Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title: Advisory Committee on Reactor Safeguards Subcommittee on Fukushima

Docket Number: (n/a)

Location: Rockville, Maryland

Date: Friday, March 20, 2015

Work Order No.: NRC-1454

Pages 1-240

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433 NUCLEAR REGULATORY COMMISSION

+ + + + +

ADVISORY COMMITTEE ON REACTOR SAFEGUARDS

(ACRS)

+ + + + +

FUKUSHIMA SUBCOMMITTEE

+ + + + +

FRIDAY, MARCH 20, 2015

+ + + + +

ROCKVILLE, MARYLAND

The Subcommittee met at the Nuclear Regulatory Commission, Two White Flint North, Room T2B1, 11545 Rockville Pike, at 8:30 a.m., Stephen P. Schultz, Chairman, presiding.

COMMITTEE MEMBERS:

STEPHEN P. SCHULTZ, Subcommittee Chairman

RONALD G. BALLINGER, Member

DENNIS C. BLEY, Member

CHARLES H. BROWN, JR., Member

DANA A. POWERS, Member

JOY REMPE, Member

PETER RICCARDELLA, Member*

GORDON R. SKILLMAN, Member

JOHN W. STETKAR, Member

(202) 234-4433

ACRS CONSULTANT:

WILLIAM SHACK

DESIGNATED FEDERAL OFFICIAL:

WEIDONG WANG

ALSO PRESENT:

EDWIN M. HACKETT, Executive Director

PHIL AMWAY, Exelon

RAJENDER AULUCK, NRR

SUDHAMAY BASU, RES

HOSSEIN ESMAILI, RES

MICHAEL FRANOVICH, NRR

JEFFERY GABOR, Erin Engineering

NAGESWARA KARIPINENI, NRR

STEVEN KRAFT, NEI

WILLIAM RECKLEY, NRR

*Present via telephone

AGENDA

Introductions4
Background and Schedule6
NRC Staff Presentation - Interim Staff Guidance
Development for Phase 2 of Order
EA-13-1098
Questions and Comments
NEI/Industry Presentation
Public Comments
(None)
Committee Discussion 187
Adjourn

	4
1	PROCEEDINGS
2	(8:30 a.m.)
3	CHAIRMAN SCHULTZ: Good morning. This
4	meeting will now come to order. This is a meeting of
5	the Advisory Committee on Reactor Safeguards,
6	Subcommittee on Fukushima. I'm Steve Schultz,
7	Chairman of the Subcommittee. Members in attendance
8	today are Dick Skillman, Dana Powers, Dennis Bley, John
9	Stetkar, Ron Ballinger and Joy Rempe.
10	On the telephone is Pete on the telephone?
11	Pete Riccardello's going to join us on the phone. He
12	may be joining us later. We also have former ACRS
13	chairman Dr. Bill Shack at this meeting as our
14	consultant on this matter. So today's meeting is to
15	review the development of the second phase interim
16	staff guidance, and the associated industry guidance
17	document, NEI-13-02, which are designed to achieve
18	compliance with Order EA-13-109, an order modifying
19	licenses with regard to reliable hardened containment
20	vents, capable of operation under severe accident
21	conditions.
22	We'll hear presentations from the NRC staff
23	and the representatives from the NEI Working Group.
24	This meeting is open to the public. The meeting is
25	conducted in accordance with the provisions of the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Federal Advisory Committee Act. Rules for the conduct of and participation in the meeting have been published in the *Federal Register*, as part of the notice for this meeting.

The Subcommittee intends to gather information, analyze relevant issues and facts, and formulate proposed positions and actions as appropriate for deliberation by the full Committee. Mr. Weidong Wang is the Designated Federal Official for this meeting. The transcript of the meeting is being kept and will be made available, as stated in the Federal Register Notice.

Therefore, we request that participants in this meeting use the microphones located throughout the meeting room when addressing the Subcommittee. All participants should first identify themselves and speak with sufficient clarity and volume, so that they may be readily heard.

We have received no written comments or requests for a specific time to make oral statements from members of the public regarding today's meeting. Understand that there are individuals on the bridge line today who are listening in on today's proceedings, to effectively coordinate their participation in this meeting.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

We will be placing the incoming bridge line
on mute so that these individuals may listen in. At
the appropriate time later in the meeting, we will
provide the opportunity for public comments from the
bridge line and from members of the public in
attendance.

I remind us all to turn off our cell phones or communication devices so there is no interruptions during the meeting. We'll now proceed with the meeting and I'll call on Michael Franovich of the Office of Nuclear Reactor Regulation to open the presentation today. Michael.

MR. FRANOVICH: 13 Thank you, Dr. Schultz. 14 Good morning ACRS members. My name is Mike Franovich. 15 I am the deputy director of the Japan Lessons Learned Division in the Office of Nuclear Reactor Regulation. 16 17 Today we will discuss the proposed draft guidance to 18 support implementation of Phase 2 regarding NRC Order 19 EA-13-109, for BWR Mark I and II type containments.

20 More specifically, the staff will discuss 21 the technical and regulatory guidance for containment 22 drywell venting capability, that make it unlikely that 23 plant operators would need to vent during a severe 24 accident.

By my count, the staff was last before the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

7 Committee in October of 2013. So it's been some time 1 2 since we last discussed guidance for EA-13-109, 3 although there have been ACRS briefings on the related technical and regulatory analysis for the containment 4 5 protection and release reduction rulemaking. 6 We are here today to engage the ACRS 7 Fukushima Subcommittee in support of your review of the proposed guidance. We are seeking the Committee's 8 9 endorsement of the quidance. То support this 10 presentation, I have several members of the NRR today 11 here at the table. 12 With me today is Raj Auluck. He is the 13 senior project manager for EA-13-109. Raj will lead 14 us through a discussion regarding the background of the 15 orders, the activities and schedules to support full 16 implementation of the order, and also refresh our 17 memory, since it has been some time since we were last here before the Committee. 18 19 Also with me is Rao Karipineni. He is our senior containment systems engineer and our technical 20 21 expert for this topic. Rao will focus on the size and 2.2 engineering behind the Phase 2 guidance. He will also 23 address some of the remaining technical guidance 24 issues, and update the Committee on the progress of 25 those items since the time we provided the Committee

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

8 with the supporting material for today's meeting. 1 2 I'll also note with us today is Bill Reckley. 3 Bill is a senior advisor in the JLD, and he is here in the support discussions on the context of the guidance 4 and the order itself. We also have several members of 5 6 the staff in the room to answer questions from the 7 Committee, in particular from the Office of Nuclear the Office of 8 Reactor Regulation, Nuclear and 9 Regulatory Research. 10 I want to thank the ACRS for its flexibility 11 and patience in supporting the staff, regarding the 12 materials today under review. As typical of any of our 13 post-Fukushima actions, we are on an aggressive 14 schedule. We are doing quite a bit in parallel as we are doing other activities in parallel. 15 16 So there are places where we do have some gaps 17 and we do need to update the Committee regarding those 18 gaps, and how we plan to address those. With that said, 19 I will now turn the meeting over to Raj, to lead us 20 through a discussion on the background. 21 MR. AULUCK: Good morning. As Mike just 2.2 mentioned, my name is Raj Auluck, and I'm the senior 23 project manager in the Japan Lessons Learned project within the Office of Nuclear Reactor Regulation. 24 As 25 also mentioned, you know, the senior staff members will

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	9
1	be supporting us in today's meeting from NRR, as well
2	as Research.
3	Next agenda. This is the agenda we're going
4	to follow in today's meeting, before our presentation
5	on the draft interim staff guidance on Phase 2
6	requirements of the Order EA-13-109. I will briefly
7	go over the background and schedule of the
8	Subcommittee.
9	The accident at the Fukushima Daiichi
10	nuclear power station reinforced the importance of
11	reliable operation of containment vents for BWR Mark
12	I and Mark II containments.
13	As part of its response to the Lessons
14	Learned from the accident, the NRC issued Order
15	EA-12-050 in March 2012, requiring licensees to upgrade
16	or install a reliable hardened containment venting
17	system for Mark I and Mark I BWR containments.
18	While delivering the requirements for Order
19	EA-12-050, NRC staff acknowledged that questions
20	remained about maintaining containment integrity if
21	licensees used the venting system during severe
22	accident conditions. In November 2012, the staff
23	presented options to address these issues for
24	Commission consideration in SECY-12-0157.
25	It incorporated comments from the
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

stakeholders, the nuclear industry and the ACRS. The SECY paper provided options to address questions about maintaining containment integrity and limiting the release of radioactive materials, if venting systems were used during severe accident conditions.

In the staff requirements memorandum on the SECY, issued in March 2013, the Commission directed the staff to take certain actions. These included requiring licensees to upgrade or replace the reliable hardened vents required under Order EA-12-050, with a containment venting system designed and installed to remain functional during severe accident conditions, and develop technical basis and rulemaking for venting strategies with drywell filtration in severe accident management conditions.

The staff subsequently issued Order 2013, EA-13-109 in June which supersedes the requirements imposed by the Order EA-12-050, and replaces them with new requirements for licensees with BWR Mark I and II containments, and also allowed implementation in two phases.

Under Phase 1, it was upgrade the venting capabilities with the containment wetwell to provide reliable severe accident capable hardened vent, to assist in preventing core damage and, if necessary, to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

provide venting capability during severe accident conditions. Under Phase 2, install a reliable severe accident capable drywell vent system or develop a reliable containment venting strategy that makes it unlikely that a licensee would need to vent from the containment drywell before alternate, reliable containment heat removal and pressure control is established.

As you can see on this slide, this provides the implementation time line for two phases. Our implementation for Phase 1 is no later than startup from second refueling outage that begins after June 30th, 2014 or June 30th, 2018, whichever comes first, and for Phase 2, no later than startup from the first refueling outage after June 30, 2017 and June 30th, 2019, whichever comes first.

17 The staff's last briefed ACRS Next please. full Committee in October 2013, as Michael mentioned 18 Since that time, certain activities have 19 earlier. 20 been completed. These include the staff issued the 21 interim staff quidance, JLD-ISG-2013-02 in November 2.2 2013, which endorsed the industry guidance document 23 NEI-13-02, Revision 0, a template to assist licensees 24 in preparing their overall integrated plans.

The staff participated in development of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

25

(202) 234-4433

this template, and held six public meetings between December 2013 and March 2014, in support of this activity. Third, as required by the Order, all integrated plans for Phase 1 were submitted by June 30th, 2014. Fourth, the staff has completed and issued interim staff evaluations for nine plants, and will complete all evaluations by June 2015.

As I mentioned earlier, the staff briefed the full Committee on October 2013 on interim staff guidance for Phase 1 of the Order. In the ACRS letter dated October 18th, 2013, the Committee's conclusions and recommendations included the interim staff guidance 2013-02 should be issued. As I mentioned, we did issue the guidance in November 2013.

Second, the staff should better define accident scenarios during drywell venting, with the necessary (telephonic interference) drywell venting. Next. The venting procedure must be

developed 19 compromise (telephonic that do not 20 interference), which depends on the containment 21 accident pressure. The letter noted that the industry 22 proposed value of 545 degrees Fahrenheit temperature 23 for the drywell vent design needs to confirmed by 24 analysis. The staff will address these 25 recommendations in the presentation today.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

This slide shows the schedule for issuing the
ISG for complying with Phase 2 of the requirements of
the Order. As directed by in the SRM, the staff
included external stakeholders throughout the
development process. There were 12 public meetings
since issuance of the ISG for Phase 1.

Six of these meetings have been held since August 2014, related to guidance development for Phase 2 of the Order. The last one was earlier this week. As you can see, the schedule is really tight. We plan to meet with the full Committee on April 10th, and plan to issue the first two ISG by April 30th, 2015, which will endorse the latest revision of the guidance document with exceptions and clarifications as needed.

15 This will provide the needed time for the 16 licensees to prepare and submit their Phase 2 overall 17 integrated plans by December 31, 2015, as required by 18 the Order. With this, unless there are any questions, I will introduce Rao Karipineni, who will -- who's the 19 senior systems engineer, as Mike mentioned, in the 20 21 Containment and Regulation Branch of the NRR, and will 22 lead the staff's presentation on the ISG.

23 MEMBER STETKAR: Before you do that, I do 24 have a question. You've noted that now the schedule 25 is very tight suddenly. As I read through this ISG,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

I was surprised by the number of places where you use the terms like oh, resolution of this is subject to ongoing discussions, or these issues remain under further discussion, or this requires further discussion.

This is really unusual for interim, even interim staff guidance. If I'm an NRC reviewer or I'm a member of the industry and I come across those, I don't know what to do. So how is this valid guidance?

MR. RECKLEY: This is Bill Reckley. If I can, this is where, as Mike mentioned, we're doing some things in parallel.

MEMBER STETKAR: Yeah. Well, we're reviewing this guidance.

15 MR. RECKLEY: But what happened to our 16 schedule was we were hoping that by the time we were 17 at this point, it would be cleaner. So we issued the 18 draft with the plans to meet with the industry a few 19 weeks ago, and then that meeting was snow-delayed, and 20 we weren't able to have it until Monday. So as we go 21 -- one of the things we'll be doing today is as we go 2.2 through the presentation that Rao's going to give, 23 we're going to say how those issues are being resolved, 24 and what we'll have to coordinate with y'all is between 25 now and the full Committee meeting --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

	15
1	MEMBER STETKAR: Two weeks from now.
2	MR. RECKLEY: Two weeks from now, that
3	MEMBER STETKAR: Already noticed on the
4	Federal Register, less than the 30 days we normally
5	require for final finality of materials sent to the
6	Committee for their deliberation.
7	MR. RECKLEY: Right.
8	MEMBER STETKAR: I want that on the record.
9	MR. RECKLEY: Right, and we apologize, but
10	that's
11	MEMBER STETKAR: And as Chairman of the
12	ACRS, I was not aware of this.
13	MR. RECKLEY: There are, as Dr. Stetkar
14	mentioned, about three or four major issues that were
15	identified in the draft guidance and again, as we go
16	through the presentations today by the staff and the
17	industry, we'll be explaining how those were largely
18	resolved at the public meeting we held earlier in the
19	week.
20	MEMBER BLEY: Have you actually written some
21	of that into the guidance?
22	MR. RECKLEY: We will be doing that to give
23	to you as soon as we can.
24	MEMBER BLEY: How far before our meeting?
25	MR. RECKLEY: Right now, our plan the
ļ	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	industry's schedule is to have it by the end of the
2	month, and that would be also the staff's plan.
3	MEMBER STETKAR: Well, I think we'll have to
4	rethink this, because this is not acceptable behavior
5	for providing material for final deliberation, and this
6	is final deliberation by the ACRS.
7	CHAIRMAN SCHULTZ: What was provided for
8	support of the public comment period, in terms of the
9	documentation?
10	MR. RECKLEY: The same thing that you
11	received.
12	MEMBER STETKAR: We can certainly comment on
13	this document.
14	MP Sure.
15	MR. AULUCK: Yeah. Bill, although it was
16	published for public comment on March 10th, it was
17	available in ADAMS a week earlier to the public.
18	MEMBER STETKAR: We received this in enough
19	time to read it. My comment is that this is an
20	incomplete set of guidance. That's my own personal
21	opinion as a Subcommittee member, and I'm saying that
22	the staff is not allowing us sufficient time to
23	deliberate on a final document as a full Committee.
24	MR. RECKLEY: Yes. I'm not going to argue,
25	because what you got was a work in progress, and what
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

we're going to do today is to update you on the progress that's been made.

MR. KARIPINENI: Thanks, Ray. Again, my name is Rao Karipineni. I'm from NRR. I deal with safety systems, Containment Ventilation Branch. I've been involved in the overall venting issue very much from the very beginning. Even though I'm not in the JLD, I've been basically assisting JLD on this issue.

Since we had the last meeting in October 2013, we had done a little bit of work both on Phase 1, and of course a lot of work on Phase 2. After that meeting, we developed this overall integrated template for the submittals from the licensees to the staff, the purpose of which is to get some consistency in those submittals, and exactly relay what the kind of information the staff would be looking in their reviews.

18 For that reason, we had a bunch of meetings 19 that took place with the public meetings that took place 20 with the industry, and it took about five or six 21 generate overall meetings to those integrated 2.2 I believe that the idea here is a similar templates. 23 to what will be undertaken on Phase 2 also, after 24 issuing the guidance, after issuing the interim staff 25 quidance.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

	18
1	After the development of the overall
2	integrated templates, we also had some meetings with
3	the industry. Basically they're called industry
4	workshops that basically rolled out the guidance to the
5	licensees.
6	In those meetings, some questions came up
7	from the licensees about some final issues about
8	interpretation of some of the language in the guidance,
9	etcetera, and the industry has NEI and the supporting
10	cast have determined that additional information needs
11	to be provided.
12	Therefore, some questions were asked and we
13	gave them the answers. We gave them the document in
14	what they called Frequently Asked Questions, FAQs, and
15	also another kind of papers that were called white
16	papers, which are a little bit higher level than a small
17	question in FAQ.
18	Those were all the FAQs were made part of
19	this guidance also in Phase 2. The documents we sent
20	you contained those FAQs, Frequently Asked Questions.
21	Additionally, some more appendices were added that
22	related to those determinations, source terms and
23	flammable gases, you know, what measures they're
24	undertaking in implementing the requirements of the
25	model in that regard.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

19

The Phase 2 focus itself is the two appendices. Appendix I, which is on severe accident water addition, called a SAWA, S-A-W-A, and the Appendix C, which is a severe accident water management, which is a continuing aspect of SAWA, by controlling the amount of water that they were injecting into the vessel that eventually will go down the path into the vessel, into suppression pool.

Slide 11. During the last meeting, there were some questions from the ACRS Subcommittee as well as the full Committee on the combustible gases, how the issue of hydrogen control is being taken care of. We have done some work on that since then. The Order requires the licensees to follow -- two ways they can manage this situation.

16 One is to operate and ensure flammability of 17 gases passing through the system will not breach, and the other way to design the piping to withstand the 18 19 deflagration and detonation. These two concepts are 20 kind of in the Order itself. The licensees have given 21 an Appendix H into the document, into the NEI quidance, 22 as well as a white paper letter that's called White 23 Paper No. 3, about how they will ensure the 24 requirements of the Order.

There are three aspects when you look at it,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

25

you look at the hydrogen ratio. 1 when One is possibility of hydrogen leaking into the surrounding 2 3 parts of the plant, basically the reactor building, and the other is how do you ensure that the hydrogen is 4 5 properly vented out through the vent pipe itself and 6 ensure there are no detonations, or detonations that 7 might be designed for the requirement itself, okay. So in that regard, what we did is -- go to 8 the next slide --9 10 Oh, part of the CPRR work we have done, there 11 are several sequences that were analyzed, severe 12 accident sequences, and one of them is presented here, 13 which is pretty much representative of the different 14 sequences when you have the vent operating at different 15 times through the severe accident. 16 This was produced by our Research group. Ιt 17 shows that you have basically vented a lot of hydrogen out through the vent pipe into the -- out into the 18 19 external parts of the plant, outside of the plant 20 basically. If you look at the green line, that's the 21 overall hydrogen that was generated, basically as well 22 as vented also, because the red line represents what 23 is left in containment. 24 And as you can see after the accident, 25 initially there is a little bit of hydrogen in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

containment. But within an hour, hour and a half, basically it goes down quite a bit and everything else goes up. So based on this, you can basically conclude that around the -- somewhere around 24 hours, you have reduced the existence of hydrogen in the containment quite a bit.

By doing that, you also basically would be reducing the potential for leakage from containment into the surrounding buildings through or to components that other than the vent pipe itself. By that, I mean the drywell head, the other containment inefficiencies, etcetera.

The second issue is that the fact that you have this vent itself and you have brought the pressure down will also help the situation, by reducing the -any amount of hydrogen that potentially could leak into the buildings.

The third aspect is we have made the severe 18 19 accident water addition as part of this guidance, and 20 the licensees for the most part are following this 21 severe accident water addition part, and that itself 2.2 will use the temperatures in the drywell, even given 23 the severe accident when the core has become X-vessel, 24 to reasonable temperatures written in Order, 500, 550 25 around.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Which means the vent pipe will only work
okay, and the guidance contains some discussion about
the seals, etcetera, what will happen at those
temperatures and the conclusion is there is you can
basically say that yeah, I know, the seals should not
be really compromised in any way, other than some small
issues at all, if anything at all.

So these two, these two things combined with reduce the potential for hydrogen to be leaking into the buildings. As far as the vent piping's concerned, I think last time or so we told you that when the -when vent system gets started, the design is such all the interfaces with the CVRs, with the other stand-by gas treatment system and any of the other -- any other pipes that join these containment purge lines.

All those routes would be isolated, closed, and the requirements in the guidance also states that all these leakage paths will be tested for potential leakages, and ensure that any small amount of leakage, if anything, will be the acceptance criteria.

21 So between these two, we believe the work 22 that has been done uses with confidence that whatever 23 the vent part can do in regards to hydrogen, is ensure 24 that it can happen.

MEMBER STETKAR: And this presumes the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

25

	23
1	hydrogen is fully mixed and all is drawn to the wetwell;
2	correct?
3	MR. KARIPINENI: That's correct.
4	MEMBER STETKAR: Okay.
5	MEMBER REMPE: So in the analysis, do you
6	have concentrations at certain locations? I mean this
7	is a total mass. The issue is obviously concentration,
8	as he's inferring.
9	MR. KARIPINENI: As far as I know, our MELCOR
10	did not show that. I'm not too sure that the industry
11	presentation would show that.
12	MEMBER REMPE: But you have numbers from
13	MELCOR. Surely they can get this
14	MR. KARIPINENI: But different levels were
15	used, I think.
16	(Simultaneous speaking.)
17	CHAIRMAN SCHULTZ: Hossein.
18	MR. ESMAILI: Okay, yes. We do have
19	CHAIRMAN SCHULTZ: Go ahead and introduce
20	yourself.
21	MR. ESMAILI: Yeah. This is Hossein
22	Esmaili. Yes, we do have the concentrations if you
23	want that. I actually have copies. The concentration
24	inside the drywell can reach up to about ten percent.
25	Inside the wetwell can be higher, but it is still noted.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	There's a loss of steam.
2	MR. KARIPINENI: Sorry, I misunderstood
3	your question. I thought you were asking for
4	concentration at different levels.
5	(Simultaneous speaking.)
6	MR. KARIPINENI: They're not at different
7	levels.
8	MEMBER BALLINGER: What about the
9	concentrations of where it's vented to?
10	MR. KARIPINENI: Vented outside of the
11	building
12	MEMBER BALLINGER: So there's no way you can
13	get locally high local concentrations?
14	(Simultaneous speaking.)
15	MR. KARIPINENI: The interfaces being all
16	the if there were any. They have like two or three
17	interfaces. Those dampers or valves would close at
18	that time when you open the vent, and they're tested
19	for leakage also on a periodic basis.
20	MEMBER STETKAR: The stuff that I the
21	problem is that there are apparently two fundamental
22	reports that look at the thermal hydraulics of all of
23	this, neither one of which are available. I looked for
24	them, I couldn't find them. There's some reference in
25	the ISG to a NUREG that will be published.
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	25
1	There's reference in the NUREG, in the ISG
2	and NEI-13-02 to an EPRI report, which is EPRI 300200,
3	3301, which is a basis for all the temperatures and the
4	analyses. That hasn't been published. That's
5	(Simultaneous speaking.)
6	MEMBER STETKAR:why I can't find that.
7	So it's really difficult for me to, for example, look
8	at any of this stuff, because all of the background is
9	not available.
10	MR. RECKLEY: Yeah. Those two reports,
11	both the NUREG and the EPRI report, are the MELCOR and
12	MAAP work that was done in support of the CPRR
13	rulemaking. So the graphs you're seeing are from those
14	reports. It's just that the actual documentation and
15	finalization of the reports is not completed yet.
16	MEMBER REMPE: And when will that be done?
17	MR. RECKLEY: For the NUREG, both of those
18	activities are largely supporting the rulemaking. So
19	the NUREG is on a schedule for like next year or some
20	time, and to be published. But again, y'all have seen
21	the you've seen the technical work, the EPRI report
22	sooner than that, I believe.
23	But again, the primary focus of those
24	analyses is to support the rulemaking activity, and it
25	just also supported an assessment of compliance with
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	26
1	this Order.
2	MEMBER STETKAR: When I'm reviewing
3	something, I often find it useful to then read the
4	entire supporting document, because it tends to
5	describe assumptions, it tends to describe limits, it
6	tends to describe boundary conditions that don't come
7	through when you only see a graph of results and say
8	trust me, we did this okay.
9	So it's really difficult to draw any kind of
10	meaningful conclusion without that supporting
11	documentation in its entirety.
12	CHAIRMAN SCHULTZ: Is this being presented
13	as a typical case or representative case? How would
14	it be characterized?
15	(Simultaneous speaking.)
16	MR. KARIPINENI: It is one case, with the
17	drywell vent siphoned a little bit.
18	MEMBER STETKAR: This has a drywell vent in
19	it?
20	MR. KARIPINENI: I'm sorry, wetwell vent.
21	A wetwell vent siphoned water on a 10 psi delta, which
22	means that as soon as the temperature goes up a little,
23	you would be opening the wetwell vent again, and that
24	process will get a lot of hydrogen out of there.
25	MEMBER STETKAR: So the vent is cycling.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	It's not opening the vent and leaving it open? When
2	is the cycling
3	MR. KARIPINENI: There were so many cases
4	done, different ones than this.
5	MEMBER STETKAR: That's why I'm asking if
6	this is typical?
7	MR. ESMAILI: This Hossein Esmaili again.
8	We have done about 50 runs, and this has been as Rao
9	was saying, this has been presented at various public
10	meetings, at EPRI. So this is just one case to show
11	how hot behaves. In terms of the containment
12	temperatures, structure temperatures, upper head
13	temperatures, etcetera, we have actually, you know,
14	looked at, you know, vent cycling, everything.
15	What we have seen is that as long as we inject
16	water, okay, all the cases that you have water
17	injection, both the drywell temperature and the upper
18	head temperature, you know, where you think a failure
19	will occur, both remain below about 500 or, you know,
20	550 Fahrenheit. And then if you don't have water, it
21	can be much higher, you know, 1,000, etcetera.
22	In terms of hydrogen, as I said, you have lots
23	of steam. So everything just becomes steam-filled,
24	steam inert very, very soon. Even inside the vent
25	line, as soon as you open the vent, you are pushing all
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	28
1	the steam in the hydrogen, you know. So there is not
2	that much time before everything gets outside of the
3	containment, and once again
4	And then you start injecting water and then
5	steam keeps going. So in the long term, what we see
6	is a steam-filled environment, both in the vent line
7	and inside the containments.
8	MR. RECKLEY: And this is Bill Reckley
9	again. Go back to the previous slide. Just I can do
10	little else but apologize by how the different part of
11	the Fukushima activities support each other, but
12	they're on different time lines. So when we come here,
13	I know it sounds discombobulated sometimes.
14	But for the purpose of this assessment and
15	this Order, we're really looking in terms of hydrogen,
16	to make sure that the vent system either can survive
17	the hydrogen explosion or prevent a hydrogen explosion
18	within the vent, all right.
19	The last bullet, in terms and where I was
20	going into this, based on the comment from the last ACRS
21	meeting about overall concerns about hydrogen, that we
22	see some preliminary results here that are likely to
23	inform us on another activity, which is Recommendation
24	6 within the NTTF world, on whether hydrogen measures
25	to address hydrogen in the reactor buildings or other
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

areas outside of the vent system should be undertaken.

