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U.S. NRC Background

• Spent nuclear fuel (SNF) dissolution rate is important for 
ti ti b th hi h d l l bilit di lid lestimating both high- and low-solubility radionuclide release 

rates
—As SNF matrix dissolves, radionuclides are released 

congruently

—For high-solubility radionuclides (e g Tc-99 and I-129) theFor high-solubility radionuclides (e.g., Tc-99 and I-129), the
release rate is determined by the SNF dissolution rate in 
congruency

—For low-solubility radionuclides (e.g., Pu-239), the release 
rate is determined by the solubility limit and groundwater 
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y y g
flow rate for a given SNF dissolution rate



U.S. NRC Background

• Factors controlling SNF dissolution rate 
 R d di i Redox conditions
 Temperature
 Aqueous solution chemical compositionq p

• Redox conditions are partly dependent on dissolved H2 and 
O2 concentrations that evolve with time 

R di l i f d t b β d d—Radiolysis of groundwater by α, β, and γ decay 
—β and γ decay are dominant for first few thousand years 

α decay will dominate after first few thousand years—α decay will dominate after first few thousand years
—H2 from corrosion of the steel

3Fe + 4H O Fe O + 4H
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3Fe + 4H2O→Fe3O4 + 4H2



U.S. NRC Objective of Research

• Quantify effects of dissolved H2 on SNFQuantify effects of dissolved H2 on SNF 
dissolution rates

Lit t—Literature survey 

—Experiments
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U.S. NRC

Literature Survey y
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U.S. NRC Literature Survey

Dominant reactions involved in SNF dissolution inside a failed 
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container (From L. Wu, Y. Beauregard, Z. Qin, S. Rohani and D .W. 
Shoesmith; Corrosion Science , Vol. 61, pp. 83-91, 2012)



U.S. NRC Literature Survey
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U.S. NRC Literature Survey

• Canadian disposal program: 
— When dissolved H2 concentration is in the range of  

0.1-15 µmol/L, SNF dissolution completely stops by dissolved 
H2 and Fe2+ ions (Shoesmith, Wu et al.)2

— Under alpha radiolysis, the [H2O2] is expected to be in the range 
5-15 nano-mole/L (Wu et al.)

• Swedish disposal program:• Swedish disposal program:
— Reducing condition dissolution rate could be 1,000 times less 

than that in oxidizing conditions (Carbon et al.)g ( )
— Reducing condition dissolution rates in the range of 0.1 to 0.2 

mg/m2/day (Oversby and Konsult)
N bl l h Pd ibl f i h
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— Noble metals such as Pd are responsible for suppressing the
dissolution rate in presence of dissolved H2 (Trummer et al.)



U.S. NRC Literature Survey

• French disposal program:
—Complete suppression of SNF dissolution under 50 bar H2

pressure (Ferry et al.)
No SNF dissolution when dissolved H is above—No SNF dissolution when dissolved H2 is above 
0.8 mmol/L (Ferry et al.)

• Other researchOther research
—Complete suppression of SNF dissolution in presence of 

dissolved H2 (Poinssot et al.)
—SNF dissolution fraction on the order of 10−6‒10−8/yr with a 

recommended value of 4 × 10−7/yr for dissolved H2 above 
1 mmol/L (Poinssot et al )

10

1 mmol/L (Poinssot et al.)



U.S. NRC Literature Survey

• Other research
—Grambow et al. (2000) suggested dissolution rates 

between 0.03 and 2.6 µg/m2/day can be reasonable for 
reducing conditionsreducing conditions

—Loida et al. (2005) found partial suppression of SNF 
dissolution under reducing conditions, and very low g , y
concentration of important radionuclides, when compared 
to SNF corrosion under an initial argon atmosphere
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U.S. NRCLiterature Survey Summary

• SNF dissolution rate ranging from zero to low under reducing 
conditions

• Threshold dissolved hydrogen concentration for completeThreshold dissolved hydrogen concentration for complete 
suppression (no dissolution)   
—0.1-15 µmol/L (Canadian)

0 8 mmol/L (French)—0.8 mmol/L (French)
—1.0 mmol/L (Poinssot et al.)

• Suppressed dissolution rates under reducing conditions   
—0.1 to 0.2 mg/m2/day (Swedish)
—0.03 and 2.6 µg/m2/day (Grambow et al.) 
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µg y ( )
—SNF dissolution fraction of 4 × 10−7/yr (Poinssot et al.)



U.S. NRC

Experimentsp
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U.S. NRCExperimental Details

• Three unirradiated, simulated SNF (SIMFUEL) samples 
t i i h i ll i il di ti tcontaining chemically similar nonradioactive surrogate 

elements for fission, activation products, and actinides
—UO22
—BU35 (35 GW-day/MTU)
—BU60 (60 GW-day/MTU)

• Electrochemical experiments at 
room temperature with granitic 
groundwater solutiong

• Electrochemical impedance 
spectroscopy
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spectroscopy



