simultaneously from the same load combination.
- The maximum compression axial force with the corresponding moment acting simultaneously from the same load combination.
- The maximum moment that has a corresponding axial tension acting simultaneously in the same load combination.
- The maximum moment that has a corresponding axial compression acting simultaneously in the same load combination.

For each reinforcement zone, the in-plane shear with the corresponding load combination are reported in Table 3H.6-11. The in-plane shear is the maximum average in-plane shear along a plane that crosses the longitudinal reinforcement zone.

The shell forces from every element for every load combination in the finite element model were evaluated to determine the required transverse reinforcement. The transverse shear and axial force reported in Tables 3H.6-11 correspond to the maximum required transverse reinforcement for an element within that transverse reinforcement zone.

The provided longitudinal reinforcing for each face and each direction is determined based on the out-of-plane moments, axial forces, and in-plane shears occurring simultaneously for every load combination.

The provided transverse shear reinforcing (as required) is determined based on the transverse shears and axial forces perpendicular to the shear plane occurring simultaneously for every load combination.

The DGFOSV below grade roof was designed with composite steel beams and concrete slabs for vertical loading. The composite beams span in the SAP2000 model Y-direction with the concrete slab designed as spanning one-way between the composite beams. The below grade roof slab acts as a diaphragm to transfer lateral loads. The provided reinforcing for the below grade roof slab is reported in Table 3H.6-11.

3H.6.7.3 Foundation

The foundation for the DGFOSV consists of a reinforced concrete mat and a lean concrete mud mat. The basemat deflections due to the flexibility of the basemat and supporting soil were accounted for through the use of foundation soil springs in the SAP2000 FEA models. Both the Winkler and the Pseudo-Coupled Methods were used to model the foundation soil springs, and the results of the two analyses were enveloped for design purposes.

Two different subgrade reactions (soil spring constants) are used, one for seismic loads and one for non-seismic loads. The following soil spring constants were used in the FEA models of the DGFOSVs:

Vertical springs (with static loads)	60 kips/ft/ft ²
Vertical springs (with seismic loads)	314 kips/ft/ft ²
North-south springs (with static and seismic loads)	229 kips/ft/ft ²
East-west springs (with static and seismic loads)	213 kips/ft/ft ²

3H.6.7.3.1 Uplift Analysis

The SAP2000 finite element models were checked for uplift effects by reviewing the joint reaction at the basemat. It was determined that under seismic loading the DGFOSV experiences uplift. Using the 100%, 40%, 40% rule for combination of three seismic excitations, non-linear analysis was run on each model with uniform Winkler soil springs and pseudo-coupled soil springs to determine an enveloping adjustment factor for forces and moments from the linear analysis for the foundation mat and the connecting walls. The non-linear analysis iterates multiple times removing soil springs that go into tension during each iteration until no soil springs are in tension. For the directional earthquake loading required for the nonlinear analysis, the DGFOSV critical loading, a safe shutdown earthquake (SSE) from the southwest in combination with static active and passive loads for SSE, is considered.

Comparing resultant foundation mat and wall reactions from the linear analysis with mat and wall reactions from the nonlinear analysis, there is a maximum reaction increase of approximately 221% for the foundation mat out-of-plane shear forces, 0.1% increase for the foundation mat in-plane shear and axial forces, 212% increase for the foundation mat bending moments, 4% increase for the connecting walls shear forces and axial forces, and 10% increase for the connecting walls bending moments (enveloping cases with Winkler and pseudo-coupled soil springs) in the nonlinear

analysis. To account for this, the resulting forces and moments from the linear analyses were adjusted by applying an increase factor of 3.21 to out-of-plane shear forces in the foundation mat, an increase factor of 1.1 to in-plane shear and axial forces in the foundation mat, an increase factor of 3.12 to all moments in the foundation mat, an increase factor 1.07 to all forces in the connecting walls, and an increase factor 1.1 to all moments in the connecting walls for the DGFOSV design.

3H.6.7.4 Testing and ISI Requirements

For testing and ISI requirements, see Section 3H.6.4.4.6.

3H.6.7.5 Materials and Quality Control

For materials and quality control, see Section 3H.6.4.4.7.

3H.6.8 Seismic Gaps at the Interface of Site-Specific Seismic Category I Structures and the Adjoining Structures

The joints (i.e. separation gaps) at the interface of site-specific seismic category I structures (Reactor Service Water Tunnels and Diesel Generator Fuel Oil Storage Vaults) with the adjoining structures (Control Buildings, Reactor Service Water Pump Houses, and Diesel Generator Fuel Oil Tunnels) are designed to accommodate the expected movements without transmitting significant forces. These separation gaps are sized at least 50% larger than the absolute sum of the maximum calculated displacements due to seismic movements and long term settlement. The joint material used as flexible filler will be polyurethane foam impregnated with a waterproofing sealing compound, or a similar material, capable of being compressed to 1/3 of its thickness without subjecting the structures to more than 25 psi. The walls of the Reactor Service Water Pump House and the Diesel Generator Fuel Oil Storage Vaults have been evaluated and found to be adequate for this out-of-plane load.

Table 3H.6.15 provides summary of the required and provided gaps at the interface of site-specific seismic category I structures with adjoining structures.

3H.6.9 References

- 3H.6-1 US Department of Army, Fundamentals of Protective Design for Conventional Weapons, TM 5-855-1, November 1986.
- 3H.6-2 C. R Russell, "Reactor Safeguards," published by MacMillian, New York, 1962.
- 3H.6-3 Coduto, Donald P., "Foundation Design Principles and Practices", Second Edition, Prentice Hall: New Jersey, 2001.

3H.7 Diesel Generator Fuel Oil Tunnel

STP DEP 3.5-2

3H.7.1 Objective and Scope

The scope of this section is to document the structural design and analysis of the Diesel Generator Fuel Oil Tunnels (DGFOTs) for STP Units 3 & 4.

3H.7.2 Summary

The following are the major summary conclusions on the design and analysis of the DGFOT:

- The provided concrete reinforcement listed in Table 3H.7-1 meets the requirements of the design codes and standards listed in Section 3H.7.4.1.
- The factors of safety against flotation, sliding and overturning of the structure under various loading combinations as shown in Table 3H.7-2 are higher than the required minimum factors of safety.
- The thickness of the exterior walls and roof slabs are more than the minimum required to preclude penetration, perforation, or spalling due to impact of design basis tornado and hurricane missiles.

3H.7.3 Structural Description

The layout of the Diesel Generator Fuel Oil Tunnels (DGFOTs) is as shown in Figure 3H.6-221. There are three (3) reinforced concrete DGFOTs approximately 50 ft, 200 ft, and 220 ft long for each unit. Each DGFOT is connected at one end to the Reactor Building (RB) and at the other end to a Diesel Generator Fuel Oil Storage Vault (DGFOSV). There is a seismic gap between each of the DGFOT and the adjoining RB and DGFOSV. Table 3H.6-15 provides the magnitude of the required and provided seismic gaps at interface of DGFOTs and the adjoining RB and DGFOSVs.

Each DGFOT has two access regions which extend above grade; one access region is located where the tunnel interfaces with the DGFOSV and another where the tunnel interfaces with the RB. The access regions provide access to the below grade portions of the DGFOTs during maintenance and inspection. The overall above grade dimensions of the access regions are approximately 7.5 ft wide by 7.5 ft long and 15 ft high.

The top of the DGFOT is located approximately at grade. The DGFOT No. 1B, which is the shortest tunnel, running approximately 50 ft between the RB and DGFOSV No. 1B, has a wall thickness of 2'-0" on both sides. The interior below grade dimensions of this tunnel are approximately 7 ft high by 3.5 ft wide. The other two longer DGFOTs (approximately 200 ft and 220 ft long) have a wall thickness of 2'-0" on one side and 2'-6" on the other side to allow for placement of embedded conduits. The interior below grade dimensions of these tunnels are approximately 7 ft high by 3 ft wide. Figure 3H.7-36 provides typical section view of DGFOT. Any fuel leak from the fuel oil lines or water infiltration within the tunnels will be collected in a sump and removed by pumps. The tunnels slope away from the DGFOSV and the RB towards the sump located at the center of the tunnel runs.

3H.7.4 Structural Design Criteria

3H.7.4.1 Design Codes and Standards

The DGFOTs are designed to meet the design requirements of standard plant structures. The following codes, standards, and regulatory documents are applicable for the design of the DGFOT.

- ASCE 4-98, "Seismic Analysis of Safety-Related Nuclear Structures and Commentary"
- ACI 349-97, "Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary"
- ASCE 7-88, "Minimum Design Loads for Buildings and Other Structures"
- NUREG-0800 SRP 3.3.2, "Tornado Loadings," Rev. 2, July 1981
- NRC RG 1.142, "Safety-Related Concrete Structures for Nuclear Power Plants (Other Than Reactor Vessels and Containments)," Rev 2, November 2001
- NRC RG 1.76, "Design-Basis Tornado and Tornado Missiles for Nuclear Power Plants," Rev 0, April 1974
- NUREG 0800 SRP 3.5.3 "Barrier Design Procedure", Revision 1, July 1981
- NUREG 0800 SRP 3.5.1.4 "Missiles Generated by Natural Phenomena", Rev. 2, July 1981

3H.7.4.2 Site Design Parameters

3H.7.4.2.1 Soil Parameters

•	Poisson's ratio (above groundwater)	0.42
•	Poisson's ratio (below groundwater)	0.47
•	Unit Weight (moist)	120 pcf
•	Unit Weight (saturated)	140 pcf
	Liquefaction potential	None

3H.7.4.2.2 Design Ground Water Level

Consistent with the DCD Tier 1, Table 5.0, design groundwater level is at elevation 32 feet MSL. This value bounds the site groundwater elevations discussed in Section 2.4S.12.

3H.7.4.2.3 Design Flood Level

Design flood level is 33 feet MSL, as shown in DCD, Tier 1, Table 5.0. The external flood level due to MCR breach is shown in 3H.7.4.3.3.3.

3H.7.4.2.4 Maximum Snow Load

Roof snow load is 50 psf as shown in DCD Tier 1 Table 5.0. This snow load is above the value derived from ASCE 7-88 for the STP 3&4 site. This load is not combined with normal roof live load.

3H.7.4.2.5 Maximum Rainfall

Design rainfall is 19.4 in/hr (50.3 cm/hr) as shown in DCD Tier 1 Table 5.0. This load is not combined with normal roof live load.

3H.7.4.3 Design Load and Load Combinations

The DGFOT is not subjected to any accident temperature or pressure loading. Under ambient conditions, the uniform temperature changes and thermal gradients within the structure are less than 50°F and 100°F, respectively. Referring to article 1.3 of ACI 349.1R-07, for such thermal conditions explicit consideration of ambient temperature effects is not warranted.

3H.7.4.3.1 Normal Loads

Normal loads are those that are encountered during normal plant startup, operation, and shutdown.

3H.7.4.3.1.1 Dead Loads (D)

Dead loads include the weight of the structure and other permanent static loads. An additional 50 psf uniform load is considered to account for dead loads due to piping on the DGFOT and access region walls.

3H.7.4.3.1.2 Live Loads (L)

Live loads include floor and roof area live loads and movable loads. A minimum normal floor live load of 200 psf is considered for the floor of the DGFOT. A normal live load of 50 psf is considered for the roof.

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the normal floor and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load.

A surcharge load of 500 psf is applied to the top of the DGFOT at grade and the ground on either side of the tunnel for lateral soil pressure calculation.

3H.7.4.3.1.3 Lateral Soil Pressures (H)

Lateral soil pressures are calculated using the following soil properties.

•	Unit weight (moist):	. 120 pcf (1.92 t/m ³)
-	Unit weight (saturated):	140 pcf (2.24 t/m ³)
•	Internal friction angle:	30°
•	Poisson's ratio (above groundwater)	0.42
	Poisson's ratio (below groundwater)	0.47

The calculated lateral soil pressures for design are shown in Figures 3H.7-33 through 3H.7-35.

3H.7.4.3.1.4 Internal Flood Load

The DGFOT contains sump pumps to keep the structure from flooding. The internal flooding condition is not applicable for the structural design of the DGFOT.

3H.7.4.3.2 Severe Environmental Load

Severe environmental loads consist of loads generated by wind.

3H.7.4.3.2.1 Wind Load (W)

The following parameters are used in the computation of the wind loads.

- Basic wind speed (50 year recurrence interval, fastest mile).....110 mph (177 km/h)
- Exposure:.....D
- Importance factor I:......1.11

Wind loads are calculated in accordance with the provisions of Chapter 6 of ASCE 7-88.

3H.7.4.3.3 Extreme Environmental Load

Extreme environmental loads consist of loads generated by tornado, SSE earthquake, extreme snow and flooding. A summary of the extreme environmental design parameters is presented in Table 3H.9-1. See Section 3H.11 for hurricane winds and hurricane generated missiles.

3H.7.4.3.3.1 Tornado Loads (W_t)

The following tornado load effects are considered in the design:

- Wind pressure:W_w
- Differential pressure:W_p
- Missile Impact:W_m

The tornado parameters used in the calculations of tornado loads are as follows:

- Pressure differential: 2 psi

- Missile spectrum (per DCD Tier 2 Table 2.0-1):
 - A: 4000 lbs automobile (16.4ft x 6.6ft x 4.3ft)
 - B: 276 lbs, 8" diameter armor piercing artillery shell
 - C: 1" diameter solid steel sphere

Notes:

- (1) Tornado wind pressure (W_w)
 - (a). Wind velocity and wind pressure are constant with height.
 - (b) Wind velocity and wind pressure vary with horizontal distance from the center of the tornado.
- (2) Tornado differential pressure (W_p)

The differential pressure is applied to the top of the tunnel slab and access region. The differential pressure causes suction on the exterior walls.

(3) Tornado missile impact (W_m)

Tornado missile impact effects on the structure are assessed as noted below:

- (a) Local damage in terms of penetration, perforation, and spalling.
- (b) Structural response in terms of deformation limits, strain energy capacity, structural integrity and structural stability.

- (c) All missiles are considered to impact at 35% of the maximum horizontal tornado wind speed horizontally and 70% of horizontal impact velocity vertically.
- (d) Barrier design is evaluated assuming a normal impact at the surface for the schedule 40 pipe and automobile missiles.
- (e) The automobile missile is considered to impact at all attitudes less than 30 feet above grade level.
- (4) Table 3H.7-3 contains the results of the tornado missile impact evaluation.
- Tornado load combinations

Tornado load effects are combined per USNRC Standard Review Plan, NUREG-0800 Section 3.3.2 as follows:

$$W_t = W_w$$

$$W_t = W_p$$

$$W_t = W_m$$

$$W_t = W_w + 0.5 W_p$$

$$W_t = W_w + W_m$$

$$W_t = W_w + 0.5 W_p + W_m$$

3H.7.4.3.3.2 Earthquake (E')

The Safe Shutdown Earthquake (E') loads are applied in three mutually orthogonal directions - two horizontal directions and the vertical direction. The total structural response is predicted by combining the applicable maximum co-directional responses by the SRSS method.

3H.7.4.3.3.3 Extreme Environmental Flood (FL)

The design basis flood level is 40 feet, in accordance with Subsection 2.4S.2.2. The flood water unit weight, considering maximum sediment concentration, is 63.85 pcf per Section 2.4S.4.2.2.4.3. The design requirements for this flood, including hydrostatic, hydrodynamic, and floating debris loading, are included in Section 3.4.2.

3H.7.4.3.3.4 Lateral Soil Pressures Including the Effects of SSE (H')

The calculated lateral soil pressures including the effects of SSE are shown in Figures 3H.7-2 and 3H.7-5 through 3H.7-8.

3H.7.4.3.3.5 Accident Temperature

There are no accident scenarios for the DGFOT which would cause consideration of an accident temperature.

3H.7.4.3.4 Load Combinations

3H.7.4.3.4.1 Notations

U = Required strength for strength design method

D = Dead load

F' = Hydrostatic and hydrodynamic load due to flood

L = Live load

H = Lateral soil pressure and groundwater effects

H' = Lateral soil pressure and groundwater effects, including dynamic effects

W = Wind load

W_t = Total tornado load, including missile effects

E' = SSE seismic load

FL = Extreme environmental flood

3H.7.4.3.4.2 Reinforced Concrete Load Combinations

$$U = 1.4D + 1.7L + 1.7H$$

$$U = 1.4D + 1.7L + 1.7H + 1.7W$$

$$U = D + L + H + FL$$

$$U = D + L + H + W_t$$

$$U = D + L + H + E'$$

$$U = 1.05D + 1.3L + 1.3H$$

$$U = 1.05D + 1.3L + 1.3H + 1.3W$$

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the normal floor and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load

3H.7.4.4 Materials

Structural materials used in the design of DGFOT are as follows:

3H.7.4.4.1 Reinforced Concrete

Concrete conforms to the requirements of ACI 349. Its design properties are:

3H.7.4.4.2 Reinforcement

Deformed billet steel reinforcing bars are considered in the design. Reinforcement conforms to the requirements of ASTM A615. Its design properties are:

- Yield strength......60 ksi (414 MPa)

3H.7.4.4.3 Structural Steel

High strength, low-alloy structural steel conforming to ASTM A572, Grade 50 is considered in the design for wide-flange sections. The steel design properties are:

- Yield strength......50 ksi (345 MPa)

3H.7.4.4.4 Testing and ISI Requirements

For testing and ISI requirements, see Section 3H.6.4.4.6.

3H.7.4.4.5 Materials and Quality Control

For materials and quality control, see Section 3H.6.4.4.7.

3H.7.4.5 Stability Requirements

The following minimum factors of safety are required against overturning, sliding, and flotation:

Load Combination	Overturning	Sliding	Flotation
$D + F_b$	-	-	1.1
D + H + W	1.5	1.5	-
$D + H + W_t$	1.1	1.1	-
D + H' + F'	1 1	1 1	_

Loads D, H, H', W, W_t, and E' are defined in Subsection 3H.7.4.3.4.1. F_b is the buoyant force corresponding to the flood water level.

3H.7.5 Structural Analysis and Design Summary

3H.7.5.1 Analytical Model Analysis and Design

The DGFOTs are Seismic Category I structures. The structural analysis and design of the DGFOT is performed using a three-dimensional (3D) SAP 2000 finite element analysis (FEA) with shell elements representing the walls, slabs and mat. The foundation soil is represented by vertical and horizontal springs. The FEA finite element model (FEM) is shown in Figure 3H.7-1.

The DGFOT No. 1B, which is the shortest tunnel, running approximately 50 ft between the RB and the DGFOSV No. 1B, has a wall thickness of 2'-0" on both sides. The interior below grade dimensions of this tunnel are approximately 7 ft high by 3.5 ft wide. The other two longer DGFOTs (approximately 200 ft and 220 ft long) have a wall thickness of 2'-0" on one side and 2'-6" on the other side to allow for placement of embedded conduits. The interior below grade dimensions of these tunnels are approximately 7 ft high by 3 ft wide. The DGFOT No. 1B, with a wall thickness of 2'-0" on both sides and shorter tunnel length for resisting torsion effects, is selected as the critical tunnel for the FEA.

The Safe Shutdown Earthquake (SSE) design forces (E') are conservatively determined using equivalent static seismic loads. The mass of the structure, equipment weights, and seismic live loads are excited in the X, Y, and Z directions using the enveloping maximum nodal accelerations in the X, Y, and Z directions from the soil-structure interaction (SSI) analysis. A comparison between the maximum accelerations from the SSI analysis and the design accelerations for the DGFOT shows the design accelerations envelope the SSI analysis accelerations. The resulting element forces and moments due to X, Y, and Z excitations are combined using the SRSS method.

Figures 3H.7-5 through 3H.7-8 show a comparison of the SSI soil pressures, the SSSI soil pressures, the ASCE 4-98 soil pressures and the total enveloping soil pressure used in design on the walls of the DGFOT.

The forces at tunnel bends due to SSE wave propagation are determined per Section 3H.7.5.2.4 and are included as additional loads in the SAP2000 models.

Multiple SAP2000 FEA models were created to represent different conditions and load combinations for the DGFOTs. The following is a breakdown of the different FEA models:

(1) Normal (Operating Condition, Heavy Load Condition, and Flood Load Condition):

The purpose of these models is to consider the effects of operating load conditions (i.e. dead loads, minimum live loads, etc.), the heavy load

condition (when heavy vehicles and cargo are moved across the top of the tunnel), and the flood load condition (the extreme flood loads due to a MCR breach).

(2) SSE (SSE loads without SSE Wave Propagation):

The purpose of these models is to consider the effects of SSE loads without the effects of the SSE wave propagation, which are considered in a separate model. The dead loads, live loads, soil loads, and accidental eccentricity loads are applied to the static (non-seismic) model. The SSE loads are combined using the SRSS method in the dynamic (seismic) model.

(3) SSE (SSE loads with SSE Wave Propagation per ASCE 4-98):

The purpose of these models is to consider the effects of SSE loads with the effects of the SSE wave propagation and additional forces and moments due to bends in the tunnel per ASCE 4-98. The dead loads, live loads, soil loads, accidental eccentricity loads, SSE wave propagation loads and additional forces and moments due to bends in the tunnel are applied to the static (non-seismic) model. The SSE loads are combined using the SRSS method in the dynamic (seismic) model.

(4) Tornado Missile:

The purpose of these models is to consider the effects of vertical tornado missiles. The full tornado load combinations, outlined in Section 3H.7.4.3.4.2, are applied to the model considering a vertical tornado missile. The results of this SAP2000 model are combined with those from a manual calculation which considers the full tornado load combination and a horizontal tornado missile.

(5) Effect of Uplift:

The purpose of this model is to consider the effects of uplift on the basemat during a seismic event. All loads are simultaneously applied to a single static model. The models described above are developed to determine the reinforcement required for their specific loading conditions. The results are post-processed as described in Section 3H.7.5.3.1.

The required reinforcement (longitudinal, in-plane shear and transverse) reported in Table 3H.7-1 is based on the envelop of the required reinforcement determined from all the SAP2000 FEA analyses and the required reinforcement determined via the manual calculation for the full tornado load combination.

3H.7.5.2 Analysis

3H.7.5.2.1 Seismic Analysis

The DGFOTs are long reinforced concrete tunnels with above grade access regions at the two ends of each tunnel. The widened envelop spectra of the resulting in-structure response spectra from the following two seismic analyses are used as the final instructure response spectra for these tunnels and their access regions.

- Two-dimensional (2D) soil-structure-interaction (SSI) analysis of a typical cross section of the DGFOT
- Three-dimensional (3D) fixed base seismic analysis of the DGFOT No. 1B (approximately 50 ft long) including its access regions at the two ends of the tunnel.

The details of the above two seismic analyses are provided below.

A. 2D SSI Analysis of a Typical Cross section of DGFOT

SASSI2000 computer code is used for the SSI analysis, using the direct method. Figure 3H.7-20 shows the structural part of the 2D plane-strain model of the DGFOT with 2 ft thick mud mat under the base mat. The top of the tunnel is at the grade elevation. The specifics of the 2D SSI model are as follows:

- The structural properties (i.e. mass and stiffness) for the 2D model correspond to per unit depth (1 ft dimension in out-of-plane direction) of the tunnel.
- Layered soil is modeled up to 74 ft depth (more than two times the horizontal cross section dimension of the tunnel plus its embedment depth) with halfspace below it.
- Sixteen cases of strain dependent soil properties representing the in-situ lower bound, mean and upper bound; lower bound backfill over in-situ lower bound, mean backfill over in-situ mean and upper bound backfill over in-situ upper bound; cracked concrete wall with in-situ upper bound soil, soil separation with in-situ upper bound soil; ABWR DCD/Tier 2 generic soil profiles UB1D, VP3D, VP4D, VP5D, VP7D, R, R with soil separation and R with cracked wall.
- Concrete and mud mat damping are assigned 4% for all cases (conservatively 4% damping is also used for cracked concrete cases).
- In accordance with Subsection 2.4S.12 and Table 2.0-2 groundwater was considered at 6 ft depth (28 feet MSL) for site-specific soil and backfill cases. Groundwater was considered at 2 ft depth for DCD cases. In site-specific and backfill cases, the groundwater effect is included by using a minimum P-wave velocity of 5000 ft/sec, as explained in Section 3A.15, except that Poisson's ratio is capped at 0.495. In DCD cases, the groundwater effect is similarly included, except that, consistent with DCD Section 3A.3.3, a minimum P-wave velocity of 4800 ft/sec is used.
- The models are capable of passing frequencies up to at least 33 Hz, in both the vertical and horizontal directions.

- For all SSI cases analyzed, a cut-off frequency of 35 Hz is used for transfer function calculations.
- Acceleration time histories consistent with Regulatory Guide 1.60 response spectra anchored at 0.3g peak ground acceleration are used as input at the grade elevation.

The foundation input response spectra (FIRS) for the DGFOT were calculated and were compared to the outcrop spectra at the foundation level of the DGFOT. The outcrop spectra were calculated from a deconvolution analysis performed in the SHAKE program with the site-specific SSE motion applied at the free field ground surface. Figures 3H.7-22 through 3H.7-30 show the comparison of the outcrop response spectra and the FIRS, in the two horizontal directions and the vertical direction for the lower bound, mean and upper bound in-situ soil properties. These figures show that the FIRS are enveloped by the foundation outcrop spectra in all cases. The figures also show that the response spectra at the SHAKE outcrop of DGFOT foundation level also envelop a broad band spectrum anchored at 0.1g. This is the minimum requirement as stated in SRP 3.7.1 and Appendix S to 10 CFR 50. The broadband spectrum used in this comparison is conservatively defined as the Regulatory Guide 1.60 spectrum anchored at 0.1g.

- Since the tunnels run along both East-West and North-South directions, the horizontal input motions from both East-West and North-South time histories are considered. East-West input motion is applied to the tunnel sections running North-South and North-South input motion is applied to the tunnel sections running East-West. To account for the impact of nearby heavy RB, in the three dimensional SSI analysis of the RB for site-specific SSE, one interaction node at the ground surface and one interaction node at the depth corresponding to the bottom elevation of the DGFOT are located at several locations along each of the three DGFOTs. The envelope of the amplified motions at these interaction nodes and 0.3g Regulatory Guide 1.60 response spectra are used for SSI analysis of the DGFOT. For resolution of issues with the subtraction method of analysis identified by the Defense Nuclear Facilities Safety Board (DNFSB) see Section 3H.10. As shown in Figures 3H.7-30a through 3H.7-30c, the 0.3g Regulatory Guide 1.60 response spectra are found to be the bounding spectra.
- In-structure response spectra are generated at the top of floor slab (middle of span), at the top of the roof slab (middle of span) and at the mid-height of two walls of the tunnel cross-section.
- The responses from the horizontal and vertical directions are combined using the square-root-of-sum-of-square (SRSS) method.
- The responses from all SSI analyses cases are enveloped.
- The in-structure response spectra at the top of the floor slab (middle of span), at the roof of slab (middle of span) and at the mid-height of two walls

of the tunnel cross-section are enveloped to conservatively provide the in-structure response spectra for the entire 2D cross-section of the tunnel.

B. 3D Fixed Base Analysis of DGFOT No. 1B Including its Two Access Regions

A 3D fixed base seismic (basemat fixed) analysis of the DGFOT No. 1B running between the RB and DGFOSV No. 1B is performed. The following provides the details of this fixed base analysis:

- SAP2000 computer code is used to perform the seismic analysis.
- Modal time history method of analysis is used.
- Shell elements are used for modeling the reinforced concrete tunnel section and the access regions at the two end of the tunnel.
- 4% damping is used for the shell elements.
- Acceleration time histories (two horizontal directions and a vertical direction) consistent with Regulatory Guide 1.60 response spectra anchored at 0.3g peak ground acceleration are used as input motions.
- Nodal acceleration time history responses obtained from the SAP2000 analysis are processed using the RSG computer code to calculate in-structure response spectra at selected nodes. The nodes selected for the in-structure response spectra generation are; four nodes on top of each access regions (middle of four walls) and three nodes at the top of tunnel (middle of the tunnel).
- The maximum co-directional responses from each of the three directions of excitations are combined using the SRSS method.
- The in-structure response spectra at the selected nodes are enveloped to conservatively provide the in-structure response spectra from fixed base analysis, for the entire tunnel and the access regions.

The corresponding in-structure response spectra obtained from the 2D SSI analysis and in-structure response spectra obtained from the 3D fixed base analysis described in parts A and B above are enveloped and peak widened by ± 30%. The 30% peak widening is used to cover any frequency shift due to the foundation soil flexibility, which is not included in the fixed base seismic analysis. The final widened in-structure response spectra for the horizontal and vertical directions of the DGFOTs and their access regions are provided in Figures 3H.7-31 and 3H.7-32, respectively. The spectra in Figures 3H.7-31 and 3H.7-32 provide the in-structure response spectra for the entire SDGFOTs and their access towers at the two ends.

3H.7.5.2.2 Structure-Soil-Structure Interaction (SSSI) Analysis for Seismic Soil Pressures

Two 2D section cuts are taken for site-specific SSSI analyses; one East-West section cut through DGFOT No. 1C, DGFOSV No. 1A and the Crane Foundation Retaining Wall (CFRW) and one East-West section cut through the RB, DGFOT No. 1A and the CFRW. These SSSI analyses are used to obtain seismic soil pressures on the walls of DGFOT considering the effect of nearby structures.

The SSSI model and analyses details for the section cut through DGFOT No. 1C, DGFOSV No. 1A and the CFRW are provided in Section 3H.6.7.

The structural part of SSSI model for the section cut through the RB, DGFOT No. 1A and the CFRW is shown in Figure 3H.7-21. The methodology for the SSSI model including strain dependent soil properties; soil cases analyzed; and method of analyses are same as those for the section cut through DGFOT No. 1C, DGFOSV No. 1A and the CFRW described in Section 3H.6.7. This SSSI model is capable of passing frequencies up to at least 33 Hz in both the vertical and horizontal directions and the analysis uses a cut-off frequency 33 Hz for calculation of transfer functions.

Figures 3H.7-5 through 3H.7-8 show a comparison of the SSI, SSSI, ASCE 4-98 seismic soil pressures and the enveloping seismic soil pressures used for the design of the DGFOT walls.

The design of the DGFOTs also accounts for the axial tensile strain and the seismic induced forces at the tunnel bends due to SSE wave propagation as described in section 3H.7.5.2.4.

3H.7.5.2.3 Torsional Effects

The accidental torsion is computed in accordance with ASCE 4-98 considering an additional eccentricity of +/- 5% of the maximum building dimension for both horizontal directions. The induced member forces due to this accidental torsion are obtained from static analysis of the structure and are added to the induced forces to other applicable loads whether the analysis predicts positive or negative results (ie: absolute sum).

3H.7.5.2.4 SSE Wave Propagation Effects

The design of the DGFOT accounts for the axial tensile strain and induced forces at tunnel bends due to SSE wave propagation. The axial strain on the DGFOT due to SSE wave propagation is determined based on the equations and commentary outlined in Section 3.5.2.1 of ASCE 4-98. The maximum curvature is computed based on Equation 3.5-3 in Section 3.5.2.1.3 of ASCE 4-98.

For SSE wave propagation computations, the following parameters are considered:

 An apparent wave velocity of 3,000 ft/sec (as recommended in Section C3.5.2.1 of ASCE 4-98)

- A maximum ground velocity of 6.24 in/sec (which is based on 48 in/sec/g and site-specific SSE maximum ground acceleration of 0.13g)
- Soil pressure distribution on the transverse leg of the tunnel near the bend is limited by the maximum passive pressure using passive pressure coefficient Kp = 3

The tensile axial strain and strain due to maximum curvature are conservatively added together to obtain the actual strain in the longitudinal direction of the DGFOT. The actual strain is then compared to the cracking strain of concrete and maximum allowable strain of the reinforcing. The maximum computed tensile axial strain is 1.75 x 10^{-4} in/in which is about 8.5% of the rebar yield strain of 2.069 x 10^{-3} in/in. The design also accounts for the induced forces at tunnel bends due to SSE wave propagation. These forces are determined in accordance with Section 3.5.2.2 of ASCE 4-98 by considering the structure as a beam on elastic foundation. To determine the required reinforcement, the induced forces at the tunnel bends are considered to act simultaneously with all other applicable loads (including dynamic soil pressures) in the seismic load combinations.

3H.7.5.3 Structural Design

3H.7.5.3.1 Reinforced Concrete Elements

The strength design criteria defined in ACI 349, as supplemented by RG 1.142, was used to design the reinforced concrete elements making up the DGFOT. Concrete with a compressive strength of 4.0 ksi and reinforcing steel with a yield strength of 60 ksi are considered in the design. All loads and load combinations listed in Section 3H.7.4 are considered in the design.

The design forces and provided longitudinal and transverse reinforcement for the DGFOT and access region walls and slabs are shown in Table 3H.7-1. The reinforcement zones in Table 3H.7-1 are shown in Figures 3H.7-9 through 3H.7-14, 3H.7-14a, 3H.7-15 through 3H.7-19 and 3H.7-19A. The regions of the DGFOT are labeled in Figure 3H.7-1.

The shell forces from every element for every load combination in the finite element analysis were evaluated to determine the required reinforcement. The following out-of-plane moment and axial force coupled with the corresponding load combination are reported in Table 3H.7-1 when the governing forces, moments and reinforcement is from the SAP2000 models:

- The maximum tension axial force with the corresponding moment acting simultaneously from the same load combination.
- The maximum compression axial force with the corresponding moment acting simultaneously from the same load combination.
- The maximum moment that has corresponding axial tension acting simultaneously in the same load combination.

■ The maximum moment that has corresponding axial compression acting simultaneously in the same load combination.

For each surface, the in-plane shear with the corresponding load combination are reported in Table 3H.7-1 when the governing forces, moments and reinforcement is from the SAP2000 models. The in-plane shear is the maximum average in-plane shear along a plane that crosses the longitudinal reinforcement zone. The shell forces from every element for every load combination in the finite element model were evaluated to determine the required transverse reinforcement. The transverse shear and axial force reported in Table 3H.7-1 correspond to the maximum required transverse reinforcement for an element within that transverse reinforcement zone.

The provided longitudinal reinforcing for each face and each direction is determined based on the out-of-plane moments, axial forces, and in-plane shears occurring simultaneously for every load combination.

The provided transverse shear reinforcing (as required) is determined based on the transverse shears and axial forces perpendicular to the shear plane occurring simultaneously for every load combination.

3H.7.5.3.2 Foundation Design

The foundation for the DGFOT consists of a reinforced concrete mat and a lean concrete mud mat. The basemat deflections due to the flexibility of the basemat and supporting soil were accounted for through the use of foundation soil springs in the SAP2000 finite element analysis models. Both the Winkler and the Pseudo-Coupled Methods were used to model the foundation soil springs. The results of the two analyses were enveloped for design purposes.

Two different subgrade reactions (soil spring constants) are used, one for seismic loads and one for non-seismic loads. The following soil spring constants were used in the FEA models of the DGFOTs:

Vertical springs (with static loads)	260 kips/ft/ft ²
Vertical springs (with seismic loads)	531 kips/ft/ft ²
North-south springs (with static and seismic loads)	318 kips/ft/ft ²
East-west springs (with static and seismic loads)	318 kips/ft/ft ²

3H.7.5.3.3 Uplift Analysis

The effect of uplift on the basemat during a seismic event was considered through the use of a SAP2000 design model which simulated the uplift condition. The seismic design accelerations applied to the SAP2000 design uplift model are adjusted by a scale factor which scales the seismic forces to the maximum level possible during an uplift condition of the DGFOT. The scaled seismic accelerations along with applicable loads described in Section 3H.7.4 are then combined. The results of the uplift model and the design models were enveloped for design purposes.

3H.7.5.3.4 Stability Evaluation

The DGFOT stability evaluations are performed for the various load combination listed in Section 3H.7.4.5. These evaluations were done using the procedure described in detail in Section 3H.6.5.2.14. The lateral soil pressures for stability evaluation of the DGFOT are shown in Figures 3H.7-3 and 3H.7-4. The DGFOT factors of safety against sliding, overturning, and flotation are provided in Table 3H.7-2. For sliding and overturning evaluations, the 100%, 40%, 40% rule was used for combination of the X, Y, and Z seismic excitations.

Restraints are provided around the Access Regions to limit movement and rotation due to a tornado or hurricane missile.

3H.8 Development of Standard Plant SSE Time Histories

The seismic analysis of the Diesel Generator Fuel Oil Storage Vaults and Diesel Generator Fuel Oil Tunnels use the SSE ground motion included in Tier 1 Table 5.0, in addition to the site-specific SSE ground motion, as described in Sections 3H.6.7 and 3H.7, respectively. Since the DCD does not include the digitized information for the SSE time histories, new time histories consistent with Regulatory Guide 1.60 response spectra anchored to peak ground acceleration of 0.3g were developed for use in these analyses. Acceleration time history records obtained from 1994 Northridge Earthquake were used as seed time histories in generating these synthetic time histories. The time histories were developed in accordance with the criteria described in Section 3.7.1.2, using computer programs SYNQKE-R, HIST, and QUAKE described in Appendix 3C.

The plots of the acceleration, velocity, and displacement time histories of the two horizontal and the vertical components are shown in Figures 3H.8-1 through 3H.8-3. The plots of response spectra for 2%, 3%, 4%, 5%, and 7% damping, showing the comparison of the target response spectra (Regulatory Guide 1.60 spectra) with the spectra of the synthetic time histories, are shown in Figures 3H.8-4 through 3H.8-18. The plots of power spectral density functions (PSD) showing the comparison of the target PSD, corresponding to the Regulatory Guide 1.60 spectra, with the PSD of the synthetic time histories are shown in Figures 3H.8-19 through 3H.8-21.

3H.9 Extreme Environmental Design Parameters for Seismic Analysis, Design, Stability Evaluation and Seismic Category II/I Design

Table 3H.9-1 shows the extreme environmental design parameters used for seismic analysis, structural design, stability evaluation, and Seismic Category II/I design for the Ultimate Heat Sink/Reactor Service Water Pump House, Reactor Service Water Piping Tunnel, Diesel Generator Fuel Oil Storage Vault, Diesel Generator Fuel Oil Tunnel, Radwaste Building, Control Building Annex, Turbine Building, and Service Building.

3H.10 STP 3 & 4 Resolution of Issues with Subtraction Method of Analysis Identified by DNFSB

The Defense Nuclear Facilities Safety Board (DNFSB) in its letter from Peter S. Winokur to Daniel B. Poneman of DOE, dated April 8, 2011, has identified a technical issue in SASSI that when the Subtraction Method (SM) is used to analyze embedded

structures, the results may be non-conservative. To address this issue an extensive evaluation was performed and, where required, in-structure response spectra and/or structural designs based on SM were modified to ensure STP 3 & 4 designs are conservative. This evaluation took into account the recommendations for reviewing past SASSI SM analyses, and advice on avoiding SM errors in future analyses that DOE provided in a letter from Daniel B. Poneman to Peter S. Winokur dated July 29, 2011, responding to the DNFSB. The following is a summary of this evaluation.

A. Modified Subtraction Method:

For new analyses where use of the Direct Method (DM) of analysis is not feasible, in its July 29, 2011 letter to the DNFSB, DOE has recommended using the Modified Subtraction Method (MSM) of analysis. For analyses performed for STP 3 & 4, the interaction nodes for MSM are comprised of all those at the soil-structure interface and all those at the top of excavated soil elements.

A Project specific validation and verification was performed to verify MSM results against those from DM. In the previous SSI analysis in support of the shear wave velocity departure, the CB SSI analysis was performed using DM. For this verification, the CB was re-analyzed using MSM and the results of SSI analyses from the DM and MSM were compared. The results of these comparisons were as follows:

- In-structure response spectra (ISRS) compared well.
- The maximum accelerations compared well. The maximum difference was less than 4%.
- Beam element forces (i.e. axial, shear and moment) compared well. The maximum difference was less than 2%.
- Wall in-plane forces (i.e. axial, shear and moment) compared well. The maximum difference was about 4%.
- Based on maximum difference of 4% in maximum accelerations, the maximum difference in wall out-of-plane forces would be about 4%.

Based on the above comparison results, the Modified Subtraction Method of analysis with interaction nodes comprised of those at the soil-structure interface and the nodes at the top of excavated soil elements is verified for STP 3 & 4 project use.

B. STP 3 & 4 Use of SASSI2000 for Seismic Analyses:

The SASSI2000 program is used to perform seismic analyses for Seismic Category I structures. These seismic analyses are comprised of:

- Soil Structure Interaction (SSI) analysis
- Structure-Soil-Structure Interaction (SSSI) analysis

The results of the above seismic analyses are used for:

- Determination of amplified site-specific motions for light structures considering the influence of nearby heavy structures
- Generation of In-Structure Response Spectra (ISRS) using the acceleration time histories from SSI analyses
- Structural design and stability evaluations of structures using:
 - 1. Maximum nodal accelerations and section cut forces from SSI analyses
 - 2. Soil pressures from the SSI and SSSI analyses

The Subtraction Method of analysis was used for all SSSI and some SSI analyses. The results of these analyses were used in addressing the design of the following buildings.

- Reactor Building (RB)
- Control Building (CB)
- Ultimate Heat Sink (UHS)/Reactor Service Water (RSW) Pump House
- RSW Piping Tunnels
- Diesel Generator Fuel Oil Storage Vaults (DGFOSV)
- Diesel Generator Fuel Oil Tunnels (DGFOT)
- Radwaste Building (RWB)

For the Reactor and Control buildings the results were compared to the DCD design values to ensure that the DCD design envelopes the results of these analyses.

C. Impact on Amplified Site-Specific Motions:

Before the DNFSB letter, the amplified motions had been determined from the three SSI analyses described below:

Reactor Building (RB) SSI Analysis

In this SSI analysis, the amplified site-specific motions were determined for the following adjacent light structures:

- RSW Piping Tunnels
- Diesel Generator Fuel Oil Storage Vaults (DGFOSV)
- Diesel Generator Fuel Oil Tunnels (DGFOT)
- Radwaste Building (RWB)
- Control Building Annex (CBA)

- Service Building (SB)
- 2) Control Building (CB) SSI Analysis

In this SSI analysis, the amplified site-specific motions were determined for the following adjacent light structures:

- CBA
- SB
- 3) UHS/RSW Pump House SSI Analysis

In this SSI analysis, the amplified site-specific motions were determined for the following adjacent light structures:

- RSW Piping Tunnels
- the one DGFOSV which is located adjacent to the RSW Pump House

Since the RB SSI model includes the great majority of the light structures adjacent to heavy structures (i.e. all but the CBA), the RB SSI analysis was selected to examine the impact on the amplified site-specific motions. For this re-analysis the modified subtraction method of analysis (MSM) was used due to the large size of the RB SSI model. In addition, the Poisson's ratio cap was increased to 0.495 and the ground water table was increased to 6 feet below grade (i.e., EL 28 ft MSL). The amplified motions obtained from the MSM analyses are acceptable because the MSM was validated by analyzing the CB model using both the Direct Method (DM) and MSM and comparing the responses obtained from the two methods. The responses compared were the structure's peak accelerations, response spectra, displacements and element forces. The comparisons showed that the corresponding responses from the MSM and DM match very well. The comparisons did not include acceleration motion (time histories) at a point in the soil away from the structure, for calculating amplified motion in the soil due to the structure. However, since the acceleration time histories at nodes in the structure matched very well, the acceleration time histories at a point in the soil away from the structure will also match very well.

Changes in amplified input motions may affect one or more of the following:

- Generated In-Structure Response Spectra (ISRS)
- Design of Seismic Category I Structures
- Seismic II/I Designs
- Stability Evaluations of Seismic Category I and II/I structures

Each of the above items is discussed below.

Impact on Generated ISRS:

ISRS are only generated for Seismic Category I structures. The impact on generation of ISRS for DGFOSV, DGFOT and RSW Piping Tunnels is discussed below.

DGFOSV and **DGFOT**:

The ISRS for these two structures were generated considering the amplified input motion from the SSI analysis of the RB using MSM. Therefore, no further evaluation is required for these structures.

RSW Piping Tunnels:

Considering the significant change in amplified input motion of the RSW Piping Tunnels, the ISRS of the RSW Piping Tunnels were increased using scale factors to account for the impact of MSM on the generated ISRS.

Considering the amplified input motions for the RSW Piping Tunnels from the SSI analyses of the RB and UHS/RSW Pump House, for each damping value, each direction and each soil case, the scale factors were computed as the ratio of instructure response spectra (ISRS) based on amplified input motions from MSM SSI analysis divided by the corresponding ISRS based on amplified input motions from SM SSI analysis. These scale factors were determined on frequency basis and enveloped over frequency intervals of 0-2 Hz, 2-5 Hz, 5-10 Hz, 10-15 Hz, 15-20 Hz, 20-25 Hz, 25-30 Hz, 30-35 Hz, 35-40 Hz, 40-45 Hz, 45-50 Hz, 50-55 Hz and 55-100 Hz. For each damping value, each direction and each soil case, these scale factors were applied to the raw spectra based on amplified input motions from the SM SSI analysis of the RB and UHS/RSW Pump House prior to generation of final broadened response spectra. Figures 3H.6-138 and 3H.6-139 are the final scaled response spectra for the RSW Piping Tunnels for the horizontal and vertical directions, respectively.

<u>Impact on Design of Seismic Category I Structures:</u>

Each of the structures affected (i.e. DGFOSV, DGFOT and RSW Piping Tunnels) by this item is discussed below.

DGFOSV and DGFOT:

The designs of these structures were completed considering the amplified input motion from the SSI analysis of the RB using MSM. Therefore, no further evaluation is required for these structures.

RSW Piping Tunnels:

Design of the RSW Piping Tunnel was re-evaluated considering the impact of amplified input motions from the MSM analysis and found to be conservative.

Impact on Seismic II/I Designs:

Each of the structures affected (i.e. RWB, SB, and CBA) by this item is discussed below.

RWB:

The II/I design of this structure as noted in Table 3H.9-1 is based on the envelope of the amplified site-specific SSE and 0.3g RG 1.60 spectra. The amplified input motions for the RWB obtained from MSM analysis of the RB are significantly bounded by the 0.3g RG 1.60 spectra. Therefore, the II/I design of the RWB is not impacted and requires no further evaluation.

SB:

The II/I design of this structure as noted in Table 3H.9-1 is based on the envelope of the amplified site-specific SSE and 0.3g RG 1.60 spectra. The amplified input motions for the SB obtained from MSM analysis of the RB are significantly bounded by the 0.3g RG 1.60 spectra. Therefore no further evaluation is required for II/I design of the SB.

CBA:

The II/I design of this structure as noted in Table 3H.9-1 is based on the envelope of the amplified site-specific SSE and 0.3g RG 1.60 spectra. No amplified site-specific SSE has been generated for the CBA using MSM analysis. However, the existing amplified site-specific SSE motions obtained from SSI analysis of the CB using SM are significantly bounded by the 0.3g RG 1.60 spectra. Considering the change in amplified motions for those from RB MSM SSI analysis, the amplified input motions from a MSM SSI analysis of CB will still be bounded by the 0.3g RG 1.60 spectra. Therefore no further evaluation is required for II/I design of the CBA.

D. Generation of In-structure Response Spectra (ISRS):

- Reactor Service Water (RSW) Piping Tunnel ISRS were generated using DM. Initially the amplified site specific SSE motions considering the effect of nearby heavy structures were obtained from SSI analyses of the Reactor Building (RB) and Ultimate Heat Sink (UHS)/RSW Pump House using SM. The SSI analyses of the RB (for all soil cases) and UHS/RSW Pump House (for upper bound in-situ soil case) were repeated using MSM. Based on the comparison of the RSW Piping Tunnel ISRS obtained from SSI analysis of RSW Piping Tunnel using amplified site specific SSE motions from MSM analyses to those from SM, increase scale factors were determined to account for the effect of MSM on amplified site specific SSE motions. The ISRS based on amplified site specific SSE motions from SM analyses were increased by these increase scale factors to obtain the final RSW Piping Tunnel ISRS.
- Diesel Generator Fuel Oil Tunnel (DGFOT) ISRS were generated using DM.

- Diesel Generator Fuel Oil Storage Vault (DGFOSV) ISRS were initially generated using SM. DGFOSV ISRS have been revised based on new SSI analysis using MSM.
- Ultimate Heat Sink (UHS)/RSW Pump House ISRS were initially generated using SM. The SSI analysis for the upper bound in-situ soil case was repeated using MSM. The ISRS from MSM were compared to the corresponding ISRS from SM to determine modification factors (only increases were considered, reductions were ignored) to account for MSM effect. The product of the modification factors for MSM and envelope of the modification factors accounting for the cumulative effect of structural and SSI mesh refinements discussed in Section 3H.6.5.2.4.2 were used as the final modification factors for adjusting the ISRS from SM to obtain the final UHS/RSW Pump House ISRS.

E. SSSI Soil Pressures used in Structural Design:

Based on an extensive SSSI study, the following were concluded:

- The method of SSSI analysis (SM, MSM, or DM) has negligible impact on the total force due to seismic soil pressure.
- The method of SSSI analysis (SM, MSM, or DM) has negligible impact on location (i.e. C.G.) of the total force due to seismic soil pressure.
- DM analytical results show some changes in the distribution of seismic soil pressure for exterior walls.
- The method of SSSI analysis (SM, MSM, or DM) has negligible impact on the soil pressure distribution for interior walls (walls facing adjacent structure).

Considering the above and the available margins between the seismic soil pressures used for design and those from SM, the designs including those for the RB and CB based on SM were found to be adequate for possible changes in soil pressure distribution due to use of DM.

F. SSI Soil Pressures used in Structural Design:

- RSW Piping Tunnel SSI soil pressures (Figures 3H.6-212 through 3H.6-217) were obtained from DM. The SSI soil pressures were also scaled to account for the amplified input motion based on MSM. Therefore, no further evaluation is required.
- DGFOT SSI soil pressures (Figures 3H.7-5 through 3H.7-8) were obtained from DM. Therefore, no further evaluation is required.
- DGFOSV SSI soil pressures (Figures 3H.6-226 through 3H.6-231) were obtained from MSM. Based on available margin between the seismic soil pressures used for design and SSI soil pressures from MSM, the design was found to be adequate for possible changes in soil pressure distribution due to use of DM.

UHS/RSW Pump House SSI soil pressures (Figures 3H.6-218 through 3H.6-220) were obtained from SM. MSM SSI soil pressures for upper bound in-situ soil case were found to be comparable to those from SM. Based on available margin between the seismic soil pressures used for design and SSI soil pressures from SM, the design was found to be adequate for possible changes in soil pressure distribution due to use of DM.

G. Maximum Accelerations / Section Cut Forces used in Structural Design:

- RSW Piping Tunnel SSI is based on DM. Therefore, no further evaluation is required.
- DGFOT SSI is based on DM. Therefore, no further evaluation is required.
- DGFOSV SSI is based on MSM. Therefore, no further evaluation is required.
- UHS/RSW Pump House SSI is based on SM. The maximum accelerations from MSM SSI analysis for upper bound in-situ soil case were used for evaluation of design which is based on SM. The following is a summary of this evaluation:

Evaluation of Walls and Slab Panels:

In order to assess the cumulative effect of change in acceleration, for 19 section cuts the % difference in SSI forces from Subtraction and Modified Subtraction Methods of analysis were determined and compared to the available margin in section cut forces due to use of equivalent static method. The comparison of section forces for all 19 section cuts showed that all wall and slab panels of UHS/RSW Pump House designed based on SSI analysis using Subtraction Method of analysis are adequate for the resulting forces due to use of Modified Subtraction Method of analysis. To further validate the results of the above comparisons, the following two additional confirmatory studies were performed to provide further assurance that 1) the section cut forces from the SASSI2000 analysis were accurate; and 2) the SSI mesh was adequately refined to produce accurate section cut forces.

Benchmark Study:

In order to benchmark the calculation of section cut forces from SASSI2000, a dynamic analysis performed in SASSI2000 was repeated using SAP2000 with an identical model and input. The models were identical to the so-called coarse mesh model used for SSI analysis of UHS/RSW PH, but were run as fixed base. Input ground motions were the site-specific SSE, the results from the three seismic components were combined using SRSS, and only the full basin case was considered. Based on the comparison of section cut forces for the same 19 section cuts discussed above, the section cut forces from the SASSI2000 analysis were found to be accurate.

Mesh Refinement Study:

To confirm that the coarse mesh model of the SSI analysis of the UHS/RSW PH using Modified Subtraction Method is sufficiently refined for determination of

section cut forces, a dynamic analysis performed in SASSI2000 was repeated using a mesh that had been modified to best approximate that used in the SAP2000 design model using the equivalent static method. The models and input motions were identical except for this mesh modification. Both dynamic analyses were run using fixed base boundary conditions subject to site-specific SSE ground motions considering both full and empty basin cases. The results from the three seismic components were combined using SRSS. Comparisons were made for all section cut forces from the same 19 section cuts discussed above and for any section where the section cut forces from the modified mesh were higher, the corresponding section cut forces from the MSM SSI analysis were increased by the same percent (%) increase prior to comparison with the section cut forces from the SAP2000 design model for demonstrating adequacy of the existing design.

Evaluation of UHS Basin Columns and Beams:

The design of concrete beams and columns within the UHS basin for the upper bound (UB) soil case based on SM and MSM SSI analysis results were compared and the design based on SM was found to be adequate. Based on the results of this comparison, all UHS basin concrete beams and columns designed based on SSI analysis using SM will be adequate for SSI analysis results using Modified Subtraction Method of analysis (MSM).

Impact of MSM on RSW Pump House Operating Floor and Roof:

RSW Pump House operating floor and roof designs are based on vertical accelerations obtained from the final response spectra (i.e. Figures 3H.6-21 and 3H.6-24) which account for the effect of both mesh refinement and MSM analysis.

Impact of MSM on UHS Basin Water Pressure:

The MSM impact on the UHS basin water pressure due to vertical excitation of the UHS basin water is negligible due to the following:

- In the existing design based on SM, the additional water pressure due to vertical excitation of the basin was based on 5% damping peak vertical acceleration of the basin basemat which enveloped both the empty and full basin cases. The peak acceleration value used was 0.475g which was controlled by the empty basin case. The corresponding peak acceleration based on full basin case is 0.449g. Thus, the additional basin water pressure based on SM is conservative by nearly 6% (i.e. 0.475/0.449 = 1.06).
- The impact of MSM on the 5% damping vertical acceleration response spectra of the UHS basin basemat is small and there is no impact on the peak acceleration.

Based on the results of the above evaluations, the conservative UHS/RSW Pump House design, using equivalent static method for determination of seismic loads, was found to have adequate margin to account for possible changes in maximum accelerations from MSM SSI analysis for all soil cases.

3H.11 Design for Site-Specific Hurricane Winds and Missiles

Regulatory Guide 1.221, "Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants," October 2011, provides guidance for designing structures for hurricane wind and hurricane generated missiles.

The STP site-specific design-basis hurricane wind speed and resulting hurricane generated missile spectrum were determined in accordance with Regulatory Guide 1.221, as shown in Table 2.0-2 and described in Subsection 3H.11.1.

Design requirements and exceptions related to design basis tornado wind speed and corresponding missiles where noted throughout the FSAR are also applicable to the hurricane wind and hurricane generated missiles.

3H.11.1 Hurricane Parameters, Loads and Load Combinations

Parameters

- Hurricane missile spectrum:

Per Tables 1 and 2 of Regulatory Guide 1.221, the hurricane missile spectrum and velocities corresponding to maximum hurricane wind speed of 210 mph (338 km/h) are as follows:

M:--!!- \/-!--!4.

			Missile	Velocity
Missile Types	Dimensions	Mass	Horizontal	Vertical
Automobile	16.4 ft x 6.6 ft x 4.3 ft	4,000 lb	134 mph	58 mph
	(5 m x 2m x 1.3m)	(1,810 kg)	(59.7 m/s)	(26 m/s)
Schedule	6.625 in. dia. x 15 ft long	287 lb	104 mph	58 mph
40 Pipe	(0.168 m dia. x 4.58 m long)	(130 kg)	(46.5 m/s)	(26 m/s)
Solid Steel	1 in. diameter	0.147 lb	92 mph	58 mph
Sphere	(25.4 mm diameter)	(0.0669 kg)	(41.1 m/s)	(26 m/s)

Loads

The following hurricane load effects are considered in the design:

- Total hurricane load, including missile effects (W_{th}) where, $W_{th} = W_h + W_{mh}$

(1) Hurricane Wind Pressure (W_h)

Unlike tornado wind pressures, there is no reduction in hurricane wind pressures due to size of the structure. In addition, hurricane wind pressures vary along the height of the structure, whereas, tornado wind pressures are considered uniform along the height of the structure. Hurricane wind pressures are computed using the procedure described in Chapter 6 of ASCE 7-05, in conjunction with the maximum wind speed defined above and the following parameters:

- (2) Hurricane Missile Impact (W_{mh})

Structures are evaluated for the effects of hurricane missile impact. Hurricane missile impact effects are evaluated for the following two conditions:

- (a) For concrete barriers, local damage in terms of penetration, perforation, and spalling, is evaluated using the TM 5-855-1 formula (Reference 3H.6-1). For steel barriers, local damage prediction is performed using the Ballistic Research Laboratory (BRL) formula (Reference 3H.6-2).
- (b) Global overall damage evaluations are performed in a manner similar to that for tornado loads in accordance with Revision 3 of SRP 3.5.3. In these evaluations, the hurricane load (W_{th}) is included in combination with other applicable loads.

For any critical missile hit location considered, the structure is analyzed for the resulting equivalent static load due to hurricane missile impact in conjunction with hurricane wind pressure. The resulting induced forces and moments from this analysis are combined with the induced forces and moments due to other applicable loads within the load combination to determine the total demand for design of the structural elements.

Load Combinations

Notations

- S = Normal allowable stress for allowable stress design method
- U = Required strength for strength design method
- D = Dead load
- F = Load due to weight and pressure of fluid with well-defined density and controllable maximum height
- H = Lateral soil pressure and groundwater effects under normal operating conditions
- L = Live load
- Ro = Piping and equipment reaction under normal operating condition (excluding dead load, thermal expansion and seismic)
- To = Normal operating thermal expansion loads from piping and equipment
- W_{th} = Total hurricane load, including missile effects

Load Combinations

Structural Steel:

$$1.6S^{\text{(Note 1)}} = D + L + F + H + Ro + To + W_{\text{th}}$$

Note 1: The stress limit coefficient in shear shall not exceed 1.4 in members and bolts.

Reinforced Concrete:

$$U = D + L + F + H + Ro + To + W_{th}$$

3H.11.2 Evaluations for Hurricane Design

Local Evaluations

Local evaluations consist of the following:

 Local damage evaluation in terms of penetration, perforation, and spalling as described in Subsection 3H.11.1.

For concrete barriers, the minimum required thickness is based on the largest of the following:

Penetration Depth

- Thickness required to prevent back-face scabbing
- Minimum thickness per SRP 3.5.3 for Tornado Region II

Formulation for penetration determination in concrete barriers is as follows:

$$X = \frac{222 \cdot P_p \cdot d^{0.215} V_{impact}^{1.5}}{\sqrt{f_c}} + 0.5 \cdot d$$

where:

X = penetration depth (in), [Formulation Per TM 5-855-1]

d = outer missile diameter (in)

Pp = weight of missile (lbf) divided by missile cross-sectional area (in 2)

V_{impact} = missile impact velocity in units of 1000 ft/sec

f'c = concrete compressive strength (psi), no dynamic increase factor is considered because the empirical equation is based on dynamic tests.

- When impact velocity (V_{impact}) is less than 1000 ft/sec, the calculated penetration depth (X) is increased by a factor of 1.3.
- The minimum thickness required to prevent back-face scabbing is calculated by doubling the penetration depth (X), including the 30% increase factor when V_{impact} is less than 1000 ft/sec.
- Flexural and shear capacity evaluation of the panel impacted by the hurricane missile considering the total hurricane load (Wth) in conjunction with all other applicable loads per load combinations in Subsection 3H.11.1.

The local panel flexure and shear evaluation requires the following steps:

- Impact force definition
- Impacted element load-deflection diagram
- Application of acceptance criteria

Impact Force Definition for Automobile Missile:

The Impact Forcing Function for automobile missile is per Figure C.2.2-8 of "Report of the ASCE Committee on Impactive and Impulsive Loads Proceeding." Second Conference on Civil Engineering and Nuclear Power, 1981 (see Figure 3H.11-1).

$$F_{impact} = \frac{V_{impact}(mph)}{60(mph)} 460(kip)$$

The impact force equation above is based on a linear relationship between the peak impact force (shown in Impact Forcing Function Figure 3H.11-1) and the peak impact velocity. This impact forcing function is idealized by a triangular impulse as shown in Figure 3H.11-2.

Impacted Element Load-Deflection Diagrams:

a) Panel response is in elastic range:

When panel response is in elastic range, the idealized load-deflection is as shown in Figure 3H.11-3(a), where:

R_m = Concentrated force capacity of panel

R_{m1} = Available concentrated force capacity of panel

 δ₁ = deflection under present loads (all applicable loads present except missile load)

 δ_e = deflection at elastic range limit

b) Panel response extends into plastic range:

When panel response extends into plastic range, the idealized load-deflection is as shown in Figure 3H.11-3(b), where:

R_m = Concentrated force capacity of panel

 R_{m1} = Available concentrated force capacity of panel

 δ₁ = deflection under present loads (all applicable loads present except missile load)

 δ_{v} = deflection at yield point

Acceptance Criteria:

The acceptance criterion depends on whether the response is in the elastic range or the response extends into the plastic range.

a) Response is in elastic range:

When the response is in the elastic range, the dynamic response is acceptable, provided the following is met:

$$DLF \cdot F_{impact} \leq R_{m1}$$

- The Dynamic Load Factor (DLF) is based on impact force time history and the parameter (t_d/T), where t_d is the impact duration and T is period of vibration. The minimum DLF value used in hurricane evaluations is 1.0.
- When the DLF is less than 1.2, the dynamic increase factor in Section C.2.1 of ACI 349-97 is not permissible per Regulatory Guide 1.142.
- b) Response extends into plastic range
- When the response extends into the plastic range, the dynamic response is acceptable, provided the ductility limits of Section C.3 of ACI 349-97 are met:

$$\mu_{demand} \leq \mu_{limit}$$

Global Evaluations

Global evaluations consist of the following:

■ The structure, in its entirety, is evaluated for the total hurricane load (W_{th}) in conjunction with all other applicable loads per load combinations in Subsection 3H.11.1.

For structures designed using Finite Element analysis, the missile loads are applied at critical missile locations (i.e. top and/or mid-height) of walls running parallel to missile impact loads. For large structures, such as UHS/RSW Pump House, conservatively several missile hits at various locations are considered to minimize the number of load combinations. For smaller structures such as DGFOSV single missile hits are considered in various load combinations.

The sliding and overturning stability of the structure is evaluated considering the total hurricane load (W_{th}) in conjunction with all other applicable loads. The load combination and the required safety factor for this stability evaluation are as follows:

Stability load combination: D + H + W_{th}

Minimum Required Safety Factor for sliding and overturning = 1.1

3H.11.3 Structures Designed for Site-Specific Hurricane

Seismic Category I Structures

The following Seismic Category I structures are designed for site-specific hurricane loads:

- Reactor Building (RB)
- Control Building (CB)
- Reactor Service Water (RSW) Piping Tunnels
- Ultimate Heat Sink (UHS)/Reactor Service Water (RSW) Pump House
- Diesel Generator Fuel Oil Storage Vaults (DGFOSV)
- Diesel Generator Fuel Oil Tunnels (DGFOT)

Tables 3H.11-6 and 3H.11-7 provide a comparison of hurricane wind and missiles with tornado wind and missiles for the above structures.

Non-Seismic Category I Structures

Site-specific hurricane loads are used for stability evaluations and design of lateral load resisting systems of the following Non-Seismic Category I structures with potential interaction with Seismic Category I structures:

- Turbine Building (TB)
- Service Building (SB)
- Radwaste Building (RWB)
- Control Building Annex (CBA)
- Stack on the Reactor Building roof

3H.11.3.1 Hurricane Evaluations for the Reactor Building

The Reactor Building was evaluated under hurricane loading for local damage, panel capacity, global effects, and stability.

The minimum required wall thickness to prevent penetration, perforation, and scabbing is 15.4 inches (391 mm). The minimum wall thickness of the Reactor Building is 16.7 inches (425 mm). The minimum required roof thickness to prevent penetration, perforation, and scabbing is 11.4 inches (290 mm). The minimum roof thickness of the Reactor Building is 13.2 inches (335 mm).

The results of panel evaluations for hurricane generated missile impacts on the Reactor Building are presented in Table 3H.11-4.

The global hurricane wind pressure on the Reactor Building is enveloped by the global tornado wind pressure from grade up to approximately 60 ft above grade (see Figure 3H.11-4). From approximately 60 ft above grade to the top of the Reactor Building, the global hurricane wind pressure exceeds the global tornado wind pressure. A comparison of the seismic shear versus the total hurricane shear on the Reactor

Building shows that the hurricane load is significantly less than the seismic loading (see Figure 3H.11-5). Therefore, the hurricane loading has no impact on the global design or stability. See Table 3H.1-23 for Reactor Building stability.

3H.11.3.2 Hurricane Evaluations for the Control Building

The Control Building was evaluated under hurricane loading for local damage, panel capacity, global effects, and stability.

The minimum required wall thickness to prevent penetration, perforation, and scabbing is 15.4 inches (391 mm). The minimum wall thickness of the Control Building is 23.6 inches (600 mm). The minimum required roof thickness to prevent penetration, perforation, and scabbing is 11.4 inches (290 mm). The minimum roof thickness of the Control Building is 15.75 inches (400 mm).

The results of panel evaluations for hurricane generated missile impacts on the Control Building are presented in Table 3H.11-5.

The global hurricane wind pressure on the Control Building is enveloped by the global tornado wind pressure (see Figure 3H.11-6). A comparison of the seismic shear versus the total hurricane shear on the Control Building shows that the hurricane load is significantly less than the seismic loading (see Figure 3H.11-7). Therefore, the hurricane loading has no impact on the global design.

The factors of safety against sliding and overturning for the hurricane load combination are reported in Table 3H.2-5.

3H.11.3.3 Hurricane Evaluations for the RSW Piping Tunnels

The RSW Piping Tunnels including their access regions were evaluated under hurricane loading for local damage, panel capacity, global effects, and stability.

The minimum required wall thickness to prevent penetration, perforation, and scabbing is 15.4 inches (391 mm). The minimum wall thickness of the RSW Piping Tunnel is 36 inches (914 mm). The minimum required roof thickness to prevent penetration, perforation, and scabbing is 11.4 inches (290 mm). The minimum roof thickness of the RSW Piping Tunnel is 24 inches (610 mm).

Based on the UHS/RSW Pump House, DGFOSV and DGFOT panel designs for site-specific hurricane wind and missiles, the RSW Piping Tunnel exterior wall and slab panels are adequate for site-specific hurricane wind and missiles.

The global hurricane wind pressure on the RSW Piping Tunnel is enveloped by the global tornado wind pressure used for design of the structure (see Figure 3H.11-8).

The factors of safety against sliding and overturning for the hurricane load combination are reported in Table 3H.6-16.

3H.11.3.4 Hurricane Evaluations for the UHS/RSW Pump House

The UHS/RSW Pump House was evaluated under hurricane loading for local damage, panel capacity, global effects, and stability.

The minimum required wall thickness to prevent penetration, perforation, and scabbing is 15.4 inches (391 mm). The minimum wall thickness of the UHS/RSW Pump House is 24 inches (610 mm). The minimum required roof thickness to prevent penetration, perforation, and scabbing is 11.4 inches (290 mm). The minimum roof thickness of the UHS/RSW Pump House is 18 inches (457 mm).

The results of a panel evaluation for hurricane generated missile impacts on the UHS/RSW Pump House are presented in Table 3H.11-1.

The global hurricane wind pressure on the UHS/RSW Pump House is enveloped by the global hurricane wind pressure used for design of the structure (see Figures 3H.11-9 and 3H.11-10).

The factors of safety against sliding and overturning for the hurricane load combination are reported in Table 3H.6-5.

3H.11.3.5 Hurricane Evaluations for the DGFOSV

The DGFOSV and their access regions were evaluated under hurricane loading for local damage, panel capacity, global effects, and stability.