So we're offering a little bit of an insight in regards to that. But looking narrowly of what we are trying to address for the sake of Order 13-109, it's only in regards to hydrogen and the vent system itself, and whether the vent system is either able to survive the hydrogen deflagration or detonation, or is able to prevent it, such that the vent system is not taken out by a hydrogen issue.

MEMBER STETKAR: So looking narrowly sub-one at the particular issue in this particular ISG, and narrowly sub-one being the issue of hydrogen only in the vent line, yeah, maybe.

Looking narrowly sub-two at another issue in this ISG, which you'll get to in three more slides, which is what's the basis for the 545 degree Fahrenheit design criterion for a drywell vent, if one decides to install that, that 545 degrees is my understanding, is also justified by the analyses in those nebulous reports that we haven't seen.

So if you want to start partitioning things, I'll then ask the same question about how come we don't have the basis for the 545, which is an issue that 23 pertains to this ISG.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. RECKLEY: And yes, and I don't disagree

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2.2

24

25

(202) 234-4433

	30
1	with that.
2	MEMBER STETKAR: Don't try to partition it
3	into too many small Excel little files, because
4	MR. RECKLEY: No, this is all it's all
5	interrelated unfortunately, and again they're on
6	different time lines. So I can't say we've been
7	totally successful in making sure that all of pieces
8	fit together.
9	MEMBER STETKAR: Bill, put yourself in our
10	seats. You're asking the Advisory Committee on
11	Reactor Safeguards to make a final determination on the
12	acceptability of this guidance, based on the totality
13	of information we have available to us, and the totality
14	of that information is sparse.
15	MEMBER REMPE: A compromise could have been
16	to take some subset of the report that you think's
17	relevant to justify this action and writeups, and if
18	this were a different type of interaction with an EPU,
19	we'd have questions saying provide and describe the
20	analysis and assumptions and the results that support
21	this and give us some sort of document that we should
22	use. I mean there is a way to do this if you can't issue
23	the big report for a while.
24	MEMBER BLEY: The EPRI report, you guys must
25	have a draft of it.
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	31
1	MR. RECKLEY: Right.
2	MEMBER BLEY: So you're making
3	determinations based on it without having all the
4	information?
5	MR. KARIPINENI: The results have been, you
6	know, shown in the public meetings.
7	MEMBER BLEY: Yeah, but as John said, it's
8	your code; it doesn't really tell you the basis for it
9	all.
10	MEMBER STETKAR: I've seen results from PRAs
11	that once you looked at the PRA models, the results
12	changed a lot after you ask questions, for example.
13	Please do it.
14	MR. BASU: Thank you. Sud Basu from the
15	Office of Research. Bill, I'm assuming the ACRS
16	members got the regulatory basis report.
17	CHAIRMAN SCHULTZ: Not yet.
18	MR. BASU: Not? The draft, whatever the
19	version is.
20	MEMBER BLEY: I'm getting a little bit.
21	MR. BASU: Maybe I preempted somebody. So
22	in that regulatory basis report, there is a technical
23	analysis portion, which is really a condensed version
24	of the entire analysis that we performed and
25	documented. That's the report that Bill is talking
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

32 about, was talking about in relation to the CPR 1 2 rulemaking effort. The report has not been finalized, but maybe 3 I already, you know, sort of preempted something. 4 The 5 regulatory basis report should have enough information there in condensed form, to give the ACRS members some 6 7 sense of, you know, what the technical analysis, what sort of technical analysis was done and how we sort of 8 reached whatever technical conclusions that we did. 9 Ι 10 don't know if that's good enough. 11 Okay. Well, I understand MEMBER STETKAR: 12 that there must be a basis coming, but the difficulty 13 is, as John expressed and I'll just say it one more time, perhaps in a slightly different way, and then we should 14 15 move on. But the ISG that we received would appear to 16 have been formulated at the time at which you did have 17 sufficient information, such that you had to write the draft, put it out for public comment with a lot of 18 19 statements in fundamental areas saying well, we don't have sufficient information. 20 21 We're going to have to interact to get 2.2 additional information, in order to draw conclusions 23 and provide the final quidance. So there's different 24 things that need to come together in a very short time,

and that is a final guidance, which provides this, what

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

we discussed before, guidance that in fact would be 1 2 implementable, and the technical information that 3 supports that. In other words, it seems as if what we're 4 5 dealing with here is technical information supporting 6 a document that is -- both of which are incomplete, and 7 we need additional final information, or at least 8 information that supports a final ISG that is in fact 9 giving the guidance that would be required to implement 10 this on the schedule that's proposed. 11 MR. RECKLEY: Yes. I think as we go through 12 the discussions, the amount of change in regards to the 13 industry guidance document is probably not as 14 significant as what might first appear, based on the issues that we identified. 15 16 It is largely that the staff had not reached 17 final conclusions yet. So we said in the draft ISG that 18 it was subject to ongoing discussions. In large part 19 as we've aligned on that guidance to make those issues 20 go away, and we're going to get into that as Rao speaks, 21 I don't believe when you see the difference between what 2.2 sent you in the draft industry guidance we and 23 ultimately what is the final version of that, is as 24 dramatic as what might first appear. So but as we go 25 through it, we'll talk about how we were able to align

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	34
1	on those issues.
2	MEMBER STETKAR: But again Bill, the draft
3	industry guidance, NEI-13-02, is based on the analyses
4	that were performed in that EPRI report, documented in
5	that EPRI report. I read the NEI guidance first. I
6	always do that.
7	MR. RECKLEY: Yes.
8	MEMBER STETKAR: Now I had a question about
9	gee, where are these analyses supporting these
10	temperatures and timing and things like that? So I
11	dutifully went to go find that EPRI report; I couldn't
12	find it anywhere. So a fundamental question I had on
13	the NEI guidance was where are the analyses to support
14	the bases for that guidance? Granted, it hasn't
15	changed. But we have yet to see those supporting
16	analyses.
17	MEMBER BLEY: I have one related question,
18	I suppose based on some of our conversation. In your
19	guidance, you endorse NEI-13-02. Sometimes
20	endorsements don't include appendices or facts. We
21	run into that very often. I take it your endorsement
22	includes the appendices, which includes the facts,
23	which include the references to the white papers. Is
24	that true or not?
25	MR. RECKLEY: We'll get in later. We have
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

35 some specific exceptions --1 2 MEMBER BLEY: I know you have exceptions, 3 but despite -- those exceptions are the only ones. Otherwise, you are endorsing the facts as well as the 4 5 related white papers? And we don't have the white 6 papers either, right? 7 MEMBER STETKAR: We have -- we have them now. MEMBER BLEY: All of them? 8 I think we have them all 9 MEMBER STETKAR: 10 now. 11 MEMBER BLEY: Oh, okay. MR. AULUCK: I think we have endorsed three 12 13 white papers --14 MEMBER STETKAR: I think we have all three of those now. 15 16 MEMBER BLEY: Okay. 17 MEMBER STETKAR: I got one yesterday. 18 MEMBER BLEY: Yeah. I didn't catch up with 19 it. 20 MR. KARIPINENI: Again, just before I close 21 that one, the hydrogen issue, what I'm trying to say 22 here is at the last meeting, when you said -- when the 23 Committee said has all, all things that the event can 24 do to take care of the hydrogen to the best it can, has 25 it all been done by you guys.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

We were kind of -- didn't give you probably 1 2 an acceptable response, or give you exactly what we're 3 doing. Now I'm saying that yeah, all this analysis of what we have done, as well as how the event gets 4 5 operated, all the requirements in the guidance, about 6 all the interface locations and the leakage testing of 7 all those. 8 So the vent is doing all it can. It depends on how the strategies and what they do in a severe 9 10 accident, how they operate the vent, that's a different 11 That procedures haven't been developed yet and issue. 12 they will come later from the industry to us. 13 So the vent is doing all it can, and that 14 leads us to what Bill said, about the Recommendation and that stuff that comes later. 15 6, If it was 16 determined after all these procedures were finished and 17 everything, there is some aspect here that has not been 18 addressed that has to be looked at at that time, along 19 with the rest of procedures, et cetera. 20 MEMBER STETKAR: There seems to be а 21 presumption here among everyone that the -bv 2.2 definition, everyone's going to proceed with the option 23 of a wetwell vent, no drywell vent, severe water 24 addition and severe accident water management. A lot 25 of this stuff hangs together fairly well for that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

36

	37
1	There are other options that are available
2	that are described both in the ISG and in the NEI
3	guidance, one of which is a drywell vent with absolutely
4	no water addition. Another one is a drywell vent with
5	water addition into the drywell flooding up.
6	And the guidance covers all of those things,
7	and that's why I had questions, for example, about the
8	500. Everybody buys into this 545 degree temperature.
9	But nobody's paying much attention to that, because
10	that only applies if I have a drywell vent. Everybody
11	seems to be heading down the presumed path of a wetwell
12	vent with water addition and water management.
13	If that's the case, then the guidance should
14	just say this is guidance for a wetwell vent with water
15	addition and water management, and nobody can install
16	a drywell vent.
17	MEMBER BLEY: Without justification.
18	MEMBER STETKAR: Without justification of
19	all of the technical bases for it. We don't endorse
20	any of the NEI guidance for a drywell vent.
21	MR. RECKLEY: That's actually the slide
22	we're on, so Rao, if you want to pick up there, that's
23	basically what this slide says.
24	MEMBER STETKAR: Okay. Well, it doesn't
25	it's not as direct.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	MR. RECKLEY: It's not as direct.
2	MP That's what I just said.
3	MR. KARIPINENI: Slide No. 13. Oh, you got
4	that. Okay. Like Dr. Stetkar said, there were three
5	methods in the NEI guidance of how to approach Phase
6	2. One of them is a strictly severe accident drywell
7	vent that doesn't include any kind of water addition
8	at all. The analysis work that was done for that case
9	indicated that the temperatures in drywell can get
10	pretty high, you know, exceeding 1,000 degrees, 1,100
11	degrees even.
12	Therefore, the industry also said that we are
13	not providing guidance for this particular matter. If
14	an individual licensee wants to do that, he will have
15	to come and approach you, and give you the guidance.
16	So basically, it's a situation a situation where we
17	don't have a guidance.
18	They don't want to even propose a guidance,
19	and you would like to think that nobody would do that,
20	no agency would want to come and do a severe accident
21	drywell vent with no water addition. But 100 percent
22	guarantee?
23	I don't know if it is there, but I don't know
24	why any licensee would come and try to propose himself
25	something different from what the NEI guidance is
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

talking about, and want to go into a very difficult 1 2 situation of reviews with staff, potential likelihood 3 of which -- outcome of which is questionable. So that's all I can say about Method 1 at this point. 4 So but is there some 5 MEMBER STETKAR: 6 expectation that there is a way in which to have a 7 system, such that the drywell vent is severe accident 8 capable? We don't 9 MR. KARIPINENI: have any 10 expectations in that regard. Actually, it would be 11 very hard to accept --12 MEMBER STETKAR: Without water addition. 13 MR. KARIPINENI: Without water addition. 14 It would be very hard to accept that because at that 15 temperatures, you know pretty well these head seals and 16 other containment seals, you know, pretty much 17 everything will be compromised and, you know, the whole purpose of the vent arteries to vent and retain the 18 containment function back, and that would all be lost 19 20 if you have that kind of event. So it's very hard to 21 say. 22 And your previous one slide MEMBER STETKAR: regarding hydrogen was set up with water addition, 23 24 wetwell. Has hydrogen been evaluated for this case, 25 drywell without water addition?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

39

	40
1	MR. KARIPINENI: No. But in this case, we
2	haven't done any analysis like that.
3	MEMBER BLEY: Let me take you back to the
4	ISG. You have exceptions in there, and in the
5	exceptions you kind of, at least to me, dance around
6	this a little bit and say it would be hard to show that
7	this can work. You don't say this doesn't apply.
8	MR. RECKLEY: This is Bill Reckley again.
9	The difficulty we were having is that the Order, as it's
10	written, does not specifically preclude this as an
11	option. So it was identified as an option. The more
12	work that was done, the harder this option was found
13	to be a practical solution.
14	MEMBER BLEY: That makes sense to me. But
15	what I'm getting at is the ISG, it seems to me, should
16	be a little more clear on this in saying we haven't
17	developed good guidance for doing this.
18	MR. RECKLEY: Okay, and maybe we can
19	clarify. We thought we were pretty clear that the
20	industry chose not to try to develop guidance. The
21	staff acknowledges that and says if any licensees wants
22	to do this, you're on your own to try to make an
23	application, and then we included a caution
24	MEMBER BLEY: That's the caution that seems
25	a little
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	MR. RECKLEY: Even if you were to try to
2	successfully do this, you need to worry that the CPRR
3	rulemaking may require water addition, in which case
4	you've just double-spent.
5	MEMBER BLEY: It needs to be as clear
6	somewhere else than where I was looking. Where I was
7	looking it seems
8	MR. RECKLEY: We'll look at the work.
9	MEMBER BLEY: It's better, but it seemed a
10	little light.
11	MR. RECKLEY: A little. So, okay. Let's
12	do this one.
13	MR. KARIPINENI: Yes. Slide 14. This is
14	the case for the containment temperature, with no water
15	addition in a drywall vent, evaluation of the drywell
16	temperature, not a drywell vent. I'm sorry. This
17	indicates that you can see that 900 K is the equivalent
18	to somewhere around 1,160 degrees. So that is about
19	the area where most of the drywell mid-level, et cetera,
20	would be.
21	You can see that that temperature's
22	extremely high, even after an extended number of hours
23	after the core has become X-vessel.
24	Method 2 is actually installing a severe
25	accident drywell vent, and in addition they would have
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

the severe accident water addition. The severe action water addition is basically gets the drywell temperatures to justify the 545 degrees we had in Method 1.

So in a sense, you are getting a severe accident drywell vent that the Order has originally asked for, except that in this case you would have water also to justify the 545. So we are calling it a hybrid approach for implementing the Order, and the licensees have given the guidance for this in Appendix I to NEI-13-02.

And the severe accident drywell vent, we were told they would follow the guidance that was developed for Phase 1, for all the aspects of the directives of the Order, that were included in Section A of the Order. Let's go 17.

> MR. RECKLEY: The original? MR. KARIPINENI: 17, next slide.

> > MR. RECKLEY: Okay.

20 MR. KARIPINENI: This is the -- this is the 21 containment temperatures with the severe accident 2.2 addition. said severe accident water We water 23 management also. It's not a whole lot of difference 24 in temperatures between the two really. So this case 25 you can see that the temperatures within let's say 24

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

	43
1	hours past and the core melt in this case is somewhere
2	around that time.
3	Go down to 440 degrees, to somewhere between
4	350 and 440 degrees Fahrenheit, which is a pretty
5	reasonable number. I did not think in the beginning
6	that a severe accident
7	MEMBER STETKAR: But it's Fahrenheit and not
8	К?
9	MR. KARIPINENI: Fahrenheit, you know.
10	They give Kelvins on the left. I have my numbers on
11	the right here so I can put it in Fahrenheits. That's
12	why I'm reading my numbers here. 540 is equivalent to
13	about 440 degrees F. 350 is equivalent to I'm sorry.
14	450 is equivalent to 350 degrees F. So we are somewhere
15	between 350 and 450 there.
16	MEMBER BLEY: It would be nice if it was on
17	the graph.
18	MEMBER BROWN: Yeah. I just love going from
19	Kelvin to Fahrenheit. We can all do the conversions,
20	but this is
21	MEMBER BLEY: But then we slip up and we talk
22	degrees and we get sloppy.
23	MEMBER BROWN: Yeah, I know. Degrees what?
24	MEMBER BLEY: It's just whining, but I'm a
25	thick one, so I can stay with it.
	NEAL R. GROSSCOURT REPORTERS AND TRANSCRIBERS1323 RHODE ISLAND AVE., N.W.(202) 234-4433WASHINGTON, D.C.20005-3701(202) 234-4433

	44
1	CHAIRMAN SCHULTZ: Can you describe why in
2	this case we have severe accident water addition,
3	slash, severe accident water management? What does
4	that mean?
5	MR. KARIPINENI: Like Basu was saying, there
6	was almost like 15-20 different system, major cases
7	that were run, and there was so many different
8	radiations in those cases. But this represents a very
9	it will represent a case for any severe accident
10	water addition and management, with the vent venting
11	out through the wetwell or the drywell.
12	CHAIRMAN SCHULTZ: Is this the same Case 9
13	we saw with the display of hydrogen generation and
14	transport?
15	MR. KARIPINENI: That's right, that's
16	right.
17	CHAIRMAN SCHULTZ: And that just talked
18	about water addition. This has water management does
19	it?
20	MR. KARIPINENI: Right, right.
21	MEMBER STETKAR: I thought their option. I
22	mean the difference is that if you want to use just the
23	wetwell vent, you have to manage the water. You can't
24	flood up?
25	MR. KARIPINENI: Yeah, that's right. Flood
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	up, yeah.
2	MEMBER STETKAR: To the vent. But the idea
3	is I thought, you know, why would one put a drywell vent
4	with severe accident water addition, no water
5	management? Well because all you then do is tell the
6	operators to turn the darn water on and forget about
7	level. Just let it go and it takes care of itself.
8	Now the question is what assumptions are
9	built into these when you start talking about well,
10	it doesn't make much difference if they manage the water
11	or not manage water. Do you have analyses that
12	strictly show only water addition?
13	MR. KARIPINENI: Right.
14	MEMBER STETKAR: Okay.
15	MR. KARIPINENI: There are analyses for
16	water addition.
17	MEMBER BLEY: And that assumes flooding.
18	MEMBER STETKAR: That assumes flooding.
19	MEMBER BLEY: Right.
20	MEMBER STETKAR: All the way up.
21	MR. ESMAILI: This is Hossein Esmaili again.
22	I just want to clarify something that there is
23	difference between severe accident water addition and
24	severe accident water management in this case. What
25	you see here you have at 24 hours you have lower head
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	46
1	failure. At that time, you start injecting. That's
2	why the temperature goes down.
3	So for the next 15 hours, from 24 hours to
4	about, you know, you start injecting at 500 GPM. So
5	there's no difference between management and addition.
6	MP In the front part
7	MR. ESMAILI: It takes that much amount of
8	time for the water level to get to the point where you
9	get to the, you know, to the hot level inside the vent.
10	At that point, then you switch, you know. The
11	switchover occurs not at this point but at about 38
12	hours or so. By that time, it doesn't matter whether
13	it's water addition/water management. You're moving
14	it up to K heat, so there's no difference between the
15	two cases.
16	CHAIRMAN SCHULTZ: I'm just confused. When
17	we discussed the earlier slide on hydrogen, we talked
18	about wetwell venting, and here we're talking about a
19	case focusing on drywell.
20	MR. KARIPINENI: This is giving the
21	temperatures in different parts of the
22	CHAIRMAN SCHULTZ: Drywell, but this is a
23	case where venting occurs from the wetwell
24	(Simultaneous speaking.)
25	MR. KARIPINENI:is working at that time.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	CONSULTANT SHACK: Yeah. But does the
2	venting stop when you reach the flood-up? I guess
3	that's the question.
4	MR. KARIPINENI: Right.
5	MR. ESMAILI: This is not a drywell vent.
6	MEMBER STETKAR: For this graph. This is
7	not a drywell vent?
8	MR. KARIPINENI: This is not a drywell vent.
9	MR. ESMAILI: This is not a drywell vent.
10	(Simultaneous speaking.)
11	MR. KARIPINENI: This a temperature value.
12	There is water addition and there is a vent. What
13	happens to the temperature?
14	MEMBER STETKAR: I thought we're seeing all
15	of these nice pretty curves as justification for what
16	you introduced, and that's Method 2, which is drywell
17	venting with water addition. It didn't say anything
18	about wetwell venting. It doesn't say anything about
19	water management. It says drywell venting with water
20	addition.
21	That was Slide 15, and then we're on this
22	pretty picture here. But now I'm hearing it's wetwell
23	venting with probably some water management, but it
24	doesn't make any difference.
25	MR. RECKLEY: In all cases, it's initially
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

14

17

venting from the wetwell.

MEMBER STETKAR: Okay.

What this plot is trying to MR. RECKLEY: show is in either case, well I shouldn't say, that the addition of water into the drywell controls the temperature in the drywell, such that if you vent from the drywell, this is the kind of temperature that the piping and the valves associated with the vent would have to be able to see.

We're trying to say what is an appropriate design specification for Method 2, which is idle water 12 and venting from the drywell. If you're going to have 13 that vent for the purpose of the Order, what kind of specification are you going to set for that hardware? 15 So this run, and while I was saying that it doesn't in 16 this particular case confirm to the MELCOR run, whether it's water management or water addition is not 18 particularly important to us.

19 important what is What was was the 20 temperatures in the drywell, such that setting a design 21 specification for the drywell vent, and all other runs 22 that we've seen would support that the 545 degree 23 Fahrenheit number that we did for Phase 1, for the 24 shared piping, can actually be used and extended back 25 all the way to the pure drywell portion of the piping.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

48

	49
1	CHAIRMAN SCHULTZ: Where I'm confused is
2	that for Method 2, it prescribed only water addition.
3	MR. RECKLEY: Yes.
4	CHAIRMAN SCHULTZ: But here you're
5	justifying the drywell vent capability in a case where
6	you have water addition and water management. I don't
7	know enough, I haven't I don't know whether you need
8	both to drive these temperatures would protect the
9	drywell vent? Do you need water management for it?
10	MEMBER STETKAR: Let me just ask, did anyone
11	ever run a run that would replicate what Method 2 is
12	supposed to do, which says you open a wetwell vent. You
13	turn on water, you fill it up. The wetwell vent floods.
14	It then becomes ineffective, and you have to open the
15	drywell vent and you flood-up into the plenum. Did
16	anyone ever run a case that did that?
17	MR. ESMAILI: Yes.
18	MEMBER STETKAR: What are the results of
19	that case?
20	MR. ESMAILI: Yes. We ran two cases, one
21	assuming that at 24 hours, you start injecting water
22	and you continue for the next two days or 72 hours.
23	That's 500 GPM.
24	MEMBER STETKAR: Okay.
25	MR. ESMAILI: If you unfortunately, you
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	know, but you're I sympathize because you haven't
2	seen all the other graphs that shows how the containment
3	water level, how the containment pressure is.
4	MEMBER STETKAR: We don't need to repeat my
5	rants. You're right. We haven't seen it.
6	MR. ESMAILI: So I'm trying to yeah. So
7	what happens is that if you continue adding water for
8	the next two days, in this case at about 50 hours, okay,
9	when you talk about water addition, about 50 hours you
10	have built up enough water. You have compressed that
11	thing enough that you need to go to open the drywell,
12	because at that point you have reached the 21 feet. You
13	have reached the hot level inside the wetwell.
14	At that point you isolate the wetwell vent,
15	okay. You let it pressurized, and then once you get
16	back to that 60 psig, then you open the drywell vent.
17	In the case of the water management, what you do is that
18	you just control the water. You never go to the drywell
19	vent.
20	MEMBER STETKAR: That I get. That's Method
21	3.
22	MR. ESMAILI: Yes.
23	MEMBER STETKAR: We're talking about Method
24	2 here. So I don't want to talk about Method 3.
25	MEMBER BLEY: What was in Method 2, did that
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

case get actually run? 1 2 That would be slightly less MR. KARIPINENI: 3 than this, because this would be temperature a conservative case for Method 2 really because --4 So the answer's no? 5 MEMBER BLEY: 6 MR. ESMAILI: What is Method 2? 7 MR. KARIPINENI: Method 2 is the drywell 8 vent. 9 Method 2 is what MEMBER STETKAR: you 10 described in terms --11 (Simultaneous speaking.) 12 MR. ESMAILI: Right. 13 MR. KARIPINENI: It was run. Yes, it was 14 run. 15 MR. ESMAILI: So we --MEMBER STETKAR: And what does it look like 16 17 since --MR. KARIPINENI: That's the one I --18 19 MR. ESMAILI: As soon as you start injecting 20 water at the time of lower head failure, which is this 21 case, this is the type of temperatures you're going to 22 see. 23 So you're saying these CONSULTANT SHACK: 24 temperatures look like this even in that case? 25 MR. KARIPINENI: Yes.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

51

	52
1	MR. ESMAILI: Even if you do drywell
2	venting, yes.
3	MR. KARIPINENI: Yes.
4	MEMBER REMPE: So what you do, the operator
5	needs to know what the water level is?
6	MR. RECKLEY: Not until they get to the next
7	one, Method 3.
8	MEMBER REMPE: Okay. Is there any sort of
9	instrumentation required for this method?
10	MR. RECKLEY: Yes.
11	MEMBER REMPE: Okay, and you talked about
12	the qualification of the equipment. Is there any issue
13	with the pressure instrumentation? Is it rated for all
14	these conditions, and is there specific guidance and
15	will the staff be reviewing any of that guidance for
16	it?
17	MR. RECKLEY: Yes. There's within the
18	guidance, and then in the ISG, we took up on the
19	instrumentation requirements for pressure and level.
20	The accident qualifications of that instrumentation
21	and all of that would be described for each licensee,
22	in terms of what equipment they have and how they will
23	use it within the integrated plans that they'll submit.
24	But I don't know. Phil, did you want to
25	MR. AMWAY: Yes. My name's Phil Amway
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	representing the industry this morning. We will talk
2	about, in our presentation, more detail about the
3	different methods and particularly the instrumentation
4	that would be necessary for the SAWA-SAWM strategies.
5	MEMBER REMPE: Okay.
6	MEMBER BALLINGER: You're trying to meet the
7	545 degree limit, right? You don't want to go above
8	that.
9	MR. RECKLEY: It's trying to show that the
10	545 degrees is a reasonable number for the design
11	specification of the of a drywell vent, should anyone
12	choose to do a drywell vent.
13	MEMBER BALLINGER: Okay. So just the
14	drywell vent, period?
15	MR. RECKLEY: Right.
16	MEMBER STETKAR: The idea being that if you
17	get a lot warmer than that, other penetrations in the
18	drywell head seals are going to start failing. So why
19	qualify it to higher than that?
20	MEMBER BROWN: But it's not just the
21	drywell. There's also a wetwell vent in this also. I
22	mean this all assumes there's a wetwell vent system
23	installed.
24	MR. RECKLEY: Both cases.
25	MEMBER BROWN: Until it gets filled with
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	54
1	water
2	(Simultaneous speaking.)
3	MEMBER STETKAR: Oh, I understand that.
4	Once you fill it up, it's useless. But I mean
5	MEMBER BALLINGER: But since nobody's going
6	to do a drywell vent without water addition, the 545
7	is not important.
8	MALE PARTICIPANT: No, it is important.
9	MEMBER STETKAR: It's important. It is
10	important to show that you don't need to qualify the
11	thing for more than that temperature of this picture.
12	Or that you might need to open it earlier, for example.
13	You know, there was some assumptions about when you
14	needed to open it.
15	CHAIRMAN SCHULTZ: But what's so confusing
16	me is what part of this picture, this sequence is
17	associated with water management? When does that come
18	in?
19	(Simultaneous speaking.)
20	CHAIRMAN SCHULTZ: But when does it happen?
21	After the 36 hours on, right?
22	MR. RECKLEY: Yeah.
23	MEMBER STETKAR: So about 39 hours I think.
24	CHAIRMAN SCHULTZ: 39? Okay.
25	MR. KARIPINENI: At the peak temperatures,
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	you can see that it's
2	(Simultaneous speaking.)
3	MEMBER STETKAR: That's fine.
4	MR. KARIPINENI: For example, they're all
5	temperatures
6	MEMBER STETKAR: But now I can differentiate
7	and
8	(Simultaneous speaking.)
9	MEMBER STETKAR:as to why this case is
10	good for what you presented previously, and what you're
11	presenting now. I got it. Thank you.
12	MR. AMWAY: This is Phil Amway again. I'd
13	just like to have one more comment. When we get to the
14	industry presentation, we have some plots that will
15	show the sequence of SAWM, when you initially establish
16	the SAWA flow rate of 500 GPM, when you throttle it back
17	and what the plots look like in terms of the wetwell
18	level response through, all the way out through the
19	seven days
20	MEMBER STETKAR: But again that's Method 3.
21	We haven't got to Method 3 yet. We're still talking
22	about Method 2, which indeed is possible under the NEI
23	guidance.
24	MR. AMWAY: Yes, and we have the we can
25	show the results for Method 2 as well. So when we get
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	56
1	to the industry presentation, we'll have that. We're
2	good to go.
3	MR. RECKLEY: Did you want show this one?
4	MR. KARIPINENI: Yeah, yeah. The slide
5	before that. The water addition, where is the water
6	addition connection point to inject and to deal with
7	the vessel and the drywell? What the industry has done
8	is basically run the point that they have provided for
9	049 mitigating strategies. They have half-piped that
10	out to a point where they can have some shielding,
11	etcetera.
12	It could be sometimes right at the edge of
13	the reactor building, or maybe a little bit farther out.
14	That's where they would bring in the FLEX connections
15	or whatever to make the injection point connection. So
16	that's the that's what the severe accident water
17	addition, hardware-wise, the change is.
18	The pumps, etcetera, are same as in the 049,
19	the same pump, and if one pump fails they would have
20	to use another pump. But the connection point is what
21	got moved out to the place where that can be achieved,
22	the injection.
23	MEMBER STETKAR: I was little surprised when
24	I looked at the ISG discussion of Method 2. There's
25	a statement that says Appendix I of NEI-13-02 discusses
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

reactor pressure vessel pressure control in the realm of the emergency procedure guidelines and severe accident guidelines. "This discussion is informational on how the equipment would be used, but has no direct bearing on the implementation of Phase 2. Therefore, the NRC did not review and is not endorsing this discussion."