U.S. NRC SIMFUEL
Pore Structure Grain Structure

UO2 UO2

BU35 BU35
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BU60 BU60



U.S. NRC SIMFUEL-BU35

A

B
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U.S. NRC SIMFUEL-BU60

AA

B

17



U.S. NRCExperimental Details

Oxygen Concentration in the Test Solutions

Oxygen Concentration (mg/L)
Test Condition

UO2 BU35 BU60

15 psig air (oxidizing) 7.67 5.35 7.58
130 psig of 4% H2 plus 
96% N (reducing)** <0.005* <0.005* <0.005*96% N2 (reducing)**
*Lower detection limit of the instrument, corresponds to 1.6 × 10-7 M 
Conversion factors: 1 psig = 0.068 atm, 
1 /L 1 22 10 2 / l
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1 mg/L = 1.22 × 10−2 oz/gal
**Dissolved H2 is approximately 30 µ-mol/L



U.S. NRC Experimental Data

• Electrode potentialp
—Lower under reducing 

conditions compared to 
the oxidizing conditiong

—Reducing condition 
corrosion potentials ofcorrosion potentials of 
BU35 and BU60 are 
near −0.6 VSCE

—Oxidizing condition 
corrosion potentials of 
BU35 and BU60 are
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BU35 and BU60 are 
near 0.1 VSCE



U.S. NRC Experimental Data

• Electrochemical impedance
Two time constants in—Two time constants in 
impedance spectra of 
SIMFUEL samples

—Low-frequency time 
constant associated with 
di l idissolution rate

—Two time-constant 
equivalent circuit was 
used to estimate 
polarization resistance 
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associated with 
dissolution rate



U.S. NRCExperimental Results

Dissolution Rate = K × B× EW /RpDissolution Rate = K2 × B× EW /Rp

K constant [8 95 × 106 mg−cm2/A/m2/day/g]K2 — constant [8.95 × 106 mg−cm2/A/m2/day/g]
B — composite Tafel parameter [V]
EW equivalent weight for UO = 33 75 gEW — equivalent weight for UO2 = 33.75 g
Rp — normalized polarization resistance [Ω-cm2], 

obtained from the electrical circuit fit to the 
impedance data
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U.S. NRCExperimental Results

Estimated Dissolution RatesEstimated Dissolution Rates 
Test 

Condition
Dissolution Rates (mg/m2/day)

UO2 35 GW- 60 GW-Condition UO2 35 GW
day/MTU

60 GW
day/MTU

Oxidizing 1 47 3 62 6 20Oxidizing 1.47 3.62 6.20

Reducing* 0.42 0.84 0.58
C i f t 1 i 0 068 tConversion factor: 1 psig = 0.068 atmg, 
1 mg/m2/day = 3.3 × 10−3 oz/ft2/day
*Dissolved Fe2+ is not present in the system
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Dissolved Fe2 is not present in the system



U.S. NRC Summary

• Literature survey
Complete suppression above a threshold hydrogen—Complete suppression above a threshold hydrogen 
concentration in groundwater solution

—Partial suppression (i.e., reduced dissolution rates pp ( ,
compared to oxidizing conditions) and extent of 
suppression varies  

• Experimental study
—Dissolution rates are 4–10 times lower under reducing 

conditions compared to oxidizing conditions, but SNFp g ,
could dissolve under reducing conditions 

—Additional work is underway to further study effects of 
di l d h d d F 2+ SNF di l ti
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dissolved hydrogen and Fe2+ on SNF dissolution
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U.S. NRC Disclaimer

This presentation is a joint product of the U.S. Nuclear 
Regulatory Commission and the Center for Nuclear 
Waste Regulatory Analyses.  The views expressed 
herein are preliminary and do not constitute a finalherein are preliminary and do not constitute a final 
judgment or determination of the matters addressed or 
of the acceptability of any licensing action that may be 
under consideration at the U S Nuclear Regulatoryunder consideration at the U.S. Nuclear Regulatory 
Commission.
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U.S. NRCSIMFUEL Composition

Chemical Compositions of SIMFUEL Specimens (in wt%)
UO2 35 GW-day/MTU 60 GW-day/MTU

Metallic 
Elements

UO2 35 GW day/MTU 60 GW day/MTU
Added Confirmatory 

ICP-AES
Analysis

Added ICP-AES 
Analysis
By KAERI

Confirmatory
ICP-AES
Analysis

Added ICP-AES 
Analysis
By KAERI

Confirmatory
ICP-AES

Analysis**
U 100 100 96.33 96.47 96.515 94.06 94.36 94.359
Y — — 0.05 0.07 0.051 0.08 0.13 0.112Y 0.05 0.07 0.051 0.08 0.13 0.112
La — — 0.13 0.12 0.132 0.22 0.21 0.224
Ce — — 1.35 1.40 1.427 1.91 1.89 2.010
Nd — — 0.59 0.58 0.515 1.03 1.05 0.888
Sr — — 0.09 0.08 0.097 0.16 0.15 0.157
Zr — — 0 37 0 36 0 438 0 65 0 62 0 721Zr 0.37 0.36 0.438 0.65 0.62 0.721
Ba — — 0.15 0.14 0.132 0.28 0.23 0.204
Mo — — 0.35 0.32 0.265 0.61 0.56 0.593
Ru — — 0.35 0.33 0.317 0.59 0.55 0.471
Rh — — 0.05 0.01 0.036 0.07 0.02 0.053
Pd — — 0 14 0 10 0 076 0 26 0 20 0 208Pd 0.14 0.10 0.076 0.26 0.20 0.208
Te — — 0.05 0.01 <0.002 0.09 0.01 <0.002

.
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