The minimum required wall thickness to prevent penetration, perforation, and scabbing is 15.4 inches (391 mm). The minimum wall thickness of the DGFOSV is 24 inches (610 mm). The minimum required roof thickness to prevent penetration, perforation, and scabbing is 11.4 inches (290 mm). The minimum roof thickness of the DGFOSV is 18 inches (457 mm).

The results of a panel evaluation for hurricane generated missile impacts on the DGFOSV are presented in Table 3H.11-2.

The global hurricane wind pressure on the DGFOSV is enveloped by the global tornado wind pressure used for design of the structure (see Figure 3H.11-11).

The DGFOSV was assessed for hurricane loads using finite element analysis, and the design results are included in Table 3H.6-11.

The factors of safety against sliding and overturning for the hurricane load combination are reported in Table 3H.6-12.

3H.11.3.6 Hurricane Evaluations for the DGFOT

The DGFOT and their access regions were evaluated under hurricane loading for local damage, panel capacity, global effects, and stability.

The minimum required wall thickness to prevent penetration, perforation, and scabbing is 15.4 inches (391 mm). The minimum wall thickness of the DGFOT is 24 inches (610

mm). The minimum required roof thickness to prevent penetration, perforation, and scabbing is 11.4 inches (290 mm). The minimum roof thickness of the DGFOT is 24 inches (610 mm).

The results of a panel evaluation for hurricane generated missile impacts on the DGFOT are presented in Table 3H.11-3.

The global hurricane wind pressure on the DGFOT is enveloped by the global tornado wind pressure used for design of the structure (see Figure 3H.11-12).

The factors of safety against sliding and overturning for the hurricane load combination are reported in Table 3H.7-2.

3H.11.3.7 Hurricane Evaluations for Non-Seismic Category I Structures

The Non-Seismic Category I structures with potential interaction with Seismic Category I structures were evaluated for stability under hurricane loading. For the Turbine Building, Service Building, Radwaste Building, and Control Building Annex, the total hurricane driving forces were compared with the total seismic driving forces. In all cases, the seismic driving forces govern for stability. For the Reactor Building stack, hurricane wind pressures were compared to tornado wind pressures. The tornado wind pressures envelop the hurricane wind pressures. Therefore, the stability of all Non-Seismic Category I structures with potential interaction with Seismic Category I structures is adequate for hurricane loading.

3H.11.4 Protection of Openings of Seismic Category I Structures

The passage of hurricane generated missiles through openings in the roof slabs and exterior walls is prevented by the use of missile-proof covers and doors, or the trajectory of missiles through the opening is limited by labyrinth walls configured to prevent safety-related substructures and components from being impacted.

In addition, the following features are provided for the UHS/RSW Pump House fan enclosure compartments:

- The air intakes for each fan enclosure compartment are located at the bottom of the enclosure and are configured to eliminate the trajectory of hurricane missiles into the enclosures, thereby preventing damage to safety-related components.
- Heavy steel grating, which is supported by structural steel beams, is installed at the top of each fan enclosure compartment. This grating allows for the passage of air out of the compartment and prevents the intrusion of hurricane missiles. The clear spacing of the grating bars is 15/16 inch to prevent entrance of a 1 inch diameter solid steel sphere missile.

3H.11.5 Summary and Conclusions for Hurricane Design

DCD Seismic Category I structures (i.e. RB, CB, and DGFOT), site-specific Seismic Category I Structures (i.e. UHS/RSW Pump House, RSW piping Tunnels, and DGFOSV), and Non-Seismic Category I structures with potential interaction with

Seismic Category I structures are evaluated for hurricane wind and missiles. The results of these evaluations are summarized in Tables 3H.11-1 through 3H.11-5.

As described in these tables, the maximum hurricane wind and missile loads were found to be generally less than the minimum capacity of the structures. The only exceptions were certain panels of site-specific structures that required additional reinforcement. These limited design changes did not change the dimensions of any structure, and did not have an adverse effect on the capability of any structure to fulfill its design function.

Table 3H.1-23 Factors of Safety for Foundation Stability*

	Overturning		Sliding		Floatation	
Load Combination	Req'd.	Actual	Req'd.	Actual	Req'd.	Actual
D + F'					1.1	2.43 2.24
$D + L_o + F + H + E_{ss}$	1.1	490	1.1	1.11		

Here:

F = Buoyant Forces from Design Ground Water (0.61m Below Grade)

F' = Buoyant Forces from Design Basis Flood (0.3m Below 1.83m Above Grade)

H = Lateral Soil Pressure

 L_0 = Live Load Acting During an Earthquake (Zero Live Load is Considered).

 E_{ss} = SSE Load

D = Dead Load

^{*} Based on the calculation for shear forces due to tornado loads, it was found that it is less than 10% of the shear forces due to the seismic effects. Hence it was concluded that the load combinations comprising of wind and tornado loadings will not be the governing load combinations for the evaluation of overturning and sliding effects of the R/B stability and therefore, were not evaluated. In addition, based on the calculation for shear forces due to hurricane loads, it was found that it is less than 10% of the shear forces due to the seismic effects. Hence it was concluded that the load combination comprised of hurricane loadings will not be the governing load combination for the evaluation of overturning and sliding effects of the R/B stability and therefore, was not evaluated.

Table 3H.2-5 Stability Evaluation-Factors of Safety

Load	Overtu	ırning	Slid	ing	Flota	ation
Combination	Required	Actual	Required	Actual	Required	Actual
D+F'	-	-	-	-	1.1	1.42 1.30
D+F+H+W	1.5	2.79	1.5	2.74	-	-
$D+F+H+W_t$	1.1	2.66	1.1	2.69	-	-
D+L _o +F+H'+E'**	1.1	123*	1.1	1.14	-	-
D+H+W _{th}	1.1	1.22	1.1	4.21	-	-

^{*} Based on the energy technique

F' = Buoyant Forces from Design Basis Flood (1.83m Above Grade) Load W_{th} is defined in Subsection 3H.11.1.

^{**} Zero live load is considered.

Table 3H.3-1 Radwaste Building Design Seismic Loads

Wall	Elevation (ft)	In-Plane Forces ⁽¹⁾ 1/2 SSE (0.15g) (kips)	In-Plane Moments ⁽¹⁾ 1/2 SSE (0.15g) (kips-ft)
	95'-0"	5963	0
North Wall	35'-0"	4133	351845
	(-)11'-0"	9328	770605
	95'-0"	5351	0
South Wall	35'-0"	2888	315719
	(-)11'-0"	7186	635566
	95'-0"	4555	0
East Wall	35'-0"	3276	268725
	(-)11'-0"	7282	595912
	95'-0"	5481	0
West Wall	35'-0"	4362	323390
	(-)11'-0"	9125	732302

Notes:

⁽¹⁾ The forces and moments reported are the maximum calculated for all time steps. Therefore, the summation of the forces at Elevation 35'-0" and Elevation 95'-0" is not equal to the force at Elevation (-)11'-0".

Table 3H.3-2 Natural Frequencies of the Radwaste Building - Fixed Base Condition

Mode No.	Frequency (Hz)	Direction
1	2.60	Vertical
2	8.44	Vertical
3	9.10	North-South
4	10.84	East-West
5	12.39	East-West
6	15.48	North-South
7	18.40	East-West
8	23.01	North-South
9	23.95	Vertical
10	27.90	Vertical

Looten Fees Direction Checker Check	Thickness (ft)	Reinforcement Zone Number	MTCM MCCM MMAT MMAC MTCM MCCM MMAC MTCM MCCM MMAT MMAC	29421 30216 29728 29971 26467 34323 30238	Axial and Flexure Load Combination $1.4D + 1.7L + 1.7H + 1.7E0$	Axial ⁽⁴⁾ (kips / ft) 51 -101 13	Flexure ⁽⁴⁾ (ft-kips / ft) -60 -57 -102	In-Plane Shear Load Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	Longitudinal Reinforcement Provided (in ² / ft)	Load Combination	Horizo Transverse Shear Force (kip / ft)	Transverse Shear Design Loads (6) Intal Section Corresponding Axial Force (kip / ft)	Vertic Transverse Shear Force (kip / ft)	cal Section Corresponding Axial Force (kip / ft)	Transverse Shear ⁽⁷⁾ Reinforcement Provided (in ² /ft ²)	g Remarks
	Thirt (1HL -	MCCM MMAT MMAC MTCM MCCM MMAT	29421 30216 29728 29971 26467 34323	Combination 1.4D + 1.7L + 1.7H + 1.7Eo	(kips / ft) 51 -101 13 -38	-60 -57 -102	Combination	Shear	Provided (in ² / ft)	Load Combination	Transverse Shear Force	Corresponding Axial Force	Transverse Shear Force	Corresponding Axial Force		1
æ 8	3	1HL -	MCCM MMAT MMAC MTCM MCCM MMAT	30216 29728 29971 26467 34323	1.4D + 1.7L + 1.7H + 1.7Eo 1.4D + 1.7L + 1.7H + 1.7Eo 1.4D + 1.7L + 1.7H + 1.7Eo 1.4D + 1.7L + 1.7H 1.4D + 1.7L + 1.7H + 1.7Eo	51 -101 13 -38	-60 -57 -102		(kips / ft)		Combination	(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		1
	3	2#1	MCCM MMAT MMAC MTCM MCCM MMAT	30216 29728 29971 26467 34323	1.4D + 1.7L + 1.7H + 1.7Eo 1.4D + 1.7L + 1.7H + 1.7Eo 1.4D + 1.7L + 1.7H 1.4D + 1.7L + 1.7H + 1.7Eo	-101 13 -38	-57 -102										
	3	2#1	MMAC MTCM MCCM MMAT	29728 29971 26467 34323	1.4D + 1.7L + 1.7H + 1.7Eo 1.4D + 1.7L + 1.7H 1.4D + 1.7L + 1.7H + 1.7Eo	13 -38	-102										
	3		MMAC MTCM MCCM MMAT	29971 26467 34323	1.4D + 1.7L + 1.7H 1.4D + 1.7L + 1.7H + 1.7Eo	-38		1.4D + 1.7L + 1.7H + 1.7Eo	72	1.56							
	3		MTCM MCCM MMAT	26467 34323	1.4D + 1.7L + 1.7H + 1.7Eo												
	3		MCCM MMAT	34323			-104										
	3		MMAT	_		112	-19										
					1.4D + 1.7L + 1.7H + 1.7Eo	-207	-22	1.4D + 1.7L + 1.7H + 1.7Eo	133	3.12					_		
			MMAC	30238	1.4D + 1.7L + 1.7H + 1.7Eo	1	-244										
				26476	D+L+H+E	-96	-291										
			мтсм	32312	1.4D + 1.7L + 1.7H + 1.7Eo	118	-103										
		3-H-L	MCCM	26429	1.4D + 1.7L + 1.7H + 1.7Eo	-255	-107	1.4D + 1.7L + 1.7H + 1.7Eo	89	4.68							
			MMAT	26429	1.4D + 1.7L + 1.7H + 1.7Eo	6	-274										
			MMAC	26461	D+L+H+E	-201	-370										
			мтсм	23479	1.4D + 1.7L + 1.7H + 1.7Eo	118	-46										
		4-H-L	MCCM	34327	1.4D + 1.7L + 1.7H + 1.7Eo	-228	-65	1.4D + 1.7L + 1.7H + 1.7Eo	140	3.12				-	-		(8)
			MMAT	23468	D+L+H+E	6	-134										"
			MMAC	23468	1.4D + 1.7L + 1.7H + 1.7Eo	-44	-230										
			мтсм	23456	1.4D + 1.7L + 1.7H + 1.7Eo	76	-223										
		5-H-L	MCCM	23447	1.4D + 1.7L + 1.7H + 1.7Eo	-198	-466	1.4D + 1.7L + 1.7H + 1.7Eo	140	4.68							
			MMAT	23448	D+L+H+E	1	-399										
	4		MMAC	23447	1.4D + 1.7L + 1.7H + 1.7Eo	-198	-466										
I _			мтсм	11709	D+L+H+E	124	-434										
Near Side Horizontal 3H.3-8		6-H-L	MCCM	23440	1.4D + 1.7L + 1.7H + 1.7Eo	-292	-519	1.4D + 1.7L + 1.7H + 1.7Eo	140	6.24							
Near Side Honzontal 3H.3-8			MMAT	19506	D+L+H+E	12	-697										
			MMAC	19507	D+L+H+E'	-159	-780										
			MTCM	23472	1.4D + 1.7L + 1.7H + 1.7Eo	75	-258										
		7-H-L	MCCM	23472	1.4D + 1.7L + 1.7H + 1.7Eo	-193	-794	1.4D + 1.7L + 1.7H + 1.7Eo	119	9.36							
			MMAT	23472	1.4D + 1.7L + 1.7H + 1.7Eo	11	-739										
			MMAC	23472	D+L+H'+E'	-163	-1000										
			мтсм	4565	1.4D + 1.7L + 1.7H + 1.7Eo	27	-46										
		8-H-L	MCCM	8902	D+L+H+E	-272	-536	1.4D + 1.7L + 1.7H + 1.7Eo	133	3.12							
			MMAT	8194	1.4D + 1.7L + 1.7H + 1.7Eo	7	-148										
			MMAC	8902	D+L+H+E	-272	-540										
			МТСМ	2717	1.4D + 1.7L + 1.7H + 1.7Eo	46	-70										
		9-H-L	MCCM	8940	1.4D + 1.7L + 1.7H + 1.7Eo	-233	-695	1.4D + 1.7L + 1.7H + 1.7Eo	164	4.68							
			MMAT	2724	1.4D + 1.7L + 1.7H + 1.7Eo	0	-296										
	5.5		MMAC	8940	D+L+H+E	-216	-804										
			MTCM	2716	1.4D + 1.7L + 1.7H + 1.7Eo	53	-76										
		10-H-L	MCCM	8901	D+L+H+E	-205	-763	1.4D + 1.7L + 1.7H + 1.7Eo	164	6.24							
			MMAT	2716	D+L+H+E	5	-358										
		\vdash	MMAC	7183	D+L+H+E	-177	-846										
			мтсм	2787	1.4D + 1.7L + 1.7H + 1.7Eo	57	-97										
		11-H-L	MCCM	8972	D+L+H+E	-314	-1406	1.4D + 1.7L + 1.7H + 1.7Eo	164	7.8				-	-		
			MMAT	2772	1.4D + 1.7L + 1.7H + 1.7Eo	4	-442										
			MMAC	8972	D+L+H+E	-307	-1430										

Table 3H.3-3 Results of Radwaste Building Concrete Wall Design (Continued)

Face	Direction	Kennorcemer Layout Drawing Numt	Thickness (ft)	Reinforcemer Zone Number	ximum Force	Element	Axial and Flexure	_		In-Plane Shear Load	s	Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear (7) Reinforcement Provided	Į.
g.	Direc		Thick	Reinfor Zone Nu	wimum	Elen	Lord	/**	_										Remarks
	i			Zor	*			1 Auto (4)	Flexure (4)	Load	In-plane (5)	Provided (in ² / ft)	Load		tontal Section		tical Section	(in ² /ft ²)	Remarks
					ŝ		Combination	(kips / ft)		Combination	Shear (kips / ft)	(Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
					MTCM	27258	1.4D + 1.7L + 1.7H + 1.7Eo	70	-18										
					MCCM	27258	1.4D + 1.7L + 1.7H + 1.7Eo	-260	-39	1.4D + 1.7L + 1.7H + 1.7Eo	74	1.56		_	_				_
				1-V-L	MMAT	27002	D+L+H+E	21	-94	1.4D * 1.7L * 1.7H * 1.7E0	/4	1.50	-	-	-			-	1
					MMAC	27002	D+L+H+E	-141	-99										ĺ
			Γ		MTCM	26405	1.4D + 1.7L + 1.7H + 1.7Eo	109	-53										
					MCCM	26405	1.4D + 1.7L + 1.7H + 1.7Eo	-306	-24										ĺ
				2-V-L	MMAT	27520	1.4D + 1.7L + 1.7H + 1.7Eo	28	-218	1.4D + 1.7L + 1.7H + 1.7Eo	107	3.12		-	-			-	-
					MMAC	29969	1.4D + 1.7L + 1.7H	-134	-258										ĺ
			T		MTCM	34324	1.4D + 1.7L + 1.7H + 1.7Eo	110	-15										
					MCCM	34323	1.4D + 1.7L + 1.7H + 1.7Eo	-357	-15										ĺ
				3-V-L	MMAT	26417	1.4D + 1.7L + 1.7H + 1.7Eo	22	-335	1.4D + 1.7L + 1.7H + 1.7Eo	266	4.68	•	-	-	-		-	-
					MMAC	26417	1.4D + 1.7L + 1.7H + 1.7Eo	-117	-335										ĺ
			İ		MTCM	26445	D+L+H+E	56	-265										
					MCCM	27219	1.4D + 1.7L + 1.7H	-209	-97										ĺ
			3	4-V-L	MMAT	26429 / 26430	1.4D + 1.7L + 1.7H + 1.7Eo	4	-466	1.4D + 1.7L + 1.7H + 1.7Eo	83	6.24		-				-	
				-	MMAC	26429 / 26430	1.4D + 1.7L + 1.7H + 1.7Eo	-131	-478										ĺ
			t		MTCM	26437	D+L+H+E	43	-472										
				-	MCCM	26436	1.4D + 1.7L + 1.7H	-170	-171										ĺ
				5-V-L	MMAT	26436	1.4D + 1.7L + 1.7H + 1.7Eo	_	-548	1.4D + 1.7L + 1.7H + 1.7Eo	75	7.8	-	-	-	-	-	-	-
					MMAC	26436	1.4D + 1.7L + 1.7H + 1.7Eo	_											ĺ
			H					_											$\overline{}$
				-				_											ĺ
r Side	Vertical	3H.3-9		6-V-L				_		1.4D + 1.7L + 1.7H + 1.7Eo	68	12.48		-				-	(8),(9)
				-															ĺ
			H			_		_											
				-		_		_											ĺ
				7-V-L						1.4D + 1.7L + 1.7H + 1.7Eo	78	12.48						-	(8),(9)
				-				_											ĺ
								_											—
				-		-		_											ĺ
				8-V-L		-		_		1.4D + 1.7L + 1.7H + 1.7Eo	184	3.12	-	-	-	-		-	-
				-				-											ĺ
			H					_											
								_											1
				9-V-L	MMAT	_		_		1.4D + 1.7L + 1.7H + 1.7Eo	239	4.68		-	-		-	-	-
				-	MMAC	23468		_	-495										1
			4		MTCM	13208	1.4D + 1.7L + 1.7H + 1.7Eo	117	-28										$\overline{}$
				-	MCCM	11654	1.4D + 1.7L + 1.7H + 1.7Eo	-455	-118										ĺ
				10-V-L	MMAT	23455	D+L+H+E	5	-401	1.4D + 1.7L + 1.7H + 1.7Eo	226	6.24	-	-	-			-	-
				İ	MMAC	23451	1.4D + 1.7L + 1.7H + 1.7Eo	-167	-515										ĺ
			t		MTCM	22806	1.4D + 1.7L + 1.7H + 1.7Eo	88	-216										$\overline{}$
				İ	мссм	21630	1.4D + 1.7L + 1.7H + 1.7Eo	-265	-92										ĺ
- 1				11-V-L	MMAT	23447	D+L+H'+E'	1	-626	1.4D + 1.7L + 1.7H + 1.7Eo	239	7.8						-	
er S	Side	lide Vertical	56e Vertical 343-9		7-V-L	SAVE	SVL MCCM 26436 MMCCM 26436 MMCCM 26436 MMCCM 26436 MMCCM 26436 MCCM 26436 MCCM 26436 MCCM 26437 MCCM MCC	MCOM 26436	No. No.	Note Note	MACON 26:06	March Marc	MACCH 26:06 140 + 17. + 17H -170 -171 140 + 17. + 17H + 17E0 75 78	Note Note	Maria	March Marc	Mark Mark	Note Note	Note Note

			± ½		# 6k	6,86		1	ongitudinal.	Reinforcement	t Design Loads					_				
tion	Face	tion	cemer out Numb	Thickness (ft)	Reinforcemer Zone Number	Force	tent	Axial and Flexure	Loads		In-Plane Shear Load	s	Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾	Remarks
200	ē	Direct	inforcem Layout wing Nun	A Fi	inform se Nu	E E	Elem	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in ² / ft)	Load		ntal Section		al Section	Reinforcement Provided (in ² /ft ²)	Remarks
			Draw Re	Ľ	Re	Maxi		Combination		(ft-kips / ft)	Combination	Shear (kips / ft)	(,	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						мтсм	23439	1.4D + 1.7L + 1.7H + 1.7Eo	79	-332										
				4	12-V-L	мссм	23439	1.4D + 1.7L + 1.7H + 1.7Eo	-261	-470	1.4D + 1.7L + 1.7H + 1.7Eo	230	9.36				-	_		
						MMAT	23440	1.4D + 1.7L + 1.7H + 1.7Eo	2	-777										
						MMAC	23440	1.4D + 1.7L + 1.7H + 1.7Eo	-163	-823										
						MTCM	4552	1.4D + 1.7L + 1.7H + 1.7Eo	111	-74										
					13-V-L	мссм	8190	1.4D + 1.7L + 1.7H + 1.7Eo	-399	-33	1.4D + 1.7L + 1.7H + 1.7Eo	173	3.12				-	-	-	
						MMAT	4524	1.4D + 1.7L + 1.7H + 1.7Eo	72	-134										
						MMAC	4524	1.4D + 1.7L + 1.7H + 1.7Eo	-213	-134										
						мтсм	4498	1.4D + 1.7L + 1.7H + 1.7Eo	227	-84	_									
					14-V-L	MCCM	4498	1.4D + 1.7L + 1.7H + 1.7Eo	-665	-76	1.4D + 1.7L + 1.7H + 1.7Eo	216	4.68							
						MMAT	8901 8901	1.4D + 1.7L + 1.7H + 1.7Eo	151 -484	-214 -307										
						MTCM	2716	D+L+H+E' 1.4D+1.7L+1.7H+1.7Eo	308	-307										
						MCCM	2716	1.4D + 1.7L + 1.7H + 1.7Eo	-738	-368	-									
	Near Sid	de Vertic	al 3H.3-9		15-V-L	MMAT	2725	D+L+H+E	53	-880	1.4D + 1.7L + 1.7H + 1.7Eo	238	6.24							
						MMAC	2725	D+L+H+E	-245	-880										
				5.5		мтсм	2771	1.4D + 1.7L + 1.7H + 1.7Eo	133	-436										
						MCCM	2756	1.4D + 1.7L + 1.7H + 1.7Eo	-439	-438										
					16-V-L	MMAT	2755	D+L+H+E	57	-796	1.4D + 1.7L + 1.7H + 1.7Eo	238	7.8							
						MMAC	2755	D+L+H+E	-279	-798										
						MTCM	2787	1.4D + 1.7L + 1.7H + 1.7Eo	339	-278										
Wall					17-V-L	MCCM	2787	1.4D + 1.7L + 1.7H + 1.7Eo	-744	-430	1.4D + 1.7L + 1.7H + 1.7Eo	216	9.36							
North						MMAT	2780	D+L+H+E	42	-1331										
						MMAC	2780	D+L+H+E	-260	-1331										
						MTCM	2778	1.4D + 1.7L + 1.7H + 1.7Eo	86	-301										
					18-V-L	MCCM	2778	1.4D + 1.7L + 1.7H + 1.7Eo	-364	-630	1.4D + 1.7L + 1.7H + 1.7Eo	171	10.92							
						MMAT	2778	D+L+H+E	43	-1322										
	-	+	+	-		MMAC	2778	D+L+H'+E'	-250	-1322										
							36041	1.4D + 1.7L + 1.7H + 1.7Eo	45	55										
			1		1-H-L	MCCM MMAT	36041 29132	1.4D + 1.7L + 1.7H + 1.7Eo	-105 10	107	1.4D + 1.7L + 1.7H + 1.7Eo	72	1.56	-		-	-	-	-	-
			1			MMAC	29132	1.4D + 1.7L + 1.7H + 1.7Eo	-10	107	+									
			1		_	MTCM	31787	1.4D + 1.7L + 1.7H + 1.7Eo	97	82										
			1			MCCM	34323	1.4D + 1.7L + 1.7H + 1.7Eo	-224	70	-									
			1		2-H-L	MMAT	31545	1.4D + 1.7L + 1.7H + 1.7Eo	11	191	1.4D + 1.7L + 1.7H + 1.7Eo	133	3.12		-	-	-	-	-	-
			1			MMAC	31545	1.4D + 1.7L + 1.7H + 1.7Eo	-67	191	1									
	Far Side	e Horizon	tal 3H.3-10	3		мтсм	32312	1.4D + 1.7L + 1.7H + 1.7Eo	118	180										
			1			мссм	26429	1.4D + 1.7L + 1.7H + 1.7Eo	-255	82	1									
			1		3-H-L	MMAT	32070	1.4D + 1.7L + 1.7H + 1.7Eo	14	326	1.4D + 1.7L + 1.7H + 1.7Eo	89	4.68			-	-	-		-
			1			MMAC	32070	1.4D + 1.7L + 1.7H + 1.7Eo	-78	326										
			1			мтсм	26467	1.4D + 1.7L + 1.7H + 1.7Eo	142	179										
			1		4-H-L	мосм	26468	1.4D + 1.7L + 1.7H + 1.7Eo	-77	60	1.4D + 1.7L + 1.7H + 1.7Eo	89	6.24							
			1			MMAT	26467	D+L+H+E	119	233										
						MMAC	26467	D+L+H+E	-6	233										

			14 36r		# 63	6,			Longitudinal	Reinforcement	Design Loads									
tion		tion	cemer out Numb	Thickness (ft)	Reinforcemer Zone Number	Force	ient ient	Axial and Flexure	Loads		In-Plane Shear Loads	5	Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾	Dto
Loca	Face	Directio	Inforcem Layout wing Nun	Thick (#	inforc N o	E E	Elem	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load		ontal Section		al Section	Reinforcement Provided (in ² /ft ²)	Remarks
		_	Rei	_	Rei	Maxir		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	(iii / it)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	, , , , , ,	
						MTCM	23472	1.4D + 1.7L + 1.7H + 1.7Eo	75	118										
					5-H-L	мссм	34327	1.4D + 1.7L + 1.7H + 1.7Eo	-244	144	1.4D + 1.7L + 1.7H' + 1.7Eo	140	3.12						-	
						MMAT	23446	1.4D + 1.7L + 1.7H + 1.7Eo	30	177										
						MMAC	34328	D+L+H+E	-143	372										
						MTCM	23440	1.4D + 1.7L + 1.7H + 1.7Eo	89	308										
				4	6-H-L	MCCM	23440	1.4D + 1.7L + 1.7H + 1.7Eo	-292	130	1.4D + 1.7L + 1.7H + 1.7Eo	140	4.68							
						MMAT	23440	1.4D + 1.7L + 1.7H + 1.7Eo	80	321										
						MMAC	15538	D+L+H+E	-152	485										
						MTCM	23479	1.4D + 1.7L + 1.7H + 1.7Eo	118	147										
					7-H-L	мссм	34326	1.4D + 1.7L + 1.7H + 1.7Eo	-250	137	1.4D + 1.7L + 1.7H + 1.7Eo	119	6.24						-	
						MMAT	23478	D+L+H+E	4	543										
		Horizont	tal 3H.3-10			MMAC	23478	D+L+H+E	-162	544										
						MTCM	8953	1.4D + 1.7L + 1.7H + 1.7Eo	25	51										
					8-H-L	MCCM	8902 8927	D+L+H+E 1.4D+1.7L+1.7H+1.7W	-266 1	226	1.4D + 1.7L + 1.7H + 1.7Eo	133	3.12		-	-			-	-
						MMAC	5568	D+L+H+E	-159	535										
						MTCM	2787	1.4D + 1.7L + 1.7H + 1.7Eo	57	27										
						MCCM	3515	1.4D + 1.7L + 1.7H + 1.7Eo	-153	211										
				5.5	9-H-L	MMAT	8937	1.4D + 1.7L + 1.7H + 1.7W	4	241	1.4D + 1.7L + 1.7H + 1.7Eo	164	4.68		-	-	-		-	-
						MMAC	8937	D+L+H+E	-63	545										
						MTCM	4565	1.4D + 1.7L + 1.7H + 1.7Eo	27	82										
Wall						MCCM	7251	D+L+H+E	-171	438										
fig.	Far Side				10-H-L	MMAT	8962	1.4D + 1.7L + 1.7H + 1.7Eo	6	221	1.4D + 1.7L + 1.7H + 1.7Eo	133	6.24							
1						MMAC	8964	D+L+H+E	-84	970										
						MTCM	27258	1.4D + 1.7L + 1.7H + 1.7Eo	70	15										
						MCCM	27258	1.4D + 1.7L + 1.7H + 1.7Eo	-250	35										
					1-V-L	MMAT	26997	D+L+H+E	5	71	1.4D + 1.7L + 1.7H + 1.7Eo	74	1.56		-	-	-		-	-
						MMAC	26997	D+L+H+E	-188	73										
						MTCM	26405	1.4D + 1.7L + 1.7H + 1.7Eo	109	70										
					2-V-L	MCCM	26405	1.4D + 1.7L + 1.7H + 1.7Eo	-306	103	1.4D + 1.7L + 1.7H + 1.7Eo	107	3.12			_	_		_	-
					2***	MMAT	26446	1.4D + 1.7L + 1.7H + 1.7Eo	25	220	130 - 130 - 131 - 130	107	3.12			-				
						MMAC	31507	1.4D + 1.7L + 1.7H + 1.7Eo	-68	249										
						MTCM	34324	1.4D + 1.7L + 1.7H + 1.7Eo	110	47										
		Vertica	i 3H.3-11	3	3-V-L	MCCM	34323	1.4D + 1.7L + 1.7H + 1.7Eo	-387	81	1.4D + 1.7L + 1.7H' + 1.7Eo	266	4.68		_	_				
						MMAT	26430	1.4D + 1.7L + 1.7H + 1.7Eo	30	335										
						MMAC	26430	1.4D + 1.7L + 1.7H + 1.7Eo	-99	345										
						MTCM	32318	1.4D + 1.7L + 1.7H + 1.7Eo	54	446										
					4-V-L	MCCM	26420	1.4D + 1.7L + 1.7H	-192	119	1.4D + 1.7L + 1.7H' + 1.7Eo	85	6.24							
						MMAT	32319	1.4D + 1.7L + 1.7H + 1.7Eo	53	447	-									
						MMAC	32319	1.4D + 1.7L + 1.7H + 1.7Eo	-37	447										
						MTCM	32306	1.4D + 1.7L + 1.7H + 1.7Eo	59	462	-									
					5-V-L	MCCM	32053	1.4D + 1.7L + 1.7H + 1.7Eo	-117	448	1.4D + 1.7L + 1.7H' + 1.7Eo	97	7.8			-			-	
						MMAT	32306	1.4D + 1.7L + 1.7H + 1.7Eo	59	463										
						MMAC	32306	1.4D + 1.7L + 1.7H' + 1.7Eo	-35	463										

			ant		ent or(2)	ces (3)			Longitudinal I	Reinforcement	Design Loads		Longitudinal			Transverse Shear Design Loads (6)				
ation	Face	Direction	einforceme Layout awing Num (1)	Thickness (ft)	rceme	Forc	ment	Axial and Flexure	Loads		In-Plane Shear Load	ls	Reinforcement Provided						Transverse Shear (7) Reinforcement Provided	Remari
2	2	Dire	einfo La awing	This)	Reinforce Zone Numi	ii.	Elen	Load	Axial (4)	Flexure (4)	Load	In-plane (5) Shear	(in ² / ft)	Load	Transverse Shear Force	ontal Section Corresponding Axial Force	Verti Transverse Shear Force	cal Section Corresponding Axial Force	(in²/ft²)	
			g E		R Zo	Max		Combination	(kips / ft)	(ft-kips / ft)	Combination	(kips / ft)		Combination	(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
						мтсм	26428 / 26429	1.4D + 1.7L + 1.7H + 1.7Eo	99	465										
					6-V-L	MCCM	26428 / 26429	1.4D + 1.7L + 1.7H + 1.7Eo	-285	473	1.4D + 1.7L + 1.7H + 1.7Eo	68	12.48						-	(8),(9)
						MMAT	26428 / 26429	1.4D + 1.7L + 1.7H + 1.7Eo	56	540										
				3		MMAC	26428 / 26429	1.4D + 1.7L + 1.7H + 1.7Eo	-181	540										
						мтсм	26685	D+L+H+E	111	286										
					7-V-L	MCCM	28574	1.4D + 1.7L + 1.7H + 1.7Eo	-313	211	1.4D + 1.7L + 1.7H + 1.7Eo	78	12.48	-	-	-	-	-	-	(8),(
						MMAT	26685	1.4D + 1.7L + 1.7H + 1.7Eo	25	348										
						MMAC	26685	1.4D + 1.7L + 1.7H + 1.7Eo	-210	348										-
						мтсм	11656 11655	1.4D + 1.7L + 1.7H + 1.7Eo	123	51										
					8-V-L	MCCM	20149	1.4D + 1.7L + 1.7H + 1.7Eo D + L + H + E	-430 0	9	1.4D + 1.7L + 1.7H + 1.7Eo	184	3.12						-	
						MMAC	20149	D+L+H+E	-183	259 261										
						мтсм	11724	1.4D + 1.7L + 1.7H + 1.7Eo	126	55										_
						MCCM	11724	1.4D + 1.7L + 1.7H + 1.7Eo	-423	68										
					9-V-L	MMAT	13698	D+L+H+E	3	365	1.4D + 1.7L + 1.7H + 1.7Eo	239	4.68	-	-	-	-		-	
						MMAC	13698	D+L+H+E	-226	365										
				4		мтсм	13208	1.4D + 1.7L + 1.7H + 1.7Eo	117	22										
						MCCM	11654	1.4D + 1.7L + 1.7H + 1.7Eo	-435	44										
					10-V-L	MMAT	23441	1.4D + 1.7L + 1.7H + 1.7Eo	6	415	1.4D + 1.7L + 1.7H + 1.7Eo	239	6.24		-	-			-	
						MMAC	11694	1.4D + 1.7L + 1.7H + 1.7Eo	-227	440										
	Far Side	Vertical	3H.3-11			мтсм	23439	1.4D + 1.7L + 1.7H + 1.7Eo	79	235										-
						MCCM	23439	1.4D + 1.7L + 1.7H + 1.7Eo	-261	45										
_					11-V-L	MMAT	23440	1.4D + 1.7L + 1.7H + 1.7Eo	12	532	1.4D + 1.7L + 1.7H + 1.7Eo	230	7.8	-	-	-	-	-	-	
th Wa						MMAC	23440	1.4D + 1.7L + 1.7H + 1.7Eo	-121	532										
North						мтсм	2742	1.4D + 1.7L + 1.7H + 1.7Eo	85	66										
						MCCM	2742	1.4D + 1.7L + 1.7H + 1.7Eo	-410	149										
					12-V-L	MMAT	5517	D+L+H+E	2	337	1.4D + 1.7L + 1.7H + 1.7Eo	172	3.12	-	-	-	-	-	-	
						MMAC	6436	D+L+H+E	-280	366										
						мтсм	3514	1.4D + 1.7L + 1.7H + 1.7Eo	203	83										
					13-V-L	MCCM	3514	1.4D + 1.7L + 1.7H + 1.7Eo	-610	225	1.4D + 1.7L + 1.7H + 1.7Eo	212	4.68							
					13-1-6	MMAT	7248	D+L+H+E	1	623	140 + 150 + 154 + 1560	212	4.00							
				5.5		MMAC	7248	D+L+H+E	-284	623										
						мтсм	2716	1.4D + 1.7L + 1.7H + 1.7Eo	308	103										
					14-V-L	MCCM	2716	1.4D + 1.7L + 1.7H + 1.7Eo	-738	158	1.4D + 1.7L + 1.7H + 1.7Eo	238	6.24						_	
						MMAT	7242	D+L+H+E	29	660										
						MMAC	7242	D+L+H+E	-287	662										
						мтсм	2787	1.4D + 1.7L + 1.7H + 1.7Eo	339	60										
					15-V-L	MCCM	3584	1.4D + 1.7L + 1.7H + 1.7Eo	-676	186	1.4D + 1.7L + 1.7H + 1.7Eo	171	7.8							
						MMAT	8961	D+L+H+E	37	704										
						MMAC	8961	D+L+H+E	-267	712										-
				3	1-T	-		•			•	-		D+L+H+E	48	-46	π	-96	0.20 (#4@12)	
					2-T				<u> </u>					1.4D + 1.7L + 1.7H + 1.7Eo	-62	83	-2	9	0.31 (#5@12)	
		Transverse	3H.3-12		3-T 4-T	-			-				-	D+L+H+E	-9 34	-8 -32	-95 106	-69 43	0.20 (#4@12)	
	1	(Horizontal and Vertical	Jr1.3-12	4	4-T 5-T				-			-		D+L+H+E	-11	-32 -65	-130	-89	0.31 (#5@12) 0.44 (#6@12)	
				'	5-1 6-T				-					D+L+H+E	100	-65	-130 102	-30	0.44 (#6@12) 0.60 (#7@12)	
					7-T		-		+ :-				- :	D+L+H+E	-143	-45	143	-191	1.76 (#6@6)	
					(-1)				<u> </u>					U+L+H+E	-143	40	143	-191	1.70 (#O(gl0)	Щ.

			- è		± R	Ĉ,			Longitudinal	Reinforcement	Design Loads									
tion		tion	out Numb	9000	mper(Force	ent	Axial and Flexure			In-Plane Shear Load	ls	Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear (7)	D
Local	Face	Direction	Inforcerr Layout wing Nur	Thicknes (ft)	Reinforce Zone Numi	E E	Elem	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in ² / ft)	Load		ntal Section		al Section	Reinforcement Provided (in ² /ft ²)	Remarks
			Re Dra		Re	Maxi		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	(Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
					8-T	-		-	-	-	-	-	-	D+L+H+E	-121	45	3	-44	0.20 (#4@12)	-
lew a	١.	Transverse (Horizontal	3H.3-12	5.5	9-T	-	-		-	-		-	-	D+L+H+E	15	-131	166	-120	0.31 (#5@12)	-
North		and Vertical)	0.0012		10-T	-	-		-	-				D+L+H'+E'	0	-44	194	-95	0.44 (#6@12)	
					11-T	-	-		-					D+L+H+E	154	-18	226	-316	0.79 (#8@12)	
						MTCM	34675	1.4D + 1.7L + 1.7H + 1.7Eo	52	-8										
					1-H-L	MCCM	34147	1.4D + 1.7L + 1.7H + 1.7Eo	-109	-48	1.4D + 1.7L + 1.7H + 1.7Eo	67	1.56							
						MMAT	29252	1.4D + 1.7L + 1.7H + 1.7Eo	10	-113										
						MMAC	29252	1.4D + 1.7L + 1.7H + 1.7Eo	-11	-113										
						MTCM	31645	1.4D + 1.7L + 1.7H + 1.7Eo	103	-83										
					2-H-L	MCCM	28431	1.4D + 1.7L + 1.7H + 1.7Eo	-198	-62	1.4D + 1.7L + 1.7H + 1.7Eo	124	3.12							
						MMAT	31092	1.4D + 1.7L + 1.7H + 1.7Eo	11	-243										
				3		MMAC	31092	1.4D + 1.7L + 1.7H + 1.7Eo	-9	-243										
						MTCM	34156	1.4D + 1.7L + 1.7H + 1.7Eo	122	-66										
					3-H-L	MCCM	34156	1.4D + 1.7L + 1.7H + 1.7Eo	-259	-66	1.4D + 1.7L + 1.7H + 1.7Eo	124	4.68		-				_	
				MMAT	26246	1.4D + 1.7L + 1.7H + 1.7Eo	- 11	-318												
				MMAC	26246	1.4D + 1.7L + 1.7H + 1.7Eo	-104	-322												
						MTCM	26237	1.4D + 1.7L + 1.7H + 1.7Eo	111	-210										
			4HL	MCCM	26237	1.4D + 1.7L + 1.7H + 1.7Eo	-270	-200	1.4D + 1.7L + 1.7H + 1.7Eo	112	6.24						-			
						MMAT	26238	1.4D + 1.7L + 1.7H + 1.7Eo	20	-295										
						MMAC	26238	1.4D + 1.7L + 1.7H + 1.7Eo	-229	-332										
						MTCM	23291	1.4D + 1.7L + 1.7H + 1.7Eo	70	-118										
					5-H-L	MCCM	14586	1.4D + 1.7L + 1.7H + 1.7Eo	-194	-252	1.4D + 1.7L + 1.7H + 1.7Eo	135	3.12							
=						MMAT	23316	1.4D + 1.7L + 1.7H + 1.7Eo	38	-196										
uth Wa	Near Side	e Horizontal	3H.3-13			MMAC	19367	D+L+H+E	-97	-362										
Soc						мтсм	11561	1.4D + 1.7L + 1.7H + 1.7Eo	39	-49										
				4	6-H-L	MCCM	14323	1.4D + 1.7L + 1.7H' + 1.7Eo	-186	-282	1.4D + 1.7L + 1.7H + 1.7Eo	135	4.68	-	-		-		-	-
						MMAT	11561	D+L+H+E	7	-382										
						MMAC	11570	D+L+H+E	-92	-579										
						MTCM	23297	1.4D + 1.7L + 1.7H' + 1.7Eo	113	-344										
					7-H-L	MCCM	23297	1.4D + 1.7L + 1.7H + 1.7Eo 1.4D + 1.7L + 1.7H + 1.7Eo	-296	-491 -630	1.4D + 1.7L + 1.7H + 1.7Eo	115	6.24						-	
						MMAC	23305	1.4D + 1.7L + 1.7H + 1.7Eo	-97	-630										
				_	-	MMAC	4126	1.4D + 1.7L + 1.7H + 1.7Eo	-97	-677										-
						MCCM	8521	1.4D + 1.7L + 1.7H + 1.7E0	-224	-215										
					8-H-L	MMAT	7748	1.4D + 1.7L + 1.7H + 1.7E0	1	-215	1.4D + 1.7L + 1.7H + 1.7Eo	135	3.12		-			-	-	
						MMAC	6003	D+L+H+E	-73	-425										
						мтсм	2345	1.4D + 1.7L + 1.7H + 1.7Eo	47	-87										
						MCCM	3142	1.4D + 1.7L + 1.7H + 1.7Eo	-168	-241										
				5.5	9-H-L	MMAT	2288	1.4D + 1.7L + 1.7H + 1.7Eo	4	-198	1.4D + 1.7L + 1.7H + 1.7Eo	160	4.68		-				-	-
						MMAC	3085	D+L+H+E.	-109	-303										
						мтсм	2346	1.4D + 1.7L + 1.7H + 1.7Eo	62	-82										
						MCCM	8531	D+L+H+E	-355	-1157										
					10-H-L	MMAT	2287	D+L+H+E	8	-403	1.4D + 1.7L + 1.7H + 1.7Eo	160	6.24		-	•		-	-	-
						MMAC	8531	D+L+H+E	-355	-1165										
					1			5.5.11.5		-1100		1	l						1	1

			E 2		# E.	68			ongitudinal	Reinforcement	Design Loads					_				
ation	8	ction	Num Out	1)	ceme	Force	nent	Axial and Flexure	Loads		In-Plane Shear Load:	s	Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remarks
Locatio	Face	Direc	Layoul wing Nu	Thickner (ft)	Reinforce Zone Nun	E E	Elen	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load		ntal Section		al Section	(in²/ft²)	Kelliarks
			8 g		Z 02	Max		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	26214	1.4D + 1.7L + 1.7H' + 1.7Eo	93	-51										
					1-V-L	MCCM	26584	1.4D + 1.7L + 1.7H + 1.7Eo	-269	-29	1.4D + 1.7L + 1.7H + 1.7Eo	130	3.12							(8)
						MMAT	31135	1.4D + 1.7L + 1.7H' + 1.7Eo	7	-231										
						MMAC	31135	1.4D + 1.7L + 1.7H' + 1.7Eo	-48	-231										
						мтсм	34164	1.4D + 1.7L + 1.7H' + 1.7Eo	79	-203										
					2-V-L	MCCM	34156	1.4D + 1.7L + 1.7H' + 1.7Eo	-187	-190	1.4D + 1.7L + 1.7H + 1.7Eo	97	4.68				-	-		
						MMAT	32162	1.4D + 1.7L + 1.7H' + 1.7Eo	51	-287										
						MMAC	32162	1.4D + 1.7L + 1.7H' + 1.7Eo	-41	-287										
						мтсм	26220	1.4D + 1.7L + 1.7H' + 1.7Eo	42	-216										
					3-V-L	MCCM	27076	1.4D + 1.7L + 1.7H	-197	-91	1.4D + 1.7L + 1.7H + 1.7Eo	89	6.24	-	-	-	-	-	-	
						MMAT	26238 / 26239	1.4D + 1.7L + 1.7H + 1.7Eo	19	-466										
						MMAC	26238 / 26239	1.4D + 1.7L + 1.7H + 1.7Eo	-156	-493										
						мтсм	26229	D+L+H'+E'	24	-423										
				3	4-V-L	MCCM	27377	1.40 + 1.7L + 1.7H	-190	-74	1.4D + 1.7L + 1.7H + 1.7Eo	87	7.8					-		
						MMAT	26229 26229	1.4D + 1.7L + 1.7H + 1.7Eo	-120	-509 -511										
					_	MTCM	26237	1.4D + 1.7L + 1.7H + 1.7Eo	112	-852										
						MCCM	26237	1.4D + 1.7L + 1.7H + 1.7Eo	-351	-904										
					5-V-L	MMAT	26237	1.4D + 1.7L + 1.7H + 1.7Eo	-301	-899	1.4D + 1.7L + 1.7H' + 1.7Eo	69	12.48				-			(8),(9)
						MMAC	26237	1.4D + 1.7L + 1.7H + 1.7Eo	-351	-904										
					_	мтсм	26237 /	D+L+H'+E'	70	-680										+
Na.						MCCM	26238 26548 /	1.4D + 1.7L + 1.7H	-262	-681										
South Wall	Near Side	Vertical	3H.3-14		6-V-L	MMAT	26549 26237 /	1.4D + 1.7L + 1.7H' + 1.7Eo	17	-820	1.4D + 1.7L + 1.7H + 1.7Eo	73	12.48		-	-	-	-		(8),(9)
, s						MMAC	26238 26237 / 26238	1.4D + 1.7L + 1.7H' + 1.7Eo	-261	-825										
						мтсм	26542	D+L+H'+E'	112	-485										
						мссм	28431	1.4D + 1.7L + 1.7H' + 1.7Eo	-303	-204										
					7-V-L	MMAT	26556 / 26557	1.4D + 1.7L + 1.7H' + 1.7Eo	5	-567	1.4D + 1.7L + 1.7H' + 1.7Eo	82	7.8							(8),(9)
						MMAC	26556 / 26557	1.4D + 1.7L + 1.7H' + 1.7Eo	-14	-568										
l						MTCM	11512	1.4D + 1.7L + 1.7H' + 1.7Eo	102	-62										
l						мссм	11513	1.4D + 1.7L + 1.7H' + 1.7Eo	-389	-65										
l					8-V-L	MMAT	11518	D+L+H'+E'	19	-218	1.4D + 1.7L + 1.7H + 1.7Eo	183	3.12					•		(8)
						MMAC	16496	D+L+H'+E'	-152	-280										
						мтсм	23273	1.4D + 1.7L + 1.7H + 1.7Eo	109	-72										
					9-V-L	MCCM	16528	1.4D + 1.7L + 1.7H' + 1.7Eo	-357	-66	1.4D + 1.7L + 1.7H + 1.7Eo									
					9-V-L	MMAT	22077	1.4D + 1.7L + 1.7H + 1.7Eo	8	-411	1.4D + 1.7L + 1.7H + 1.7E0	223	4.68		-	-	-	-	-	-
						MMAC	22078	1.4D + 1.7L + 1.7H' + 1.7Eo	-149	-471										
				4		мтсм	11569	1.4D + 1.7L + 1.7H' + 1.7Eo	115	-97										
					10-V-L	мссм	11570	1.4D + 1.7L + 1.7H + 1.7Eo	-425	-209	1.4D + 1.7L + 1.7H' + 1.7Eo	277	6.24				_			
					10-V-L	MMAT	23304	1.4D + 1.7L + 1.7H + 1.7Eo	7	-632	.AU+1./L+1./H+1./E0	211	0.24							'
						MMAC	23304	1.4D + 1.7L + 1.7H' + 1.7Eo	-151	-699										
						мтсм	22631	1.4D + 1.7L + 1.7H + 1.7Eo	81	-365							_			
					11-V-L	мссм	22631	1.4D + 1.7L + 1.7H + 1.7Eo	-308	-533	1.4D + 1.7L + 1.7H' + 1.7Eo	157	7.8					_		
1						MMAT	23297	D + L + H' + E'	6	-732		137					-			
						MMAC	23297	1.4D + 1.7L + 1.7H + 1.7Eo	-236	-823										

Table 3H.3-3 Results of Radwaste Building Concrete Wall Design (Continued)

			nt ber	_	1 G_	(5) 50			Longitudinal	Reinforcement	Design Loads									
tion	Face	Direction	ceme out Numl	Thickness (ft)	Reinforcemen Zone Number ^f	Por	neut	Axial and Flexur	e Loads		In-Plane Shear Load	Is	Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾ Reinforcement Provided	Rema
8	E.	Dire	Layout Layout awing Nun	Apid F	ne Nt	E E	Elem	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load		ontal Section		tical Section	(in ² /ft ²)	Kellia
			S E		2 °S	Max		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						мтсм	4073	1.4D + 1.7L + 1.7H + 1.7Eo	100	-129										
					12-V-L	MCCM	3100	1.4D + 1.7L + 1.7H' + 1.7Eo	-347	-111	1.4D + 1.7L + 1.7H + 1.7Eo	164	3.12	_	-					
					12.12	MMAT	3123	D + L + H' + E'	6	-275	1.40 1.12 1.111 1.120	1.54	V.12							
						MMAC	3102	D + L + H' + E'	-237	-281										
						мтсм	4059	1.4D + 1.7L + 1.7H' + 1.7Eo	218	-88										
					13-V-L	мссм	4069	1.4D + 1.7L + 1.7H' + 1.7Eo	-650	-121	1.4D + 1.7L + 1.7H + 1.7Eo	235	4.68							
						MMAT	3124	D + L + H' + E'	15	-292										
						MMAC	3124	D + L + H' + E'	-213	-292										
						мтсм	2287	1.4D + 1.7L + 1.7H + 1.7Eo	301	-291										
	Near Side	Vertical	3H.3-14	5.5	14-V-L	мссм	2287	1.4D + 1.7L + 1.7H' + 1.7Eo	-747	-323	1.4D + 1.7L + 1.7H + 1.7Eo	285	6.24		-		_			
						MMAT	2292	D+L+H'+E'	18	-874										
						MMAC	2292	D + L + H' + E'	-268	-874										
						мтсм	2330	1.4D + 1.7L + 1.7H' + 1.7Eo	114	-249										
					15-V-L	MCCM	2330	1.4D + 1.7L + 1.7H' + 1.7Eo	-346	-254	1.4D + 1.7L + 1.7H + 1.7Eo	224	7.8	_	-	_				
						MMAT	2328	D+L+H'+E'	33	-551										
						MMAC	2328	D+L+H'+E'	-217	-551										
						мтсм	2346	1.4D + 1.7L + 1.7H' + 1.7Eo	296	-224										
					16-V-L	MCCM	2346	1.4D + 1.7L + 1.7H' + 1.7Eo	-697	-600	1.4D + 1.7L + 1.7H + 1.7Eo	285	9.36							
						MMAT	2343	D+L+H'+E'	20	-816										
	 					MMAC	2343	D + L + H' + E'	-277	-816										
						мтсм	34675	1.4D + 1.7L + 1.7H' + 1.7Eo	52	18										
					1-H-L	MCCM	34147	1.4D + 1.7L + 1.7H' + 1.7Eo	-109	56	1.4D + 1.7L + 1.7H + 1.7Eo	67	1.56							
						MMAT	29252	1.4D + 1.7L + 1.7H + 1.7Eo	11	104										
Ž.						MMAC	29252	1.4D + 1.7L + 1.7H' + 1.7Eo	-11	104										
200						мтсм	31123	1.4D + 1.7L + 1.7H + 1.7Eo	98	100										
					2-H-L	мссм	28431	1.4D + 1.7L + 1.7H' + 1.7Eo	-198	53	1.4D + 1.7L + 1.7H + 1.7Eo	124	3.12	-	-					
						MMAT	29564	1.4D + 1.7L + 1.7H + 1.7Eo	31	207										
						MMAC	29564	1.4D + 1.7L + 1.7H' + 1.7Eo	-38	207										
						мтсм	26237	1.4D + 1.7L + 1.7H + 1.7Eo	111	172										
				3	3-H-L	MCCM	26237	1.4D + 1.7L + 1.7H' + 1.7Eo	-270	161	1.4D + 1.7L + 1.7H + 1.7Eo	124	4.68		-					
						MMAT	30873	1.4D + 1.7L + 1.7H' + 1.7Eo	25	250										
						MMAC	30873	1.4D + 1.7L + 1.7H + 1.7Eo	-141	251		_								
						мтсм	32170	1.4D + 1.7L + 1.7H' + 1.7Eo	120	77										
	Far Side	Horizontal	3H.3-15		4-H-L	MCCM	31909	1.4D + 1.7L + 1.7H + 1.7Eo	-200	321	1.4D + 1.7L + 1.7H + 1.7Eo	46	6.24	-	-		-		-	-
						MMAT	31900	1.4D + 1.7L + 1.7H' + 1.7Eo	58	361										
						MMAC	31900	1.4D + 1.7L + 1.7H + 1.7Eo	-187	361		-								_
						мтсм	34156	1.4D + 1.7L + 1.7H + 1.7Eo	122	63										
					5-H-L	MCCM	34156 34162	1.4D + 1.7L + 1.7H' + 1.7Eo	-259 54	64 196	1.4D + 1.7L + 1.7H + 1.7Eo	67	7.8	-	-					-
						MMAC	+		_	_										
						MMAC	34162 23291	1.4D + 1.7L + 1.7H' + 1.7Eo	-71 70	196		-				-				
							23291	1.4D + 1.7L + 1.7H + 1.7Eo	_											
					6-H-L	MCCM	23278	1.4D + 1.7L + 1.7H' + 1.7Eo D + L + H' + E'	-199	114	1.4D + 1.7L + 1.7H + 1.7Eo	135	3.12	-	-	-	-			-
						MMAC	+		_	_										
				4		MMAC	11516 23297	D + L + H' + E' 1.4D + 1.7L + 1.7H' + 1.7Eo	-162 113	292 306		_				-				-
						MCCM	23297	1.4D + 1.7L + 1.7H + 1.7Eo	-296	190										
					7-H-L	MMAT	23297	1.4D + 1.7L + 1.7H + 1.7Eo	-296	485	1.4D + 1.7L + 1.7H* + 1.7Eo	115	6.24	-	-	-	-	-	-	-
							+		_	_										
		1				MMAC	23305	1.4D + 1.7L + 1.7H + 1.7Eo	-35	485										ļ

			+ P		# 8	6,			Longitudinal	Reinforcement	Design Loads									
u g		tion	out Numb	ssou (nemen upper	Force	i i	Axial and Flexure			In-Plane Shear Load	s	Longitudinal Reinforcement			Transverse Shear Design Loads (5)			Transverse Shear ⁽⁷⁾	
Local	Face	Direction	Reinforcem Layout Trawing Nur	Thicknes (ft)	Reinforcem Zone Numb	aximum	Elem	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure (4) (ft-kips / ft)	Load Combination	In-plane (5) Shear	Provided (in²/ ft)	Load Combination	Transverse Shear Force	ontal Section Corresponding Axial Force	Transverse Shear Force	cal Section Corresponding Axial Force	Reinforcement Provided (in²/ft²)	Remarks
			_		_	MTCM	8514	1.4D + 1.7L + 1.7H* + 1.7Eo	32	23		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
						мссм	8521	1.4D + 1.7L + 1.7H' + 1.7Eo	-224	126										
					8-H-L	MMAT	8518	1.4D + 1.7L + 1.7H + 1.7W	8	190	1.4D + 1.7L + 1.7H + 1.7Eo	135	3.12	-	-					-
						MMAC	8529	D+L+H'+E'	-125	545										
		Horizontal	3H.3-15	5.5		MTCM	2345	1.4D + 1.7L + 1.7H + 1.7Eo	47	65										
						MCCM	3141	1.4D + 1.7L + 1.7H + 1.7Eo	-153	250										
					9-H-L	MMAT	8475	1.4D + 1.7L + 1.7H + 1.7Eo	7	164	1.4D + 1.7L + 1.7H* + 1.7Eo	160	4.68							
						MMAC	8477	D + L + H' + E'	-55	627										
	'					MTCM	26214	1.4D + 1.7L + 1.7HT + 1.7Eo	93	63										
					1-V-L	мссм	26584	1.4D + 1.7L + 1.7H + 1.7Eo	-269	58	1.4D + 1.7L + 1.7H + 1.7Eo	130	3.12							
					1-V-L	MMAT	29788	1.4D + 1.7L + 1.7H + 1.7Eo	0	233	1.4D+1.7L+1.7H+1.7E0	130	3.12							
						MMAC	29788	1.4D + 1.7L + 1.7H + 1.7Eo	-88	252										
						MTCM	34164	1.4D + 1.7L + 1.7H + 1.7Eo	79	224										
					2-V-L	мссм	27076	1.4D + 1.7L + 1.7H	-200	65	1.4D + 1.7L + 1.7H + 1.7Eo	97	4.68	_	_					
						MMAT	29803	1.4D + 1.7L + 1.7H + 1.7Eo	6	359										
						MMAC	31628	1.4D + 1.7L + 1.7H" + 1.7Eo	-46	379										
						MTCM	32181	1.4D + 1.7L + 1.7H + 1.7Eo	42	463										
					3-V-L	MCCM	26239	1.4D + 1.7L + 1.7H	-192	104	1.4D + 1.7L + 1.7H + 1.7Eo	97	6.24							
						MMAT MMAC	31634 31634	1.4D + 1.7L + 1.7H + 1.7Eo 1.4D + 1.7L + 1.7H + 1.7Eo	-90	485 485										
				3		MTCM	31634	1.4D + 1.7L + 1.7H + 1.7E0	-90	485 560										
Wall						MCCM	26244	1.40 + 1.7L + 1.7H	-161	86										
South W	Far Side				4-V-L	MMAT	32162	1.4D + 1.7L + 1.7H + 1.7Eo	56	560	1.4D + 1.7L + 1.7H + 1.7Eo	97	7.8	-						-
Š						MMAC	32162	1.4D + 1.7L + 1.7H + 1.7Eo	-36	560	-									
						MTCM	26542	D+L+H'+E'	112	375										
						MCCM	28431	1.4D + 1.7L + 1.7H* + 1.7Eo	-303	237										
		Vertical	3H.3-16		5-V-L	MMAT	26542	1.4D + 1.7L + 1.7H + 1.7Eo	10	437	1.4D + 1.7L + 1.7H + 1.7Eo	82	12.48							(8),(9)
						MMAC	26542	1.4D + 1.7L + 1.7H + 1.7Eo	-195	437										
						MTCM	26237 / 26238	1.4D + 1.7L + 1.7H + 1.7Eo	70	563										
					6-V-L	мссм	26548 / 26549	1.4D + 1.7L + 1.7H + 1.7Eo	-262	484										
					B-V-L	MMAT	26237 / 26238	1.4D + 1.7L + 1.7H + 1.7Eo	69	644	1.4D + 1.7L + 1.7H + 1.7Eo	69	12.48							(8),(9)
						MMAC	26237 / 26238	1.4D + 1.7L + 1.7H + 1.7Eo	-181	644										
						мтсм	11512	1.4D + 1.7L + 1.7H + 1.7Eo	111	63										
					7-V-L	мссм	11513	1.4D + 1.7L + 1.7H + 1.7Eo	-389	80	1.4D + 1.7L + 1.7H + 1.7Eo	213	3.12							
						MMAT	22079	1.4D + 1.7L + 1.7H + 1.7Eo	11	247										
						MMAC	22079	1.4D + 1.7L + 1.7H + 1.7Eo	-114	247										
						MTCM	16528	1.4D + 1.7L + 1.7H + 1.7Eo	90	7										
				4	8-V-L	мссм	16528	D+L+H+E	-315	25	1.4D + 1.7L + 1.7H + 1.7Eo	277	4.68	-	-		-	-	-	-
						MMAT	23304	1.4D + 1.7L + 1.7H" + 1.7Eo	3	509										
						MMAC	23304	1.4D + 1.7L + 1.7H + 1.7Eo	-110	509									1	
						MTCM MCCM	11569 11569	1.4D + 1.7L + 1.7H + 1.7Eo 1.4D + 1.7L + 1.7H + 1.7Eo	115 -425	67 42										
					9-V-L	MMAT	23297	1.4D + 1.7L + 1.7H + 1.7Eo	43	520	1.4D + 1.7L + 1.7H + 1.7Eo	213	6.24	-			-		-	-
						MMAC	23297	1.4D + 1.7L + 1.7H + 1.7E0	-154	520										
						mm/n/	23201	.40 - 1.76 - 1.76 - 1.760	1104	520					1					

Table 3H.3-3 Results of Radwaste Building Concrete Wall Design (Continued)

			- b		= 6	6,			Longitudinal	Reinforcement	Design Loads									
lion		u u	emen out Vumb	988	Reinforcemen Zone Number	Force	aut	Axial and Flexure			In-Plane Shear Load	s	Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾	
Location	Face	Direction	inforcem Layout wing Nur (1)	Thickness (ft)	inforc e Nur	i i	Ee	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ft)	Load		tontal Section		cal Section	Reinforcement Provided (in ² /ft ²)	Remarks
		-	Rei	-	Zon	Maxin		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	(in / rt)	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)]	
						MTCM	3085	1.4D + 1.7L + 1.7H" + 1.7Eo	196	60										
						MCCM	2288	1.4D + 1.7L + 1.7H + 1.7Eo	-594	172										
					10-V-L	MMAT	6762	D+L+H'+E'	16	682	1.4D + 1.7L + 1.7H' + 1.7Eo	224	4.68	-	-	-		-		
						MMAC	6019	D+L+H'+E'	-233	718										
						MTCM	2287	1.4D + 1.7L + 1.7H + 1.7Eo	301	67										
	Far Side					MCCM	2287	1.4D + 1.7L + 1.7H' + 1.7Eo	-747	221	1.4D + 1.7L + 1.7H' + 1.7Eo	203								
	Far Side	e Verti	al 3H.3-16	5.5	11-V-L	MMAT	6761	D+L+H'+E'	19	711	1.4D + 1.7L + 1.7H + 1.7E0	203	6.24							
						MMAC	6761	D + L + H' + E'	-263	739										
						MTCM	2346	1.4D + 1.7L + 1.7H + 1.7Eo	296	161										
					12-V-L	MCCM	3143	1.4D + 1.7L + 1.7H + 1.7Eo	-663	103	1.4D + 1.7L + 1.7H' + 1.7Eo	285	7.8			_				_
					12-1-6	MMAT	7762	D + L + H' + E'	20	671	1.40 * 1.7E * 1.7H * 1.7E0	200	7.0							
						MMAC	7762	D+L+H'+E'	-257	671										
=					1-T				-					1.4D + 1.7L + 1.7H + 1.7Eo	-64	48	-29	18	0.20 (#4@12)	-
South W					2-T		-		-	-		-		D+L+H'+E'	-59	57	-20	-16	0.31 (#5@12)	-
S				3	3-T	-	-		-					1.4D + 1.7L + 1.7H + 1.7Eo	-48	208	-13	135	0.44 (#6@12)	-
					4-T	-	-	-	-	-		-		1.4D + 1.7L + 1.7H + 1.7Eo	-149	3	-101	-64	1.76 (#6@6)	-
					5-T	-	-		-	-		-		1.4D + 1.7L + 1.7H + 1.7Eo	-178	14	-125	-83	2.40 (#7@6)	-
					6-T				-					1.4D + 1.7L + 1.7H + 1.7Eo	91	-60	5	-81	0.20 (#4@12)	
					7-T	-	-	+	-	-		-	-	D + L + H' + E'	103	52	4	-90	0.31 (#5@12)	-
	-	(Horizo	ntal 3H.3-17	4	8-T	-	-		-			-		1.4D + 1.7L + 1.7H + 1.7Eo	136	-58	8	-89	0.44 (#6億12)	-
				`	9-T	-	-		-	-		-		D + L + H' + E'	116	-7	94	-17	0.60 (#7@12)	-
					10-T	-	-	-	-	-		-	-	1.4D + 1.7L + 1.7H + 1.7Eo	236	-43	90	-84	1.24 (#5@6)	-
					11-T		-		-					1.4D + 1.7L + 1.7H + 1.7Eo	196	-59	168	-86	1.76 (#6@6)	-
					12-T	-	-	-	-	-		-		D + L + H' + E'	-132	-16	0	-17	0.20 (#4@12)	-
				5.5	13-T	-	-	-	-	-		-		D + L + H' + E'	145	-40	18	-28	0.31 (#5@12)	-
					14-T	-	-		-	-		-		D+L+H'+E'	-191	-22	0	-13	0.44 (#6徽12)	-
					15-T	-	-	-	-	-	-	-	-	D + L + H' + E'	180	-30	132	-71	0.60 (#7@12)	-
						MTCM	32259	1.4D + 1.7L + 1.7H + 1.7Eo	81	-12										
					1-H-L	MCCM	29086	1.4D + 1.7L + 1.7H + 1.7Eo	-73	-13	1.4D + 1.7L + 1.7H' + 1.7Eo	67	1.56							
						MMAT	29393	1.4D + 1.7L + 1.7H + 1.7Eo	11	-114										
						MMAC	27191	D+L+H'+E'	-24	-134										
						MTCM	31453	1.4D + 1.7L + 1.7H + 1.7Eo	124	-22										
				3	2-H-L	мссм	26384	D + L + H' + E'	-92	-17	1.4D + 1.7L + 1.7H' + 1.7Eo	121	3.12							
					1	MMAT	34107	1.4D + 1.7L + 1.7H + 1.7Eo	23	-210										
						MMAC	34107	1.4D + 1.7L + 1.7H + 1.7Eo	-13	-210										
						MTCM	31192	1.4D + 1.7L + 1.7H + 1.7Eo	168	-37										
East Wall	Near Side	le Horizo	ntal 3H.3-18		3-H-L	MCCM	31192	1.4D + 1.7L + 1.7H + 1.7Eo	-126	-53	1.4D + 1.7L + 1.7H + 1.7Eo	121	4.68							
East						MMAT	32281	1.4D + 1.7L + 1.7H + 1.7Eo	21	-263										
						MMAC	26404	D+L+H'+E'	-81	-306										
						мтсм	23407	1.4D + 1.7L + 1.7H* + 1.7Eo	33	-80										
					4-H-L	мссм	11576	D+L+H'+E'	-181	-287	1.4D + 1.7L + 1.7H' + 1.7Eo	160	3.12							
						MMAT	23407	1.4D + 1.7L + 1.7H + 1.7Eo	28	-95										
				4		MMAC	11576	D+L+H'+E'	-175	-295										
						мтсм	23408	1.4D + 1.7L + 1.7H + 1.7Eo	47	-97										
					5-H-L	мссм	11649	D+L+H'+E'	-199	-289	1.4D + 1.7L + 1.7H' + 1.7Eo	178	4.68							
						MMAT	23411	1.4D + 1.7L + 1.7H* + 1.7Eo	3	-177										
	1			1		MMAC	11649	D+L+H'+E'	-199	-289		1								

Table 3H.3-3 Results of Radwaste Building Concrete Wall Design (Continued)