Is that because you're presuming that the vessel failure by itself is enough to depressurize you sufficiently? So it's that the FLEX injection would give you 500 GPM? Because otherwise, I mean you know how they -- that whole Appendix I talks about actuating ADS and leaving ADS open, and that regardless of how you get into trouble, the operators would eventually be instructed to do that.

So it's that pressure is then low enough for you to get adequate flow. So it seemed to me as kind of a critical element, regardless of whether you're doing Method 2 or Method 3 to get pressure down. You're saying well, you didn't care about it. Maybe I misinterpreted that paragraph but --

22 MR. RECKLEY: This is Bill Reckley again. 23 But the difficulty we have in realms like this is what's 24 covered by what requirement that's in play. All we 25 were trying to say by that statement is that as

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

(202) 234-4433

57

	58
1	important as it is, that aspect is not addressed by the
2	vent order.
3	Although the SAMGs and EOPs are calling for
4	that action, we didn't look at that separately in
5	regards to the vent.
6	MEMBER STETKAR: But for the vent to
7	succeed, I need some amount of water flow. I mean the
8	analyses are based on 500 GPM under just water addition,
9	throttled back to some, I forgot what it was, throttled
10	back under the severe accident water management. But
11	if I just look at the water addition, it's based on a
12	presumption of 500 GPM and if it's something less than
13	that, you'd succeed.
14	But I still have to have pressure low enough
15	to get that water in, for the now I'm partitioning
16	it for the venting function to work, right?
17	MR. RECKLEY: Yes.
18	MEMBER STETKAR: So I don't know why it's not
19	important to the vent function. I understand it's
20	important for other things also.
21	MR. KARIPINENI: By the time the water
22	addition and everything comes into play, you would have
23	basically the situation with X-vessel, and you have
24	already depressurized in that sense. You're only
25	talking about
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MEMBER STETKAR: You absolutely know that
the vessel is going to depressurize sufficiently that
if I'm by taking the option of severe water accident
SAWA, the water addition to the vessel, you know
absolutely that regardless of how the melt progresses,
that by that time it will be low enough so that I can
get 500 GPM out of my low pressure pump? You know that.
I don't know. I'm not a thermal hydraulist
guy. Under any of these melt scenarios.
MR. ESMAILI: This is Hossein Esmaili again.
I tried as best as I can. We get both water addition
into the drywell. This is we're talking about still
structures, right, what's happening inside the

containment. We did do water addition inside the containment into the drywell and into the RPV.

We didn't -- in terms of temperature differences, we didn't see much difference. So as long as you have water, it doesn't matter.

19 MEMBER STETKAR: Okay. Let me stop you 20 right there. I got it. Into the drywell, I know that 21 the pressure is going to be low. If it gets really 22 high, we have a bad day. I'm talking about water 23 addition into the vessel. How do I get pressure low 24 enough in the vessel so that I get 500 gallons a minute 25 of water going into the vessel? How do I do that?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

	60
1	You just assumed it was low enough, right?
2	I'm asking how do I get it low enough?
3	MR. KARIPINENI: Well, even if you cannot
4	get water
5	CONSULTANT SHACK: If you've set the system
6	up to inject into the RPV, then you darn well better
7	be able to get the pressure down.
8	MEMBER STETKAR: This little drawing here
9	doesn't show any injection, I don't think, into the
10	drywell. It looks like it's going into the RPV,
11	doesn't it?
12	MR. ESMAILI: It's going straight into the
13	RPVs.
14	MEMBER STETKAR: Yeah, okay. So if I pipe
15	it up this way, I'd better have pressure in that little
16	sort of circly-looking thing to the right. I'd better
17	have pressure low enough so I can get enough flow. Now
18	how do I get that pressure low enough? It is presumed
19	that the vessel always blows down sufficiently to get
20	that pressure low by itself, because of the melt?
21	CHAIRMAN SCHULTZ: Or is there some other
22	way?
23	MEMBER STETKAR: Is there some other way,
24	which Appendix I in NEI-13-02 says it will always be
25	that low, even before melt, because the operators will
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	61
1	always open the ADS valves and leave them open. You're
2	saying that's irrelevant to the ISG.
3	MR. RECKLEY: It's an assumption through
4	your water injection to save containment, that either
5	the licensee will have used ADS to depressurize, as the
6	procedure calls for, or ultimately that the core will
7	melt through the bottom of the reactor vessel.
8	In either case, the severe accident water
9	addition being added to the Order to support improved
10	containment performance would serve its purpose.
11	MEMBER STETKAR: What I'm questioning is the
12	second part of that statement, where you said either
13	they're going to blow down through ADS, which you're
14	not looking at or
15	CHAIRMAN SCHULTZ: It's going to melt
16	through.
17	MEMBER STETKAR: Or the melt will
18	sufficiently depressurize the vessel under all of the
19	possible scenarios, such that that water you will
20	get enough water in. I'm not a thermal hydraulist guy.
21	I don't know. I just don't. I'm not trying to be coy
22	here. I just don't know whether or not the vessel will
23	depressurize sufficiently to get the types of water
24	injection at the timing that you're assuming here, and
25	I don't know if people have run those analyses. Or you
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	62
1	just assumed that it will depressurized.
2	MR. ESMAILI: This is Hossein Esmaili again.
3	We do different analysis. We assume that at the time
4	the RCIC's operational for a while, once you lose RCIC
5	you try to depressurize, because you want to get low
6	pressure injections that come in.
7	We did calculation where we did not
8	depressurize. Even if you do not depressurize,
9	shortly after core damage, the temperatures are high
10	enough that it's going to cause the SRV to get stuck
11	open. So that's one way, that there's a high power leak
12	and the SRV gets stuck open and you depressurize.
13	CHAIRMAN SCHULTZ: That's not
14	depressurizing.
15	MEMBER STETKAR: That's not depressurizing.
16	That's all it's doing is opening up enough to relieve
17	that amount of energy. I mean it's not going to it's
18	not going to blow itself all the way open fully.
19	MR. ESMAILI: If one SRV gets stuck open,
20	it's going to depressurize the vessel.
21	MEMBER STETKAR: If you assume it is stuck
22	open. But the world doesn't necessarily work that way.
23	CHAIRMAN SCHULTZ: Don't always stick.
24	MEMBER STETKAR: Don't always go fully open
25	and stick open.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	MEMBER BLEY: So it can sit there and cook
2	and hold that the set pressure for a very long time.
3	MEMBER STETKAR: In its normal SRV mode, a
4	spring-loaded valve, not something that's actively
5	open.
6	CONSULTANT SHACK: But you do assume that
7	the 500 GPM starts at lower head failure. You're
8	really making an assumption that John is making, that
9	lower head failure is sufficient to depressurize the
10	reactor. Then you get your 500 GPM there either
11	because
12	MEMBER STETKAR: That sounds like what
13	they're assuming, and I don't know whether
14	MEMBER REMPE: If it's a MELCOR analysis
15	(Simultaneous speaking.)
16	MR. ESMAILI: The assumption
17	MEMBER REMPE:line failing rather than
18	lower head fail?
19	MR. ESMAILI: The assumption is that water
20	injection, either into the vessel or into the
21	containment, starts at the time of lower head failure.
22	So whatever you saw before, hydrogen and temperatures,
23	etcetera, that assumes here.
24	MEMBER STETKAR: But I'm an engineer. So I
25	piped up my plant according to this drawing here. So
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	64
1	I don't have any connection into the drywell. I didn't
2	do it that way, because I can't see why I'd want to do
3	that. I piped it up this way because there's a lot of
4	reasons I'd like to get water into that vessel.
5	So I did this. So your Or is not operable.
6	I can't inject into the drywell. I can only inject into
7	the vessel, and you're claiming that under that
8	condition, you're okay.
9	MALE PARTICIPANT: You get 500 GPM.
10	MEMBER STETKAR: You get 500 GPM out of the
11	low pressure pump.
12	MR. ESMAILI: At vessel failure.
13	MEMBER STETKAR: And you're assuming that
14	the vessel failure is sufficient enough to depressurize
15	you, such that you get 500 GPM out of your low pressure
16	pump, because you only have a low pressure pump. You
17	don't have a high pressure pump.
18	MR. ESMAILI: Yeah. We think
19	MEMBER STETKAR: I'm not a severe accident
20	person.
21	MEMBER REMPE: So again with MELCOR, would
22	you get lower head failure or would you get another type
23	of piping failure that would depressurize the vessel
24	at the main steam line failure that they often predict
25	with
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	MR. ESMAILI: Depends depends on what
2	your assumption is. If you do if you actually do,
3	I think maybe if you actually do cycle the SRV during
4	the time that, you know, the pressure is low and then
5	you continue the cycling the SRV at low pressure, even
6	though we get to the high temperature cases, okay, this
7	is during the core damage.
8	You then get main steam line failure. You
9	get SRV failure. Regardless, what I'm trying to say
10	is that even if you wait until the lower head fails,
11	and the lower head even if you even if the original
12	lower head failure size is small, it's going to
13	you're going to depressurize the vessel at the time of
14	lower head failure.
15	So if you are going to so the question is
16	that you're either going to be able to inject into the
17	vessel, okay, or into the containment. If the
18	containment is not available, you can inject into the
19	vessel. If you cannot inject, then this is what
20	happens. You are going to have a containment failure.
21	So we have analyzed all the cases. So you
22	either have SRV sticking open. If that doesn't happen,
23	our assumption that we start injecting at the time of
24	lower head failure.
25	CONSULTANT SHACK: This is MELCOR analysis,

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	not a pipe guide for putting in pipe.
2	CHAIRMAN SCHULTZ: I guess at some point we
3	would like to see, without iterating, it would be
4	helpful to have not only temperature plots but the
5	pressure plots and other things that would indicate
6	what's really happening and demonstrating the
7	functionality of the overall system. But I think we
8	should go ahead to Method have you finished Method
9	2 at this point?
10	MR. RECKLEY: Well, except for the issues
11	(Simultaneous speaking.)
12	MR. RECKLEY:that basically say how we
13	resolved.
14	MR. KARIPINENI: Yeah. We didn't get to
15	that slide yet.
16	MR. RECKLEY: Is that Slide 18?
17	MR. KARIPINENI: Slide 18, yeah. This is
18	where the issues that we talked about in our draft ISG
19	comes. From the very beginning, our thought was that
20	under the severe accident water addition, even though
21	the industry calls it a strategy, we felt like there
22	were some requirements, functional requirements that
23	they will have to show us.
24	There was discussions in that regard, and by
25	the time we did the draft ISG, we didn't come to complete
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	67
1	alignment yet. That's why it was shown as an item in
2	the ISG. What we felt was that the functional
3	requirements that were provided in the Order, Section
4	A, the high level functional requirements, would also
5	apply to a severe accident water addition.
6	But if you read them, some of them are not
7	applicable to your water addition type issue that's
8	related to your vent issue. But from the aspect of
9	showing that this is all workable, we felt like these
10	are the requirements you still would have to look at,
11	and show us, you know, that you're meeting them and that
12	you show us how the any instruments that are required
13	for severe accident water addition will get the power,
14	things like these that we're addressing in the Order
15	itself.
16	We said you need to go there and come back
17	and show that everything works. Which is where the
18	meeting in the last week or early this week on Monday,
19	we were headed in the right direction. Industry's
20	proposing to have that discussion of functional
21	requirements for SAWA, to address all the
22	time-sensitive actions and equipment capabilities, and
23	also the accessibility required to get there, to take
24	these actions.

So these are all being addressed in the

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	68
1	revised document that will be coming into us within a
2	week or ten days or whatever, that could give all that,
3	and then we'll
4	MEMBER STETKAR: And then the draft ISG will
5	be amended to reflect that?
6	MR. KARIPINENI: Amended, yes sir.
7	MEMBER REMPE: You said ten days before you
8	even see what industry will give you? Is that what I
9	heard?
10	MR. KARIPINENI: I don't remember the exact
11	date, but it was like 10 business days.
12	MR. AULUCK: the revised guidance
13	document by March 31st.
14	MR. RECKLEY: But the reason we have
15	confidence in this is that this particular issue was
16	a level of detail kind of issue. It wasn't a strong
17	technical disagreement on any really philosophical
18	point. It was a level of detail. We wanted more
19	discussion of what the functional requirements were,
20	the water addition components of the strategy were.
21	The discussions we had on Monday gives us confidence
22	that we're basically on the same page in terms of what
23	that level of detailed discussion will be in the
24	submittal that we'll be getting.
25	So again, this is what I was saying. It's
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	69
1	not fundamentally an issue, and what you will see with
2	the revisions not a dramatic change from A to B. It's
3	just further explaining what A is.
4	MEMBER STETKAR: But this indicates that
5	there will also be a revision, you know, OE-3 or
6	something or other to NEI-13-02 issued in parallel with
7	that, right?
8	MR. RECKLEY: Yeah. That's what we're
9	talking about getting by the end of the month, and then
10	the ISG would be changed to eliminate, assuming that
11	everything works. We see what we're expecting to see.
12	MEMBER STETKAR: I was going to say. You're
13	going to have to read the words in that. Yes.
14	MEMBER REMPE: And you really can't get it
15	done before our next meeting, that revised ISG. You
16	think you're going to do something like that in less
17	than six days?
18	MR. AULUCK: We plan to.
19	MR. RECKLEY: Yes, assuming and here we
20	go to Method 3.
21	CONSULTANT SHACK: Just in time
22	documentation.
23	(Laughter.)
24	MR. KARIPINENI: Slide No. 19. Method 3 is
25	a severe accident water addition with severe accident
	NEAL R. GROSSCOURT REPORTERS AND TRANSCRIBERS1323 RHODE ISLAND AVE., N.W.(202) 234-4433WASHINGTON, D.C. 20005-3701(202) 234-4433

water management. The underlying reason for that is there would be no drywell vent at all, severe accident drywell vent. The wetwell vent will be preserved for as long as they can, managing the water level, and that's how they would show there's no need for a drywell vent.

Okay, that's what basically the Method 3 is. The sustained operations of the severe accident wetwell vent, it will be required until an ultimate reliable heat removal capability is established. Those are the words from the Order itself.

The issue is somewhat similar to what we talked about in Method 2. The concept is if you have an alternate heat removal capability, what are the functional requirements for that alternate heat removal capability. Provide us a success path with what we are asking them, and basically the guidance establish the time for 72 hours of coping, coping period. It's what they call coping time concept.

Beyond 72 hours, you know, the wetwell vent may start getting flooded. If the wetwell vent is preserved all the way up to seven day sustained period, let me explain what the sustained operation concept is. It came about in Phase One.

I mean we have to establish some time until

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

25

71 which under the Order requirements the vent would have 1 2 to operate, and at that time we said either seven days, or until you have an alternate heat removal system 3 established, and that is the concept. 4 5 So to preserve the wetwell vent all the way 6 up to seven days, it's pretty clear to us that you don't 7 have to show us an alternate heat removal system 8 instead, because that's a lot of time, by which time 9 we agree that you can go do many things and potentially 10 establish some kind of a system. 11 But if you are preserving it for less than 12 that period, we felt that the alternate heat removal 13 system does come under some kind of review from us, 14 which you show us what it is. Show us the success path 15 you can do it within this time period. They 16 established basically three variations in that time 17 period. One is operational 72 hours, preserve it for 18 19 less than 72 hours, and one is between 72 hours and seven days, and one is about seven days. Those are the three 20 21 tier approach in phase -- in 21, Slide 21. I just 2.2 talked about it. Let's go to 22. 23 So just go back again. MR. RECKLEY: So 24 just to be clear, what the delta is between what we gave 25 you and what we think the final product is is that in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	72
1	the I guidance, we'll it's another question of level
2	of detail, largely of what will be in the guidance. So
3	the level of discussion varies, depending on your
4	confidence in maintaining the wetwell vent.
5	Do you have confidence that licensees will
6	show that it can be maintained for at least seven days.
7	There's really no expectation that that licensee would
8	provide additional information on hooking up an
9	alternate heat removal system.
10	If it's between three days and seven days,
11	they would provide a little more they would provide
12	information on how they would be able to do it, and if
13	it's less than 72 hours that they would be able to show
14	wetwell venting, then they have to show even more, and
15	provide a higher level of confidence by showing actual
16	connections and so forth.
17	CHAIRMAN SCHULTZ: So okay. But even more
18	has not been defined. In other words, you still feel
19	you still feel that less than 72 hours could be
20	acceptable, a sufficient connection?
21	MR. RECKLEY: Yes, but the rigor that the
22	licensee would have to go through to show that that
23	alternate heat removal could be hooked up goes up a
24	notch, you know. If Method 2 if Option 2 here is
25	we can cut a pipe and we can put in a line, then the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	third one is no, it already exists. There's a plan
2	there and it's not cutting and welding. It's actually
3	in place. So that's the distinction.
4	MR. KARIPINENI: So here being that the
5	staff would review those proposed approaches that they
6	would give all the three tiers, and ask for any
7	questions on anything, and finally agree it can be done,
8	or we think there's something more that needs to be
9	done. That would take place at the time of the actual
10	reviews by the when the individual licensees provide
11	their implementation plans, and what exactly they're
12	doing in this case.
13	CONSULTANT SHACK: Sometimes I have a hard
14	time matching up what happens in the FLEX situation with
15	this world. But you know, I'm using my FLEX pump.
16	Well, if my FLEX pump works, I'm probably not going to
17	melt the core unless, you know, unless I failed ADS,
18	in which case I'm back to John's question.
19	I've got to make sure that the lower head
20	failure is enough to get my 500 GPM in. Have people
21	thought about I know they're sort of doing this on
22	a boundary condition thing, without looking at specific
23	scenarios.
24	But does it all kind of hang together, you
25	know. Would I get into this because my FLEX equipment
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	worked, but the RCIC didn't last long enough for me to
2	do the full FLEX? And then now I'm in a severe
3	accident, because I've melted the core, because I lost
4	RCIC a lot sooner than I thought?
5	MR. RECKLEY: Any of those. I mean the way
6	I look at these Orders is we're trying to put in a
7	requirement that licensees have additional
8	capabilities, and FLEX is I've lost power, I've lost
9	heat sink. I have additional capabilities through
10	installed equipment, RCIC and portable pumps, to try
11	to prevent the core from melting.
12	There's some chance that won't work. Either
13	RCIC won't last as long as I thought, or it will fail.
14	Or when I transition to portable pump, there's some
15	other issue, right. This for Mark I and II
16	containments, because of the specifics of those
17	containment designs, and the sensitivity of the
18	containment failure to core melt, an additional
19	capability is being added for the venting and now for
20	the severe accident water addition as part of that, an
21	additional capability.
22	So yes. If FLEX works, you don't need this.
23	You don't need the severe accident portions of this.
24	You still need the venting part, because that's
25	supporting maintaining RCIC as part of FLEX. So you
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

75

still vent, but in terms of the severe accident portions of this Order and particularly Phase 2 that we're talking about now, you shouldn't need this if FLEX works.

But in case FLEX doesn't work, this is an additional capability, because of the particular sensitivity to Mark I and II containments.

MR. KARIPINENI: For instance, if for FLEX the connection point we showed in our slide, it was in the reactor building, goes to a pipe there, and the assumption is that the FLEX did not come in time, and severe accident process is already in play, can you even go into the reactor building to make this connection?

So in SOARCA I would move that pipe out to a point with shielding and everything, and it could eventually be the same FLEX pump and the same pre-core melt strategy that we're just starting to develop the severe accident already. Okay.

MR. RECKLEY: The last issue.

20 MR. KARIPINENI: The last issue is the 21 alternate to containment pressure control. The Order 22 states that alternate heat removal system and alternate 23 pressure control. The quidance is somewhat 24 inconsistent in places, that refer to the need for an 25 alternate pressure control after you've flooded the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

	76
1	wetwell vent, and if there is something like that
2	needed, we felt well, then you're really needing to vent
3	the drywell vent.
4	So there are some functional requirements
5	you will have to go in and address, just like the way
6	you're addressing the alternate heat removal for us.
7	The response we got was after the wetwell is flooded,
8	they would not need a drywell vent at all in the flood-up
9	process, after you've flooded the wetwell and your
10	level is going up.
11	We'll be waiting for the revised guidance
12	there. Any requirement for alternate pressure control
13	after the for the long-term, that would be taken care
14	of from basically the same procedure interfaces at that
15	time.
16	MR. RECKLEY: A key point here is pressure
17	control, in order to protect the containment from
18	overpressure conditions, versus a need to vent the
19	containment for other purposes, such as flood-up or
20	whatever other purpose might be later in accident
21	recovery or management, in order to vent the
22	containment.
23	So really here what we agreed to was to kind
24	of define the scope of the Order, and that long-term
25	need to vent or other than overpressure protection of
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	the containment, we agreed that will be addressed under
2	the existing or to be developed programs in terms
3	of SANGs and other aspects of accident management, and
4	not addressed specifically by this Order.
5	MR. RECKLEY: The last slide.
6	MR. KARIPINENI: Yes. These are some of the
7	other exceptions clarifications that we have done in
8	page one. These are pretty consistent with what we are
9	done then.
10	For instance, we're not reviewing the
11	EOP-SANGs. In fact, there was another revised
12	EOP-SANGs available I believe. Plus there is a
13	rulemaking going on, whether we have any whether
14	we'll be going to the reload at all on that is going
15	to be addressed in that time.
16	So at this point, whatever references you
17	made to EOP-SANGs, okay they're for information. But
18	we are not staff is not endorsing any of those. We
19	do want operating procedures for the vent, that is the
20	wetwell or drywell vent, and they will be there.
21	They're submitting that. We'll be reviewing those.
22	But how they interface with the EOP-SANGs also we'll
23	look at.
24	But in what context they're actually using
25	the SANGs, etcetera, that we felt like at this point
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

it's not under our --

MEMBER STETKAR: Rao, you said you're not going -- you said you haven't. But you're not planning to review that EPRI technical report, which is the basis for all of this. Is that because you're performing independent MELCOR analyses on your own to provide that information or that's because, you know, it's a fundamental reference in the NEI guidance.

MR. RECKLEY: It is, but I look at it is as a body of knowledge, if you will. The purpose of this Order, what decision we need to make is whether 545 degrees as a design specification for the vent is a reasonable number.

And what we've seen from the EPRI work and the work our own Research people have done, and other work from the broader body of knowledge on severe accidents for these things, SOARCA and other things, are showing that 545 degrees is a reasonable --

(Automated message.)

20 MR. RECKLEY: Then and I noticed in the 21 industry slide deck they have a slide that we used in 22 Phase 1. The 545's not a magical number, in that you 23 need to look at it within the overall scope of 24 protecting a containment and when penetrations are 25 going to fail and when other things are going to fail,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

79 how much margin is built between a design 1 and specification and when you actually expect equipment 2 3 to begin to fail. All of that makes this not a number that if 4 5 the EPRI analysis had shown 550 degrees, you know, it's 6 not that Order. It's really to a reasonable value for 7 the design specification. That's what we were trying 8 to get out of this. So the level of rigor that we need for the analysis of any of this is not really the same 9 10 as when you get into a regulatory analysis and using 11 those numbers in terms of cost-benefit assessments and 12 so forth. 13 So that's the reason we don't feel we need 14 to review. We're being informed by, but we don't feel 15 we need to actually review and approve those reports. 16 MEMBER BALLINGER: So you're satisfied --17 excuse me. You're satisfied that any uncertainties in these analysis and these calculations and stuff like 18 19 that, when you consider all those things, you're far 20 enough away from whatever limit there is, and you've 21 done the analysis to satisfy yourself that that's the 2.2 case? 23 MR. RECKLEY: Yes. 24 (Simultaneous speaking.) 25 MR. RECKLEY: That it's a reasonable number,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

and that's the trouble that you get in the severe accident space, is it's separate from like design basis space, where you're saying there's a 95-95, you know, probability and confidence level that something's going to work the way you think it's going to work.

You know you're not in that space in this particular realm, that when you look at the history and what few experiments have been done on the performance of equipment at these conditions, yeah, we're reasonably -- 545 is a reasonable number, and basically keep in mind that we had accepted that number in Phase 1 for the connected piping.

Really, the decision that we're making now is yeah, that initial assumption we made on Phase 1 in terms of connected equipment, connected meaning drywell and wetwell vent, that the portion of the piping between the drywell and the connected piping can also be to that 545 degree temperature.

CHAIRMAN 19 SCHULTZ: But what vou've 20 described is in support of Method 2. With respect to 21 Method 3, the review of the EPRI documentation and so 2.2 forth is not required? Well, it is the --23 MR. RECKLEY: 24 MR. KARIPINENI: Leave it to me. 25 Yeah, go ahead please. MR. RECKLEY:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

	81
1	MR. KARIPINENI: With Method 3, until the
2	wetwell vent gets flooded, the calculations still show
3	with the wetwell vent and the water addition and water
4	management, that 545 degrees is still achievable. It
5	will remain there. There's no the MELCOR and the
6	MAAP analysis they have done do agree on that.
7	MEMBER STETKAR: But in that case, you're
8	relying if I understand what you're saying, you're
9	relying on the MELCOR analyses that you've done?
10	MEMBER BLEY: And they confirm what you saw
11	from EPRI?
12	MR. RECKLEY: Right. But the importance of
13	that is not in designing a particular piece of equipment
14	like a drywell vent. The importance of that is in
15	showing like these numbers show, that the conditions
16	within the drywell are basically keeping the
17	containment function intact.
18	The temperatures and pressures are being
19	controlled, such that you're not failing other
20	penetrations or lifting the drywell head, such that
21	you're leaking the hydrogen and radioactive materials
22	out from another place. So it's a different use of the
23	numbers. So yes, we're using them, but it's not to the
24	same purpose.
25	MEMBER STETKAR: Just on the 545, I mean when
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	I I'm looking at Klaus containment seal paper from
2	the Sandia, back there in the good old 90's, and 545
3	looks pretty reasonable for an EPDM seal. It doesn't
4	look so reasonable for a silicon seal.
5	And then I read Harao, who says that they use
6	silicon seals in Japanese BWRs. Who do we use in our
7	BWRs?
8	MEMBER POWERS: And they use silicon seals.
9	MEMBER STETKAR: They use silicon seals?
10	MEMBER POWERS: Yeah.
11	MEMBER STETKAR: 545 doesn't look so good
12	for silicon seals.
13	MEMBER POWERS: Yeah. We did in the
14	course of NUREG-1150, we did test the seal and it held
15	pretty well up to about 700 degrees.
16	CONSULTANT SHACK: Well I'm looking at the
17	Klaus paper.
18	MEMBER POWERS: What it did not do is that
19	if you vented it, it wouldn't reseal. In fact, they
20	degraded .
21	MEMBER STETKAR: Push the microphone
22	towards you.
23	MEMBER REMPE: Could you repeat what you
24	said Dana?
25	MEMBER POWERS: In the course of doing the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

LaSalle and the NUREG-1150 analyses, the question of 1 2 the head seal venting came up, and the good people at 3 Idaho offered a facility that we could run a test, and in fact the test was run up at Idaho, where they put 4 5 in the seal material that was reputed to be used in I 6 believe it was actually Brown's Ferry and not Peach 7 They ran it up for a substantial amount of Bottom. 8 time, up to about 700 degrees. CONSULTANT SHACK: Was that steam or air? 9 10 Because it makes a difference. 11 MEMBER POWERS: Yeah, it surely does, and 12 I think they pressurized it probably you've got me. 13 with nitrogen. But you know you've got me. 14 CONSULTANT SHACK: The steam results are 15 different from the nitrogen results. 16 MEMBER POWERS: Yeah. Well, there's 17 another issue too. It's also different if you have a radiation --18 19 CONSULTANT SHACK: Radiation helps. 20 MEMBER POWERS: It brings the hell out of a 21 seal. 22 but if you're CONSULTANT SHACK: Yeah, 23 extruding the seal, hardening is good. Again, the 24 Klaus and Harao just do better with the radiation. 25 What they observed in the MEMBER POWERS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	84
1	experiments was that the seal held. Now when they
2	opened the seal, it was badly degraded, and it would
3	not reseal. So after venting, it would not come back
4	and squeeze back up, and that was the issue that they
5	were really
6	Well, the issue that had come up was that the
7	bolting on the drywell head seal was different in
8	Brown's Ferry and Peach Bottom, that it was possible
9	by thermal expansion for Peach Bottom's head seal to
10	lose tension and it would vent, much like we think we
11	observed at the Fukushima reactor accident.
12	The question is would it, and like I said,
13	they ran the experiment and it held pressure for hours
14	at 700 degrees. But had it ever vent, it would never
15	hold. It wouldn't, it just wouldn't reseal. The seal
16	was badly degraded.
17	MEMBER STETKAR: But again, I mean the 545
18	is just, you know, the design what do I design the
19	vent valve and the piping up to, so that I have assurance
20	that it's going to work up to that temperature? If I
21	need to open it to provide
22	(Simultaneous speaking.)
23	MEMBER STETKAR: Yeah. I mean the criteria
24	for when I open that had better be pretty clear.
25	MR. KARIPINENI: The guidance references to
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	the seal material level looked at when they wrote the
2	guidance, and that gave some temperatures et cetera in
3	NEI-13-02.
4	MEMBER STETKAR: All right. Other
5	questions for the staff from the Committee? Pete, are
6	you out there?
7	(No response.)
8	MEMBER STETKAR: Not at this time.
9	MEMBER RICCARDELLA: Yeah, I am. I'm here.
10	I was on mute.
11	MEMBER STETKAR: Any questions, Pete at this
12	time? We're going to move to the industry
13	MEMBER RICCARDELLA: I'm following it as
14	best I can.
15	MEMBER STETKAR: All right, after the break.
16	So we'll recess now until 10:35.
17	(Whereupon, the above-entitled matter went
18	off the record at 10:18 a.m. and resumed at 10:35 a.m.)
19	CHAIRMAN SCHULTZ: We will come into session
20	and on the record.
21	Before we start, Steve, you had some
22	discussions with the staff regarding information that
23	can be provided to provide additional technical basis.
24	John, do you want to
25	MEMBER STETKAR: Yes, I just want it on the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 record, because of the discussion we have had earlier 2 about supporting information, it is my understanding 3 that the staff does have the analyses available or some analyses available to support the CPRR rulemaking that 4 5 may answer some of our technical questions regarding 6 thermal hydraulic analyses. 7 I would like to formally request that the 8 Subcommittee members be provided with those analyses very soon, meaning very early next week at the latest. 9 10 Can the staff do that? 11 MR. RECKLEY: Yes, the staff will provide 12 early next week the material that we have compiled to 13 support the CPRR rulemaking. Now it is still in the 14 concurrence process --15 MEMBER STETKAR: Yes. MR. RECKLEY: -- so it will be draft. 16 17 MEMBER STETKAR: Yes. 18 MR. RECKLEY: But we will get it to you early 19 next week. 20 MEMBER STETKAR: Yes, we will treat it that 21 way. 2.2 CHAIRMAN SCHULTZ: You can provide it to 23 Weidong. 24 MR. RECKLEY: Yes. CHAIRMAN SCHULTZ: And we will have that 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	87
1	circulated to the Committee.
2	Thank you very much.
3	MEMBER STETKAR: Thank you.
4	CHAIRMAN SCHULTZ: With that, we will turn
5	it to the industry presentation and introduce and
6	welcome Steve Kraft from NEI.
7	MR. KRAFT: Thank you, Mr. Chairman.
8	I am Steven Kraft from the Nuclear Energy
9	Institute. My colleagues here with me today, Phil
10	Amway from Exelon and Jeff Gabor from Erin Engineering.
11	These are two gentlemen you have seen before in other
12	discussions and have lead responsibilities in the
13	industry for not only the vent water, but for the CPRR
14	rulemaking.
15	To the point Dr. Stetkar just made on the
16	record, I am glad to know that the staff can be
17	accommodated. We are very sensitive to the fact of
18	these references, particularly our own, but from EPRI,
19	not yet available. And I just offer an explanation.
20	It is that the rulemaking and the vent are operating
21	on parallel but offset pathways, obviously.
22	Frankly, when you read the water, and not
23	only read the water, but study the structure of the
24	water, what is now being referred to, conveniently, as
25	Method 1 was the primary idea that the staff is
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

88 interested in. Put in a drywell vent; call it done. 1 2 And that was basically going to be a set of mechanical 3 and electrical kind of engineering requirements, and not terribly more challenging than that. 4 But we really delved into the rulemaking 5 6 analysis on both the NRC and industry side, that we 7 realized the value of this water management strategy, 8 water management addition. Now I am sure you will be 9 the first to tell me that injecting water into a reactor 10 to prevent core damage and control of melting core is 11 not news, and it is not. What is new is having to do so reliably -- and 12 13 I stress the word "reliably" -- under ELAP conditions. 14 That was the main learning in this context from And that is where all the complications 15 Fukushima. 16 begin. 17 And then, as first we did the wetwell vent 18 because that was the first thing in the order 19 schedule-wise, and it is also the thing that was easier 20 for the utilities to do. A lot of the plants have some 21 sort of wetwell vent. Certainly, the MARK Is in 2.2 response to Generic Letter 89-16. It is a matter of 23 making that meet the new water requirements. And while 24 it was not a simple thing to do, the guide is a lot easier 25 to put together.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

We began to face up to Phase 2, and we were trying to figure out what we could do with that allowance in Phase 2 of the order that said, you know, you could have strategies to avoid going to a drywell vent, which has implications for the rulemaking as well.

We began looking into the rulemaking results. I think the NRC was trying to do the same thing in parallel. And surely we had this "aha" moment in April of this year where we said, you know what? The real issue here is injecting water because the real thing we are trying to do is control containment.

If you go back to our tabletop studies done in November of 2012, when we were dealing with the development of what turned into SECY-12-0157, we concluded that the issue was protecting the payment, management payment during accident, not necessarily any one specific function, such as filtering or what have you. That is where the reliable water part came in.

And then, it occurred to us that what we should do, and what we did do, is approach NRC management and say, "Look, what we are contemplating here is taking what would have been a requirement under a projected rulemaking for water addition and water

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

management and moving, the one addition anyway, and moving it into our compliance for the water, our compliance guidance for the water.

That answered a heck of a lot of questions and gave people a lot of comfort that we were planning on protecting the payment. Because the point that Rao made was a very good one, and we have told the industry any number of times at all levels that, if you should select what is now called Method 1, which is not really covered in our guidance at all, you will have not only tell NRC how are you going to do it, they are going to ask you how you are going to protect containment and where is water addition, anyway. So, you will like that part. So, you might as well do it in the first place. And everyone has that understanding.

But, because it still lives in the order, it is kind of an obligation on our part to at least mention it in the guidance. We are aware of no plant that is contemplating electing Method 1. But we are following it very, very closely, and we will make sure we understand compliance.

With regard to who might be electing Method 2 Versus Method 3, we don't know yet. There is a desire in the industry for everyone to go to Method 3, but there may be geometric problems in the plant that prevent

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

	91
1	that. There may be one or two that can't. We don't
2	know just yet.
3	But the BWR Owners' Group, in fact, is one
4	of the reasons we are the only three industry folks here
5	is there is a big meeting out in California. Again,
6	that one snow day that hit us on March 5th just threw
7	everyone's schedule off. It is amazing how
8	interconnected that turned out to be.
9	The feedback from that meeting is that
10	everyone is trying to figure out how to do Method 3,
11	and we will probably try to go in that direction. We
12	won't know, of course, until we see the integrated plans
13	at the end of the year.
14	So, with that background, let me turn it over
15	to Phil for the bulk of the presentation.
16	MEMBER BROWN: Method 3 has no drywells in
17	it?
18	MR. KRAFT: Not a severe accident drywell
19	vent. Plants may have drywell vents.
20	MEMBER BROWN: Okay, but not the severe
21	accident
22	MR. AMWAY: It is not credited for use for
23	meeting the order, is probably the best way to describe
24	it.
25	MEMBER BROWN: Okay. The temperature,
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

92 1 pressure, whatever those conditions may be? 2 MEMBER STETKAR: It is something that has 3 already happened. Right. 4 MR. AMWAY: 5 MEMBER BROWN: I am not a big BWR-type guy. 6 I just wanted to make sure I understood the nuance on 7 the severe accident vis whatever just an installed drywell --8 9 It is just the recommendations MR. KRAFT: 10 under the water more than anything else. MEMBER BROWN: All the actions come back to 11 12 managing water or whatever you do in the wetwell? 13 MR. KRAFT: Correct. 14 MEMBER BROWN: And its vent? 15 MR. KRAFT: Yes. 16 MEMBER BROWN: Okay. 17 And managing water in the MR. KRAFT: 18 drywell, I mean as the water flows. 19 MEMBER BROWN: Yes, okay. 20 MR. KRAFT: To your point, Dr. Stetkar, 21 one -- I will not name the site -- contacted us and said, 2.2 "Well, we've got this connection. Do we have to severe it." 23 24 (Laughter.) MEMBER BALLINGER: Cap it off? 25 **NEAL R. GROSS**

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	MR. KRAFT: Capit off, right, avoid it, take
2	the valve out.
3	We said, "Why would you do more work than you
4	have to do?"
5	MR. AMWAY: Okay. With that, I have got to
6	get into this. The way I have got to get through this
7	presentation is I will leave through it. At particular
8	portions, particularly with some of the analyses and
9	charts and graphs, I will turn it over to my colleague
10	Jeff Gabor to discuss those items.
11	MEMBER BLEY: Phil?
12	MR. AMWAY: Yes?
13	MEMBER BLEY: Just to give me a heads-up on
14	what is coming I haven't looked through your slides
15	yet are there any points on which you folks are in
16	disagreement with what the staff has put out?
17	MR. AMWAY: No, I think we are very
18	well-aligned. I think what really remains to be seen
19	yet and we had the public meeting on Monday where
20	we went through those, I'll call them, open items, for
21	lack of a better term, where we proposed how we were
22	going to respond to those.
23	What really remains to be seen is, okay, they
24	have seen it in a presentation format. They need to
25	see it in what it actually looks like in writing in the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	guidance document. We are going to be able to deliver
2	that to them to be able to review and to make sure that
3	what is actually written there conforms to what we told
4	them we would do this past Monday, but I think we are
5	in very good alignment with the outstanding items that
6	remain.
7	MEMBER BLEY: And I think what they told us
8	is they are expecting your draft the first of next
9	month?
10	MR. AMWAY: By March 31st.
11	MEMBER BLEY: March 31st?
12	MR. AMWAY: The reason not sooner is
13	because, for the things that I talk about in this
14	presentation, it has already been incorporated between
15	0E2 that you have
16	MEMBER BLEY: Right.
17	MR. AMWAY: and the Draft F that we will
18	deliver on the 31st.
19	But the BWROG is meeting this week for the
20	express purpose of looking at those deltas between OE2
21	and OF drafts to make sure that the rest of industry,
22	beyond the working group, is also aligned and
23	understanding what those changes are and what they
24	mean, and that they really do think that they can use
25	that to implement Phase 3.
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	And so, I want that feedback and be able to
2	look at that before I deliver that to the staff and say,
3	"This is our final product," with the intention they
4	look at OF, they look at those changes, make sure they
5	are aligned with what we said we would do on Monday.
6	If there are any tweaks here or there, I would
7	expect it will be 90 to 95 percent. They may want to
8	change a word or two or move something from one location
9	to another, but, then, there would be very minor
10	editorial-type stuff between the OF that they get on
11	331 and Rev 1 that they would actually use and reference
12	in the Final ISG.
13	CHAIRMAN SCHULTZ: Phil, you have heard our
14	schedule. We talked about it this morning. Is there
15	a way that you can provide us with a concise description
16	of any changes that may be coming out of this week's
17	meeting and affecting your document?
18	You said you are going to present today what
19	is in the document, essentially.
20	MR. AMWAY: Right.
21	CHAIRMAN SCHULTZ: So, if there are any
22	significant, if there are any changes that you
23	MR. AMWAY: What we have done
24	CHAIRMAN SCHULTZ: Yes.
25	MR. AMWAY: and I certainly think we can
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	provide you as well is when we send OF, we are going
2	to send a crosswalk document that is a table format that
3	outlines the changes between 0E2 and 0F to facilitate
4	their review, and it would also facilitate yours as
5	well.
6	CHAIRMAN SCHULTZ: That will be good. And
7	if there are any changes from today's presentation
8	MR. AMWAY: That is included in the matrix
9	as well.
10	CHAIRMAN SCHULTZ: Yes, I would appreciate
11	that.
12	MR. AMWAY: The way I have structured
13	that
14	CHAIRMAN SCHULTZ: To flag those, not to
15	include them in the matrix, but also to flag them
16	MR. AMWAY: Yes.
17	CHAIRMAN SCHULTZ: so we know what is
18	different between what you are presenting today and
19	what is in this.
20	MR. AMWAY: Ideally, to send the table, I
21	would say here are the deltas between OE2 and OF for
22	everything up-to-date and here is additional changes
23	that may have come out from either the feedback we got
24	from the BWROG meeting this week and today's meeting.
25	CHAIRMAN SCHULTZ: That will be very
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	helpful. Thank you.
2	MEMBER BLEY: Last question on this for me.
3	In what you go through in the next few slides, I assume,
4	one, that is consistent with your current draft of OF.
5	And, two, does it show all the substantive changes from
6	the previous draft, not minor things, but substantive
7	changes? Or are there substantive changes that are
8	going to be in the new draft that you are not going to
9	show us today?
10	MR. AMWAY: The current draft of OF does show
11	all substantive changes.
12	MEMBER BLEY: Okay.
13	MR. KRAFT: Like if you saw it today, that
14	is what you would see, yes.
15	MEMBER BLEY: Right.
16	MR. KRAFT: And then, those will be held
17	in
18	MEMBER BLEY: What I asking you is, when you
19	go through your presentation, will you be able to show
20	us all those substantive changes that are there? Or
21	are there too many to cover?
22	MR. AMWAY: The big ones are all here.
23	MEMBER BLEY: Okay. Go ahead.
24	MR. AMWAY: There are other lower-level ones
25	that don't really rise to and there are examples of
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	editorial-type things.
2	CHAIRMAN SCHULTZ: So, those would be you
3	have seen this before or here's something new and it
4	is going to be in OF?
5	MR. AMWAY: Right.
6	CHAIRMAN SCHULTZ: That would be helpful.
7	MR. AMWAY: Right. Okay. We can certainly
8	do that.
9	All right. So, if we can just start off
10	here, the general characterization slides, and I think
11	I can get through these first couple fairly simply
12	because the staff has gone through some of these
13	already.
14	We have revised 13-02, include the Phase 2
15	guidance. We have had numerous public meetings. I
16	think the number was six since last August. We in the
17	industry have been working closely together to work
18	towards common design elements. Similarly, like we
19	did in Phase 1, we did that very methodically, looking
20	for common approaches to the designs, making sure that
21	we developed the OIP consistently, and that when we
22	submitted the OIPs, they contained consistent
23	information, level of detail which facilitated the
24	reviews for both the industry side going into it and
25	the audit of those OIPs that the staff did.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	99
1	We will continue that practice throughout
2	Phase 2. Currently, I would say that we have a limited
3	number of open items between the ISG and the guidance.
4	In terms of the functional requirements, the
5	goal is to limit containment pressure and prevent
6	overpressure failure modes, divide it into the two
7	phases, the Phase 1 being the wetwell vent that we are
8	currently implementing and Phase 2, vent capability
9	from the drywell or the alternate venting strategy.
10	And that is where we are going to spend most of our time
11	today, is with the alternate venting strategy.
12	Control the use of common systems within and
13	between units. That addresses the hydrogen issue with
14	either interconnected systems or between units that
15	could create problems with excessive leakage.
16	And it is important to note that the vents
17	that we are putting in, the wetwell vent, and drywell
18	vent, should a licensee choose that path, not only has
19	to address the order, but it does share systems with
20	the normal containment vent-and-purge system. And so,
21	we have to be careful when we do the severe accident
22	changes to make those vents useful under those
23	scenarios, that we are not adversely impacting the
24	normal day-to-day use of that vent. Every outage we
25	use the vent-and-purge to inert the containment. We
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	use the common isolation valves in most cases. And so,
2	we have to preserve that design-basis function.
3	Phase 1 status. I am not going to go over
4	the first bullet. We have already seen that. We did
5	go through the endorsement process for the industry
6	template on Phase 1. I bring that out because we would
7	want to do something very similar in Phase 2 to make
8	sure that we had a common template that the industry
9	was going to use that would provide that consistent
10	level of detail.
11	We used a pilot plant project to go through
12	those OIPs and had a number of
13	MEMBER BROWN: What is an OIP?
14	MR. AMWAY: Oh, Overall Integrated Plan.
15	Sorry.
16	MEMBER BROWN: Okay. Thank you.
17	MR. AMWAY: Yes.
18	We used two pilot plants that walked through
19	the Phase 1 OIP during a series of public meetings, used
20	those as a template for the rest of the industry, and
21	all the OIPs were submitted by 6/30/14.
22	The staff has conducted their initial audits
23	of the OIPs and has issued some of the ISEs, Interim
24	Staff Evaluations, for the OIPs.
25	Detailed engineering is in progress. That
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	101
1	varies from site to site, depending on the
2	implementation dates.
3	CHAIRMAN SCHULTZ: So, it would look
4	feasible to move forward on a similar approach for Phase
5	2?
6	MR. AMWAY: Yes.
7	CHAIRMAN SCHULTZ: You would have to work
8	out the details on schedule, but I am thinking more in
9	terms of the technical approach and the process
10	interaction with the staff.
11	MR. AMWAY: That's correct.
12	CHAIRMAN SCHULTZ: And that is what is being
13	planned?
14	MR. KRAFT: I think so, Mr. Chairman, but I
15	believe and, Jeff, you can chime-in that it will
16	be somewhat more complicated because you will see in
17	some of the aspects of 13.2 and some of the work that
18	Jeff has done there may have to be some analytical work
19	done, either on a generic basis and, then, show plants
20	are bounding or individual site evaluations to figure
21	out flow rates and setpoints and everything else,
22	whether those are map runs or hand calcs or geometry,
23	or whatever it is.
24	And so, it is not going to be quite as
25	straightforward has what we will vent, because what we
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	102
1	will vent was simply based upon what we already had.
2	MR. AMWAY: And where we can help out in a
3	working group is we don't want 29 plants to go out and
4	figure out how to do their own analysis for it. To the
5	extent practical, we want to use the generic analysis.
6	We want to be able to demonstrate how each plant falls
7	within that generic analysis. But, if there are
8	circumstances that would require any type of
9	site-specific, we would want to identify upfront how
10	to do that analysis, what assumptions do you use, but
11	make sure that it is consistently being done from site
12	to site.
13	CHAIRMAN SCHULTZ: So, from what you said,
14	that would just broaden the scope of what needs to be
15	done in Phase 2
16	MR. KRAFT: Yes.
17	CHAIRMAN SCHULTZ: that wasn't required
18	in Phase 1?
19	MR. KRAFT: Yes, and in talking to our senior
20	executives in the industry, I think we will probably,
21	more than any other order, I think we will probably have
22	engagement from the BWR Owners' Group and NEI helping
23	the individual sites to the extent they need
24	assistance.
25	Exelon commands so much resources; they
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	103
1	probably don't need industry help. But a one-unit
2	company or a two-unit site probably could use some
3	additional assistance. So, we will have to see how
4	that goes, but we want to make sure this goes as smoothly
5	as possible.
6	MR. AMWAY: Just like we had workshops in
7	Phase 1, you know, we will establish a schedule and do
8	similar workshops in Phase 2. If you recall, I mean,
9	the workshops we did on Phase 1, that is where the topics
10	for the FAQs and the White Papers originally came from.
11	CHAIRMAN SCHULTZ: Are you considering the
12	use of pilot plants?
13	MR. AMWAY: Yes, we are.
14	CHAIRMAN SCHULTZ: Okay.
15	MR. AMWAY: Yes.
16	CHAIRMAN SCHULTZ: Thank you.
17	MR. AMWAY: Now the next story I wanted to
18	address was some of the open items from Phase 1,
19	particularly talking about there was a concern with
20	the anticipatory venting, particularly how that may
21	impact the positive suction head, particularly with
22	plants that kept containment accident pressure in
23	their analysis.
24	We have since gone through the White Paper
25	process and endorsement for anticipatory venting. I
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

have those ADAMS ascension numbers on here for both the letter we submitted for endorsement and the endorsement letter.

But it goes a little bit beyond just containment accident pressure because we are operating the RCIC systems with suction temperatures above their normal design-basis value. And so, that does have an impact on NPSH. Since the method in which we are using the RCIC is undersaturated or nearly saturated conditions, the fact that you are raising containment pressure and helping NPSH is negated by the fact that the temperatures that got you there are elevated. So, those functions pretty much negate each other.