			10		# 82	(S)			Longitudinal	Reinforcement	t Design Loads									
io		Log Log	out Aumb	1058	Reinforcemen Zone Number ^f	Force	ent	Axial and Flexure			In-Plane Shear Load	is	Longitudinal Reinforcement			Transverse Shear Design Loads (8)			Transverse Shear ⁽⁷⁾	
28	Face	Direction	Reinforcems Layout Drawing Num	Thickness (ft)	nford e Nui	E E	E	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load		ontal Section		ical Section	Reinforcement Provided (in²/ft²)	Remarks
			Rei	-	Rei	Maxir		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	(iii 7 it)	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						мтсм	22108	1.4D + 1.7L + 1.7H + 1.7Eo	22	-40										
					6-H-L	мссм	13553	D+L+H+E	-111	-391	1.4D + 1.7L + 1.7H + 1.7Eo	178	6.24							
					OHIL	MMAT	22108	1.4D + 1.7L + 1.7H + 1.7Eo	3	-188	1,40 + 1,70 + 1,760	170	0.24	·		·				i .
				4		MMAC	14597	D+L+H+E	-104	-418										1
				-		MTCM	22750	1.4D + 1.7L + 1.7H' + 1.7Eo	21	-209										
					7-H-L	мссм	11651	D+L+H+E	-225	-209	1.4D + 1.7L + 1.7H + 1.7Eo	178	7.8			-				
					7-11-2	MMAT	23415	D+L+H+E	9	-588	1,40 + 1,70 + 1,700	170	1.0				_			1
						MMAC	16659	D+L+H+E	-146	-722										
						мтсм	5470	1.4D + 1.7L + 1.7H + 1.7Eo	12	-57										
					8-H-L	мссм	8125	D+L+H'+E'	-240	-464	1.4D + 1.7L + 1.7H + 1.7Eo	148	3.12	_	_	_				
					0.112	MMAT	5470	1.4D + 1.7L + 1.7H + 1.7Eo	10	-83		140	0.12							
		Horizont	il 3H.3-18			MMAC	8125	D+L+H'+E'	-235	-473										
		110120110				MTCM	2352	1.4D + 1.7L + 1.7H + 1.7Eo	48	-34										
					9-H-L	мссм	8890	D+L+H+E'	-246	-509	1.4D + 1.7L + 1.7H + 1.7Eo	181	4.68	_		-				
						MMAT	2352	1.4D + 1.7L + 1.7H + 1.7W	5	-98										1
				5		MMAC	8890	D+L+H'+E'	-243	-510										
						MTCM	2348	1.4D + 1.7L + 1.7H + 1.7Eo	55	-67										1
					10-H-L	мссм	7768	D+L+H+E	-254	-1005	1.4D + 1.7L + 1.7H + 1.7Eo	181	6.24	_	_	-	_			
						MMAT	2348	D+L+H+E	0	-393										1
						MMAC	6815	D+L+H'+E'	-242	-1009										
						MTCM	2715	1.4D + 1.7L + 1.7H + 1.7Eo	55	-82										1
East Wall	Near Sid	ie i			11-H-L	мссм	8895	D+L+H'+E'	-286	-816	1.4D + 1.7L + 1.7H + 1.7Eo	181	9.36							
Eas						MMAT	2715	1.4D + 1.7L + 1.7H + 1.7Eo	2	-377										1
		_				MMAC	8135	D+L+H+E	-270	-1221										
						мтсм	26586	1.4D + 1.7L + 1.7H + 1.7Eo	75	-27										1
					1-V-L	мссм	26586	1.4D + 1.7L + 1.7H' + 1.7Eo	-268	-19	1.4D + 1.7L + 1.7H + 1.7Eo	74	1.56							
						MMAT	28234	1.4D + 1.7L + 1.7H + 1.7Eo	6	-104	-									1
						MMAC	28234	1.4D + 1.7L + 1.7H + 1.7Eo	-150	-161										
						мтсм	26384	D+L+H+E	95	-29	-									1
				3	2-V-L	мссм	26393	1.4D + 1.7L + 1.7H + 1.7Eo	-338	-34	1.4D + 1.7L + 1.7H' + 1.7Eo	85	3.12		-	-			-	-
						MMAT	26306	D+L+H'+E'	10	-216	-									1
						MMAC	26306	1.4D + 1.7L + 1.7H* + 1.7Eo	-227	-291										
						MTCM	32279	1.4D + 1.7L + 1.7H + 1.7Eo	190	-53	-									1
		Vertical	3H.3-19		3-V-L	MCCM	26310	1.4D + 1.7L + 1.7H + 1.7Eo	-225	-303	1.4D + 1.7L + 1.7H' + 1.7Eo	85	4.68		-	-				
						MMAT	33710	D+L+H'+E'	5	-270	-									1
						MMAC	33710	1.4D + 1.7L + 1.7H + 1.7Eo	-115	-351										
						MTCM	11576	1.4D + 1.7L + 1.7H + 1.7Eo	129	-26	-									1
					4-V-L	MCCM	11576	1.4D + 1.7L + 1.7H' + 1.7Eo D + L + H' + E'	-484 23	-128 -195	1.4D + 1.7L + 1.7H + 1.7Eo	188	3.12	-	-	-			-	-
						MMAT	16173 22706	D + L + H' + E' 1.4D + 1.7L + 1.7H' + 1.7Eo	-241	-195 -282	-									1
				4		MMAC	22706 11651	1.4D + 1.7L + 1.7H + 1.7Eo	-241 145	-282		+					-			
						MCCM	11651	1.4D + 1.7L + 1.7H + 1.7Eo	-474	-151	-									I
					5-V-L	MCCM	11651	1.4D + 1.7L + 1.7H + 1.7Eo D + L + H' + E'	-474	-151	1.4D + 1.7L + 1.7H + 1.7Eo	188	4.68	-	-	-	-	-	-	-
						MMAC	14356	1.4D + 1.7L + 1.7H + 1.7Eo	-320	-394 -436	+									1
						DAMMA	14364	140 * 1./6 * 1./60	-320	436		1								

			ŧ	Joc		# ®	(£)			Longitudinal	Reinforcement	Design Loads					_				
ocation	Face	ig.	cemen	ing Numt	ckness (ft)	cemei	Fore	neut	Axial and Flexure	Loads		In-Plane Shear Load	s	Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾	Remarks
Log	Ē	Direc	Direc Jinfort Lav	wing	A E	Reinforc	E E	Elen	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load		ental Section		cal Section	Reinforcement Provided (in²/ft²)	Remarks
			ũ	ă		ZoZ	Max		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
							MTCM	8632	1.4D + 1.7L + 1.7H' + 1.7Eo	33	-9										
						6-V-L	MCCM	4258	1.4D + 1.7L + 1.7H' + 1.7Eo	-386	-51	1.4D + 1.7L + 1.7H' + 1.7Eo	187	3.12							
							MMAT	4259	1.4D + 1.7L + 1.7H' + 1.7Eo	21	-118										
							MMAC	4258	1.4D + 1.7L + 1.7H' + 1.7Eo	-176	-118										
							MTCM	4474	1.4D + 1.7L + 1.7H' + 1.7Eo	111	-85										
						7-V-L	MCCM	4474	1.4D + 1.7L + 1.7H + 1.7Eo	-400	-116	1.4D + 1.7L + 1.7H' + 1.7Eo	235	4.68							
							MMAT	4451	D+L+H'+E'	16	-199										
							MMAC	4451	D+L+H'+E'	-228	-199										
							MTCM	4497	1.4D + 1.7L + 1.7H + 1.7Eo	223	-27										
	Near Si	lide Vert	rtical 3H	H.3-19	5	8-V-L	MCCM	4130	1.4D + 1.7L + 1.7H + 1.7Eo	-619	-68	1.4D + 1.7L + 1.7H' + 1.7Eo	225	6.24							
							MMAT	4138	D+L+H'+E'	24	-194										
							MMAC	8895	D+L+H'+E'	-363	-205										
							MTCM	2715	1.4D + 1.7L + 1.7H + 1.7Eo	321	-95										
						9-V-L	MCCM	2715	1.4D + 1.7L + 1.7H + 1.7Eo	-691	-165	1.4D + 1.7L + 1.7H' + 1.7Eo	187	7.8							
							MMAT	2531 2531	D+L+H+E	-196	-1107 -1108										
							MTCM	2348	1.4D + 1.7L + 1.7H + 1.7Eo	291	-1108										
							MCCM	2348	1.4D + 1.7L + 1.7H + 1.7Eo	-671	-244										
						10-V-L	MMAT	2583	D+F+H,+E,	10	-1068	1.4D + 1.7L + 1.7H' + 1.7Eo	235	9.36							-
							MMAC	2583	D+F+H.+E.	-199	-1072										
			_	-			мтсм	32260	1.4D + 1.7L + 1.7H + 1.7Eo	74	13										
- E							MCCM	33752	1.4D + 1.7L + 1.7H' + 1.7Eo	-65	19										
East Wall						1-H-L	MMAT	28549	1.4D + 1.7L + 1.7H + 1.7Eo	0	121	1.4D + 1.7L + 1.7H + 1.7Eo	67	1.56		-		-	-		-
"							MMAC	28549	1.4D + 1.7L + 1.7H' + 1.7Eo	-23	121										
							MTCM	31453		124	40										
							MCCM	26384	D+L+H'+E'	-92	39										
					3	2-H-L	MMAT	34108	1.4D + 1.7L + 1.7H' + 1.7Eo	8	237	1.4D + 1.7L + 1.7H' + 1.7Eo	121	3.12		-	·	-			-
							MMAC	34108	1.4D + 1.7L + 1.7H' + 1.7Eo	-19	237										
							MTCM	31192	1.4D + 1.7L + 1.7H' + 1.7Eo	168	61										
							мссм	31192	1.4D + 1.7L + 1.7H + 1.7Eo	-126	62										
						3-H-L	MMAT	34107	1.4D + 1.7L + 1.7H + 1.7Eo	14	272	1.4D + 1.7L + 1.7H' + 1.7Eo	60	4.68		-		-			-
							MMAC	34107	1.4D + 1.7L + 1.7H + 1.7Eo	-22	272										
	Far Sid	de Horiz	izontal 3H	H.3-20			мтсм	23408	1.4D + 1.7L + 1.7H + 1.7Eo	47	62										
						4-H-L	MCCM	11576	D+L+H'+E'	-175	200	140 - 171 - 170 - 175	160	242							_
						4-H-L	MMAT	23408	1.4D + 1.7L + 1.7H + 1.7Eo	1	109	1.4D + 1.7L + 1.7H' + 1.7Eo	160	3.12							
							MMAC	13561	D+L+H'+E'	-102	314										<u></u>
							мтсм	14415	1.4D + 1.7L + 1.7H + 1.7W	10	17										
					4	5-H-L	мссм	14407	D+L+H'+E'	-152	22	1.4D + 1.7L + 1.7H' + 1.7Eo	178	4.68							
					•	JANA.	MMAT	14380	1.4D + 1.7L + 1.7H + 1.7Eo	1	23		""	4.00							
							MMAC	14345	D+L+H'+E'	-91	162										
							мтсм	14334	1.4D + 1.7L + 1.7H + 1.7W	17	28										
						6-H-L	MCCM	14338	D+L+H'+E'	-102	175	1.4D + 1.7L + 1.7H + 1.7Eo	178	6.24							_
							MMAT	14601	1.4D + 1.7L + 1.7H + 1.7Eo	4	71										
1							MMAC	14605	D + L + H' + E'	-86	382										

		nent	e de la pe	2	ment ber(2)	orces	-	Axial and Flexure L		einforcement Des	In-Plane Shear Loads		Longitudinal		T	ransverse Shear Design Loads (9)			Transverse Shear (7)	
Face		Direction	ring N	hickne (ft)	nforce e Num	F mm F	Eleme	Load		Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load	Horizonta	I Section	Vertical Sect	ion	Reinforcement Provided	Remark
		Re.	Drav	-	Zon	Maxin		Combination	(kips / ft)		Combination	Shear (kips / ft)	(III 7 IL)	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	orresponding Axial Force (kip / ft)	,,	
(3) Th (4) N the 2: (5) Th	e maximu egative ax node pain e reporter	um tension (xial load is o to on the she ad in-plane s	MTCM) and of compression a self element ed thear is the market of the ma	and positive a lges parallel to aximum avera	(MCCM) axial xial load is ter o the reinforce age in-plane si	forces are provide nsion. Negative m ement direction do thear along a plane	ord with the cor coment applier not satisfy P6 a that crosses	rresponding moment from the same to s tension to the top face of the shell el &M interaction criteria, then only the 2 s the longitudinal reinforcement zone.	oad combinatio lement and por node pairs on	n. The maximum r itive moment appi the shell element	moment that has a corresponding ten lies tension to the bottom face of the edges perpendicular to the reinforcer	ssion (MMAT) in t shell element. F ment direction are	he same load combinati or walls or slabs where is used for design (effect		a corresponding compression (MMA both faces, the moment is shown as sh is sufficiently refined for this design	C) in the same load combination are	also provided. For the roof, the maximum			:tangular si
(7) Th	e reported	d transverse	shear reinfo	rcement is th	e summation o	of the requried she	ear reinforcem	nent in the horizontal direction and the	required shea	r reinforcement in	the vertical direction.									
(8) Fo	r certain a	areas of the	structure, the	standard ele	ment post-pro	ocessing methods	were too cons	servative. For such cases, detailed ma	anual design w	as performed and	the design forces determined by the	detailed manual	design are provided in t	he table.						
(9) Th	e longitud	dinal reinfore	cement shows	n is required t	o be tied															
(10) T	he renorts	and formes an	e from the EE	M analysis 1	The provided I	oncitudinal reinfor	nament includ	des additional reinforcement required	rhue to manual	one-way design o	alculations									
										orie-way design co	aculatoris									
(11) T	he reporte	ted axial and	in-plane force	es are from t	he FEM analy	sis. The reported f	lexural forces	s are from manual one-way design cal	culations.				1	1	1	1		1		
						MTCM	32279	1.4D + 1.7L + 1.7H' + 1.7Eo	190	64										
						мссм	32279	1.4D + 1.7L + 1.7H' + 1.7Eo	-191	80										
					3-V-L	MMAT	29615	1.4D + 1.7L + 1.7H' + 1.7Eo	56	198	1.4D + 1.7L + 1.7H + 1.7Eo	79	4.68	-	-	-		-	-	
						MMAC	29615	1.4D + 1.7L + 1.7H' + 1.7Eo	-138	198										
ļ f	ar Side					мтсм	11651	1.4D + 1.7L + 1.7H' + 1.7Eo	129	21										\neg
					4-V-L	MCCM	13564	1.4D + 1.7L + 1.7H + 1.7Eo	-390	114	1.4D + 1.7L + 1.7H + 1.7Eo	188	3.12							
					4-V-L	MMAT	13564	D+L+H'+E'	14	199	1.40 + 1.7L + 1.7H + 1.7E0	188	3.12							
		Vertical	3H.3-21	4		MMAC	14637	1.4D + 1.7L + 1.7H + 1.7Eo	-271	235										
		verocar	30.3/21	•		MTCM	11576	1.4D + 1.7L + 1.7H' + 1.7Eo	129	34										
					5-V-L	MCCM	11576	1.4D + 1.7L + 1.7H' + 1.7Eo	-476	44	1.4D + 1.7L + 1.7H* + 1.7Eo	188	4.68							
						MMAT	11614	D + L + H' + E'	28	426	1.40 - 1.10 - 1.11 - 1.12	"	1.00							
						MMAC	11614	D + L + H' + E'	-193	426										
						MTCM	4481	1.4D + 1.7L + 1.7H' + 1.7Eo	137	44										
					6-V-L	MCCM	4481	1.4D + 1.7L + 1.7H' + 1.7Eo	-461	201	1.4D + 1.7L + 1.7H + 1.7Eo	190	4.68							
						MMAT	3495	D + L + H' + E'	24	263										
						MMAC	2699	1.4D + 1.7L + 1.7H + 1.7Eo	-453	_										_
						MTCM	4497	1.4D + 1.7L + 1.7H + 1.7Eo	223	12										
				5	7-V-L	мссм	4130	1.4D + 1.7L + 1.7H' + 1.7Eo	-614		1.4D + 1.7L + 1.7H + 1.7Eo	235	6.24							
						MMAT	6938 6938	D+L+H'+E'	-268											
						MTCM	2715	D + L + H' + E'	-268 321	_										\rightarrow
						MCCM	2715	1.4D + 1.7L + 1.7H + 1.7E0	-691	23	-									
					8-V-L	MMAT	6909	D+L+H'+E'	30	718	1.4D + 1.7L + 1.7H + 1.7Eo	225	7.8	-	-	-	-	-	-	
						MMAC	6909	D+L+H'+E'	-271	_	-									
-	_				1-T	minoc				123	<u> </u>		-	1.4D + 1.7L + 1.7H + 1.7Eo	9	82	13	230	0.20 (#4@12	0
				3	2-T		1.		+ :	+ -		-		1.40 + 1.7L + 1.7H + 1.7Eo	50	31	42	103	0.31 (#5@12	_
					3-T				-	+ -			-	1.4D + 1.7L + 1.7H + 1.7Eo	87	-63	0	-18	0.44 (#6@12	_
		Transverse			4-T				٠.	-		-		D+L+H'+E'	-2	-25	91	-105	0.20 (#4@12	,
	-	(Horizontal and Vertical)	3H.3-22		5-T		-		-	.		-	-	D+L+H*+E*	103	28	-4	-57	0.31 (#5@12	9
				4	6-T		1.		-	-		-		D+L+H+E	125	30	-1	-61	0.44 (#6@12	0
					7-T				-			-		D+L+H*+E*	-120	-34	-102	-120	0.60 (#7@12	9
- 1					8-T	<u> </u>	+		.	.				D+L+H+E	-191	-74	-160	-185	1.24 (#5@6	

Table 3H.3-3 Results of Radwaste Building Concrete Wall Design (Continued)

			t e		# 62	6			Longitudinal	Reinforcement	Design Loads									
tion		tion	out Numb	uess ()	nemen mber ⁶	Force	te d	Axial and Flexur			In-Plane Shear Load	is	Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾	Remarks
Location	Face	Direction	Layout wing Nun	Thicknes (ft)	Reinforcer Zone Numi	5	Elem	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in ² / ft)	Load		zontal Section		tical Section	Reinforcement Provided (in ² /ft ²)	Remarks
		-	Re	_	Re	Maxir		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	(111714)	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
					9-T	-	-	-	-	-	-	-	-	D+L+H'+E'	-7	-36	123	-124	0.20 (#4@12)	
_					10-T				-			-		D+L+H'+E'	14	-63	151	-202	0.31 (#5@12)	
East Wall		Transverse (Horizontal and Vertical	3H.3-22	5	11-T				-					D+L+H'+E'	-166	12	0	-22	0.44 (#6@12)	
- S		and ventua	1		12-T	-	-	-	-		-	-		D+L+H+E.	-205	10	0	-21	0.60 (#7@12)	-
					13-T	-	-	-	-	-		-		D+L+H+E	107	-24	-212	-184	0.79 (#8@12)	
						MTCM	31715	1.4D + 1.7L + 1.7H' + 1.7Eo	46	-41										
					1-H-L	MCCM	31715	1.4D + 1.7L + 1.7H' + 1.7Eo	-65	-48	1.4D + 1.7L + 1.7H' + 1.7Eo	75	1.56							
					1414	MMAT	31426	1.4D + 1.7L + 1.7H' + 1.7Eo	21	-91	130 - 130 - 131 - 1310	"	1.50	-						
				3		MMAC	31426	1.4D + 1.7L + 1.7H + 1.7Eo	-29	-91										
						мтсм	32204	1.4D + 1.7L + 1.7H + 1.7Eo	61	-173										
					2-H-L	мссм	32243	1.4D + 1.7L + 1.7H + 1.7Eo	-87	-153	1.4D + 1.7L + 1.7H' + 1.7Eo	108	3.12							
						MMAT	31152	1.4D + 1.7L + 1.7H + 1.7Eo	25	-210										
						MMAC	31152	1.4D + 1.7L + 1.7H' + 1.7Eo	-42	-210										
						MTCM	22696	1.4D + 1.7L + 1.7H' + 1.7Eo	25	-46										
					3-H-L	MCCM	11573	D+L+H'+E'	-278	-461	1.4D + 1.7L + 1.7H + 1.7Eo	143	3.12							
						MMAT	11573	1.4D + 1.7L + 1.7H' + 1.7Eo	3	-142										
				4		MMAC	11573	D+L+H'+E'	-274	-484										
						MTCM	23343	1.4D + 1.7L + 1.7H + 1.7Eo	87	-24										
		Horizontal	3H.3-23		4-H-L	MCCM	11633	D+L+H'+E'	-166	-112	1.4D + 1.7L + 1.7H + 1.7Eo	143	4.68			-				
						MMAT	23333	1.4D + 1.7L + 1.7H* + 1.7Eo	8	-136										
						MMAC	13167	D+L+H+E'	-116	-557										
						MTCM	4184	1.4D + 1.7L + 1.7H' + 1.7Eo	29	-79										
					5-H-L	MCCM	8891	D+L+H+E.	-240	-419	1.4D + 1.7L + 1.7H + 1.7Eo	135	3.12							
						MMAT	8711	1.4D + 1.7L + 1.7H + 1.7Eo	6	-111										
West Wall	Near Side	9				MTCM	8587	D+L+H'+E'	-181	-527										
*						MCCM	2353 3199	1.4D + 1.7L + 1.7H + 1.7Eo 1.4D + 1.7L + 1.7H + 1.7Eo	-176	-26										
				5	6-H-L	MMAT	8628	1.4D + 1.7L + 1.7H + 1.7W	-170	-324	1.4D + 1.7L + 1.7H + 1.7Eo	164	4.68	-						
						MMAC	8794	D+L+H+E	-116	-678										
						MTCM	2711	1.4D + 1.7L + 1.7H* + 1.7Eo	53	-75										
						MCCM	8534	D+L+H'+E'	-241	-658										
					7-H-L	MMAT	8532	D+L+H'+E'	3	-807	1.4D + 1.7L + 1.7H + 1.7Eo	164	6.24	-	-	-	-	-	-	
						MMAC	8663	D+L+H'+E'	-73	-896										
						MTCM	26402	1.4D + 1.7L + 1.7H + 1.7Eo	111	-39										
						MCCM	26402	1.4D + 1.7L + 1.7H + 1.7Eo	-303	-28										
					1-V-L	MMAT	26341	1.4D + 1.7L + 1.7H* + 1.7Eo	0	-217	1.4D + 1.7L + 1.7H + 1.7Eo	90	3.12	-	•	-	-			
						MMAC	32226	1.4D + 1.7L + 1.7H + 1.7Eo	-23	-243										
				3		мтсм	32241	D+L+H'+E'	6	-101										
		Vertical	2012.2		27/1	мссм	32243	1.4D + 1.7L + 1.7H + 1.7Eo	-32	-341	440-470-470-470-	90	450							
		vertical	3H.3-24		2-V-L	MMAT	32243	D+L+H+E	4	-273	1.4D + 1.7L + 1.7H + 1.7Eo	90	4.68							
						MMAC	32243	1.4D + 1.7L + 1.7H + 1.7Eo	-32	-341										
						MTCM	11647	1.4D + 1.7L + 1.7H + 1.7Eo	112	-9										
				4	3-V-L	мссм	13129	1.4D + 1.7L + 1.7H + 1.7Eo	-411	-37	1.4D + 1.7L + 1.7H + 1.7Eo	177	3.12							
				'	31716	MMAT	21538	D+L+H+E'	1	-176	1.40 T 1.7E T 1.7E T 1.7E0	"	3.12							'
l	1					MMAC	21538	D+L+H'+E'	-120	-196										

			1 0		# R	විදු			Longitudinal	Reinforcement	Design Loads									
tion	8	fon	out Numb	ness (;	mber	50	lou f	Axial and Flexure	Loads		In-Plane Shear Load	s	Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear (7)	Remarks
Loca	Face	Direction	Reinforcems Layout Drawing Num	Thicknet (ft)	Reinforceme Zone Numbe	E	Elem	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load		ntal Section		al Section	Reinforcement Provided (in ² /ft ²)	Remarks
			Re		Re	Maxin		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	(11.714)	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						мтсм	11573	1.4D + 1.7L + 1.7H' + 1.7Eo	178	-63										
					4-V-L	мссм	11573	1.4D + 1.7L + 1.7H + 1.7Eo	-589	-314	1.4D + 1.7L + 1.7H + 1.7Eo	212	4.68							
						MMAT	23385	D + L + H' + E'	3	-376										
				4		MMAC	23385	D + L + H' + E'	-128	-411										
						мтсм	22696	D + L + H' + E'	46	-55										
					5-V-L	MCCM	22131	1.4D + 1.7L + 1.7H + 1.7Eo	-204	-129	1.4D + 1.7L + 1.7H + 1.7Eo	212	6.24					-		
						MMAT	23361	D + L + H' + E'	0	-349										
						MMAC	23367	1.4D + 1.7L + 1.7H' + 1.7Eo	-165	-377										
						MTCM	5196	1.4D + 1.7L + 1.7H' + 1.7Eo	71	-29										
					6-V-L	MCCM	4195	1.4D + 1.7L + 1.7H + 1.7Eo	-309	-25	1.4D + 1.7L + 1.7H + 1.7Eo	152	3.12					-		
						MMAT	4195	D+L+H'+E'	12	-139										
	Near Side	Vertica	il 3H.3-24			MMAC	4312	D + L + H' + E'	-168	-158										
						мтсм	4132	1.4D + 1.7L + 1.7H' + 1.7Eo	183	-35										
					7-V-L	MCCM	4132	1.4D + 1.7L + 1.7H' + 1.7Eo	-559	-36	1.4D + 1.7L + 1.7H + 1.7Eo	205	4.68							
						MMAT	8535	1.4D + 1.7L + 1.7H' + 1.7Eo	18	-215										
				5		MMAC	8535	1.4D + 1.7L + 1.7H' + 1.7Eo	-418	-270										
						мтсм	4129	1.4D + 1.7L + 1.7H + 1.7Eo	208	-19										
					8-V-L	MCCM	4129	1.4D + 1.7L + 1.7H' + 1.7Eo	-623	-103	1.4D + 1.7L + 1.7H + 1.7Eo	149	6.24					-		
						MMAT	8534	1.4D + 1.7L + 1.7H' + 1.7Eo	- 5	-211										
						MMAC	8534	D + L + H' + E'	-332	-351										
						мтсм	2347	1.4D + 1.7L + 1.7H' + 1.7Eo	312	-63										
					9-V-L	MCCM	2347	1.4D + 1.7L + 1.7H' + 1.7Eo	-741	-178	1.4D + 1.7L + 1.7H + 1.7Eo	205	7.8							
Vall						MMAT	2443	D + L + H' + E'	55	-750										
WestV						MMAC	2582	D + L + H' + E'	-184	-775										
,						мтсм	31715	1.4D + 1.7L + 1.7H' + 1.7Eo	46	22										
					1-H-L	мссм	31715	1.4D + 1.7L + 1.7H' + 1.7Eo	-65	16	1.4D + 1.7L + 1.7H + 1.7Eo	75	1.56							
						MMAT	31159	1.4D + 1.7L + 1.7H' + 1.7Eo	25	94										
				3		MMAC	31159	1.4D + 1.7L + 1.7H + 1.7Eo	-32	94										
						мтсм	26287	1.4D + 1.7L + 1.7H' + 1.7Eo	63	53										
					2-H-L	мссм	32243	1.4D + 1.7L + 1.7H' + 1.7Eo	-87	49	1.4D + 1.7L + 1.7H + 1.7Eo	108	3.12					-		-
						MMAT	31152	1.4D + 1.7L + 1.7H' + 1.7Eo	29	171										
						MMAC	31152	1.4D + 1.7L + 1.7H + 1.7Eo	-38	171										
						мтсм	22696	1.4D + 1.7L + 1.7H' + 1.7Eo	25	14										
					3-H-L	мссм	11650	D+L+H+E'	-225	178	1.4D + 1.7L + 1.7H + 1.7Eo	143	3.12		-			-		-
						MMAT	11625	1.4D + 1.7L + 1.7H + 1.7W	2	142										
	Far Side	Horizon	tal 3H.3-25	4		MTCM	11625 23343	D + L + H' + E' 1.4D + 1.7L + 1.7H' + 1.7Eo	-70 87	303 146										
						MCCM	23343	D+L+H'+E'	-86	126										
					4-H-L	MMAT	23343	1.4D + 1.7L + 1.7H' + 1.7Eo	39	221	1.4D + 1.7L + 1.7H + 1.7Eo	143	6.24							
						MMAC	23343	1.4D + 1.7L + 1.7H' + 1.7Eo	-68	221										
						мтсм	4190	1.4D + 1.7L + 1.7H' + 1.7Eo	26	34										
					5-H-L	мссм	8891	D + L + H' + E'	-239	176	1.4D + 1.7L + 1.7H + 1.7Eo	135	3.12							(8)
					3475	MMAT	8730	1.4D + 1.7L + 1.7H' + 1.7Eo	9	99		1				-				107
				5		MMAC	8604	D+L+H'+E'	-174	500										
				,		мтсм	2711	1.4D + 1.7L + 1.7H + 1.7Eo	53	14										
					6-H-L	мссм	3199	1.4D + 1.7L + 1.7H' + 1.7Eo	-169	143	1.4D + 1.7L + 1.7H" + 1.7Eo	164	4.68							
						MMAT	3205	D + L + H' + E'	7	64										
						MMAC	3205	D + L + H' + E'	-139	258										

			10 Je		18	(c) sa			Longitudinal	Reinforcement	Design Loads					_				
tion	Face	tion	out Numb	okness (ft)	Orcemen	Force	neut	Axial and Flexure	Loads		In-Plane Shear Load:	s	Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾	Remarks
Loca	E.	Direction	Inforcema Layout wing Nurr	AS F	Reinfor Zone Nt	E E	Elen	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in ² / ft)	Load		ontal Section		cal Section	Reinforcement Provided (in ² /ft ²)	Kelliaiks
			Re		Re Zos	Maxi		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	(,	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						мтсм	29048	1.4D + 1.7L + 1.7H' + 1.7Eo	62	46										
					1-1-1	MCCM	29050	1.4D + 1.7L + 1.7H' + 1.7Eo	-121	33	1.4D + 1.7L + 1.7H + 1.7Eo	77	1.56							
						MMAT	32206	1.4D + 1.7L + 1.7H' + 1.7Eo	3	101										
						MMAC	32206	1.4D + 1.7L + 1.7H + 1.7Eo	-11	101										
						мтсм	26402	1.4D + 1.7L + 1.7H + 1.7Eo	111	30										
				3	2-V-L	MCCM	26402	1.4D + 1.7L + 1.7H + 1.7Eo	-303	38	1.4D + 1.7L + 1.7H" + 1.7Eo	90	3.12		_		_		_	
						MMAT	26890	D + L + H' + E'	4	196										
						MMAC	26890	1.4D + 1.7L + 1.7H' + 1.7Eo	-55	220										
						мтсм	26300	1.4D + 1.7L + 1.7H' + 1.7Eo	43	122										
					3-V-L	MCCM	26377	1.4D + 1.7L + 1.7H' + 1.7Eo	-143	164	1.4D + 1.7L + 1.7H + 1.7Eo	90	4.68							
						MMAT	26344	1.4D + 1.7L + 1.7H' + 1.7Eo	9	282										
						MMAC	26344	1.4D + 1.7L + 1.7H' + 1.7Eo	-57	309										
						мтсм	13204	1.4D + 1.7L + 1.7H' + 1.7Eo	126	39										
					4-V-L	MCCM	13204	1.4D + 1.7L + 1.7H' + 1.7Eo	-467	64	1.4D + 1.7L + 1.7H + 1.7Eo	177	3.12							
						MMAT	14385	D+L+H'+E'	8	253										
	Far Side	Vertical	3H.3-26	4		MMAC	14385	D+L+H'+E'	-180	254										
						мтсм	11573	1.4D + 1.7L + 1.7H' + 1.7Eo	178	97										
					5-V-L	MCCM	11573	1.4D + 1.7L + 1.7H' + 1.7Eo	-529	67	1.4D + 1.7L + 1.7H + 1.7Eo	212	4.68		-				-	
						MMAT	11623	D+L+H'+E'	2	288										
						MMAC	11597	D + L + H' + E'	-232	334										
_						мтсм	2350	1.4D + 1.7L + 1.7H + 1.7Eo	214	74										
st Wa					6-V-L	MCCM	2350	1.4D + 1.7L + 1.7H + 1.7Eo	-587	50	1.4D + 1.7L + 1.7H + 1.7Eo	205	4.68		-	-	-		-	
š						MMAT	5196	D + L + H' + E'	6	340										
						MMAC	6247	D+L+H'+E'	-188	369										
						мтсм	2402	1.4D + 1.7L + 1.7H + 1.7Eo	112	27										
				5	7-V-L	MCCM	3199	1.4D + 1.7L + 1.7H + 1.7Eo	-405	190	1.4D + 1.7L + 1.7H + 1.7Eo	179	6.24							-
						MMAT	5191	D+L+H'+E'	10	307										
						MMAC	4190	D+L+H'+E'	-281	309										
						MTCM	2347	1.4D + 1.7L + 1.7H + 1.7Eo	312	86										
					8-V-L	MCCM	2347 8534	1.4D + 1.7L + 1.7H + 1.7Eo	-735 5	58	1.4D + 1.7L + 1.7H + 1.7Eo	149	7.8	-	-	-	-	-	-	-
						MMAC	8534	1.4D + 1.7L + 1.7H + 1.7E0	-251	219										
	_				1-T		0034	140 + 176 + 178 + 1760	-251	- 219				1.4D + 1.7L + 1.7H' + 1.7Eo	18	20	21	116	0.20 (#4@12)	
				3	2-T		+:-		1	-		-		1.4D + 1.7L + 1.7H + 1.7Eo	47	10	44	28	0.20 (#4gs12)	
					3-T	-	+ -	-	-	-		-		D+L+H'+E'	6	-63	-91	-89	0.31 (#5@12) 0.20 (#4@12)	
					3-1 4-T	-	+ :		-	-		-		D+L+H+E.	-1	-68	-115	-110	0.20 (#4@12)	
				4	5-T		+ :-			-				D+F+H,+E,	-1	-66	120	-110	0.31 (#5@12) 0.44 (#6@12)	
		Transus			6-T		+ :-		H :	-		-		D+L+H+E	-135	-35	126	-366	0.79 (#8@12)	-
	-	Transverse (Horizontal and Vertical	3H.3-27		7-T		+		H :	H :		-		D+F+H,+E,	-188	-66	-171	-259	1.76 (#6@6)	-
					8-T		+:-		<u> </u>	 		-		D+F+H,+E,	18	-40	84	-110	0.20 (#4@12)	-
					9-T	-	+.		-	-		-		D+F+H,+E,	-135	31	-12	-15	0.31 (#5@12)	
				5	10-T		+ .							D+L+H'+E'	-165	-6	-2	-17	0.44 (#6@12)	
				'	11-T	-	+ -	-	-	-		-		D+F+H,+E,	-92	-56	-122	185	0.60 (#7@12)	-
					12-T		_		-	H :				D+L+H+E	147	-22	-229	-251	1.24 (#5@6)	

			1 8		# E.	8			Longitudinal i	teinforcement Desi	ign Loads									
tion	93	1	oction prceme syout a Num	(ft)	ceme	Fore	neut tue	Axial and FI	exure Loads		In-Plane Shear L	.oads	Longitudinal Reinforcement			Transverse Shear Design Loads (9)			Transverse Shear (7) Reinforcement Provided	Remarks
8	2	1	olin (a)	The state of	of or	un u	Elec	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load	1101150	ntal Section		cal Section	(in²/ft²)	THE INDIANA
			P. Bra		Zo Zo	Maxi		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	4.5.54	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
															ection and horizontal corresponds to Ea at has a corresponding compression (N		e also provided. For the roof, the m	aximum tension and maximum mome	int (MTMM) are reported.	
	the 2 no (5) The r	node pairs e reported	on the shell ele	nent edges pa	rallel to the re	nforcement dire	ection do not s	trisfy P&M interaction criteria, then on crosses the longitudinal reinforcement	y the 2 node pairs of zone.	the shell element ed	dges perpendicular to the rein	forcement direction ar	re used for design (effective	ve width considered). The eleme	ed on both faces, the moment is shown ent mesh is sufficiently refined for this d	as absolute value. The axial and flexuesign approach.	ral loads reported in the table are th	ne average of the 2 node pairs that for	rm the 4 edges of the critical re	ctangular shel
	(5) The r	e reported e transvers	on the shell ele in-plane shear se shear reinfor	nent edges pa the maximur ement loads a	rallel to the re average in-p re reported for	inforcement dire	ection do not s ig a plane that ment requiring	tisfy P&M interaction criteria, then on crosses the longitudinal reinforcement the largest area of steel for transverse	y the 2 node pairs of zone. reinforcement within	the shell element en	dges perpendicular to the rei	forcement direction ar	re used for design (effective	ve width considered). The eleme	ent mesh is sufficiently refined for this d	as absolute value. The axial and flexu	ral loads reported in the table are th	re average of the 2 node pairs that for	rm the 4 edges of the critical re	ctangular shell
	(5) The r (6) The r (7) The r	e reported e transvers e reported	on the shell ele in-plane shear se shear reinfor transverse she	nent edges pa the maximur ement loads a r reinforcemen	rallel to the rei a average in-p re reported for it is the summ	inforcement directions are shear along the critical election of the requirements.	ection do not s ig a plane that ment requiring uried shear re	trisfy P&M interaction criteria, then on crosses the longitudinal reinforcement	y the 2 node pairs of zone. reinforcement within	the shell element en the zone. The shea or reinforcement in th	dges perpendicular to the rein or force and the corresponding the vertical direction.	forcement direction are	re used for design (effective used for design (effective used for design) to the load combination for each	we width considered). The elements of the considered for the construction is reported for the construction is reported for the construction in the construction is reported for the constructio	ent mesh is sufficiently refined for this d	as absolute value. The axial and flexuesign approach.	ral loads reported in the table are th	ne average of the 2 node pairs that for	rm the 4 edges of the critical re	ctangular shell
	(5) The s (6) The s (7) The s (8) For c	e reported e transvers e reported e reported r certain ar	on the shell ele in-plane shear se shear reinfor transverse she	ement edges pa the maximur ement loads a r reinforcement ure, the stand	average in-p re reported for it is the summ	inforcement dire iane shear alon the critical elec- ation of the req	ection do not s ig a plane that ment requiring uried shear re	itisfy P&M interaction criteria, then on crosses the longitudinal reinforcement the largest area of steel for transverse inforcement in the horizontal direction.	y the 2 node pairs of zone. reinforcement within	the shell element en the zone. The shea or reinforcement in th	dges perpendicular to the rein or force and the corresponding the vertical direction.	forcement direction are	re used for design (effective used for design (effective used for design) to the load combination for each	we width considered). The elements of the considered for the construction is reported for the construction is reported for the construction in the construction is reported for the constructio	ent mesh is sufficiently refined for this d	as absolute value. The avial and flexuesign approach.	ral loads reported in the table are the	we average of the 2 node pairs that for	rm the 4 edges of the critical re	ctangular shell
	(5) The r (6) The r (7) The r (8) For c (9) The l	node pairs e reported e transvers e reported r certain ar e longitudir	on the shell ele in-plane shear se shear reinfor transverse she reas of the strui nal reinforceme	the maximum ement loads a r reinforcement ure, the stand t shown is rec	rallel to the rei a average in-p are reported for it is the summ and element pa uired to be tie	inforcement dire ane shear alon the critical eler ation of the req ost-processing r	ection do not s ig a plane that ment requiring uried shear re methods were	itisfy P&M interaction criteria, then on crosses the longitudinal reinforcement the largest area of steel for transverse inforcement in the horizontal direction.	y the 2 node pairs of zone. reinforcement within and the required she illed manual design	the shell element en the zone. The shear ar reinforcement in the was performed and to	dges perpendicular to the rein force and the corresponding he vertical direction. he design forces determined	forcement direction are	re used for design (effective used for design (effective used for design) to the load combination for each	we width considered). The elements of the considered for the construction is reported for the construction is reported for the construction in the construction is reported for the constructio	ent mesh is sufficiently refined for this d	as absolute value. The axial and flexu	ral loads reported in the table are the	e average of the 2 mode pairs that for	rm the 4 adges of the critical re	ctangular shell

Table 3H.3-4 Results of Radwaste Building Concrete Slab Design

			int ber		18	es (3)			Longitudina	il Reinforcement De	sign Loads									
Location	Face	uogo	out Num	Thickness (ft)	e mpo	For	ment	Axial and Flex	ure Loads		In-Plane Shear Load	Is	Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾ Reinforcement Provided	Rem
9	2	Directio	Lay wing	Thic T	Reinforcer Zone Numi	un m	E E	Load	Axial (4)	Flexure (4)	Load	In-plane (5) Shear	Provided (in²/ ft)	Load Combination		ntal Section		al Section	(in²/ft²)	
			ž ž		2 °2	Max		Combination	(kips / ft)	(ft-kips / ft)	Combination	(kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	1269	D + L + H' + E'	79	-218										
					1-H-L	MCCM	1073	1.4D + 1.7L + 1.7H + 1.7Eo	-126	-54	1.4D + 1.7L + 1.7H + 1.7Eo	68	6.24							
					1446	MMAT	277	1.4D + 1.7L + 1.7H + 1.7Eo	1	-1162	1.40 - 1.10 - 1.11 - 1.10	-	0.24							
		Horizontal	3H.3-28	12		MMAC	514	1.4D + 1.7L + 1.7H + 1.7Eo	-25	-1480										
		Horizonia	311.3-20	12		MTCM	26158	1.4D + 1.7L + 1.7H + 1.7Eo	86	-403										
					2-H-L	MCCM	26186	1.4D + 1.7L + 1.7H + 1.7Eo	-102	-273	1.4D + 1.7L + 1.7H + 1.7Eo	75	7.8							
					2.112	MMAT	29850	1.4D + 1.7L + 1.7H + 1.7Eo	21	-1377	1.40 - 1.70 - 1.71 - 1.760									
	Near Side					MMAC	29850	1.4D + 1.7L + 1.7H + 1.7Eo	-28	-1377										
	Tecar cooc					MTCM	944	1.4D + 1.7L + 1.7H' + 1.7Eo	42	-179										
					1-V-L	MCCM	880	D+L+H'+E'	-189	-126	1.4D + 1.7L + 1.7H + 1.7Eo	66	6.24							
					1-4-5	MMAT	880	1.4D + 1.7L + 1.7H + 1.7Eo	67	-1136	1.4D + 1./L + 1./H + 1./E0		6.24							
		Vertical	3H.3-29	12		MMAC	26810	1.4D + 1.7L + 1.7H + 1.7Eo	-26	-1059										
		Vertical	311.3-29	12		мтсм	27828	1.4D + 1.7L + 1.7H + 1.7Eo	125	-1615										
					2-V-L	MCCM	27828	1.4D + 1.7L + 1.7H + 1.7Eo	-166	-643	1.4D + 1.7L + 1.7H + 1.7Eo	62	7.8							
					244	MMAT	27828	1.4D + 1.7L + 1.7H + 1.7Eo	125	-1615	130 - 136 - 138 - 1360	02	1.0							
						MMAC	27828	1.4D + 1.7L + 1.7H + 1.7Eo	-63	-1615										
						мтсм	29586	1.4D + 1.7L + 1.7H + 1.7Eo	83	1105										
					1-H-L	MCCM	933	1.4D + 1.7L + 1.7H + 1.7Eo	-72	1593	1.4D + 1.7L + 1.7H + 1.7Eo	68	6.24							
					1-81-0	MMAT	415	1.4D + 1.7L + 1.7H + 1.7Eo	26	1579	1.40 * 1.70 * 1.78 * 1.780	- 00	0.24	•						
						MMAC	933	1.4D + 1.7L + 1.7H + 1.7Eo	-67	1623										
						мтсм	603	1.4D + 1.7L + 1.7H + 1.7Eo	63	1642										
					2-H-L	MCCM	645	D+L+H+E	-18	480	1.4D + 1.7L + 1.7H + 1.7Eo	75	7.8							
					2-H-L	MMAT	463	1.4D + 1.7L + 1.7H + 1.7Eo	1	2329	1.4D + 1./L + 1./H + 1./E0	/*	7.8							
		Horizontal	3H.3-30	12		MMAC	604	1.4D + 1.7L + 1.7H + 1.7Eo	-87	2510										
		Horizontai	3H.3-30	12		мтсм	27384	D+L+H'+E'	114	1049										
					3-H-L	MCCM	27348	1.4D + 1.7L + 1.7H + 1.7Eo	-227	2252	1.4D + 1.7L + 1.7H + 1.7Eo	68	9.36							
					3-H-L	MMAT	29849	1.4D + 1.7L + 1.7H + 1.7Eo	34	2642	1.4D + 1./L + 1./H + 1./E0	68	9.36							
						MMAC	27347	1.4D + 1.7L + 1.7H + 1.7Eo	-207	3199										
						MTCM	26185	1.4D + 1.7L + 1.7H + 1.7Eo	91	634										
					4-H-L	мссм	26159	1.4D + 1.7L + 1.7H + 1.7Eo	-168	1429	1.4D + 1.7L + 1.7H + 1.7Eo	75	10.92							
						MMAT	26185	1.4D + 1.7L + 1.7H + 1.7Eo	15	3252	1.40 * 1.72 * 1.78 * 1.720	/5	10.92	-						
	Far Side					MMAC	26185	1.4D + 1.7L + 1.7H + 1.7Eo	-134	3259										
	1 4 0 0 0					мтсм	880	1.4D + 1.7L + 1.7H + 1.7Eo	67	1062										
					1-V-L	MCCM	880	1.4D + 1.7L + 1.7H + 1.7Eo	-190	2096	1.4D + 1.7L + 1.7H + 1.7Eo	66	6.24							
					144	MMAT	880	1.4D + 1.7L + 1.7H' + 1.7Eo	35	1666	1.40 + 1.70 + 1.78 + 1.760		0.24	-						
						MMAC	880	1.4D + 1.7L + 1.7H + 1.7Eo	-190	2096										
						мтсм	1261	D+L+H'+E'	93	1051										
					2-V-L	MCCM	32363	1.4D + 1.7L + 1.7H + 1.7Eo	-171	1458	1.4D + 1.7L + 1.7H + 1.7Eo	36	7.8			_				
					2-4-6	MMAT	32362	1.4D + 1.7L + 1.7H + 1.7Eo	7	2039	1.4U + 1./L + 1./H + 1.7E0	36	7.8							
		Vertical	3H.3-31	12		MMAC	32363	1.4D + 1.7L + 1.7H + 1.7Eo	-163	2104										
				"		мтсм	28433	D+L+H'+E'	92	437										
					3-V-L	MCCM	72	D + L + H' + E'	-228	2034	1.4D + 1.7L + 1.7H + 1.7Eo	66	9.36	_						
					3-4-6	MMAT	32371	1.4D + 1.7L + 1.7H + 1.7Eo	29	3045	.AU * 1./L * 1./H * 1./E0	60	8.30							
						MMAC	20	1.4D + 1.7L + 1.7H' + 1.7Eo	-144	2912										
						MTCM	27828	1.4D + 1.7L + 1.7H' + 1.7Eo	125	1572										
					4-V-L	MCCM	27828	1.4D + 1.7L + 1.7H' + 1.7Eo	-224	3713	1.4D + 1.7L + 1.7H + 1.7Eo	62	10.92							
					4-1-6	MMAT	27828	1.4D + 1.7L + 1.7H + 1.7Eo	6	3675		62	10.92							
						MMAC	27828	1.4D + 1.7L + 1.7H + 1.7Eo	-224	3713										
		Transverse (Horizonta and Vertica	3H.3-32	12	1-T			•	-					1.4D + 1.7L + 1.7H + 1.7Eo	21	32	288	0	0.20 (#4@12)	
	1	and Vertica	0	"	2-T				-					1.4D + 1.7L + 1.7H' + 1.7Eo	178	41	288	-31	0.31 (#5@12)	

			ent		i B it	(c) sea			Longitudinal F	Reinforcement De	esign Loads		Longitudins'			Transverse Shear Design Loads (6)				
Location	Face	Direction	yout yout yout yout	Thickness (ft)	rceme	Fore	ment	Axial and Flexus	re Loads		In-Plane Shear Loads		Longitudinal Reinforcement Provided						Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remarks
Š	ű.	Dire	Reinfo La Drawing	Thie	Reinforce Zone Nurr	Maximum	E C	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane (5) Shear (kips / ft)	(in²/ft)	Load Combination	Transverse Shear Force (kip / ft)	tal Section Corresponding Axial Force (kip / ft)	Vertical Transverse Shear Force (kip / ft)	Section Corresponding Axial Force (kip / ft)	(in²/ft²)	
						MTCM	37891	1.4D + 1.7L + 1.7H + 1.7Eo	99	-45		(inpering			(4,14)	(op riy	(44:17	(14)		
					1-H-L	мссм	37891	1.4D + 1.7L + 1.7H + 1.7Eo	-291	-110	1.4D + 1.7L + 1.7H + 1.7Eo	122	3.12							
					1-11-1	MMAT	36339	1.4D + 1.7L + 1.7H + 1.7Eo	1	-266	1.40 + 1.7L + 1.7H + 1.7E0	122	3.12		·	·				
						MMAC	38166	1.4D + 1.7L + 1.7H + 1.7Eo	-190	-354										
						MTCM	35329	1.4D + 1.7L + 1.7H' + 1.7Eo	64	-298										
				5	2-H-L	мссм	36144	1.4D + 1.7L + 1.7H' + 1.7Eo	-224	-390	1.4D + 1.7L + 1.7H + 1.7Eo	107	4.68							
						MMAT	35340	1.4D + 1.7L + 1.7H + 1.7Eo	19	-405			1.00							
						MMAC	38231	1.4D + 1.7L + 1.7H' + 1.7Eo	-70	-366										
						MTCM	37838	1.4D = 1.7L = 1.7H = 1.7Eo	67	-144										
		Horizontal	3H.3-33		3-H-L	мссм	37838	1.4D + 1.7L + 1.7H + 1.7Eo	-302	-627	1.4D + 1.7L + 1.7H + 1.7Eo	73	6.24							
						MMAT	37838	D+L+H+E	13	-428										
						MMAC	37838	1.4D = 1.7L = 1.7H" = 1.7Eo	-273	-634										
						MTCM	38193	1.4D + 1.7L + 1.7H' + 1.7Eo	81	-8										
				4	4-H-L	MCCM	37895	1.4D + 1.7L + 1.7H + 1.7Eo	-203	-188	1.4D + 1.7L + 1.7H + 1.7Eo	97	3.12		-		-	-	-	
						MMAT	37773	1.4D + 1.7L + 1.7H + 1.7Eo	3	-308	-									
						MMAC	37788	1.4D + 1.7L + 1.7H + 1.7Eo	-89	-347										
						MTCM MCCM	25335 25335	1.4D + 1.7L + 1.7H + 1.7Eo	73 -195	-19 -30	-									
				2	5-H-L	MMAT	39029	1.4D + 1.7L + 1.7H + 1.7E0	-190	-115	1.4D + 1.7L + 1.7H + 1.7Eo	102	3.12							(8),(10)
						MMAC	39029	1.4D + 1.7L + 1.7H + 1.7Eo	-44	-115	-									
						MTCM	35934	1.4D + 1.7L + 1.7H + 1.7Eo	-44	-66										
						MCCM	38394	D+L+H'+E'	-143	-143	-									
					1-V-L	MMAT	38395	1.4D + 1.7L + 1.7H + 1.7Eo	27	-160	1.4D + 1.7L + 1.7H + 1.7Eo	72	3.12	-	-	-	-		-	-
						MMAC	38395	1.4D + 1.7L + 1.7H + 1.7Eo	-114	-223	-									
						MTCM	36062	1.4D + 1.7L + 1.7H + 1.7Eo	145	-180										
ь						MCCM	37024	D+L+H+E	-184	-164	-									
EI 35:	Near Side			5	2-V-L	MMAT	34304	1.4D + 1.7L + 1.7H + 1.7Eo	2	-371	1.4D + 1.7L + 1.7H + 1.7Eo	52	4.68		-		-	-	-	-
.						MMAC	37023	1.4D + 1.7L + 1.7H + 1.7Eo	-177	-531										
						MTCM	35810	1.4D + 1.7L + 1.7H + 1.7Eo	160	-135										
						мссм	35810	1.4D + 1.7L + 1.7H' + 1.7Eo	-319	-37										
					3-V-L	MMAT	35273	1.4D + 1.7L + 1.7H' + 1.7Eo	34	-590	1.4D + 1.7L + 1.7H + 1.7Eo	72	6.24						-	
						MMAC	37824	1.4D + 1.7L + 1.7H' + 1.7Eo	-167	-764										
						мтсм	38187	1.4D + 1.7L + 1.7H' + 1.7Eo	62	-79										
						мосм	38161	1.4D + 1.7L + 1.7H + 1.7Eo	-185	-256										
					4-V-L	MMAT	38302	1.4D + 1.7L + 1.7H' + 1.7Eo	7	-275	D+F+H+E.	66	3.12	•			-		-	-
						MMAC	38258	1.4D + 1.7L + 1.7H' + 1.7Eo	-38	-344										
		Vertical	3H.3-34			мтсм	38143	1.4D + 1.7L + 1.7H + 1.7Eo	44	-240										
				4	5-V-L	мссм	38143	1.4D + 1.7L + 1.7H + 1.7Eo	-189	-412	D+L+H+E	66	4.68							
				4	5-V-E	MMAT	38143	D+L+H'+E'	9	-473	D+L+H+E	66	4.68							
						MMAC	38143	1.4D + 1.7L + 1.7H + 1.7Eo	-97	-693										
						MTCM	38165	1.4D + 1.7L + 1.7H + 1.7Eo	66	-211										
					6-V-L	мосм	38165	1.4D + 1.7L + 1.7H' + 1.7Eo	-236	-747	1.4D + 1.7L + 1.7H + 1.7Eo	52	6.24							-
					0.45	MMAT	38165	1.4D + 1.7L + 1.7H' + 1.7Eo	1	-701	1,40 + 1,70 + 1,740	02	0.24							
						MMAC	38165	1.4D + 1.7L + 1.7H + 1.7Eo	-211	-786										
						MTCM	25310	1.4D + 1.7L + 1.7H + 1.7Eo	33	-19										
					7-V-L	мосм	25333	D+L+H+E	-64	-27	1.4D + 1.7L + 1.7H + 1.7Eo	41	1.56							(10)
						MMAT	39027	1.4D + 1.7L + 1.7H + 1.7Eo	1	-50		"								,
				2		MMAC	39027	1.4D + 1.7L + 1.7H + 1.7Eo	-21	-50										
						мтсм	34573	1.4D + 1.7L + 1.7H + 1.7Eo	41	-25										
					8-V-L	мосм	34574	D+L+H+E	-80	-15	1.4D + 1.7L + 1.7H + 1.7Eo	50	3.12							(10)
						MMAT	34573	1.4D + 1.7L + 1.7H + 1.7Eo	20	-62										
						MMAC	34573	1.4D + 1.7L + 1.7H' + 1.7Eo	-69	-52										

			per per		18 g	(C) S (C)			Longitudina	Reinforcement De	sign Loads									
Ron	Face	ction	Reinforcemen Layout rawing Numb	Thickness (ft)	eme ceme	Force	neut	Axial and Flexi	ire Loads		In-Plane Shear Loads		Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remark
9	£	Direction	Lay rwing	A P	Reinforcem Zone Numbi	E E	Elen	Load	Axial (4)	Flexure (4)	Load	In-plane (5) Shear	Provided (in²/ ft)	Load Combination		ntal Section		Section	(in²/ft²)	Kemark
			e 5		Zc B	Max		Combination	(kips / ft)	(ft-kips / ft)	Combination	(kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						мтсм	38359	1.4D + 1.7L + 1.7H + 1.7Eo	44	50										
					1-H-L	мссм	38398	1.4D + 1.7L + 1.7H + 1.7Eo	-194	78	1.4D + 1.7L + 1.7H + 1.7Eo	122	3.12							
						MMAT	36138	1.4D + 1.7L + 1.7H + 1.7Eo	5	252										
				5		MMAC	36353	1.4D + 1.7L + 1.7H + 1.7Eo	-23	165										
						мтсм	38230	1.4D + 1.7L + 1.7H + 1.7Eo	98	68										
					2-H-L	MCCM	37817	1.4D + 1.7L + 1.7H + 1.7Eo	-195	46	1.4D + 1.7L + 1.7H + 1.7Eo	107	4.68							
						MMAT	38224	1.4D + 1.7L + 1.7H + 1.7Eo	6	374										
		Horizonta	3H.3-35			MMAC	38224	1.4D + 1.7L + 1.7H + 1.7Eo	-99	416										
						мтсм	38193	1.4D + 1.7L + 1.7H + 1.7Eo	81	58										
				4	3-H-L	MCCM	38193	1.4D + 1.7L + 1.7H + 1.7Eo	-239	173	1.4D + 1.7L + 1.7H + 1.7Eo	97	3.12							
						MMAT	38195	1.4D + 1.7L + 1.7H + 1.7Eo	- 1	227										
						MMAC	38509	1.4D + 1.7L + 1.7H + 1.7Eo	-139	237										
						мтсм	25335	1.4D + 1.7L + 1.7H + 1.7Eo	96	15										
				2	4-H-L	MCCM	25335	1.4D + 1.7L + 1.7H + 1.7Eo	-247	11	1.4D + 1.7L + 1.7H + 1.7Eo	102	3.12							(10)
						MMAT	39021	1.4D + 1.7L + 1.7H + 1.7Eo	24	61										
							39021	1.4D + 1.7L + 1.7H + 1.7Eo	-11	61										
						мтсм	38119 37849	1.4D + 1.7L + 1.7H + 1.7Eo D + L + H' + E'	54	73										
					1-V-L	MCCM		1.4D + 1.7L + 1.7H + 1.7Eo	-230 34	129	1.4D + 1.7L + 1.7H + 1.7Eo	72	3.12	-		-		-		
						MMAT	36053 37645	1.4D + 1.7L + 1.7H + 1.7Eo	-139	308										
						MTCM	37645	1.4D + 1.7L + 1.7H + 1.7Eo	-139	82										
					-	MCCM	37131	D+L+H'+E'	-144	231										
	Far Side			5	2-V-L	MMAT	37559	1.4D + 1.7L + 1.7H + 1.7Eo	11	104	1.4D + 1.7L + 1.7H + 1.7Eo	72	4.68							
						MMAC	37809	1.4D + 1.7L + 1.7H + 1.7Eo	-149	557										
El. 35'-						мтсм	35810	1.4D + 1.7L + 1.7H + 1.7Eo	160	173										
"						MCCM	35810	1.4D + 1.7L + 1.7H' + 1.7Eo	-319	240										
					3-V-L	MMAT	35282	1.4D + 1.7L + 1.7H + 1.7Eo	76	536	1.40 + 1.7L + 1.7H + 1.7Eo	43	6.24							
						MMAC	35282	1.4D + 1.7L + 1.7H + 1.7Eo	-103	536										
						мтсм	38165	1.4D + 1.7L + 1.7H + 1.7Eo	66	89										
						мссм	38165	D+L+H'+E'	-191	40										
		Vertical	3H.3-36		4-V-L	MMAT	37764	1.4D + 1.7L + 1.7H + 1.7Eo	21	201	D+L+H+E	66	3.12	-	-	-	-	-	-	
						MMAC	38553	1.4D + 1.7L + 1.7H + 1.7Eo	-135	408										
				4		мтсм	38157	1.4D + 1.7L + 1.7H + 1.7Eo	20	85										
						MCCM	38157	1.4D + 1.7L + 1.7H + 1.7Eo	-159	395										
					5-V-L	MMAT	38155	1.4D + 1.7L + 1.7H + 1.7Eo	7	121	1.4D + 1.7L + 1.7H + 1.7Eo	52	4.68							
						MMAC	38153	1.4D + 1.7L + 1.7H + 1.7Eo	-147	441										
						мтсм	25310	1.4D + 1.7L + 1.7H + 1.7Eo	33	6										
					6-V-L	MCCM	25314	D + L + H' + E'	-64	6	1.40 + 1.7L + 1.7H + 1.7Eo	41	1.56							(1
					0-V-L	MMAT	39021	1.4D + 1.7L + 1.7H + 1.7Eo	3	31	1,40 * 1.7L * 1.7H * 1.7E0	41	1.00							
				2		MMAC	39021	1.4D + 1.7L + 1.7H + 1.7Eo	-3	31										
						мтсм	34573	1.4D + 1.7L + 1.7H + 1.7Eo	41	21										
					7-V-L	мссм	34821	1.4D + 1.7L + 1.7H + 1.7Eo	-79	10	1.4D + 1.7L + 1.7H' + 1.7Eo	50	3.12							(1
						MMAT	34525	1.4D + 1.7L + 1.7H + 1.7Eo	5	45										
L						MMAC	34576	1.4D + 1.7L + 1.7H + 1.7Eo	-47	57										
					1-T	-	-		-	-	-	-	-	1.4D + 1.7L + 1.7H + 1.7Eo	94	-35	-3	-1	0.20 (#4@12)	
		Transversi (Horizonta and Vertica	9 4 3H.3-37a	5	2-T	-	-	•	-	-	•	-	-	1.4D + 1.7L + 1.7H + 1.7Eo	53	123	54	120	0.31 (#5@12)	
		and Vertica	()		3-T				-					1.4D + 1.7L + 1.7H + 1.7Eo	117	169	68	115	0.80 (#4@6)	
_			-	2	4-T	-				-	-	-	-	1.4D + 1.7L + 1.7H + 1.7Eo	26	26	62	48	0.80 (#4@6)	
,	Near Side	Horizontal		1	1-H-L	мтмм		1.4D + 1.7L + 1.7H' + 1.7Eo	27	-	1.4D + 1.7L + 1.7H + 1.7Eo	-	0.79			•				
Roof		Vertical	3H.3-39	1	1-V-L	мтмм		1.4D + 1.7L + 1.7H' + 1.7Eo	22	16	1.4D + 1.7L + 1.7H + 1.7Eo	61	1.20			•				(1
	Far Side	Horizontal	3H.3-40	-1	1-H-L	мтмм	1 .	1.4D + 1.7L + 1.7H + 1.7Eo	27	-	1.4D + 1.7L + 1.7H + 1.7Eo	-	0.79	-	-	-		-	· ·	
		Vertical	3H.3-41	- 1	1-V-L	мтмм	1 1	1.4D + 1.7L + 1.7H + 1.7Eo	22	16	1.4D + 1.7L + 1.7H + 1.7Eo	61	1.20							

Notes:	(1) The reinforcement layout drawings show the various zones used to define the minimum reinforcement that will be provided based on finite element analysis results. Actual provided reinforcement drawings are based on the dimensions of the 54P2000 shall elements, which are modeled at the centerline of the walls and slabs. Therefore, the reinforcement drawing dimensions do not match actual building dimensions. See Figure 31H.3-53 for the wall and slabs blesling convention for the RVIB.
	(2) Each reinforcement layout drawing is divided into ininforcement zones. The ininforcement zones consists on its a follows: "It" = horizontal." " = longitudinal eninforcement, "T" = transverse reinforcement, English, vertical corresponds to Each Viet direction.
	(3) The maximum tension (MTCM) and compression (MAC) in the same load combination are also provided, with the corresponding moment from the same load combination are also provided. For the roof, the maximum tension and maximum moment (MTMM) are reported.
	(4) Negative axial load is compression and positive axial load is tension. Negative moment applies tension to the topf load of the shell element and positive moment applies tension to the topf load of the shell element and positive moment applies tension to the topf load of the shell element and featural loads reported in the table are the average of the 2 node pairs that form the 4 edges of the critical restangular shell element. If the 2 node pairs on the shell element edges parallel to the reinforcement direction do not satisfy PAM Interaction criteria, then only the 2 node pairs on the shell element edges parallel to the reinforcement direction do not satisfy PAM Interaction criteria, then only the 2 node pairs on the shell element edges parallel to the reinforcement direction do not satisfy PAM Interaction criteria, then only the 2 node pairs on the shell element edges parallel to the reinforcement direction do not satisfy PAM Interaction criteria, then only the 2 node pairs on the shell element edges parallel to the reinforcement direction do not satisfy PAM Interaction criteria, then only the 2 node pairs on the shell element edges parallel to the reinforcement direction do not satisfy PAM Interaction criteria, then only the 2 node pairs on the shell element edges parallel to the reinforcement direction do not satisfy PAM Interaction criteria, then only the 2 node pairs on the shell element edges parallel to the reinforcement direction are satisfy.
	(5) The reported in-plane shear is the maximum average in-plane shear along a plane that crosses the longitudinal ventorcement zone.
	(6) The transverse shear reinforcement loads are reported for the critical element requiring the largest area of steel for transverse reinforcement within the zone. The shear force and the corresponding axial force in the same load combination for each direction is reported for the critical element.
	(7) The reported transverses shear reinforcement is the summation of the required shear eninforcement in the horizontal direction and the required shear eninforcement in the vertical direction.
	(8) For cental naries of the structure, the standard element post-processing methods were too conservative. For such cases, detailed manual design was performed and the design house performed and the design forces determined by the detailed manual design are provided in the table.
	(8) The longitudinal enforcement shown is required to be field
	(10) The reported forces are from the FEM analysis. The provided longitudinal ininforcement includes additional ininforcement includes additional ininforcement includes additional ininforcement required due to manual one-way design additions
	(11) The reported axial and in-plane forces are from the FEM enables. The reported feature forces are from manual one-way design calculations.

Table 3H.3-5 Summary of Radwaste Building Structural Steel Design

Elevation 35'-0" Floor Steel Beams																													
Location ⁶	Figure Number	Size ^{2,3,4}	Safety Margin = Capacity/Demand	Max. Moment (kip-ft)	Governing Load Combination⁵																								
Elevation 35'-0" Formwork		W10X54	2.0	81.7	D+L																								
Steel Beams		W14X193	1.5	565.8	D+L																								
Steel Deallis	3H.3-39	W14X283	1.8	700.4	D+L																								
	3H.3-41 3H.3-42	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41	3H.3-41		W14x82	1.5	629.5	D+L+E'
Elevation 35'-0" Composite																													W36x210
Steel Beams						W36x231	1.2	4540.4	D+L+E'																				
		W36x262	1.1	5511.0	D+L+E'																								

	Roof Truss Members										
Location	Figure Number	Size ^{2,3,4}	Safety Margin = Capacity/Demand	Max. Axial Load ¹ (kip)	Governing Load Combination⁵						
North-South Spanning Truss Top Chord Member		W14X120	1.6 1.6	705.0 -962.0	D+L+E'						
North-South Spanning Truss Bottom Chord Member		W14X311	1.4 4.3	2161.0 -908.0	D+L+E'						
North-South Spanning Truss Outer Diagonal Members		W12X136	1.4 4.5	910.0 -329.0	D+L+E'						
North-South Spanning Truss Outer Vertical Members	3H.3-43 3H.3-44	2L8X8X1	2.6	241.0 -667.0	D+E'						
North-South Spanning Truss Inner Diagonal Members		2L8X6X3/4LLBB	1.4	284.0 -139.0	D+L+E'						
North-South Spanning Truss Inner Vertical Members		2L5X5X1/2	2.0 1.3	91.0 -185.0	D+L+E'						
North-South Spanning Truss Lateral Bracing Members		2L8X4X1LLBB	1.1	386.0 -316.0	D+L+E'						
East-West Spanning Truss Top Chord Member		2L5X5X1/2	3.8 1.9	47.0 -152.0	0.9D+E' D+L+E'						
East-West Spanning Truss Bottom Chord Member		2L8X4X1LLBB	1.4 7.1	316.0 -94.0	D+L+E' 0.9D+E'						
East-West Spanning Truss Outer Diagonal Members		L8X8X7/8	1.3 8.3	208.0 -51.0	D+L+E' 0.9D+E'						
East-West Spanning Truss Outer Vertical Members	3H.3-43 3H.3-45	L6X6X1/2	3.3 1.3	35.0 -143.0	D+L+E'						
East-West Spanning Truss Inner Diagonal Members	311.5-43	L4X4X3/8	4.3 11.1	14.0 -7.0	D+L+E' 0.9D+E'						
East-West Spanning Truss Inner Vertical Members		L6X6X1/2	5.0 2.9	23.0	0.9D+E' D+L+E'						
East-West Spanning Truss Lateral Bracing Members		L5X5X3/8	3.8 2.6	18.0 -21.0	D+L+E' D+L+E'						

Roof Purlins										
Location	Figure Number	Size ^{2,3,4}	Safety Margin = Capacity/Demand	Max. Axial Load ¹ (kip)	Max. Moment ⁷ (kip-ft)	Governing Load Combination⁵				
North-South Spanning Roof Purlins	- 3H.3-43	W12X210	1.3	-1299.3	-13.2	D+L+E'				
East-West Spanning Roof Purlins	эп.э-4э	W8X67	1.8	-269.6	-2.5	D+L+E'				

- Notes:

 1. Positive axial load is tension and negative axial load is compression.

 2. W-shapes: ASTM A572 Gr. 50 (Fy = 50ksi)

 3. Angles and Double Angles: ASTM A36 Gr. 36 (Fy = 36ksi)

 4. Member sizes reported are based on analysis results.

 Actual member sizes used will have the same or greater capacity, but size and shape may vary based on connection design requirements.