14 But what you can look at and credit is the 15 flow rates that you need aren't to design 600 gallons 16 a minute. They are substantially reduced. When you 17 do the anticipatory venting and you terminate the 18 blowdown of 200 to 300 pounds to preserve the 19 steam-driven systems, you, in effect, reduce the speed 20 at which that pump can operate, and you don't need 600 21 gpm. You can be down to the 200-to-300-gpm range. And 2.2 it is the line losses. So, the line loss term to your 23 NPSH term goes down. And the fact that you are at a 24 lower speed, your requirements go down. So, the fact 25 that you have got reduced availability is also offset

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

	105
1	by the fact that you have got reduced requirements for
2	NPSH.
3	The paper requires that each site that uses
4	RCIC as part of their strategy, you evaluate the impact
5	on RCIC performance, particularly doing an NPSH
6	evaluation to make sure it is sufficient.
7	MEMBER STETKAR: So, do the supporting
8	analyses because I haven't seen any of them assume
9	that RCIC is aligned to the suppression pool at time
10	ТО?
11	MR. AMWAY: Most of them do. By and large,
12	you will find that most plants can't credit the CST and
13	FLEX because it is either not wind-protected or it is
14	not seismic. It doesn't prevent them from using it in
15	the case where
16	MEMBER STETKAR: Well, the timing,
17	obviously, is a lot different if they do.
18	MR. AMWAY: Right.
19	MEMBER STETKAR: That's my only question.
20	MR. AMWAY: Right. And we have done checks
21	to see what happens in the suppression pool temperature
22	response if you have the CST available versus lined up
23	to the suppression pool at time zero.
24	And Jeff can chime-in here, but we didn't see
25	a whole lot of difference in the end in the results of
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	106
1	suppression pool temperature.
2	MEMBER STETKAR: You didn't.
3	MR. GABOR: Well, timing.
4	MEMBER STETKAR: Timing. But that was the
5	genesis of my question, is timing, because people have
6	to do this.
7	MR. AMWAY: Right.
8	MR. GABOR: Yes, but Phil is right, most of
9	the assumptions, all the ones I have been a part of have
10	not taken credit for the CSTs.
11	MEMBER STETKAR: Okay.
12	MR. GABOR: So, they start and stick with the
13	pool.
14	MEMBER STETKAR: So, you get the minimum
15	time
16	MR. GABOR: Yes, yes.
17	MEMBER STETKAR: Okay. Right. Okay.
18	Thanks.
19	MR. AMWAY: Moving on to combustible gas
20	control, and I have characterized this in terms of the
21	White Paper and, also, Appendix H of NEI-13-02, results
22	at issue in part. And the point of it is the global
23	context of combustible gas control, not the vent. You
24	know, Appendix H and the White Paper fully address the
25	combustible gas requirements for the hard vent order.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

But, if you look at the analysis -- and we 1 2 will have that in the next slide -- but it is fairly 3 consistent with what the staff presented; it is the fact by this order, you are maintaining 4 that, your 5 containment pressure below design values, you are 6 protecting the HCVS system integrity such that you can 7 continue to vent, and the gases vent out with the steam. 8 The process we are using with the SAWA, where 9 you have continued vent capability, reduces the 10 hydrogen concentration to substantially low values 11 within the first 24 to 48 hours of the accident, 12 depending on your assumptions. 13 So, the impart is we fully addressed it for 14 HCVS. There is the broader concern of what happens 15 with the leakage out of the containment into the reactor 16 buildings and the inner-system leakages. The order 17 addresses the inner-system leakages. We do leak rates. We are going to be doing leak testing of any 18 19 boundary valves to other systems. 20 The integration of that would tell you that 21 substantially addressed the hydrogen we and 2.2 combustible gas considerations of the Mark I and Mark 23 II containments simply by implementing both phases of 24 this order. 25 MEMBER REMPE: In the containments, they

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	108
1	have got igniters and recombiners, but do they have any
2	real-time capabilities for monitoring the
3	concentrations?
4	MR. AMWAY: In an ELAP they would not because
5	the hydrogen monitors require AC power to run.
6	MEMBER REMPE: Uh-hum.,
7	MR. AMWAY: I mean, you could do rep samples.
8	I don't know why you would want to do it under severe
9	accident conditions, but that would be the only other
10	way you would know, other than through analysis, what
11	is going on. We don't have the igniters in the
12	containment.
13	It is important to recognize that in the BWR
14	Mark I and Mark IIs that they would remain inerted. So,
15	even though you had high hydrogen fractions, that it
16	would not create a combustible gas concern because it
17	is in a steam-inerted environment.
18	MR. KRAFT: But the Mark III is not covered
19	by this order. Those igniters have to be powered
20	during ELAP conditions by one of your FLEX
21	capabilities. So, they did maintain that there. It
22	is not covered here, but they did maintain that in that
23	containment design.
24	MR. AMWAY: But I think this is what the
25	staff was mentioning, that the insights we gained from
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	109
1	what we did in implementing this order should help us
2	when we look at Recommendation 6 in terms of at least
3	the Mark I and Mark II containments that have
4	implemented the order.
5	MR. GABOR: Much like the staff provided, we
6	also included on the next slide a couple of scenarios
7	to look at what was asked of the staff, what the local
8	concentrations within the containment might look like.
9	What I didn't put on here is the cumulative hydrogen
10	generation, like the NRC did.
11	But if you look at the left side, for our best
12	estimate on ex-vessel cooling, so we look at the
13	scenario where we have no ejection, the core melts, the
14	vessel breaches. At that time, we get severe accident
15	water addition to either be directed directly to the
16	drywell or through the failed RPV.
17	MEMBER STETKAR: And your analyses presumed
18	that it always blows down
19	MR. GABOR: And I am going to make that
20	comment next.
21	MEMBER STETKAR: Okay.
22	MR. GABOR: So, we kind of beat around the
23	bush on that subject. I think the first thing during
24	a pre-core-damage period, everything that the plant
25	looks at is to depressurize the RPV. And FLEX provides
	NEAL R. GROSS

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

yet another layer of capability, reliability I'll say, to do that.

Obviously, in the PRA space that all can fail. We move on into core damage. Now we look at studies like SOARCA. And SOARCA took great pains to look at the details of what high temperatures do within the upper head, what they do in the steamline. SOARCA came up with a relatively-high likelihood that an SRV would be stuck open, maybe partially, maybe not partially, maybe fully due to a seizing of the stem. One thing to keep in mind during the core

damage phase of the accident, a lot of the energy could be going into the melt, into melting fuel. I know it had the high steam release. I probably have some hydrogen release, which I don't need as much leak capacity to get rid of the hydrogen.

So, a small leak path or an SRV partially sticking open will go a long way to bring the pressure down in the RPV. But let's move on.

If that doesn't occur, if the pressure remains somewhat elevated -- and again, SOARCA looked at the possibility that -- and this came out mostly in their uncertainty analysis -- that perhaps the main steamline could rupture. Much like the PWR hotline creep rupture, it would be a failure of the steamline,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

another mechanism I think that was brought up in the early discussion.

Let's take it even further. Let's say those things don't occur. Everything I have been privy to relative to vessel breach and core material either coming out of the vessel via a CRD penetration where you melt around the CRD opening, which is 10 inches, I think, causing the CRD to basically be ejected, opening a pretty substantial hole; instrument tubes, again, smaller, maybe an inch or so diameter.

Again, also, work that was done, I think, to support both MAAP and MELCOR, I recall some things that Mike Epstein had done at Argonne looking at the ablation of a hole. So, you create this hole, and now you are going to pass some marked debris through it, marked debris that has got a couple thousand degree super-heat on the steel that it is passing through. It is just the hole grows.

So, if I walk down that path, I get to a place where I believe that, as a result of vessel breach, I will be depressurized. Putting water into the RPV will actually follow the debris. So, if there are questions on how does the water find its way to the debris, putting it in the RPV is, I think, a good strategy.

In fact, a couple of slides later, we show

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

25

	112
1	that putting it in the RPV has the added benefit of
2	helping to reduce some of the temperatures inside the
3	RPV. Keep in mind, during the core melt phase I'm
4	sorry.
5	MEMBER POWERS: Coming back to your scenario
6	a little bit, you had for a boiler core debris with a
7	couple of a thousand degrees super-heat
8	MR. GABOR: Yes.
9	MEMBER POWERS: over the melting point of
10	the steel. How does that happen? You have 500,000
11	pounds of steel, cooling fins sticking up through the
12	lower pressure vessel head. You have maybe a core
13	volume or two of water in there. If you drop core
14	debris into that mixture, how does it stay molten?
15	MR. GABOR: Well, this is a good question.
16	We have spent a lot of time with this was a topic,
17	a key topic, in the recent crosswalk where we took MAAP
18	and MELCOR and we looked at those kinds of details. We
19	tried to rationalize the different abstractions that
20	these codes look at.
21	MEMBER POWERS: I am not interested in
22	abstractions.
23	MR. GABOR: Yes.
24	MEMBER POWERS: I am interested in heat
25	transfer.
	NEAL R. GROSS

(202) 234-4433

I think if a large mass of debris 1 MR. GABOR: 2 either comes through the core through the core build 3 and exits radially through the core where, like TMI, it could be suspended in the core region by a crust that 4 5 forms in the bottom. And above that crust you can form 6 a molten pool. That is what a lot of the modeling for 7 TMI would lead you down, to see that created. MEMBER POWERS: Well, in fact, the TMI is a 8 9 PWR, and we are talking about a BWR. It is an 10 interesting sidelight to that. But I want to go on. I will stipulate your TMI-like crucible of molten 11 12 material. 13 Now you are going to drop it into a lower head 14 with all these very robust structures spaced at 1-foot 15 intervals -- so, there is very little gap between 16 them -- filled with water. And you are going to keep 17 that material molten when it is sitting essentially 18 right at its melting point up in your crucible because 19 it is pretty kind of in thermal equilibrium with the crustal boundary, so it can't have a lot of super-heat 20 21 up there; some. I will concede as much as you think 2.2 And you are going to drop it down in there. you need. 23 It is going to stay molten, and I don't understand how. 24 MR. GABOR: Yes. The debris that is being 25 held up, we believe it formed as a result of material --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

114 1 MEMBER POWERS: I'm not interested. Drop 2 it now. 3 MR. GABOR: Okay. So, a large mass dropped. There is going to be some interaction with the water, 4 some interaction with the structures below. But some 5 6 amount of that debris could stay coherent and still 7 super-heated. I think the water that is there will boil 8 9 The structures will absorb some of the heat and away. 10 And then, longer term, it could reheat, refill melt. 11 a molten pool. 12 MEMBER POWERS: So, you're going to quench 13 it? That is what you said? 14 MR. GABOR: Yes. MEMBER POWERS: Okay. Now you are going to 15 reheat it. What melts first? 16 17 MR. GABOR: The analysis that we do 18 typically for us would show us that we could expect a 19 penetration failure. 20 MEMBER POWERS: What in the core debris melts first? 21 22 The metals, the --MR. GABOR: 23 MEMBER POWERS: Okay, so the metals. 24 MR. GABOR: The mixture of the metals and the 25 oxide.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	MEMBER POWERS: And then, what do they do?
2	They drain out of this mixture, right?
3	MR. GABOR: Well, they have to have a place
4	to go. So, again, if a crucible can form in the lower
5	head as well where
6	MEMBER POWERS: How do you do that? I mean,
7	this seems all fantasyland. I am going to drop this
8	stuff down into a forest of big, heavy steel structures
9	at one-fourth spacings on them. So, the gap that is
10	in between them is very tiny. Okay? And there's a
11	bunch of water in there, and you concede it will quench.
12	Okay. Now, when it quenches, I presume it doesn't
13	remain a coherent block. I assume it is all broken up
14	if it quenches. How would it do otherwise?
15	MR. GABOR: As it remelts, as it heats up,
16	there is going to be heat losses off of the RPV, the
17	lower head, some heat losses off the top. I think there
18	is potential I would agree with you there is
19	uncertainty here.
20	MEMBER POWERS: That is what I was getting
21	to.
22	MR. GABOR: I will agree.
23	MEMBER POWERS: We will leave the discussion
24	at what it looks like.
25	MR. GABOR: Okay.
	NEAL R. GROSS

	116
1	MEMBER POWERS: Now, because there is
2	uncertainty, did you consider the possibility that
3	maybe you got a very tiny penetration with very episodic
4	flows through it as things melt and dribble down through
5	it, and you don't have this high-velocity flow of very
6	high super-heat material coming through?
7	MR. GABOR: I think we are all hoping to get
8	better visuals on Fukushima to look at that exact type
9	of scenario.
10	MEMBER POWERS: Well, I mean, it seems that,
11	if that is a possibility, you can't pin all of your hopes
12	on this outcome that at this juncture in life seems to
13	be desirable. Why don't we pin our hopes on the outcome
14	that says, no, there's not going to be a big hole;
15	there's going to be a little hole, and it is not going
16	to lead to depressurization in the scenario?
17	MR. GABOR: Our first strategy is in the
18	early response.
19	MR. AMWAY: The SRVs.
20	MR. GABOR: They allow for both options,
21	either directly to the injection, to the RPV or into
22	the drywell. So, we are currently keeping both of
23	those strategies as viable strategies. I understand

24 your position.

25

MEMBER STETKAR: But, Jeff, I will tell you,

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	if you read the guidance, it says that injection into
2	both places is a viable strategy. But, if I was
3	flipping a coin and making decisions about where I was
4	going to pipe things up to, there is a lot of you
5	already said it somewhere in the introduction you
6	said there is a lot of benefit toward ejecting to the
7	vessel.
8	So, if I am welding pipe and creating
9	different ways of getting water in, which direction am
10	I headed?
11	MR. GABOR: The piece that we all kind of
12	ignored and I can test to the uncertainties in core
13	melt progression. But I don't want to give up the fact
14	that I have designed and built and, through other
15	evaluations, I have ways to depressurize the RPV.
16	So, if I had another reliable injection
17	source, and I think the NRC calculations have borne this
18	out as well, if I can get that started, even after the
19	onset of core damage, I have a chance to keep this inside
20	the RPV. So, that skews it a little bit more towards
21	the RPV side.
22	MEMBER STETKAR: I am not arguing
23	with yes, I would really like to make that ability
24	to open the ADVs really reliable, for a variety of
25	reasons.
	NEAL R. GROSS

(202) 234-4433

(202) 234-4433

MR. GABOR: Sure.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

MEMBER STETKAR: And that is the reason I was asking the staff why in this particularly pigeonholed, narrow focus of their ISG, why they are not interested in looking at the reliability of that function, because they said, well, it is for other things; I don't care about that for venting.

CONSULTANT SHACK: Well, I think what he said was that you are worried about the ADV. That capability is what you do count on to prevent core damage in the first place. And you have really focused on that. You are trying to defend that with your FLEX equipment, if you have to. So, you know, you have done everything you can for that purpose to prevent core damage.

MEMBER STETKAR: Okay.

17 CONSULTANT SHACK: Now something else went 18 wrong. You know, the RCIC failed sooner than you 19 thought.

20 MEMBER STETKAR: But I can get power hooked 21 up to the ADVs and not at time TX, but I can get them 22 hooked up at TY. It is a matter of the transition from 23 no core damage to core damage in many cases is time. 24 CONSULTANT SHACK: Right. 25 MEMBER STETKAR: So, I don't understand

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	even, okay, you know, I don't know how I got core damage
2	here in the first place. They are already saying that
3	you can take credit for the pumps to pump water in there
4	for severe accident water addition, the same pumps that
5	should have saved you in the first place, but, for some
6	reason, they didn't.
7	CONSULTANT SHACK: Well, we can think of
8	reasons why they didn't.
9	MEMBER STETKAR: Yes. Okay. Part of it
10	could have been timing.
11	CONSULTANT SHACK: Yes.
12	MR. AMWAY: You know, we put the discussion
13	on RPV pressure control for the purpose of assuring
14	ourselves that the RPV would be depressurized by the
15	time we got to water addition.
16	MEMBER STETKAR: I like the arguments of
17	Appendix I. I was just questioning why the staff was
18	completely dismissing them from their consideration in
19	this Interim Staff Guidance.
20	MEMBER BLEY: And this is really part of a
21	broader issue that some of us have been talking about
22	that affects you know, it is a part of the FLEX and
23	all of this approach. As we go forward, we seem to be
24	giving up some of the flexibility to do, attack fixed
25	points of survival and knowing a bit of the
	NEAL R. GROSS

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	120
1	uncertainties involved in maybe not having as broadly
2	flexible a set of systems and responses as we could.
3	MR. GABOR: The hydrogen plot, I will just
4	say we are just showing concentrations in the
5	containment. I scored a line at 8 percent. It doesn't
6	mean much in containment because there is no oxygen in
7	there.
8	And I think we have brought up earlier, we
9	typically find that we are steam-inerted in the
10	containment. Again, it doesn't mean a lot because
11	there is no oxygen in there.
12	But you can see that early on in the wetwell
13	you can get 20-25 percent this is by volume mole
14	fraction; I always talk by volume in the wetwell.
15	And then, vessel breach occurs. That is the spike.
16	And we see increased hydrogen throughout. And then,
17	over time, as Phil said, over some period of time of
18	24 hours, obviously, that all trickles out and is vented
19	out through the wetwell.
20	As I put on here, that is our best estimate
21	ex-vessel core debris cooling. It somewhat mimics the
22	kinds of heat transfer that we are seeing come out of
23	Mitch Farmer's work at Argonne.
24	If I even assume more pessimistic where, even
25	with the addition of this severe accident water
	NEAL R. GROSSCOURT REPORTERS AND TRANSCRIBERS1323 RHODE ISLAND AVE., N.W.(202) 234-4433WASHINGTON, D.C. 20005-3701(202) 234-4433

	121
1	addition, and I keep water on the debris, if I am
2	pessimistic about the success of actually being able
3	to quench the core and cool the core, that draws out
4	to another 48 hours or so.
5	But, again, we have dealt with hydrogen in
6	the vent system itself through the White Paper and the
7	options that you have read there. This is just trying
8	to give you some indication that hydrogen is going to
9	dissipate once the vent is open.
10	In this case at the six-hour time period or
11	so, we have opened the wetwell vent. So, our pressure
12	and containment is fairly low; I think for these
13	scenarios around 20 pounds absolute. So, it is
14	relatively low for this plant.
15	Leakage through the normal design
16	leakage-type pathways are going to be reduced from what
17	it would have been if you evaluated it at 60 pounds,
18	at the design pressure.
19	And I have looked at some of the details of
20	this, again, in another project that I can't discuss.
21	But, looking at would those leak rates actually
22	contribute to local hotspots or local concentrations
23	in a reactor building, and I, so far, haven't seen that
24	to occur. Because I am at low pressure; I am venting
25	it away from the containment. So, there is not a lot
	NEAL R. GROSS

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	left to leak out of the containment.
2	CONSULTANT SHACK: But you are getting head
3	failure a lot earlier than the NRC plots that we saw
4	before. Is that a difference in the modeling of the
5	failure or that is
6	MR. GABOR: Drywell head or?
7	CONSULTANT SHACK: The lower head.
8	MR. GABOR: I think SOARCA has vessel breach
9	around eight hours. I think in some of our MAAP
10	analyses that is more in the five-hour range.
11	CONSULTANT SHACK: Well, I thought they had
12	like 24 hours in the plot we saw.
13	MR. GABOR: Not for vessel breach, I don't
14	think. Oh, it was for vessel?
15	MR. ESMAILI: Yes, it was.
16	MR. GABOR: He had RCIC up.
17	CONSULTANT SHACK: Oh, he had RCIC up?
18	MR. GABOR: Yes.
19	CONSULTANT SHACK: Okay.
20	MR. GABOR: There is no RCIC in this case.
21	CONSULTANT SHACK: Okay. Yes, that makes a
22	difference.
23	MR. GABOR: Yes.
24	MEMBER REMPE: But, in general, there are
25	differences due to just the way that they hold up the
	NEAL R. GROSS

(202) 234-4433

	123
1	core material and
2	MR. GABOR: But some of the reasons
3	CONSULTANT SHACK: But 24 and 5 was sort of
4	getting to me. Eight and five, yes, that I can
5	MR. GABOR: Again, I won't harp on this, but,
6	since Dr. Powers brought it up, it is a good subject.
7	Our crosswalk between MAAP and MELCOR would tend to feed
8	the argument that Dr. Powers provided, saying that the
9	melt would be cooler in the lower head, and the perhaps
10	the vessel failure mechanisms could be more localized.
11	That does, indeed, come out of the comparisons we have
12	made between MAAP and MELCOR, where MAAP does tend to
13	have the higher super-heat in the lower head; MELCOR
14	has the lower super-heat.
15	When I look at these things, I try to factor
16	that in as an uncertainty and I try to ask myself, could
17	that variation in the uncertainty of core melt
18	progression affect the strategies that we are going to
19	recommend? And so far, these are symptom-based
20	strategies. We vent on pressure. You will see in a
21	couple more slides how we work and how we implement
22	severe accident water management.
23	I don't see even what would appear to be a
24	relatively-broad spectrum in uncertainty in some of the
25	details of, quote, "progression" being something that
	NEAL R. GROSS

(202) 234-4433

	124
1	would change the way I would implement any of these
2	strategies.
3	I don't have any more on that, unless there
4	is a question.
5	MR. AMWAY: Okay. Just to summarize, I
6	mean, our goal in this guidance isn't to address
7	Recommendation 6. It is to implement the vent order.
8	But, you know, we are just looking at it in terms of
9	our analysis shows that the vast majority of the
10	hydrogen is vented from the containment within about
11	24 to 36 hours.
12	Getting on to the next item, concern area,
13	the ACRS paper or letter, it was the accessibility due
14	to radiation. The industry has developed a guidance
15	document for performing those accessibility
16	evaluations, and it has two purposes.
17	One is it provides the methods of calculating
18	the integrated dose that your equipment would see
19	during seven days of sustained operation, that
20	equipment including instrumentation.
21	And it also provides a method for determining
22	the dose rates that the operators would be expected to
23	receive for performing various manual actions to get
24	the SAWA equipment connected and operational.
25	You know, the purpose of it, it is the HCVS
	NEAL R. GROSS

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	125
1	components. There is a primary and a remote operating
2	station for the HCVS, but there are also going to be
3	manual actions associated with connecting SAWA.
4	This paper would take care of that
5	radiological assessment and evaluation of those
6	particular actions for the equipment and personnel.
7	MEMBER STETKAR: Phil, a couple of things on
8	that. First, the local operating state, we have gone
9	away, apparently, from the idea that the operators have
10	the ability to mechanically operate these valves. And
11	so, we presume certain failure modes won't exist
12	because we say, you admit, if the solenoid supply,
13	operator supply to this air-operated valve hangs up,
14	it is called heroic actions. It means somebody has got
15	to go in and die.
16	So, I thought originally that the idea was
17	the ultimate fallback position is the guys would be able
18	to mechanically open these things with reach rods and
19	appropriate shielding, simple radiation shielding,
20	and, apparently, we have gone away from that.
21	But you have also said things like, well, for
22	thermal environmental conditions and these are in
23	the facts; they are back buried in Appendix J we
24	don't have to consider a core offload in the spent fuel
25	flow. Apparently, your strategy, as best as I can read
ļ	NEAL R. GROSS

(202) 234-4433

(202) 234-4433

	126
1	between the lines, is you're going to send people out
2	near the spent fuel pool for these remote stations.
3	So, I don't know.
4	MR. AMWAY: I have a correction for that.
5	It just says we don't assume that our FLEX strategy in
6	general fails. To get to the core damage stage
7	MEMBER STETKAR: I mean, there are two
8	things I am going to get to here.
9	MR. AMWAY: Okay.
10	MEMBER STETKAR: So, let me get to the two
11	things. The first thing is thermal load. It says that
12	total impact to the spent fuel pool area caused by the
13	ELAP condition, I don't have to consider let's see.
14	The proposed answer notes, "Thermal conditions for
15	control stations outside the main control room include
16	thermal impact to the spent fuel pool area caused by
17	the ELAP condition, but for at least one unit per site,
18	full core offload need not be considered since HCVS
19	operation is not required when the reactor core is
20	offloaded into the spent fuel pool."
21	It is okay if I have a plant that is one, and
22	only one, reactor and only one spent fuel pool. If I
23	have a site that has two reactors that share a spent
24	fuel pool, why can't I have a full core offload into
25	that spent fuel pool when the event hits the site? Why
	NEAL R. GROSS

(202) 234-4433

	127
1	can't it?
2	MR. AMWAY: We would have one offload, but
3	not two full core offloads.
4	MEMBER STETKAR: It says, "But, for at least
5	one unit per site, full core offload need not be
6	considered." I don't know what that means logically.
7	MR. AMWAY: What that means, so if I have a
8	dual-unit site, two reactors and a combined pool, I
9	don't have to assume I have both cores offloaded in the
10	pool at the same time.
11	MEMBER STETKAR: Oh, well, that's not clear.
12	Okay. If that is the way that I'll grant you that,
13	but that is certainly not the way I read it.
14	MR. AMWAY: Okay, let me make a note here.
15	MEMBER STETKAR: Now the second one, though,
16	for the unit you are trying to get to is that you don't
17	have to consider source terms for radiation dose now
18	from possible damage in the fuel pool. And you are
19	going to lead me down the path that says, well, I don't
20	have to assume that I have failed to restore fuel pool
21	cooling because that is a separate part of the order.
22	Okay, well, lawyers wrote those words.
23	If I'm in a plant and I have a core in the
24	reactor vessel, I am probably going to try to save that
25	core in the reactor vessel, everything that I try to
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	128
1	do. I am also interested in the spent fuel pool. But
2	I also know that I have more time for that.
3	The only reason I get severe core damage is
4	that I didn't make it. For some reason, all that
5	wonderful equipment that is being provided with hoses
6	and stuff didn't work. That same equipment with the
7	wonderful hoses is preventing the spent fuel pool from
8	getting damaged.
9	Why, under conditions where I know it did not
10	work for the reactor vessel, is it always guaranteed
11	to have worked for the spent fuel pool? Why is that,
12	except for lawyers?
13	MR. AMWAY: The reason that we give is the
14	timing. I mean, if
15	MEMBER STETKAR: These things go for seven
16	days.
17	MR. AMWAY: I understand. The strategies
18	for FLEX assume initial coping with installed
19	equipment, which in most cases for BWRs that is RCIC.
20	If RCIC fails at TO, you get core damage within an hour.
21	There is no way I can hook up a FLEX pump well, I
22	won't say "no way" highly improbable that you can
23	get the FLEX pump hooked up in that hour and prevent
24	the core damage.
25	MEMBER STETKAR: Okay.
	NEAL R. GROSS

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	129
1	MR. AMWAY: In the pool in an hour I am not
2	even 140 degrees. My time to get to a point where we
3	would cause a significant radiological source term in
4	the spent fuel pool is going out in the 24-to-48-hour
5	range. I have plenty of time in there, if it was
6	strictly a timing thing, and the action and sequence
7	worked such that I caused core damage, and I didn't have
8	time to hook up my FLEX pump, it is so significantly
9	much longer in the spent fuel pool case than it is in
10	the RPV case.
11	You know, we are not saying that FLEX has a
12	systematic failures, and the pumps that we have, I mean,
13	you've got multiple pumps, multiple ways to do it. You
14	have the time to make that happen. Whereas, in the RPV
15	case, all I need is RCIC not to start.
16	MEMBER STETKAR: Phil, this gets back to a
17	little bit of what Dennis mentioned earlier. It is
18	that we are very carefully going from something that
19	had a lot of good ideas in terms of providing us a lot
20	of flexibility to provide core containment, fuel pool
21	protection, to a bunch of presumed scenarios and
22	timelines and guidance that is based on those presumed
23	scenarios and timelines.
24	So it is that, when the next event occurs and
25	Mother Nature and thermal hydraulics and physics don't
	NEAL R. GROSS

(202) 234-4433

130 recognize those presumed timelines, we will, then, be 1 2 surprised that our flexibility wasn't as flexible as we thought it was going to be. 3 So, my whole point is, why not put in adequate 4 shielding, such that if I get problems in this fuel 5 6 pool, we are not cook the guys who are doing this work? 7 Why not do that? Because that would give them more flexibility, wouldn't it? With the manual control 8 stations in a place there where they wouldn't be exposed 9 10 to possible damage in the spent fuel pool? 11 MR. AMWAY: Yes, putting more shielding in 12 would potentially solve that. 13 CHAIRMAN SCHULTZ: Well, I would be more 14 interested in looking at location. MEMBER STETKAR: Locations, right. 15 I have 16 seen people who have done this over in Europe and they 17 have carefully thought about that stuff, and they have got them in locations where, you know, they are kind 18 19 of away from things. 20 MR. AMWAY: Right. 21 MEMBER STETKAR: They didn't have to put 22 more shielding in because they put the hookups in 23 locations where there was a lot of distance and 24 shielding already. They had to run some pipe, but, for 25 the thermal reasons --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	131
1	MR. AMWAY: You're not going to put things
2	like that up anywhere near the spent fuel pool anyway.
3	So, I think that is inherently addressed by the fact
4	that, while we are not saying you have to consider the
5	radiological source term, the things that you are going
6	to do for the thermal concerns are going to drive you
7	to the same conclusions. Don't put stuff that you need
8	to operate the vent on the refuel floor or the level
9	below the refuel floor. It is going to be too out,
10	anyway. You know, most of the installations I have
11	seen are down in the lower levels of the building away
12	from that area.
13	CHAIRMAN SCHULTZ: But the point is it
14	appears as if you have made an argument as to why you
15	could put it there. And yet
16	MEMBER STETKAR: If somebody, for whatever
17	reason, wanted to do that because of expedience, the
18	guidance sort of says, well, here's some excuses about
19	why you couldn't.
20	MEMBER BLEY: Or they didn't think about the
21	very things that you are talking about.
22	MR. RECKLEY: Phil, if I can Bill Reckley
23	from the NRC staff when you get into the severe
24	accident portions of the order, a thing to keep in mind,
25	and we had this discussion yesterday in regards to the
	NEAL R. GROSS

(202) 234-4433

132 rulemaking activity, the severe accident portions of 1 2 this order were made as a substantial cost-justified change to the requirements. 3 And I remember the discussions we were having 4 5 as we agreed to this level of the guidance. If your 6 assumptions are that the pool is a radiological hazard, 7 addressing the requirements for the containment, the cost of doing that, if you are assuming a concurrent 8 9 spent fuel pool accident as a radiological source term, 10 dramatically drives up the cost. 11 Yes, you can add more shielding; you can 12 relocate these stations, but that assumption that you 13 are making is going to drive up the cost of the 14 ventilation modifications. And you can reach a point, 15 as we are always going through the cost justifications 16 of these things, that if you run the cost up too much, 17 then you end up with no requirement. So, you always

are trying to balance in these particular cases what is reasonable, and sometimes that also gets reflected in what assumptions you are going to make.

In this particular case, it was a conscious decision -- and the staff was involved in its insertion into that guidance -- that you need not assume a concurrent spent fuel co-accident as a radiological hazard. As Phil mentioned, you do assume that it is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

18

19

20

	133
1	going to heat up the local environment and there may
2	be steam and other things, but not for a radiological
3	hazard.
4	MR. AMWAY: More questions on that topic?
5	(No response.)
6	Okay. Then, the final one deals with the
7	drywell vent designed temperature of 545, and that is,
8	again, with the water addition included, which is SAWA.
9	We have had good discussion about that.
10	We have just a little bit more detail. I
11	will start off on this. This was a figure out of the
12	Phase 1 guidance. That was the basis for why 545
13	degrees Fahrenheit was acceptable.
14	Jeff, I will let you take this over here.
15	MR. GABOR: Yes. We talked about this
16	earlier.
17	So, there are two pieces of this, right. It
18	is, why does 545 make sense as a design criterion and
19	do we satisfy that limit or that criteria if we simply
20	just put water on the debris ex-vessel?
21	This plot, which I think you have seen, is
22	a compilation of a lot of different things. We listed
23	in the references all the different NUREGs and sources
24	of information that went to kind of drawing this
25	cartoon.
	NEAL R. GROSS

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	134
1	But the idea was to see if setting a goal of
2	545 is reasonable. The first thing, we have shown the
3	design envelope. That is pretty clear there.
4	We look at severe accident studies like
5	SOARCA. At around 80-pound gauge, the model that was
6	in SOARCA had the drywell head lifting. So, that kind
7	of sets a pressure bound for us.
8	The green area is kind of the key area because
9	that is where all these NUREGs and all the information
10	on penetrations comes into play. Typically and
11	again, there are some exceptions but most of what
12	we see in the references we cited show us that, perhaps
13	around 500 Fahrenheit, we can start to see certain
14	penetrations, certain material degrade.
15	Some of the tests that are run may have only
16	been run for a single penetration, not realizing that
17	it sealed both inside and outside of containment. By
18	the time you get to 900 Fahrenheit, most of the sealant
19	material is gone away and isn't going to provide a lot
20	of leak tightness.
21	The red part of the curve is really the
22	Chicago Bridge & Iron work that was done back in the
23	late eighties and early nineties to support the Mark
24	I IPEs. They did a finite element analysis. They
25	looked at different temperature regimes. They had a
	NEAL R. GROSS

(202) 234-4433

regime less than 500. I think they had one intermediate, 500 to 700, and then, one 700 to 900. And they basically calculated the pressure. You can see just the line 3 there, or whatever, the red area. By the time you get to 900, the CB&I work basically said you don't have any ability to withhold pressure within a containment.

So, we looked at all these sources. Obviously, we don't want the drywell vent to be the last thing standing. That doesn't do us any good, to set a criteria that is that far out in the failure space.

So, 545 was somewhat convenient because it was a temperature, I think, that was the basis for calculating the primary containment pressure limit. And that number I think comes from assuming loss of drywell coolers, the RPVs at 550 degrees, and 1,000 pounds saturated, and reasonable over some period of time you could conceivably heat up the drywell to some temperature around that. Again, that was what was used for PCPL, and that was what was used. It seems like a reasonable limit.

The next slide, if you jump ahead, provides the results, and I think you saw this before when we presented the CPRR results. This has been presented at numerous public meetings, again, with the NRC staff

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

	136
1	on the rulemaking, the vent filter rulemaking, now
2	called CPRR.
3	So, the one on the left shows us the influence
4	that just putting water in the debris has. It is kind
5	of a no-brainer. Everybody gets that.
6	The red line, if I just don't put water on
7	the debris ex-vessel and let it radiate and core
8	concrete attack continue, I can easily see temperatures
9	in the thousand Fahrenheit range in containment.
10	If I do put water, the blue line, in this case
11	I have added water to the RPV in that case. Again, I
12	was depressurized, so it was able to follow the debris
13	out of the hole.
14	You can see this is a probability
15	distribution or cumulative probability chart where, if
16	you remember the material that we presented to you on
17	the CPRR, we had our core damage event trees,
18	some what was it? 13 unique core damage end-states
19	coupled with 39 containment event states. And all that
20	resulted in over 500 unique scenarios.
21	Those scenarios look at high-pressure cases,
22	low-pressure cases. They look at cases where the
23	wetwell vent works as it should. It included, if you
24	go back to those fault trees or the event trees, it
25	included cases where the wetwell vent didn't work and
	NEAL R. GROSS

(202) 234-4433

the operator switched over to the drywell vent. So, it is all of that put into the probabilistic framework, frequencies assigned to each of those end-states and plotted against the peak temperatures we saw. In this case, it is in the cylindrical area adjacent to the RPV, up in the upper part of the drywell. We actually see that that region gets hotter than even the drywell head because of the heat transfer off of the RPV.

But you can see there what we are demonstrating is, in the case of the blue line, 100 percent of those instances or those scenarios resulted in temperatures below 550, I'll say. I can't read any better than that. My eyes aren't that good.

The plot on the right, all that one tries to 14 do is to break out the difference between putting it 15 16 in the RPV -- again, you have to give me that for these 17 scenarios, either due to the operator actions to depressurize the RPV, due to SRV seizure, due to main 18 19 steamline rupture, or due to the core melt coming 20 through and opening up --21 (Interruption by automated phone message.) 22 CHAIRMAN SCHULTZ: Okay. Go ahead.

MR. GABOR: Okay. Sorry.

Given all of those, the water in the RPV will find, in our calculations, will find its way to the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

6

7

8

9

10

11

12

13

debris.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2.2

25

And you can see a slight difference in both cases, either direct injection to the RPV or to the drywell. No credit for drywell sprays here. If they use the drywell spray as the delivery mode, I am taking no credit for any atomization or particles or anything. The water just appears kind of magically on the floor. There is a little benefit, and the benefit

comes from my ability to cool some of the maybe debris left behind in the RPV, some of the structures in the RPV that had heated up during the core damage phase. So, that is why you see a little bit of an advantage in the blue line there for RPV injection.

But, really, in both cases, by 90 percent of the instances, and it looks like for sure 80 percent, a little over 80 percent of the kind of probabilistic arena of scenarios we had temperatures below the 545.

And this is a different way of looking at the information that the NRC presented earlier, but does basically reach the same conclusion, that the 545 criteria is acceptable, is reasonable I guess was the word that was used.

23 MEMBER BLEY: Jeff, just a minor comment on24 your presentation.

MR. GABOR: Yes.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

139
MEMBER BLEY: If you use these pictures
somewhere else, it is not the probability. It is an
accumulator. So, it is not the probability of
temperature. It is the probability the temperature is
equal to or less than
MR. GABOR: Or less than, yes, you're right.
I always have that trouble. I will try to fix the
labels.
MR. AMWAY: Okay. Now, moving on to the
Phase 2 guidance, from here on out, that is what we will
be focusing on. The Phase 2 terminology and we have
heard the term severe accident water addition, or SAWA;
severe accident water management, SAWM. The SAWA is
just the means to provide the water to the RPV or to
the drywell post-core-damage. It is equipment. The
SAWM is managing that water addition flow rate in such
a way that the wetwell vent is preserved, and that gives

This figure comes right from the 13-02. We are trying to give an overview look at the various options within the order. Phase 1 we have gone through

us our Phase 2 strategy under B.2 of the order.

in quite detail already. That is in progress.

Phase 2 gives the option of either a drywell vent or a reliable alternative venting strategy. Under B.1, you will see the gray box there. That is

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	140
1	for use of a drywell vent that does not include water
2	addition, and we will talk about that further on the
3	presentation on how our guidance addresses that and how
4	we have addressed the draft ISG comment with respect
5	to Method 1. So, that is Method 1 now.
6	The guidance is really written for these
7	bottom three boxes that include severe accident water
8	addition for both options. And to be explicitly
9	clear and we are making sure the guidance reflects
10	this that to use either of these two options requires
11	severe accident water addition. That is the only way
12	you get to a point where you can justify a 545-degree
13	designed drywell vent. And you have to have a means
14	of water addition in order to manage the water, do the
15	water management strategy.
16	The next level of detail down from that for
17	the severe accident water addition, as we have stated,
18	it could be one of two paths, either to the RPV or the
19	drywell. You have to be able to provide in the guidance
20	some means of mode of force and instrumentation to make
21	that happen, and you have to be able to do it under
22	severe accident conditions, particularly the

temperature and humidity concerns that may exist during severe accident and, also, the radiological а conditions.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

23

24

25

In the practical terms of what we plan to do, we would want to use the connection point that has already been established in the Order 49, which is FLEX, and the equipment to do that, the delta being -- and the FLEX order does not assume core damage. And so, we would have to make modifications or at least evaluate that connection point to make sure that all the actions we need to do for that SAWA connection point through the sustained operation is accessible under severe accident conditions.

The severe accident water management, again, requires SAWA to be implemented. It requires the use of the Phase 1 wetwell vent. That is our means of pressure control for the containment through the period of sustained operation. And it is designed to preserve the wetwell vent for the sustained operation period. We will get into later the strategies, you know, the seven days, the 72 hours, the seven days, in a future slide. So, I don't want to dwell on that right now. This is just a high-level overview.

The severe accident drywell vent option, again, requires the implementation of SAWA. You use a 545-degree drywell vent. So, here you are not managing the water, so at some time you are going to flood out your wetwell vent, and at some time you are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2.2

23

24

25

(202) 234-4433

	142
1	going to need a severe accident drywell vent for
2	containment over pressure. So, that is what this
3	option is.
4	Again, it requires utilization of mode of
5	force, and I am talking about the drywell vent now, and
6	instrumentation. And that is governed by the existing
7	requirements in the order.
8	You would also have to consider the severe
9	accident deployment considerations. That is already
10	part of the vent order for the drywell vent, and it would
11	also apply to the SAWA connection point.
12	Now, moving on to the Phase 2 guidance in
13	terms of the next series of slides are going to address
14	the specific ISG open items. I am going to use the term
15	"open items," but we have all been through the staff
16	slides now of what those areas of concern are remaining.
17	Section 3, which is Method 1, that is use of
18	the drywell vent, but does not include water addition.
19	We are making changes to Section 3 to make it explicitly
20	clear that our guidance really isn't written to address
21	that method of compliance, and to make sure that there
22	is note in there that the ongoing work with the CPRR
23	or rulemaking may impose additional requirements. One
24	of those may be the severe accident water addition.
25	So, if you are going to try to put in a drywell vent
ļ	NEAL R. GROSS

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	now without water addition, most likely, you are going
2	to do it later anyway under the rulemaking effort.
3	So, that is how we plan to address it. You
4	know, we are going to retain Section 3 in there, but
5	make that clear distinction.
6	The next item yes?
7	MEMBER POWERS: Question on this drywell
8	vent. When you do a drywell vent, of course, you are
9	giving up the benefit of the suppression pool. But you
10	have available, particularly in the Mark Is, I believe,
11	a really formidable mitigation system, mitigation
12	capability in the form of the drywell sprays.
13	Are you silent on use of the drywell sprays
14	prior to or coincident with a drywell vent?
15	MR. AMWAY: As far as our guidance, we are
16	because we are assuming we are doing these under ELAP
17	conditions and those pumps would not have power.
18	MR. GABOR: Well, the other would be, if we
19	are using a 500-gpm pump, we haven't done the analysis
20	to know if we get the right spray patterns and all that.
21	MEMBER POWERS: Well, really it depends on
22	the plant. Some of the plants have changed out their
23	spray nozzles in the drywell spray, and you might get
24	the atomization with those smaller spray nozzles.
25	About half the plants haven't, and it wouldn't be a
	NEAL R. GROSS

(202) 234-4433

	144
1	waste of time. You wouldn't get any spray activity
2	with a 500-gallon vent.
3	MR. GABOR: Yes, we had some credit for that,
4	if you remember the CPRR work. The Nine Mile 1 pilot
5	that we did, we gave some limited credit to sprays and,
6	then, did some sensitivities. Our current analysis we
7	are not crediting the sprays for either thermal or
8	radionuclide removal.
9	MEMBER POWERS: That's unfortunate because
10	those sprays are truthfully impressive in there.
11	MR. GABOR: Yes, some of the plants are
12	actually talking about bigger pumps. Obviously, the
13	pumps that might come in from regional response centers
14	could be bigger pumps and be much more effective in that
15	mode.
16	MEMBER POWERS: Yes, I mean, it isn't a myth.
17	It is an amazing capability. When you are thinking of
18	such a drastic step as to lose the mitigation capability
19	of the suppression pool, it is such a juicy thing and
20	it already exists. It was not at all designed for
21	source term mitigation. So, clearly, a modification
22	might have to be made, but it is not a formidable
23	modification. It is actually a pretty simple
24	modification. It is a choice of the spray head or spray
25	nozzles. That really is a margin that we have
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	145
1	available there as a low-cost option.
2	MR. GABOR: I think use of those sprays, if
3	again we had the power and we had the pump, it is part
4	of our severe accident guidelines. So, it is already
5	addressed in there as an option.
6	MEMBER POWERS: Well, I am glad to hear that
7	because, I mean, when we try to we have difficulty
8	analyzing the negation of those sprays because the
9	water flow is so high that it overwhelms the computer
10	codes.
11	MR. AMWAY: Okay. The next major bullet on
12	here, our guidance is written to require severe
13	accident water addition for either the B.2 options,
14	either the 545 severe accident drywell vent, which is
15	ISG Method 2, or the SAWM approach, which is the
16	alternate venting strategy, which is ISG Method 3.
17	We are considering both the drywell vent and
18	we understand the way the order is constructed and B.1
19	was intended to be drywell vent, B.2 was intended to
20	be some alternate venting strategy. But, in
21	consideration of we are writing Section 3 as pretty much
22	stating that the original intent of B.1 we are not
23	recommending that we do without water addition, but
24	leave that under B.1; everything else under B.2.
25	Because to make that 545 drywell vent
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

146 operationally-relevant, you also have to include the 1 2 water addition as part of that. 3 And then, I will have a discussion here in a minute as far as, okay, so now what functional 4 5 requirements do you invoke for that? Should it be 6 Section A or B.1? But give me a minute on that. I have 7 a slide coming up on it. Here it defines more and addresses the 8 9 functional requirements aspect. As I said, under B.2, 10 that is where we are fitting both of these options. In 11 recognition of what the ISG says, and we agree with, 12 that B.1 provides a logical starting point for defining 13 those functional requirements. If you look at B.1 and 14 what that says, it really says put in a drywell vent, 15 go back and look at Section A to make sure you meet all those same functional requirements that you did in 16 17 Section A for the wetwell vent and apply that to your 18 drywell vent. 19 So, when we look at that, what we are doing with the guidance, it was already in there in the E.2 20 21 version, the same Section A requirements that were

written and applicable to the wetwell vent are also applicable to the drywell vent at 545.

And we also recognize that most of the Section A requirements would also be applicable to the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

22

23

SAWA because that addresses things like, you know, you 1 2 want to make sure that it is accessible under severe 3 conditions. if accident So, you qo point-by-point -- and I think are 11 or 12 separate 4 5 functional requirements under Section A -- it is easier to go look at those and say, yes, this was written for 6 7 the drywell vent, but it would also be applicable. 8 Because it is equipment and systems, it would be 9 applicable to SAWA also. 10 So, it addressed that going back through 11 Section 4.1, 4.2, 5, and 6, and identified all those

functional requirements, quality controls, training, maintenance applicable under Phase 1 of the order, to figure out how those applied to SAWA as well. So, we make that connection clear in those sections.

Just a slide here on operator action. I think what is important to acknowledge, that operator actions are going to be required for both the HCVS, you know, knowing when to initiate it, knowing when to close it again. The same is also applicable to SAWA. It is going to take manual action to connect the pumps that are used, any flexible hoses to the connection point, and to make that flow path available to either the RPV or the drywell.

It is also going to take action to connect

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

12

13

14

15

16

17

18

19

20

21

2.2

23

24

25

(202) 234-4433

147

your portable electrical power to provide things such 1 2 instrumentation that you would use to either as 3 implement SAWA or SAWM and any of the valves that may 4 be in sequence between the connection point and your 5 ultimate destination, which is the RPV or the drywell, 6 depending on which path you choose. And you are going 7 to have to have power and indication available, so that 8 the operator can know that they do have a flow path established. 9 10 MEMBER SKILLMAN: Phil, where do the procedures for that activity reside? 11 12 MR. AMWAY: Where? 13 MEMBER SKILLMAN: They are not EOPs. They 14 are not --15 MR. AMWAY: They are not EOPs. 16 MEMBER SKILLMAN: Are they going to be 17 SAMGs? I would expect what they would 18 MR. AMWAY: 19 do is they would be directed -- I mean, you've got 20 realize under severe accident conditions EOPs are 21 pretty much out of the picture now. 2.2 MEMBER SKILLMAN: I see. 23 MR. AMWAY: I would expect these procedures 24 would take the form similar to the Functional Support 25 Guidelines, the FSGs, where the SAMGs would kick you

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

148

	149
1	out to an FSG that would tell you the "how to's" of
2	actually connecting the equipment and establishing the
3	flow path.
4	MEMBER STETKAR: So, it is another set of
5	procedures?
6	MR. AMWAY: Yes. Guidance.
7	MEMBER STETKAR: Okay, whatever you want to
8	call them.
9	MR. KRAFT: They all have different
10	qualities to them.
11	MR. AMWAY: Yes, they have to be. I mean,
12	it is similar to like we established FSGs for hooking
13	up the FLEX pump. It will look very similar, but it
14	is under a different set of conditions.
15	MEMBER REMPE: Depending on what happens at
16	the rulemaking, there won't be any sort of regulatory
17	review of those procedures, right?
18	MR. KRAFT: You mean the rulemaking we
19	talked about yesterday?
20	MEMBER REMPE: Yes, right.
21	MR. KRAFT: Yes.
22	MEMBER REMPE: That's true?
23	MR. KRAFT: It depends upon that willingness
24	to accept this compliance commitment or commitment
25	letter. I mean, we went through that discussion
ļ	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	150
1	yesterday.
2	MEMBER REMPE: Right.
3	MR. AMWAY: The actual procedures, though,
4	that we would use to physically connect the
5	MEMBER REMPE: I am talking about the
6	monitoring type of, the operator's monitoring. For
7	example, maybe I missed it, but back in Section
8	4whatever, I would have thought there would have been
9	a water-level indicator, if they are worried about
10	covering up the wetwell zone. Maybe I missed it.
11	MR. GABOR: The force level was part of FLEX,
12	though, right? It is powered as part of our FLEX
13	strategy.
14	MR. AMWAY: Right, and I have got slides on
15	instrumentation
16	MEMBER REMPE: Oh, okay. I'm sorry. I
17	will be patient.
18	MR. AMWAY: which is salient to that
19	point, and then, we can do that.
20	MEMBER REMPE: Okay, okay.
21	MR. AMWAY: But, to address the concern,
22	yes, obviously, we are going to have to have some kind
23	of written procedure in place that tells us how to get
24	at this pump in position and connected.
25	The thought was it would be reviewed as part
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	151
1	of the audit process for implementing Phase 2. So, we
2	would have to describe those procedures at a functional
3	level in the Phase 2 OIP. Then, when it came time to
4	actually do the audits, you know, that would be part
5	of that process, to make sure we are fully compliant
6	with the order.
7	MEMBER STETKAR: I am not thinking
8	MR. AMWAY: At least that is how I would
9	expect that to work.
10	MEMBER STETKAR: I'm not thinking like an
11	attorney. I am thinking like an ex-operator who is now
12	is faced with EOPs, SAMGs, FSGs, EDMGs, new vent G's,
13	and I have got to understand all of these "G's" and how
14	they fall fit together when the lights are off and the
15	ceiling is falling down.
16	MR. AMWAY: Right.
17	MEMBER STETKAR: And the integration that I
18	hear of all of those "G's" is "Gee whiz, we're going
19	to link these things somehow to the EOPs, and it is all
20	going to fit together," and I am going to understand
21	which of the "G's" I've got to be in at any given time
22	when the lights are off and the ceiling is falling.
23	MR. AMWAY: And you already have procedures
24	that tell you how to actually go and establish a vent.
25	So, instead of that procedure describing how you do it
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	152
1	today, it is going to have to be changed to describe
2	how you do it now that there is an HCVS.
3	I am going to tell you right now the procedure
4	I'm familiar with is 125 pages. To use the HCVS, you
5	are going to be able to do that in six or seven pages.
6	I mean, we have greatly improved the reliability of the
7	vent capability. And so, it is not like it is a
8	different family of procedures. It is going to
9	changing the procedure I have today to vent the drywell
10	or the wetwell and updating it with my new HCVS
11	capability.
12	Now my EOPs and SAMGs are going to dictate
13	when that happens, but the actual "how to's," we already
14	have procedures for "how to's," and those "how to"
15	procedures will be reflecting the HCVS capability.
16	MEMBER STETKAR: I am just glad I am not
17	operating anymore. I had to say that.
18	(Laughter.)
19	Even when I was younger, I had a good memory,
20	but
21	MR. KRAFT: It is a concern. One of the
22	concerns our CNOs have is that we not overtrain for rare
23	events and not train enough for more likely events.
24	MEMBER STETKAR: Yes, but, as an operator,
25	I would kind of like to have I am familiar with
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	153
1	EOPs and I would like to have a coherent other
2	procedure, clear guidance, the other guidance, not
3	books of other guidance, so that I have to figure out
4	which book to pick up, but something coherent that says
5	here are the things that I need to think about when I
6	am outside of the EOPs, integrated, not FSGs and SAMGs.
7	But we are getting short on time and I will
8	stop ranting.
9	MR. AMWAY: But I appreciate your concern,
10	and I was an operator myself. So, I mean, to the extent
11	that we can, we are going to put this guidance in the
12	existing family of procedures that we have, and not try
13	to create some I don't know what you would call it,
14	but to try to use the structure that exists, but it has
15	to be modified to reflect what we are trying to do.
16	The last item on here, the actions that we
17	do for venting and SAWA have to be achievable under the
18	radiological temperature and humidity conditions.
19	Here is where I want to get into the
20	three-tiered approach discussion a little bit on the
21	next several slides. This was one of the open areas
22	in the ISG.
23	The way we are revising our guidance document
24	is just as was described this morning. If we can
25	demonstrate a successful SAWM strategy, meaning for a
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

full seven days we don't need a drywell vent to maintain containment within design pressure limits, we're done.

MEMBER BROWN: A severe drywell event? MR. AMWAY: Right. If we could establish a severe accident water management strategy, but we can't get out to the full seven days before we need a drywell vent, then the alternative is that we have to be able to have a functional-level description of alternate reliable containment heat removal and include that discussion in the Phase 2 OIP.

And I have got slides for what that functional-level description looks like. So, let's just leave it there, and then, when we get into those slides, we can talk about that a little bit more. But it is a written-down description of alternatives that could be available to put in service.

It ratchets up if you get under 72 hours in terms of that level of detail and the actual physical mods that would have to be made to make that a viable option, if you will, less than 72 hours.

To get into a little bit of the SAWM, what it looks like from a simulation perspective, I will turn this over to Jeff to go through the next couple of slides.