 5. F. is the design basis earthquake load (1/2 SSE). E' is the II/I earthquake load (SSE).

 Concrete cures, 6. The steel beams located between column lines W1-W7 and WA-WE are required for concrete formwork only. Once the concrete cures, the concrete alone is designed for all design basis loading. The formwork steel will remain in-place unless commodity routing required the formwork steel to be removed.
 - Maximum moment for governing load combination is based on bending about the minor-axis.

Details

Results

Category 1 Structures

22

23

24

25

26

27

28

5.00

5.00

5.00

5.00

7.00

7.00

7.00

0.125

0.125

0.125

0.125

0.125

0.125

0.125

849.5

874.5

873.3

872.1

914.5

914.0

911.5

4331.5

4459.3

4452.8

4446.7

4663.0

4660.8

4647.8

2.2969

2.0113

2.0424

2.0761

2.3111

2.3253

2.3428

1040.4

1085.2

1084.2

1083.2

1120.0

1119.5

1117.8

5000.0

5000.0

5000.0

5000.0

5000.0

5000.0

5000.0

1.7027

1.4063

1.4290

1.4485

1.6966

1.7081

1.7197

1274.2

1329.1

1327.9

1326.6

1371.7

1371.1

1369.1

5355.8

5586.6

5581.2

5576.1

5765.6

5762.9

5754.5

Soil Layers

Upper Bound

1.1085

0.8014

0.8157

0.8209

1.0822

1.0909

1.0966

Unit S-Wave P-Wave S-Wave P-Wave S-Wave P-Wave Layer Thickness Weight Vel. Vel. Damping Vel. Vel. Damping Vel. Vel. Damping (ft) (%) No. (kcf) (ft/sec) (ft/sec) (ft/sec) (%) (ft/sec) (ft/sec) (%) (ft/sec) 4.00 0.124 419.1 1128.4 1.6698 548.1 1475.9 1.2224 677.2 1823.4 0.7749 1 5.00 0.124 474.4 1277.4 0.8738 2 1.9487 600.1 1615.8 1.4113 735.0 1979.0 3 0.124 5.00 470.6 2399.5 2.1614 596.5 3041.5 1.5678 730.5 3725.1 0.9743 470.0 4 5.00 0.124 2396.7 2.3119 599.2 3055.2 1.6698 733.8 3741.9 1.0277 5 5.00 0.124 466.9 2380.6 598.3 3050.9 1.7540 732.8 3736.6 1.0785 2.4295 5.00 0.121 578.1 2947.9 2.8987 730.0 3722.5 2.0647 4559.1 1.2307 6 894.1 7 5.00 0.121 581.3 2964.2 3.0535 3739.4 4579.8 1.2778 733.4 2.1657 898.2 8 5.00 0.122 606.6 3093.0 2.1873 778.2 3968.1 1.4972 953.1 4859.9 0.8072 9 5.00 0.122 602.2 3070.6 2.3098 774.6 3949.6 1.5804 948.7 4837.3 0.8509 0.122 3932.2 4816.0 10 5.00 598.1 3049.7 2.4308 771.2 1.6566 944.5 0.8824 11 5.00 0.122 600.0 3059.2 2.5321 771.9 3935.9 1.7154 945.4 4820.4 0.8986 5.00 0.122 719.8 3670.5 2.2554 924.5 4714.1 1.6695 1132.3 5000.0 1.0836 12 13 5.00 0.122 720.6 3674.4 2.2824 925.0 4716.5 1.6893 1132.9 5000.0 1.0962 and 14 5.00 0.122 719.8 3670.4 2.3079 924.3 4712.9 1.7112 1132.0 5000.0 1.1145 Evaluation 15 0.122 2.3275 5.00 719.1 3666.7 923.6 4709.5 1.7260 1131.2 5000.0 1.1245 16 5.00 0.123 827.3 2.0584 5000.0 1.4280 1241.0 5215.9 0.7975 4218.4 1013.2 17 5.00 0.123 825.7 4210.5 2.1082 1011.3 5000.0 1.4603 1238.6 5206.1 0.8123 18 0.123 824.2 4202.7 1009.5 5000.0 1236.3 0.8340 5.00 2.1636 1.4988 5196.6 4195.2 5000.0 5187.3 19 5.00 0.123 822.8 2.2125 1007.7 1.5321 1234.1 0.8516 20 4335.6 5000.0 1275.4 5.00 0.125 850.3 2.2666 1041.4 1.6792 5360.8 1.0917 of Seismic 5.00 2.2780 5000.0 1274.8 5358.3 21 0.125 849.9 4333.5 1040.9 1.6904 1.1027

Table 3H.6-1 Strain-Compatible Soil Properties Used in SSI Analysis

Mean

Lower Bound

Table 3H.6-1 Strain-Compatible Soil Properties Used in SSI Analysis (Continued)

:	Soil Layers		L	ower Boun	d		Mean		Į	d	
		Unit	S-Wave	P-Wave		S-Wave	P-Wave		S-Wave	P-Wave	
Layer	Thickness	Weight	Vel.	Vel.	Damping	Vel.	Vel.	Damping	Vel.	Vel.	Damping
No.	(ft)	(kcf)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)
29	7.00	0.125	910.9	4644.9	2.3545	1117.4	5000.0	1.7287	1368.5	5751.9	1.1029
30	7.00	0.125	910.4	4642.2	2.3693	1116.9	5000.0	1.7403	1367.9	5749.4	1.1114
31	5.00	0.125	883.7	4506.2	2.2271	1102.4	5000.0	1.5420	1350.1	5674.8	0.8568
32	5.00	0.125	881.5	4494.7	2.2467	1101.0	5000.0	1.5575	1348.4	5667.5	0.8683
33	5.00	0.125	880.6	4490.3	2.2764	1100.2	5000.0	1.5770	1347.4	5663.6	0.8775
34	9.00	0.125	919.6	4689.0	2.3842	1126.3	5000.0	1.7519	1379.4	5797.7	1.1196
35	9.00	0.125	919.1	4686.8	2.3984	1125.7	5000.0	1.7608	1378.7	5795.0	1.1231
36	9.00	0.125	922.5	4703.8	2.4066	1129.8	5000.0	1.7673	1383.7	5816.1	1.1281
37	9.00	0.125	922.8	4705.5	2.4195	1130.2	5000.0	1.7795	1384.2	5818.2	1.1394
38	9.00	0.125	919.2	4687.1	2.4362	1125.8	5000.0	1.7917	1378.8	5795.4	1.1472
39	9.00	0.124	921.5	4698.6	2.4066	1146.4	5000.0	1.7870	1404.0	5901.3	1.1674
40	9.00	0.124	931.4	4749.0	2.4129	1157.6	5000.0	1.7862	1417.8	5959.3	1.1595
41	5.00	0.127	986.2	5000.0	2.2903	1222.6	5138.7	1.5360	1497.4	6293.7	0.7818
42	5.00	0.127	985.7	5000.0	2.2989	1222.1	5136.6	1.5447	1496.7	6291.0	0.7905
43	5.00	0.127	985.1	5000.0	2.3165	1221.6	5134.5	1.5554	1496.1	6288.4	0.7943
44	5.00	0.127	984.6	5000.0	2.3275	1221.1	5132.4	1.5619	1495.5	6285.9	0.7963
45	5.00	0.127	984.0	5000.0	2.3410	1220.6	5130.4	1.5697	1494.9	6283.4	0.7984
46	5.00	0.125	1025.7	5000.0	2.3496	1256.3	5280.3	1.7372	1538.6	6467.1	1.1247
47	15.00	0.127	1010.5	5000.0	2.1171	1237.7	5202.1	1.5316	1515.8	6371.2	0.9461
48	11.80	0.123	1034.4	5000.0	2.3607	1266.9	5324.9	1.7527	1551.6	6521.6	1.1447
49	11.80	0.123	1034.0	5000.0	2.3685	1266.4	5323.0	1.7581	1551.0	6519.3	1.1477
50	11.80	0.123	1033.7	5000.0	2.3815	1266.0	5321.2	1.7665	1550.5	6517.1	1.1516
51	11.80	0.123	1037.2	5000.0	2.3948	1270.3	5339.2	1.7726	1555.8	6539.1	1.1505
52	11.80	0.123	1036.9	5000.0	2.4048	1269.9	5337.6	1.7792	1555.3	6537.2	1.1536
53	17.00	0.128	1252.4	5264.0	1.8381	1575.1	6620.6	1.2897	1929.1	8108.5	0.7413
54	8.00	0.123	1301.7	5471.3	2.1463	1607.2	6755.4	1.6064	1968.4	8273.7	1.0664
55	16.50	0.128	1310.3	5507.2	1.7999	1604.7	6744.9	1.2702	1965.4	8260.8	0.7405
56	16.50	0.128	1309.5	5503.9	1.8246	1603.7	6740.8	1.2855	1964.2	8255.8	0.7465
_			-		•	•	•	•	•		•

Table 3H.6-1	Strain-Compatible Soi	I Properties	Used in SSI Analy	sis (Continued)

Ì		Soil Layers		L	ower Boun	d		Mean		Į	d	
			Unit	S-Wave	P-Wave		S-Wave	P-Wave		S-Wave	P-Wave	
	Layer	Thickness	Weight	Vel.	Vel.	Damping	Vel.	Vel.	Damping	Vel.	Vel.	Damping
	No.	(ft)	(kcf)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)
	57	8.00	0.123	1290.5	5424.1	2.2004	1580.5	6643.2	1.6357	1935.7	8136.2	1.0711
	58	19.00	0.128	1156.1	5000.0	2.0671	1417.2	5956.7	1.4716	1735.7	7295.4	0.8761
	59	15.00	0.123	995.4	5000.0	2.5251	1219.2	5124.3	1.8573	1493.2	6276.0	1.1895
	60	15.00	0.123	995.2	5000.0	2.5283	1218.9	5123.3	1.8597	1492.8	6274.7	1.1910
	61	8.00	0.128	970.0	4946.2	2.6235	1188.1	5000.0	1.8389	1455.1	6115.9	1.0543
	62	18.00	0.123	990.9	5000.0	2.5359	1213.6	5101.1	1.8669	1486.4	6247.5	1.1980
	63	18.00	0.123	990.6	5000.0	2.5391	1213.3	5099.7	1.8706	1486.0	6245.8	1.2021
	64	18.00	0.123	999.5	5000.0	2.5358	1224.1	5145.1	1.8672	1499.2	6301.4	1.1986
	65	18.00	0.123	1196.2	5027.7	2.0970	1465.0	6157.6	1.4997	1794.2	7541.5	0.9024
	66	14.60	0.123	1172.4	5000.0	2.3353	1435.9	6035.4	1.7343	1758.6	7391.8	1.1332
	67	14.60	0.123	1172.2	5000.0	2.3381	1435.6	6034.3	1.7362	1758.3	7390.5	1.1343
<u>'</u>	68	14.60	0.123	1172.0	5000.0	2.3411	1435.4	6033.3	1.7397	1758.0	7389.2	1.1382
:	69	14.60	0.123	1171.8	5000.0	2.3468	1435.2	6032.3	1.7427	1757.7	7388.0	1.1386
	70	14.60	0.123	1171.7	5000.0	2.3531	1435.0	6031.5	1.7455	1757.5	7387.0	1.1379
i	71	45.50	0.129	1378.7	5065.8	0.9127	1688.6	6204.3	0.5883	2068.1	7598.6	0.2639
•	72	45.50	0.129	1378.7	5065.8	0.9127	1688.6	6204.3	0.5883	2068.1	7598.6	0.2639
٠ [73	100.00	0.128	1388.7	5102.3	0.9127	1700.8	6249.0	0.5883	2083.0	7653.4	0.2639
, [74	100.00	0.128	1388.7	5102.3	0.9127	1700.8	6249.0	0.5883	2083.0	7653.4	0.2639
. [75	100.00	0.130	1533.0	5084.5	0.9127	1877.6	6227.2	0.5883	2299.5	7626.7	0.2639
	76	100.00	0.130	1533.0	5084.5	0.9127	1877.6	6227.2	0.5883	2299.5	7626.7	0.2639
	77	100.00	0.130	1667.2	5529.4	0.9127	2041.9	6772.1	0.5883	2500.8	8294.1	0.2639
	78	100.00	0.130	1667.2	5093.3	0.9127	2041.9	6238.0	0.5883	2500.8	7640.0	0.2639
,	79	100.00	0.130	1735.4	5301.6	0.9127	2125.4	6493.1	0.5883	2603.0	7952.4	0.2639
۱ [80	100.00	0.130	1735.4	5301.6	0.9127	2125.4	6493.1	0.5883	2603.0	7952.4	0.2639
	81	100.00	0.130	1870.7	5338.3	0.9127	2291.2	6538.0	0.5883	2806.1	8007.4	0.2639
; [82	100.00	0.130	1870.7	5338.3	0.9127	2291.2	6538.0	0.5883	2806.1	8007.4	0.2639
Ì	83	100.00	0.130	1912.1	5456.3	0.9127	2341.8	6682.6	0.5883	2868.1	8184.4	0.2639
	84	100.00	0.130	1912.1	5148.5	0.9127	2341.8	6305.6	0.5883	2868.1	7722.7	0.2639

Table 3H.6-1 Strain-Compatible Soil Properties Used in SSI Analysis (Continued)

oile		Soil Layers		L	ower Boun	d		Mean		Į	Upper Bound		
bae slie			Unit	S-Wave	P-Wave		S-Wave	P-Wave		S-Wave	P-Wave		
Ē	Layer	Thickness	Weight	Vel.	Vel.	Damping	Vel.	Vel.	Damping	Vel.	Vel.	Damping	
عاراه	No.	(ft)	(kcf)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)	
Ť	85	100.00	0.135	2042.5	5499.7	0.9127	2501.6	6735.7	0.5883	3063.8	8249.6	0.2639	
, _D	86	100.00	0.135	2051.1	5522.8	0.9127	2512.1	6764.0	0.5883	3076.7	8284.2	0.2639	
beuite	87	100.00	0.135	2259.9	5786.1	0.9127	2767.8	7086.5	0.5883	3389.8	8679.2	0.2639	
	88	100.00	0.135	2259.9	5786.1	0.9127	2767.8	7086.5	0.5883	3389.8	8679.2	0.2639	
of Spiemic	89	100.00	0.135	2402.8	6152.0	0.9127	2942.8	7534.6	0.5883	3604.1	9228.0	0.2639	
ig	90	100.00	0.135	2402.8	5885.6	0.9127	2942.8	7208.3	0.5883	3604.1	8828.3	0.2639	
	91	100.00	0.140	2402.8	5885.6	0.9127	2942.8	7208.3	0.5883	3604.1	8828.3	0.2639	
10,40	92	100.00	0.140	2409.5	5902.0	0.9127	2951.0	7228.5	0.5883	3614.3	8853.1	0.2639	
ruonote)	93	100.00	0.140	2496.3	5878.5	0.9127	3057.3	7199.6	0.5883	3744.4	8817.7	0.2639	
4	94	100.00	0.140	2496.3	5878.5	0.9127	3057.3	7199.6	0.5883	3744.4	8817.7	0.2639	
Ť	95	100.00	0.140	2531.9	5962.2	0.9127	3100.9	7302.2	0.5883	3797.8	8943.3	0.2639	
Structuros	96	100.00	0.140	2531.9	5755.0	0.9127	3100.9	7048.4	0.5883	3797.8	8632.5	0.2639	
9	97	100.00	0.140	2789.2	6340.0	0.9127	3416.1	7764.8	0.5883	4183.8	9509.9	0.2639	
	98	100.00	0.140	2789.2	6340.0	0.9127	3416.1	7764.8	0.5883	4183.8	9509.9	0.2639	
	99	100.00	0.140	3055.6	6726.6	0.9127	3742.3	8238.4	0.5883	4583.4	10089.9	0.2639	
	100	100.00	0.140	3055.6	6726.6	0.9127	3742.3	8238.4	0.5883	4583.4	10089.9	0.2639	
	101	100.00	0.140	3144.4	6922.0	0.9127	3851.0	8477.7	0.5883	4716.5	10383.0	0.2639	
	102	100.00	0.140	3144.4	6722.9	0.9127	3851.0	8233.9	0.5883	4716.5	10084.4	0.2639	
	103	100.00	0.140	3245.3	6938.8	0.9127	3974.7	8498.3	0.5883	4868.0	10408.3	0.2639	
	104	100.00	0.140	3245.3	6938.8	0.9127	3974.7	8498.3	0.5883	4868.0	10408.3	0.2639	
	105	100.00	0.140	3280.1	6828.1	0.9127	4017.3	8362.7	0.5883	4920.2	10242.1	0.2639	
	106	100.00	0.140	3280.1	6828.1	0.9127	4017.3	8362.7	0.5883	4920.2	10242.1	0.2639	
	107	100.00	0.140	3280.1	6828.1	0.9127	4017.3	8362.6	0.5883	4920.1	10242.1	0.2639	
	108	100.00	0.140	3280.1	6661.9	0.9127	4017.3	8159.1	0.5883	4920.1	9992.8	0.2639	
	109	100.00	0.140	3337.8	6779.1	0.9127	4088.0	8302.7	0.5883	5006.7	10168.6	0.2639	
	110	100.00	0.140	3337.8	6779.1	0.9127	4088.0	8302.7	0.5883	5006.7	10168.6	0.2639	
s l	111	100.00	0.140	3395.5	6740.9	0.9127	4158.6	8255.9	0.5883	5093.3	10111.3	0.2639	
2H_427	112	100.00	0.140	3395.5	6740.9	0.9127	4158.6	8255.9	0.5883	5093.3	10111.3	0.2639	
7													

Table 3H.6-1 Strain-Compatible Soil Properties Used in SSI Analysis (Continued)

	Soil Layers		L	ower Boun	d	Mean			Upper Bound		
		Unit	S-Wave	P-Wave		S-Wave	P-Wave		S-Wave	P-Wave	
Layer	Thickness	Weight	Vel.	Vel.	Damping	Vel.	Vel.	Damping	Vel.	Vel.	Damping
No.	(ft)	(kcf)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)
113	100.00	0.140	3425.0	6799.4	0.9127	4194.7	8327.6	0.5883	5137.5	10199.1	0.2639
114	100.00	0.140	3425.0	6657.0	0.9127	4194.7	8153.1	0.5883	5137.5	9985.5	0.2639
115	100.00	0.140	3609.5	7015.6	0.9127	4420.7	8592.3	0.5883	5414.2	10523.4	0.2639
116	100.00	0.140	3609.5	7015.6	0.9127	4420.7	8592.3	0.5883	5414.2	10523.4	0.2639
117	100.00	0.140	3815.4	7271.0	0.9127	4672.9	8905.1	0.5883	5723.2	10906.5	0.2639
118	100.00	0.140	3815.4	7271.0	0.9127	4672.9	8905.1	0.5883	5723.2	10906.5	0.2639
119	100.00	0.140	3828.5	7295.9	0.9127	4689.0	8935.6	0.5883	5742.8	10943.9	0.2639
120	100.00	0.140	3828.5	7162.5	0.9127	4689.0	8772.3	0.5883	5742.8	10743.8	0.2639
121	100.00	0.140	3995.3	7474.4	0.9127	4893.2	9154.3	0.5883	5992.9	11211.7	0.2639
122	100.00	0.140	3995.3	7474.4	0.9127	4893.2	9154.3	0.5883	5992.9	11211.7	0.2639
123	100.00	0.140	4042.3	7562.4	0.9127	4950.8	9262.1	0.5883	6063.4	11343.7	0.2639
124	100.00	0.140	4042.3	7562.4	0.9127	4950.8	9262.1	0.5883	6063.4	11343.7	0.2639
125	100.00	0.140	4057.2	7590.4	0.9127	4969.1	9296.2	0.5883	6085.8	11385.5	0.2639
126	100.00	0.140	4057.2	7590.4	0.9127	4969.1	9296.2	0.5883	6085.8	11385.5	0.2639
127	100.00	0.140	4064.5	7604.1	0.9127	4978.0	9313.0	0.5883	6096.8	11406.1	0.2639
128	100.00	0.140	4064.5	7604.1	0.9127	4978.0	9313.0	0.5883	6096.8	11406.1	0.2639
129	100.00	0.140	3997.4	7478.4	0.9127	4895.8	9159.2	0.5883	5996.1	11217.7	0.2639
130	100.00	0.140	3997.4	7478.4	0.9127	4895.8	9159.2	0.5883	5996.1	11217.7	0.2639
131	100.00	0.140	3779.9	7071.5	0.9127	4629.4	8660.8	0.5883	5669.8	10607.3	0.2639
132	100.00	0.140	3779.9	7071.5	0.9127	4629.4	8660.8	0.5883	5669.8	10607.3	0.2639
133	100.00	0.140	3164.0	5919.4	0.9127	3875.1	7249.7	0.5883	4746.1	8879.1	0.2639
134	100.00	0.140	3164.0	5919.4	0.9127	3875.1	7249.7	0.5883	4746.1	8879.1	0.2639
135	100.00	0.140	2974.8	5565.3	0.9127	3643.3	6816.0	0.5883	4462.1	8347.9	0.2639
136	100.00	0.140	2974.8	5565.3	0.9127	3643.3	6816.0	0.5883	4462.1	8347.9	0.2639
137	100.00	0.140	2942.9	5505.7	0.9127	3604.3	6743.0	0.5883	4414.4	8258.5	0.2639
138	100.00	0.140	2942.9	5505.7	0.9127	3604.3	6743.0	0.5883	4414.4	8258.5	0.2639
139	100.00	0.140	2914.5	5452.5	0.9127	3569.5	6677.9	0.5883	4371.7	8178.7	0.2639
140	100.00	0.140	2914.5	5452.5	0.9127	3569.5	6677.9	0.5883	4371.7	8178.7	0.2639

Table 3H.6-1 Strain-Compatible Soil Properties Used in SSI Analysis (Continued)

	Soil Layers		Lower Bound			Mean			Upper Bound		
		Unit	S-Wave	P-Wave		S-Wave	P-Wave		S-Wave	P-Wave	
Layer	Thickness	Weight	Vel.	Vel.	Damping	Vel.	Vel.	Damping	Vel.	Vel.	Damping
No.	(ft)	(kcf)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)
141	100.00	0.140	2914.5	5452.5	0.9127	3569.5	6677.9	0.5883	4371.7	8178.7	0.2639
142	100.00	0.140	2914.5	5452.5	0.9127	3569.5	6677.9	0.5883	4371.7	8178.7	0.2639
143	100.00	0.140	2875.7	5379.9	0.9127	3522.0	6589.1	0.5883	4313.6	8069.9	0.2639
144	100.00	0.140	2875.7	5379.9	0.9127	3522.0	6589.1	0.5883	4313.6	8069.9	0.2639
145	100.00	0.140	2875.9	5380.4	0.9127	3522.3	6589.6	0.5883	4313.9	8070.6	0.2639
146	100.00	0.140	2875.9	5380.4	0.9127	3522.3	6589.6	0.5883	4313.9	8070.6	0.2639

Table 3H.6-1a Layer Thicknesses and Strain Compatible In-Situ Soil Properties Used for the SSI Analysis (Mean)

		Тор	Bottom					Passing
		Elevation	Elevation	Unit	S-Wave	P-Wave		Freq. for
Layer No.	Thickness (ft)	of Layer (ft)	of Layer (ft)	Weight (kcf)	Vel. (ft/sec)	Vel. (ft/sec)	Damping (%)	S-Wave Vel. (Hz)
1	2.75	56.0	53.3	0.124	548.1	1475.9	1.22	39.9
2	3.25	53.3	50.0	0.124	579.0	1559.0	1.34	35.6
3	3.50	50.0	46.5	0.124	599.6	1731.8	1.43	34.3
4	3.50	46.5	43.0	0.124	596.5	3041.5	1.57	34.1
5	3.50	43.0	39.5	0.124	598.4	3051.3	1.64	34.2
6	3.50	39.5	36.0	0.124	598.9	3054.0	1.69	34.2
7	3.00	36.0	33.0	0.124	598.3	3050.9	1.75	39.9
8	3.00	33.0	30.0	0.122	680.1	3468.0	1.96	45.3
9	4.00	30.0	26.0	0.121	730.8	3726.7	2.09	36.5
10	2.00	26.0	24.0	0.121	733.4	3739.4	2.17	73.3
11	4.00	24.0	20.0	0.122	755.1	3850.4	1.83	37.8
12	4.00	20.0	16.0	0.122	777.3	3963.5	1.52	38.9
13	4.00	16.0	12.0	0.122	774.6	3949.6	1.58	38.7
14	4.00	12.0	8.0	0.122	771.2	3932.2	1.66	38.6
15	4.00	8.0	4.0	0.122	771.7	3935.0	1.70	38.6
16	5.00	4.0	-1.0	0.122	856.8	4368.6	1.69	34.3
17	5.00	-1.0	-6.0	0.122	924.8	4715.5	1.68	37.0
18	2.00	-6.0	-8.0	0.122	925.0	4716.5	1.69	92.5
19	5.50	-8.0	-13.5	0.122	924.2	4712.6	1.71	33.6
20	5.60	-13.5	-19.1	0.122	939.9	4763.9	1.67	33.6
21	6.10	-19.1	-25.2	0.123	1012.5	5000.0	1.44	33.2
22	6.10	-25.2	-31.3	0.123	1010.3	5000.0	1.48	33.1
23	6.10	-31.3	-37.4	0.123	1008.2	5000.0	1.52	33.1
24	6.10	-37.4	-43.5	0.125	1037.9	5000.0	1.58	34.0
25	6.30	-43.5	-49.8	0.125	1040.8	5000.0	1.69	33.0
26	6.40	-49.8	-56.2	0.125	1062.3	5000.0	1.55	33.2
27	6.50	-56.2	-62.7	0.125	1084.5	5000.0	1.42	33.4
28	6.60	-62.7	-69.3	0.125	1090.3	5000.0	1.28	33.0
29	6.75	-69.3	-76.1	0.125	1119.9	5000.0	1.70	33.2

Table 3H.6-1a Layer Thicknesses and Strain Compatible In-Situ Soil Properties Used for the SSI Analysis (Mean) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
30	6.75	-76.1	-82.8	0.125	1119.3	5000.0	1.71	33.2
31	6.75	-82.8	-89.6	0.125	1117.8	5000.0	1.72	33.1
32	6.75	-89.6	-96.36	0.125	1117.4	5000.0	1.73	33.1
33	6.75	-96.3	-103.1	0.125	1116.8	5000.0	1.74	33.1
34	6.50	-103.1	-109.6	0.125	1102.1	5000.0	1.55	33.9
35	6.50	-109.6	-116.1	0.125	1100.6	5000.0	1.57	33.9
36	6.75	-116.1	-122.8	0.125	1118.6	5000.0	1.70	33.1
37	6.75	-122.8	-129.6	0.125	1126.1	5000.0	1.76	33.4
38	6.75	-129.6	-136.3	0.125	1125.9	5000.0	1.76	33.4
39	6.75	-136.3	-143.1	0.125	1129.8	5000.0	1.77	33.5
40	6.75	-143.1	-149.8	0.125	1130.1	5000.0	1.78	33.5
41	6.75	-149.8	-156.6	0.125	1128.5	5000.0	1.78	33.4
42	6.75	-156.6	-163.3	0.125	1126.7	5000.0	1.79	33.4
43	6.80	-163.3	-170.1	0.124	1146.4	5000.0	1.79	33.7
44	6.90	-170.1	-177.0	0.124	1154.5	5000.0	1.79	33.5
45	7.10	-177.0	-184.1	0.125	1185.1	5059.6	1.68	33.4
46	7.40	-184.1	-191.5	0.127	1222.2	5137.0	1.48	33.0
47	7.30	-191.5	-198.8	0.127	1221.4	5133.7	1.56	33.5
48	7.30	-198.8	-206.1	0.127	1221.2	5133.0	1.55	33.5
49	7.50	-206.1	-213.6	0.126	1249.8	5252.9	1.67	33.3
50	7.40	-213.6	-221.0	0.127	1237.7	5202.1	1.53	33.5
51	7.50	-221.0	-228.5	0.126	1247.3	5242.4	1.61	33.3
52	7.60	-228.5	-236.1	0.123	1266.9	5324.9	1.75	33.3
53	7.60	-236.1	-243.7	0.123	1266.5	5323.4	1.76	33.3
54	7.60	-243.7	-251.3	0.123	1266.3	5322.6	1.76	33.3
55	7.60	-251.3	-258.9	0.123	1266.0	5321.2	1.77	33.3
56	7.60	-258.9	-266.5	0.123	1268.9	5333.3	1.77	33.4
57	7.60	-266.5	-274.1	0.123	1270.3	5339.0	1.77	33.4
58	7.60	-274.1	-281.7	0.123	1269.9	5337.6	1.78	33.4

Table 3H.6-1a Layer Thicknesses and Strain Compatible In-Situ Soil Properties Used for the SSI Analysis (Mean) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
59	8.70	-281.7	-290.4	0.126	1443.5	6067.4	1.48	33.2
60	9.50	-290.4	-299.9	0.128	1575.1	6620.6	1.29	33.2
61	9.50	-299.9	-309.4	0.124	1600.0	6725.1	1.54	33.7
62	9.50	-309.4	-318.9	0.128	1604.9	6745.6	1.29	33.8
63	9.50	-318.9	-328.4	0.128	1604.5	6744.1	1.27	33.8
64	9.50	-328.4	-337.9	0.128	1603.7	6740.8	1.29	33.8
65	9.50	-337.9	-347.4	0.126	1592.9	6695.2	1.45	33.5
66	8.90	-347.4	-356.3	0.126	1479.0	6216.6	1.54	33.2
67	8.50	-356.3	-364.8	0.128	1417.2	5956.7	1.47	33.3
68	8.10	-364.8	-372.9	0.126	1339.3	5629.3	1.61	33.1
69	7.30	-372.9	-380.2	0.123	1219.2	5124.3	1.86	33.4
70	7.30	-380.2	-387.5	0.123	1219.1	5124.0	1.86	33.4
71	7.30	-387.5	-394.8	0.123	1218.9	5123.3	1.86	33.4
72	7.30	-394.8	-402.1	0.124	1209.9	5087.2	1.85	33.1
73	7.20	-402.1	-409.3	0.127	1192.6	5018.0	1.84	33.1
74	7.30	-409.3	-416.6	0.123	1213.6	5101.1	1.87	33.2
75	7.30	-416.6	-423.9	0.123	1213.6	5101.1	1.87	33.2
76	7.30	-423.9	-431.2	0.123	1213.4	5100.1	1.87	33.2
77	7.30	-431.2	-438.5	0.123	1213.3.	5099.7	1.87	33.2
78	7.30	-438.5	-445.8	0.123	1215.9	5110.8	1.87	33.3
79	7.40	-445.8	-453.2	0.123	1224.1	5145.1	1.87	33.1
80	7.40	-453.2	-460.6	0.123	1224.1	5145.1	1.87	33.1
81	8.50	-460.6	-469.1	0.123	1419.0	5964.3	1.56	33.4
82	8.80	-469.1	-477.9	0.123	1465.0	6157.6	1.50	33.3
83	8.70	-477.9	-486.6	0.123	1442.8	6064.5	1.68	33.2
84	8.70	-477.9	-495.3	0.123	1435.9	6035.3	1.73	33.0
85	8.70	-495.3	-504.0	0.123	1435.6	6034.3	1.74	33.0
86	8.70	-504.0	-512.7	0.123	1435.5	6033.9	1.74	33.0
87	8.60	-512.7	-521.3	0.123	1435.4	6033.3	1.74	33.4

Table 3H.6-1a Layer Thicknesses and Strain Compatible In-Situ Soil Properties Used for the SSI Analysis (Mean) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
88	8.60	-521.3	-529.9	0.123	1435.3	6032.6	1.74	33.4
89	8.60	-529.9	-538.5	0.123	1435.2	6032.3	1.74	33.4
90	8.60	-538.5	-547.1	0.123	1435.0	6031.5	1.75	33.4
91	9.10	-547.1	-556.2	0.125	1515.0	6091.2	1.34	33.3
92	10.20	-556.2	-566.4	0.129	1688.6	6204.3	0.59	33.1
93	10.20	-566.4	-576.6	0.129	1688.6	6204.3	0.59	33.1
94	10.20	-576.6	-586.8	0.129	1688.6	6204.3	0.59	33.1
95	10.20	-586.8	-597.0	0.129	1688.6	6204.3	0.59	33.1
96	10.20	-597.0	-607.2	0.129	1688.6	6204.3	0.59	33.1
97	10.20	-607.2	-617.4	0.129	1688.6	6204.3	0.59	33.1
98	10.20	-617.4	-627.6	0.129	1688.6	6204.3	0.59	33.1
99	10.20	-627.6	-637.8	0.129	1688.6	6204.3	0.59	33.1
100	10.20	-637.8	-648.0	0.129	1693.4	6221.8	0.59	33.2
Halfspace				0.129	1693.4	6221.8	0.588-	-

Table 3H.6-1b Layer Thicknesses and Strain Compatible In-Situ Soil Properties Used for the SSI Analysis (Upper Bound)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
1	2.75	56.0	53.3	0.124	677.2	1823.4	0.77	49.3
2	3.25	53.3	50.0	0.124	711.6	1916.1	0.84	43.8
3	3.50	50.0	46.5	0.124	734.4	2121.0	0.89	42.0
4	3.50	46.5	43.0	0.124	730.5	3725.1	0.97	41.7
5	3.50	43.0	39.5	0.124	732.9	3737.1	1.01	41.9
6	3.50	39.5	36.0	0.124	733.5	3740.4	1.04	41.9
7	3.00	36.0	33.0	0.124	732.8	3736.6	1.08	48.9
8	3.00	33.0	30.0	0.122	833.0	4247.5	1.18	55.5
9	4.00	30.0	26.0	0.121	895.1	4564.3	1.24	44.8
10	2.00	26.0	24.0	0.121	898.2	4579.8	1.28	89.8
11	4.00	24.0	20.0	0.122	924.8	4715.7	1.04	46.2
12	4.00	20.0	16.0	0.122	952.0	4854.2	0.82	47.6
13	4.00	16.0	12.0	0.122	948.7	4837.3	0.85	47.4
14	4.00	12.0	8.0	0.122	944.5	4816.0	0.88	47.2
15	4.00	8.0	4.0	0.122	945.2	4819.3	0.89	47.3
16	5.00	4.0	-1.0	0.122	1049.3	4926.6	1.01	42.0
17	5.00	-1.0	-6.0	0.122	1132.7	5000.0	1.09	45.3
18	2.00	-6.0	-8.0	0.122	1132.9	5000.0	1.10	113.3
19	5.50	-8.0	-13.5	0.122	1131.9	5000.0	1.12	41.2
20	5.60	-13.5	-19.1	0.122	1151.2	5041.0	1.06	41.1
21	6.10	-19.1	-25.2	0.123	1240.1	5212.4	0.80	40.7
22	6.10	-25.2	-31.3	0.123	1237.4	5201.0	0.82	40.6
23	6.10	-31.3	-37.4	0.123	1234.7	5189.9	0.85	40.5
24	6.10	-37.4	-43.5	0.125	1271.2	5343.0	1.05	41.7
25	6.30	-43.5	-49.8	0.125	1274.6	5357.6	1.10	40.5
26	6.40	-49.8	-56.2	0.125	1301.1	5468.8	0.95	40.7
27	6.50	-56.2	-62.7	0.125	1328.2	5582.7	0.81	40.9
28	6.60	-62.7	-69.3	0.125	1335.3	5612.7	0.84	40.5
29	6.75	-69.3	-76.1	0.125	1371.6	5765.2	1.08	40.6

Table 3H.6-1b Layer Thicknesses and Strain Compatible In-Situ Soil Properties Used for the SSI Analysis (Upper Bound) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
30	6.75	-76.1	-82.8	0.125	1370.9	5761.9	1.09	40.6
31	6.75	-82.8	-89.6	0.125	1369.1	5754.3	1.10	40.6
32	6.75	-89.6	-96.3	0.125	1368.5	5751.8	1.10	40.5
33	6.75	-96.3.	-103.1	0.125	1367.8	5748.8	1.11	40.5
34	6.50	-103.1	-109.6	0.125	1349.7	5673.1	0.86	41.5
35	6.50	-109.6	-116.1	0.125	1347.9	5665.7	0.87	41.5
36	6.75	-116.1	-122.8	0.125	1370.0	5758.3	1.05	40.6
37	6.75	-122.8	-129.6	0.125	1379.1	5796.7	1.12	40.9
38	6.75	-129.6	-136.3	0.125	1378.9	5795.9	1.12	40.9
39	6.75	-136.3	-143.1	0.125	1383.7	5816.1	1.13	41.0
40	6.75	-143.1	-149.8	0.125	1384.1	5817.6	1.14	41.0
41	6.75	-149.8	-156.6	0.125	1382.2	5809.6	1.14	41.0
42	6.75	-156.6	-163.3	0.125	1379.9	5800.0	1.15	40.9
43	6.80	-163.3.	-170.1	0.124	1404.0	5901.3	1.17	41.3
44	6.90	-170.1	-177.0	0.124	1414.0	5943.2	1.16	41.0
45	7.10	-177.0	-184.1	0.125	1451.5	6100.8	0.99	40.9
46	7.40	-184.1	-191.5	0.127	1496.8	6291.5	0.82	40.5
47	7.30	-191.5	198.8	0.127	1495.9	6287.4	0.80	41.0
48	7.30	-198.8	-206.1	0.127	1495.7	6286.6	0.80	41.0
49	7.50	-206.1	-213.6	0.126	1530.6	6433.5	1.06	40.8
50	7.40	-213.6	-221.0	0.127	1515.8	6371.2	0.95	41.0
51	7.50	-221.0	-228.5	0.126	1527.5	6420.6	1.01	40.7
52	7.60	-228.5	-236.1	0.123	1551.6	6521.6	1.14	40.8
53	7.60	-236.1	-243.7	0.123	1551.1	6519.8	1.15	40.8
54	7.60	-243.7	-251.3	0.123	1550.9	6518.8	1.15	40.8
55	7.60	-251.3	-258.9	0.123	1550.5	6517.1	1.15	40.8
56	7.60	-258.9	-266.5	0.123	1554.1	6531.8	1.15	40.9
57	7.60	-266.5	-274.1	0.123	1555.7	6538.9	1.15	40.9
58	7.60	-274.1	-281.7	0.123	1555.3	6537.2	1.15	40.9

Table 3H.6-1b Layer Thicknesses and Strain Compatible In-Situ Soil Properties Used for the SSI Analysis (Upper Bound) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
59	8.70	-281.7	-290.4	0.126	1767.9	7431.0	0.90	40.6
60	9.50	-290.4	-299.9	0.128	1929.1	8108.5	0.74	40.6
61	9.50	-299.9	-309.4	0.124	1959.6	8236.6	0.99	41.3
62	9.50	-309.4	-318.9	0.128	1965.6	8261.6	0.76	41.4
63	9.50	-318.9	-328.4	0.128	1965.2	8259.8	0.74	41.4
64	9.50	-328.4	-337.9	0.128	1964.2	8255.8	0.75	41.4
65	9.50	-337.9	-347.4	0.126	1950.9	8200.0	0.90	41.1
66	8.90	-347.4	-356.3	0.126	1811.4	7613.7	0.95	40.7
67	8.50	-356.3	-364.8	0.128	1735.7	7295.4	0.88	40.8
68	8.10	-364.8	-372.9	0.126	1640.3	6894.5	0.99	40.5
69	7.30	-372.9	-380.2	0.123	1493.2	6276.0	1.19	40.9
70	7.30	-380.2	-387.5	0.123	1493.1	6275.6	1.19	40.9
71	7.30	-387.5	-394.8	0.123	1492.8	6274.7	1.19	40.9
72	7.30	-394.8	-402.1	0.124	1481.8	6228.2	1.15	40.6
73	7.20	-402.1	-409.3	0.127	1460.7	6139.2	1.08	40.6
74	7.30	-409.3	-416.6	0.123	1486.4	6247.5	1.20	40.7
75	7.30	-416.6	-423.9	0.123	1486.4	6247.5	1.20	40.7
76	7.30	-423.9	-431.2	0.123	1486.1	6246.3	1.20	40.7
77	7.30	-431.2	-438.5	0.123	1486.0	6245.8	1.20	40.7
78	7.30	-438.5	-445.8	0.123	1489.2	6259.4	1.20	40.8
79	7.40	-445.8	-453.2	0.123	1499.2	6301.4	1.20	40.5
80	7.40	-453.2	-460.6	0.123	1499.2	6301.4	1.20	40.5
81	8.50	-460.6	-469.1	0.123	1737.9	7304.7	0.95	40.9
82	8.80	-469.1	-477.9	0.123	1794.2	7541.5	0.90	40.8
83	8.70	-477.9	-486.6	0.123	1767.1	7427.4	1.08	40.6
84	8.70	-486.6	-495.3	0.123	1758.6	7391.7	1.13	40.4
85	8.70	-495.3	-504.0	0.123	1758.3	7390.5	1.13	40.4
86	8.70	-504.0	-512.7	0.123	1758.2	7390.0	1.14	40.4
87	8.60	-512.7	-521.3	0.123	1758.0	7389.2	1.14	40.9

Table 3H.6-1b Layer Thicknesses and Strain Compatible In-Situ Soil Properties Used for the SSI Analysis (Upper Bound) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
88	8.60	-521.3	-529.9	0.123	1757.8	7388.3	1.14	40.9
89	8.60	-529.9	-538.5	0.123	1757.7	7388.0	1.14	40.9
90	8.60	-538.5	-547.1	0.123	1757.5	7387.0	1.14	40.9
91	9.10	-547.1	-556.2	0.125	1855.5	7460.1	0.83	40.8
92	10.20	-556.2	-566.4	0.129	2068.1	7598.6	0.26	40.6
93	10.20	-566.4	-576.6	0.129	2068.1	7598.6	0.26	40.6
94	10.20	-576.6	-586.8	0.129	2068.1	7598.6	0.26	40.6
95	10.20	-586.8	-597.0	0.129	2068.1	7598.6	0.26	40.6
96	10.20	-597.0	-607.2	0.129	2068.1	7598.6	0.26	40.6
97	10.20	-607.2	-617.4	0.129	2068.1	7598.6	0.26	40.6
98	10.20	-617.4	-627.6	0.129	2068.1	7598.6	0.26	40.6
99	10.20	-627.6	-637.8	0.129	2068.1	7598.6	0.26	40.6
100	10.20	-637.8	-648.0	0.129	2073.9	7620.0	0.26	40.7
Halfspace		•		0.129	2073.9	7620.0	0.264	-

Table 3H.6-1c Layer Thicknesses and Strain Compatible In-Situ Soil Properties Used or the SSI Analysis (Lower Bound)

	Thickness	Top Elevation of Layer	Bottom Elevation of Layer	Unit Weight	S-Wave Vel.	P-Wave Vel.	Damping	Passing Freq. for S-Wave
Layer No.	(ft)	(ft)	(ft)	(kcf)	(ft/sec)	(ft/sec)	(%)	Vel. (Hz)
1	2.75	56.0	53.3	0.124	419.1	1128.4	1.67	30.5
2	3.25	53.3	50.0	0.124	451.5	1215.7	1.84	27.8
3	3.50	50.0	46.5	0.124	473.9	1368.8	1.98	27.1
4	3.50	46.5	43.0	0.124	470.6	2399.5	2.16	26.9
5	3.50	43.0	39.5	0.124	470.2	2397.5	2.27	26.9
6	3.50	39.5	36.0	0.124	469.1	2392.1	2.35	26.8
7	3.00	36.0	33.0	0.124	466.9	2380.6	2.43	31.1
8	3.00	33.0	30.0	0.122	535.6	2731.0	2.74	35.7
9	4.00	30.0	26.0	0.121	578.9	2952.0	2.94	28.9
10	2.00	26.0	24.0	0.121	581.3	2964.2	3.05	58.1
11	4.00	24.0	20.0	0.122	593.7	3027.2	2.62	29.7
12	4.00	20.0	16.0	0.122	605.5	3087.4	2.22	30.3
13	4.00	16.0	12.0	0.122	602.2	3070.6	2.31	30.1
14	4.00	12.0	8.0	0.122	598.1	3049.7	2.43	29.9
15	4.00	8.0	4.0	0.122	599.5	3056.8	2.51	30.0
16	5.00	4.0	-1.0	0.122	666.6	3398.8	2.37	26.7
17	5.00	-1.0	-6.0	0.122	720.3	3672.8	2.27	28.8
18	2.00	-6.0	-8.0	0.122	720.6	3674.4	2.28	72.1
19	5.50	-8.0	-13.5	0.122	719.7	3670.1	2.31	26.2
20	5.60	-13.5	-19.1	0.122	738.1	3763.4	2.27	26.4
21	6.10	-19.1	-25.2	0.123	826.7	4215.5	2.08	27.1
22	6.10	-25.2	-31.3	0.123	824.9	4206.3	2.14	27.0
23	6.10	-31.3	-37.4	0.123	823.2	4197.3	2.20	27.0
24	6.10	-37.4	-43.5	0.125	847.5	4321.2	2.11	27.8
25	6.30	-43.5	-49.8	0.125	849.8	4332.9	2.28	27.0
26	6.40	-49.8	-56.2	0.125	861.8	4394.5	2.15	26.9
27	6.50	-56.2	-62.7	0.125	873.6	4454.6	2.03	26.9
28	6.60	-62.7	-69.3	0.125	880.2	4488.0	1.75	26.7
29	6.75	-69.3	-76.1	0.125	914.4	4662.7	2.31	27.1

Table 3H.6-1c Layer Thicknesses and Strain Compatible In-Situ Soil Properties Used or the SSI Analysis (Lower Bound) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
30	6.75	-76.1	-82.8	0.125	913.7	4659.3	2.33	27.1
31	6.75	-82.8	-89.6	0.125	911.5	4647.6	2.34	27.0
32	6.75	-89.6	-96.3	0.125	910.9	4644.8	2.36	27.0
33	6.75	-96.3	-103.1	0.125	910.2	4641.2	2.37	27.0
34	6.50	-103.1	-109.6	0.125	883.2	4503.5	2.23	27.2
35	6.50	-109.6	-116.1	0.125	881.1	4492.6	2.26	27.1
36	6.75	-116.1	-122.8	0.125	908.0	4629.8	2.35	26.9
37	6.75	-122.8	-129.6	0.125	919.4	4688.2	2.39	27.2
38	6.75	-129.6	-136.3	0.125	919.3	4687.6	2.40	27.2
39	6.75	-136.3	-143.1	0.125	922.5	4703.8	2.41	27.3
40	6.75	-143.1	-149.8	0.125	922.7	4705.0	2.42	27.3
41	6.75	-149.8	-156.6	0.125	921.4	4698.5	2.43	27.3
42	6.75	-156.6	-163.3	0.125	919.3	4687.6	2.43	27.2
43	6.80	-163.3	-170.1	0.124	921.5	4698.6	2.41	27.1
44	6.90	-170.1	-177.0	0.124	928.7	4735.0	2.41	26.9
45	7.10	-177.0	-184.1	0.125	954.6	4855.4	2.36	26.9
46	7.40	-184.1	-191.5	0.127	985.8	5000.0	2.17	26.6
47	7.30	-191.5	-198.8	0.127	984.9	5000.0	2.32	27.0
48	7.30	-198.8	-206.1	0.127	984.7	5000.0	2.31	27.0
49	7.50	-206.1	-213.6	0.126	1020.4	5000.0	2.27	27.2
50	7.40	-213.6	-221.0	0.127	1010.5	5000.0	2.12	27.3
51	7.50	-221.0	-228.5	0.126	1018.3	5000.0	2.20	27.2
52	7.60	-228.5	-236.1	0.123	1034.4	5000.0	2.36	27.2
53	7.60	-236.1	-243.7	0.123	1034.1	5000.0	2.37	27.2
54	7.60	-243.7	-251.3	0.123	1033.9	5000.0	2.37	27.2
55	7.60	-251.3	-258.9	0.123	1033.7	5000.0	2.38	27.2
56	7.60	-258.9	-266.5	0.123	1036.0	5000.0	2.39	27.3
57	7.60	-266.5	-274.1	0.123	1037.2	5000.0	2.40	27.3
58	7.60	-274.1	-281.7	0.123	1036.9	5000.0	2.40	27.3

Table 3H.6-1c Layer Thicknesses and Strain Compatible In-Situ Soil Properties Used or the SSI Analysis (Lower Bound) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
59	8.70	-281.7	-290.4	0.126	1160.9	5160.6	2.05	26.7
60	9.50	-290.4	-299.9	0.128	1252.4	5264.0	1.84	26.4
61	9.50	-299.9	-309.4	0.124	1290.5	5424.1	2.08	27.2
62	9.50	-309.4	-318.9	0.128	1309.8	5504.9	1.82	27.6
63	9.50	-318.9	-328.4	0.128	1310.1	5506.5	1.80	27.6
64	9.50	-328.4	-337.9	0.128	1309.5	5503.9	1.82	27.6
65	9.50	-337.9	-347.4	0.126	1300.6	5466.7	2.00	27.4
66	8.90	-347.4	-356.3	0.126	1206.9	5163.3	2.12	27.1
67	8.50	-356.3	-364.8	0.128	1156.1	5000.0	2.07	27.2
68	8.10	-364.8	-372.9	0.126	1092.9	5000.0	2.23	27.0
69	7.30	-372.9	-380.2	0.123	995.4	5000.0	2.53	27.3
70	7.30	-380.2	-387.5	0.123	995.3	5000.0	2.53	27.3
71	7.30	-387.5	-394.8	0.123	995.2	5000.0	2.53	27.3
72	7.30	-394.8	-402.1	0.124	987.8	4984.4	2.56	27.1
73	7.20	-402.1	-409.3	0.127	973.7	4955.8	2.61	27.0
74	7.30	-409.3	-416.6	0.123	990.9	5000.0	2.54	27.1
75	7.30	-416.6	-423.9	0.123	990.9	5000.0	2.54	27.1
76	7.30	-423.9	-431.2	0.123	990.7	5000.0	2.54	27.1
77	7.30	-431.2	-438.5	0.123	990.6	5000.0	2.54	27.1
78	7.30	-438.5	-445.8	0.123	992.8	5000.0	2.54	27.2
79	7.40	-445.8	-453.2	0.123	999.5	5000.0	2.54	27.0
80	7.40	-453.2	-460.6	0.123	999.5	5000.0	2.54	27.0
81	8.50	-460.6	-469.1	0.123	1158.6	5023.1	2.17	27.3
82	8.80	-469.1	-477.9	0.123	1196.2	5027.7	2.10	27.2
83	8.70	-477.9	-486.6	0.123	1178.1	5006.7	2.28	27.1
84	8.70	-486.6	-495.3	0.123	1172.4	5000.0	2.34	27.0
85	8.70	-495.3	-504.0	0123	1172.2	5000.0	2.34	26.9
86	8.70	-504.0	-512.7	0.123	1172.1	5000.0	2.34	26.9
87	8.60	-512.7	-521.3	0.123	1172.0	5000.0	2.34	27.3

Table 3H.6-1c Layer Thicknesses and Strain Compatible In-Situ Soil Properties Used or the SSI Analysis (Lower Bound) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
88	8.60	-521.3	-529.9	0.123	1171.9	5000.0	2.35	27.3
89	8.60	-529.9	-538.5	0.123	1171.8	5000.0	2.35	27.3
90	8.60	-538.5	-547.1	0.123	1171.7	5000.0	2.35	27.2
91	9.10	-547.1	-556.2	0.125	1237.0	5022.9	1.85	27.2
92	10.20	-556.2	-566.4	0.129	1378.7	5065.8	0.91	27.0
93	10.20	-566.4	-576.6	0.129	1378.7	5065.8	0.91	27.0
94	10.20	-576.6	-586.8	0.129	1378.7	5065.8	0.91	27.0
95	10.20	-586.8	-597.0	0.129	1378.7	5065.8	0.91	27.0
96	10.20	-597.0	-607.2	0.129	1378.7	5065.8	0.91	27.0
97	10.20	-607.2	-617.4	0.129	1378.7	5065.8	0.91	27.0
98	10.20	-617.4	-627.6	0.129	1378.7	5065.8	0.91	27.0
99	10.20	-627.6	-637.8	0.129	1378.7	5065.8	0.91	27.0
100	10.20	-637.8	-648.0	0.129	1382.6	5080.1	0.91	27.1
Halfspace				0.129	1382.6	5080.1	0.913	-

Table 3H.6-2 Strain-Compatible Properties of Backfill Material

	Low	er Boun	d Soil		Mean So	il	Upp	er Bound	d Soil
Soil Depth (ft)	Vs (ft/sec)	Vp (ft/sec)	Dampin g (%)	Vs (ft/sec)	Vp (ft/sec)	Dampin g (%)	Vs (ft/sec)	Vp (ft/sec)	Damping (%)
0 to 8	449	1208	3	550	1480	2	673	1813	1
8 to 13	553	2323	3	677	2845	2	829	3485	1
13 to 18	586	2462	3	717	3015	2	879	3693	1
18 to 23	614	2580	3	752	3160	2	921	3870	1
23 to 28	639	2684	3	782	3288	2	958	4027	1
28 to 33	661	2778	3	809	3402	2	991	4166	1
33 to 38	681	2862	3	834	3506	2	1021	4294	1
38 to 43	699	2940	3	857	3601	2	1049	4410	1
43 to 48	717	3012	3	878	3689	2	1075	4518	1
48 to 53	733	3079	3	897	3771	2	1099	4619	1
53 to 58	748	3142	3	916	3849	2	1121	4714	1
58 to 63	762	3202	3	933	3922	2	1143	4803	1
63 to 68	775	3258	3	949	3991	2	1163	4888	1
68 to 73	788	3312	3	965	4056	2	1182	4968	1
73 to 78.25	800	3364	3	980	4120	2	1201	5046	1
78.25 to 83.25	812	3414	3	995	4182	2	1218	5121	1
83.25 to 88.25	823	3461	3	1009	4239	2	1235	5192	1
88.25 to 94.25	835	3510	3	1023	4299	2	1253	5266	1

Table 3H.6-2a Layer Thicknesses and Strain-Compatible Backfill Soil Properties Used for the SSI Analysis (Mean)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
1	2.75	56.0	53.3	0.120	550.0	1480.0	2.00	40.0
2	3.25	53.3	50.0	0.120	550.0	1480.0	2.00	33.8
3	3.50	50.0	46.5	0.120	598.1	1863.1	2.00	34.2
4	3.50	46.5	43.0	0.120	677.0	2845.0	2.00	38.7
5	3.50	43.0	39.5	0.120	717.0	3015.0	2.00	41.0
6	3.50	39.5	36.0	0.120	736.6	3096.2	2.00	42.1
7	3.00	36.0	33.0	0.120	752.0	3160.0	2.00	50.1
8	3.00	33.0	30.0	0.120	782.0	3288.0	2.00	52.1
9	4.00	30.0	26.0	0.120	795.3	3344.0	2.00	39.8
10	2.00	26.0	24.0	0.120	809.0	3402.0	2.00	80.9
11	4.00	24.0	20.0	0.120	827.6	3479.4	2.00	41.4
12	4.00	20.0	16.0	0.120	845.3	3552.9	2.00	42.3
13	4.00	16.0	12.0	0.120	862.2	3622.6	2.00	43.1
14	4.00	12.0	8.0	0.120	878.0	3689.0	2.00	43.9
15	4.00	8.0	4.0	0.120	897.0	3771.0	2.00	44.9
16	5.00	4.0	-1.0	0.120	912.1	3833.1	2.00	36.5
17	5.00	-1.0	-6.0	0.120	929.5	3907.2	2.00	37.2
18	2.00	-6.0	-8.0	0.120	940.9	3956.2	2.00	94.1

Table 3H.6-2b Layer Thicknesses and Strain-Compatible Backfill Soil Properties Used for the SSI Analysis (Upper Bound)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
1	2.75	56.0	53.3	0.120	673.0	1813.0	1.00	48.9
2	3.25	53.3	50.0	0.120	673.0	1813.0	1.00	41.1
3	3.50	50.0	46.5	0.120	732.0	2282.3	1.00	41.8
4	3.50	46.5	43.0	0.120	829.0	3485.0	1.00	47.4
5	3.50	43.0	39.5	0.120	879.0	3693.0	1.00	50.2
6	3.50	39.5	36.0	0.120	902.5	3792.1	1.00	51.6
7	3.00	36.0	33.0	0.120	921.0	3870.0	1.00	61.4
8	3.00	33.0	30.0	0.120	958.0	4027.0	1.00	63.9
9	4.00	30.0	26.0	0.120	974.2	4095.3	1.00	48.7
10	2.00	26.0	24.0	0.120	991.0	4166.0	1.00	99.1
11	4.00	24.0	20.0	0.120	1013.3	4261.3	1.00	50.7
12	4.00	20.0	16.0	0.120	1034.8	4351.2	1.00	51.7
13	4.00	16.0	12.0	0.120	1055.4	4436.5	1.00	52.8
14	4.00	12.0	8.0	0.120	1075.0	4518.0	1.00	53.8
15	4.00	8.0	4.0	0.120	1099.0	4619.0	1.00	55.0
16	5.00	4.0	-1.0	0.120	1116.5	4694.7	1.00	44.7
17	5.00	-1.0	-6.0	0.120	1138.5	4784.9	1.00	45.5
18	2.00	-6.0	-8.0	0.120	1152.9	4845.1	1.00	115.3

Table 3H.6-2c Layer Thicknesses and Strain-Compatible Backfill Soil Properties Used for the SSI Analysis (Lower Bound)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
1	2.75	56.0	53.3	0.120	449.0	1208.0	3.00	32.7
2	3.25	53.3	50.0	0.120	449.0	1208.0	3.00	27.6
3	3.50	50.0	46.5	0.120	488.4	1520.8	3.00	27.9
4	3.50	46.5	43.0	0.120	553.0	2323.0	3.00	31.6
5	3.50	43.0	39.5	0.120	586.0	2462.0	3.00	33.5
6	3.50	39.5	36.0	0.120	601.7	2528.1	3.00	34.4
7	3.00	36.0	33.0	0.120	614.0	2580.0	3.00	40.9
8	3.00	33.0	30.0	0.120	639.0	2684.0	3.00	42.6
9	4.00	30.0	26.0	0.120	649.8	2730.2	3.00	32.5
10	2.00	26.0	24.0	0.120	661.0	2778.0	3.00	66.1
11	4.00	24.0	20.0	0.120	675.9	2840.5	3.00	33.8
12	4.00	20.0	16.0	0.120	689.9	2900.5	3.00	34.5
13	4.00	16.0	12.0	0.120	703.4	2957.7	3.00	35.2
14	4.00	12.0	8.0	0.120	717.0	3012.0	3.00	35.9
15	4.00	8.0	4.0	0.120	733.0	3079.0	3.00	36.7
16	5.00	4.0	-1.0	0.120	745.0	3129.2	3.00	29.8
17	5.00	-1.0	-6.0	0.120	759.2	3189.8	3.00	30.4
18	2.00	-6.0	-8.0	0.120	768.4	3229.8	3.00	76.8

Table 3H.6-2d Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (E-W Time History)

		Spectral Acceleration				Spectral Acceleration	
Frequency (Hz)	Target Spectral Acceleration	from Time History – (E-W)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	from Time History – (E-W)	Percentage Less than Target
0.1	0.0106	0.0119	-	0.224	0.0757	0.0777	-
0.102	0.0112	0.0123	-	0.229	0.08	0.0845	-
0.105	0.0119	0.0129	-	0.234	0.0846	0.0919	-
0.107	0.0126	0.0136	-	0.24	0.0895	0.0996	-
0.11	0.0133	0.0147	-	0.246	0.0947	0.107	-
0.112	0.014	0.016	-	0.251	0.0994	0.113	-
0.115	0.0148	0.0175	-	0.257	0.1014	0.1171	-
0.118	0.0157	0.0193	-	0.263	0.1034	0.1195	-
0.12	0.0166	0.0211	-	0.269	0.1055	0.1215	-
0.123	0.0176	0.0231	-	0.275	0.1076	0.1235	-
0.126	0.0186	0.025	-	0.282	0.1098	0.1255	-
0.129	0.0196	0.0268	-	0.288	0.112	0.1281	-
0.132	0.0208	0.0283	-	0.295	0.1142	0.1314	-
0.135	0.022	0.0295	-	0.302	0.1165	0.1344	-
0.138	0.0232	0.0302	-	0.309	0.1189	0.1349	-
0.141	0.0246	0.0305	-	0.316	0.1212	0.1318	-
0.145	0.026	0.0305	-	0.324	0.1237	0.1219	1.5%
0.148	0.0275	0.0303	-	0.331	0.1261	0.1329	-
0.151	0.0291	0.0302	-	0.339	0.1287	0.1436	-
0.155	0.0308	0.0305	1.0%	0.347	0.1313	0.1513	-
0.159	0.0326	0.0313	4.2%	0.355	0.1339	0.1573	-
0.162	0.0345	0.033	4.5%	0.363	0.1366	0.1606	-
0.166	0.0365	0.0354	3.1%	0.371	0.1393	0.1622	-
0.17	0.0385	0.0385	-	0.38	0.1421	0.1583	-
0.174	0.0408	0.042	-	0.389	0.145	0.1508	-
0.178	0.0431	0.0453	-	0.398	0.1479	0.1641	-
0.182	0.0457	0.0483	-	0.407	0.1509	0.1779	-
0.186	0.0483	0.0511	-	0.417	0.1539	0.1824	-
				•			

Table 3H.6-2d Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (E-W Time History) (Continued)

Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target
0.191	0.051	0.055	-	0.427	0.157	0.1842	-
0.195	0.054	0.059	-	0.436	0.1601	0.1897	-
0.2	0.0571	0.0622	_	0.447	0.1633	0.1956	-
0.204	0.0604	0.065	_	0.457	0.1666	0.1925	-
0.209	0.0639	0.0674	-	0.468	0.1699	0.1756	-
0.214	0.0676	0.07	-	0.479	0.1733	0.1889	-
0.219	0.0715	0.073	_	0.49	0.1768	0.2054	-
0.5	0.18	0.2133	_	1.096	0.268	0.3131	-
0.501	0.1802	0.2133	_	1.122	0.2712	0.306	-
0.513	0.1823	0.2061	-	1.148	0.2743	0.304	-
0.525	0.1845	0.194	_	1.175	0.2776	0.3014	-
0.537	0.1866	0.2049	-	1.202	0.2808	0.2998	-
0.55	0.1888	0.2104	-	1.23	0.2841	0.3034	-
0.562	0.191	0.2173	_	1.259	0.2874	0.3143	-
0.575	0.1933	0.2228	_	1.288	0.2908	0.3137	-
0.589	0.1956	0.2271	_	1.318	0.2942	0.3295	-
0.603	0.1979	0.2313	-	1.349	0.2977	0.3442	-
0.617	0.2002	0.2354	_	1.38	0.3012	0.3366	-
0.631	0.2025	0.2385	_	1.412	0.3047	0.3276	-
0.646	0.2049	0.2402	_	1.445	0.3083	0.3508	-
0.661	0.2073	0.2402	-	1.479	0.3119	0.3524	-
0.676	0.2097	0.2387	-	1.514	0.3156	0.3555	-
0.692	0.2122	0.2364	_	1.549	0.3193	0.3626	-
0.708	0.2147	0.2353	-	1.585	0.323	0.3688	-
0.724	0.2172	0.237	-	1.622	0.3268	0.3755	-
0.741	0.2198	0.2393	-	1.659	0.3307	0.377	-
0.759	0.2224	0.2429	-	1.698	0.3345	0.3599	-
0.776	0.225	0.2527	-	1.738	0.3385	0.3894	-
0.794	0.2276	0.2595	-	1.778	0.3425	0.3968	-

Table 3H.6-2d Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (E-W Time History) (Continued)

Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target
0.813	0.2303	0.2569	-	1.82	0.3465	0.3994	-
0.832	0.233	0.2622	-	1.862	0.3505	0.4027	-
0.851	0.2357	0.2669	-	1.905	0.3547	0.3804	-
0.871	0.2385	0.2702	-	1.95	0.3588	0.3969	-
0.891	0.2413	0.2711	-	1.995	0.363	0.4157	-
0.912	0.2441	0.2703	-	2.042	0.3673	0.42	-
0.933	0.247	0.2697	-	2.089	0.3716	0.4167	-
0.955	0.2499	0.2664	-	2.138	0.376	0.4158	-
0.977	0.2528	0.2605	-	2.188	0.3804	0.4123	-
1	0.2558	0.2614	-	2.239	0.3848	0.4421	-
1.023	0.2588	0.279	-	2.291	0.3894	0.442	-
1.047	0.2618	0.2846	-	2.344	0.3939	0.4312	-
1.071	0.2649	0.3019	-	2.399	0.3986	0.4344	-
2.455	0.4032	0.4561	-	5.249	0.3661	0.4155	-
2.5	0.407	0.458	-	5.371	0.3649	0.3992	-
2.512	0.4067	0.4548	-	5.495	0.3637	0.3969	-
2.571	0.4054	0.4526	-	5.624	0.3625	0.4013	-
2.63	0.4041	0.4573	-	5.754	0.3613	0.4031	-
2.692	0.4027	0.4499	-	5.889	0.3602	0.3971	-
2.754	0.4014	0.4415	-	6.024	0.359	0.3893	-
2.818	0.4001	0.437	-	6.165	0.3578	0.3906	-
2.884	0.3988	0.4532	-	6.309	0.3566	0.3964	-
2.952	0.3975	0.4547	-	6.456	0.3555	0.4052	-
3.02	0.3962	0.449	-	6.605	0.3543	0.3992	-
3.09	0.3949	0.4376	-	6.761	0.3531	0.3775	-
3.163	0.3936	0.4301	-	6.92	0.352	0.3885	-
3.236	0.3923	0.4464	-	7.077	0.3508	0.4094	-
3.311	0.391	0.4537	-	7.246	0.3497	0.4119	-
3.389	0.3897	0.4431	-	7.413	0.349	0.4112	-

Table 3H.6-2d Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (E-W Time History) (Continued)

Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target
3.467	0.3884	0.4255	-	7.587	0.347	0.4092	-
3.549	0.3872	0.434	-	7.764	0.346	0.3939	-
3.631	0.3859	0.4236	-	7.943	0.345	0.3753	-
3.715	0.3846	0.4266	-	8.13	0.344	0.3744	-
3.802	0.3834	0.4346	-	8.319	0.343	0.3821	-
3.891	0.3821	0.4275	-	8.511	0.342	0.3825	-
3.981	0.3809	0.416	-	8.711	0.341	0.3792	-
4.073	0.3796	0.4262	-	8.913	0.339	0.3773	-
4.168	0.3784	0.426	-	9.124	0.336	0.3774	-
4.266	0.3771	0.4199	-	9.328	0.33	0.3785	-
4.365	0.3759	0.4244	-	9.551	0.324	0.3648	-
4.466	0.3746	0.4249	-	9.775	0.319	0.3598	-
4.57	0.3734	0.421	-	10	0.314	0.3565	-
4.677	0.3722	0.4029	-	10.235	0.308	0.3522	-
4.787	0.371	0.4141	-	10.471	0.303	0.3331	-
4.897	0.3698	0.4194	-	10.718	0.298	0.3288	-
5	0.3687	0.4188	-	10.965	0.293	0.3356	-
5.013	0.3685	0.4181	-	11.223	0.288	0.324	-
5.128	0.3673	0.4196	-	11.481	0.283	0.3146	-
11.751	0.278	0.3073	-	25.707	0.1563	0.1683	-
12.019	0.274	0.2985	-	26.316	0.1537	0.1658	-
12.3	0.269	0.2821	-	26.882	0.1511	0.1622	-
12.594	0.265	0.3001	-	27.548	0.1485	0.1599	-
12.887	0.26	0.3014	-	28.169	0.146	0.1643	-
13.175	0.256	0.2846	-	28.818	0.1436	0.1656	-
13.495	0.252	0.2863	-	29.499	0.1412	0.1628	-
13.812	0.247	0.2711	-	30.211	0.1388	0.1631	-
14.124	0.243	0.2659	-	30.864	0.1365	0.1616	-
14.451	0.239	0.2621	-	31.646	0.1342	0.1585	-