MR. GABOR: Yes, and I will do this quickly.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

25

155
The question is, can we feasibly this is
Method 3 so, can we implement Method 3 in any feasible
manner? So, we looked at a scenario, a
relatively-straightforward scenario where we had no
injection, at the time of this breach we're able to get
water additions started. It is 500 gpm.
The red line is plotting the torus water
levels. So, I am starting off a little below 15 feet.
For this plant, our reference plant, it turns out they
have the narrowest, we call it freeboard, the narrowest
freeboard volume because, for Peach Bottom, they have
a limitation on their instrumentation that says that,
once they get the torus to 21 feet, they don't have
indication; they have to isolate the wetwell vent.
And what we want to do for success of Option
3 is to prevent us from getting that far. So, the
actions I invoked were starting the 500 gpm at vessel
breach and, then, I simply changed that flow, dropped
it from 500 to 100 when I hit 18 feet in the pool.
Pocouse I know I am starting at 15. I den't want to get

Э L d Because I know I am starting at 15; I don't want to get to 21. I kind of split the difference. I said I am getting to 18 feet; I am going to start paying attention to water levels. Actually, all I did was to reduce the flow to 100 gpm. That is the only other operator action I did.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	And you can see for seven days, with that
2	simple, fairly-simple action, I was able to sustain
3	this configuration without needing to isolate the
4	wetwell vent in that seven-day period. Obviously, I
5	am going to want to monitor the water level in the torus.
6	There is additional information I can get from
7	containment pressure because that gives me an
8	indication of how much steam I am generating versus how
9	much steam is going out the vent.
10	At the bottom, the blue line was just a way
11	to show you that, once I started injecting either to
12	the drywell or the RPV in this case, I quickly get up,
13	in the case of Peach Bottom it is a little over 2 feet
14	in the drywell, and then, water spills over and runs
15	down into the torus.
16	So, it wasn't difficult. It didn't require
17	a lot of manipulations in order to successfully get out
18	to 7 feet.
19	And you will see in Appendix C I put a little
20	writeup in there which I think is in their version,
21	maybe not. I might be wrong. The Argonne
22	discussion
23	MR. AMWAY: That is in there, yes.
24	MR. GABOR: I tried to equate flow rates in
25	this range to the experimental observations that are
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

documented in the OECD core/concrete interaction experiments at Argonne. And you can read this on your leisure. But it seemed like the initial period where they see the so-called bulk cooling, where the heat transfers from the debris to the water is maybe a megawatt per square meter. Sorry about the units. That is the only way I know that number. And then, that drops down by almost a factor of four long-term. That kind of mimics what Mitch Farmer has seen in the experiments. And again, it gave us some confidence that

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2.2

23

24

25

And again, it gave us some confidence that initially hitting it at 500, and then, being able to back it off to something in the range of 100, satisfies decay heat, keeps a nice crust over the debris, so I am not thoroughly challenging the drywell in any way.

The next chart, again, just shows a couple of parameters, the pool temperature in red and a drywell pressure in black. Again, you can see that I am able to have this kind of -- I call this, and I know I will get criticized, I call it a "safe, stable state". I will call it just a "stable state," but where the key parameters in the plan aren't changing.

> And then, the last plot --MEMBER SKILLMAN: Jeff --

> > NEAL R. GROSS

MR. GABOR: Sorry?

	158
1	MEMBER SKILLMAN: before you go
2	further
3	MR. GABOR: Yes.
4	MEMBER SKILLMAN: Is there in the
5	requirements document a requirement to have flow
6	instrumentation that would let you know that you have
7	throttled to 100?
8	MR. AMWAY: Yes, and it is not in the version
9	that you have, E2, but in the OF version I've beefed-up
10	that instrumentation discussion a little bit to include
11	what would be able, hopefully. And there are a couple
12	of different options available there.
13	Most of the pump skids we have have flow
14	indication built in as part of the pump skid
15	instrumentation. But in the case where you might use
16	one pump to provide the SAWA flow, and it is also
17	providing spent fuel pool makeup flow, you really need
18	to know what is going to the RPV or the drywell for
19	SAWA. In that case, there is available inline flow
20	instruments that you put right in the length of hose,
21	so it is the same connections as the hose, everything.
22	You put it right in, and you can have flow monitoring
23	capability of that single line that is being used for
24	SAWA.
25	MEMBER SKILLMAN: Thank you.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	159
1	MR. GABOR: And then, the last chart just
2	shows the
3	MEMBER BLEY: And those things are going to
4	be available?
5	MR. AMWAY: Yes, they will be stored in
6	the if it is part of the skid, it is protected with
7	the skid.
8	MEMBER BLEY: Yes.
9	MR. AMWAY: And if it is a flow instrument,
10	portable, that you put inline, that would be stored and
11	protected as well.
12	MEMBER BLEY: Would that be local indication
13	or would it have some kind of signal sending off to the
14	control
15	MR. AMWAY: They make them different ways.
16	I mean, there is no
17	MEMBER BLEY: You haven't specified?
18	MR. AMWAY: No, I haven't tried to specify.
19	I have actually seen them.
20	MR. KRAFT: But every time you get into
21	wireless signals, even during these situations, your
22	security people take notice. And that has caused
23	problems. It caused problems with the spent fuel pool
24	limitation. So, everyone had to go to hardwired. So,
25	I would just make that point, that we may be stuck with
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	160
1	local indication.
2	MEMBER BLEY: And the other guy talking on
3	the radio, which is wireless.
4	But go ahead.
5	MR. KRAFT: Actually, there is a requirement
6	in the SFPI that, when you hit the button to energize,
7	right, you can't be on a radio at the same time.
8	MEMBER BLEY: Okay.
9	MR. KRAFT: So, I mean, those kinds of
10	complications sort of seep into these requirements.
11	MR. GABOR: The last chart just confirms
12	that the SAWA, the water addition, and then, the
13	strategy, which is the management of that, a
14	fairly-simple strategy, 500 reduced to 100, still
15	maintains the drywell head below the 545-type criteria.
16	MEMBER BROWN: I guess I didn't realize that
17	the wireless communications create that big a problem
18	with your instrumentation. Is that true?
19	MR. KRAFT: It could. In the spent fuel
20	pool implementation order there is a requirement to
21	demonstrate that there was no radio interference.
22	MEMBER BROWN: Right. I remembered some of
23	that stuff, but I just didn't realize there was that
24	much difficulty with it. That is just kind of a
25	learning experience.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MR. KRAFT: Well, interestingly enough, one of the vendors literally placed a cell phone on top of the test rig and got no interference at all. Another vendor had it in their shop and they were doing remote radio communications. Still and all, NRC was very concerned that there was going to be some and you would get a false reading on that instrument.

Because you can imagine, with the power out, the operator is going to go to that remote location. It could be in the control room or it could be just outside the control room. And it is going to be a momentarily-powered system to keep your loads down. And you know they are going to stand there on the radio, telling the TSC --

MEMBER BROWN: Sure.

MR. KRAFT: -- what is going on.

So, I even suggested to people they actually put a placard, a little placard, right on that box saying, "Turn the radio off. Don't key the radio while you're pushing the button," or something like that.

So, there is that concern. No one actually saw that occur in testing.

23 MEMBER BROWN: It boggled me because I know 24 that for operators, Navy aircraft carriers, the engine 25 rooms and machinery are extremely noisy, very high dB

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2.2

	162
1	level. And they started probably 20 years ago with wireless. The guys wear headsets. They
2	have still got sound-fired phones and they have got the other types, but they are running the
3	machinery spaces with little wireless communications. And you just run a little antenna wire up
4	through the spaces.
5	MR. KRAFT: Right.
6	MEMBER BROWN: It works beautifully, and we have got very sensitive source
7	range instruments, intermediate, all kinds. We do startups, and it
8	just doesn't seem to
9	MEMBER BLEY: And that stuff is pretty
10	touchy.
11	MEMBER BROWN: Well, it used to be, yes.
12	Well, it is better now. We learned to do a lot of things
13	with microprocessors that you couldn't do with the old
14	analog stuff.
15	But that is why I was little surprised. I
16	am not trying to change anything. I am just getting
17	educated here.
18	MR. KRAFT: I have to tell you that the
19	vendors, the three the SFPI order required something
20	really simplistic. I remember a comment from
21	MEMBER BROWN: And we agree with that, by the
22	way.
23	(Laughter.)
24	MR. KRAFT: But I remember a time with this
25	Committee questioning the way they did it and saying
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	163
1	there's all kinds of additional new technology out
2	there. Well, no one no one got simple on this.
3	I mean, you are using radar systems. Those are the
4	systems everyone is using. There is no one on water
5	who would attach anything to the pool wall. And each
6	one of those systems is highly capable, much capable
7	to be way beyond what this requirement is, but that is
8	what was available.
9	And so, all of this modern electronics is
10	shielded/protected. As you say, microprocessors work
11	better. Yet, the requirement is there.
12	CHAIRMAN SCHULTZ: Let's go forward.
13	MEMBER BROWN: Why don't we go on? I'm
14	sorry. I didn't mean to it is educational for me.
15	MR. AMWAY: Okay. Thank you.
16	Okay. So, the next couple of slides I want
17	to spend some time talking about the functional
18	descriptions that would be required under the 72 to
19	seven-day scenario or the less-than-72 hours.
20	First of all, it would have to be a
21	pre-thought-out, written plan that is going to address
22	multiple meanings of alternate containment heat
23	removal. The multiple approaches could use a
24	combination of all installed, a combination of
25	installed and portable, or entirely portable
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

equipment. You want to have that flexibility because this is an event. We don't know how we got there. There could be a lot of different avenues in terms of plant stabilization and recovery. Maybe you will get electric power back before you get your alternate heat sink back.

So, you would a high degree of flexibility in being able to establish alternate containment heat removal. But you would identify that, you know, two or three ways of how you could do it using a combination of that equipment.

You want to identify what equipment is available for use, where to make electrical/mechanical connections. And so, make sure that you could make those connections under severe accident conditions.

What is important is, under the ERO -- and the ERO is going to be in place at that time governing that activity -- but in the 72-to-seven-day timeframe we are not looking at establishing detailed procedures or making any plant modifications to support that.

The examples I have got at the bottom, you know, might select the RCIC or HPCI, or High Pressure Coolant Injection, test return line as your means out of the containment and have a cold loop established using portable equipment, going back into the RPV or

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

	165
1	to the drywell through the same point as you did SAWA
2	anyway. And that would form your closed loop.
3	MEMBER SKILLMAN: How would you address the
4	radiological considerations for that closed loop?
5	MR. AMWAY: Well, for example, if you were
6	going into the RCIC or HPCI test line, that is located
7	outside the reactor building. It is inside your
8	condensate storage tank. So, you have got sealing in
9	between the source term and where the actions are, and
10	you have got a considerable distance from that source
11	term.
12	MEMBER BLEY: Phil, just a comment. I can
13	see this maybe getting pretty complex in terms of what
14	the procedures look like. I wanted to mention that one
15	of the plants by a specific vendor that is not in the
16	country has a different set of EOPs, and it is one that
17	has like eight basic EOPs. And if you are in any one
18	of those cases, you use it. If you have any
19	complications beyond that, they have another, more
20	complex thing that the shift engineer and the SRO sit
21	down and tailor for that situation. Then, the
22	operators have kind of a simplified new procedure to
23	carry out in this case. You might look at those and
24	consider that sort of thing as you go forward, because
25	this could be pretty tricky to hand do and operate.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	166
1	MR. AMWAY: And the whole reason why we are
2	looking at these different tiered approach is on paper
3	and in theory there is no reason why every plant that
4	is subject to the order couldn't demonstrate SAWM for
5	a full seven days. It is a math balance.
6	But knowing things are what they are, there
7	are things they will discover during detailed design
8	and engineering, that plants might fall into I can get
9	out to six days, but I can't make seven. And so, what
10	does that plant do? And then, they would fall into this
11	guidance classification.
12	The third and final being less than 72 hours,
13	the first four, that is all the same. You know, it is
14	your functional-level descriptions, different means to
15	be able to do it. What is really different is now,
16	because the timeframe is so short, and detailed
17	procedures, whether we call them procedures or
18	guidelines, but you need something more here in this
19	case with more detail that outlines the specific
20	actions you need to take for at least one of those
21	methods, and develop permanent modifications to the
22	plant that would help you implement that means of
23	alternate reliable heat removal.
24	The example is where in the previous slide
25	maybe you would have to cut into the RCIC or HPCI test
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	167
1	return, in this one you would want to pre-engineer and
2	put a flange connection, so it is readily available for
3	you to use. You know, the return, the second
4	sub-bullet there is the same as before.
5	The alternate pressure control to address
6	that ISG concern, what was really at issue there was
7	the way we had written the guidance would lead some
8	licensees to believe that they could use a drywell vent
9	that wasn't fully compliant with the order before
10	either the end of the seven-day sustained operation or
11	the alternate reliable heat removal.
12	We took that concern away by taking it out
13	of that Section 1.2 and revising it such that we make
14	it clear that, if you need a drywell vent within that
15	sustained operation period or before you had alternate
16	reliable heat removal in service, i.e., you satisfied
17	the order requirements, that it has to be
18	severe-accident-capable, per the order.
19	And then, any further discussion really
20	talks about the long-term venting capability that might
21	be directed by the SAMGs after you have achieved the
22	goals of the order, which would either be beyond the
23	seven days or you have had alternate reliable heat
24	removal established.
25	The next slide, it is a level-of-detail slide
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	168
1	in terms of making sure that we have information
2	through OIPs that describe how the SAWA components will
3	get power, to make sure that they are available to
4	support the strategies, either through the use of the
5	545 drywell vent or SAWM. Particularly important is
6	that we have to make sure that mode of force is available
7	and any power or pneumatics for valves in the SAWA flow
8	path.
9	Again, we plan to do that. We already have
10	timelines established for how we do that on the FLEX.
11	We would have to go back and reevaluate those points
12	under SAWA to address the severe accident
13	considerations.
14	The mode-of-force requirements for SAWA are
15	not within the scope of the installed 24-hour dedicated
16	equipment requirement of the order. If you recall, the
17	order specifically for HCVS components requires
18	minimal, very minimal to no operator actions for the
19	first 24 hours to provide the power and pneumatics to
20	HCVS valves.
21	By the very function of SAWA is, you have to
22	be able to move the equipment out of the storage
23	location, connect it up, which is actions beyond what
24	that 24 hours was intended to do for HCVS. That is why
25	we are proposing to provide that additional level of
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

169 certainty in terms of the reasonableness of those 1 2 actions, that we perform some level of validation that 3 those actions could be completed within the time constraints required to satisfy the order. 4 5 Now there is a process already established 6 for that under FLEX. We are looking at adapting that 7 established guidance for FLEX, applying it to those actions that are required in the first 24 hours, and 8 determine a Level A validation. The next slide will 9 10 describe what that Level A validation is. And we would 11 do that for any installed, dedicated, 24-hour mode of 12 force. 13 Now that last bullet is, as an alternative 14 to that, if the licensee chose to put in an installed 15 dedicated source for 24 hours, it would also be an 16 acceptable option. 17 This next slide deals with the validation 18 itself. This comes right out of -- yes? 19 CONSULTANT SHACK: I just found it. Ι 20 couldn't find it last night. 21 We can provide that to you. MR. AMWAY: 2.2 That is part, it was done under FLEX. 23 It's not in the NEI CONSULTANT SHACK: 24 document. 25 MR. KRAFT: In our document, in this

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	170
1	document, no, it is not.
2	MR. AMWAY: Put it in 12-06.
3	MR. KRAFT: No, there is, it must be a White
4	Paper because there was a V&V plan, validation and
5	verification plan that I read through at one point. It
6	was a separate document. I couldn't tell you what
7	White Paper or number it was or anything like that. And
8	I believe NRC endorsed it. Is that right?
9	MR. RECKLEY: We will get that to you.
10	MR. AMWAY: I believe it is, but it is
11	something we can provide.
12	MR. RECKLEY: No, we'll do that.
13	MR. AMWAY: Okay.
14	MR. KRAFT: Staff has indicated they will do
15	that.
16	MR. RECKLEY: It is a separate document on
17	the validation process, and we will get it to you.
18	MR. AMWAY: So, it is a validation document.
19	What it does is establish a graded approach for doing
20	validations. The long and short of that being the
21	shorter the time period you have to take an action, the
22	more rigorous the validation has to be, where the most
23	rigorous is this Level A. And to support FLEX, that
24	was used for any time-sensitive actions starting within
25	the first six hours.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	171
1	And the adaptation of that is we would use
2	that Level A validation standard performing any manual
3	actions that are required to support SAWA, not only for
4	six hours, but through the full 24-hour period.
5	MEMBER REMPE: Who oversees the validation
6	of this? Or is it just you follow that process that
7	is endorsed by NRC, and then, it is
8	MR. AMWAY: You follow the process. You
9	document the results. And those results are available
10	for auditor inspection.
11	MR. KRAFT: And inspection, right.
12	MEMBER REMPE: Okay. So, regional
13	inspection, and that's how it is done?
14	MR. KRAFT: Everything under FLEX because
15	FLEX was first of all, these orders become part of
16	your license. So, you are required to do them and,
17	then, FLEX because it was added protection, it kind of
18	gets a higher view.
19	And there is a temporary inspection order or
20	temporary instruction for inspection that has been
21	developed that will describe to the inspectors how they
22	are supposed to carry out inspection under these.
23	MEMBER REMPE: Okay.
24	MR. KRAFT: And then, I think there is a
25	provision in the new rulemaking we discussed yesterday
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	172
1	that will codify that inspection requirement.
2	MEMBER REMPE: Okay. Thank you.
3	MR. AMWAY: The next item deals with
4	required instruments for SAWM. They are defined in
5	Appendices C and I. And that includes guidance
6	regarding the functional requirements and show how
7	power is provided those instruments. It will include
8	both portable and installed. We already talked about
9	the pump skid and local instrumentation that determine
10	that you are actually getting the flow you need for
11	SAWA.
12	But it also includes installed
13	instrumentation. That is particularly important for
14	the SAWM phase, where initially SAWA is you are just
15	putting water in at a certain flow rate. At some point
16	you need to control that flow rate and throttle it back,
17	such that you don't flood out your wetwell vent for that
18	72-hour period.
19	Those instruments are really quite simple in
20	terms of what you really need is to see what containment
21	pressure is. You are going to know when to operate the
22	vent. In our analysis it appears as if we should be
23	able to open the vent and leave it open. We had talked,
24	when we did the tabletops, about cycling the vent as
25	a means to improve the efficiency. What we found out
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	173
1	is cycling the vent really doesn't help the overall
2	strategy. Open the vent, leave-open strategy, as long
3	as you don't challenge, go on negative pressure in your
4	containment, is an acceptable option and would
5	certainly minimize the amount of operator actions.
6	But you want to be able to see your
7	containment pressure, and you are going to want to be
8	able to see your wetwell level, so that you know that
9	your strategy is effective.
10	MEMBER REMPE: And so, Jeff mentioned that
11	there is new information in Appendix C. But, again,
12	how will this be demonstrated to is it, again, part
13	of a regional inspection following the temporary order
14	inspections that are provided to the regional folks to
15	say, yes, they've done something to ensure that you
16	don't have problems with your water level because the
17	pressure has changed, or something like that?
18	MR. KRAFT: I'm anticipating, Dr. Rempe,
19	that it will be what is in FLEX will, then, be
20	mirrored in what will go on in this order. This order
21	runs a year or two behind FLEX. So, we are not just
22	talking about the temporary inspection. I was
23	referring to the FLEX application of the validation
24	requirement.
25	MEMBER REMPE: Right.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

(202) 234-4433

	174
1	MR. KRAFT: So, in our order there will
2	probably be a similar thing done to inspect, done under
3	this order. And then, there is a separate rulemaking,
4	as you know, that will be codifying or making
5	generally-applicable sorry, Bill these
6	requirements into the Code of Federal Regulations.
7	So, I suspect some process to be followed,
8	but we are behind. We are running behind that. So,
9	we are not quite at all this documentation.
10	But, in general, the V&V process reflects it
11	will be inspected as part of, what we looked at as part
12	of the inspection for FLEX, which is what, a year or
13	two after you install it, Phil, or something like that?
14	MEMBER BROWN: Okay, you need water-level
15	information. You need pressure information. I
16	presume those are existing.
17	MR. AMWAY: Yes. Those are the
18	MEMBER BROWN: And are those already
19	designed to operate within the expected environmental
20	conditions, such as radiation? Temperature and
21	pressure, I would expect are just fine, but what about
22	the radiation environment now?
23	MR. AMWAY: That is something we would look
24	at. If you go back to the White Paper 2 discussion,
25	that gives you the tools you need to calculate the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	175
1	integrated dose that that instrument would receive from
2	HCVS system operation.
3	What we expect to find and the analysis that
4	I have seen done at the few plants that have done it,
5	it is if you look at the seven-day integrated dose from
6	HCVS operation, it is bounded by the analysis that was
7	done for that same instrumentation for the 100-day
8	integrated dose post-accident that is part of the
9	license basis.
10	MEMBER BROWN: So, you expect the cabling,
11	the instrumentation, the sensors, et cetera, all to
12	withstand during this period what you are required to
13	demonstrate, this seven-day period, that it will
14	withstand the environment satisfactorily then?
15	MR. AMWAY: Correct.
16	MEMBER BROWN: Based on its existing
17	MR. AMWAY: Based on its existing
18	requirements.
19	MEMBER BROWN: requirements? Okay.
20	MR. AMWAY: Because the instruments we would
21	be wanting to use are the ones that are already defined
22	in the plant tech spec for post-accident monitoring.
23	MEMBER BROWN: Okay.
24	MR. AMWAY: They have been qualified to Reg
25	Guide 1.97 in most instances. There are instances
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

176 where plants were pre-Reg-Guide-1.97, but they have 1 2 qualifications similar, equivalent for those 3 instruments as well. The third part being we have got to confirm 4 that when we do the preparation of the Phase 2 OIPs. 5 6 We will do the evaluation for radiological and thermal 7 aging as part of that analysis for Phase 2, but make sure that those instruments that we count on would last 8 9 for the seven days. 10 MEMBER BROWN: And it is going to take into account the evaluation of the stuff that has been 11 12 installed for 40 years possibly or --13 MR. AMWAY: It would have to take a look at 14 that, but, usually, that is a small fraction of -- if there is no severe accident or no accident condition 15 that occurs in the life of the plant, that is relatively 16 17 low compared to the accident dose rates it would see. 18 MEMBER BROWN: Oh, dose rates I would agree 19 thermal performance might with, but the be а 20 slightly-different problem --21 MR. AMWAY: Right. 22 MEMBER BROWN: -- relative to the insulation 23 systems. 24 MR. AMWAY: Correct. It is something that 25 we have to look at and evaluate as part of the process.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	177
1	MEMBER BROWN: Isn't this gear already
2	subject to the aging requirements under extension?
3	MR. AMWAY: It is EQ. Yes. It is EQ, and
4	it is addressed under plant life extension. But we
5	have to look at in terms of, you know, whatever that
6	instrument is, we would be able to take a look and say
7	we would expect the temperatures here to be at whatever
8	value for that seven-day period we plan to credit it
9	for this order.
10	MEMBER REMPE: But Jeff mentioned that the
11	operator actions will reduce the flow rate. And then,
12	I don't think there is any flow rate monitor, right?
13	Or are you going to have
14	MR. AMWAY: On the skid.
15	MEMBER REMPE: So, there will be a
16	MR. AMWAY: It will be included on the skid.
17	MEMBER REMPE: Okay. So, you have got
18	sensors. You have got the water level to check.
19	MR. AMWAY: Right.
20	MEMBER REMPE: If the water level, for some
21	reason, is just not working, you have got that to
22	MR. AMWAY: Correct.
23	MEMBER REMPE: instill some confidence in
24	it.
25	MR. GABOR: Yes, the idea that the torus
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	178
1	level you know, we have engaged in a lot of discussion
2	about is torus level adequate for this. Do I need other
3	instrumentation?
4	The way we do it is, if the torus level is
5	going up, you are putting water in the drywell to cover
6	the debris, the torus level is going up. It is a pretty
7	good indicator that some fraction of that water is not
8	being effective at cooling the core. And it feeds
9	back.
10	At the same time, if the water level is going
11	down, it means you probably need more or you could have
12	more. And again, couple that with the pressure
13	response; it tells you a lot about the re-cooling and
14	the balance between steam generation and vent flow.
15	So, I really think that just simply looking at the torus
16	level gives you a pretty good indication of where you
17	are at.
18	MEMBER REMPE: I agree. And again, there is
19	a thought process that there might be other sensors that
20	provide insights to it, but I am not sure that anyone
21	else, other than industry, will be reviewing it if
22	things go in one direction here.
23	MR. GABOR: But I think yesterday
24	temperature was brought up as indicator.
25	MEMBER REMPE: Uh-hum.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	179
1	MR. GABOR: And I have issues with that just
2	because interpreting that indication could be really
3	difficult in a severe accident, whether it works or it
4	doesn't work, where it is located, what it has seen,
5	what is it telling you, where torus level seems to be
6	a much simpler direct feedback.
7	MEMBER REMPE: But is it a DP cell or what
8	is it in the plants? Or does it vary?
9	MR. AMWAY: For the level indicators, it is
10	a simple DP cell.
11	MEMBER REMPE: Okay. So, there are some
12	issues with it if something happens with the reference
13	leg. And so, I think that you guys are very able to
14	go through a thought process to come up with a good plan.
15	I just think sometimes review is good, too.
16	MEMBER BLEY: Just quick, since you didn't
17	have a slide on it, I assume the FAQs are going to remain
18	as an appendix, not be integrated into the report. Is
19	that right?
20	MR. KRAFT: I think it is with Phase 1,
21	having been put in Rev 1, will be put in Rev 1, and NRC
22	understands that. Then, we will go through an FAQ
23	process for Phase 2. That may be some future revision
24	to the guidance. We will put it in just for a
25	convenience, so that it is all in one spot.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

One of the problems we had with implementation of FLEX was reliance on FAQs. The way an FAQ works is that we talk to the NRC about it, and there is sort of an around-the-table agreement it is okay, but there is no formal endorsement like you do with a White Paper.

MEMBER BLEY: But they are an appendix to the report, and I asked them directly if that includes the endorsed FAQs, and they said yes.

MR. KRAFT: That is why we did that, because in FLEX there was reliance on FAQs that during audit, "Well, wait a minute. We never endorsed that." So, okay, now we have got a problem. So, we learned that lesson, and that is why we have taken our FAQs from page 1, putting them in the document, and then, we will ultimately do the same thing.

But we are trying to get to a higher levelof agreement of the FAQs.

19 MEMBER BLEY: All I really asked was, when 20 it comes out, it will still have Appendix J in it. 21 MR. AMWAY: Yes, absolutely. 2.2 MEMBER BLEY: That's all. Go ahead. 23 MR. AMWAY: And the delta between E and F is 24 going to be based on some feedback I have gotten. That 25 is, we should be able to go through those FAQs that were

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

	181
1	developed for Phase 1
2	MEMBER BLEY: Yes.
3	MR. AMWAY: and predetermine whether they
4	are applicable or not applicable to Phase 2. There are
5	some additions in there for each of those FAQs where
6	I did that.
7	MEMBER BLEY: Okay. So, that will be a
8	place to redo it?
9	MR. AMWAY: Right.
10	CHAIRMAN SCHULTZ: Next slide, Phil.
11	MR. KRAFT: Okay. I think that concludes
12	our
13	MR. AMWAY: Yes, that's pretty much it for
14	the presentation. This is a conclusion slide just
15	summarizing a high level of what we went through today.
16	MEMBER STETKAR: I have three questions I
17	need to get on the record, and I don't want answers
18	because of the time, but I need to get it on the record,
19	so that the staff can think about it.
20	In your Section 6.2.4, there is a table about
21	testing and inspection requirements. There is a
22	footnote that says that I don't need to cycle check
23	valves. I would like the staff to give me answer
24	eventually about why one doesn't need to cycle check
25	valves to see whether they work.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

The second question that I have is that, in Section 6.3.1.1, there are effectively allowed outage times. It says that I can have part of the system out -- this is HCVS -- for 90 days or I could have the total system out for 30 days. And I would like to know the basis for those times, how you came up with them, why, what they are based on.