Table 3H.6-2d Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (E-W Time History) (Continued)

Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target
14.793	0.235	0.2534	-	32.362	0.1319	0.1542	-
15.129	0.231	0.2577	-	33.113	0.13	0.1496	-
15.48	0.227	0.253	-	33.898	0.13	0.1454	-
15.848	0.223	0.251	-	34.722	0.13	0.1426	-
16.207	0.22	0.2464	-	35.461	0.13	0.1398	-
16.584	0.216	0.2412	-	36.364	0.13	0.1394	-
16.978	0.212	0.2305	-	37.175	0.13	0.1434	-
17.391	0.209	0.2316	-	38.023	0.13	0.1438	-
17.794	0.205	0.2273	-	38.911	0.13	0.1444	-
18.182	0.202	0.2253	-	39.841	0.13	0.143	-
18.622	0.198	0.2368	-	40.816	0.13	0.1419	-
19.048	0.195	0.2353	-	41.667	0.13	0.1428	-
19.493	0.1917	0.2275	-	42.735	0.13	0.1436	-
19.96	0.1884	0.2073	_	43.668	0.13	0.1449	-
20.408	0.1853	0.1903	-	44.643	0.13	0.1399	-
20.877	0.1821	0.1951	-	45.662	0.13	0.1425	-
21.368	0.1791	0.1997	-	46.729	0.13	0.1447	-
21.882	0.176	0.2008	-	47.847	0.13	0.1461	-
22.371	0.1731	0.1974	-	49.02	0.13	0.146	-
22.883	0.1702	0.2031	-	50.251	0.13	0.1454	-
23.419	0.1673	0.1967	-				-
23.981	0.1645	0.1908	-				-
24.57	0.1617	0.1788	-				-
25	0.1595	0.1709	-				-
25.126	0.159	0.1705	-				-

Table 3H.6-2e Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (N-S Time History)

Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target
0.1	0.0106	0.0111	-	0.224	0.0757	0.0801	-
0.102	0.0112	0.0121	-	0.229	0.08	0.08	-
0.105	0.0119	0.0133	-	0.234	0.0846	0.0864	-
0.107	0.0126	0.0145	-	0.24	0.0895	0.0916	-
0.11	0.0133	0.0158	-	0.246	0.0947	0.0933	1.5%
0.112	0.014	0.0173	-	0.251	0.0994	0.0981	1.3%
0.115	0.0148	0.0187	-	0.257	0.1014	0.1062	-
0.118	0.0157	0.0203	-	0.263	0.1034	0.1128	-
0.12	0.0166	0.0217	-	0.269	0.1055	0.1168	-
0.123	0.0176	0.0232	-	0.275	0.1076	0.1182	-
0.126	0.0186	0.025	-	0.282	0.1098	0.118	-
0.129	0.0196	0.0277	-	0.288	0.112	0.1189	-
0.132	0.0208	0.0303	-	0.295	0.1142	0.1235	-
0.135	0.022	0.0326	-	0.302	0.1165	0.1265	-
0.138	0.0232	0.0345	-	0.309	0.1189	0.1279	-
0.141	0.0246	0.036	-	0.316	0.1212	0.1294	-
0.145	0.026	0.037	-	0.324	0.1237	0.1342	-
0.148	0.0275	0.0374	-	0.331	0.1261	0.1387	-
0.151	0.0291	0.0374	-	0.339	0.1287	0.1429	-
0.155	0.0308	0.0375	-	0.347	0.1313	0.147	-
0.159	0.0326	0.0373	-	0.355	0.1339	0.1507	-
0.162	0.0345	0.0371	-	0.363	0.1366	0.154	-
0.166	0.0365	0.0369	-	0.371	0.1393	0.1569	-
0.17	0.0385	0.0373	3.2%	0.38	0.1421	0.1592	-
0.174	0.0408	0.0394	3.6%	0.389	0.145	0.1609	-
0.178	0.0431	0.0421	2.4%	0.398	0.1479	0.1621	-
0.182	0.0457	0.0457	-	0.407	0.1509	0.1628	-
0.186	0.0483	0.0502	-	0.417	0.1539	0.163	-

Table 3H.6-2e Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (N-S Time History) (Continued)

Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target
0.191	0.051	0.0557	-	0.427	0.157	0.1748	-
0.195	0.054	0.0617	-	0.436	0.1601	0.1886	-
0.2	0.0571	0.0668	-	0.447	0.1633	0.1903	-
0.204	0.0604	0.0702	-	0.457	0.1666	0.1804	-
0.209	0.0639	0.0708	-	0.468	0.1699	0.1804	-
0.214	0.0676	0.073	-	0.479	0.1733	0.1773	-
0.219	0.0715	0.0782	-	0.49	0.1768	0.1868	-
0.5	0.18	0.1939	-	1.096	0.268	0.2904	-
0.501	0.1802	0.1948	-	1.122	0.2712	0.2979	-
0.513	0.1823	0.2027	-	1.148	0.2743	0.3035	-
0.525	0.1845	0.2028	-	1.175	0.2776	0.3031	-
0.537	0.1866	0.2029	-	1.202	0.2808	0.3058	-
0.55	0.1888	0.2112	-	1.23	0.2841	0.313	-
0.562	0.191	0.1992	-	1.259	0.2874	0.3161	-
0.575	0.1933	0.2094	1	1.288	0.2908	0.3043	-
0.589	0.1956	0.218	-	1.318	0.2942	0.3225	-
0.603	0.1979	0.2219	-	1.349	0.2977	0.3322	-
0.617	0.2002	0.2257	1	1.38	0.3012	0.3329	-
0.631	0.2025	0.2263	-	1.412	0.3047	0.3266	-
0.646	0.2049	0.2249	-	1.445	0.3083	0.3396	-
0.661	0.2073	0.2251	-	1.479	0.3119	0.3465	-
0.676	0.2097	0.228	-	1.514	0.3156	0.3497	-
0.692	0.2122	0.2327	-	1.549	0.3193	0.3526	-
0.708	0.2147	0.2359	-	1.585	0.323	0.3577	-
0.724	0.2172	0.2348	-	1.622	0.3268	0.3644	-
0.741	0.2198	0.247	-	1.659	0.3307	0.3702	-
0.759	0.2224	0.2383	-	1.698	0.3345	0.3723	-
0.776	0.225	0.2463	-	1.738	0.3385	0.3694	-
0.794	0.2276	0.2468	-	1.778	0.3425	0.365	-

Table 3H.6-2e Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (N-S Time History) (Continued)

Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target
0.813	0.2303	0.2496	-	1.82	0.3465	0.3724	-
0.832	0.233	0.2574	-	1.862	0.3505	0.4028	-
0.851	0.2357	0.2647	-	1.905	0.3547	0.4082	-
0.871	0.2385	0.2705	-	1.95	0.3588	0.4003	-
0.891	0.2413	0.2718	-	1.995	0.363	0.3918	-
0.912	0.2441	0.2646	-	2.042	0.3673	0.393	-
0.933	0.247	0.2701	-	2.089	0.3716	0.4265	-
0.955	0.2499	0.2714	-	2.138	0.376	0.422	-
0.977	0.2528	0.2732	-	2.188	0.3804	0.4103	-
1	0.2558	0.279	-	2.239	0.3848	0.4202	-
1.023	0.2588	0.2851	-	2.291	0.3894	0.4271	-
1.047	0.2618	0.2907	-	2.344	0.3939	0.4331	-
1.071	0.2649	0.294	-	2.399	0.3986	0.4345	-
2.455	0.4032	0.4309	-	5.249	0.3661	0.4074	-
2.5	0.407	0.4462	-	5.371	0.3649	0.4083	-
2.512	0.4067	0.4494	-	5.495	0.3637	0.4079	-
2.571	0.4054	0.4537	-	5.624	0.3625	0.4027	-
2.63	0.4041	0.4421	-	5.754	0.3613	0.3928	-
2.692	0.4027	0.4258	-	5.889	0.3602	0.3905	-
2.754	0.4014	0.4424	-	6.024	0.359	0.3932	-
2.818	0.4001	0.4351	-	6.165	0.3578	0.3929	-
2.884	0.3988	0.4337	-	6.309	0.3566	0.3938	-
2.952	0.3975	0.445	-	6.456	0.3555	0.3905	-
3.02	0.3962	0.4484	-	6.605	0.3543	0.3839	-
3.09	0.3949	0.4447	-	6.761	0.3531	0.3916	-
3.163	0.3936	0.4247	-	6.92	0.352	0.3922	-
3.236	0.3923	0.4246	-	7.077	0.3508	0.3964	-
3.311	0.391	0.4452	-	7.246	0.3497	0.3951	-
3.389	0.3897	0.4372	-	7.413	0.349	0.3768	-

Table 3H.6-2e Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (N-S Time History) (Continued)

Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target
3.467	0.3884	0.4171	-	7.587	0.347	0.375	-
3.549	0.3872	0.4115	-	7.764	0.346	0.38	-
3.631	0.3859	0.428	-	7.943	0.345	0.3788	-
3.715	0.3846	0.425	-	8.13	0.344	0.3709	-
3.802	0.3834	0.4256	-	8.319	0.343	0.386	-
3.891	0.3821	0.4153	-	8.511	0.342	0.3889	-
3.981	0.3809	0.4184	-	8.711	0.341	0.3783	-
4.073	0.3796	0.4156	-	8.913	0.339	0.3706	-
4.168	0.3784	0.4101	-	9.124	0.336	0.3642	-
4.266	0.3771	0.4034	-	9.328	0.33	0.3599	-
4.365	0.3759	0.4171	-	9.551	0.324	0.359	-
4.466	0.3746	0.4159	-	9.775	0.319	0.3422	-
4.57	0.3734	0.4077	-	10	0.314	0.344	-
4.677	0.3722	0.4088	-	10.235	0.308	0.3423	-
4.787	0.371	0.4147	-	10.471	0.303	0.3321	-
4.897	0.3698	0.4036	-	10.718	0.298	0.3252	-
5	0.3687	0.3998	-	10.965	0.293	0.3213	-
5.013	0.3685	0.4018	-	11.223	0.288	0.3137	-
5.128	0.3673	0.4093	-	11.481	0.283	0.3232	-
11.751	0.278	0.3143	-	25.707	0.1563	0.1846	-
12.019	0.274	0.3016	-	26.316	0.1537	0.1887	-
12.3	0.269	0.2917	-	26.882	0.1511	0.1815	-
12.594	0.265	0.2816	-	27.548	0.1485	0.1703	-
12.887	0.26	0.2812	-	28.169	0.146	0.1643	-
13.175	0.256	0.2844	-	28.818	0.1436	0.1599	-
13.495	0.252	0.2854	-	29.499	0.1412	0.1563	-
13.812	0.247	0.2787	-	30.211	0.1388	0.1556	-
14.124	0.243	0.2722	-	30.864	0.1365	0.1554	-
14.451	0.239	0.2643	-	31.646	0.1342	0.1549	-

Table 3H.6-2e Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (N-S Time History) (Continued)

Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target
14.793	0.235	0.2558	-	32.362	0.1319	0.1553	-
15.129	0.231	0.2519	-	33.113	0.13	0.1548	-
15.48	0.227	0.2476	-	33.898	0.13	0.1538	-
15.848	0.223	0.2449	-	34.722	0.13	0.1529	-
16.207	0.22	0.2422	-	35.461	0.13	0.1517	-
16.584	0.216	0.2401	-	36.364	0.13	0.1506	-
16.978	0.212	0.2359	-	37.175	0.13	0.1501	-
17.391	0.209	0.2288	-	38.023	0.13	0.1502	-
17.794	0.205	0.2221	-	38.911	0.13	0.1505	-
18.182	0.202	0.2195	-	39.841	0.13	0.1502	-
18.622	0.198	0.2181	-	40.816	0.13	0.1502	-
19.048	0.195	0.2124	-	41.667	0.13	0.1499	-
19.493	0.1917	0.2048	-	42.735	0.13	0.1493	-
19.96	0.1884	0.1989	-	43.668	0.13	0.1491	-
20.408	0.1853	0.2104	-	44.643	0.13	0.1489	-
20.877	0.1821	0.2076	-	45.662	0.13	0.1485	-
21.368	0.1791	0.2035	-	46.729	0.13	0.1483	-
21.882	0.176	0.2014	-	47.847	0.13	0.1482	-
22.371	0.1731	0.1952	-	49.02	0.13	0.1482	-
22.883	0.1702	0.1882	-	50.251	0.13	0.148	-
23.419	0.1673	0.184	-				-
23.981	0.1645	0.1778	-				-
24.57	0.1617	0.1704	-				-
25	0.1595	0.1742	-				-
25.126	0.159	0.1767	-				-

Table 3H.6-2f Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (Vertical Time History)

Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target
0.1	0.0071	0.0101	-	0.224	0.0506	0.0534	-
0.102	0.0075	0.0108	-	0.229	0.0535	0.0552	-
0.105	0.0079	0.0115	1	0.234	0.0566	0.0582	-
0.107	0.0084	0.0123	-	0.24	0.0599	0.0617	-
0.11	0.0088	0.0129	-	0.246	0.0633	0.0652	-
0.112	0.0094	0.0135	-	0.251	0.0665	0.0683	-
0.115	0.0099	0.0141	-	0.257	0.068	0.071	-
0.118	0.0105	0.0146	-	0.263	0.0695	0.073	-
0.12	0.0111	0.0149	-	0.269	0.0711	0.0778	-
0.123	0.0117	0.0152	-	0.275	0.0727	0.0822	-
0.126	0.0124	0.0154	-	0.282	0.0744	0.0847	-
0.129	0.0131	0.016	-	0.288	0.0761	0.0845	-
0.132	0.0139	0.0166	-	0.295	0.0778	0.0812	-
0.135	0.0147	0.0173	-	0.302	0.0796	0.0854	-
0.138	0.0155	0.018	-	0.309	0.0814	0.0895	-
0.141	0.0164	0.0184	-	0.316	0.0832	0.0921	-
0.145	0.0174	0.0186	-	0.324	0.0851	0.0932	-
0.148	0.0184	0.0186	-	0.331	0.087	0.0935	-
0.151	0.0194	0.0195	-	0.339	0.089	0.0939	-
0.155	0.0206	0.0206	-	0.347	0.091	0.0959	-
0.159	0.0217	0.0222	-	0.355	0.0931	0.099	-
0.162	0.023	0.0236	-	0.363	0.0952	0.103	-
0.166	0.0243	0.0249	-	0.371	0.0974	0.1069	-
0.17	0.0257	0.026	-	0.38	0.0996	0.109	-
0.174	0.0272	0.0272	-	0.389	0.1018	0.1092	
0.178	0.0288	0.0287	0.35%	0.398	0.1041	0.1096	-
0.182	0.0305	0.0305	-	0.407	0.1065	0.1124	-
0.186	0.0322	0.0327	-	0.417	0.1089	0.1183	-
0.191	0.0341	0.0354	-	0.427	0.1114	0.1238	-

Table 3H.6-2f Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (Vertical Time History) (Continued)

Frequency	Target Spectral	Spectral Acceleration from Time	Percentage Less than	Frequency	Target Spectral	Spectral Acceleration from Time	Percentage Less than
(Hz)	Acceleration		Target	(Hz)	Acceleration	History –V1	Target
0.195	0.0361	0.0385	-	0.436	0.1139	0.1264	-
0.2	0.0381	0.0418	-	0.447	0.1165	0.129	-
0.204	0.0404	0.0452	-	0.457	0.1191	0.1269	-
0.209	0.0427	0.0481	-	0.468	0.1218	0.1199	1.58%
0.214	0.0452	0.0506	-	0.479	0.1246	0.1203	3.57%
0.219	0.0478	0.0524	-	0.49	0.1274	0.1376	-
0.5	0.13	0.1467	-	1.096	0.2019	0.2192	-
0.501	0.1302	0.1473	-	1.122	0.2045	0.2209	-
0.513	0.1319	0.1506	-	1.148	0.2072	0.2163	-
0.525	0.1336	0.1484	-	1.175	0.2099	0.2277	-
0.537	0.1353	0.138	-	1.202	0.2126	0.2264	-
0.55	0.1371	0.1486	-	1.23	0.2154	0.229	-
0.562	0.1388	0.1578	-	1.259	0.2182	0.238	-
0.575	0.1407	0.1568	-	1.288	0.221	0.2453	-
0.589	0.1425	0.1451	-	1.318	0.2239	0.2505	-
0.603	0.1443	0.1558	-	1.349	0.2268	0.2532	-
0.617	0.1462	0.1615	-	1.38	0.2297	0.2529	-
0.631	0.1481	0.1624	-	1.412	0.2327	0.2504	-
0.646	0.15	0.1613	-	1.445	0.2357	0.2466	-
0.661	0.152	0.1599	-	1.479	0.2388	0.2494	-
0.676	0.154	0.1597	-	1.514	0.2419	0.2577	-
0.692	0.156	0.1632	-	1.549	0.245	0.2626	-
0.708	0.158	0.1774	-	1.585	0.2482	0.2612	-
0.724	0.16	0.1746	-	1.622	0.2514	0.263	-
0.741	0.1621	0.1669	-	1.659	0.2547	0.2671	-
0.759	0.1642	0.1656	-	1.698	0.258	0.2677	-
0.776	0.1663	0.1654	0.54%	1.738	0.2614	0.271	-
0.794	0.1685	0.169	-	1.778	0.2648	0.2946	-
0.813	0.1707	0.1762	-	1.82	0.2682	0.2794	-

Table 3H.6-2f Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (Vertical Time History) (Continued)

Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target
0.832	0.1729	0.1823	-	1.862	0.2717	0.2976	-
0.851	0.1752	0.19	1	1.905	0.2752	0.3047	-
0.871	0.1775	0.192	1	1.95	0.2788	0.2924	-
0.891	0.1798	0.1986	-	1.995	0.2824	0.3099	-
0.912	0.1821	0.1913	-	2.042	0.2861	0.3248	-
0.933	0.1845	0.2081	-	2.089	0.2898	0.3319	-
0.955	0.1868	0.205	-	2.138	0.2936	0.3319	-
0.977	0.1893	0.1905	-	2.188	0.2974	0.3102	-
1	0.1917	0.2056	-	2.239	0.3012	0.3101	-
1.023	0.1942	0.2134	-	2.291	0.3052	0.3294	-
1.047	0.1967	0.2171	-	2.344	0.3091	0.337	-
1.071	0.1993	0.2166	-	2.399	0.3131	0.335	-
2.455	0.3172	0.3366	-	5.249	0.3656	0.3918	-
2.5	0.3205	0.3425	-	5.371	0.3645	0.387	-
2.512	0.3213	0.3443	-	5.495	0.3633	0.3886	-
2.571	0.3255	0.3509	-	5.624	0.3621	0.396	-
2.63	0.3297	0.3536	-	5.754	0.3609	0.3873	-
2.692	0.334	0.3613	-	5.889	0.3598	0.3866	-
2.754	0.3384	0.367	-	6.024	0.3586	0.4048	-
2.818	0.3427	0.3586	-	6.165	0.3575	0.406	-
2.884	0.3472	0.3755	-	6.309	0.3563	0.4029	-
2.952	0.3517	0.3927	-	6.456	0.3552	0.3828	-
3.02	0.3563	0.3983	-	6.605	0.354	0.3716	-
3.09	0.3609	0.3991	-	6.761	0.3529	0.3809	-
3.163	0.3656	0.4006	-	6.92	0.3517	0.3851	-
3.236	0.3703	0.4073	-	7.077	0.3506	0.3867	-
3.311	0.3752	0.4222	-	7.246	0.3495	0.3685	-
3.389	0.38	0.4347	-	7.413	0.348	0.3488	-
3.467	0.385	0.4162	-	7.587	0.347	0.3884	-

Table 3H.6-2f Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (Vertical Time History) (Continued)

	Target	Spectral Acceleration	Percentage		Target	Spectral Acceleration	Percentage
Frequency	Spectral	from Time	Less than	Frequency	Spectral	from Time	Less than
(Hz)	Acceleration	History –V1	Target	(Hz)	Acceleration	History –V1	Target
3.549	0.3863	0.3931	-	7.764	0.346	0.3934	-
3.631	0.385	0.419	-	7.943	0.345	0.3712	-
3.715	0.3838	0.4216	-	8.13	0.344	0.367	-
3.802	0.3825	0.4112	-	8.319	0.343	0.3804	-
3.891	0.3813	0.4072	-	8.511	0.342	0.3669	-
3.981	0.3801	0.3966	-	8.711	0.341	0.3589	-
4.073	0.3788	0.4033	-	8.913	0.339	0.3563	-
4.168	0.3776	0.4212	-	9.124	0.336	0.3603	-
4.266	0.3764	0.4112	-	9.328	0.33	0.3554	-
4.365	0.3752	0.3923	-	9.551	0.324	0.347	-
4.466	0.374	0.3998	-	9.775	0.319	0.3497	-
4.57	0.3728	0.4	-	10	0.314	0.3288	-
4.677	0.3716	0.4118	-	10.235	0.308	0.3309	-
4.787	0.3704	0.4134	-	10.471	0.303	0.3334	-
4.897	0.3692	0.3894	-	10.718	0.298	0.3315	-
5	0.3681	0.395	-	10.965	0.293	0.325	-
5.013	0.368	0.3967	-	11.223	0.288	0.3163	-
5.128	0.3668	0.3969	-	11.481	0.283	0.3117	-
11.751	0.278	0.2999	-	25.707	0.1563	0.1818	-
12.019	0.274	0.2913	-	26.316	0.1537	0.1875	-
12.3	0.269	0.2869	-	26.882	0.1511	0.1815	-
12.594	0.265	0.2927	-	27.548	0.1485	0.1748	-
12.887	0.26	0.2874	-	28.169	0.146	0.16	-
13.175	0.256	0.275	-	28.818	0.1436	0.1496	-
13.495	0.252	0.2691	-	29.499	0.1412	0.1518	-
13.812	0.247	0.259	-	30.211	0.1388	0.1547	-
14.124	0.243	0.2489	-	30.864	0.1365	0.1535	-
14.451	0.239	0.25	-	31.646	0.1342	0.1592	-
14.793	0.235	0.2586	-	32.362	0.1319	0.1541	-

Table 3H.6-2f Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (Vertical Time History) (Continued)

Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target
15.129	0.231	0.2559	-	33.113	0.13	0.1483	-
15.48	0.227	0.2509	-	33.898	0.13	0.143	-
15.848	0.223	0.2382	-	34.722	0.13	0.1367	-
16.207	0.22	0.2358	-	35.461	0.13	0.1336	-
16.584	0.216	0.239	-	36.364	0.13	0.1332	-
16.978	0.212	0.2318	-	37.175	0.13	0.1362	-
17.391	0.209	0.22	-	38.023	0.13	0.1393	-
17.794	0.205	0.2173	-	38.911	0.13	0.1423	-
18.182	0.202	0.2192	-	39.841	0.13	0.1447	-
18.622	0.198	0.2165	-	40.816	0.13	0.1461	-
19.048	0.195	0.2141	-	41.667	0.13	0.1425	-
19.493	0.1917	0.2073	-	42.735	0.13	0.1389	-
19.96	0.1884	0.2038	-	43.668	0.13	0.1358	-
20.408	0.1853	0.2047	-	44.643	0.13	0.1318	-
20.877	0.1821	0.2039	-	45.662	0.13	0.1332	-
21.368	0.1791	0.2043	-	46.729	0.13	0.1337	-
21.882	0.176	0.1998	-	47.847	0.13	0.1338	-
22.371	0.1731	0.1925	-	49.02	0.13	0.1341	-
22.883	0.1702	0.1813	-	50.251	0.13	0.1346	-
23.419	0.1673	0.175	-				-
23.981	0.1645	0.165	-				-
24.57	0.1617	0.169	-				-
25	0.1595	0.1752	-	_			-
25.126	0.159	0.1783	-				-

Table 3H.6-3 Dominant UHS and RSW Pump House Natural Frequencies

	Dominant	Modes in the Globa	I X Direction	
		М	ass Participation Ra	tios
Mode	Frequency	UX	UY	UZ
	(Hz)	Unitless	Unitless	Unitless
1	2.1333	0.1708	0.0000	0.0000
177	14.6380	0.0624	0.0002	0.0006
106	9.5127	0.0369	0.0000	0.0000
105	9.3212	0.0289	0.0172	0.0001
78	7.2357	0.0250	0.0001	0.0000
128	11.2070	0.0199	0.0000	0.0000
76	7.1367	0.0186	0.0001	0.0000
108	9.7128	0.0128	0.0057	0.0016
126	11.0900	0.0126	0.0000	0.0000
113	10.2520	0.0115	0.0001	0.0001
175	14.5110	0.0110	0.0014	0.0015
110	9.9664	0.0082	0.0258	0.0011

Table 3H.6-3 Dominant UHS and RSW Pump House Natural Frequencies (Continued)

	Dominant N	Modes in the Global	Y Direction	
		Ma	ass Participation Rat	ios
Mode	Frequency	UX	UY	UZ
	(Hz)	Unitless	Unitless	Unitless
4	3.1868	0.0000	0.1540	0.0000
100	8.6950	0.0000	0.0333	0.0005
110	9.9664	0.0082	0.0258	0.0011
8	3.4590	0.0000	0.0245	0.0000
147	12.2000	0.0005	0.0242	0.0000
5	3.2757	0.0000	0.0203	0.0000
206	16.5550	0.0001	0.0200	0.0000
102	8.9222	0.0004	0.0197	0.0000
105	9.3212	0.0289	0.0172	0.0001
10	3.7385	0.0000	0.0114	0.0000
66	6.5724	0.0005	0.0109	0.0000
16	4.2676	0.0000	0.0106	0.0000

Table 3H.6-3 Dominant UHS and RSW Pump House Natural Frequencies (Continued)

	Dominant	Modes in the Globa	I Z Direction	
		M	ass Participation Rat	ios
Mode	Frequency	UX	UY	UZ
	(Hz)	Unitless	Unitless	Unitless
116	10.7170	0.0000	0.0000	0.0447
120	10.8670	0.0006	0.0000	0.0107
307	21.5020	0.0000	0.0001	0.0067
121	10.8740	0.0001	0.0000	0.0043
99	8.6652	0.0001	0.0076	0.0042
298	20.7030	0.0002	0.0001	0.0041
323	22.2650	0.0000	0.0001	0.0037
131	11.3300	0.0001	0.0009	0.0033
363	24.9310	0.0002	0.0001	0.0032
273	19.4390	0.0001	0.0000	0.0030
203	16.3860	0.0008	0.0000	0.0027
184	15.2450	0.0005	0.0000	0.0026

Table 3H.6-4 Maximum Accelerations and Displacements for UHS and RSW Pump House

Description of Location	Elevation with Respect to Top of Pump House Mat	Maxim	um Accelera	ation (g)	Maximum Displacements Relative to Pump House Mat (inches)				
		E-W (X)	N-S (Y)	Vertical (Z)	E-W (X)	N-S (Y)	Vertical (Z)		
Top of Pump House Mat	0	0.117	0.128	0.137	0.03	0.05	0.10		
Pump House Operating Floor	32'-0"	0.122	0.140	0.541	0.07	0.09	0.11		
Pump House Roof	68'-0"	0.121	0.149	0.417	0.09	0.17	0.11		
Top of UHS Mat	32'-0"	0.125	0.144	0.133	0.12	0.14	0.12		
Top of UHS Basin Walls	115'-6"	0.145	0.175	0.137	0.17	0.27	0.13		
Bottom of Cooling Tower Walls	115'-6"	0.438	0.391	0.291	1.65	0.86	0.13		
Mid-Level of Cooling Tower Walls	143'-3"	0.657	0.459	0.303	2.14	0.95	0.14		
Top of Cooling Tower Walls	171'-0"	0.460	0.499	0.330	1.72	1.01	0.14		

Table 3H.6-5 Factors of Safety Against Sliding, Overturning, and Flotation for UHS Basin and RSW Pump House

Load Combination	Ca	alculated Safety Fac	tor	Notes
Load Combination	Overturning	Sliding	Flotation	Notes
D + F'			1.77	
D + H + W	2.15	11.5		2, 3
D + H + Wt	2.11	7.2		
D + H' + E'	1.47	1.11		2, 3, 4, 5, 6
D + H + W _{th}	2.10	8.55		2, 3

Notes:

- (1) Loads D, H, H', W, Wt, and E' are defined in Subsection 3H.6.4.3.4.1. F' is the buoyant force corresponding to the design basis flood. Load W_{th} is defined in Subsection 3H.11.1.
- (2) Reported safety factors are conservatively based on considering empty weight of the UHS Basin.
- (3) Coefficients of friction for sliding resistance are 0.3 under the RSW Pump House and 0.4 under the UHS Basin.
- (4) The calculated safety factor for sliding requires less than half of the available passive pressure to be engaged for sliding resistance.
- (5) The seismic values considered for stability are based on the full basin case and the empty basin case.
- (6) The seismic sliding forces and overturning moments from SSI analysis are less than the seismic sliding forces and overturning moments used in the stability evaluations.

Table 3H.6-6 Results of RSW Piping Tunnel Design

							Area of Reinforc	ement (in ² /ft)	
Location (4)	Item	Thickness (ft)	Governing Load Combination	Design Moment	Design Shear	Moment Rein	forcement ⁽¹⁾	Shear Rein	forcement
		,	3	(kip-ft/ft)	(kip/ft)	Required	Provided (both faces)	Required	Provided
	Exterior Wall	3'-0"	D+Lo+F+H'+E'	226.78	36.52	1.56 (vertical)	1.56 (vertical)	None	None
ınnel	Roof Slab	3'-0"	1.4D+1.7L+1.4F+1.7H	55.90	11.29	0.7 (east-west)	0.79 (east-west)	None	None
Main Tunnel	Interior Slab	2'-0"	D+Lo+F+H'+E' (2)	95.22	13.16	1.13 (east-west)	1.27 (east-west)	None	None
_	Basemat	3'-0"	D+Lo+F+H'+E' (2)	123.94	19.10	0.97 (east-west)	1.00 (east-west)	None	None
	Exterior Wall	3'-0"	D+Lo+F+H'+E'	543.34	59.39	4.27 (east-west)	4.68 (east-west)	0.19	0.20
unnel Iding)	Interior Wall	2'-0"	D+Lo+F+H'+E' ⁽²⁾	152.15	19.96	1.69 (east-west)	2.25 (east-west)	None	None
Main T itrol Bui	Roof Slab	3'-0"	1.4D+1.7L+1.4F+1.7H	86.64	15.29	0.70 (east-west)	0.79 (east-west)	None	None
North End of Main Tunnel (West of Control Building)	Interior Slab	2'-0"	D+Lo+F+H'+E' ⁽²⁾	136.30	18.03	1.49 (east-west)	2.25 (east-west)	None	None
North (West	Basemat	3'-0"	1.4D+1.7L+1.4F+1.7H	70.42	28.27	0.36 (north-south)	0.79 (north-south)	None	None
	Dasemat	3-0	1.4D+1.7L+1.4F+1.7H	155.74	36.39	1.16 (east-west)	1.27 (east-west)	None	None
Main Tunnel (in Access Region 1)	Basemat	3'-0"	1.4D+1.7L+1.4F+1.7H	46.60	20.54	0.70 (north-south)	0.79 (north-south)	None	None

STP

Table 3H.6-6 Results of RSW Piping Tunnel Design (Continued)

							Area of Reinforc	ement (in ² /ft)	
Location ⁽⁴⁾	Item	Thickness (ft)	Governing Load Combination	Design Moment	Design Shear	Moment Reir	nforcement (1)	Shear Reir	forcement
		(,	3	(kip-ft/ft)	(kip/ft)	Required	Provided (both faces)	Required	Provided
12)	Exterior Wall	3'-0"	D+Lo+F+H'+E'	321.96	29.22	2.21 (vertical)	2.25 (vertical)	None	None
Tunnel s Regior	Exterior vvaii	3-0	D+L0+1 +11+L	214.84	29.22	1.40 (horizontal)	1.56 (horizontal)	None	None
Main Tunnel (In Access Region	Basemat	6'-0"	D+Lo+F+H'+E' ⁽²⁾	530.76	66.74	1.66 (east-west)	2.25 (east-west)	None	None
uI)	Dasemat	0-0	1.4D+1.7L+1.4F+1.7H / D+Lo+F+H'+E' ⁽²⁾	500.50	66.74	1.78 (north-south)	2.25 (north-south)	None	None
13) use	Exterior Wall	3'-0"	D+Lo+F+H'+E'	245.29	36.52	1.76 (vertical)	3.12 (vertical)	None	None
Funnel Regior Imp Ho	Roof Slab	3'-0"	1.4D+1.7L+1.4F+1.7H	344.53	37.20	2.56 (north-south)	4.68 (north-south)	None	None
Main Tunnel (In Access Region 3) North of Pump House	Interior Slab	2'-0"	D+Lo+F+H'+E' ⁽²⁾	150.97	19.29	1.70 (north-south)	3.12 (north-south)	None	None
(In Nor	E Basemat	3'-0"	1.4D+1.7L+1.4F+1.7H	236.52	38.12	1.74 (north-south)	3.12 (north-south)	0.18	0.20

Notes:

- (1) Unless noted otherwise, the required reinforcement in the direction not reported in the table is controlled by the minimum required reinforcement. The minimum required reinforcement for 2'-0" thick and 3'-0" thick elements is 0.36 in²/ft and 0.54 in²/ft. For such casees the provided reinforcement is 0.79 in²/ft.
- (2) The loading also includes loads due to internal flooding.
- (3) In addition to the reinforcement shown within this table, the following reinforcement is required due to SSE Wave Propagation:
 - For the Main Tunnel, 0.79 in2/ft (applied to both faces of the walls and slabs) in the north-south direction of the Main Tunnel for 84'-0" (measured north from the centerline of the intersection of the Main Tunnel and Access Region 3)
 - For Access Region 3 from 0'-0" to 56'-0" (measured east from the centerline of the intersection of the Main Tunnel and Access Region 3), 1.56 in2/ft (applied to both faces of the roof, interior slab, and basemat) in the north-south direction
 - For Access Region 3 from 56'-0" to 103'-0" (measured east from the centerline of the intersection of the Main Tunnel and Access Region 3), 1.56 in2/ft (applied to both faces of the roof and basemat) in the north-south direction
- (4) Refer to Figure 3H.6-248 for plan view of the RSW Tunnel

Table 3H.6-7 Results of UHS/RSW Pump House Concrete Wall Design

				# E	# 62	© ₈			Longitudinal	Reinforcement	Design Loads									
u og	8 8	9	rio tio	out	mper_	Force	t e	Axial and Flexure L	.oads		In-Plane Shear Loads	5	Longitudinal Reinforcement Provided			Transverse Shear Design Loads			Transverse Shear	
Poca	Thickne (ft)	Face	Direc	Reinforc Layo awing Nt	Reinforcer Zone Numb	un un	Elen	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load		ontal Section		cal Section	Reinforcement Provided (in²/ft²)	Remarks
				Re Draw	Re	Maxi		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	(Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						мтсм	2923	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	371	-413										
					1-H-L	MCCM	2914	D+L+F+H+T+E	-179	-25	D+L+F+H'+T+E'	32	7.8							
						MMAT	2921	D+L+F+H+T+E	128	-548										
			Horizontal	3H.6-51		MMAC	2945	D+L+F+H+T+E	-56	-528										
						MTCM	5425	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	149	-16										
					2-H-L	MCCM	5482	D+L+F+H+T+E	-297	-615	D+L+F+H+T+E	118	4.68		-	-	-		_	
						MMAT	4082	D+L+F+H+T+E	0	-734										
		North (outside)				MMAC	5580	D+L+F+H'+T+E'	-131	-774										
		(OUISION)				MTCM	5586	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	186	-199										
					1-V-L	MCCM	3650	D+L+F+H'+T+E'	-244	-180	D+L+F+H+T+E	126	4.68							
						MMAT	5555	D+L+F+H'+T+E'	3	-490										
			Vertical	3H.6-52		MMAC	5555	D+L+F+H'+T+E'	-63	-499										
						MTCM	5570	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	271	-539										
Na.					2-V-L	MCCM	3642	D+L+F+H'+T+E'	-281	-382	D+L+F+H+T+E	126	7.8						-	
North						MMAT	5541	D+L+F+H'+T+E'	3	-1198										
esn op	6					MMAC	4101	D+L+F+H'+T+E'	-149	-1229										
Pump						MTCM	_	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	324	126										
					1-H-L	MCCM	5481	D+L+F+H+T+E	-288	108	D+L+F+H+T+E	33	6.24			-	-		-	
						MMAT	2914	D + L + F + H + To + Wt	86	348										
			Horizontal	3H.6-53		MMAC	3708	D+L+F+H'+T+E'	-139	360										
						MTCM	5262	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	114	13										
		South (inside)			2-H-L	MCCM	5477	D+L+F+H'+T+E'	-239	151	D+L+F+H+T+E	118	3.12				-			
						MMAT	3707	D+L+F+H'+T+E'	9 -70	324										
					_	MMAC	3653	D+L+F+H'+T+E'		441										
						MTCM	3642 3642	D+L+F+H'+T+E'	207 -281	55 56										
			Vertical	3H.6-54	1-V-L	MMAT	5435	D+L+F+H+T+E	-201	468	D+L+F+H'+T+E'	126	4.68		-	-	-		-	-
						MMAC	3689	D+L+F+H+T+E	-147	481										
					1-T	MINAC.	3009		-14/	401				D+L+F+H+T+E	-11	15	-121	-46	0.20	
			Transverse (Horizontal	3H.6-55	2-T	<u> </u>	H:			-				1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-65	437	4	77	0.31	
			and Vertical)		3-T		+ :-							1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	38	218	-118	446	0.44	
						мтсм	3222	D+L+F+H'+T+E'	657	-170										
						MCCM	3222	D+L+F+H+T+E	-750	-67	1									
					1-H-L	MMAT	3222	D+L+F+H'+T+E'	657	-816	D+L+F+H'+T+E'	155	12.48		-	-	-		-	(8)
						MMAC	3222	D+L+F+H+T+E	-337	-816										
						мтсм	3079		246	-20										
						MCCM	3079	D+L+F+H'+T+E'	-352	-31										
le/			Horizontal	3H.6-56	2-H-L	MMAT	3121	D+L+F+H+T+E	61	-271	D+L+F+H+T+E	155	4.68	-	-	-	-	-	-	-
East V		F				MMAC	3121	D+L+F+H'+T+E'	-51	-404										
House	6	East (outside)				MTCM	8893	D+L+F+H'+T+E'	163	-65										
Pump						MCCM	8827	D+L+F+H+T+E	-645	-77										
					3-H-L	MMAT	8829	D+L+F+H'+T+E'	62	-678	D+L+F+H+T+E 2	263	6.24						-	
						MMAC	8823	D+L+F+H'+T+E'	-112	-906										
						мтсм	3221	D+L+F+H+T+E'	484	-197										
						MCCM	8825	D+L+F+H'+T+E'	-884	-159	1									
			Vertical	3H.6-57	1-V-L	MMAT	8813	D+L+F+H+T+E'	120	-681	D+L+F+H'+T+E'	308	10.92	-	-	-	-		-	(8)
						MMAC	8814	D+L+F+H'+T+E'	-144	-705	1									
							1									1	1			

STP 3 & 4

Table 3H.6-7 Results of UHS/RSW Pump House Concrete Wall Design (Continued)

				# E	E 8	(£) S 6	E			Design Loads										
figur	ness ()	Face	tion	ceme	negu	Force	neut	Axial and Flexure L	.oads		In-Plane Shear Load		Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear	Remarks
Loca	Thickness (ft)	ě.	Direc	Reinforceme Layout awing Numb	Reinforcer Zone Numi	mnu.	Elen	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ft)	Load		ontal Section		ical Section	Reinforcement Provided (in²/ft²)	Remarks
	-			Re Draw	Zor Re	Maxi		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	(Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	3226	D+L+F+H+T+E	215	-134										
						MCCM	8853	D+L+F+H+T+E	-521	-162	1					_				_
					2-V-L	MMAT	8854	D+L+F+H+T+E	62	-531	D+L+F+H'+T+E'	247	6.24						-	
						MMAC	8854	D+L+F+H+T+E	-349	-842										
						MTCM	6526	D+L+F+H+T+E	76	-30										
					3-V-L	MCCM	6359	D+L+F+H'+T+E'	-306	-61	D+L+F+H'+T+E'	175	3.12							
					3-V-L	MMAT	3097	D+L+F+H+T+E	36	-299	Dalahahalae	1/5	3.12							
		East (outside)				MMAC	6491	D+L+F+H+T+E	-112	-344										
		(outside)	Vertical	3H.6-57		MTCM	6556	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	190	-97										
					4-V-L	MCCM	6528	D+L+F+H'+T+E'	-264	-92	D+L+F+H'+T+E'	115	6.24							
					4-V-L	MMAT	6568	D+L+F+H'+T+E'	109	-229	D+L+F+H+I+E	115	6.24	•						
						MMAC	6547	D+L+F+H'+T+E'	-50	-221										
						MTCM	6520	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	242	-411										
					5-V-L	MCCM	6349	D+L+F+H+T+E	-440	-653	D+L+F+H'+T+E'	247	6.24							
					D-V-L	MMAT	6518	D+L+F+H'+T+E'	9	-536	D+C+F+H+1+E	247	0.24							
						MMAC	8869	D+L+F+H'+T+E'	-251	-884										
						MTCM	3222	D+L+F+H'+T+E'	605	40										
					1-H-L	MCCM	3222	D+L+F+H+T+E	-814	868	D+I+F+H+T+F	155	12.48							(8)
					1414	MMAT	3222	D+L+F+H'+T+E'	180	868	D+L+F+H'+T+E'	155	12.40			-				(6)
Ê						MMAC	3222	D+L+F+H+T+E	-814	868										
(Con						MTCM	3088	D+L+F+H+T+E	262	129										
ast Wa	6				2-H-L	MCCM	3088	D+L+F+H+T+E	-301	46	D+L+F+H'+T+E'		4.68							_
use E					2	MMAT	3100	D+L+F+H+T+E	27	357			4.00							
¥			Horizontal	3H.6-58		MMAC	3100	D+L+F+H+T+E	-92	357										
2			Tronscomm	01.0-00		MTCM	8894	D+L+F+H+T+E	168	179										
					3-H-L	MCCM	8829	D+L+F+H+T+E	-514	502	D+L+F+H'+T+E'	194	4.68							
						MMAT	8922	D+L+F+H+T+E	57	415			1.00							
						MMAC	8829	D+L+F+H+T+E	-493	582										
						MTCM	8827	1.4D + 1.4F + 1.7H + 1.7W	62	65										
		West			4-H-L	MCCM	8827	D+L+F+H+T+E	-645	204	D+L+F+H'+T+E'	263	6.24							
		(inside)				MMAT	8851	D+L+F+H+T+E	6	617										
						MMAC	8881	D+L+F+H+T+E	-470	982										
						MTCM	3222	D+L+F+H+T+E	640	146										
					1-V-L	MCCM	8825	D+L+F+H'+T+E'	-884	1232	D+L+F+H'+T+E'	308	15.6							(8)
						MMAT	8825	D+L+F+H'+T+E'	-	-										
						MMAC	8825	D+L+F+H+T+E	-283	1815										
						MTCM	3226	D+L+F+H'+T+E'	199	51										
			Vertical	3H.6-59	2-V-L	MCCM	8853	D+L+F+H'+T+E'	-535	833	D+L+F+H'+T+E' 24	247	9.36							
						MMAT	8854	D+L+F+H'+T+E'	2	1176										
						MMAC	8853	D+L+F+H'+T+E'	-491	1604										
						MTCM	3241	D+L+F+H'+T+E'	60	40										
					3-V-L	MCCM	8900	D+L+F+H'+T+E'	-367	62	D+L+F+H'+T+E'	234	6.24							
						MMAT	6397	D+L+F+H'+T+E'	1	590										
						MMAC	8880	D+L+F+H+T+E	-294	651										

Table 3H.6-7 Results of UHS/RSW Pump House Concrete Wall Design (Continued)

Location	Thickness (ft)	Face	Direction	Reinforceme Layout awing Numb	Ceme	2	=					Longitud		itudinal Transverse Shear Design Loads					Transverse Shear	
100	This	ž.	Die .	06 6			ē	Axial and Flexure	Loads		In-Plane Shear Load:		Reinforcement Provided			manaverse onean besign coads				Remarks
		Th D Drawfir	Reinford Zone Nur	ung.	Ele	Load	Axial (4)	Flexure (4)	Load	In-plane ⁽⁵⁾	Provided (in²/ ft)	Load Combination		ental Section		cal Section	Reinforcement Provided (in²/ft²)	Kemarks		
				Rc Drav	Zo	Max		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	6444	D+L+F+H'+T+E'	46	202										
					4-V-L	MCCM	6355	D+L+F+H'+T+E'	-328	20	D+L+F+H'+T+E'	175	4.68							
						MMAT	6456	D+L+F+H'+T+E'	1	533										
						MMAC	3097	D+L+F+H'+T+E'	-86	551										
						MTCM	6526	D+L+F+H'+T+E'	76	35										
1		West (inside)	Vertical	3H.6-59	5-V-L	MCCM	6522	D+L+F+H'+T+E'	-244	217	D+L+F+H'+T+E'	120	3.12				_			
9		(mssae)				MMAT	6503	D+L+F+H'+T+E'	4	308										
Pump House East Wal (Cor						MMAC	3106	D+L+F+H'+T+E'	-46	321										
M M	6					MTCM	6520	D+L+F+H'+T+E'	211	118										
9 900					6-V-L	MCCM	6520	D+L+F+H'+T+E'	-300	164	D + L + F + H' + T + E'	115	4.68							
di H						MMAT	6520	D+L+F+H+T+E	2	222										
•						MMAC	6520	D+L+F+H'+T+E'	-239	228										
					1-T			•	-	-	•			D+L+F+H'+T+E'	41	34	154	542	0.60	
					2-T			•		-	•			D+L+F+H'+T+E'	-130	-205	-354	-47	1.24	
			Transverse (Horizontal and Vertical)	3H.6-60	3-T	-	-	•		-	•			D+L+F+H'+T+E'	49	23	78	476	0.44	
			and Vertical)		4-T		-	•		-	•			D+L+F+H'+T+E'	43	32	37	436	0.31	
					5-T			•	-		•			D+L+F+H'+T+E'	327	-118	328	-308	1.76	
					6-T		-	•			•		-	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-58	363	2	89	0.20	
					мтсм	5788	D+L+F+H'+T+E'	249	-63											
	Horizonta	Horizontal	3H.6-61	1-H-L	MCCM	5611	D+L+F+H'+T+E'	-1115	-117	D + L + F + H' + T + E'	235	6.24		-		-		-	-	
					MMAT	5784 5784	D+L+F+H'+T+E'	6	-639											
						MMAC MTCM		D+L+F+H'+T+E'	-89	-639										
							5784	D+L+F+H'+T+E'	149	-192			6.24							
		North (inside)			1-V-L	MCCM	5607 5783	D+L+F+H'+T+E'	-767	-238 -492	D + L + F + H' + T + E'	222		-			-		-	
						MMAC	5783	D+L+F+H'+T+E'	-230	-663										
			Vertical	3H.6-62		MTCM	5786	D+L+F+H'+T+E'	243	-611										
						MCCM	5609	D+L+F+H'+T+E'	-1036	-801										
- E					2-V-L	MMAT	5786	D+L+F+H'+T+E'	126	-1204	D + L + F + H' + T + E'	222	9.36							
ogn Som	6					MMAC	5786	D+L+F+H'+T+E'	-605	-1401										
H dum	ŀ					мтсм	5783	D+L+F+H'+T+E'	97	205										+
ű.						MCCM	5608	D+L+F+H'+T+E'	-628	192										
			Horizontal	3H.6-63	1-H-L	MMAT	5784	D+L+F+H'+T+E'	25	712	D + L + F + H' + T + E'	235	6.24	-	-		-		-	-
						MMAC	5784	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-163	785										
		South (outside)	_		-	MTCM	5607	D+L+F+H'+T+E'	164	186									 	+
						MCCM	5607	D+L+F+H'+T+E'	-722	17										
			Vertical	3H.6-64	1-V-L	MMAT	5774	D+L+F+H'+T+E'	0	578	D+L+F+H'+T+E' 222	222	6.24		-		-		-	-
						MMAC	5757	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-281	1198										
	ŀ		Transverse		1-T		-	-	-	-	-			D+L+F+H'+T+E'	42	-178	142	51	0.31	
		•	(Horizontal and Vertical)	3H.6-65	2-T					-				D+L+F+H+T+E	13	-145	126	46	0.20	
Tip.						мтсм	3273	D+L+F+H'+T+E'	462	-106										<u> </u>
West		West				MOCM	6229	D+L+F+H'+T+E'	-252	-58										
House	6	(outside)	Horizontal	3H.6-66	1-H-L	MMAT	3028	D+L+F+H'+T+E'	59	-407	D + L + F + H + To + Wt	124	6.24	-	-		-		-	-
dum						MMAC	6169	D+L+F+H'+T+E'	-122	-704										

				f E	# 67	Ē,			Longitudinal	Reinforcement	t Design Loads									
u g	88 _		tion	out	mber ⁽	Force	t e	Axial and Flexure L			In-Plane Shear Loads		Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear	
E S	Thickness (ft)	Face	Directi	Reinforcem Layout awing Numi	Reinford Zone Nur	E C	E E	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ft)	Load		ontal Section		al Section	Reinforcement Provided (in²/ft²)	Remarks
				Re Draw	Zo	Maxi		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	3291	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	974	-529										
					2-H-L	MCCM	3291	D+L+F+H+T+E	-360	-356	-1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	98	14.04							
					22	MMAT	3291	D+L+F+H+T+E	712	-743										
						MMAC	3290	D+L+F+H+T+E	-19	-591										
						MTCM	9052	D+L+F+H+T+E	84	-34										
				3H.6-66	3-H-L	MCCM	9052	D+L+F+H+T+E	-309	-59	D+L+F+H+T+E	129	3.12							
						MMAT	6125	D+L+F+H'+T+E'	4	-200										
						MMAC	6145	D+L+F+H'+T+E'	-158	-742										
						MTCM	3280	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	429	-56										
					4-H-L	MCCM	9136	D+L+F+H'+T+E'	-735	-468	D+L+F+H+T+E	129	6.24							
						MMAT	9138	D+L+F+H'+T+E'	7	-803										
						MMAC	9138	D+L+F+H+T+E	-171	-900										
						MTCM	6125	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	317	-384										
					1-V-L	MCCM	6157	D+L+F+H'+T+E'	-233	-26	D+L+F+H+T+E	75	7.8							
						MMAT	6126	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	69	-458										
		West (outside)				MMAC	6126	D+L+F+H'+T+E'	-41	-341										
		(outside)				MTCM	6151	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	84	-75										
					2-V-L	MCCM	9042	D+L+F+H'+T+E'	-202	-8	D+L+F+H+T+E	132	3.12							
						MMAT	3073	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	19	-348										
ou(g)						MMAC	6321	D+L+F+H'+T+E'	-127	-408										
0) 8						MTCM	6131	D+L+F+H'+T+E'	64	-101										
West	6		Vertical	3H.6-67	3-V-L	MCCM	9037	D+L+F+H+T+E	-315	-206	D+L+F+H+T+E	132	4.68	-				-	-	
osnop						MMAT	6127	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	26	-528										
dim d						MMAC	6293	D+L+F+H'+T+E'	-165	-696										
						мтсм	3283	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	222	-188										
					4-V-L	MCCM	9110	D+L+F+H'+T+E'	-285 5	-315 -694	D+L+F+H'+T+E'	115	4.68							
						MMAC	9105	D+L+F+H+T+E	-92	-704	-									
				-		MTCM	3290	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	549	-213										
						MCCM	9134	D+L+F+H+T+E	-780	-364	_									
					5-V-L	MMAT	9134	D+L+F+H+T+E	-780	-916	D+L+F+H'+T+E'	144	9.36	-	-	-		-	-	-
						MMAC	9138	D+L+F+H+T+E	-340	-1271	+									
		_				MTCM	3276	D+L+F+H'+T+E'	485	49										
						MCCM	9089	D+L+F+H'+T+E'	-315	97	+									
					1-H-L	MMAT	3268	D+L+F+H'+T+E'	2	261	D+L+F+H+To+Wt	124	6.24							
						MMAC	9061	D+L+F+H+T+E	-145	292	-									
						MTCM	3291	D+L+F+H'+T+E'	922	153										
		F				MCCM	3291	D+L+F+H'+T+E'	-360	217	-									
		East (inside)	Horizontal	3H.6-68	2-H-L	MMAT	3291	D+L+F+H'+T+E'	226	820	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	98	12.48	-	-			-	-	-
						MMAC	3291	D+L+F+H'+T+E'	-126	820	†									
						MTCM	9087	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	135	57										
						MCCM	9079	D+L+F+H'+T+E'	-422	175	1									
					3-H-L	MMAT	9077	D+L+F+H'+T+E'	0	267	D+L+F+H'+T+E'	129	3.12					*	-	-
						MMAC	9077	D+L+F+H'+T+E'	-355	288	1									

				# E	받은	6,8			Longitudinal	Reinforcement [lesign Loads									
tion	t)	Face	Direction	ceme	ceme	Force	le i	Axial and Flexure	.oads		In-Plane Shear Load	s	Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear Reinforcement Provided	Remarks
Local	Thicknes (ft)		Dire	Lay ving N	Reinfor Zone Nu	un un	Elem	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load		ontal Section		ical Section	(in ² /ft ²)	Remarks
				Dran R	Z B	Мах		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (klp / ft)		
						MTCM	3280	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	424	17										
			Horizontal	3H.6-68	4-H-L	MCCM	9134	D+L+F+H'+T+E'	-607	222	D+L+F+H'+T+E'	129	6.24							
						MMAT	9134	D+L+F+H'+T+E'	21	359										
						MMAC	9134	D+L+F+H'+T+E'	-408	377										
						MTCM	6125	D+L+F+H+T+E	209	33										
					1-V-L	MCCM	6161	D+L+F+H+T+E	-199	12	D+L+F+H'+T+E'	75	4.68							
						MMAT	3029	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	7	122										
					_	MMAC	3029	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-1	121										
6						MTCM	6134	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	126	55										
Conf		East (inside)			2-V-L	MCCM	9067	D+L+F+H'+T+E'	-244	68	D + L + F + H' + T + E'	132	3.12	-	-		-		-	
at Wall		'					6285	D+L+F+H'+T+E'	0	402										
36 We	6		Vertical	3H.6-69		MMAC	_	D+L+F+H'+T+E'	-54	425										
e Fo						MTCM	9116	D+L+F+H'+T+E'	125	57										
P.					3-V-L	MCCM	9102	D+L+F+H'+T+E'	-296	308 437	D+L+F+H'+T+E'	115	4.68						-	
						MMAC	9105 9106	D+L+F+H+T+E	13 -218	739										
					_	_	_			_										_
						MCCM	3291	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	664	95										
					4-V-L	MCCM	9134 9134	D+L+F+H+T+E*	-866 4	1406	D+L+F+H'+T+E'	144	9.36							
						MMAC	9134	D+L+F+H+T+E	-866	1106										
					1-T	MMAC	9134	D+L+F+H+I+E	-806	1406	-			1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-58	69	77	390	0.20	
			Transverse (Horizontal	3H.6-70	2-T		<u> </u>			-	-			D+L+F+H+T+E	-50	100	204	1	0.44	
			and Vertical)	341.070	3-T		<u> </u>							D+L+F+H+T+E	-61	343	-92	1213	0.60	
					3*1	MTCM	3246	D+L+F+H'+T+E'	351	-94	· ·			Decement		343	192	1210	0.00	
						MCCM	3246	D+L+F+H'+T+E'	-477	-19										
					1-H-L	MMAT	3246	D+L+F+H'+T+E'	194	-119	D + L + F + H' + T + E'	109	6.24		-				-	
						MMAC	3246	D+L+F+H+T+E	-304	-119										
			Horizontal	3H.6-71		MTCM	3251	D+L+F+H'+T+E'	130	-23										
						MCCM	8939	D+L+F+H+T+E	-545	-19										
					2-H-L	MMAT	7016	D+L+F+H (Internal Flood)	5	-147	D+L+F+H'+T+E'	186	3.12	-	-		•		-	
						MMAC	6984	D+L+F+H (Internal Flood)	-28	-206										
		East (top)				MTCM	3246	D+L+F+H'+T+E'	188	-7										
						MCCM	3246	D+L+F+H'+T+E'	-487	-14										
st Wal					1-V-L	MMAT	3246	D+L+F+H+T+E	58	-21	D+L+F+H'+T+E'	236	6.24							
Tal Es						MMAC	8925	D+L+F+H'+T+E'	-191	-199										
e lite	4		Vertical	3H.6-72		MTCM	3248	D+L+F+H+T+E	100	-10										
an o House						MCCM	6800	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-409	-24										
Pum					2-V-L	MMAT	6968	D+L+F+H'+T+E'	38	-99	D+L+F+H'+T+E'	199	3.12						-	
						MMAC	6800	D+L+F+H (Internal Flood)	-226	-343										
						MTCM	3246	D+L+F+H'+T+E'	333	8										
						MCGM	3246	D+L+F+H+T+E	-477	74										
					1-H-L	MMAT	3246	D+L+F+H'+T+E'	198	95	D+L+F+H'+T+E'	109	6.24	-	-	-	-		-	
						MMAC	3246	D+L+F+H+T+E	-310	95										
		West (bottom)	Horizontal	3H.6-73		MTCM	3254	D+L+F+H'+T+E'	126	10										
						MCCM	8937	D+L+F+H'+T+E'	-565	102										
					2-H-L	MMAT	7016	D+L+F+H (Internal Flood)	9	121	D+L+F+H'+T+E'	186	3.12		-				-	
						MMAC	6984	D+L+F+H (Internal Flood)	-21	197										
		_					_						-	1	1		1		1	

				# E	w fi	6,			Longitudinal	Reinforcement D	esign Loads									
E G	9000		u g	out	mper	Force	t e	Axial and Flexure			In-Plane Shear Load	s	Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear	l
Poca	Thicknes (ft)	Face	Direc	Reinforc Layo awing Nt	Reinforcer Zone Numb	E .	Elem	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	14	Horizo	ontal Section	Verti	cal Section	Reinforcement Provided (in²/ft²)	Remarks
	_			Bel	Zon	Maxir		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	(iii / ity	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	, , , , , ,	
						MTCM	3246	D+L+F+H'+T+E'	188	7										
					1-V-L	MCCM	3246	D+L+F+H+T+E	-467	5	D+L+F+H+T+E	236	6.24							
Cont'd					1-4-6	MMAT	3245	D+L+F+H+T+E	74	16	D+C+F+H+1+E	230	0.24		-	-			-	
Well		West	Vertical	3H.6-74		MMAC	8937	D+L+F+H'+T+E'	-244	146										
al Eas	4	(bottom)	Verson	31.0-14		MTCM	3248	D+L+F+H'+T+E'	98	4										
Intern					2-V-L	мссм	8946	D+L+F+H'+T+E'	-392	16	D+L+F+H+T+E	199	3.12							
House					2-1-0	MMAT	6968	D+L+F+H'+T+E'	15	54	5-12-11-11-12	100	5.12			-				-
Pump						MMAC	6853	D + L + F + H (Internal Flood)	-109	327										
			Transverse (Horizontal and Vertical)	3H.6-74A	1-T		-						-	D + L + F + H' + T + E'	-8	100	-26	377	0.20	
						MTCM	3294	D+L+F+H+T+E	275	-46										
					1-H-L	MCCM	3294	D+L+F+H+T+E	410	-57	D+L+F+H+T+E	94	4.68		_				_	
					1415	MMAT	3171	D+L+F+H'+T+E'	12	-130	5.5		4.00	•		-		-		-
			Horizontal	3H.6-75		MMAC	3171	D+L+F+H'+T+E'	-6	-130										
			Hongoma	34.0-13		MTCM	3299	D+L+F+H'+T+E'	99	-8										
					2-H-L	мссм	9163	D+L+F+H+T+E	-552	-25	D+L+F+H'+T+E'	161	3.12							
						MMAT	6792	D + L + F + H (Internal Flood)	8	-127										
		East				MMAC	6760	D + L + F + H (Internal Flood)	-20	-201										
		(top)				MTCM	3294	D+L+F+H+T+E	139	-16										
					1-V-L	MCCM	9165	D+L+F+H+T+E	-465	-29	D+L+F+H'+T+E'	206	4.68							
						MMAT	3294	D+L+F+H+T+E	93	-21										
			Vertical	3H.6-76		MMAC	9161	D+L+F+H+T+E	-112	-181										
						MTCM	3296	D+L+F+H'+T+E'	70	-7										
					2-V-L	MCCM	9168	D+L+F+H+T+E	-393	-7	D+L+F+H+T+E	173	3.12			-		_	_	
Wall						MMAT	6601	D+L+F+H+T+E	1	-57										
West						MMAC	6576	D + L + F + H (Internal Flood)	-103	-333										
ntema	4					MTCM	3294	D+L+F+H+T+E	275	42										
esnop					1-H-L	мссм	3294	D+L+F+H+T+E	-410	17	D+L+F+H+T+E	94	4.68							
-dmp						MMAT	3171	D+L+F+H+T+E	12	101										
_			Horizontal	3H.6-77		MMAC	3171	D+L+F+H+T+E	-176	113										
						MTCM	3299	D+L+F+H+T+E	99	7										
					2-H-L	MCCM	9161	D+L+F+H+T+E	-576	104	D+L+F+H+T+E	161	3.12							
						MMAT	6792	D + L + F + H (Internal Flood)	1	137										
		West (bottom)				MMAC	6760	D + L + F + H (Internal Flood)	-28	203										
						MTCM	3294	D+L+F+H+T+E	139	6										
					1-V-L	MCCM	9165	D+L+F+H+T+E	-465	84	D + L + F + H' + T + E'	206	4.68						-	
						MMAT	3294	D+L+F+H+T+E	24	23										
			Vertical	3H.6-78		MMAC MTCM	9161	D+L+F+H+T+E	-325	201					+				1	
						MCCM	3296 9168	D+L+F+H+T+E	70	6										
					2-V-L	MCCM		D+L+F+H+T+E	-394 44	33	D + L + F + H' + T + E'	173	3.12		-	-	-		-	
						MMAC	6744 6576	D+L+F+H+T+E* D+L+F+H (Internal Flood)	-220	343										
		_	Transverse			NINOPIL.	65/6	DTLTFT (Internat rood)	-220	343										
		-	(Horizontal and Vertical)	3H.6-78A	1-T	-	-	-		-	-	-	-	D+L+F+H'+T+E'	6	93	15	399	0.20	

	T	Т		μ ε	* 8	6			Longitudinal	Reinforcement	t Design Loads									T
tion	Thickness (ft)		tion	out	mber ⁽²	Forces	tue t	Axial and Flexure I			In-Plane Shear Loads		Longitudinal Reinforcement Provided			Transverse Shear Design Loads			Transverse Shear	l
Locatio	l kk	Face	Direction	inforcent Layout ing Num	Reinforc Zone Nur	un un un un un un un un un un un un un u	Elem	Load	Axial (4)	Flexure (4)			Provided (in²/ft)	Load		ontal Section		tical Section	Reinforcement Provided (in²/ft²)	Remarks
				Re Draw	Re	Maxi		Combination	(kips / ft)	(ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	()	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	13330	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	220	9										
			Horizontal	3H.6-79	1-H-L	мссм	13461	D+L+F+H+T+E	-276	53	D+L+F+H'+T+E'	218	4.68				_			
			Horizoniai	GILO-15	1414	MMAT	13445	D+L+F+H'+T+E'	89	198	0.0.7.11.11.0	210	****				-			-
						MMAC	13451	D+L+F+H'+T+E'	-50	142										
8						MTCM	13320	D+L+F+H'+T+E'	188	-90										
1		North (top) South			1-V-L	MCCM	13420	D+L+F+H'+T+E'	-281	-99	D+L+F+H'+T+E'	92	4.68							
e Bulle	6	(bottom)				MMAT	13414	D+L+F+H+T+E	103	145										
House			Vertical	3H.6-80		MMAC	13414	D+L+F+H+T+E	-48	143										
Pump			renous	41.000		MTCM	13410	D+L+F+H+T+E	471	72										
					2-V-L	MCCM	13437	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-321	288	D+L+F+H'+T+E'	92	7.8							
					2.7.2	MMAT	13437	D+L+F+H+T+E	7	475		**	1.0							
						MMAC	13437	D+L+F+H+T+E	-127	477										
			Transverse (Horizontal and Vertical)	3H.6-81	1-T			-		-		-		D+L+F+H+T+E	38	470	0	76	0.20	-
						MTCM	6177	D+L+F+H'+T+E'	1005	-246										
					1-H-L	MCCM	5873	D+L+F+H+T+E	-294	-499	D+L+F+H'+T+E'	42	12.48							
					144.6	MMAT	5801	D+L+F+H+T+E	57	-1311	0-6-1-11-11-6	***	1240	·						
						MMAC	5901	D+L+F+H+T+E	-133	-1311										
						MTCM	6006	1.4D + 1.7F + 1.3H + 1.4To	648	-139										
			Horizontal	3H.6-82	2-H-L	MCCM	2678	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-512	-182	D+L+F+H'+T+E'	176	9.36							
					22	MMAT	3939	D+L+F+H+T+E	39	-968										
						MMAC	3939	D+L+F+H+T+E	-190	-1036										
						MTCM	5796	1.4D + 1.7F + 1.3H + 1.4To	282	-335										
					3-H-L	MCCM	3600	D+L+F+H+T+E	-608	-86	D+L+F+H'+T+E'	153	6.24							
						MMAT	5975	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	66	-533										
						MMAC	3574	1.4D + 1.7F + 1.3H + 1.4To	-48	-477										
						MTCM	2977	D+L+F+H+T+E	248	-129										
					1-V-L	MCCM	6108	D+L+F+H'+T+E'	-334	-101	D+L+F+H'+T+E'	139	4.68							
Wall						MMAT	6108	D+L+F+H+T+E	26	-664										
North	6	North (outside)				MMAC	6108	D+L+F+H+T+E	-200	-664										
S Basi		(outside)				MTCM	2980	D+L+F+H+T+E	259	-190										
왐					2-V-L	MCCM	6109	D+L+F+H+T+E	-320	-41	D+L+F+H'+T+E'	175	6.24	_			-			
						MMAT	6113	D+L+F+H+T+E	0	-713										
						MMAC	6113	D+L+F+H+T+E	-144	-713										
						MTCM	3004	D+L+F+H+T+E	313	-184										
			Vertical	3H.6-83	3-V-L	MCCM	6116	D+L+F+H+T+E	-332	-149	D+L+F+H+T+E	258	7.8							-
						MMAT	6116	D+L+F+H+T+E	76	-736										
						MMAC	6116	D+L+F+H+T+E	-189	-736					-			-		
						MTCM	3027	D+L+F+H+T+E	473	-599	-									
					4-V-L	MCCM	5998	D+L+F+H+T+E	-507	-205	D+L+F+H'+T+E'	249	12.48							
						MMAT	6124	D+L+F+H+T+E	133	-800	4									
						MMAC	6124	D+L+F+H+T+E	-49	-800	-				-					-
						MTCM	6003	D+L+F+H+T+E	281	-59	+									
					5-V-L	MCCM	6003	D+L+F+H+T+E	-284	-61	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	214	6.24	-	-					-
						MMAT	4149	D+L+F+H+T+E	133	-372	+									
						MMAC	4149	D+L+F+H'+T+E'	-5	-303										

				i E	# 6	€,			Longitudinal	Reinforcement	Design Loads									
Log go	sso c		non	ont	mber	Force	eut	Axial and Flexure L			In-Plane Shear Loads	5	Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear	
Local	Thickne (ft)	Face	Directio	Layo fing N	Reinford Cone Nur	Eng.	Elem	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load		ontal Section		al Section	Reinforcement Provided (in²/ft²)	Remarks
				Re Draw	Zo Re	Мехі		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	6005	D+L+F+H+T+E	373	-744										
					6-V-L	MCCM	2469	D+L+F+H+T+E	-602	-352	D+L+F+H'+T+E'	222	9.36			_				
						MMAT	6005	D+L+F+H+T+E	373	-744										
		North	Vertical	3H.6-83		MMAC	6005	D+L+F+H+T+E	-189	-744										
		(outside)				MTCM	2859	1.4D + 1.7F + 1.3H + 1.4To	143	-152										
					7-V-L	MCCM	2460	D+L+F+H+T+E	-558	-157	D+L+F+H+T+E	222	6.24					_		
						MMAT	3624	D+L+F+H+T+E	3	-589										
						MMAC	3600	D+L+F+H+T+E	-272	-597										
						MTCM	2959	1.4D + 1.7F + 1.3H + 1.4To	350	326										
					1-H-L	MCCM	3942	D+L+F+H+T+E	-255	368	D+L+F+H+T+E	113	9.36							
						MMAT	2950	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	172	1113										
						MMAC	3938	D+L+F+H+T+E	-3	1062										
						MTCM	6177	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	1025	209										
					2-H-L	MCCM	5873	D+L+F+H+T+E	-294	193	D+L+F+H+T+E	42	14.04							
						MMAT	7021	D+L+F+H+T+E	108	1219										
						MMAC	7021	D+L+F+H+T+E	-77	1219										
						MTCM	4005	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	525	417										
					3-H-L	MCCM	3963	D+L+F+H+T+E	-344	210	D+L+F+H+T+E	93	9.36							-
						MMAT	3002	1.4D + 1.7F + 1.3H + 1.4To	224	900										
lk (g)			Horizontal	3H.6-84		MMAC	3002	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-4	895										
8						MTCM	5847	1.4D + 1.7F + 1.3H + 1.4To	175	227										
dh W	6				4-H-L	MCCM	3600	D+L+F+H+T+E	-608	182	D+L+F+H+T+E	149	6.24		-	-		-	-	-
2 5 8						MMAT	5992	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	58	943										
UHSB						MMAC MTCM	5992 6005	1.4D + 1.7F + 1.3H + 1.4To	-128 664	975										
						MCCM	2610	1.4D + 1.7F + 1.3H + 1.4To 1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-495	99	1									
		South (inside)			5-H-L	MCCM	3027	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-496 127	1401	D+L+F+H+T+E	176	12.48							
						MMAC	3027	D+L+F+H+T+E	-94	1347										
						MTCM	6093	1.4D + 1.7F + 1.3H + 1.4To	522	61										
						MCCM	3641	D+L+F+H+T+E	-384	263	1									
					6-H-L	MMAT	6964	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	149	1296	D+L+F+H+T+E	176	12.48						-	-
						MMAC	4150	D+L+F+H+T+E	-9	1163										
						MTCM	2977	D+L+F+H+T+E	248	53										
						MCCM	5846	D+L+F+H+T+E	-268	141	1									
					1-V-L	MMAT	5856	D+L+F+H+T+E	-200	341	D+L+F+H'+T+E'	139	4.68			-			-	
						MMAC	5828	1.4D + 1.7F + 1.3H + 1.4To	-87	358										
						MTCM	3001	D+L+F+H+T+E	309	35										
						MCCM	5918	D+L+F+H+T+E	-269	183										
			Vertical	3H.6-85	2-V-L	MMAT	5900	1.4D + 1.7F + 1.3H + 1.4To	23	423	D+L+F+H+T+E	211	6.24		-	-	-	-	-	-
						MMAC	5900	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-87	476	†									
						MTCM	3027	D+L+F+H+T+E	473	411					+				+	
						MCCM	5998	D+L+F+H+T+E	-507	713	†									
					3-V-L	MMAT	5998	D+L+F+H+T+E	39	713	D+L+F+H+T+E	258	10.92	•		-	-	•	-	-
						MMAC	5998	D+L+F+H'+T+E'	-507	713	†									
	_						<u> </u>					_								

				# E	# E	<u>0</u>			Longitudinal	Reinforcemen	t Design Loads									
- E	8 00 00	8	ug:	cemer	mper	500	neut .	Axial and Flexure I			In-Plane Shear Loads		Longitudinal Reinforcement Provided			Transverse Shear Design Loads			Transverse Shear	Remarks
E C	Thickness (ft)	Face	Direction	Reinforcem Layout awing Numl	Reinforcen Zone Numb	E E	Elem	Load	Axial ⁽⁴⁾	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load		ontal Section	Ver	tical Section	Reinforcement Provided (in²/ft²)	Remarks
	-			Re Draw	Re	Maxim		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	()	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	5916	D+L+F+H'+T+E'	243	338										
					4-V-L	MCCM	6101	D+L+F+H'+T+E'	-352	451	D+L+F+H+T+E	258	9.36							
					4-7-2	MMAT	6112	1.4D + 1.7F + 1.3H + 1.4To	35	1265	Dicipantite	200	9.30						-	
						MMAC	6112	1.4D + 1.7F + 1.3H + 1.4To	-12	1298										
						MTCM	6003	D+L+F+H'+T+E'	281	138										
					5-V-L	MCCM	6003	D+L+F+H'+T+E'	-284	114	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	214	6.24							
					9.4.5	MMAT	7017	D+L+F+H'+T+E'	19	350	1.00D + 1.3C + 1.00F + 1.3H + 1.21 + 1.3W	214	0.24							
(punc)		South	Vertical			MMAC	4149	D+L+F+H'+T+E'	-83	366										
O) III		(inside)	Verscal			MTCM	6005	D+L+F+H'+T+E'	373	523										
forth W	6				6-V-L	MCCM	2469	D+L+F+H'+T+E'	-602	591	D+L+F+H+T+E	222	9.36							
Sasin N					0-V-L	MMAT	6005	D+L+F+H'+T+E'	39	793	Differentie	222	9.30							
SE SE						MMAC	6005	D+L+F+H'+T+E'	-506	793										
						MTCM	2859	1.4D + 1.7F + 1.3H + 1.4To	142	50										
					7-V-L	MCCM	2460	D+L+F+H'+T+E'	-558	147	D+L+F+H'+T+E'	222	6.24							
					1776	MMAT	3636	D+L+F+H'+T+E'	19	450	0.5.1.11.1.5	244	0.24	-					-	-
						MMAC	3615	1.4D + 1.7F + 1.3H + 1.4To	-277	945										
					1-T		-							1.4D + 1.7F + 1.3H + 1.4To	-5	-19	101	138	0.20	
		-	Transverse (Horizontal and Vertical)	3H.6-86	2-T		-							1.4D + 1.7F + 1.3H + 1.4To	16	35	74	362	0.31	
					3+T		-							1.4D + 1.7F + 1.3H + 1.4To	-103	238	-100	429	0.80	
						MTCM	4473	D+L+F+H'+T+E'	607	-301										
					1-H-L	MCCM	4382	D + L + F + H' + T + E'	-329	-544	D+L+F+H'+T+E'	33	10.92							
						MMAT	4318	D+L+F+H'+T+E'	61	-1117										
						MMAC	4318	D+L+F+H'+T+E'	-128	-1117										
						MTCM	3815	D + L + F + H' + T + E'	275	-187										
			Horizontal	3H.6-87	2-H-L	MCCM	3557	D+L+F+H'+T+E'	-362	-250	D+L+F+H+T+E	68	6.24							
					1	MMAT	3528	D + L + F + H' + T + E'	28	-844		-								
						MMAC	3528	D+L+F+H'+T+E'	-31	-844										
						MTCM	2201	1.4D + 1.7F + 1.3H + 1.4To	399	-230										
					3-H-L	MCCM	1067	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-237	-110	D+L+F+H'+T+E'	98	7.8							
						MMAT	2198	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	185	-608										
						MMAC	1741	1.4D + 1.7F + 1.3H + 1.4To	-19	-530										
75						MTCM	3551	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	199	-102										
South	6	South (outside)			1-V-L	MCCM	1770	D+L+F+H'+T+E'	-354	-76	D+L+F+H'+T+E'	131	4.68	-					_	
JHS Basin		(outside)	'			MMAT	1771	D+L+F+H'+T+E'	3	-506										
₹						MMAC	1773	D+L+F+H'+T+E'	-176	-616										
						MTCM	3593	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	212	-91										
					2-V-L	MCCM	1844	D+L+F+H'+T+E'	-326	-14	D+L+F+H+T+E	169	6.24	-					-	
						MMAT	1844	D+L+F+H'+T+E'	49	-283										
			Vertical	3H.6-88		MMAC	1844	D+L+F+H'+T+E'	-164	-587										
						MTCM	2139	D+L+F+H'+T+E'	238	-111	1									
					3-V-L	MCCM	1864	D+L+F+H'+T+E'	-388	-69	D+L+F+H+T+E	149	4.68							
						MMAT	1864	D+L+F+H'+T+E'	29	-656	1									
						MMAC	1864	D+L+F+H'+T+E'	-211	-656										
						MTCM	2142	D+L+F+H'+T+E'	240	-164	1									
					4-V-L	MCCM	1865	D+L+F+H'+T+E'	-388	-85	D+L+F+H+T+E	174	6.24							
						MMAT	1865	D+L+F+H'+T+E'	26	-665	1									
						MMAC	1865	D+L+F+H+T+E	-216	-655										

				± €	# 16	0,			Longitudinal	Reinforcement	: Design Loads									
i g	88 00	Face	tou	out	mper	200	ient 1	Axial and Flexure	Loads		In-Plane Shear Load	ls	Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear	Remarks
Locati	Thickness (ft)	Ĭ.	Direc	Reinforcem Layout awing Numi	Reinforci Zone Nun	E E	E	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ft)	Load		ontal Section		ical Section	Reinforcement Provided (in ² /ft ²)	Remarks
	-			Re Draw	Zor Re	Maxi		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	(7 10)	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	2163	D+L+F+H+T+E	217	-103										
						MCCM	1873	D+L+F+H+T+E	-365	-38	1									
					5-V-L	MMAT	1872	D+L+F+H+T+E	7	-637	D+L+F+H'+T+E'	148	4.68						-	
		South				MMAC	1868	D+L+F+H+T+E	-175	-661										
		(outside)	Vertical	3H.6-88		MTCM	1880	D+L+F+H'+T+E'	227	-308										
						MCCM	1880	D+L+F+H+T+E	-237	-125										
					6-V-L	MMAT	1880	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	165	-370	D+L+F+H'+T+E'	88	6.24				·		-	
						MMAC	1880	D+L+F+H+T+E	-52	-355	1									
						MTCM	2032	1.4D + 1.7F + 1.3H + 1.4To	351	424										
						MCCM	3531	D+L+F+H'+T+E'	-249	438	1									
					1-H-L	MMAT	4318	D+L+F+H+T+E	108	1408	D+L+F+H'+T+E'	98	10.92						-	-
						MMAC	4318	D+L+F+H+T+E	-79	1408										
						MTCM	4473	D+L+F+H+T+E	607	384										
					2-H-L	MCCM	4382	D+L+F+H+T+E	-329	339	D+L+F+H+T+E	33	9.36						_	
					Z-H-L	MMAT	4497	D+L+F+H+T+E	70	698	D+L+F+H+1+E	33	9.36							
						MMAC	4497	D+L+F+H+T+E	-99	698										
						мтсм	3815	D+L+F+H+T+E	275	280										
					3-H-L	мссм	3557	D+L+F+H'+T+E'	-362	193	D+L+F+H'+T+E'	64	6.24		_				_	
					3414	MMAT	4436	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	98	713	0.5.1.4.1.5		0.24							-
97			Horizontal	3H.6-89		MMAC	4436	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-37	729										
(Conf			Hongoman	311,040		MTCM	2188	1.4D + 1.7F + 1.3H + 1.4To	360	154										
P Wal	6				4-H-L	MCCM	2118	1.4D + 1.7F + 1.3H + 1.4To	-191	671	D+L+F+H'+T+E'	76	9.36							
o o						MMAT	2140	1.4D + 1.7F + 1.3H + 1.4To	286	848										
UHS Basin						MMAC	2092	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-21	852										
5						мтсм	1705	1.4D + 1.7F + 1.3H + 1.4To	232	69										
		North			5-H-L	мссм	1066	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-244	214	D+L+F+H'+T+E'	98	6.24						_	
		(inside)				MMAT	1687	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	64	720										
						MMAC	1687	1.4D + 1.7F + 1.3H + 1.4To	-83	728										
						MTCM	2204	1.4D + 1.7F + 1.3H + 1.4To	386	568										
					6-H-L	MCCM	3836	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-246	38	D+L+F+H'+T+E'	98	10.92							
						MMAT	4505	D+L+F+H'+T+E'	111	1546										
						MMAC	4505	D+L+F+H'+T+E'	-76	1546										
						мтсм	3550	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	187	42										
					1-V-L	MCCM	1014	D+L+F+H'+T+E'	-273	120	D+L+F+H'+T+E'	131	4.68						_	
						MMAT	4317	D+L+F+H'+T+E'	12	328										
						MMAC	1119	1.4D + 1.7F + 1.3H + 1.4To	-127	451										
						мтсм	3587	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	204	15	1									
			Vertical	3H.6-90	2-V-L	мссм	1197	D+L+F+H+T+E	-290	142	D+L+F+H'+T+E'	169	6.24							
						MMAT	4375	D+L+F+H'+T+E'	24	255	1									
						MMAC	1197	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-239	308										
						MTCM	2139	D+L+F+H+T+E	238	25	1									
1					3-V-L	мссм	1536	D+L+F+H'+T+E'	-324	170	D+L+F+H'+T+E'	149	4.68						-	
						MMAT	1380	D+L+F+H+T+E	6	344	1									
I	1					MMAC	1291	1.4D + 1.7F + 1.3H + 1.4To	-129	447										

				2 €	₩ 8	ô,			Longitudinal	Reinforcement	Design Loads									
u g	s oc		tion	out number	upper (Force	ent	Axial and Flexure I			In-Plane Shear Loads		Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear	
Local	Thickness (ft)	Face	Direction	Reinforce Layo awing Nu	Reinforce Zone Num	E E	Eem	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load		ental Section		cal Section	Reinforcement Provided (in²/ft²)	Remarks
				Re	Zor Zor	Maxin		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	(Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	2142	D+L+F+H'+T+E'	240	67										
					4-V-L	MCCM	1553	D+L+F+H'+T+E'	-323	183	D+L+F+H'+T+E'	174	6.24						_	
						MMAT	1553	D+L+F+H'+T+E'	5	263										
						MMAC	1553	D+L+F+H'+T+E'	-311	263										
9						MTCM	2163	D+L+F+H'+T+E'	217	32										
Con		North	Vertical		5-V-L	MCCM	1700	D+L+F+H'+T+E'	-299	137	D+L+F+H'+T+E'	148	4.68							
W W	6	(inside)				MMAT	4504	D+L+F+H'+T+E'	14	375										
Sin So						MMAC	3838	D+L+F+H'+T+E'	-75	402										
HS Ba						MTCM	1880	D+L+F+H'+T+E'	227	38										
5					6-V-L	MCCM	1864	D+L+F+H'+T+E'	-388	568	D+L+F+H'+T+E'	174	7.8							
						MMAT	1868	D+L+F+H'+T+E'	27	937										
						MMAC	1781	1.4D + 1.7F + 1.3H + 1.4To	-130	1307										
			Transverse (Horizontal	3H.6-91	1-T				-					1.4D + 1.7F + 1.3H + 1.4To	-10	-29	-103	128	0.20	
			and Vertical)		2-T	-			-			-		1.4D + 1.7F + 1.3H + 1.4To	-41	-2	-91	260	0.31	
						MTCM	5234		410	-98										
					1-H-L	MCCM	5235	D+L+F+H'+T+E'	-311	-1619	D+L+F+H'+T+E'	40	12.48	_				_	_	
						MMAT	5241	D+L+F+H'+T+E'	64	-2078										
						MMAC	5241	D+L+F+H'+T+E'	-222	-2130										
						MTCM	2611	1.4D + 1.7F + 1.3H + 1.4To	216	-508										
					2-H-L	MCCM	3504	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-348	-25	D+L+F+H'+T+E'	71	6.24							
						MMAT	3936	D+L+F+H+T+E	27	-968										
			Horizontal	3H.6-92		MMAC	3936	D+L+F+H'+T+E'	-190	-1033										
						MTCM	2300	1.4D + 1.7F + 1.3H + 1.4To	393	-216										
		East (outside)			3-H-L	MCCM	2822	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-230	-136	D+L+F+H'+T+E'	78	7.8							
		(odiade)				MMAT	1995	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	103	-658										
						MMAC	1998	D+L+F+H'+T+E'	-21	-578										
						MTCM	2649	1.4D + 1.7F + 1.3H + 1.4To	275	-248										
					4-H-L	MCCM	2820	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-192	-111	D+L+F+H+T+E	106	6.24							
Wall						MMAT	2649	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	162	-505										
in Eas	6					MMAC	2627	D+L+F+H'+T+E'	-101	-489										
UHS Basin						MTCM	2375	D+L+F+H'+T+E'	266	-222										
5			Vertical	3H.6-93	1-V-L	MCCM	2832	D+L+F+H'+T+E'	-460	-157	D+L+F+H'+T+E'	129	6.24							
						MMAT	4295	D+L+F+H+T+E	0	-983										
						MMAC	5234	D+L+F+H+T+E	-283	-1073										
						MTCM	4266	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	410	107										
					1-H-L	MCCM	5235	D+L+F+H'+T+E'	-311	471	D+L+F+H'+T+E'	40	15.6		-				-	
						MMAT	5235	D+L+F+H'+T+E'	209	2186										
						MMAC	5235	D+L+F+H'+T+E'	-67	2124										
						MTCM	2297	1.4D + 1.7F + 1.3H + 1.4To	386	546	-									
		West (inside)	Horizontal	3H.6-94	2-H-L	MCCM	3893	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-255	96	D+L+F+H'+T+E'	106	10.92	-	-		-	-	-	-
		"				MMAT	3890	D+L+F+H+T+E	128	1469	1									
						MMAC	3890	D+L+F+H+T+E	-7	1413										
						MTCM	2528	1.4D + 1.7F + 1.3H + 1.4To	204	101										
					3-H-L	MCCM	3507	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-346	20	D+L+F+H'+T+E'	71	6.24							
						MMAT	2494	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	81	801										
						MMAC	5236	D+L+F+H'+T+E'	-59	756										

				# E	# 62	(E) g			Longitudinal	Reinforcement	Design Loads									
tion	Thickness (ft)	Face	tion	out	cemen mber ⁽	Fore	neut	Axial and Flexure I			In-Plane Shear Load:		Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear	P
. 200	₹ E	Thickness (ft) (ft) Face Direction Layout rawing Numt			Reinforc Zone Nur	E E	Elem	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ft)	Lord		ontal Section		ical Section	Reinforcement Provided (in²/ft²)	Remarks
				Re Draw	Re	Maxin		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	(Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	2327	1.4D + 1.7F + 1.3H + 1.4To	348	247										
					4-H-L	MCCM	2414	D + L + F + H' + T + E'	-128	124	D+L+F+H'+T+E'	77	9.36						_	
						MMAT	1980	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	75	885										
						MMAC	1980	1.4D + 1.7F + 1.3H + 1.4To	-65	800										
						MTCM	2693	1.4D + 1.7F + 1.3H + 1.4To	239	164										
			Horizontal	3H.6-94	5-H-L	MCCM	2879	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-240	233	D+L+F+H'+T+E'	106	6.24							
						MMAT	2492	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	58	749										
						MMAC	2492	1.4D + 1.7F + 1.3H + 1.4To	-94	707										
						MTCM	2436	1.4D + 1.7F + 1.3H + 1.4To	341	334										
					6-H-L	MCCM	3933	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-256	74	D+L+F+H'+T+E'	106	9.36						_	
						MMAT	2441	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	176	1101										
						MMAC	3935	D+L+F+H'+T+E'	-1	1070										
						MTCM	2328	D+L+F+H'+T+E'	195	173										
Sout)		West (inside)			1-V-L	MCCM	2689	D+L+F+H'+T+E'	-338	277	D+L+F+H+T+E	100	4.68							
17/		(111111)				MMAT	5208	D+L+F+H'+T+E'	13	546										
East	6					MMAC	5208	D+L+F+H'+T+E'	-4	546										
HS Basi						MTCM	2349	D+L+F+H+T+E	251	166										
. 3					2-V-L	MCCM	2690	D+L+F+H'+T+E'	-375	254	D+L+F+H'+T+E'	129	6.24		-					
						MMAT	4267	D+L+F+H'+T+E'	25	1097										
			Vertical	3H.6-95	_	MMAC MTCM	4267	D+L+F+H+T+E	-188	1138										
							2375	D+L+F+H'+T+E'	266	136										
					3-V-L	MCCM MMAT	2707	D+L+F+H+T+E	-366	242	D+L+F+H+T+E	128	4.68						-	-
						MMAC	4295 4295	D+L+F+H+T+E	20 -180	795 798										
						MTCM	2825	D+L+F+H+T+E'	232	138										
						MCCM	2832	D+L+F+H'+T+E'	-460	679										
					4-V-L	MMAT	2955	D+L+F+H'+T+E'	9	1176	D+L+F+H'+T+E'	129	7.8						-	
						MMAC	2955	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-185	1331										
					1-T									1.4D + 1.7F + 1.3H + 1.4To	-9	-33	99	130	0.20	
			Transverse (Horizontal and Vertical)	3H.6-96	2-T									1.4D + 1.7F + 1.3H + 1.4To	-39	-2	89	263	0.31	
			and Vertical)		3-T		١.					-		D+L+F+H'+T+E'	-204	105	-294	428	1.76	
						MTCM	5176	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	402	-124										
						MCCM	5171	D+L+F+H+T+E	-416	-857										
					1-H-L	MMAT	5177	D+L+F+H'+T+E'	52	-2201	D+L+F+H'+T+E'	37	14.04	-	-	-	-	-	-	-
						MMAC	5177	D+L+F+H'+T+E'	-137	-2201										
						MTCM	4514	1.4D + 1.7F + 1.3H + 1.4To	368	-286										
						MCCM	3477	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-356	-143										
la/					2-H-L	MMAT	3866	D+L+F+H'+T+E'	32	-864	D+L+F+H'+T+E'	64	7.8						-	-
West V		West				MMAC	3866	D+L+F+H'+T+E'	-275	-909										
Basin	6	(outside)	Horizontal	3H.6-97		MTCM	2222	1.4D + 1.7F + 1.3H + 1.4To	846	-208										
E S						MCCM	2220	D+L+F+H'+T+E'	-156	-195										
					3-H-L	MMAT	2329	D+L+F+H+T+E	240	-517	D+L+F+H'+T+E'	117	12.48							(8)
						MMAC	2329	D+L+F+H+T+E	-113	-416										
						мтсм	1956	1.4D + 1.7F + 1.3H + 1.4To	431	-402										
					4-H-L	MCCM	1953	D+L+F+H+T+E	-150	-259	D+L+F+H+T+E'	117	7.8		_					-
					4-8-6	MMAT	1923	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	109	-651	D+C+F+H+1+E	""	7.0							1
	1	1			1	MMAC	2167	D+L+F+H'+T+E'	-17	-634		1		l .	1		1		1	1

			_	ent xer ⁽¹⁾	ent N(2)	(3)			Longitudinal	Reinforcement	Design Loads		- Laurender			Transverse Shear Design Loads				
ation	2 kn	Face	Direction	yout Numi	m de	For	ment	Axial and Flexure	Loads		In-Plane Shear Load	ds	Longitudinal Reinforcement Provided						Transverse Shear Reinforcement Provided	Remarks
3	Thickne:	-	a d	einfe La	Reinfo Cone N	un un	å Lo	oad	Axial (4)	Flexure (4)	Load	In-plane ⁽⁵⁾ Shear	(in²/ ft)	Load	Transverse Shear Force	ontal Section Corresponding Axial Force	Verti Transverse Shear Force	cal Section Corresponding Axial Force	(in²/ft²)	
				r c	E Ú	iĝ.		ination	(kips / ft)	(ft-kips / ft)	Combination	(kips / ft)		Combination	(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
						MTCM	2315 1.4D + 1.7F +		466	-360										
					5-H-L	MCCM		+ H' + T + E'	-271	-337	D+L+F+H'+T+E'	141	7.8						_	
						MMAT		+ H' + T + E'	3	-614										
			Horizontal	3H.6-97		MMAC		+ H' + T + E'	-40	-614										
						MTCM		+ 1.3H + 1.4To	290	-295										
					6-H-L	MCCM		+ 1.3H + 1.2T + 1.3W	-214	-44	D+L+F+H'+T+E'	141	6.24							
						MMAT		7F + 1.7H + 1.7W	72	-514										
						MMAC		+ 1.3H + 1.4To	-49	-481										
								+ 1.3H + 1.4To	617	-67										
					1-V-L	MCCM	2596 D+L+F+		-172	-183	D+L+F+H'+T+E'	190	9.36							
						MMAT	2596 D+L+F+		73	-904										
						MMAC MTCM	2596 D+L+F+ 2604 D+L+F+	+H+T+E	-32 238	-904										
						MCCM				-115										
		West (outside)			2-V-L	MMAT		+H'+T+E'	-278 40	-99 -704	D+L+F+H'+T+E'	133	6.24							
						MMAC		+H+T+E	-75	-704										
						MTCM	2239 D+L+F+		284	-725										-
						MCCM	2606 D+L+F+		-379	-150										
			Vertical	3H.6-98	3-V-L	MMAT	2320 D+L+F+		75	-791	D+L+F+H'+T+E'	162	7.8		-		-	-	-	
						MMAC	5170 D+L+F+		-296	-1069										
out,q)						MTCM	2242 D+L+F+		254	-203										
Wall (C						MCCM		+H+T+E	463	-63										
West	6				4-V-L	MMAT		+H+T+E	4	-1011	D+L+F+H'+T+E'	151	6.24		-			-	-	
Basin						MMAC		+H'+T+E'	-286	-1036										
울						MTCM	2246 D+L+F+		195	-211										
						MCCM	2612 D+L+F+		-370	-110										
					5-V-L	MMAT	5184 D+L+F+		1	-646	D+L+F+H'+T+E'	116	4.68							
						MMAC	5178 D+L+F+	+H+T+E	-73	-770										
						MTCM	4262 1.05D + 1.3L + 1.05F	+ 1.3H + 1.2T + 1.3W	404	132										
						MCCM	5171 D+L+F+	+ H' + T + E'	-416	1733										
					1-H-L	MMAT	5171 D+L+F+	+ H' + T + E'	288	2357	D+L+F+H'+T+E'	37	15.6		-			-	-	
						MMAC	5171 D+L+F+	+ H' + T + E'	-100	2283										
						MTCM	4515 1.4D + 1.7L + 1.7	7F + 1.7H + 1.7W	228	128										
						MCCM	3857 1.05D + 1.3L + 1.05F	+ 1.3H + 1.2T + 1.3W	-353	60										
					2-H-L	MMAT	3842 D+L+F+	+ H' + T + E'	108	1263	D+L+F+H'+T+E'	61	7.8	·						
		East		3H.6-99		MMAC	3887 D+L+F+	+ H' + T + E'	-73	1233										
		(inside)	Horizontal	3H.6-99		MTCM	2220 1.4D + 1.7F +	+ 1.3H + 1.4To	868	1126										
					3-H-L	MCCM	2314 D+L+F+	+ H' + T + E'	-271	402	D+L+F+H'+T+E'	120	15.6							(8)
					34112	MMAT	2329 1.4D + 1.7L + 1.7	7F + 1.7H + 1.7W	732	1286	D-C	120	10.0							(0)
						MMAC	2329 D+L+F+	+ H' + T + E'	-33	1199										
						MTCM	2236 1.4D + 1.7F +	+ 1.3H + 1.4To	521	332										
					4-H-L	MCCM	2183 1.05D + 1.3L + 1.05F	+ 1.3H + 1.2T + 1.3W	-226	276	D+L+F+H'+T+E'	120	10.92						_	
						MMAT	2293 1.4D + 1.7L + 1.7	7F + 1.7H + 1.7W	183	1221			.,,,,,							
						MMAC	2291 D+L+F+	+ H' + T + E'	-18	854										

				# F	# E	(C) ₈₈			Longitudinal	Reinforcement	: Design Loads									
ug I	Thickness (ft)	Face	tion	cemer	ceme	Force	neut	Axial and Flexure	Loads		In-Plane Shear Load	is	Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear	Remarks
200	# Hick	a.	Direction	Lay ring N	Reinford Zone Nur	un un	Elen	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load Combination		ontal Section		cal Section	Reinforcement Provided (in ² /ft ²)	Remarks
				Drav R	8 S	Max		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	2311	1.4D + 1.7F + 1.3H + 1.4To	244	275										
			Horizontal		5-H-L	мссм	2310	D+L+F+H'+T+E'	-193	242	D+L+F+H+T+E	141	6.24							
						MMAT	2310	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	130	729										
						MMAC	2577	D+L+F+H'+T+E'	-2	534										
						MTCM	2219	1.4D + 1.7F + 1.3H + 1.4To	655	61										
					1-V-L	MCCM	2596	D+L+F+H'+T+E'	-172	310	D+L+F+H+T+E	190	10.92							
						MMAT	2596	D+L+F+H'+T+E'	85	775										
						MMAC	2596	D+L+F+H'+T+E'	-21	775										
						MTCM	2237	D+L+F+H'+T+E'	228	144										
					2-V-L	MCCM	2410	D+L+F+H'+T+E'	-247	174	D+L+F+H+T+E	133	4.68							
						MMAT	3848	D+L+F+H'+T+E'	2	380										
						MMAC	5168	D+L+F+H'+T+E'	-79	440										
						MTCM	2239	D+L+F+H'+T+E'	284	145										
					3-V-L	MCCM	5170	D+L+F+H'+T+E'	-315	130	D+L+F+H+T+E	162	7.8							
						MMAT	4235	D+L+F+H'+T+E'	8	1073										
÷		East				MMAC	4235	D+L+F+H'+T+E'	-204	1160										
Conf		(inside)				MTCM	1834	D+L+F+H'+T+E'	220	244										
ot Wal	6		Vertical	3H.6-100	4-V-L	MCCM	2173	D+L+F+H'+T+E'	-293	212	D+L+F+H+T+E	83	4.68							
W W						MMAT	4251	D+L+F+H'+T+E'	2	394										
ES ES						MMAC	4239	D+L+F+H'+T+E'	-112	763										
5						MTCM	2242	D+L+F+H+T+E	254	113										
					5-V-L	MCCM	2455	D+L+F+H'+T+E'	-359	174	D+L+F+H+T+E	151	6.24							
						MMAT	4263	D+L+F+H+T+E	25	839										
						MMAC	4263	D+L+F+H'+T+E'	-173	841										
						MTCM	2246	D+L+F+H'+T+E'	195	138										
					6-V-L	MCCM	2456	D+L+F+H'+T+E'	-309	219	D+L+F+H+T+E	116	4.68							
						MMAT	5185	D+L+F+H'+T+E'	7	486		"								
						MMAC	5179	D+L+F+H'+T+E'	-21	538										
						MTCM	2320	D+L+F+H'+T+E'	255	681										
					7-V-L	MCCM	2607	D+L+F+H'+T+E'	-463	708	D+L+F+H+T+E	162	9.36		_					
						MMAT	2324	1.4D + 1.7F + 1.3H + 1.4To	24	1235										
						MMAC	2324	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-139	1298										
					1-T	-		•		-				1.4D + 1.7F + 1.3H + 1.4To	-10	-73	-100	143	0.20	
			Transverse (Horizontal	3H.6-101	2-T			•						D+L+F+H'+T+E'	-208	80	-307	306	1.76	
			and Vertical)		3-T					-				D+L+F+H'+T+E'	98	315	71	-73	0.31	
	_				4-T	-	-	-	-	-				1.4D + 1.7F + 1.3H + 1.4To	-50	600	81	746	0.79	
						MTCM	7788	D+L+F+H'+T+E'	638	-1066										
i					1-H-L	MCCM	7788	D+L+F+H'+T+E'	-408	-981	D+L+F+H+T+E	331	15.6	-	_		-		_	(8)
Butte						MMAT	7812	D+L+F+H'+T+E'	350	-1240										
South	6	East and	Horizontal	3H.6-102		MMAC	7812	D+L+F+H'+T+E'	-112	-1240										
North		West		-		MTCM	7417	D+L+F+H'+T+E'	603	-466										
Basin					2-H-L	MCCM	7417	D+L+F+H'+T+E'	-534	-275	D+L+F+H+T+E	369	9.36		_					
뽘						MMAT	7650	D+L+F+H'+T+E'	188	974										
	1					MMAC	7650	D+L+F+H'+T+E'	-149	954										

				# # E	# 85	es(3)			Longitudinal	Reinforcement De	sign Loads									Т
tion	8 g	Face	ction	rout	ampo	- P	neut	Axial and Flexure	Loads		In-Plane Shear Load	ls	Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear Reinforcement Provided	Remarks
Loca	Thickne (ft)	T.	Direc	Reinforc Layo	Reinforcen Zone Numb	in m	Eler	Load	Axial ⁽⁴⁾	Flexure (4)	Load	In-plane ⁽⁵⁾ Shear	Provided (in²/ ft)	Load	Horiz Transverse Shear Force	ontal Section		cal Section	(in²/ft²)	Kemana
				A vari	2,2	We		Combination	(kips / ft)	(ft-kips / ft)	Combination	(kips / ft)		Combination	(kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	7424	D + L + F + H' + T + E'	742	-114										
					1-V-L	MCCM	7212	D+L+F+H'+T+E'	-897	103	D+L+F+H'+T+E'	237	9.36							
outd) '						MMAT	7845	D+L+F+H'+T+E'	124	-1010										
O) 988		East and West	Vertical	3H.6-103		MMAC	7845	D+L+F+H'+T+E'	-122	-1010										
Buffres		l lies				MTCM	7032	D+L+F+H'+T+E'	991	397										
South	6				2-V-L	MCCM	7032	D+L+F+H'+T+E'	-692	412	D+L+F+H'+T+E'	237	15.6				-	-		(8)
North						MMAT	7032	D+L+F+H'+T+E'	964	555										
UHS Basin						MMAC	7032	D+L+F+H'+T+E'	-411	555										
H H			Transverse		1-T			•			•			D+L+F+H'+T+E'	-30	433	-4	47	0.20	
		-	(Horizontal and Vertical)	3H.6-104	2-T		-	•	-		-		-	D+L+F+H'+T+E'	19	107	68	445	0.31	
		-			3-T			•			•			D+L+F+H'+T+E'	209	138	205	739	1.76	+
						мтсм	7674	D+L+F+H'+T+E'	599	274										
					1-H-L	MCCM	7674	D+L+F+H'+T+E'	-1110	-475 607	D + L + F + H' + T + E'	278	9.36							-
						MMAC	7681 7681	D+L+F+H'+T+E'	246 -527	607										
						MTCM	7511	1.4D + 1.7L + 1.7F + 1.7H + 1.7W												+
						MCCM	7511	D+L+F+H'+T+E'	166	189										
			Horizontal	3H.6-105	2-H-L	MMAT	7856	D+L+F+H+T+E	116	-486	D + L + F + H' + T + E'	243	6.24		-	-	-	-	-	-
						MMAC	7865	D+L+F+H'+T+E'	-42	298										
						MTCM	7066	D+L+F+H'+T+E'	417	-74										+
						MCCM	7065	D+L+F+H'+T+E'	-382	114										
ε					3-H-L	MMAT	7335	D+L+F+H'+T+E'	125	351	D + L + F + H' + T + E'	332	9.36							
165968						MMAC	7276	D+L+F+H'+T+E'	-3	-277										
B Buth		North and South				MTCM	7489	D+L+F+H'+T+E'	418	-98										+
9W-We	6					MCCM	7674	D+L+F+H'+T+E'	-692	108										
Bin					1-V-L	MMAT	7489	D+L+F+H'+T+E'	29	-251	D+L+F+H'+T+E'	284	6.24	-	-	-	-	-	-	
MS B						MMAC	7489	D+L+F+H'+T+E'	-675	-251										
						мтсм	7345	D+L+F+H'+T+E'	674	165										
						MCCM	7289	D+L+F+H'+T+E'	-897	213										
			Vertical	3H.6-106	2-V-L	MMAT	7289	D+L+F+H'+T+E'	251	276	D+L+F+H'+T+E'	284	9.36							
						MMAC	7289	D+L+F+H'+T+E'	-834	276										
						MTCM	7067	D+L+F+H'+T+E'	974	-421										1
						MCCM	7065	D+L+F+H'+T+E'	-916	502										_
					3-V-L	MMAT	7065	D+L+F+H'+T+E'	626	587	D+L+F+H'+T+E'	284	15.6	-	-	-	-	-		(8)
						MMAC	7065	D+L+F+H'+T+E'	-700	587										
			Transverse (Horizontal and Vertical)	3H.6-107	1-T	-	-	-	-	-	-	-	-	D+L+F+H'+T+E'	22	889	1	35	0.20	
						MTCM	1147	D+L+F+H'+T+E'	220	-8										1
Walls					l	MCCM	1127	D+L+F+H'+T+E'	-171	-34										
N timos		North			1-H-L	MMAT	468	D+L+F+H'+T+E'	77	-169	D+L+F+H'+T+E'	31	6.24		-		-	-		-
b and 8		(outside of North Wall)				MMAC	468	D + L + F + H' + T + E'	-12	-169										
No.	2	and South (outside of South	Horizontal	3H.6-108		MTCM	-	D+L+F+H'+T+E'	360	-103										
g Town		South Wall)			BEAM 1	MCCM	-	D + L + F + H' + T + E'	-547	-107	DalaFaWaTaF	20	7.49							191
Coolin					BEAM 1	MMAT	-	D+L+F+H'+T+E'	99	-239	D + L + F + H' + T + E'	28	7.49							(8)
						MMAC	-	D+L+F+H'+T+E'	-151	-239										

				# E	# 范	£ 6			Longitudinal	Reinforcement I	Design Loads									T
uog	0.00	8	tion	out	mper	5	ent	Axial and Flexure	Loads		In-Plane Shear Loa	ds	Longitudinal Reinforcement Provided			Transverse Shear Design Loads			Transverse Shear	
Locatio	Thicknes (ft)	Face	Directi	Reinforcem Layout awing Numi	Reinforce Zone Nurr	E E	Elem	Load	Axial (4)	Flexure (4)	Load	In-plane ⁽⁵⁾ Shear	Provided (in²/ ft)	Load		ontal Section		cal Section	Reinforcement Provided (in²/ft²)	Remarks
	<u> </u>			Praw Draw	Zo	Maxi		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	,,	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	580	D+L+F+H'+T+E'	282	-23										
					1-V-L	MCCM	580	D+L+F+H'+T+E'	-297	-32	D+L+F+H+T+E	87	6.24							
						MMAT	580	D+L+F+H'+T+E'	124	-45										
						MMAC	580	D+L+F+H'+T+E'	-242	-45										
						MTCM	615	D+L+F+H'+T+E'	52	-3										
					2-V-L	MCCM	552	D+L+F+H'+T+E'	-40	-4	D+L+F+H+T+E	59	1.56							
		North (outside of North Wall)				MMAT	444	D+L+F+H'+T+E'	1	-21										
		North Wall) and South (outside of	Vertical	3H.6-109		MMAC	356	D+L+F+H'+T+E'	-16	-24										
		(outside of South Wall)				MTCM	644	D+L+F+H'+T+E'	167	-56										
		vvain			3-V-L	MCCM	459	D+L+F+H'+T+E'	-239	-67	D+L+F+H+T+E	59	4.68							
						MMAT	651	D+L+F+H'+T+E'	143	-117										
						MMAC	452	D+L+F+H'+T+E'	-96	-112										
						MTCM	523	D+L+F+H'+T+E'	292	-38										
					4-V-L	MCCM	523	D+L+F+H'+T+E'	-303	-12	D+L+F+H+T+E	92	6.24							
						MMAT	1135	D+L+F+H'+T+E'	285	-39										
						MMAC	1135	D+L+F+H'+T+E'	-88	-39										
						MTCM	1147	D+L+F+H'+T+E'	220	18										
(p,pao					1-H-L	MCCM	1127	D+L+F+H'+T+E'	-171	62	D+L+F+H+T+E	31	4.68		-					
O) alle						MMAT	667	D+L+F+H'+T+E'	48	175										
Ago			Horizontal	3H.6-110		MMAC	667	D+L+F+H'+T+E'	-44	175										
S Pu	2					MTCM	-	D+L+F+H'+T+E'	360	-103										
Worth Floring					BEAM 1	MCCM	-	D+L+F+H'+T+E'	-547	107	D + L + F + H' + T + E'	28	7.49		-					(8)
iing Tower						MMAT		D+L+F+H'+T+E'	99	-239										
Soding						MMAC MTCM	-	D+L+F+H'+T+E'	-151	-239										+
						MCCM	580	D+L+F+H'+T+E'	282 -297	24										
					1-V-L	MMAT	1	D+L+F+H'+T+E'	110	44	D+L+F+H+T+E	87	6.24							
		South (inside of North Wall)				MMAC	1	D+L+F+H'+T+E'	-263	48										
		and North				MTCM	1164	D+L+F+H'+T+E'	54	5										+
		South Wall)				MCCM	552	D+L+F+H'+T+E'	-38	3										
					2-V-L	MMAT	795	D+L+F+H'+T+E'	1	22	D+L+F+H+T+E	59	1.56		-					-
						MMAC	683	D+L+F+H'+T+E'	-19	24										
			Vertical	3H.6-111		MTCM	392	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	168	5					+					+
						MCCM	459	D+L+F+H'+T+E'	-239	81										
					3-V-L	MMAT	860	D+L+F+H'+T+E'	108	131	D+L+F+H+T+E	59	4.68		-					-
						MNIAC	860	D+L+F+H'+T+E'	-186	136										
						MTCM	523	D+L+F+H'+T+E'	292	47										
						MCCM	523	D+L+F+H'+T+E'	-303	26										
					4-V-L	MMAT	1135	D+L+F+H'+T+E'	249	50	D+L+F+H+T+E	92	6.24							
						MMAC	1135	D+L+F+H'+T+E'	-124	50										
			Transverse (Horizontal		1-T	-	-		-	-	-	-		D+L+F+H+T+E	-2	17	-15	153	0.80	+
			(Horizontal and Vertical)	3H.6-112	2-T									D+L+F+H+T+E	34	118	41	178	1.12	
Na.						MTCM	289	D+L+F+H'+T+E'	41	-304										1
E		East				MCCM	294	D+L+F+H+To+Wt	-60	-19										
Town	6	(outside)	Horizontal	3H.6-113	1-H-L	MMAT	273	D+L+F+H'+T+E'	1	-395	D+L+F+H+T+E	33	3.12		-					-
ě						MMAC	273	D+L+F+H'+T+E'	-42	-395										

				€		Ē.			Longitudinal	Reinforcement De	reion Loade									
<u>u</u>	88		ion	ut ut	ement nber ⁽²	orces	i i	Axial and Flexure		Treminor Comment De	In-Plane Shear Load		Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear	
Locati	Thickness (ft)	Face	Directio	Reinforcem Layout awing Numb	Reinforce Zone Num	m m	Eleme		Axial (4)	(4)	Load	In-plane (5)	Provided (in²/ ft)		Horizo	ontal Section	Vertic	cal Section	Reinforcement Provided (in ² /ft ²)	Remarks
_	-		,	Rei Drawi	Rei	Maxim		Load Combination	(kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	Shear (kips / ft)	(in 7 ft)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	()	
						MTCM	239	D + L + F + H' + T + E'	143	-481										
			Horizontal	3H.6-113	2-H-L	MCCM	231	D+L+F+H+T+E	-146	-744	D+L+F+H+T+E	37	9.36							
						MMAT	287	D+L+F+H'+T+E'	26	-1246										
		.				MMAC	287	D+L+F+H'+T+E'	-103	-1287										
						MTCM	291	D+L+F+H'+T+E'	31	-171										
		East (outside)			1-V-L	MCCM	291	D+L+F+H'+T+E'	-115	-74	D+L+F+H+T+E	118	3.12							
		(constant)				MMAT	283	D+L+F+H'+T+E'	7	-195										
			Vertical	3H.6-114		MMAC	275	D+L+F+H'+T+E'	-42	-197										
						MTCM	289	D+L+F+H'+T+E'	121	-799										
					2-V-L	MCCM	233	D+L+F+H'+T+E'	-297	-152	D+L+F+H+T+E	118	6.24				-			
						MMAT	287	D+L+F+H'+T+E'	1	-1099										
						MMAC	287	D+L+F+H'+T+E'	-197	-1110										
(punc)						MTCM	270	D+L+F+H'+T+E'	39	189										
Val (C					1-H-L	MCCM	233	D+L+F+H'+T+E'	-62	256	D+L+F+H+T+E	33	3.12							
East	6					MMAC	289	D+L+F+H'+T+E'	-61	295 295										
Town			Horizontal	3H.6-115		MTCM	239	D+L+F+H'+T+E'	143	343										
Cooling						MCCM	231	D+L+F+H'+T+E'	-146	239										
					2-H-L	MMAT	231	D+L+F+H'+T+E'	126	1397	D+L+F+H+T+E	37	9.36				-			-
						MMAC	231	D+L+F+H'+T+E'	-9	1394										
		West (inside)				MTCM	291	D+L+F+H'+T+E'	31	151										
						MCCM	235	D+L+F+H'+T+E'	-120	71										
					1-V-L	MMAT	283	D+L+F+H'+T+E'	3	243	D+L+F+H+T+E	118	3.12				-			
						MMAC	275	D+L+F+H'+T+E'	-35	288										
			Vertical	3H.6-116		MTCM	289	D+L+F+H'+T+E'	121	496										
						MCCM	233	D+L+F+H'+T+E'	-297	309										
					2-V-L	MMAT	231	D+L+F+H+T+E	6	1173	D+L+F+H+T+E	118	6.24							
						MMAC	232	D+L+F+H'+T+E'	-160	1212										
			Transverse		1-T		-		-	-	-		-	D+L+F+H'+T+E'	177	-75	125	5	0.60	
			(Horizontal and Vertical)	3H.6-116A	2-T				-	-	-			D+L+F+H'+T+E'	-131	239	-32	43	0.44	
						MTCM	193	D+L+F+H'+T+E'	42	-266										
					1-H-L	MCCM	225	D + L + F + H + To + Wt	-60	-23	D+L+F+H'+T+E'	31	3.12							
					1412	MMAT	204	D+L+F+H'+T+E'	6	-388	5-2-1-11-1-2		0.12				-			
			Horizontal	3H.6-117		MMAC	204	D+L+F+H'+T+E'	-49	-391										
			THOREGOING	0110-111		MTCM	210	D+L+F+H'+T+E'	133	-283										
					2-H-L	MOOM	29	D+L+F+H'+T+E'	-172	-706	D+L+F+H'+T+E'	35	7.8							
Mall Mall						MMAT	218	D + L + F + H' + T + E'	10	-1296		-								
9// Jan	6	West (outside)				MMAC	218	D+L+F+H'+T+E'	-117	-1306										
ng Tos		(outside)				MTCM	222	D+L+F+H'+T+E'	35	-173										
88					1-V-L	MCCM	222	D+L+F+H'+T+E'	-118	-53	D+L+F+H+T+E	112	3.12							
						MMAT	214	D+L+F+H'+T+E'	7	-198										
			Vertical	3H.6-118		MMAC	206	D+L+F+H'+T+E'	-45	-200										
						MTCM	220	D+L+F+H'+T+E'	123	-770										
					2-V-L	MCCM	220	D+L+F+H'+T+E'	-295	-148	D+L+F+H'+T+E'	112	6.24				-			
						MMAT	218	D+L+F+H'+T+E'	8	-1083										
						MMAC	218	D+L+F+H'+T+E'	-193	-1094										

				nt or (1)	18	60,80		2	Longitudinal	Reinforcement De	esign Loads		2000000							
none	ckness (ft)	Face	ction	ceme	ceme	Por	ment	Axial and Flexure I	.oads		In-Plane Shear Loa	ds	Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear Reinforcement Provided	Remark
9	Thic	2	Dire	La)	ne Nu	in the	Elec	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load		ntal Section		ical Section	(in²/ft²)	100000
				R _c Draw	Zo Zo	Max		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	100	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	193	D+L+F+H+T+E	42	228										
					1-H-L	MCCM	220	D+L+F+H+T+E	-62	299	D+L+F+H'+T+E'	31	3.12							
						MMAT	220	D+L+F+H+T+E	3	299										
			Horizontal	3H.6-119		MMAC	220	D+L+F+H+T+E	-62	299										
						MTCM	210	D+L+F+H+T+E	133	139										
					2-H-L	мссм	29	D+L+F+H+T+E	-172	979	D+L+F+H+T+E	35	7.8							
(p)					2410	MMAT	29	D+L+F+H'+T+E'	94	1484	512171111112		1.0							
II (Cor		East				MMAC	29	D+L+F+H+T+E'	-16	1484										
W Tas	6	(inside)				MTCM	222	D+L+F+H+T+E	35	164										
W naw					1-V-L	MCCM	33	D+L+F+H+T+E	-119	56	D+L+F+H'+T+E'	112	3.12							
of gm					1-4-5	MMAT	214	D+L+F+H+T+E	3	248	Decepentive	112	3.12	-						
8						MMAC	208	D+L+F+H'+T+E'	-37	280										
			Vertical	3H.6-120		мтсм	220	D+L+F+H+T+E	123	544										
						мссм	220	D+L+F+H+T+E	-295	421	D+L+F+H'+T+E'		6.24							١.
					2-V-L	MMAT	29	D+L+F+H+T+E	7	1187	D+L+F+H+1+E	112	0.24				3.5			,
						MMAC	30	D+L+F+H+T+E	-166	1251										
			Transverse (Horizontal	3H 6 130A	1-T									D+L+F+H'+T+E'	177	-70	124	- 6	0.60	
			and Vertical)	311,0-1204	2-T	-								D+L+F+H'+T+E'	-123	239	-42	40	0.31	
						MTCM	2427	D+L+F+H'+T+E'	83	-116										
					1-H-L	MCCM	1387	D+L+F+H+To+Wt	-117	-11	D+L+F+H+T+E	30	3.12							١.
					i-mc	MMAT	2427	D+L+F+H+T+E	19	-139	D*E*********		W.14							
			Horizontal	3H.6-121		MMAC	2427	D+L+F+H+T+E	-9	-139										
			Horizontal	391.0-121		MTCM	2633	D+L+F+H+T+E	378	89										
						мссм	2633	D+L+F+H+T+E	-232	-90	D+L+F+H+T+E	44	6.24							
3					2-H-L	MMAT	2426	D+L+F+H+T+E	61	-125	D+L+++H+1+E	**	5.24	·						(8)
W In		East and				MMAC	2428	D+L+F+H+T+E	4	-125										
er Inte	2	West				MTCM	2428	D+L+F+H'+T+E'	31	23										
Wo Tow					5500	мссм	2428	D+L+F+H+T+E	-67	-20	20.000									
Coole					1-V-L	MMAT	2451	D+L+F+H+T+E	2	-64	D+L+F+H+T+E	44	1.56			*				
						MMAC	1568	D+L+F+H'+T+E'	-40	-66										
			Vertical	3H.6-122		мтсм	2587	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	211	2										
					1	мссм	2633	D+L+F+H'+T+E'	-220	-54			Nac							
					2-V-L	MMAT	1520	D+L+F+H+T+E	31	-147	D+L+F+H'+T+E'	44	4.68			•				
						MMAC	1520	D+L+F+H'+T+E'	-63	-147										
			Transverse (Horizontal and Vertical)	3H.6-122A	1-T			4			2			D+L+F+H+T+E	15	128	11	270	0.80	

Notes: (1) The reinfor Cooling Tower

(1) The reinforcement layout drawings show the various zones used to define the minimum reinforcement that will be provided based on finite element analysis results. Actual provided reinforcement that will be provided sentences for the wall and salab labeling conventions for the RSV Pump House, UNS Basin.

(2) Each reinforcement layout drawing is divided into reinforcement zones. The reinforcement zone naming convention is as follows: "H" = horizontal, "V" = vertical, "L" = longitudinal reinforcement, "T" = transverse reinforcement.

(3) The maximum tension (MTCM) and compression (MCCM) axial forces are provided with the corresponding moment from the same load combination and the maximum moment that has a corresponding compression (MMAC) in the same load combination and the maximum moment that has a corresponding compression (MMAC) in the same load combination and the maximum moment that has a corresponding compression (MMAC) in the same load combination and the maximum moment that has a corresponding compression (MMAC) in the same load combination and the maximum moment that has a corresponding compression (MMAC) in the same load combination and the maximum moment that has a corresponding compression (MMAC) in the same load combination and the maximum moment that has a corresponding compression (MMAC) in the same load combination and the maximum moment that has a corresponding compression (MMAC) in the same load combination and the maximum moment that has a corresponding compression (MMAC) in the same load combination are size of the same load combination and the maximum moment that has a corresponding compression (MMAC) in the same load combination are size of the same load combina

(4) Negative axial load is compression and positive axial load is tension. Negative moment applies tension to the top face of the shell element and positive moment applies tension to the bottom face of the shell element.

(5) The reported in-plane shear is the maximum average in-plane shear along a plane that crosses the longitudinal reinforcement zon

(6) NOT USED

(7) The Pump House Operating Floor and Roof slab thickness includes the metal decking (2.5 inches

(6) For certain areas of the structure, the standard element post-processing methods were too conservative. For such cases, detailed manual design was performed and the design forces determined by the detailed manual design are provided in the table

(9) The transverse reinforcement for the UHS Basin and RSW Pump House Buttresses is spaced with a maximum center-to-center spacing of

				μ E,	# 65	(C)			Longitudina	I Reinforcement De	rsign Loads									
uogg	Thickness (ft)	ag g	tion	ceme	ошос	8	a t	Axial and Flexure	e Loads		In-Plane Shear Loads		Longitudinal Reinforcement Provided			Transverse Shear Design Loads			Transverse Shear Reinforcement Provided	Remarks
ق ا	T I	ı.	Dire	einfor Lay	einfor	l line	Elec	Load	Axial (4)	Flexure (4)	Load Combination	In-plane (5) Shear	Provided (in²/ ft)	Load		ntal Section		Section	(in²/ft²)	TVEIII01112
				Prav.	8 2	Wax		Combination	(kips / ft)	(ft-kips / ft)	Combination	(kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						мтсм	9644	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	330	-17										
					1-H-L	MCCM	9637	D+L+F+H+T+E'	-95	-79	D+L+F+H'+T+E'	33	7.8							
						MMAT	13467	D+L+F+H+T+E	7	-950										
			East-West	3H.6-123		MMAC	13467	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-16	-1027										
						мтсм	13481	D+L+F+H+T+E	227	-30										
					2-H-L	MCCM	13549	D+L+F+H'+T+E'	-181	-175	D+L+F+H'+T+E'	138	6.24							
						MMAT	10584	1.4D + 1.4F + 1.7H + 1.7W	1	-776										
						MMAC	10553	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-104	-1213										
						мтсм	13535	D+L+F+H+T+E	303	-113										
		Top			1-V-L	MCCM	13490	D+L+F+H'+T+E'	-135	-39	D+L+F+H'+T+E'	35	7.8							
						MMAT	13467	D+L+F+H+T+E	10	-1256										
						MMAC	13467	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-31	-1355										
						мтсм	9651	D+L+F+H+T+E	40	-265										
			North-South	3H.6-124	2-V-L	MCCM	9659	D+L+F+H'+T+E'	-197	-206	D+L+F+H'+T+E'	124	6.24							
						MMAT	9614	D+L+F+H'+T+E'	9	-953										
						MMAC	9614	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-23	-1101										
						мтсм	13550	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	318	-102										
					3-V-L	MCCM	13470	D+L+F+H'+T+E'	-155	-434	D+L+F+H'+T+E'	50	7.8							
						MMAT	13470	D+L+F+H'+T+E'	16	-817										
						MMAC	13470	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-41	-1046										
						мтсм	9645	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	373	142										
Me					1-H-L	MCCM	9637	D+L+F+H+T+E	-79	23	D+L+F+H'+T+E'	33	7.8							
dego						MMAT	13470	1.4D + 1.4F + 1.7H + 1.7W	15	1047	-									
Foun	10					MMAC	13470	D+L+F+H'+T+E'	-24	938										
House						мтсм	10645	D+L+F+H+T+E	64	357										
F.					2-H-L	MCCM	13549	D+L+F+H+T+E	-181	377	D+L+F+H'+T+E'	53	6.24							
						MMAT	10633	1.4D + 1.4F + 1.7H + 1.7W	0	1068	-									
						MMAC	10633	D+L+F+H'+T+E'	-150	1935										
						мтсм	13564	D+L+F+H'+T+E'	74	519	-									
			East-West	3H.6-125	3-H-L	MCCM	10617	D+L+F+H+T+E'	-199	2116	D+L+F+H'+T+E'	97	7.8							
						MMAT	10615	1.4D + 1.4F + 1.7H + 1.7W	-164	1399 2525	-									
							_													
						MTCM MCCM	10776	D+L+F+H+T+E'	-154	484 123	+									
		Bottom			4-H-L	MCCM	10699	1.4D + 1.4F + 1.7H + 1.7W	-154	123	D+L+F+H'+T+E'	115	6.24							
						MMAC	10833	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-130	1927	+									
						MTCM	13481	D+L+F+H+T+E	-130	288		_				-		-		
						MCCM	10695	D+L+F+H+T+E	-113	67	+									
					5-H-L	MMAT	13646	D+L+F+H+T+E'	-113	926	D+L+F+H'+T+E'	138	7.8							
						MMAC	13646	1.4D + 1.4F + 1.7H + 1.7W	-8	1191	+									
				-	+	MTCM	13646	1.4D+1.4F+1.7H+1.7W D+L+F+H+T+E	303	200		_								
						MCCM	13636	D+L+F+H+T+E	-136	135	+									
					1-V-L	MMAT	13549	D+L+F+H+T+E'	-136	621	D+L+F+H'+T+E'	35	7.8				-			
						MMAC	13467	1.4D + 1.4F + 1.7H + 1.7W	-54	685	+									
			North-South	3H.6-126		MTCM	10517	D+L+F+H+T+E	-54	449		_								
						MCCM	9659	D+L+F+H+T+E	-197	282	+									
					2-V-L	MMAT	10775	D+L+F+H+T+E	1	915	D+L+F+H'+T+E'	124	6.24				-			
						MMAC	107791	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-143	1959	+									
							10.01					1					1	1		

				e 11	# ®_	(E) 800			Longitudina	Reinforcement De	esign Loads					Transporter Shear Danium I ands				
ation	s e	Face	cton	rout	ceme	P. Per	neut	Axial and Flexu	ire Loads		In-Plane Shear Loads	s	Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear Reinforcement Provided	Remarks
Š	Thickne (ft)	2	Die O	oling I	einfo	l li	Eler	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load		ntal Section		l Section	(in²/ft²)	
				Drav R	2 2	Max		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
(p, port, q)						MTCM	13552	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	315	288										
Mat (C		Bottom	North-South	3H.6-126	3-V-L	MCCM	13470	D+L+F+H'+T+E'	-155	965	D+L+F+H+T+E	50	7.8							
dation	10	Diam.				MMAT	13470	D+L+F+H'+T+E'	9	892										
F						MMAC	13470	1.4D + 1.4F + 1.7H + 1.7W	-65	1192										
House			Transverse (East-West	3H.6-126A	1-T									1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-155	-37	199	-31	0.31	
Pung			and North- South)	511.0-12.04	2-T					-		-		1.4D + 1.7L + 1.7F + 1.7H + 1.7W	254	-147	-6	-35	0.2	
						MTCM	13046	D+L+F+H'+T+E'	49	-16										
			East-West	3H.6-127	1-H-L	MCCM	13105	D+L+F+H'+T+E'	-332	-1	D+L+F+H+T+E	98	3.81							
			East-Mest	341.0-127	INIC	MMAT	12434	1.4D + 1.4F + 1.7H + 1.7W	4	-64	0+2++++++		3.01			· ·				
		Тор				MMAC	12434	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-34	-68										
		Тор				мтсм	13129	D+L+F+H'+T+E'	31	-3										
6			North-South	3H.6-128	1-V-L	MCCM	12660	D+L+F+H'+T+E'	-294	-6	D+L+F+H+T+E	87	2.54							
15.2			North-South	3H.6-126	1-V-C	MMAT	12389	1.4D + 1.4F + 1.7H + 1.7W	0	-32	D*E*F*##* **E	67	2.54			·				
oor ElL. 15-2"	1.75					MMAC	13046	D+L+F+H'+T+E'	-126	-36										
1 1	1.76					MTCM	12649	D + L + F + H (Internal Flood)	74	7										
£			East-West	3H.6-129	1-H-L	MCCM	13105	D+L+F+H'+T+E'	-332	0	D+L+F+H+T+E	98	2.54							
2			East-West	3H.6-129	1-H-L	MMAT	12907	1.4D + 1.4F + 1.7H + 1.7W	1	18	D+F+++H+1+E.	98	2.54				-			
						MMAC	12970	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-42	19	1									
		Bottom				MTCM	13129	D+L+F+H'+T+E'	31	5										
						MCCM	12660	D+L+F+H+T+E	-294	4	1									
			North-South	3H.6-130	1-V-L	MMAT	13052	D + L + F + H (Internal Flood)	- 1	15	D+L+F+H+T+E	87	2.54							
						MMAC	13052	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-103	25	1									
						мтсм	13149	D+L+F+H'+T+E'	381	-399										
						мссм	13149	D+L+F+H'+T+E'	-281	-241	1									
					1-H-L	MMAT	13149	1,4D + 1.7L + 1.7F + 1.7H + 1.7W	42	-1286	D+L+F+H+T+E	187	8				-	-	-	
						MMAC	13147	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-80	-1134	1									
						мтсм	13197	1.4D + 1.7F + 1.3H + 1.4To	926	-377										
						MCCM	13251	D+L+F+H'+T+E'	-701	-1499	1									
					2-H-L	MMAT	13251	D+L+F+H'+T+E'	402	-2467	D+L+F+H+T+E	63	16							(8)
						MMAC	13251	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-93	-2443	†									
						MTCM	11989	1.4D + 1.7F + 1.3H + 1.4To	562	-572										
						мссм	12117	D+L+F+H+T+E	-858	-542	†									
n Mat					3-H-L	MMAT	11319	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	77	-3055	D+L+F+H+T+E	101	12							
undatio						MMAC	11319	D+L+F+H'+T+E'	-17	-3014	1									
sin Fot	10	Тор	East-West	3H.6-131		мтсм	11961	1.4D + 1.7F + 1.3H + 1.4To	447	-1446										
HS Ba						MCCM	12124	D+L+F+H'+T+E'	-229	-351	†									
5					4-H-L	MMAT	11317	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	166	-4436	D+L+F+H'+T+E'	104	16	-	-		-		-	
						MMAC	11317	D+L+F+H+T+E	-44	-3565	1									
						MTCM	11465	1.4D + 1.7F + 1.3H + 1.4To	200	-880										
						MCCM	11467	D+L+F+H+T+E	-112	-121	1									
					5-H-L	MMAT	11463	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	171	-1140	D+L+F+H+T+E	104	8							
						MMAC	11933	D+L+F+H'+T+E'	-25	-979	†									
						MTCM	11958	1.4D + 1.7F + 1.3H + 1.4To	662	-2670										
						мссм	11958	D+L+F+H'+T+E'	-310	-1252	†									
					6-H-L	MMAT	11958	D+L+F+H'+T+E'	410	-4583	D+L+F+H+T+E	104	24							
						MMAC	11958	D+L+F+H'+T+E'	-17	-4200	†									
									1											

e 1				_ਦ =	# 8	© _s			Longitudinal	Reinforcement Des	ign Loads									
ã.	ness (c	8	tion	out	remen mber ⁶	Force	t e	Axial and Flexu			In-Plane Shear Loads		Longitudinal Reinforcement Provided			Transverse Shear Design Loads			Transverse Shear	Remarks
Loca	Thicknes (ft)	Face	Directio	Reinforo Layo awing Nu	Reinforcem Zone Numb	imum	Elem	Load Combination	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load Combination	Horizon Transverse Shear Force	ntal Section	Vertica Transverse Shear Force	I Section	Reinforcement Provided (in²/ft²)	Remarks
				₩ .	Z N	Mas			(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Combination	(kip / ft)	Corresponding Axial Force (kip / ft)	(kip / ft)	Corresponding Axial Force (kip / ft)		
-						MTCM	11511	1.4D + 1.7F + 1.3H + 1.4To	344	-1199										
J					7-H-L	MCCM	11511	D+L+F+H'+T+E'	-146	-724	D+L+F+H'+T+E'	78	16							
J						MMAT	11500	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	187	-2818										
J						MMAC	11510	D+L+F+H'+T+E'	-9	-2432										
J						MTCM	11764	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	534	-3021										
J					8-H-L	мссм	11764	D+L+F+H'+T+E'	-307	-1268	D+L+F+H'+T+E'	77	24							
J						MMAT	11764	D+L+F+H'+T+E'	337	-4002 -3665										
J						MTCM	11539	1.4D + 1.7F + 1.3H + 1.4To	-19 247	-502										
J																				
					9-H-L	мссм	10977	D+L+F+H'+T+E'	-172	-508	D + L + F + H' + T + E'	104	8							
J						MMAT MMAC	10971	D+L+F+H'+T+E'	90	-1467 -1467										
J						MTCM	10971	D+L+F+H'+T+E'	49	-1467										
J						MCCM	11407	D+L+F+H'+T+E'	538 -340	-1048										
					10-H-L	MMAT	11407	D+L+F+H'+T+E'		-4724	D+L+F+H'+T+E'	104	24							
						MMAC	11407	D+L+F+H+T+E	335	-4724										
J					_	MTCM	11004	1.4D + 1.7F + 1.3H + 1.4To	233	-745										
J						MCCM	11004	D+L+F+H'+T+E'	-160	-918										
J					11-H-L	MMAT	11005	D+L+F+H'+T+E'	101	-2779	D+L+F+H'+T+E'	77	12					-		
						MMAC	11005	D+L+F+H'+T+E'	-2	-2616										
J						MTCM	11245	1.4D + 1.7L + 1.7E + 1.7H + 1.7W	505	-3592										
ବ						мссм	11245	D+L+F+H'+T+E'	-310	-1643										
Conf					12-H-L	MMAT	11245	D+L+F+H+T+E	326	-441R	D+L+F+H'+T+E'	77	24							
on Mat						MMAC	11245	D+L+F+H'+T+E'	-4	-4418										
tabran	10	Тор	East-West	3H.6-131		MTCM	11050	1.4D + 1.7F + 1.3H + 1.4To	190	-731										
Sain Fo						мссм	11048	D+L+F+H'+T+E'	-118	-343										
88					13-H-L	MMAT	11050	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	187	-1179	D + L + F + H' + T + E'	104	8							
_						MMAC	11048	D+L+F+H'+T+E'	-6	-986										
J						MTCM	11776	1.4D + 1.7F + 1.3H + 1.4To	262	-1079										
						мссм	11776	D+L+F+H'+T+E'	-127	-643										
					14-H-L	MMAT	11854	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	209	-3554	D+L+F+H'+T+E'	72	16							
						MMAC	11158	D+L+F+H'+T+E'	-4	-2709										
J						MTCM	11771	1.4D + 1.7F + 1.3H + 1.4To	174	-178										
J						мссм	11718	D+L+F+H'+T+E'	-114	-569										
J					15-H-L	MMAT	11773	D+L+F+H'+T+E'	58	-1791	D+L+F+H'+T+E'	69	8							
J						MMAC	11773	D+L+F+H'+T+E'	-5	-1791										
J						MTCM	11914	1.4D + 1.7F + 1.3H + 1.4To	244	-538										
						мссм	11139	D+L+F+H'+T+E'	-105	-137										
					16-H-L	MMAT	11852	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	103	-2315	D+L+F+H'+T+E'	69	12					-		
						MMAC	11156	D+L+F+H'+T+E'	-5	-1943										
						MTCM	11157	1.4D + 1.7F + 1.3H + 1.4To	164	-706										
						мссм	11205	D+L+F+H'+T+E'	-98	-81										
					17-H-L	MMAT	11157	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	66	-1269	D+L+F+H'+T+E'	69	8							
						MMAC	11205	D+L+F+H'+T+E'	-24	-1222										
						MTCM	11225	1.4D + 1.7F + 1.3H + 1.4To	232	-751										
						MCCM	11263	D+L+F+H'+T+E'	-165	-756										
					18-H-L	MMAT	11222	D+L+F+H'+T+E'	106	-2950	D+L+F+H'+T+E'	72	12							
						MMAC	11222	D+L+F+H'+T+E'	-9	-2868										

				ي ع	# 12	8			Longitudinal	Reinforcement De	esign Loads									
u g	sse c	8	g g	out out	nber ⁶	Force	tu e	Axial and Flexu			In-Plane Shear Loads	,	Longitudinal Reinforcement Provided			Transverse Shear Design Loads			Transverse Shear	
Poca	Thicknes:	Face	Direct	Lay Lay ing N	inforc se Nui	E G	Elem	Load	Axial (4)	Flexure (4)	Load	In-plane (5) Shear	Provided (in²/ ft)	Load		ntal Section	Vertica		Reinforcement Provided (in²/ft²)	Remarks
				Re	Re	Maxi		Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	,,	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	11635	1.4D + 1.7F + 1.3H + 1.4To	930	-199										
			East-West	3H.6-131	19-H-L	мссм	10961	D+L+F+H+T+E	-674	-88	D+L+F+H'+T+E'	21	16							
						MMAT	11041	1.4D + 1.7F + 1.3H + 1.4To	442	-966										
						MMAC	11041	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-100	-1191										
						MTCM	4577	1.4D + 1.7F + 1.3H + 1.4To	899	-105										
					1-V-L	мссм	8336	D+L+F+H+T+E	-740	-67	D+L+F+H'+T+E'	39	16							
						MMAT	13146	D+L+F+H+T+E	125	-1388										
						MMAC	13146	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-648	-1840										
						MTCM	11956	1.4D + 1.4F + 1.7H + 1.7W	213	-40										
					2-V-L	MCCM	11940	D+L+F+H'+T+E'	-179	-960	D+L+F+H'+T+E'	51	8							
						MMAT	11944	D+L+F+H+T+E	94	-1261										
						MMAC	11746	D+L+F+H+T+E	-36	-1236										
						MTCM	13246	D+L+F+H+T+E	250	-523										
					3-V-L	MCCM	13246	D+L+F+H'+T+E'	-539	-748	D+L+F+H'+T+E'	184	8							
						MMAT	13246	D+L+F+H+T+E	53	-1003										
						MMAC	13246	D+L+F+H'+T+E'	-150	-1003										
						MTCM	12085	1.4D + 1.4F + 1.7H + 1.7W	261	-341										
					4-V-L	MCCM	12117	D+L+F+H+T+E	-304	-780	D+L+F+H'+T+E'	184	8							
						MMAT	12097	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	95	-1609										
						MMAC	12117	1.4D + 1.7F + 1.3H + 1.4To	-186	-1592										
						MTCM	12060	1.4D + 1.4F + 1.7H + 1.7W	552	-2087										
(puuc)					5-V-L	мссм	12060	D+L+F+H+T+E	-450	-629	D+L+F+H'+T+E'	117	16							
Mat (G						MMAT	12060	D+L+F+H+T+E	262	-2862										
ndator	10	Top				MMAC	12060	D+L+F+H'+T+E'	-22	-2756										
in Four						MTCM	12109	1.4D + 1.4F + 1.7H + 1.7W	494	-2535										
S Bar			North-South	3H.6-132	6-V-L	мссм	12109	D+L+F+H+T+E	-475	-724	D+L+F+H'+T+E'	184	24							
5						MMAT	12109	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	398	-3394										
						MMAC	12109	D+L+F+H+T+E	-6	-3043										
						MTCM	11317	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	696	-4489										
					7-V-L	мссм	11332	D+L+F+H+T+E	-322	-512	D+L+F+H'+T+E'	148	24							
						MMAT	11317	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	696	-4489										
						MMAC	11317	D+L+F+H+T+E	-3	-3949										
						MTCM	11395	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	274	-1481										
					8-V-L	мссм	11393	D+L+F+H+T+E	-158	-771	D+L+F+H'+T+E'	60	16	-		-	-			
						MMAT	11245	D+L+F+H+T+E	99	-3775										
						MMAC	11407	D+L+F+H+T+E*	-2	-3520 -1507										
									257											
					9-V-L	MCCM	11974	D+L+F+H+T+E	-191	-231 -3670	D+L+F+H'+T+E'	61	16					-		-
						MMAC	11958	D+L+F+H+T+E D+L+F+H+T+E	133	-3670										
						MMAC	11958		_	_										
						MCCM	11794	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-211	-824 -36	-									
					10-V-L	MCCM	_				D+L+F+H'+T+E'	88	12							
						MMAT	11779	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-24	-2157 -1771	-									
					-	MTCM	11779	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	520	-17/1										
1						MCCM	11775			-2762 -590	-									
					11-V-L	MCCM	11775	D+L+F+H+T+E'	-282 494	-590 -3795	D+L+F+H'+T+E'	88	24							
						MMAT					-									
						MMAC	11775	D+L+F+H+T+E	-22	-3398										

		4		£ 1	# E				Longitudina	I Reinforcement Des	sign Loads		177-247			ransverse Shear Design Loads				1
	1	(ft)	ction	yout	ucem d	For	100	Axial and Fle	exure Loads		In-Plane Shear Loa	ads	Longitudinal Reinforcement Provided						Transverse Shear Reinforcement Provided	Rem
-		AT.	- 1	Reinfe	Reinfe	Maximum	1	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane (5) Shear (kips / ft)	(in ² / ft)	Load Combination	Transverse Shear Force (kip / ft)	Section Corresponding Axial Force (kin / ft)	Vertical Sect Transverse Shear Force (kip / ft)	Corresponding Axial Force	(in²/ft²)	
No	(1							reinforcement that will be provided based on fi ent zone naming convention is as follows: "H" *					d the reported provided	reinforcement and the zones with high	er reinforcement may be extended beyond their	reported boundaries. See Figures 3H.6	-40a through 3H.6-40c for the wall and slab i	abeling conventions for the RSW Pu	ump House, UHS Basin, and	Cooling To
	(4 (5 (6	orresponding or Negative axia The reported NOT USED.	II. load is compression	n and posit	tive axial load	d is tension. Nega	ive moment a	applies tension to the top face of the shell elen crosses the longitudinal reinforcement zone.					combination and the ma	moment that has a correspond	ompression (MMAC) in the same load con	are also provided. For zones w	either avial tension or avial compression	does not occur for any load combi	ination, dashes are input into i	he
								too conservative. For such cases, detailed man spaced with a maximum center-to-center spacing		rformed and the desig	gn forces determined by the detailed m	nanual design are pro	ovided in the table,							
		1 1				newal	11000	U+L+F+H+1+E	101	-2000		1			1	1	1	1	1	1
						MMAC	11858	D+L+F+H+T+E	-30	-2066										
						MTCM	11854	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	687	-5307										
					15-V-L	мссм	11839	D+L+F+H+T+E	-303	-311	D+L+F+H'+T+E'	117	28							
						MMAT	11854	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	675	-5331										
				L		MMAC	11839	D+L+F+H+T+E	-4	-3967										
						MTCM	11311	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	330	-343										
					16-V-L	MCCM	12118	D+L+F+H'+T+E'	-264	-43	D+L+F+H'+T+E'	184	8							
						MMAT	10846	D+L+F+H+T+E	76	-992										
				<u> </u>		MMAC	11702	D+L+F+H+T+E	-121	-1085										
						MTCM	11859	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	354	-1316										
					17-V-L	MCCM	11861	D+L+F+H'+T+E'	-177	-326	D+L+F+H'+T+E'	96	16							
					-	MMAT	11855	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	227	-3419										
	10	Тор	North-South 3H.6	-132		MMAC	11855	D+L+F+H'+T+E'	-4	-3071										
					-	MTCM	11918	1.4D + 1.7L + 1.7F + 1.7H + 1.7W D + L + F + H' + T + E'	724 -307	-5436 -559										
					18-V-L	MMAT	11903	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	720	-5506	D+L+F+H'+T+E'	184	28							
					-	MMAC	11918	D+L+F+H+T+E	-3	-6606										
				\vdash		MTCM	11326	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	361	-686										\rightarrow
					ŀ	MCCM	11326	D+L+F+H+T+E	-176	-159										
					19-V-L	MMAT	11390	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	260	-1488	D+L+F+H'+T+E'	120	12					-	-	
					ŀ	MMAC	10996	D+L+F+H+T+E	-21	-1322										
				H		MTCM	10922	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	308	-419										\rightarrow
					ŀ	MCCM	11210	D+L+F+H+T+E	-124	-648										
					20-V-L	MMAT	11206	D+L+F+H+T+E	107	-2552	D+L+F+H'+T+E'	96	12				-		-	
					İ	MMAC	11206	D+L+F+H+T+E	0	-2085										
						MTCM	11222	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	524	-2690										\neg
						MCCM	11222	D+L+F+H*+T+E*	-262	-1058										
					21-V-L	MMAT	11222	D+L+F+H+T+E	308	-3746	D+L+F+H'+T+E'	85	24		•		-	-		
					Ī	MMAC	11222	D+L+F+H+T+E	-16	-3617										
						MTCM	11801	1.4D + 1.7F + 1.3H + 1.4To	192	-884										
					22-V-L	MCCM	11880	D+L+F+H'+T+E'	-91	-215	D+L+F+H'+T+E'	184	8							
						MMAT	11248	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	71	-1393	D-F	104		·						
				L		MMAC	11737	D+L+F+H'+T+E'	-3	-1024										
					1	MTCM	11423	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	171	-242										T
					23-V-L	MCCM	11263	D+L+F+H'+T+E'	-158	-822	D+L+F+H'+T+E'	42	8							
						MMAT	11253	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	3	-1518										

				اء ق	3 tr	ô,			Longitudina	al Reinforcement Desig	n Loads									
tion	88 0	8	tion	out umbe	mper_	Force	T E	Axial and Flexus	re Loads		In-Plane Shear Loads	5	Longitudinal Reinforcement Provided			Transverse Shear Design Loads			Transverse Shear	
Locatio	Thickness (ft)	Face	Direc	Lay Ing N	inforc 16 Nu	E E	Elem		Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load		ntal Section		l Section	Reinforcement Provided (in²/ft²)	Remarks
				Re	8 10 10 10 10 10 10 10 10 10 10 10 10 10 1	Maxi		Load Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	(Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	5064	1.4D + 1.7F + 1.3H + 1.4To	856	-118										
		Тор	North-South	3H.6-132	24-V-L	MCCM	5041	D+L+F+H'+T+E'	-647	-76	D+L+F+H'+T+E'	29	16							
						MMAT	8318	1.4D + 1.7F + 1.3H + 1.4To	427	-1061										
						MMAC	8318	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-109	-1322										
						MTCM	13149	D+L+F+H'+T+E'	381	843										
					1-H-L	MCCM	13149	D+L+F+H'+T+E'	-281	564	D+L+F+H+T+E	187	12							
						MMAT	13149	D+L+F+H'+T+E'	250	1101										
						MMAC	8344	1.4D + 1.4F + 1.7H + 1.7W	-10	919										
						MTCM	13205	1.4D + 1.7F + 1.3H + 1.4To	936	447										
					2-H-L	MCCM	13251	D+L+F+H'+T+E'	-701	606	D+L+F+H+T+E	63	16							(8)
						MMAT	13150	1.4D + 1.4F + 1.7H + 1.7W	23	1666										
						MMAC	13150	1.4D + 1.7F + 1.3H + 1.4To	-74	1537										
						MTCM	12004	1.4D + 1.7F + 1.3H + 1.4To	585	74										
					3-H-L	MCCM	12117	D+L+F+H'+T+E'	-858	600	D+L+F+H'+T+E'	104	12							
						MMAT	11981	D+L+F+H'+T+E'	13	2884										
						MMAC	11981	D+L+F+H'+T+E'	-86	2884										
							11325	1.4D + 1.7F + 1.3H + 1.4To	201	651										
					4-H-L	MCCM	12130	D+L+F+H'+T+E'	-237	109	D + L + F + H' + T + E'	101	8							
						MMAC	8549 8549	1.4D + 1.4F + 1.7H + 1.7W 1.4D + 1.7F + 1.3H + 1.4To	-70	1320										
						MTCM	12123	1.4D + 1.7F + 1.3H + 1.4To	229	665										
ç)						MCCM	12124	D+L+F+H'+T+E'	-230	1608										
Cont					5-H-L	MMAT	11317	D+L+F+H'+T+E'	14	2464	D+L+F+H+T+E	104	12							
on Mat (MNAC	11317	D+L+F+H'+T+E'	-69	2464										
undab	10					MTCM	11464	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	197	210										
asin Fo						MCCM	11486	D+L+F+H'+T+E'	-113	509										
NHS B		Bottom	East-West	3H.6-133	6-H-L	MMAT	11944	D+L+F+H'+T+E'	26	1268	D+L+F+H+T+E	104	8							
						MNAC	11944	D+L+F+H'+T+E'	-29	1268										
						MTCM	11958	D+L+F+H'+T+E'	429	947										
						MCCM	11958	D+L+F+H'+T+E'	-310	2798										
					7-H-L	MMAT	11958	D+L+F+H'+T+E'	223	3328	D+L+F+H+T+E	104	16							
						MMAC	11958	D+L+F+H'+T+E'	-102	3328										
						MTCM	11531	1.4D + 1.7F + 1.3H + 1.4To	337	278										
						MCCM	11511	D+L+F+H'+T+E'	-146	1171										
					8-H-L	MMAT	11546	D+L+F+H'+T+E'	60	2167	D+L+F+H'+T+E'	78	12							
						MMAC	11546	D+L+F+H'+T+E'	-57	2167										
						MTCM	11764	D+L+F+H'+T+E'	345	1776										
					9-H-L	мссм	11764	D+L+F+H'+T+E'	-307	2660	D+L+F+H*+T+E*	77	16							
					WHILE	MMAT	11764	D+L+F+H'+T+E'	229	3272	D+F+++H+1+E,	"	16							
						MMAC	11764	D+L+F+H'+T+E'	-82	3272										
						MTCM	11775	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	210	1506										
					10-H-L	мссм	11763	D+L+F+H'+T+E'	-170	1119	D+L+F+H'+T+E'	72	12							
					IU-FI-L	MMAT	11762	D+L+F+H'+T+E'	87	2273	PARTECULATIVE	14	12							
						MMAC	11762	D+L+F+H'+T+E'	-11	2273										
						MTCM	11993	1.4D + 1.7F + 1.3H + 1.4To	372	357										
					11-H-L	MCCM	10977	D+L+F+H'+T+E'	-172	156	D+L+F+H'+T+E'	104	12							
					THE	MMAT	11143	D+L+F+H'+T+E'	30	2215	PARTECULATIVE	104	12							
						MMAC	11143	D+L+F+H'+T+E'	-44	2215										

				Į €	#8	Ĉ,			Longitudina	I Reinforcement De	esign Loads									
ation	hickness (ft)	908	ction	rceme /out /umbe	ледши	Force	Tient .	Axial and Flexu	re Loads		In-Plane Shear Loads	\$	Longitudinal Reinforcement Provided			Transverse Shear Design Loads			Transverse Shear Reinforcement Provided	Remarks
اد	The second	2	a a	Reinford Lay-	Reinford Zone Nur	иши	1	Load Combination	Axial (4)	Flexure (4)	Load Combination	In-plane (5) Shear	(in²/ft)	Load Combination	Transverse Shear Force	ntal Section Corresponding Axial Force	Vertical Transverse Shear Force	Section Corresponding Axial Force	(in²/ft²)	
				a s	E 0	S N	\vdash		(kips / ft)	(ft-kips / ft)	Combination	(kips / ft)		Combination	(kip / ft)	Corresponding Axial Force (kip / ft)	(kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	11407	D+L+F+H'+T+E'	343	2208										
					12-H-L	мссм	11407	D+L+F+H'+T+E'	-340	3102	D+L+F+H'+T+E'	104	16							
						MMAT	11407	D+L+F+H'+T+E'	238 -103	3436 3436										
						MTCM	10994	D+L+F+H'+T+E' 1.4D+1.7F+1.3H+1.4To	-103	3436 454										
						MCCM	11014													
					13-H-L	MMAT	10990	D+L+F+H'+T+E'	-173 59	1025	D+L+F+H'+T+E'	78	12	-	-	-	-	-	-	
						MMAC	10990	D+L+F+H'+T+E'	-34	1891										
						MTCM	11245	D+L+F+H'+T+E'	333	1780										
						мссм	11245	D+L+F+H'+T+E'	-310	2419										
					14-H-L	MMAT	11245	D+L+F+H'+T+E'	212	3412	D+L+F+H'+T+E'	77	16							
						MMAC	11245	D+L+F+H'+T+E'	-114	3412										
			East-West	3H.6-133		MTCM	11051	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	192	543										
						мссм	11048	D+L+F+H'+T+E'	-121	461	†									
					15-H-L	MMAT	5042	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	1	1244	D+L+F+H'+T+E'	104	8		-					-
						MMAC	8324	1.4D + 1.4F + 1.7H + 1.7W	-12	1514										
						MTCM	11912	1.4D + 1.7F + 1.3H + 1.4To	233	119										
						MCCM	11263	D+L+F+H'+T+E'	-165	115										
					16-H-L	MMAT	8118	1.4D + 1.4F + 1.7H + 1.7W	42	1701	D+L+F+H'+T+E'	60	8		-	-			-	-
						MMAC	8118	1.4D + 1.7F + 1.3H + 1.4To	-33	1636										
						MTCM	11616	1.4D + 1.7F + 1.3H + 1.4To	933	486										
(puncq)					17-H-L	мссм	11555	D+L+F+H'+T+E'	-684	223	D+L+F+H'+T+E'	21	16							
O) Met (O						MMAT	4586	1.4D + 1.4F + 1.7H + 1.7W	21	1827		1					-			
dation	10	Bottom				MMAC	5036	1.4D + 1.7F + 1.3H + 1.4To	-20	1769										
F.						MTCM	4576	1.4D + 1.7F + 1.3H + 1.4To	904	132										
HS Bag					1-V-L	мссм	8336	D+L+F+H'+T+E'	-740	124	D+L+F+H'+T+E'	39	16							
5						MMAT	4586	1.4D + 1.4F + 1.7H + 1.7W	9	1902										
						MMAC	4588	1.4D + 1.7F + 1.3H + 1.4To	-23	1848										
						MTCM	11956	1.4D + 1.4F + 1.7H + 1.7W	219	157										
					2-V-L	мссм	11940	D+L+F+H'+T+E'	-162	222	D+L+F+H'+T+E'	51	8		-		-		-	-
						MMAT	11456	1.4D + 1.4F + 1.7H + 1.7W	23	1784										
						MMAC MTCM	11456	1.4D + 1.7F + 1.3H + 1.4To 1.4D + 1.4F + 1.7H + 1.7W	-58	1723										
						MCCM	12110	D+L+F+H'+T+E'	256 -264	30 1522	-									
					3-V-L	MMAT	12110	D+L+F+H'+T+E'	-264	1690	D+L+F+H'+T+E'	117	8							
						MMAC	12111	D+L+F+H'+T+E'	-162	1792	+									
			North-South	3H.6-134	_	MTCM	13246	D+L+F+H'+T+E'	250	506										
						мссм	13246	D+L+F+H'+T+E'	-539	165										
					4-V-L	MMAT	11319	D+L+F+H'+T+E'	101	2223	D+L+F+H'+T+E'	184	12		-		-	-		
						MMAC	11319	D+L+F+H'+T+E'	-23	2223	†									
						MTCM	11373	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	202	415										
						мссм	11353	D+L+F+H'+T+E'	-95	537										
					5-V-L	MMAT	13208	1.4D + 1.4F + 1.7H + 1.7W	2	1481	D+L+F+H'+T+E'	96	8					-	-	-
						MMAC	13206	1.4D + 1.4F + 1.7H + 1.7W	-9	1498										
						MTCM	11981	1.4D + 1.4F + 1.7H + 1.7W	394	751										
					841	мссм	11996	D+L+F+H'+T+E'	-389	1947	D.1.5.8.7.7									
					6-V-L	MMAT	11958	D+L+F+H'+T+E'	68	3269	D+L+F+H+T+E'	88	12							.
						MMAC	11958	D + L + F + H' + T + E'	-26	3269										

Location	Thickness (ft)	Face	ection	out	mber ⁽²	8	1 1			l Reinforcement Design										
Locat	Thickr (ft)	Fac	2			ō	i i	Axial and Flexur	e Loads		In-Plane Shear Loads		Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear	i
	-		⊼	Ley Ng	Reinforca Zone Nun	ma M	Eleme	Load		(4)	Load	1 60	Provided (in²/ ft)	Load	Horizon	al Section	Vertical	l Section	Reinforcement Provided (in²/ft²)	Remarks
				Rei	Rei	Maxin		Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Combination	In-plane (5) Shear (kips / ft)	(in 7 rs)	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	,,	
						MTCM	11332	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	566	860										
					7-V-L	мссм	12109	D+L+F+H+T+E	-475	2095	D+L+F+H'+T+E'	184	16					_		
						MMAT	11317	D+L+F+H+T+E	249	3608										i
						MMAC	11317	D+L+F+H+T+E	-82	3608										
1						MTCM	10936	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	316	1268										i
					8-V-L	MCCM	11376	D+L+F+H'+T+E'	-153	758	D+L+F+H'+T+E'	96	12							
						MMAT	10923	D+L+F+H+T+E	134	1979										i
						MMAC	10937	D+L+F+H*+T+E	-1	1778										-
						MTCM	11396	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	433	721										i
					9-V-L	мссм	11396	D+L+F+H*+T+E	-305	2430	D+L+F+H'+T+E'	85	16							
						MMAT	11407	D+L+F+H+T+E	103	3498										i
		Bottom	North-South	3H.6-134		MTCM	11396	D+L+F+H+T+E	-47 187	246										
(p)						MCCM	11/99	D+L+F+H+T+E	-118	862										İ
Wat (C					10-V-L	MMAT	11220	D+L+F+H+T+E	94	1660	D+L+F+H'+T+E'	184	8							(8)
uogeg	10					MMAC	11220	D+L+F+H*+T+E*	-2	1449										i
Foun	.					MTCM	11423	1.4D + 1.7F + 1.3H + 1.4To	191	124										
S Basi						мссм	11263	D+L+F+H+T+E	-146	33										İ
Š					11-V-L	MMAT	11041	1.4D + 1.4F + 1.7H + 1.7W	39	1625	D+L+F+H'+T+E'	42	8	•		•		-		-
						MMAC	11041	1.4D + 1.7F + 1.3H + 1.4To	-41	1557										i
						MTCM	5048	1.4D + 1.7F + 1.3H + 1.4To	870	293										
						мосм	5063	D+L+F+H'+T+E'	-657	208										İ
					12-V-L	MMAT	5036	1.4D + 1.4F + 1.7H + 1.7W	11	1867	D+L+F+H'+T+E'	29	16	*						-
						MMAC	5036	1.4D + 1.7F + 1.3H + 1.4To	-18	1834										İ
	Ī				1-T	-		-	-			-		D+L+F+H'+T+E'	-274	391	45	22	0.44	
					2-T				-					1.4D + 1.4F + 1.7H + 1.7W	-199	19	-197	35	0.31	
			Transverse		3-T				-					D+L+F+H+T+E'	-455	143	-481	627	1.76	
		-	(East-West and North- South)	3H.6-134A	4-T				-			-		D+L+F+H'+T+E'	-171	311	-78	103	0.2	
			South)		5-T		-		-					1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-270	157	-231	127	0.79	
					6-T	-	-		-	-		-	-	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-273	427	-17	74	0.6	
					7-T		-	+	-			-		1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-235	309	350	147	2.4	
						MTCM	9892	D+L+F+H'+T+E'	130	-3										i
			East-West	3H.6-135	1-H-L	мссм	10495	D+L+F+H+T+E	-121	-20	D+L+F+H'+T+E'	69	3.81							
						MMAT	9849	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	24	-65										i
		Тор				MMAC	10508	D+L+F+H'+T+E'	-38	-68										
						MCCM	10495	D+L+F+H+T+E	311 -337	-104										
			North-South	3H.6-136A	1-V-L	MMAT	10495	D+L+F+H+T+E	286	-105	D + L + F + H' + T + E'	67	3.81					-		
Roof						MMAC	10495	D+L+F+H+T+E'	-198	-105										İ
1.3	1.75					MTCM	_	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-198 149	-105 36								+		
Pump						MCCM	9824	D+L+F+H*T+E	-123	4										
			East-West	3H.6-136B	1-H-L	MMAT	10318	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	91	54	D + L + F + H' + T + E'	69	3.81							-
						MMAC	10496	D+L+F+H'+T+E'	-1	45										
		Bottom				MTCM	10495	D+L+F+H+T+E	311	44										
						мссм	10496	D+L+F+H'+T+E'	-330	107										
			North-South	3H.6-136C	1-V-L	MMAT	10495	D+L+F+H'+T+E'	132	112	D+L+F+H'+T+E'	67	3.81	-		-		-		-
						MMAC	10495	D+L+F+H'+T+E'	-297	112										

			# E	¥ 8,	6		Longitudina	I Reinforcement Design	n Loads		Townson I			200000200200000000000000000000000000000				
cation ckness (ft)	8 8	ction	rout	umbe	Ford ment	Axial and	f Flexure Loads		In-Plane Shear Lo	oads	Longitudinal Reinforcement Provided			Transverse Shear Design Loads			Transverse Shear Reinforcement Provided	Rema
Thic	a a	Dire	Reinfo Lay brawing I	Reinfor Zone N	Aaximum	Load Combination	Axial (4) (kips / ft)	Flexure (4) (ft-kips / ft)	Load Combination	In-plane (6) Shear (kips / ft)	(in²/ft)	Load Combination	Horizont Transverse Shear Force (kip / ft)	al Section Corresponding Axial Force (kip / ft)	Vertica Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(in²/ft²)	
(5) The r		ane shear is t	ne maximum a	rerage in-plane shear a	along a plane that cro	osses the longitudinal reinforcement zone												
(7) The !	Pump House	Operating Flo	or and Roof sk	b thickness includes th	ne metal decking (2.5	inches).												
(0) 5	certain areas	of the structure	e, the standard	element post-processi	ng methods were too	conservative. For such cases, detailed	manual design was pe	rformed and the design for	orces determined by the detailed r	manual design are pro	ovided in the table.							
(8) For 6						oed with a maximum center-to-center so												

Table 3H.6-9 Results of UHS/RSW Pump House Beams and Columns Design

		nper					Design Lo	ads			- 0	Reinforcement		
6	볣	T N C			Axial (kips)	Mo	ments (ft-l	kips)	Shear	(kips)	Longitudinal	Tran	sverse	
Location	Item	Critical Element Number	Load Combination	Maximum Forces	P	M2	M3	Torsion	V2	V3	Provided (in²)	Provided x-direction	Provided y-direction	Remarks
		516	1.4D+1.7L+1.7F+1.7H+1.7W	Maximum axial compression with corresponding forces	-2687	-1473	904	3	10-1	-	148.5	7#5 @ 4" O.C	7#5 @4*O.C	
		487	D+Lo+F+H'+To+E'	Maximum axial tension with corresponding forces	348	1148	465	14	-	10	148.5	7#5 @ 4" O.C	7#5 @ 4" O.C	
	Columns	510	D+Lo+F+H'+To+E'	Maximum M2 moment with corresponding forces	-1066	-9127	1990	- 0.4		10	148.5	7#5 @ 4" O.C	7#5 @4°O.C	Local Axis definition: 1 = vertical 2 = east-west
	io	506	D+Lo+F+H'+To+E'	Maximum M3 moment with corresponding forces	-630	834	7298	70	-	15	148.5	7#5 @4"O.C	7#5 @4"O.C	3 = north-south Transverse reinforcement includes one closed loop whi
	2, ×	506	D+Lo+F+H'+To+E'	Maximum V2	12	3	= 1	34	212	3/11	148.5	7#5 @ 4" O.C	7#5 @4*O.C	accounts for two legs in each direction.
		510	D+Lo+F+H'+To+E'	Maximum V3	LUGIL	11.5	-	40	4	-278	148.5	7#5 @ 4" O.C	7#5 @4°O.C	
		505	D+Lo+F+H'+To+E'	Maximum Torsion	£6.6	1604		-652	64	1.5	148.5	7#5 @4"O.C	7#5 @ 4" O.C	
		518	1.4D+1.7L+1.7F+1.7H+1.7W	Maximum axial compression with corresponding forces	-4746	-2484	822	154	1.0	1-1	175.5	13#5 @ 4" O.C	7#5 @4*O.C	
		497	D+Lo+F+H'+To+E'	Maximum axial tension with corresponding forces	645	2639	2900	-		-	175.5	13#5 @ 4" O.C	7#5 @4°O.C	
Sin	Columns	496	D+Lo+F+H'+To+E'	Maximum M2 moment with corresponding forces	-2509	-13456	-10148	14	12	121	175.5	13#5 @ 4" O.C	7#5 @ 4" O.C	Local Axis definition: 1 = vertical 2 = east-west
UHS Basin	x 12' Col	518	D+Lo+F+H'+To+E'	Maximum M3 moment with corresponding forces	-3435	3346	30990	7.51	150	(6.1	175.5	13#5 @ 4" O.C	7#5 @ 4" O.C	3 = north-south Transverse reinforcement includes one closed loop wh
0	2, ×	518	D+Lo+F+H'+To+E'	Maximum V2	7.0	30	=	1.67	453	1.6	175.5	13#5 @ 4" O.C	7#5 @4*O.C	accounts for two legs in each direction.
		496	D+Lo+F+H'+To+E'	Maximum V3	140	-	÷			-398	175.5	13#5 @ 4" O.C	7#5 @4°O.C	
	Ш	497	D+Lo+F+H'+To+E'	Maximum Torsion		- 31	-	-980		9.0	175.5	13#5 @ 4" O.C	7#5 @4°O.C	
	Ш	16	D+Lo+F+H'+To+E'	Maximum axial compression with corresponding forces	-3313	-2968	-3215	3.1	(*)	190	155.16	8 # 5 @ 4" O.C.	6#5 @4"O.C.	
		16	D+Lo+F+H'+To+E'	Maximum axial tension with corresponding forces	5158	1054	2155		7	9-	155.16	8#5 @4" O.C.	6#5 @4"O.C.	16.24
	Beams	36	D+Lo+F+H'+To+E'	Maximum M2 moment with corresponding forces	947	-6596	44	14	4.0	13	155.16	8#5 @ 4" O.C.	6#5 @ 4" O.C.	Local Axis definition: 1 = north-south 2 = vertical
	x 4'-6" Be	16	D+Lo+F+H'+To+E'	Maximum M3 moment with corresponding forces	-1848	2332	6486	jej	+	G.	155.16	8#5 @ 4" O.C.	6#5 @ 4" O.C.	3 = east-west Transverse reinforcement includes one closed loop wh
	4, ×	16	D+Lo+F+H'+To+E'	Maximum √2	O'se	19		16/	663	13.	155.16	8#5 @4* O.C.	6#5 @4"O.C.	accounts for two legs in each direction.
		36	D+Lo+F+H'+To+E'	Maximum V3		361	-	134	1.00	798	155.16	8#5 @4*O.C.	6#5 @ 4" O.C.	
		403	D+Lo+F+H'+To+E'	Maximum Torsion		300	24	698		pr €rm	155.16	8#5 @4" O.C.	6#5 @4"O.C.	

Table 3H.6-10 Tornado Missile Impact Evaluations for UHS/RSW Pump House

Local Check		SW Pump House	Minimum Required Thickness to Prevent Penetration, Perforation and Scabbing = 12.9"
	vva	ills and Roof	Minimum Provided Thickness = 18"
	Pump	Roof	Shear controls. Maximum impact load including Dynamic Load Factor (DLF) = 168 Kips Minimum capacity = 188 Kips
Overall Check of	House	Walls	Shear controls. Maximum impact load including Dynamic Load Factor (DLF) = 900 Kips Minimum capacity = 1772 Kips
Impacted Element		Fan Enclosure Walls	Flexure controls. Ductility demand = 1.2 < Ductility limit = 10
	UHS Basin	Basin Walls	Shear controls. Maximum impact load including Dynamic Load Factor (DLF) = 592 Kips Minimum capacity = 3395 Kips
	Global Che	eck	Equivalent static impact forces are applied to the FEM analysis of the UHS/RSW Pump House. The analysis results presented in Tables 3H.6-7 and 3H.6-8 provide summary of the results for all load combinations including those applicable to tornado load combinations which include missile impact.

Table 3H.6-11 Results of DGFOS Vault Concrete Design

				16				Longit	itudinal l	Reinforcement Des	sion Loads									
ē	2		5	ut dumbe	nber 2	§ 6 _w	ŧ	Axial and Flexure Loads		ALIIIIO CUIIILIII DEI	In-Plane Shear Loads		Longitudinal Reinforcement			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear (7)	1
Local	Thickness (ft)	Face	Direct	nforcer Layou ring Nu	Reinforcer Zone Numi	Maximum Forces ⁽³⁾	Eleme		cial ⁽⁴⁾	Flexure (4)	Load	In-plane ⁽⁵⁾ Shear	Provided (in ² / ft)	1		tal Section		al Section	Reinforcement Provided (in ² /ft ²)	Remarks
-	-		-	Rei Draw	Zon		_	Combination (kip	ps / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	(in /π)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	1	1
						MTCM	2302	D+F+L+H'+E'	32	-169										
					¥	мссм	2278	D+F+L+H'+E' -	-78	-164	D+F+L+H+E	24	3.12	_					_	1
					2	MMAT	283	D+F+L+H'+E'	1	-374	5111211112		5.12	•		-		-		1
						MMAC	262		-12	-409										
						MTCM	2260		55	-220										1
			in and an	9-142	2+1	MCCM	34		-52	-39	D+F+L+H'+E'	24	4.68	-	-	_	-	-	-	1
			Hor	34.6-	6	MMAT	99		5	-748										1
						MMAC	99		-1	-748										——
						мтсм	344		36	-341										1
					₹	MCCM	364		-66	-610	D + F + L + H' +E'	24	9.36	-	-	-	-	-	-	
						MMAT	363		8	-1693 -1693										1
		NearSide			-	MTCM	2524		-11 35	-1es/3 -85										├
		2				MCCM	174		-174	-61										
					₹	MMAT	2525		20	-322	D + F + L + H' +E'	27	3.12	-	-	-	-	-	-	
						MMAC	115		-63	-516										1
						мтсм	377		38	-52										
			70	6.		MCCM	231		-147	-9										1
			Vertio	3H.6-143	2 VL	MMAT	35		24	-416	D+F+L+H'+E'	27	4.68	-	-	-	-	-	-	1
						MMAC	243	D+F+L+H+Wh	-25	-806										1
						мтсм	18	D+F+L+H'+E'	41	-123										
					4	MCCM	117	1.4D + 1.4F +1.7L + 1.7H + 1.7W	-123	-432	D+F+L+H+E	27								
					3.44	MMAT	344	D+F+L+H'+E'	16	-966	D+++F+H+E	2/	6.24	-	-		•			1
Slab 1	100					MMAC	99	D+F+L+H'+E'	-36	-1131										
S	"					мтсм	253	D+F+L+H'+E'	23	185										
					¥	мссм	2269	D+F+L+H'+E' -	-52	136	D+F+L+H'+E'	24	3.12		_				-	1
					*	MMAT	109		13	388										1
						MMAC	158		-22	445										
						мтсм	2299		82	512										1
					ž	MCCM	354		-83	853	D + F + L + H' +E'	24	4.68	=	-	-		-	-	1
				_		MMAT	116		11	748										1
			rizonta	34.6-544	_	MMAC	355 40		-74	940										₩
			Hor			MCCM	377		64 -66	688 321										1
					3.F.L	MMAT	40		46	918	D+F+L+H+E	24	6.24	-	-	-	-	-	-	
						MMAC	378		-24	1215										
		Farsida			\vdash	мтсм	346		73	935		1							1	
						MCCM	364		-66	496										1
					¥	MMAT	99		9	1437	D+F+L+H+E	24	7.8	=	-	-	•	-	-	1
						MMAC	99		-5	1437										
						мтсм	349	D+F+L+H'+E'	81	660										
					ب	MCCM	194	D+F+L+H'+E'	-191	675										l
					1%1	MMAT	61	D+F+L+H'+E'	18	1001	D+F+L+H'+E'	27	6.24	-	-	-	-	-	-	1
			le de	8		MMAC	295	D+F+L+H'+E'	-15	1102					<u> </u>			<u> </u>		<u></u>
			Ver	346-1		мтсм	2521	D+F+L+H'+E'	80	575										
					2-W.L	MCCM	225	D+F+L+H'+E'	-300	1143	D+F+L+H'+E'	19	9.36	_	_	_		_		1
					6	MMAT	383		67	978										l
						MMAC	243	D+F+L+H'+E' -	-135	1806										

		Π		- 5	=8				Longitudinal I	Reinforcement	Design Loads									
tjo	8 0	8	u u	out Numb	mp er	E 8	ti e	Axial and Flexu	re Loads		In-Plane Shear Loads		Longitudinal Reinforcement			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear (7)	Remarks
Loga	Thickness (ft)	Face	Directic	Layou wing No	Reinforc Zone Nur	Maximum Forces (3)	Bea	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in²/ ft)	Load Combination		al Section	Vertica	al Section	Reinforcement Provided (in ² /ft ²)	Remarks
				Re	× 22			Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	359	D+F+L+H'+E'	119	1130										
					3.44	MCCM	117	D+F+L+H'+E'	-285	1289	D+F+L+H+E	27	10.92			-			-	
						MMAT	71	D+F+L+H'+E'	21	1812										
						MMAC	221	D+F+L+H'+E'	-245	2135										
						MTCM	267	D+F+L+H'+E'	4	177										
		Far side	Werdical	3H6-145	4	MCCM	231	D+F+L+H'+E'	-303	1378	D+F+L+H+E	17	14.04	-	-	-	-	-	-	
Slab 1		u.	1	ê		MMAC	125	D+F+L+H+E	-248	2465										
9						MTCM	125		-240	2400										
						MCCM	215	D+F+L+H'+E'	-268	2308										
					74.5	MMAT	215		-200	- 2300	D+F+L+H+E	11	15.6	-	-	-	*	-	-	(8)
						MMAC	197	D+F+L+H'+E'	-246	2453										
			e fi s	ž *	-	-			-			-		D+F+L+H'+E'	172	-123	27	-21	0.31 (5@12")	
			answer orth-So	3H.6-14	2.T	-							1							+
			Fg i		ò	-				-	-	-	-	D+F+L+H+E	195	18	119	5	0.80 (4@6")	
			32	tş.		MCCM	566 566	D+F+L+H+Wth	137 -166	-32 -14										
			3H6-14	美	MMAT	554	D+F+L+H+Wth	30	-81	D+F+L+H+E	40	3.12	•		-		-	-	(9)	
			I	6		MMAC	407	D+F+L+H+Wh	-21	-82										
						MTCM	401	D+F+L+H+E	41	-16										
						MCCM	565	D+F+L+H+E	-141	-32										
					**	MMAT	401	D+F+L+H'+E'	24	-31	D+F+L+H+E	60	1.56	*	-	-		-	-	
		8				MMAC	551	D+F+L+H'+E'	-107	-114										
		Near S				MTCM	554	D+F+L+H+E	80	0										
		_	78	8		MCCM	554	D+F+L+H+E	-185	-68										
			N.	3E.6	2.14	MMAT	539	D + F + L + H +Wth	3	-107	D+F+L+H'+E'	60	3.12	*	•	-	•	-	-	
2	2					MMAC	539	D+F+L+H'+E'	-85	-176										
Roof 2	2					MTCM	566	D+F+L+H'+E'	6	-12										
					3.WL	MCCM	566	D + F + L + H' +E'	-152	-152	D+F+L+H+Wth	33	6.24						-	(8)
					35	MMAT	566	D + F + L + H' +E'	3	-14	DTFTETHTWN	33	0.24	=	*	-	•	-	-	(0)
						MMAC	566	D+F+L+H+E	-104	-221										
						MTCM	553	D + F + L + H +Wth	108	11										
			isontal	6-149	₹	MCCM	553	D + F + L + H + Wth	-192	14	D+F+L+H'+E'	40	3.12	-		_		_	-	(9)
			Hori	94.6	+	MMAT	556	D+F+L+H+E	3	67										
		ops	<u></u>		<u> </u>	MMAC	554	D + F + L + H +Wth	-47	120					ļ					
		Far				MTCM	554	D+F+L+H'+E'	81	24										
			Antical	H6-150	**************************************	MCCM	565	D+F+L+H'+E'	-114	11	D+F+L+H'+E'	60	1.56	-	-	-	-	-	-	
				ê		MMAT	565	D + F + L + H + Wth	67 -36	52 62										
-	+-	╂—	+	-	1	MMAC	651	D+F+L+H+Wth	-36 30	-15		-			-				-	-
						MCCM	651	D+F+L+H+Wt	-58	-15 -21										
					至	MMAT	642	D+F+L+H+Wt	-68	-21 -68	D + F + L + H +Wt	24	1.56	•		-	-	-	-	
_		8	ā			MMAC	643	D+F+L+H+Wh	-2	-79										
Slab 3	~	Near Side	Horizon	34.6-151	_	MTCM	574	D+F+L+H+Wh	11	-23					 				<u> </u>	-
		_	_	-	l .	MCCM	574	D+F+L+H'+E'	-8	-6										
					244	MMAT	573	D+F+L+H+Wth	4	-41	D+F+L+H+Wt	24	3.12	*	-	-	-	-	-	
						MMAC	574	D+F+L+H'+E'	-3	-13										
		1				1					L	1	1			L		1	1	1

				6	0		1 1		Longitudinal Reinforcement	Design Loads									
5	1		5	ut mbe	ament Der (2	Ę €_	ŧ	Axial and Flexun		In-Plane Shear Load		Longitudinal Reinforcement			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear (7)	
ge so	Thickness (ft)	Face	Direction	forcen Layout ing Nu	Reinforcer Zone Numi	Maximum Forces (3)	Eleme		1 1		,	Provided		Horizont	tal Section	Vertica	I Section	Reinforcement Provided (in ² /ft ²)	Remarks
_	-			Reir	Reir	3 "		Load Combination	Axial ⁽⁴⁾ Flexure ⁽⁴⁾ (kips / ft) (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in ² / ft)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(111 /112)	
						MTCM	575	D + F + L + H +Wth	55 -19		(,				1.1.7				
					_	MCCM	575	D+F+L+H+E'	-73 -5										
					\$	MMAT	588	D + F + L + H +Wth	46 -35	D+F+L+H+Wt	16	1.56	-		-		-		
		opg.	76	3H6-162		MMAC	575	D + F + L + H +Wth	-57 -29										
		Near	Verd	346		MTCM	574	D + F + L + H +Wth	81 -48										
					7.45	MCCM	574	D + F + L + H +Wth	-101 -20	D+F+L+H+Wt	15	3.12							
					2.5	MMAT	574	D + F + L + H +Wth	80 -48	21112111111		2.12	•	-					
						MMAC	574	D+F+L+H+E'	-3 -36										
						MTCM	638	D + F + L + H +Wt	30 5										
					ž	MCCM	651	D+F+L+H'+E'	-50 1	D+F+L+H+Wt	24	1.56	_				-		
					-	MMAT	644	D + F + L + H +Wth	0 40										
			zortal	3H6-153		MMAC	572	D + F + L + H +Wth	-9 75										
Slab 3	- 24		Hork	38		MTCM	574	D+F+L+H'+E'	5 6										
15					#	MCCM	574	D + F + L + H +Wth	-18 37	D+F+L+H+Wt	24	3.12	-				-		
					6	MMAT	574	D+F+L+H+E'	2 18										
		8				MMAC	573	D + F + L + H +Wth	-13 99										
		2				MTCM	575	D + F + L + H +Wth	56 25										
					3	MCCM	575	D+F+L+H'+E'	-73 8	D+F+L+H+Wt	16	1.56	-	-		-	-	-	
				<		MMAT	575	D + F + L + H +Wth	54 25										
			Vertical	3H.6-154A		MTCM	572 574	D + F + L + H +Wth	-32 66										
			_	*		MCCM	574	D+F+L+H+Wt	80 23 -114 41										
					2.W.L	MMAT	574	D+F+L+H+Wth	1 30	D+F+L+H+Wt	15	3.12	*	-	-	-	-	-	
						MMAC	574	D+F+L+H+Wth	-102 100	-									
			85 8	848															
			ansver orth-So & & sst-We	3H.6-15	÷	-	-	-		-			D+F+L+H+E	-18	51	-28	9	0.44 (3@6")	
			FZ 0	8		MTCM	691	D + F + L + H +Wth	48 -14										\vdash
						MCCM	696	D+F+L+H+Wth	-166 -19										
					₹	MMAT	695	D+F+L+H+Wth	10 -38	D+F+L+H+Wt	37	1.56	•	-	-	-	-	-	
			3	8		MMAC	768	D+F+L+H+E'	-8 -41										
			Horizor	3H.6-1		MTCM	690	D + F + L + H +Wth	120 -18										
		o pe	_		_	MCCM	760	D + F + L + H +Wth	-91 -3										
		Near 8			244	MMAT	690	D + F + L + H +Wth	118 -22	D + F + L + H +Wth	36	3.12	-	-	-	-	-	-	
						MMAC	690	D + F + L + H +Wth	-7 -20										
						MTCM	769	D+F+L+H+Wt	63 -5										
ę			78	8	-	MCCM	760	D + F + L + H +Wth	-92 -13										
Roof	- 2		Verfoal	31.6	14/1	MMAT	731	D+F+L+H'+E'	0 -19	D+F+L+H+Wth	22	1.56	-				-		
						MMAC	768	D + F + L + H +Wt	-31 -19										
						MTCM	691	D + F + L + H +Wth	43 1										
					₹	MCCM	703	D + F + L + H +Wth	-313 43	D+F+L+H+Wt	37	1.56				_			1
					2	MMAT	772	D + F + L + H +Wth	34 43	D.1.1.1.11	J.,	1.00	*	-	1	•			
		e gige	zantal	3H.6-157		MMAC	773	D + F + L + H +Wth	-299 69										<u> </u>
		Far	Hari	¥		MTCM	704	D + F + L + H +Wth	94 9										1
					7 ± 5	MCCM	760	D + F + L + H +Wth	-404 57	D+F+L+H+Wth	36	3.12	-	-			-		1
					2.	MMAT	746	D + F + L + H +Wth	17 37										1
l	1	1	1	1		MMAC	760	D + F + L + H +Wth	-395 79		1								1

				t ž	£ 8 <u>.</u>				Longitudinal	Reinforcement	Design Loads					463				
tion at	\$ e	Face	cgo	orceme ayout g Num (1)	nmper	Maximum Forces (3)	neut	Axial and Flexure	Loads		In-Plane Shear Load	is	Longitudinal Reinforcement			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear (7) Reinforcement Provided	Remarks
3	Thickne (ft)	æ	Dire	beinfo awing	Reinforce Zone Nun	For Ma	å	Load	Axial (4)	Flexure (4)	Load Combination	In-plane ⁽⁵⁾ Shear	Provided (in²/ ft)	Load Combination	Horizont Transverse Shear Force	al Section Corresponding Axial Force	Vertica Transverse Shear Force	Section Corresponding Axial Force	(in²/ft²)	1
			-	Ψ ŏ	E 2			Combination	(kips / ft)	(ft-kips / ft)	Combination	(kips / ft)		Combination	(kip / ft)	Corresponding Axial Force (kip / ft)	(kip / ft)	Corresponding Axial Force (kip / ft)		
				_		MTCM	766	D + F + L + H +Wth	41	1	-									l
Ro of 5	2	Far side	er ca	3H6-158	- ₹	MCCM	760	D + F + L + H +Wth	-370	46	D+F+L+H+Wth	22	1.56		-	-	-	-	-	l
		u.		ë		MMAC	769	D+F+L+H+Wh D+F+L+H+Wh	-362	36 65										l
-				-		MTCM	686	D+F+L+H+Wh	38	-8										
						MCCM	689	D+F+L+H+Wh	-361	-118										l
					芙	MMAT	689	D+F+L+H+Wh	29	-110	D + F + L + H +Wth	142	3.12			+	-		-	l
			3	89		MMAC	689	D+F+L+H+Wh	-361	-118	+									ı
			angua	3F.0-28		MTCM	684	D+F+L+H+Wh	129	-23										
		-8	-			MCCM	654	D+F+L+H+Wh	-92	-8										l
		25 26 26			244	MMAT	654	D+F+L+H+Wh	42	-35	D + F + L + H +Wth	133	4.68		-	-	-	-	-	l
						MMAC	660	D+F+L+H+Wt	-8	-13										l
						MTCM	664	D+F+L+H+Wth	69	-39										
				8	١	MCCM	689	D+F+L+H+Wh	-221	-5	†									I
Roof	24		Werds	3H.B-16	3,	MMAT	654	D+F+L+H+Wth	69	-39	D + F + L + H +Wth	169	3.12			-	-	-	-	I
						MMAC	656	D+F+L+H+Wt	-38	-25	1									I
						MTCM	685	D+F+L+H+Wh	53	6										
			2	5		MCCM	654	D+F+L+H+Wth	-475	53										l
			8 8	3H.6-161	ž	MMAT	669	D+F+L+H+Wh	15	78	D+F+L+H+Wth	142	3.12	-	-	-		-		l
		991				MMAC	664	D+F+L+H+Wth	-471	73										l
		9				MTCM	655	D + F + L + H +Wth	32	49										
			78	36.2	-	MCCM	654	D + F + L + H +Wth	-547	73										l
			N.	£	1,44	MMAT	655	D + F + L + H +Wth	32	49	D+F+L+H+Wth	169	3.12	-	-	*	•	-	-	ı
						MMAC	656	D+F+L+H+Wt	-37	75										l
				1		MTCM	875	D + F + L + H' +E'	118	-38										i
					=	MCCM	1044	D + F + L + H' +E'	-187	-40	D+F+L+H+E	61	3.12						-	l
					₹	MMAT	811	D + F + L + H' +E'	5	-223	DTFTETRTE	61	3.12		-	-	•	-	-	l
						MMAC	1069	D + F + L + H' +E'	-163	-366										L
						MTCM	1046	D + F + L + H +Wth	40	-69										ı
					¥	MCCM	1052	D + F + L + H' +E'	-184	-554	D+F+L+H+E	61	4.68		_	_		_		ı
					ri	MMAT	1016	D + F + L + H' +E'	2	-118										l
			Sortal	3H.6-163		MMAC	1070	D+F+L+H'+E'	-165	-594		1								
			ž	¥		MTCM	891	D+F+L+H+Wth	245	-116	1									l
					¥	MCCM	1042	D+F+L+H'+E'	-223	-205	D+F+L+H+E	61	6.24			-		-	-	I
						MMAT	1042	D+F+L+H'+E'	96	-298	1									I
Wall 7	44	ar Sde				MMAC	1041	D+F+L+H'+E'	-179	-765										
· ·		N.				MTCM	-	P. F. L. W. F.	-	-	1									l
					₹	MCCM	1053	D+F+L+H'+E'	-192	-888	D+F+L+H+E	44	7.8	-	-	-		-	-	l
1						MMAC	1065	D+F+L+H'+E'	-185	-030	+									I
			-	-		MTCM	1059	D+F+L+H+Wh	-18b 112	-930	-	+						 		
						MCCM	1054	D+F+L+H+Wth	-221	-38	1									l
					3,	MMAT	1059	D+F+L+H'+E'	1	-219	D+F+L+H+E	92	3.12	-	-	-		-	-	l
1			-	4.5		MMAC	1059	D+F+L+H'+E'	-54	-219	†									I
			Water	346-9		MTCM	1042	D+F+L+H+Wth	223	-103										i
						MCCM	1042	D + F + L + H +Wth	-342	-100	†									I
					2-74	MMAT	891	D+F+L+H'+E'	1	-378	D+F+L+H+E	92	4.68	-	-	-	-	-	-	l
						MMAC	804	D + F + L + H' +E'	-88	-457	1									l
									1		1	1	1	1	1					

				t 5	# 8				Longitudinal	Reinforcement	Design Loads					40				
u og	Thickness (ft)	Pace	ego	nout Num	ander u	E 8	neut	Axial and Flexur	e Loads		In-Plane Shear Load	is	Longitudinal Reinforcement			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear (7) Reinforcement Provided	Remarks
3	ž.	2	Dire	Saimfor Lay awking	seinfor one N	Maximu Forces	and a	Load	Axial (4)	Flexure (4)	Load	In-plane ⁽⁵⁾ Shear	Provided (in²/ ft)	Load Combination	Horizor Transverse Shear Force	tal Section Corresponding Axial Force	Vertica Transverse Shear Force	al Section Corresponding Axial Force	(in²/ft²)	
				ь <u>Р</u>	E 2			Combination	(kips / ft)	(ft-kips / ft)	Combination	(kips / ft)		Combination	(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		—
						MTCM	812	D+F+L+H'+E'	51	-434										1
					3.45	MCCM	1014	D+F+L+H'+E'	-131	-88	D+F+L+H+E	74	9.36	-	-	-	-	-	-	1
						MMAT	820 820	D+F+L+H'+E'	-49	-988 -988										1
						MTCM	828	D+F+L+H+E	38	-629										
		2	_	-		MCCM	828	D+F+L+H+E	-118	-029	-									
		Year Sic	Writes	3H6-384	3,4	MMAT	836	D+F+L+H+E	-110	-1217	D+F+L+H+E'	63	10.92	-	-				-	
		z				MMAC	836	D+F+L+H'+E'	-54	-1224										
					-	MTCM	844	D+F+L+H+E	23	-717										
						MCCM	844	D+F+L+H'+E'	-112	-36										1
					3.45	MMAT	868	D+F+L+H'+E'	1	-1227	D+F+L+H+E	56	12.48		-	-	-	-	-	(8),(10)
						MMAC	852	D+F+L+H'+E'	-64	-1281										
						MTCM	859	D+F+L+H'+E'	108	19										
1						MCCM	883	D+F+L+H+E	-243	216	†									l
1					ž	MMAT	1059	D+F+L+H+E	3	115	D+F+L+H'+E'	61	3.12	-	-	-	-	-	*	1
			ā	99		MMAC	815	D+F+L+H'+E'	-123	380										1
			Horizo	346-85		MTCM	1043	D+F+L+H+Wth	164	78										
						MCCM	891	D + F + L + H +Wth	-324	68										
					ž	MMAT	1047	D+F+L+H'+E'	9	194	D+F+L+H'+E'	50	4.68	•	-	-	-	*	-	
						MMAC	814	D+F+L+H'+E'	-111	418										
						MTCM	1028	D+F+L+H'+E'	75	94										
-					٠,	MCCM	1029	D+F+L+H'+E'	-203	19										
Wall 7	4				1.44	MMAT	1058	D+F+L+H'+E'	5	169	D+F+L+H'+E'	92	3.12		*		-	-	-	
						MMAC	1014	D+F+L+H'+E'	-87	273										
						MTCM	796	D+F+L+H'+E'	138	56										
		ope			4	MCCM	1017	D+F+L+H'+E'	-256	190										
		ě			2-74	MMAT	810	D+F+L+H'+E'	1	300	D+F+L+H'+E'	92	4.68				-	-		
						MMAC	1026	D+F+L+H'+E'	-90	456										
						MTCM	1042	D + F + L + H +Wth	174	100										
			3	-86	7	MCCM	1054	D + F + L + H +Wth	-213	21	D+F+L+H+E'	70	6.24							
			No.	311.6	3.44	MMAT	880	D+F+L+H'+E'	7	663	DTFTETRTE	70	0.24		-		-	-	-	
						MMAC	880	D+F+L+H'+E'	-51	689										
						MTCM	872	D + F + L + H +Wth	27	103										
1					76.75	MCCM	871	D + F + L + H +Wth	-86	124	D+F+L+H'+E'	56	7.8	_					_	1
1					- 4	MMAT	856	D+F+L+H'+E'	7	755					-		*	1	1	1
1						MMAC	856	D + F + L + H' +E'	-27	755										
						MTCM	-		-	-										1
1					7.49	MCCM	844	D + F + L + H' +E'	-112	44	D+F+L+H'+E'	56	12.48		_			_	_	(8),(10)
1					w w	MMAT	-	÷	-	-	1									
1						MMAC	888	D+F+L+H+E	-72	116		1								
1			bordal		7	-	-	-	-	-	-	-		D+F+L+H'+E'	8	-1	95	-150	0.20 (4@12")	ł
1			Avertical)	8-167	ě	-	•	-	-	-	-	-	-	D+F+L+H'+E'	5	1	-103	-163	0.31 (5@12")	ł
			ansvera &W	3H.6	3-1	-	-	-	-	-	-	-	-	D+F+L+H'+E'	60	88	-129	144	0.80 (4@6")	ł
<u> </u>		<u> </u>	Tra		÷	-	1 -	-	-	-	-	-	-	D+F+L+H'+E'	-209	-7	1	-13	1.24 (5@6")	
						MTCM	1124	D+F+L+H+E	115	-36	1									1
Wall 8	4	arSide	ndzonta	H6-168	#	MCCM	1307	D+F+L+H'+E'	-173	-289	D+F+L+H'+E'	60	3.12	-	-	-	-	-	-	1
· ·		2	£	8		MMAT	1188	D+F+L+H'+E'	5	-198	1									l
		<u> </u>	1	1	1	MMAC	1301	D+F+L+H'+E'	-163	-398	1									

				- 5	±8				Longitudinal	Reinforcement	t Design Loads									
9	\$50.0		E S	Numb	e de	§ 8 ₂	eu t	Axial and Flexur			In-Plane Shear Loa	ds	Longitudinal Reinforcement			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear (7)	
200	Thickne (ft)	Face	Direction	Lays Ming	Reinforcen Zone Numb	Macimum Forces ⁽³⁾	Bea	Load	Axial (4)	Flexure (4)	Load Combination	In-plane (5)	Provided (in²/ ft)	Load Combination		al Section		I Section	Reinforcement Provided (in²/ft²)	Remarks
				Pa Pa	2 S			Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	, , ,	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	1276	D + F + L + H + Wth	38	-69										
					2+L	MCCM	1306	D + F + L + H' +E'	-183	-524	D+F+L+H+E	60	4.68		_		_			
					-2	MMAT	1288	D + F + L + H' +E'	3	-123		-								
						MMAC	1300	D + F + L + H' +E'	-164	-621										
						MTCM	1108	D + F + L + H +Wth	234	-124										
			boortel	6-158	¥	MCCM	1280	D+F+L+H'+E'	-217	-242	D+F+L+H+E	60	6.24	_			-	-	-	
			ž	34.6-	6	MMAT	1280	D+F+L+H'+E'	80	-339										
						MMAC	1287	D+F+L+H'+E'	-137	-763										
						MTCM	-	*	-	-										
					₹	MCCM	1305	D+F+L+H'+E'	-192	-903	D+F+L+H+E	44	7.8	-	-	-	-	-	-	
					,	MMAT	1311		-184											
							1311	D+F+L+H+E*	-184 109	-946 -31										
1						MCCM	1287	2 D+F+L+H+Wh -211 -36												
					3	MMAT	1292	D+F+L+H+Wh	2 -195 D+F+L+H+E		93	3.12		-	-	-	-	-		
1		9				MMAC	1288	D+F+L+H'+E'	-63 -245		+									
		8				MTCM	1280	D+F+L+H+Wh	228	-104										
		z				MCCM	1280	D+F+L+H+Wh	-326 -89 D+F+L+H+E											
					2.14	MMAT	1108	D+F+L+H'+E'	3	-415	D+F+L+H'+E'	93	4.68	-	-	-	-	-	-	
						MMAC	1181	D+F+L+H'+E'	-86	-465										
						MTCM	1173	D+F+L+H'+E'	53	-438										
				69		MCCM	1272	D+F+L+H'+E'	-129	-85										
			Vertical	34.6-169	3-84	MMAT	1165	D+F+L+H'+E'	2	-993	D+F+L+H'+E'	72	9.36	-	-	-	-	-	-	
**						MMAC	1165	D+F+L+H'+E'	-47	-993	1									
N N	4					MTCM	1157	D+F+L+H'+E'	39	-632										
					4	MCCM	1157	D+F+L+H'+E'	-118	-44										
					4-74	MMAT	1149	D+F+L+H'+E'	6	-1222	D+F+L+H+E	61	10.92	•	-	-	-	*	-	
						MMAC	1149	D+F+L+H'+E'	-55	-1229										
						MTCM	1141	D + F + L + H' +E'	21	-720										
					7	MCCM	1141	D + F + L + H' +E'	-110	-36	D+F+L+H+E	54	12.48							(8),(10)
					5-W.E	MMAT	1117	D + F + L + H' +E'	0	-1229	D*F*E*R*E	54	12.40	•	-		-	-	-	(0),(10)
						MMAC	1133	D + F + L + H' +E'	-66	-1284										
						MTCM	1140	D + F + L + H' +E'	106	12]									
					₹	MCCM	1116	D + F + L + H' +E'	-239	238	D+F+L+H+E	60	3.12				-	-	-	
					+	MMAT	1288	D + F + L + H' +E'	11	152	1									
			Sortal	3H.6-170		MMAC	1104	D + F + L + H' +E'	-134	378										
			ž.	ă.		MTCM	1279	D + F + L + H +Wth	154	77	1									
					2.H.C	MCCM	1280	D + F + L + H +Wth	-314	34	D+F+L+H+E	50	4.68			-	-	-		
					- 2	MMAT	1275	D + F + L + H' +E'	9	225	4									
		Far side	\vdash	-		MMAC	1175	D + F + L + H' +E'	-111	429	-	-							1	
		æ				мтсм	1282	D+F+L+H'+E'	76	74	4									
					*	MCCM	1281	D+F+L+H'+E'	-201	19	D+F+L+H'+E'	93	3.12	-	-	-	-	-	-	
			1 _	-			1288	D+F+L+H'+E'	5	201	1									
			Vertosi	346-771		MMAC	1272	D+F+L+H'+E'	-81	257		-								
			1	8		MCCM	1189	D+F+L+H'+E'	140 -250	59 179	1									
1					2.14	MMAT	1297	D+F+L+H+E	-250	477	D + F + L + H' +E'	93	4.68	•	-	-	-	-	-	
						MMAC	1297	D+F+L+H'+E'	-67	489	1									
						MMAC	1297	DTFTLTRTE	-07	409					1				1	

Location	Thickness (ft)	Face	Direction	ainforcement Layout wing Number	mber (2)	E @			Longitudinal	Reinforcement	Design Loads									
Localic	Thickne (ft)	Face	Sirecti	SENSE	2 E		본						Longitudinal Reinforcement			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear (7)	
-	F			42E	g 2	Maximum Forces (3)	Eleme	Axial and Flexure			In-Plane Shear Loads		Provided		Horizont	al Section	Vertical	I Section	Reinforcement Provided (in²/ft²)	Remarks
			_	Rain	Reinforcer Zone Numi	s -		Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane (5) Shear (kips / ft)	(in ² / ft)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(in /it)	
						MTCM	1280	D + F + L + H +Wth	180	104										
					₹	MCCM	1292	D + F + L + H +Wth	-203	26	D+F+L+H'+E'	65	6.24							
					9	MMAT	1161	D+F+L+H'+E'	8	667										
						MMAC	1161	D+F+L+H'+E'	-24	667										
						MTCM	1121	D + F + L + H +Wth	28	103										
		- F	Werton	Ē	4-7-4	MCCM	1120	D + F + L + H +Wth	-84	125	D+F+L+H'+E'	54	7.8						_	
		ě	2	314.6	+	MMAT	1145	D+F+L+H'+E'	7	754										
Wall 8	-					MMAC	1145	D+F+L+H'+E'	-26	754										
×						MTCM	-	-	-	-										
					74.5	MCCM	1141	D+F+L+H'+E'	-110	50	D+F+L+H'+E'	54	12.48			_			-	(8),(10)
					40	MMAT	-	-	-	-										()
						MMAC	1117	D+F+L+H'+E'	-67	114										
			zortal		2	-	-	•	-	-	*	-	-	D+F+L+H+E	6	0	-94	-159	0.20 (4@12")	1
			Avertical)	6-172	2		-	*	-	-	*	-	-	D+F+L+H+E	-104	20	22	-75	0.31 (5@12*)	ļ ļ
			AW AV	346	÷		-	•		-	*	-		D+F+L+H+E	-171	20	-8	-25	0.80 (4@6")	1
		_	P.		1:4	-	•	-	-	-	-	-	-	D+F+L+H+E	-209	-10	-1	-12	1.24 (5(86°)	
						мтсм	959	D + F + L + H +Wth	134	-37										
					ž	MCCM	1019	D + F + L + H +Wth	-107	-6	D+F+L+H+Wth	102	3.12					-	-	
			_		-	MMAT	999	D + F + L + H +Wth	39	-100										
			in contra	3H6-173		MMAC	1023	D+F+L+H'+E'	-30	-101										
			£	ž		MTCM	1030	D + F + L + H +Wth	179	-35										
					ž	MCCM	1030	D + F + L + H +Wth	-230	-13	D + F + L + H +Wth	98	4.68		-	-	-	-	-	
		_			~	MMAT	1030	D+F+L+H'+E'	58	-95										
		Near Side				MMAC	1035	D+F+L+H'+E'	-36	-101									+	
		ž				MTCM	1035	D + F + L + H +Wth	132	-6										
					₹	MCCM	1019	D + F + L + H +Wth	-171	-10	D + F + L + H +Wth	103	3.12		-	-	-	-	-	
				_		MMAT	1031	D + F + L + H' +E'	9	-97										
			Pertical	346-174		MMAC	1031	D+F+L+H'+E'	-60	-97										
			>	ê		MTCM	1030	D + F + L + H +Wth	277	-33										
					*	MCCM	1030	D + F + L + H +Wth	-396	-36	D + F + L + H +Wth	87	6.24	-		-	-	-	-	
						MMAT	1030	D + F + L + H' +E'	60	-179										
Wall 9	2							D+F+L+H'+E'	-101	-179										
\$			-	10		MTCM	1030	D + F + L + H +Wth	122	15								1		
			orison.	311.6-17.6	¥	MMAT	999	D+F+L+H+Wth	-392 50	55 90	D + F + L + H +Wth	102	3.12	•	-	-	-	-	-	
			I	e e		MMAC	959	D+F+L+H+Wth	-17	88								1		
					-	MTCM	1035	D+F+L+H+Wth	129	5								-		
						MCCM	1007	D+F+L+H+Wh	-168	6								1		
		For si de			₹.	MMAT	999	D+F+L+H+Wh	-100	89	D + F + L + H +Wth	103	3.12	-	-	-	-	-	-	
		-		5		MMAC	996	D+F+L+H+WI	-39	69								1		
			Vertica	H8-1%	<u> </u>	MTCM	1030	D+F+L+H+Wth	97	4		-						<u> </u>	+	
				-	l .	MCCM	1018	D+F+L+H+Wh	-320	16								1		
					2%L	MMAT	952	D+F+L+H+Wh	10	10	D + F + L + H +Wth	87	6.24	•	-	-	-	-	-	
						MMAC	1006	D+F+L+H'+E'	-167	27								1		
			ā		12	-	-		-	-	2	-		D+F+L+H+E	-31	123	-14	4	0.44 (3(86°)	
			orizont f)	9	2.4	_	1. 1		1			-		D+F+L+H+E	-43	114	-56	-8	1.24 (5@6")	† l
			Transverse (Hor &Vertical)	34.6-170	3-1	-	-	-	-		-	-	-	-		-	-	-	0.44 (3@6")	Transverse shear reinforcement provided due to humcane missile impact evaluation.

				E Š	म छ		T		Longitudinal	Reinforcement	t Design Loads									
figu	o o	Face	Li Sigon	out out	mper	E 6	seu t	Axial and Flexur	e Loads		In-Plane Shear Lo	oads	Longitudinal Reinforcement Provided			Transverse Shear Design Loads (6)			Transverse Shear (7)	Remarks
3	Thicknes (ft)	ž.	Direct	Lay Ming (1	ne Nu	Maximu	100	Load	Axial (4)	Flexure (4)	Load	In-plane (5) Shear	Provided (in ² / ft)	Load	Horizont	al Section	Vertica	Section	Reinforcement Provided (In ² /ft ²)	Remarks
	-			Re Dra	Zo Zo			Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)	, , ,	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	1246	D + F + L + H +Wth	94	-12										
					₹	мссм	1246	D + F + L + H +Wth	-100	-6	D+F+L+H+Wh	99	3.12			_		-	-	
					2	MMAT	1208	D + F + L + H +Wth	37	-96	5111211111111	-	3.12		-	-		-	-	
			bortal	17		MMAC	1198	D+F+L+H'+E'	-29	-96										
			H 9	F. 5		MTCM	1257	D + F + L + H +Wth	168	-36										
					-	MCCM	1257	D + F + L + H +Wth	-218	-14	D+F+L+H+Wth	93	4.68			_		-	-	
					-2	MMAT	1257	D+F+L+H'+E'	54	-96		-								
		opg.				MMAC	1197	D+F+L+H'+E'	-36	-98										
		Near				мтсм	1197	D + F + L + H +Wth	127	-6										
					74	MCCM	1247	D + F + L + H +Wth	-162	-5	D+F+L+H+Wh	100	3.12			_		_	-	
					2	MMAT	1245	D+F+L+H'+E'	11	-103	5111211111111	100	3.12	•	-	-	· ·	-	-	
			Vertoal	-178		MMAC	1245	D+F+L+H'+E'	-45	-103										
			No.	346		MTCM	1257	D + F + L + H +Wth	268	-35										
					3.44	MCCM	1257	D + F + L + H +Wth	-358	-38	D+F+L+H+Wh	81	6.24						-	
					*	MMAT	1257	D+F+L+H'+E'	51	-188										
2						MMAC	1257	D+F+L+H'+E'	-78	-188										
Ma.	2					MTCM	1257	D + F + L + H +Wth	117	14										
			bortal	1179	ž	MCCM	1268	D + F + L + H +Wth	-360	45	D+F+L+H+Wh	99	3.12						-	
			H 9	3H.6-1	2	MMAT	1268	D + F + L + H +Wth	49	87		-								
						MMAC	1232	D+F+L+H+Wt	-41	66										
						MTCM	1197	D + F + L + H +Wth	124	4										
		o pig			\$	MCCM	1247	D + F + L + H +Wth	-157	7	D+F+L+H+Wth	100	3.12			_		_	-	
		ě			+	MMAT	1208	D + F + L + H +Wth	48	84										
			tioal	187 4		MMAC	1265	D+F+L+H+Wt	-47	69										
			3,	3H8		MTCM	1257	D + F + L + H +Wth	103	4										
					2.44	MCCM	1258	D + F + L + H +Wth	-296	14	D+F+L+H+Wh	81	6.24			_		_	-	
					2	MMAT	1260	D + F + L + H +Wth	60	8										
						MMAC	1259	D + F + L + H' +E'	-140	27										
			ortal		1.	-	-	•	-	-	-	-	-	D+F+L+H+E	-31	120	10	3	0.44 (3@6")	
			verse (Horizo &Vertical)	88	7.5	-	-		-	-	-			D+F+L+H+E	-32	102	57	-12	0.80 (4@6")	
			Transverse &Ver	3н.в-	3-T	-	-			-	-	-	-	÷		-	-	-	0.44 (3@6")	Transverse shear reinforcement provided due to hurricane missile impact evaluation
						MTCM	944	D + F + L + H +Wth	36	-13										
						MCCM	939	D+F+L+H+Wt	-85	-1										
					±	MMAT	948	D + F + L + H +Wth	20	-43	D+F+L+H+Wt	56	1.56	•	*	*	-	-	-	
			ortal	18		MMAC	947	D+F+L+H+Wt	-2	-38										
			Horiz	3H.6-181		MTCM	951	D + F + L + H +Wth	143	-61										
					4	MCCM	941	D+F+L+H+Wt	-57	-2										
					24.	MMAT	911	D + F + L + H +Wth	48	-87	D+F+L+H+Wth	103	4.68		-			-	-	
=		opg				MMAC	943	D+F+L+H+Wth	-11	-24										
Wall 11	- 2	Near				MTCM	944	D + F + L + H +Wth	78	-5										
					+	мссм	908	D+F+L+H+Wt	-84	-25	0.5.1.11.	40	400							
					3,4	MMAT	917	D + F + L + H +Wth	20	-31	D+F+L+H+Wt	43	1.56	•	-	-	-	-	-	
			3	82		MMAC	907	D+F+L+H+Wt	-80	-33	1									
			Vertox	3H.6		MTCM	911	D + F + L + H +Wth	85	-41										
					×	MCCM	911	D + F + L + H +Wth	-104	-11	D+F+L+H+Wt	43	4.68					_	-	
					2.44	MMAT	911	D + F + L + H +Wth	33	-137	DTFTLTHTM	43	4.00		-	-	-		1	
						MMAC	918	D + F + L + H +Wth	-36	-21										

				ent iber	ant a 3				Longitudinal	Reinforcement I	Design Loads		Localitudinal			Transverse Shear Design Loads ⁽⁶⁾				
allou	Thickness (ft)	Face	ğ	yout 3 Num	m ag min	Maximum Forces ⁽³⁾	ment	Axial and Flexure	e Loads		In-Plane Shear Loa		Longitudinal Reinforcement Provided						Transverse Shear (7) Reinforcement Provided	Remarks
P.	This o	ď.	Direc	Sainfo Bwing	Reinfo Forre N	For	Ele	Load Combination	Axial (4)	Flexure (4)	Load Combination	In-plane (5) Shear (kips / ft)	(in²/ ft)	Load Combination		al Section Corresponding Axial Force	Vertica Transverse Shear Force		(in²/ft²)	
	+			щ <u>а</u>	H 2		+			(ft-kips / ft)	Combination	(kips / ft)		Combination	Transverse Shear Force (kip / ft)	(kip / ft)	(kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	920	D + F + L + H +Wt	19	8										
					₹.	MCCM	947	D+F+L+H+Wt	-210 5	25 45	D + F + L + H +Wt	55	1.56		•	-	-	-	-	
			7	8		MMAC	907	D+F+L+H+WI	-2	61										
			orizont	3H.6-18		MTCM	911	D+F+L+H+Wth	57	135										
			Ι Ι			MCCM	911	D+F+L+H+Wh	-459	57										
					2#L	MMAT	911	D+F+L+H+Wh	57	136	D + F + L + H +Wth	103	4.68	-	-	-	-	-	-	
=		2				MMAC	951	D+F+L+H+Wh	-36	94										
i i	- 7	Far sk				MTCM	944	D + F + L + H +Wth	68	1			+						+	
						MCCM	944	D+F+L+H+Wth	-112	8										
					1,44	MMAT	906	D + F + L + H +Wth	6	20	D + F + L + H +Wt	43	1.56		-	+	-	-	-	
			7	2		MMAC	907	D+F+L+H+Wt	-79	99										
			V arti	34.6-184		MTCM	910	D+F+L+H+Wth	61	43										
					-	MCCM	927	D + F + L + H +Wt	-184	23		1								
					244.0	MMAT	911	D + F + L + H +Wth	45	140	D+F+L+H+Wt	43	4.68	•	÷	-	=	-	-	
		Ш.				MMAC	935	D + F + L + H +Wt	0	69			<u> </u>			<u> </u>				
						MTCM	1437	D+F+L+H'+E'	24	-168										
					至	MCCM	1345	D+F+L+H'+E'	-199	-379	D+F+L+H+E	108	3.12						-	
					2	MMAT	1349	D+F+L+H'+E'	14	-216	5111211112	100	2.2	•	-		-	-		
						MMAC	1432	D+F+L+H'+E'	-188	-474										
						MTCM	-	*	-	-										
			age of the	3H.6-185	ž	MCCM	1433	D+F+L+H'+E'	-199	-533	D+F+L+H+E	85	4.68		-		_	_	_	
			£	ä	~	MMAT	-	-	-	-										
						MMAC	1434	D+F+L+H'+E'	-188	-543										
						MTCM	1341	D + F + L + H' +E'	24	-175										
					芸	MCCM	1337	D + F + L + H' +E'	-201	-831	D + F + L + H' +E'	108	7.8	-	-	-	-	-	-	
						MMAT	1445	D+F+L+H'+E'	16 -201	-226 -831										
						MTCM	1432	D+F+L+H'+E'	-201	-831 -41										
		ope ope				MCCM	1440	D+F+L+H'+E'	-180	-75										
		8 8			3	MMAT	1385	D+F+L+H'+E'	4	-222	D + F + L + H' +E'	100	3.12	-	÷	-	-	-	-	
2		_				MMAC	1373	D+F+L+H'+E'	-23	-230										
ii.	-4					MTCM	1439	D+F+L+H'+E'	125	-47			+						+	
						MCCM	1439	D+F+L+H'+E'	-210	-27										
					2-84	MMAT	1415	D+F+L+H'+E'	10	-200	D+F+L+H'+E'	100	4.68			-	-	-	-	
			70	8		MMAC	1415	D+F+L+H'+E'	-49	-200										
			Werds	3H.6-		MTCM	1438	D + F + L + H' +E'	194	-118										
					34	MCCM	1438	D + F + L + H' +E'	-270	-22	D+F+L+H'+E'	100	6.24						-	
					3-6	MMAT	1408	D + F + L + H'+E'	41	-502	DTFTETHTE	100	0.24		-	1	-			
						MMAC	1406	D + F + L + H' +E'	-12	-502										
					_	MTCM	1382	D + F + L + H' +E'	92	-692	·									
					44/1	MCCM	1398	D + F + L + H' +E'	-86	-47	D+F+L+H+E'	90	7.8		-	_	_	-	-	
					4	MMAT	1374	D + F + L + H' +E'	85	-714						1				
					<u> </u>	MMAC	1398	D + F + L + H' +E'	-1	-577										
			_			MTCM	1341	D+F+L+H'+E'	20	13						1				
		Far St.	rizontal	3H.6-187	₹	MCCM	1409	D + F + L + H' +E'	-194	54	D+F+L+H+E	108	3.12		÷	-	÷	=	=	
		ž.	Hon	#	"	MMAT	1349	D + F + L + H' +E'	1	80						1				
			1	1	<u> </u>	MMAC	1393	D+F+L+H'+E'	-170	339		1				1			<u> </u>	l

				w \$	w 67			Longitus	nal Reinforcer	ent Design Loads									
e e	\$ _		Log gov	Numb	up agu	₩ 6 ₈	a t	Axial and Flexure Loads		In-Plane Shear Loa	ıds	Longitudinal Reinforcement			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear (7)	
Location	Thickness (ft)	Face	Direction	Inforcem Layout Aing Nur (1)	inforc Nu Nu	Maximum Forces ⁽³⁾	Ben	Load Axial	(4) Flexure	(4) Load	In-plane (5)	Provided (in²/ft)	Load	Horizont			al Section	Reinforcement Provided (in ² /ft ²)	Remarks
				Re Drav	Reinf			Combination (kips	ft) (ft-kips		Shear (kips / ft)	()	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	1343	D + F + L + H' +E' 98	57										
					2	MCCM	1335	D + F + L + H' +E' -20	11	D+F+L+H'+E'	100	3.12						_	
					\$	MMAT	1423	D+F+L+H'+E' 8	184	5111211112		2.12	·	-		-	•	-	
						MMAC	1423	D + F + L + H' +E' -10	212										
						MTCM	1430	D+F+L+H'+E' 134	43										
		opg.	leod	8	2.W.L	MCCM	1438	D + F + L + H' +E' -27	48	D+F+L+H'+E'	100	4.68							
~		ě	Ver	314.6	5	MMAT	1385	D + F + L + H' +E' 50	339	5111211112		4.00	·	-		-	•	-	
Wall 12	4					MMAC	1400	D + F + L + H' +E' -10	324										
_						мтсм	1383	D + F + L + H' +E' 78	275										
					74	MCCM	1391	D+F+L+H'+E' -62	_	D+F+L+H'+E'	90	6.24		_		_	_		
						MMAT	1384	D + F + L + H' +E' 66	356										
						MMAC	1368	1.4D + 1.4F +1.7L + 1.7H + 1.7W -1	235										
1			and de	0 0	5	-	-		-	-		-	D+F+L+H'+E'	13	28	-87	-186	0.20 (4@12")	
1			Transverse (Horizontal &Wertoal)	8.6	2.1	-	-		-	-	-	-	D+F+L+H'+E'	7	1	-109	-162	0.31 (5段12")	
			PO.		H-6		-		-	-	-		D+F+L+H'+E'	8	-57	174	-189	0.80 (4@6")	
						MTCM	1873	D+F+L+H+Wth 10	_										
					₹	MCCM	1953	D+F+L+H'+E' -20	_	D+F+L+H+E	105	3.12		-		-	-		
					-	MMAT	1873	D+F+L+H+Wth 1	-95										
						MMAC	1953	D+F+L+H'+E' -20	_										
						MTCM	1872	D+F+L+H'+E' 25	-16										
					#	MCCM	1942	D+F+L+H'+E' -20	_	D+F+L+H'+E'	105	4.68		-		-	-	-	
			_		64	MMAT	1872	D+F+L+H'+E' 5	-199										
			riconta	069		MMAC	1956	D+F+L+H'+E' -18	_										
			Ť.	314.6		MTCM	1871	D+F+L+H'+E' 33	-48										
					至	MCCM	1926	D+F+L+H'+E' -19		D+F+L+H'+E'	105	6.24		-	-	-		-	
						MMAT	1884	D+F+L+H'+E' 11	_										
						MMAC	1912	D+F+L+H'+E' -12	_										
						MTCM		: :	-										
		Vear Side			₹	MCCM	1954	D+F+L+H'+E' -20	-881	D+F+L+H+E	80	7.8		-		-	-	-	
		ž			1		-												
Wall 13	**					MMAC	1968	D+F+L+H'+E' -19											
, s						MTCM	1883	D+F+L+H+Wth 10-	_	_									
					1.94	MMAT	1913		_	D+F+L+H'+E'	101	3.12	-	-	-	-	-	-	
						MMAC	1927	D+F+L+H'+E' 49	_						1				
					-	MTCM	1871	D+F+L+H+Wth 186		+	+	-		-	 				
			_	2		MCCM	1857	D+F+L+H'+E' -28	_	\dashv					1				
			Warton	3H6-39	2.V-L	MMAT	1880	D+F+L+H'+E' 24	-422	D+F+L+H'+E'	101	4.68	-	-	-	-	-	-	
						MMAC	1880	D+F+L+H'+E' 48	_	-					1				
						MTCM	1864	D+F+L+H'+E' 89	-724										
					l .	MCCM	1868	D+F+L+H'+E' -11	_	\dashv					1				
					3.W.L	MMAT	1865	D+F+L+H'+E' 82	-750	D+F+L+H'+E'	77	9.36	-	-	-	-	-	-	
						MMAC	1867	D+F+L+H'+E' -2	_	-					1				
		\vdash				MTCM	1871	D+F+L+H'+E' 37	152		+	-							
		opi	3	8	١.	MCCM	1945	D+F+L+H'+E' -19							1				
		Farsid	Horizon	3H.6-18	ž	MMAT	1883	D+F+L+H'+E' 4	205	D+F+L+H'+E'	105	3.12	-	-	-	-	-	-	
			_			MMAC	1964	D+F+L+H'+E' -18	_	=									
L		_		1								1	1	1	I .	1	1		

Table 3H.6-11 Results of DGFOS Vault Concrete Design (Continued)

	I			± 5	#8				Longitudinal Reinforcement Design Loads											
ğ		8	tjou	out Numb	uppe, upper	E @	TE S	Axial and Flexure			In-Plane Shear Load	s	Longitudinal Reinforcement			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear (7)	I I
8	Thickness (ft)	Face	Direc	Lay Maring	ne Nu	Maximu Forces	Elem	Load	Axial (4)	Flexure (4)	Load	In-plane (5) Shear	Provided (in²/ ft)	Load		tal Section	Vertica	I Section	Reinforcement Provided (in ² /ft ²)	Remarks
				S C	2 2			Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	1876	D+F+L+H+Wth	15	61										1
			Szortal	.6-192	ž	MCCM	1904	D+F+L+H'+E'	-112	170	D+F+L+H+E	53	4.68					-	-	1
			£	ä	~	MMAT	1882	D+F+L+H'+E'	8	115										1
						MMAC	1906	D+F+L+H'+E'	-109	384										
						MTCM	1887	D+F+L+H+E	82	83	1									1
		ar side			₹	MCCM	1885	D + F + L + H' + E'	-201	3	D+F+L+H+E	101	3.12		-			-	-	1
5		uc .				MMAT	1887	D+F+L+H+E D+F+L+H+E	-118	179	-									1
8	-4		Aertical	H8-19		MTCM	1857	D+F+L+H+E	-118 141	17										
				36		MCCM	1857	D+F+L+H+E	-260	41	-									1
					2.44	MMAT	1922	D+F+L+H+E	-260	336	D + F + L + H' +E'	101	4.68	-	-		-	-	-	1
						MMAC	1922	D+F+L+H+E	-7	336	+									1
					5	-	1919			327	-			D+F+L+H'+E'	-73	81	-9	-101	0.20 (4@12")	
			warse zontal tical)	191	2-T 1-						-			D+F+L+H'+E'	5	2	107	-127	0.31 (5@12")	ł
			Trans (Hori: &Wer	311.8	2 7					-	-		-	D+F+L+H'+E'	1	-46	-178	-188	0.80 (4@6")	1
						MTCM	1592	D+F+L+H+Wth	55	-1										
						MCCM	1663	D+F+L+H+Wth	-258	-2										
					₹	MMAT	1506	D+F+L+H+Wh	12	-40	D + F + L + H +Wth	50	1.56	-	•	-	-	=	-	
			120	8		MMAC	1508	D+F+L+H+Wth	-63	-43										
			Horizo	3H.B-1		MTCM	1653	D+F+L+H'+E'	36	-44										
					٠,	MCCM	1496	D+F+L+H'+E'	-154	-34	D + F + L + H +Wth 50					-		-	1	
					244	MMAT	1507	D+F+L+H+Wth	31	-89		3.12	•	-			-			
						MMAC	1652	D+F+L+H'+E'	-127	-81										
						MTCM	1513	D+F+L+H+Wth	54	-8				-			-	-		
		8 8			-	MCCM	1657	D+F+L+H+Wth	-99	-5						-				
		Zog			3	MMAT	1629	D + F + L + H +Wth	3	-61	D+F+L+H+Wth	51	1.56		-				-	
						MMAC	1617	D+F+L+H+Wh	0	-52										
						MTCM	1498	D+F+L+H+Wh	140	-6										
			tion	1198	₹	MCCM	1500	D + F + L + H +Wth	-138	-6	D+F+L+H+Wh	62	3.12							
			3	34.6	- 2	MMAT	1507	D + F + L + H +Wth	37	-76		-								1
4	20					MMAC	1508	D + F + L + H +Wth	-13	-70										
Wal						MTCM	1652	D + F + L + H +Wth	133	-56										1
					₹	MCCM	1654	D+F+L+H+E	-157	-10	D + F + L + H +Wth	62	6.24	-	-	-		-	-	(8)
						MMAT	1652	D+F+L+H+Wth	121	-108	4					1				1
					1	MMAC	1652	D+F+L+H'+E'	-49	-74										
						MTCM	1592	D+F+L+H+Wh	55	4	1					1				1
					₹	MCCM	1663	D+F+L+H+Wh	-255	6	D + F + L + H +Wth	50	1.56	-	-	-	-	-	-	1
			- a			MMAT	1628 1543	D+F+L+H+Wh D+F+L+H+Wt	33 -75	39 66	-									1
			orizon	3H.6-191	<u> </u>	MMAC	1543	D+F+L+H+Wt	-75 53	40		-								
			ź	8		MCCM	1907	D+F+L+H+Wh	-367	46	+									
		Far Side			¥	MMAT	1507	D+F+L+H+Wh	-367	76	D + F + L + H +Wth	50	3.12	-	-	-	-	-	-	1
		~				MMAC	1507	D+F+L+H+Wh	-358	59	†					1				1
					1	MTCM	1657	D+F+L+H+Wh	58	1	1	1				 		 		
			-	86	1 .	MCCM	1567	D+F+L+H+Wt	-105	8	†									I
			Weto	311.6-2	1-84	MMAT	1521	D+F+L+H+Wh	3	41	D + F + L + H +Wth	51	1.56	-	-	-	-	-	-	I
						MMAC	1603	D+F+L+H+Wh	-38	77	1					1				
	1	1					1		1	1	1	1	1		1	1	1	1	1	1

Table 3H.6-11 Results of DGFOS Vault Concrete Design (Continued)

				r ž	ક છે.		Longitudinal Reinforcement Design Loads													
ation	Thickness (ft)	Face	clon	yout Num	nmbe	Maximum Forces (3)	ment	Axial and Flexur	e Loads		In-Plane Shear Loads		Longitudinal Reinforcement			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear (7) Reinforcement Provided	Remarks
3	¥.	-	Dire	Seinfo Lar rawing	Reinfo one N	For	å	Load Combination	Axial (4)	Flexure (4)	Load Combination	In-plane (5) Shear	Provided (in ² / ft)	Load Combination	Horizont Transverse Shear Force	al Section Corresponding Axial Force	Vertica Transverse Shear Force	I Section Corresponding Axial Force	(in²/ft²)	
	+			- 4	- 2	MTCM			(kips / ft)	(ft-kips / ft)	Combination	(kips / ft)		Combination	(kip / ft)	Corresponding Axial Force (kip / ft)	(kip / ft)	Corresponding Axial Force (kip / ft)		
						MCCM	1499	D+F+L+H+Wh	113	1										
					2.44	MMAT	1507	D+F+L+H+Wh	-261 46	136	D + F + L + H +Wth	62	3.12	-	-	-		-	-	
						MMAC	1496	D+F+L+H+Wh	-261	136										
		FarSida	/ertical	3H.6-19		MTCM	1653	D+F+L+H'+E'	93	9										
Wall 14	64		_			MCCM	1652	D+F+L+H+Wh	-209	68										
,					3%.	MMAT	1652	D+F+L+H+E	1	66	D + F + L + H +Wth	47	4.68		-			-	-	(8)
						MMAC	1652	D+F+L+H+Wth	-207	138										
			839		7				-	-				D+F+L+H+E	-22	90	13	16	0.44 (3@6")	
			Fransver Horizon Alvertica	3H6-38	2.T 1				1 .	_				D+F+L+H+E	-40	202	16	-122	0.80 (4@6")	
	+		560		6	MTCM	1808	D+F+L+H+Wt	65	-9	-	-	-	DTFTLTHTE	-40	202	10	-122	0.80 (4g6)	
						MCCM	1840	D+F+L+H+Wt	-90	-2										
					₹	MMAT	1699	D+F+L+H+Wh	6	-55	D + F + L + H +Wth	37	1.56	-	-			-	-	
			3	9		MMAC	1693	D+F+L+H'+E'	-14	-83						1				
1			Horizon	34.6-20		MTCM	1844	D+F+L+H+Wh	41	-12									+	
			1	"		MCCM	1689	D+F+L+H'+E'	-33	-43	1					1				
					34.	MMAT	1700	D + F + L + H +Wth	33	-99	D + F + L + H +Wth	37	3.12	•	-		-	-	-	
						MMAC	1845	D+F+L+H+E	-27	-102										
						MTCM	1719	D + F + L + H +Wth	69	-17									1	
		-60			_	MCCM	1796	D+F+L+H+Wt	-107	-10										
		70 PE 00			5.V-E	MMAT	1770	D+F+L+H+E'	0	-32	D+F+L+H+Wth 54	1.56	-	-	-		-	=		
						MMAC	1796	D+F+L+H+E'	-11	-44										
						MTCM	1691	D + F + L + H +Wth	140	-19										
			10	201	4	MCCM	1856	D + F + L + H +Wth	-71	-3			3.12	-					-	
			Verti	ŝ	2.74	MMAT	1856	D + F + L + H +Wth	37	-76	D + F + L + H +Wth	85					•	-		
						MMAC	1846	D+F+L+H+E	-3	-29										
						MTCM	1689	D + F + L + H +Wth	155	-52										
Wall 15	7				3-W.E	MCCM	1700	D + F + L + H +Wth	-87	-6	D+F+L+H+Wth	85	4.68		-			-		
8					9	MMAT	1700	D + F + L + H +Wth	48	-101										
						MMAC	1689	D+F+L+H+E	-1	-39										
						MTCM	1843	D + F + L + H +Wt	24	1						1				
					≢	MCCM	1724	D + F + L + H +Wth	-226	13	D+F+L+H+Wh	37	1.56		-			-		
					,	MMAT	1741	D+F+L+H'+E'	3	43						1				
1			rizontal	18-202		MMAC	1784	D+F+L+H+Wt	-86	67								ļ		
			£	- H		MTCM	1700	D + F + L + H +Wth	42	94						1				
					2+r	MCCM	1700	D + F + L + H +Wth	-397	45	D+F+L+H+Wth	37	3.12	-	-	-	-	-	-	
					"	MMAT	1700	D + F + L + H +Wth	-42 -391	94 61						1				
1		Far side	-	-		MTCM	1700	D+F+L+H+Wth	-391 45	61								 		
1						MCCM	1833	D+F+L+H+W:	-106	6	-									
					1.94	MMAT	1796	D+F+L+H+Wt	-106	55	D + F + L + H +Wth	64	1.56	•	-	-	-	-	-	
				5		MMAC	1797	D+F+L+H+E	-22	55	1					1				
			Vertica	34.6-203	\vdash	MTCM	1702	D+F+L+H'+E'	-22	6		-				 				
						MCCM	1689	D+F+L+H+Wh	-150	42						1				
					2W.L	MMAT	1856	D+F+L+H+Wh	46	91	D + F + L + H +Wth	85	3.12	-	-	-		-	-	
						MMAC	1696	D+F+L+H+Wt	-29	79	1					1				
	1	1			1					1		<u> </u>				1			1	

Table 3H.6-11 Results of DGFOS Vault Concrete Design (Continued)

	I			r ž	# 8				Longitudinal	Reinforcement	Design Loads									
ig ig	sse o	Face	uogo	forceme Layout fing Numi	aquir ceme	# ®	neut	Axial and Flexur	e Loads		In-Plane Shear Load:	5	Longitudinal Reinforcement			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear (7) Reinforcement Provided	Remarks
3	Thickner (ft)	æ	Dire	offing Ming	Reinforo Zone Nur	Maxim	8	Load	Axial (4)	Flexure (4)	Load	In-plane (5)	Provided (in ² / ft)	Load	Horizont Transverse Shear Force	al Section Corresponding Axial Force	Vertical Transverse Shear Force	Section Corresponding Axial Force	(in²/ft²)	roman ka
				B Dri	8 8			Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Combination	(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
						мтсм	1700	D + F + L + H +Wth	60	116										
		8	To I	8.	3-8-5	MCCM	1700	D + F + L + H +Wth	-6	4	D+F+L+H+Wh	85	4.68							
*	2	2	3	311.6	9	MMAT	1700	D + F + L + H +Wth	60	117		-								
Wall						MMAC	1700	D+F+L+H'+E'	-1	11										
			Transverse (Horizontal & Vertical)	3H.6-2038	2	-	-		-	-	-	-	-	D+F+L+H+E	-22	86	-36	-20	0.44 (3@6*)	
						MTCM	1486	D + F + L + H +Wth	69	-79										
			Bruce	204	7	MCCM	1447	D + F + L + H +Wth	-56	-16										
			Hoto	*	₹	MMAT	1494	D + F + L + H +Wth	36	-112	D + F + L + H +Wt	51	3.12	3.12	-			-		
						MMAC	1470	D+F+L+H+WI	-41	-25										
						MTCM	1450	D + F + L + H +Wt	81	-6	D+F+L+H+Wth 38									
		å			7	MCCM	1447	D + F + L + H +Wth	-111	-118										
		Zea Z			35	MMAT	1486	D + F + L + H +Wth	21	-54		3.12	•		-	-		-		
			Tig.	18		MMAC	1447	D + F + L + H +Wth	-104	-120										
			Ver	3H.6		MTCM	1493	D + F + L + H +Wth	89	-88										
					7	MCCM	1493	D+F+L+H+Wt	-19	4	D+F+L+H+Wh	38					÷			
					2.5	MMAT	1494	D + F + L + H +Wth	50	-118	DTFTETHTWIN	30	4.00	4.68	•					
Mall 16	60					MMAC	1494	D+F+L+H+Wt	-11	-8										
						мтсм	1494	D + F + L + H +Wth	49	102										
			lano	306	±	MCCM	1494	D + F + L + H +Wth	-436	76	D+F+L+H+Wt	51	3.12					_		
			Horiz	34.6	ž	MMAT	1494	D + F + L + H +Wth	49	102	DTFTETHTW	51	3.12	•	-	-	-	-		
		o pg				MMAC	1494	D + F + L + H +Wth	-427	99										
		ž.				мтсм	1451	D+F+L+H+Wt	82	11										
			leg	-202	7	MCCM	1478	D + F + L + H +Wt	-138	36	D+F+L+H+Wth 38 3.12	2 42								
			Ver	311.8	3	MMAT	1494	D + F + L + H +Wth	61	103		3.12	•			-	1	1		
						MMAC	1491	D+F+L+H+Wt	-50	79										
			Transwerse Horizontal & Vertosi)	-208	11	-		-	-	-	-	-	-	-	-	-	-	-	1.24 (5@6")	Transverse shear reinforcement provided due to
		1	Trans (Horiz Nert	34.8.	2.1	-		-	-	-	=	-	-	-	÷	÷	÷	=	0.44 (3@6")	hurricane missile impact evaluation.

14xx (1) The reinforcement layout drawings show the various zones used to define the imminum reinforcement at will be provided based on the dement analysis sexually constant.

A third provided mental constant and the zones with higher reinforcement may be extended beyond their reported boundaries. The dimensions in the neinforcement drawing are based on the dimensions of the SAP2000 elements, which are noticed at the extended to the provided based on the dimensions of the SAP2000 elements, which are noticed at the extended to the provided based on the dimensions. See Figure 34.4-14 for value and the bibliograph growneston.

(2) Each neinforcement layout drawing is divided into reinforcement zones. The reinforcement zone naming convention is as follows: "it" = horizontal, "v" = vertical, "t" = longitudinal reinforcement, "t" = transverse reinforcement. For slabs, vertical corresponds to Y-axis and horizontal corresponds to Y-a

(3) The maximum tension (MTCM) and compression (MCCM) avail forces are provided with the corresponding moment from the same load combination. The maximum moment that has a corresponding tension (MMAT) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding compression (MMAC) in the same load combination are also provided with the corresponding combination are also provided with the corresponding combination are also provided with the corresponding combination are also provided with the corresponding combination are also provided with the corresponding combination are also provided with the correspondi

(4) Negative axial load is compression and goality-axial load is tension. Negative moment applies lension to the top face of the shall element and positive moment applies lension to the top face of the shall element and positive moment applies lension to the top face of the shall element and positive moment applies lension to the top face of the shall element and positive moment applies lension to the top face of the shall element and positive shall element. For walk or yields where the same reinforcement is provided on both faces, the moment is shown as absolute value. The axial and florusal loads propried in the label are the average of the 2 node pairs that form the 4 edges of the critical rectangular shall element. If the 2 node pairs

(5) The reported in-plane shear is the maximum average in-plane shear along a plane that crosses the longitudinal reinforcement zone

(6) The transverse shear reinforcement loads are reported for the critical element requiring the largest area of sted for transverse reinforcement within the zone. The shear force and the corresponding axial force in the same load combination for each direction is reported for the critical element.

(7) The reported transverse shear reinforcement is the summation of the required shear reinforcement in the horizontal direction and the required shear reinforcement in the vertical direction.

8) For certain areas of the structure, the standard element post-processing methods were too conservative. For such cases, detailed manual design was performed and the design forces determined by the detailed manual design are provided in the table

(9) The reported forces are from the FEM analysis. The provided longitudinal reinforcement includes additional reinforcement required due to manual one-way design calculation

10) The longitudinal reinforcement shown is required to be tier

Table 3H.6-12 Factors of Safety Against Sliding, Overturning, and Flotation for Diesel Generator Fuel Oil Storage Vaults

Load Combination	Ca	alculated Safety Fac	tor	Notes
Load Combination	Overturning	Sliding	Flotation	Notes
D + F'			1.28	2, 3
D + H + W	1.5	5.84		2, 3, 4
D + H + Wt	1.41	19.75		2, 3
D + H' + E'	1.1	1.1		3, 4, 5
D + H + W _{th}	1.17	1.34		2, 3

Notes:

- 1) Loads D, H, H', W, Wt, and E' are defined in Subsection 3H.6.4.3.4.1. F' is the buoyant force corresponding to the design basis flood. Load W_{th} is defined in Subsection 3H.11.1.
- 2) Reported safety factors are conservatively based on considering empty weight of the fuel oil tank.
- 3) Coefficients of friction for sliding resistance are 0.58 for static conditions and 0.39 for dynamic conditions for the Diesel Generator Fuel Oil Storage Vault.
- 4) The calculated safety factors consider less than full passive pressure. The calculated safety factors increase if full passive pressure (Kp = 3.0) is considered.
- 5) The seismic sliding forces and overturning moments from SSI and SSSI analyses are less than the seismic sliding forces and overturning moments used in the stability evaluations.

Table 3H.6-13 Tornado Missile Impact Evaluation for Diesel Generator Fuel Oil Storage Vault

Local Check	DGFOS Vault	Minimum required thickness to prevent penetration, perforation, and scabbing = 13.6"
Local Check	DGFOS Vault	Minimum provided thickness = 18"
		Impacts where Flexure controls.
		Maximum impact load including Dynamic Load Factor (DLF) = 432 kips
		Ductility demand < 1
	Roof	Ductility limit = 10
		Impacts where shear controls.
		Maximum impact load including Dynamic Load Factor (DLF) = 432 kips
		Minimum capacity = 613 kips
Overall Check of		Shear controls
Impacted Element		Maximum impact load including Dynamic Load Factor (DLF) = 200 kips
	Protection Hood	Minimum capacity = 534 kips
		The minimum capacity is based on the inclusion of the following shear reinforcement:
		- #3 bars spaced at 6" o.c. in both directions
		Shear controls.
		Maximum impact load including Dynamic Load Factor (DLF) = 617 kips
	Walls	Minimum capacity = 866 kips
		Maximum impact load and minimum capacity based on largest ratio of impact load to capacity.

Table 3H.6-13 Tornado I	Missile Impac	t Evaluation for Diesel Generator Fuel Oil Storage Vault (Continued)
		Shear controls.
		For Vertical Beam Shear:
		Maximum impact load including Dynamic Load Factor (DLF) = 309 kips
		Minimum capacity = 1044 kips
Entry	Way Wall	Shear ties are required locally for vertical beam shear to withstand a missile strike near the top and bottom panel supports. See Table 3H.6-11 and Figure 3H.6-208 for reinforcement size and location.
		For Horizontal Beam Shear:
		Maximum impact load including Dynamic Load Factor (DLF) = 281 kips
		Minimum capacity = 359 kips
Global Check		Equivalent static impact forces are applied to the FEM analysis of the DGFOS Vault. The analysis results presented in Table 3H.6-11 provide a summary of the results for all load combinations including those affected by the tornado missile impact.

Table 3H.6-14 Calculated Overturning and Sliding Factors of Safety Under Site-Specific SSE and Flotation Factors of Safety for TB, SB, RWB and CBA

	Calcu	lated Factor of	Safety	Minimum	Coefficient of
Structure	Overturning	Sliding	Flotation	Required Factor of Safety	Friction for Sliding Evaluation
Turbine Building (TB)	2.18	1.11	1.46	1.1	0.30 (dynamic)
Service Building (SB)	2.65 2.11	1.81 1.11	1.40	1.1	0.39 (dynamic)
Radwaste ¹ Building (RWB)	4.23 3.24	1.92 1.68	1.51	1.1	0.39 (dynamic)
Control Building Annex (CBA)	2.03	1.16	1.18	1.1	0.58 (static)

Notes:

⁽¹⁾ The seismic sliding forces and overturning moments from SSSI analysis are less than the seismic sliding forces and overturning moments used in the stability evaluations.

Table 3H.6-15 Required and Provided Gaps at the Interface of Site-Specific Seismic Category I Structures and Diesel Generator Fuel Oil Tunnels with Adjoining Structures

Interfacing Structures	Required and Provided Gaps (inches)			
	Required Gap	Provided Gap		
RSW Piping Tunnels and Control Building	4.54	5.0		
RSW Pump House and RSW Piping Tunnel A	3.99	5.0		
RSW Pump House and RSW Piping Tunnel B	4.92	5.0		
RSW Pump House and RSW Piping Tunnel C	3.07	5.0		
Diesel Generator Fuel Oil Storage Vault (DGFOSV) No. 1 and its Diesel Generator Fuel Oil Tunnel	2.37	3.0		
Diesel Generator Fuel Oil Storage Vault (DGFOSV) No. 2 and its Diesel Generator Fuel Oil Tunnel	2.60	3.0		
Diesel Generator Fuel Oil Storage Vault (DGFOSV) No. 3 and its Diesel Generator Fuel Oil Tunnel	2.42	3.0		
Reactor Building and Diesel Generator Fuel Oil Tunnel (DGFOT) No. 1A	2.65	4.0		
Reactor Building and Diesel Generator Fuel Oil Tunnel (DGFOT) No. 1B	3.77	4.0		
Reactor Building and Diesel Generator Fuel Oil Tunnel (DGFOT) No. 1C	3.24	4.0		

Note: See Figure 3H.6-221 for layout of the above structures

Table 3H.6-16 Factors of Safety Against Sliding, Overturning, and Flotation for Reactor Service Water Tunnel

Load Combination	Ca	alculated Safety Fac	tor	Notes
Load Combination -	Overturning	Sliding	Flotation	
D + F'			1.18	
D + H + W	2.29	50.76		2
D + H + W _t	2.23	21.31		
D + H' + E'	1.1	1.29		2,3,4
D + H + W _{th}	1.10	1.23		2, 3

Notes

- (1) Loads D, H, H', W, Wt, and E` are defined in Subsection 3H.6.4.3.4.1. F` is the buoyant force corresponding to the design basis flood. Load W_{th} is defined in Subsection 3H.11.1.
- (2) Coefficients of friction for sliding resistance are 0.45 for static conditions and 0.30 for dynamic conditions for the RSW Tunnel.
- (3) The calculated safety factors consider less than half of the full passive pressure. The calculated safety factors increase if full passive pressure (Kp = 3.0) is considered.
- (4) The seismic sliding forces and overturning moments from SSI and SSSI analyses are less than the seismic sliding forces and overturning moments used in the stability evaluations.

Table 3H.6-17 UHS/RSW Pump House Response Spectra Modification Factors

Group ⁽¹⁾	Direction	Domning			Fr	equency	Range(l	Hz)		
Group	Direction	Damping	0-2	2-5	5-10	10-15	15-20	20-25	25-30	30-35
group1			1.255	1.255	1.472	2.195	2.195	1.837	1.837	1.047
group2			1.432	1.432	1.882	2.348	2.348	1.888	1.367	1.021
group3			1.321	1.321	1.868	2.083	2.083	1.775	1.697	1.097
group4			1.193	1.193	1.858	2.630	2.630	2.136	1.677	1.020
group5	Х	0.005	1.195	1.195	1.864	1.838	1.838	1.317	1.219	1.000
group6	^	0.003	1.449	1.590	3.253	3.849	3.270	3.763	3.639	1.514
group7			1.230	1.230	1.814	1.582	1.553	2.234	1.202	1.003
group8			1.660	4.430	4.430	1.734	1.372	1.237	1.222	1.136
group9			1.660	2.138	1.859	1.734	1.413	1.237	1.192	1.117
group10			1.660	2.138	1.770	1.734	1.753	1.275	1.192	1.117
group1			1.273	1.273	1.423	1.754	1.754	1.340	1.298	1.047
group2			1.381	1.381	1.729	1.917	1.917	1.424	1.235	1.019
group3			1.285	1.285	1.734	1.728	1.728	1.384	1.184	1.097
group4			1.207	1.207	1.700	2.164	2.164	1.692	1.385	1.021
group5	X	0.01	1.166	1.166	1.760	1.567	1.567	1.216	1.059	1.000
group6	^	0.01	1.483	1.514	2.566	2.856	2.274	2.672	2.672	1.467
group7			1.192	1.192	1.727	1.347	1.532	1.553	1.110	1.002
group8			1.417	3.653	3.653	1.464	1.231	1.228	1.149	1.136
group9			1.417	2.072	1.662	1.464	1.301	1.149	1.149	1.117
group10			1.417	2.072	1.637	1.464	1.429	1.215	1.149	1.117
group1			1.264	1.264	1.363	1.505	1.505	1.181	1.181	1.047
group2			1.317	1.317	1.518	1.587	1.587	1.292	1.085	1.018
group3			1.252	1.252	1.535	1.377	1.377	1.113	1.097	1.097
group4			1.247	1.247	1.497	1.708	1.708	1.358	1.164	1.021
group5	X	0.02	1.151	1.151	1.576	1.348	1.348	1.118	1.016	1.000
group6		0.02	1.441	1.479	2.039	2.277	1.938	1.879	1.893	1.369
group7			1.205	1.205	1.561	1.303	1.334	1.158	1.078	1.001
group8			1.251	2.770	2.770	1.300	1.151	1.194	1.156	1.136
group9			1.251	1.843	1.483	1.300	1.197	1.122	1.123	1.117
group10			1.251	1.843	1.364	1.300	1.195	1.151	1.123	1.117

Table 3H.6-17 UHS/RSW Pump House Response Spectra Modification Factors (Continued)

O(1)	Dinastian	D			Fr	equency	Range(l	Hz)		
Group ⁽¹⁾	Direction	Damping	0-2	2-5	5-10	10-15	15-20	20-25	25-30	30-35
group1			1.227	1.227	1.326	1.342	1.312	1.152	1.152	1.048
group2			1.338	1.338	1.395	1.426	1.436	1.186	1.068	1.018
group3			1.274	1.274	1.413	1.272	1.272	1.054	1.097	1.097
group4			1.274	1.274	1.382	1.415	1.415	1.203	1.116	1.021
group5	V	0.00	1.123	1.123	1.459	1.217	1.217	1.055	1.000	1.000
group6	Х	0.03	1.416	1.507	1.871	1.958	1.718	1.673	1.697	1.311
group7			1.181	1.181	1.456	1.247	1.247	1.104	1.073	1.000
group8			1.221	2.315	2.315	1.182	1.151	1.174	1.162	1.136
group9			1.221	1.672	1.317	1.182	1.151	1.117	1.120	1.117
group10			1.221	1.672	1.293	1.182	1.151	1.130	1.120	1.117
group1			1.202	1.202	1.269	1.256	1.233	1.122	1.122	1.047
group2			1.283	1.283	1.318	1.319	1.322	1.126	1.079	1.017
group3			1.236	1.236	1.336	1.239	1.239	1.061	1.097	1.097
group4			1.250	1.250	1.312	1.286	1.286	1.113	1.070	1.022
group5	V	0.04	1.102	1.102	1.379	1.121	1.121	1.012	1.000	1.000
group6	Χ	0.04	1.402	1.498	1.755	1.834	1.566	1.580	1.595	1.274
group7			1.159	1.159	1.381	1.223	1.207	1.048	1.045	1.000
group8			1.173	2.009	2.009	1.154	1.145	1.163	1.163	1.136
group9			1.173	1.595	1.282	1.154	1.145	1.115	1.118	1.116
group10			1.173	1.595	1.282	1.154	1.145	1.115	1.118	1.116
group1			1.191	1.191	1.230	1.245	1.188	1.103	1.103	1.047
group2			1.245	1.245	1.267	1.241	1.248	1.089	1.081	1.017
group3			1.208	1.208	1.283	1.219	1.219	1.064	1.096	1.096
group4			1.240	1.240	1.265	1.244	1.244	1.058	1.036	1.022
group5	X	0.05	1.127	1.127	1.324	1.089	1.087	1.000	1.000	1.000
group6		0.05	1.391	1.476	1.692	1.732	1.460	1.515	1.520	1.248
group7			1.140	1.140	1.326	1.207	1.166	1.018	1.018	1.000
group8			1.157	1.809	1.809	1.146	1.141	1.161	1.161	1.135
group9			1.157	1.545	1.224	1.146	1.141	1.114	1.117	1.116
group10		<u> </u>	1.157	1.545	1.224	1.146	1.141	1.114	1.117	1.116

Table 3H.6-17 UHS/RSW Pump House Response Spectra Modification Factors (Continued)

O(1)	Dinastian	Di	Frequency Range(Hz)										
Group ⁽¹⁾	Direction	Damping	0-2	2-5	5-10	10-15	15-20	20-25	25-30	30-35			
group1			1.191	1.191	1.124	1.157	1.128	1.075	1.075	1.046			
group2			1.212	1.212	1.177	1.140	1.140	1.090	1.039	1.016			
group3			1.190	1.190	1.216	1.185	1.185	1.072	1.096	1.096			
group4			1.234	1.234	1.198	1.187	1.187	1.055	1.024	1.022			
group5	V	0.07	1.095	1.095	1.239	1.057	1.000	1.000	1.000	1.000			
group6	X	0.07	1.383	1.457	1.604	1.597	1.373	1.404	1.404	1.223			
group7			1.112	1.112	1.255	1.174	1.141	1.000	1.000	1.000			
group8			1.147	1.582	1.582	1.138	1.135	1.152	1.152	1.135			
group9			1.147	1.460	1.184	1.138	1.135	1.114	1.116	1.116			
group10			1.147	1.460	1.184	1.138	1.135	1.114	1.116	1.116			
group1			1.164	1.164	1.081	1.087	1.084	1.054	1.054	1.044			
group2			1.163	1.163	1.118	1.080	1.091	1.086	1.032	1.014			
group3			1.153	1.153	1.148	1.144	1.144	1.079	1.095	1.095			
group4			1.182	1.182	1.109	1.155	1.150	1.037	1.022	1.021			
group5	V	0.1	1.091	1.091	1.163	1.063	1.000	1.003	1.000	1.000			
group6	X		1.362	1.401	1.559	1.486	1.393	1.306	1.306	1.217			
group7			1.083	1.083	1.187	1.145	1.092	1.000	1.000	1.000			
group8			1.135	1.416	1.416	1.151	1.130	1.141	1.141	1.134			
group9			1.135	1.371	1.164	1.132	1.130	1.113	1.115	1.115			
group10			1.135	1.371	1.164	1.132	1.130	1.113	1.115	1.115			
group1			1.153	1.153	1.073	1.066	1.058	1.040	1.042	1.041			
group2			1.130	1.130	1.079	1.055	1.058	1.058	1.008	1.010			
group3			1.122	1.122	1.108	1.104	1.104	1.083	1.094	1.094			
group4			1.152	1.152	1.100	1.086	1.086	1.021	1.021	1.020			
group5	- X - X	0.15	1.088	1.088	1.087	1.058	1.002	1.007	1.001	1.000			
group6		0.15	1.324	1.339	1.493	1.390	1.373	1.259	1.260	1.211			
group7			1.068	1.068	1.116	1.118	1.040	1.000	1.000	1.000			
group8			1.122	1.350	1.350	1.180	1.124	1.134	1.134	1.132			
group9			1.122	1.292	1.151	1.125	1.124	1.112	1.115	1.115			
group10		⊢	1.122	1.292	1.151	1.125	1.124	1.112	1.115	1.115			

Table 3H.6-17 UHS/RSW Pump House Response Spectra Modification Factors (Continued)

O(1)	Dinastian	Di		Frequency Range(Hz)								
Group ⁽¹⁾	Direction	Damping	0-2	2-5	5-10	10-15	15-20	20-25	25-30	30-35		
group1			1.101	1.101	1.067	1.056	1.049	1.034	1.038	1.038		
group2			1.111	1.111	1.054	1.028	1.040	1.034	1.007	1.009		
group3			1.105	1.105	1.072	1.080	1.082	1.085	1.094	1.094		
group4			1.116	1.116	1.090	1.053	1.052	1.019	1.020	1.020		
group5	V	0.0	1.059	1.059	1.061	1.040	1.000	1.004	1.000	1.000		
group6	X	0.2	1.300	1.308	1.481	1.350	1.341	1.246	1.242	1.209		
group7			1.063	1.066	1.090	1.061	1.006	1.000	1.000	1.000		
group8			1.122	1.305	1.305	1.201	1.120	1.130	1.131	1.131		
group9			1.122	1.269	1.145	1.120	1.120	1.112	1.115	1.115		
group10			1.122	1.269	1.145	1.120	1.120	1.112	1.115	1.115		
group1			1.017	1.229	1.290	1.742	1.742	1.416	1.210	1.033		
group2			1.051	1.116	2.071	2.424	2.424	5.938	3.282	1.055		
group3			1.088	1.153	1.939	2.213	2.213	2.398	1.289	1.061		
group4		0.005	1.082	1.113	2.647	1.855	1.687	2.427	1.666	1.031		
group5	Y		1.544	1.544	2.718	1.550	1.550	1.513	1.173	1.040		
group6	ī		1.394	1.639	5.529	3.093	3.093	3.693	2.794	1.370		
group7			1.184	1.425	1.801	1.801	1.699	1.605	1.474	1.081		
group8			2.327	9.258	1.967	2.941	1.801	1.495	1.485	1.485		
group9			2.327	9.258	1.967	2.941	1.801	1.495	1.485	1.485		
group10			2.327	9.258	1.967	2.941	2.357	1.495	1.485	1.485		
group1			1.020	1.203	1.280	1.513	1.513	1.275	1.153	1.033		
group2			1.046	1.102	1.877	2.089	2.089	4.171	2.709	1.049		
group3			1.091	1.134	1.788	1.793	1.753	1.764	1.209	1.062		
group4			1.077	1.098	2.223	1.479	1.360	1.639	1.179	1.031		
group5	V	0.01	1.303	1.303	2.137	1.348	1.348	1.241	1.096	1.040		
group6	Y	0.01	1.372	1.533	4.155	2.303	2.290	2.520	2.246	1.326		
group7			1.250	1.318	1.456	1.512	1.512	1.362	1.153	1.081		
group8			2.195	5.394	1.666	2.278	1.588	1.480	1.482	1.484		
group9			2.195	5.394	1.666	2.278	1.588	1.480	1.482	1.484		
group10			2.195	5.394	1.666	2.278	1.847	1.480	1.482	1.484		

Table 3H.6-17 UHS/RSW Pump House Response Spectra Modification Factors (Continued)

O(1)	Dinastian	D			Fr	equency	Range(l	Frequency Range(Hz)								
Group ⁽¹⁾	Direction	Damping	0-2	2-5	5-10	10-15	15-20	20-25	25-30	30-35						
group1			1.023	1.108	1.156	1.233	1.233	1.157	1.123	1.033						
group2			1.044	1.079	1.575	1.736	1.807	2.625	2.053	1.038						
group3			1.074	1.110	1.488	1.430	1.416	1.260	1.117	1.062						
group4			1.078	1.078	1.653	1.284	1.142	1.214	1.053	1.031						
group5	V	0.00	1.163	1.163	1.715	1.194	1.194	1.131	1.093	1.040						
group6	Y	0.02	1.317	1.422	2.837	1.931	1.931	1.820	1.752	1.237						
group7			1.191	1.258	1.207	1.207	1.207	1.175	1.090	1.081						
group8			1.962	3.812	1.647	1.697	1.552	1.487	1.483	1.485						
group9			1.962	3.812	1.647	1.697	1.552	1.487	1.483	1.485						
group10			1.962	3.812	1.647	1.697	1.552	1.487	1.483	1.485						
group1			1.014	1.077	1.138	1.132	1.132	1.101	1.101	1.033						
group2			1.046	1.073	1.335	1.711	1.767	1.973	1.762	1.038						
group3			1.073	1.091	1.279	1.313	1.285	1.113	1.058	1.062						
group4		0.03	1.076	1.076	1.385	1.183	1.084	1.091	1.035	1.031						
group5	Y		1.117	1.117	1.447	1.132	1.132	1.104	1.098	1.040						
group6	ī		1.307	1.379	2.238	1.726	1.644	1.574	1.522	1.186						
group7			1.163	1.221	1.154	1.130	1.069	1.124	1.101	1.081						
group8			1.793	3.145	1.696	1.537	1.537	1.493	1.483	1.485						
group9			1.793	3.145	1.696	1.537	1.537	1.493	1.483	1.485						
group10			1.793	3.145	1.696	1.537	1.537	1.493	1.483	1.485						
group1			1.012	1.077	1.131	1.093	1.092	1.080	1.080	1.033						
group2			1.047	1.068	1.210	1.691	1.691	1.641	1.542	1.038						
group3			1.072	1.072	1.189	1.251	1.251	1.073	1.059	1.063						
group4			1.071	1.071	1.243	1.157	1.059	1.059	1.034	1.031						
group5	V	0.04	1.099	1.117	1.301	1.101	1.103	1.103	1.103	1.040						
group6	Y	0.04	1.283	1.383	1.953	1.632	1.458	1.473	1.430	1.153						
group7			1.143	1.206	1.135	1.133	1.076	1.110	1.107	1.082						
group8			1.770	2.845	1.710	1.521	1.521	1.494	1.483	1.485						
group9			1.770	2.845	1.710	1.521	1.521	1.494	1.483	1.485						
group10			1.770	2.845	1.710	1.521	1.521	1.494	1.483	1.485						

Table 3H.6-17 UHS/RSW Pump House Response Spectra Modification Factors (Continued)

Cro(1)	Direction	Domning								
Group ⁽¹⁾	Direction	Damping	0-2	2-5	5-10	10-15	15-20	20-25	25-30	30-35
group1			1.015	1.078	1.122	1.086	1.087	1.067	1.067	1.033
group2			1.055	1.055	1.140	1.571	1.571	1.449	1.398	1.038
group3			1.070	1.070	1.143	1.216	1.216	1.062	1.062	1.063
group4			1.067	1.067	1.177	1.157	1.057	1.053	1.033	1.031
group5	Y	0.05	1.092	1.105	1.228	1.088	1.098	1.105	1.105	1.041
group6	ī	0.05	1.260	1.394	1.791	1.570	1.452	1.386	1.363	1.129
group7			1.126	1.198	1.132	1.124	1.081	1.106	1.106	1.082
group8			1.751	2.636	1.720	1.512	1.512	1.495	1.484	1.485
group9			1.751	2.636	1.720	1.512	1.512	1.495	1.484	1.485
group10			1.751	2.636	1.720	1.512	1.512	1.495	1.484	1.485
group1			1.022	1.075	1.101	1.089	1.089	1.059	1.059	1.034
group2			1.055	1.055	1.123	1.389	1.389	1.246	1.234	1.038
group3			1.068	1.088	1.135	1.163	1.163	1.072	1.072	1.064
group4			1.053	1.053	1.162	1.162	1.061	1.052	1.037	1.031
group5	Y	0.07	1.048	1.087	1.168	1.083	1.086	1.097	1.097	1.041
group6	1		1.228	1.321	1.578	1.549	1.420	1.259	1.259	1.117
group7			1.134	1.168	1.124	1.116	1.086	1.097	1.097	1.082
group8			1.818	2.384	1.744	1.502	1.502	1.495	1.484	1.485
group9			1.818	2.384	1.744	1.502	1.502	1.495	1.484	1.485
group10			1.818	2.384	1.744	1.502	1.502	1.495	1.484	1.485
group1			1.025	1.067	1.083	1.098	1.098	1.044	1.044	1.034
group2			1.049	1.062	1.092	1.250	1.250	1.116	1.115	1.038
group3			1.063	1.087	1.111	1.112	1.114	1.075	1.075	1.065
group4			1.048	1.087	1.114	1.110	1.052	1.051	1.039	1.032
group5	V	0.1	1.035	1.079	1.146	1.069	1.070	1.078	1.078	1.043
group6	Y	0.1	1.190	1.231	1.466	1.467	1.379	1.241	1.177	1.112
group7			1.129	1.139	1.123	1.105	1.086	1.089	1.090	1.083
group8			1.886	2.277	1.741	1.550	1.503	1.498	1.484	1.486
group9			1.886	2.277	1.741	1.550	1.503	1.498	1.484	1.486
group10			1.886	2.277	1.741	1.550	1.503	1.498	1.484	1.486

Table 3H.6-17 UHS/RSW Pump House Response Spectra Modification Factors (Continued)

O(1)	Dinastian	D		Frequency Range(Hz)								
Group ⁽¹⁾	Direction	Damping	0-2	2-5	5-10	10-15	15-20	20-25	25-30	30-35		
group1			1.017	1.055	1.066	1.082	1.082	1.049	1.033	1.035		
group2			1.036	1.060	1.075	1.166	1.166	1.058	1.037	1.038		
group3			1.028	1.068	1.084	1.081	1.081	1.070	1.070	1.066		
group4			1.018	1.078	1.079	1.079	1.054	1.046	1.040	1.033		
group5	V	0.45	1.029	1.062	1.093	1.056	1.056	1.062	1.062	1.045		
group6	Y	0.15	1.180	1.242	1.362	1.410	1.329	1.228	1.139	1.110		
group7			1.105	1.114	1.090	1.090	1.075	1.085	1.085	1.083		
group8			1.762	1.988	1.761	1.598	1.522	1.500	1.485	1.486		
group9			1.762	1.988	1.761	1.598	1.522	1.500	1.485	1.486		
group10			1.762	1.988	1.761	1.598	1.522	1.500	1.485	1.486		
group1			1.016	1.049	1.071	1.069	1.069	1.052	1.035	1.036		
group2			1.017	1.028	1.068	1.119	1.119	1.055	1.036	1.038		
group3			1.029	1.061	1.096	1.096	1.074	1.076	1.074	1.067		
group4		0.2	1.015	1.048	1.062	1.062	1.055	1.045	1.039	1.033		
group5	Y		1.024	1.046	1.066	1.048	1.049	1.054	1.054	1.046		
group6	ī		1.187	1.233	1.354	1.381	1.289	1.218	1.125	1.113		
group7			1.090	1.103	1.086	1.087	1.073	1.080	1.082	1.083		
group8			1.659	1.812	1.692	1.607	1.537	1.503	1.487	1.487		
group9			1.659	1.812	1.692	1.607	1.537	1.503	1.487	1.487		
group10			1.659	1.812	1.692	1.607	1.537	1.503	1.487	1.487		
group1			1.024	1.025	1.307	1.522	1.410	1.819	1.819	1.115		
group2			1.009	1.024	1.458	2.802	2.802	2.301	1.480	1.093		
group3			1.054	1.183	1.922	6.446	5.706	3.806	3.825	3.535		
group4			1.043	1.126	2.323	4.021	3.146	4.902	3.262	1.346		
group5	7	0.005	1.145	1.145	1.230	1.655	1.467	1.867	1.374	1.018		
group6	Z	0.005	1.027	1.042	1.210	1.562	2.041	2.041	1.589	1.145		
group7			1.121	1.173	1.193	1.655	1.636	1.724	1.555	1.072		
group8			1.109	1.534	2.401	4.285	3.959	3.979	2.855	1.919		
group9			1.109	1.534	2.401	4.285	3.959	3.979	2.855	1.919		
group10			1.109	1.534	2.401	4.285	3.959	3.979	2.855	1.919		

Table 3H.6-17 UHS/RSW Pump House Response Spectra Modification Factors (Continued)

O(1)	Dinastian	D	Frequency Range(Hz)								
Group ⁽¹⁾	Direction	Damping	0-2	2-5	5-10	10-15	15-20	20-25	25-30	30-35	
group1			1.021	1.025	1.244	1.489	1.274	1.308	1.308	1.113	
group2			1.008	1.023	1.322	2.493	2.493	2.042	1.385	1.092	
group3			1.052	1.196	1.826	5.703	4.015	3.481	3.326	3.099	
group4			1.046	1.131	2.326	3.602	2.459	3.543	2.841	1.310	
group5	7	0.04	1.109	1.109	1.187	1.521	1.391	1.471	1.387	1.018	
group6	Z	0.01	1.022	1.028	1.169	1.519	1.660	1.660	1.539	1.096	
group7			1.094	1.094	1.155	1.571	1.456	1.406	1.395	1.036	
group8			1.109	1.374	2.351	3.517	2.936	2.936	2.405	1.670	
group9			1.109	1.374	2.351	3.517	2.936	2.936	2.405	1.670	
group10			1.109	1.374	2.351	3.517	2.936	2.936	2.405	1.670	
group1			1.022	1.024	1.211	1.407	1.288	1.291	1.120	1.093	
group2			1.008	1.026	1.228	2.051	2.051	1.621	1.219	1.092	
group3			1.051	1.152	1.962	3.999	3.028	3.417	3.004	2.767	
group4		0.02	1.042	1.121	2.180	2.856	1.873	2.338	1.979	1.286	
group5	Z		1.073	1.073	1.143	1.360	1.268	1.274	1.274	1.018	
group6	۷		1.013	1.020	1.169	1.352	1.473	1.473	1.420	1.065	
group7			1.053	1.059	1.158	1.409	1.282	1.275	1.271	1.033	
group8			1.107	1.213	1.836	3.179	2.113	2.248	2.248	1.607	
group9			1.107	1.213	1.836	3.179	2.113	2.248	2.248	1.607	
group10			1.107	1.213	1.836	3.179	2.113	2.248	2.248	1.607	
group1			1.019	1.024	1.197	1.330	1.293	1.307	1.099	1.093	
group2			1.009	1.027	1.202	1.778	1.778	1.435	1.134	1.091	
group3			1.048	1.166	2.136	3.599	2.822	3.220	2.737	2.571	
group4			1.042	1.128	1.901	2.413	1.755	1.986	1.808	1.278	
group5	7	0.02	1.064	1.064	1.132	1.274	1.204	1.164	1.164	1.018	
group6	Z	0.03	1.012	1.020	1.184	1.305	1.449	1.449	1.396	1.055	
group7			1.039	1.049	1.162	1.292	1.217	1.243	1.220	1.036	
group8			1.101	1.144	1.685	2.767	1.878	2.120	2.120	1.557	
group9			1.101	1.144	1.685	2.767	1.878	2.120	2.120	1.557	
group10			1.101	1.144	1.685	2.767	1.878	2.120	2.120	1.557	

Table 3H.6-17 UHS/RSW Pump House Response Spectra Modification Factors (Continued)

O(1)	Dinastian	D	Frequency Range(Hz)								
Group ⁽¹⁾	Direction	Damping	0-2	2-5	5-10	10-15	15-20	20-25	25-30	30-35	
group1			1.016	1.023	1.210	1.277	1.294	1.294	1.093	1.093	
group2			1.009	1.027	1.194	1.606	1.606	1.359	1.112	1.091	
group3			1.047	1.166	2.248	3.545	2.811	3.012	2.626	2.439	
group4			1.039	1.115	1.712	2.124	1.640	1.832	1.661	1.275	
group5	7	0.04	1.054	1.054	1.123	1.224	1.180	1.112	1.096	1.017	
group6	Z	0.04	1.010	1.021	1.194	1.301	1.411	1.411	1.375	1.051	
group7			1.031	1.041	1.165	1.235	1.210	1.205	1.205	1.036	
group8			1.096	1.125	1.571	2.496	1.870	1.793	1.793	1.519	
group9			1.096	1.125	1.571	2.496	1.870	1.793	1.793	1.519	
group10			1.096	1.125	1.571	2.496	1.870	1.793	1.793	1.519	
group1			1.014	1.024	1.219	1.270	1.288	1.288	1.092	1.092	
group2				1.009	1.028	1.196	1.515	1.515	1.300	1.090	1.090
group3			1.046	1.163	2.285	3.504	2.739	2.855	2.564	2.344	
group4		0.05	1.039	1.117	1.614	1.944	1.586	1.728	1.571	1.274	
group5	Z		1.043	1.043	1.125	1.194	1.138	1.091	1.058	1.017	
group6	۷		1.009	1.021	1.203	1.301	1.362	1.362	1.304	1.051	
group7			1.026	1.035	1.167	1.242	1.158	1.181	1.181	1.034	
group8			1.090	1.132	1.556	2.306	1.791	1.679	1.676	1.491	
group9			1.090	1.132	1.556	2.306	1.791	1.679	1.676	1.491	
group10			1.090	1.132	1.556	2.306	1.791	1.679	1.676	1.491	
group1			1.011	1.024	1.225	1.253	1.256	1.256	1.109	1.092	
group2			1.009	1.029	1.192	1.400	1.400	1.266	1.091	1.089	
group3			1.046	1.167	2.487	3.422	2.724	2.767	2.378	2.220	
group4			1.056	1.125	1.521	1.776	1.524	1.594	1.497	1.273	
group5	7	0.07	1.029	1.029	1.134	1.198	1.080	1.064	1.047	1.016	
group6	Z	0.07	1.010	1.021	1.214	1.280	1.268	1.268	1.165	1.051	
group7			1.023	1.028	1.166	1.231	1.116	1.138	1.138	1.031	
group8			1.062	1.137	1.554	2.248	1.724	1.586	1.586	1.451	
group9			1.062	1.137	1.554	2.248	1.724	1.586	1.586	1.451	
group10			1.062	1.137	1.554	2.248	1.724	1.586	1.586	1.451	

Table 3H.6-17 UHS/RSW Pump House Response Spectra Modification Factors (Continued)

O(1)	Dinastian	Di		Frequency Range(Hz)								
Group ⁽¹⁾	Direction	Damping	0-2	2-5	5-10	10-15	15-20	20-25	25-30	30-35		
group1			1.010	1.023	1.199	1.214	1.226	1.226	1.133	1.092		
group2			1.009	1.030	1.181	1.314	1.314	1.231	1.111	1.089		
group3			1.066	1.188	2.418	3.274	2.734	2.633	2.254	2.120		
group4			1.063	1.140	1.421	1.623	1.471	1.487	1.417	1.271		
group5	7	0.4	1.022	1.023	1.135	1.207	1.065	1.049	1.036	1.016		
group6	Z	0.1	1.009	1.021	1.219	1.259	1.207	1.211	1.122	1.049		
group7			1.019	1.022	1.142	1.189	1.112	1.093	1.064	1.028		
group8			1.047	1.148	1.553	2.218	1.718	1.531	1.497	1.416		
group9			1.047	1.148	1.553	2.218	1.718	1.531	1.497	1.416		
group10			1.047	1.148	1.553	2.218	1.718	1.531	1.497	1.416		
group1			1.009	1.025	1.099	1.144	1.220	1.217	1.155	1.093		
group2			1.009	1.032	1.118	1.217	1.217	1.192	1.095	1.088		
group3			1.093	1.226	2.344	2.887	2.672	2.514	2.092	2.042		
group4		0.15	1.083	1.169	1.354	1.478	1.414	1.398	1.354	1.275		
group5	Z		1.016	1.017	1.098	1.166	1.045	1.045	1.023	1.016		
group6	۷		1.006	1.022	1.152	1.183	1.195	1.197	1.129	1.048		
group7			1.014	1.017	1.090	1.128	1.103	1.081	1.026	1.027		
group8			1.056	1.160	1.470	2.138	1.885	1.516	1.472	1.429		
group9			1.056	1.160	1.470	2.138	1.885	1.516	1.472	1.429		
group10			1.056	1.160	1.470	2.138	1.885	1.516	1.472	1.429		
group1			1.010	1.025	1.089	1.191	1.220	1.217	1.152	1.095		
group2			1.009	1.032	1.088	1.153	1.165	1.165	1.097	1.088		
group3			1.117	1.298	2.125	2.705	2.643	2.440	2.032	2.007		
group4			1.100	1.184	1.330	1.398	1.363	1.342	1.327	1.278		
group5	7	0.2	1.014	1.017	1.100	1.120	1.039	1.039	1.017	1.016		
group6	Z	0.2	1.006	1.023	1.118	1.201	1.189	1.190	1.143	1.056		
group7			1.011	1.017	1.091	1.111	1.079	1.071	1.026	1.028		
group8			1.063	1.177	1.620	1.985	1.940	1.537	1.463	1.450		
group9			1.063	1.177	1.620	1.985	1.940	1.537	1.463	1.450		
group10			1.063	1.177	1.620	1.985	1.940	1.537	1.463	1.450		

Table 3H.6-17 UHS/RSW Pump House Response Spectra Modification Factors (Continued)

Note:

(1) The UHS/RSW Pump House spectra are organized by the following 10 groups:

Group 1: Top of RSW Pump House Mat (Bottom of RSW Pump House Walls)

Group 2: Mid-Level of RSW Pump House Walls

Group 3: RSW Pump House Roof

Group 4: RSW Pump House Operating Floor

Group 5: Top of UHS Basin Mat (Bottom of UHS Basin Walls)

Group 6: Mid-Level of UHS Basin Walls

Group 7: Top of UHS Basin Walls

Group 8: Bottom of Cooling Tower Walls

Group 9: Mid-Level of Cooling Tower Walls

Group 10: Top of Cooling Tower Walls