And it says that, if I don't meet those 8 times -- for example, I have the whole system out for 9 10 more than 30 days -- I must initiate compensatory 11 actions. And there didn't seem to be any time limit 12 on those things. So, basically, I can take it out and 13 do some sort of compensatory thing. And I am curious 14 about that because it starts to smell like years and 15 years of compensatory actions for fire protection 16 stuff. So, I would like to know what the staff feels 17 about those compensatory actions because nothing in the staff's questions addressed any of that sort of issue. 18 19 As I said, I don't want answers today because 20 of the time. 21 Thanks. I'm sorry. 2.2 CHAIRMAN SCHULTZ: No, that's fine. 23 Any other questions by Committee members for

the industry?

24

25

1

2

3

4

5

6

7

(No response.)

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	183
1	Hearing none, I would like to go to public
2	comments and allow an opportunity for members of the
3	public within the room to make comments to the
4	Committee, if they so desire. And we will open the
5	line.
6	(No response.)
7	I think the line is open to members of the
8	public. We believe the line is open. If we have
9	members of the public on the line, could you please say
10	hello to us, so we know the line, in fact, is open?
11	MR. BUMP: This is Randy Bump. The line is
12	open.
13	CHAIRMAN SCHULTZ: Thank you, Randy.
14	Now would any members of the public like to
15	make a comment for the Committee's benefit at this time?
16	(No response.)
17	Then, I will close the public comment period.
18	And I will move for summary comments from the
19	Committee.
20	Joy?
21	I had no volunteers from the room for
22	comment, so we will close the public comment period.
23	MEMBER REMPE: I want to thank everyone for
24	their presentations. I think my biggest concern is
25	what John raised at the beginning of the meeting about
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	184
1	timing. It will great to have the calculational basis
2	coming to us soon, but we are not going to perhaps get
3	the staff update for their guidance. And it is hard
4	to provide comments on an updated guidance if we haven't
5	gotten that.
6	CHAIRMAN SCHULTZ: We have a short
7	timeframe; that's for sure. They have given some level
8	of assurance from the staff that they will work even
9	harder to get us what we feel we need to support our
10	position for the full Committee and understand what
11	will be presented at the full Committee meeting.
12	Charlie, no further comments?
13	MEMBER BROWN: Yes, no further comments.
14	MEMBER BALLINGER: No.
15	MEMBER STETKAR: Nothing else from me.
16	MEMBER BLEY: Nothing from me.
17	MEMBER POWERS: I have a whole bunch of
18	comments, but I think they deal with the issue of
19	progression of the accident, whether containment
20	dropwells are going to survive all these transitions,
21	and maybe they don't fall directly in this issue. But
22	I'll probably get together and bump heads a little bit.
23	CHAIRMAN SCHULTZ: Okay. Dick?
24	MEMBER SKILLMAN: Several comments.
25	Thank you for the presentation, to the staff
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	185
1	and to industry.
2	On a lightwater accident, more water is
3	better than less water. We really understand that.
4	But your conclusion slide is really pushing
5	towards water and control of water. You suggested that
6	you are going to count on SRV leakage or a head, lower
7	head, failure. And I challenge whether those are
8	appropriate assumptions.
9	What we learned is you need to know your hole
10	size; otherwise, you will not be able to deliver the
11	mass that you are depending on to remove decay heat and
12	to circulate the heat.
13	MR. AMWAY: The only thing I would point out
14	is, just remember, anytime we leave the EOPs and enter
15	SAMGs, which we do under severe accident conditions,
16	we will execute emergency depressurization using ADS.
17	MEMBER SKILLMAN: Okay, but I here to tell
18	you, you made a presentation and you said, "We are going
19	to get 500 gallons a minute. We are going to count on
20	a hole, and we are going to count on a simmering SRV."
21	And I'm saying time out. I am not sure that that is
22	where at least we want to be.
23	I want to make one final comment. NEI put
24	together a very good paper on dose, on the HCVS piping.
25	And you are showing radiation levels on that piping
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	186
1	exactly at the same levels that we experienced
2	real-time at TMI, 3,000, 5,000, 10,000 R per hour.
3	And I would suggest that it has been a long
4	time since we have dealt with the frontal recognition
5	of those radiation levels. We saw it again at
6	Fukushima. But those numbers are real.
7	When you are talking about hooking up pipes,
8	hooking up FLEX equipment for an accident that is as
9	severe as the one that we are contemplating, we need
10	to be serious about how to protect workers from those
11	very significant radiation levels.
12	MR. AMWAY: Certainly agree. Thank you.
13	MR. KRAFT: Yes, we absolutely agree.
14	Thank you.
15	In fact, just an example, one plant and
16	I won't mention who it was they had put in a hardened
17	vent back in 1989, but it wasn't severe accident back
18	in those days we were thinking about. And the route
19	of that hard pipe went right behind the controller.
20	So, that is why this paper was so important.
21	And they did an evaluation and said, "Yes, we are still
22	fine," but they had to go through that evaluation. And
23	I thought that was one of the real benefits of this work.
24	It is a regime we are not used to.
25	MEMBER SKILLMAN: Yes, you don't want to be
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	187
1	putting up lead brick walls on the fly.
2	MR. KRAFT: Yes.
3	MEMBER SKILLMAN: We did that at TMI, and it
4	is very, very costly, dangerous, and painful, and it
5	is not always a success path.
6	Thank you.
7	CHAIRMAN SCHULTZ: Comments, Bill?
8	CONSULTANT SHACK: I am just a little
9	curious about the 545 temperature, again, looking at
10	the data on the seals. You know, it is a perfectly-fine
11	design for the vent. But, if I am thinking about
12	Recommendation 6 and the Tier 3 consideration of where
13	the hydrogen goes, I mean, we didn't get into that
14	degradation region. But, again, you may not have a
15	whole lot of choice.
16	I would caution, when you are using the Klaus
17	paper, make sure you realize that there are
18	typographical errors in figure 1 and figure 2, where
19	they switched the silicon and the EPDM.
20	(Laughter.)
21	CHAIRMAN SCHULTZ: I would also like to
22	thank the industry as well as the NRC staff.
23	Oh, Pete, I'm sorry.
24	MEMBER RICCARDELLA: Yes, this is Pete. I
25	have no comments.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	188
1	CHAIRMAN SCHULTZ: Okay, thank you.
2	I would to thank the industry and the staff
3	for the presentations today and for the discussion and
4	for the staff's response to our request to provide
5	information. And also, the industry has indicated
6	that the staff needs information from them in order to
7	support the accelerated schedule; they will provide it.
8	So, I appreciate that very much, and I know the
9	Committee will also. We will look forward to receiving
10	that information shortly.
11	Seeing no other comments, we will close the
12	meeting for today.
13	(Whereupon, at 12:42 p.m., the meeting was
14	adjourned.)
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
	NEAL R. GROSS

Protecting People and the Environment

Advisory Committee on Reactor Safeguards

Mark I and Mark II BWRs Containment Venting Systems Draft Guidance for Phase 2 of Order EA-13-109 and Draft ISG JLD-ISG-2015-01 March 20, 2015

Japan Lessons Learned

- Introductions
- Background and Schedule
- NRC staff presentation Interim staff guidance development for Phase 2 of Order EA-13-109 (JLD-ISG-2015-01)
- Questions and comments

Order EA-13-109 Background

- EA-12-050
 - Issued March 12, 2012 requiring reliable hardened containment vents for boiling water reactors (BWRs) with Mark I and II containments
- SECY-12-0157
 - Response to Commission direction to provide analyses to inform a decision on whether filtered vents should be required
 - SRM directed modification of EA-12-050 to require venting system remain functional under severe accident conditions and consider additional requirements using rulemaking process
- Order EA-13-109
 - Issued June 6, 2013
- Containment Protection and Release Reduction Rulemaking

Order EA-13-109 Background

• Phased approach to minimize delays in implementing the requirements originally imposed by EA-12-050.

Phase 1

Upgrade venting capabilities from the containment wetwell to provide reliable, severe accident capable hardened vents to assist in preventing core damage and, if necessary, to provide venting capability during severe accident conditions.

<u> Phase 2</u>

Additional protections for severe accident conditions through installation of a reliable, severe accident capable drywell vent system or the development of a reliable containment venting strategy that makes it unlikely that a licensee would need to vent from the containment drywell during severe accident conditions

Order EA-13-109 Implementation Timeline

- Phase 1
 - no later than startup from the second refueling outage that begins after June 30, 2014, or June 30, 2018, whichever comes first.
 - Overall Integrated Plan June 30, 2014
- Phase 2
 - no later than startup from the first refueling outage that begins after June 30, 2017, or June 30, 2019, whichever comes first
 - Overall Integrated Plan December 31, 2015

Order EA-13-109 Background – Phase 1

- ACRS Interactions
 - Letter Dated October 18, 2013
- Guidance for Phase 1 Implementation
 - NEI-13-02, Rev 0, "Industry Guidance for Compliance with Order EA-13-109"
 - NRC Interim Staff Guidance (ISG) JLD-ISG-2013-02, "Compliance with Order Modifying Licenses With Regard to Reliable Hardened Containment Vents Capable of Operation Under Severe Accident Conditions"
- Overall Integrated Plan Templates (Appendix K to NEI-13-02)
- Overall Integrated Plans
 - Submitted by June 30, 2014 (supporting implementation no later than startup from the second refueling outage that begins after June 30, 2014, or June 30, 2018, whichever comes first)
- Interim Staff Evaluations

Order EA-13-109 Background – Phase 1

- ACRS Letter Conclusions and Recommendations
 - JLD-ISG-2013-02 (issued)
 - Better define scenarios for drywell venting
 - Assessing additional combustible gas control measures should be given higher priority
 - Venting procedures should not compromise core cooling which depends on containment accident pressure (CAP) (cautions added to NEI-13-02, Rev 0)
 - Drywell temperatures (545°F design specification)

Order EA-13-109 Phase 2 ISG Schedule

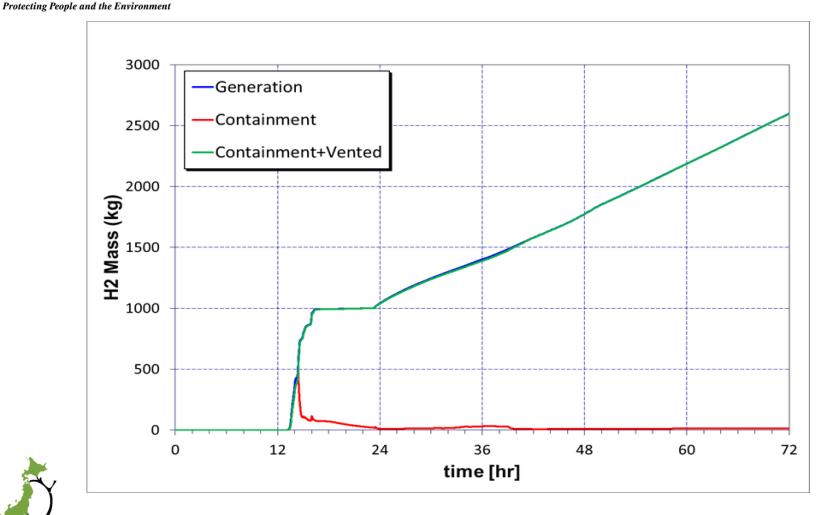
- Public and industry interactions August 2014 to March 2015
 - 6 public meetings/webinars
- Draft ISG issued for public comment March 10, 2015
- ACRS subcommittee meeting March 20, 2015
- Public comment period ends April 9, 2015
- ACRS full committee meeting April 10, 2015
- Phase 2 ISG issued April 30, 2015
- Phase 2 Overall Integrated Plan Submittals Dec 31, 2015

Order EA-13-109 Phase 2

- Revisions to Industry Guidance Document
 - NEI-13-02, Draft 0E2
- Draft Interim Staff Guidance JLD-ISG-2015-01
 - Three Methods of Compliance Identified
 - 1) Severe accident capable drywell vent without additional provisions for water addition
 - 2) Severe accident capable drywell vent with severe accident water addition (SAWA)
 - 3) Severe accident water management (SAWM) without severe accident capable drywell vent
- Resolution of Issues and Issuance of Guidance by April 30, 2015 (supporting submittal of overall integrated plans by Dec 31, 2015)

Order EA-13-109 Revisions to NEI-13-02

- Updates
 - Phase 1 Overall Integrated Plan Template (App K)
 - Dedicated Motive Forces (HCVS-WP-01)
 - Evaluation of Doses & Source Terms (App F & G, HCVS-WP-02)
 - Flammable Gases (App H & HCVS-WP-03)
 - Frequently Asked Questions (App J)
 - Appendix A (Glossary)
- Phase 2 Focus
 - Severe accident water addition (SAWA)
 - Appendix I
 - Severe accident water management (SAWM)
 - Appendix C


Combustible Gas Control

- Order EA-13-109
 - The HCVS shall be designed and operated to ensure the flammability limits of gases passing through the system are not reached; otherwise, the system shall be designed to withstand dynamic loading resulting from hydrogen deflagration and detonation.
 - The HCVS shall be designed to minimize the potential for hydrogen gas migration and ingress into the reactor building or other buildings.
- Related guidance is provided in Appendix H to NEI 13-02 and White Paper HCVS-WP-03, "Hydrogen/Carbon Monoxide Control Measures"
- Further evaluation of possible measures to address hydrogen control and mitigation inside containments or other buildings to be addressed under separate Tier 3 item (Recommendation 6)

Hydrogen Generation and Transport

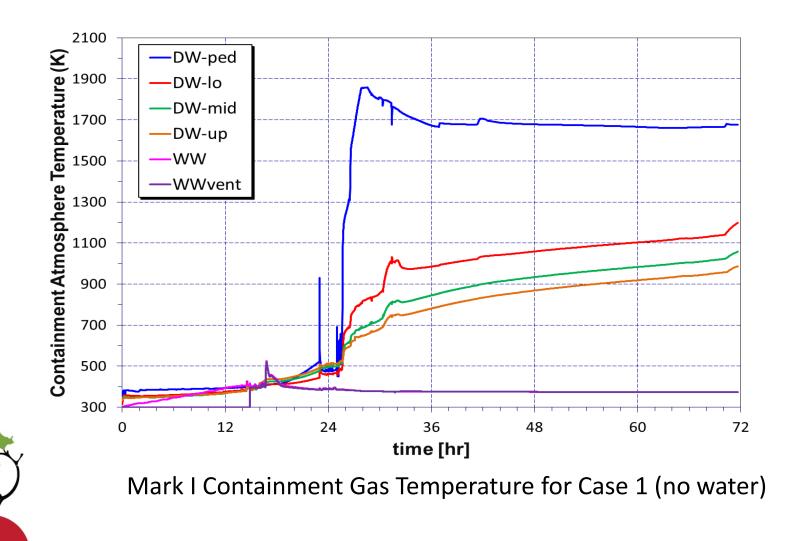
US.NRC United States Nuclear Regulatory Commission

Mark I Hydrogen Generation and Transport for Case 9 (SAWA)

Japan Lessons Learned

Method 1

- Severe accident drywell vent (SADV)
- No additional provisions for severe accident water addition
 - drywell temperatures could exceed 1000°F
- No guidance provided in NEI 13-02, Rev. 0E2. Plant specific analysis by individual licensees is required
- JLD-ISG-2015-01 cautions that approach could conflict with potential requirements in CPRR rulemaking; also raises possible concerns with increased release of hydrogen into reactor building



Plant Specific reviews if a licensee were to pursue

Evaluation of Drywell Temperatures

Protecting People and the Environment

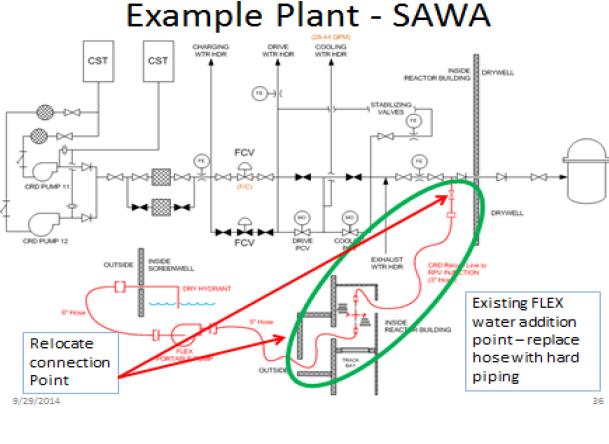
Japan Lessons Learned

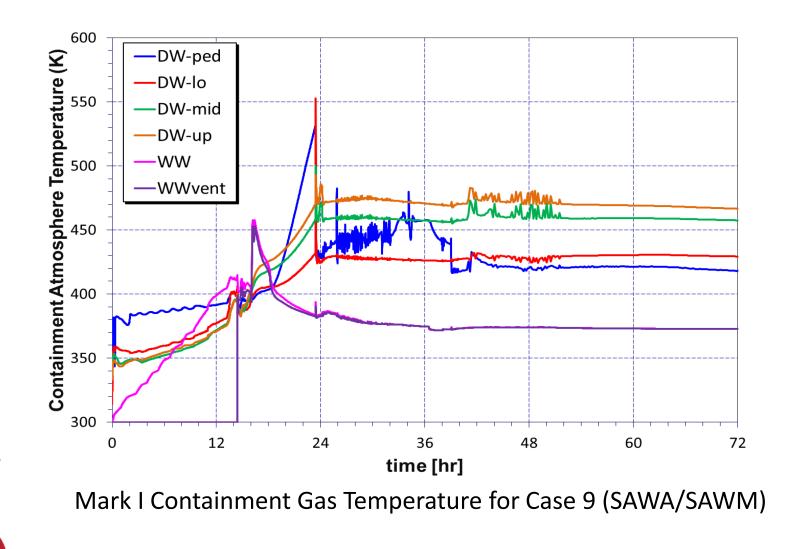
Method 2

- Severe accident drywell vent (SADV)
- Additional provisions for severe accident water addition (SAWA)
 - Limits drywell temperatures to justify 545°F design specification
- Hybrid approach to implementing Order involving a strategy for SAWA but includes SADV (545°F design specification) for pressure control
- Guidance provided in Appendix I to NEI-13-02 (Draft 0E2)

Severe Accident Water Addition

Protecting People and the Environment




Figure from NEI 13-02 (Draft 0E2)

Japan Lessons Learned

Evaluation of Drywell Temperatures


Protecting People and the Environment

Method 2 – Issues in Draft ISG

- Defining functional requirements for SAWA provision. Staff finds that the functional requirements defined in Section B.1 provides a logical starting point for addressing functional requirements for equipment used in proposed strategies.
- All permanently installed equipment that will be relied in the strategy should have the functional requirements defined and shown to be met.

Method 3

- Additional provisions for severe accident water addition (SAWA)
- Additional provisions for severe accident water management (SAWM)
 - Sustained operations using severe accident wetwell vent and/or alternate reliable heat removal capabilities
- No severe accident drywell vent (SADV)
- Guidance provided in Appendix C to NEI-13-02 (Draft 0E2)

Method 3 – Issues in Draft ISG

- Clarify functional requirements and coping time concept (72 hours) for preserving wetwell vent and/or providing alternate reliable containment heat removal and pressure control
- Clarify how procedures and functional requirements associated with establishing alternate means of containment heat removal justify the proposed coping time (72 hours)
- An acceptable approach for Phase 2 could be for licensees to develop procedures and functional requirements for installed and portable equipment supporting SAWM and venting from the wetwell for the Phase 1 period of sustained operations (7 days)
- Licensees proposing to reduce the 7 day sustained operation concept could identify potential success paths to establish an alternate heat removal system in the desired time, supported by a discussion of the availability of equipment that could be used during the severe accident conditions.

Method 3 – Proposed Resolution:

- Three tier approach for SAWM:
 - 1. Sustained operations via capability to manage water for at least 7 days with venting from wetwell
 - 2. Sustained operations via capability of wetwell venting for between 72 hours and 7 days with licensees providing a functional description of alternate reliable containment heat removal in Phase 2 overall integrated plans
 - 3. Sustained operations via capability of wetwell venting for less than 72 hours with licensees providing an evaluation of alternate reliable containment removal that includes equipment to be used and connection points described or committed to in Phase 2 overall integrated plan

Alternate Containment Pressure Control

- Guidance should instruct licensees to identify and include in their overall integrated plans possible means of providing alternative pressure control for longer-term plant recovery
- If drywell venting would be a necessary accident management function after the wetwell is flooded and within seven days, licensees should address within SAWM functional requirements

• Proposed Resolution:

Discussion of post severe accident overpressure protection use of the drywell vent that is not severe accident capable per Order EA-13-109 has been moved to Section 1.3, Procedure Interface (SAMGs)

Remaining Exceptions and Clarifications

- Did Not Review/Approve :
 - EOPs/SAMGs
 - References in NEI 13-02
 - Including Reference 27 (EPRI Technical Report)
 - Appendix A Glossary of Terms

Protecting People and the Environment

Questions & Discussion

NEI 13-02 Rev 1 Industry Guidance to Implement EA-13-109

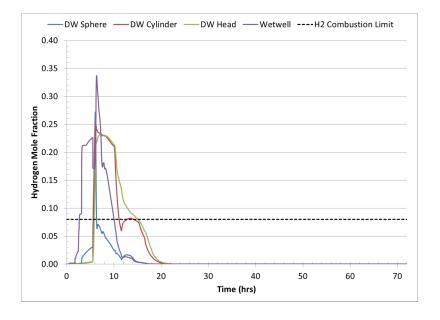
ACRS Fukushima Subcommittee March 20, 2015

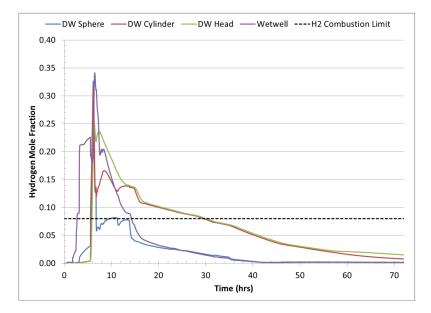
General Characterization

- Revised NEI 13-02 to include Phase 2 guidance
- Numerous public meetings and technical exchanges to develop interim staff guidance
- Industry is working toward common design elements for implementation of the order
- Limited number of open items between guidance document and draft ISG

Functional Requirements

- Limit containment pressure
- Phase 1 Vent capability from wetwell
- Phase 2 Vent capability from drywell or alternate venting strategy
- Control the use of common systems within and between units
- Addresses all modes of vent usage from normal operation through ELAP and severe accident conditions


Phase 1 Status


- JLD-ISG-2013-02 endorsed NEI 13-02 Rev 0 with non-technical exceptions and clarifications
- NRC endorsed industry template for Phase 1 OIP
- Pilot plants' Phase 1 OIPs complete
- All phase 1 OIPs submitted 06/30/14
- Initial NRC audits of Phase 1 OIPs conducted
- Some ISEs have been issued
- Detailed engineering in progress

Phase 1 ACRS Open Items

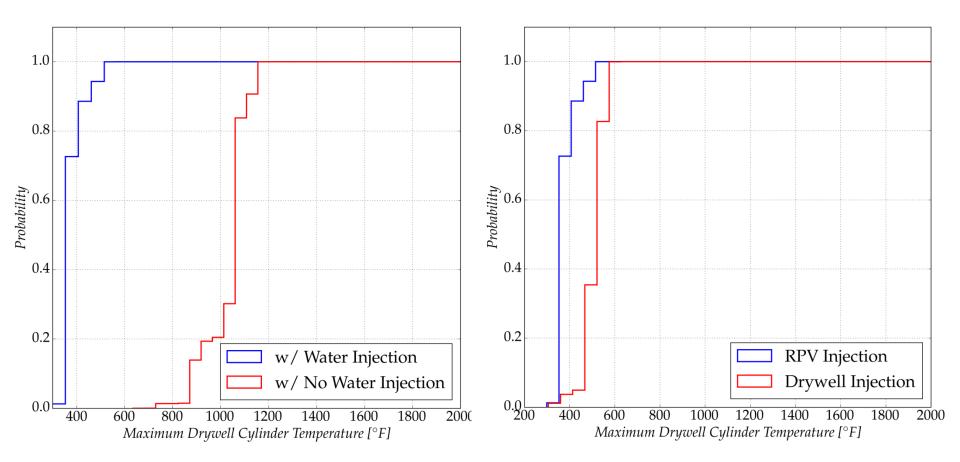
- Anticipatory Venting resolved through endorsed industry paper (ML13352A057/ML13358A206)
 - Requires consideration of impact on NPSH available for RCIC
- Combustible gas control resolved in part by endorsed HCVS-WP-03, that addresses the combustible gas elements of Order EA-13-109 with respect to the HCVS system (ML14302A066/ ML15040A038)
 - Analysis shows combustible gases are vented as part of the SAWM strategy within 24 hours

Hydrogen Distribution Simulations

Best-estimate ex-vessel core debris cooling

Pessimistic ex-vessel core debris cooling

- Hydrogen will be transferred out of the containment via vent path
- Some sensitivity to RPV melt release and success of debris cooling
 - MAAP represents rapid high temperature melt release
- Lower concentrations expected in RB due to reduced leak rates and large well mixed atmosphere

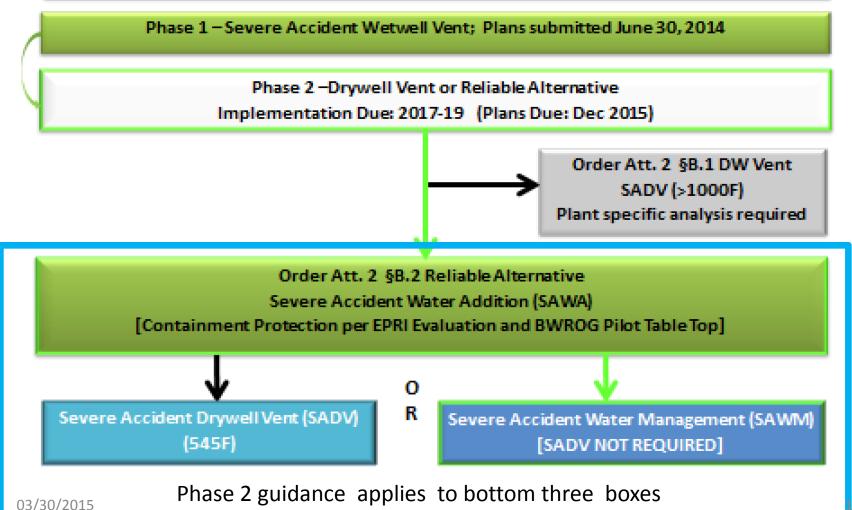

Phase 1 ACRS Open Items

- Accessibility due to radiation resolved by endorsed HCVS-WP-02 (ML14358A038/ML14358A040)
 - Method for calculating integrated dose for HCVS equipment qualification
 - Method for determining dose rates from HCVS piping during venting for assessment of operator action feasibility
- Drywell vent design temperature of 545°F is confirmed by analysis if water addition is included

Basis for 545°F Design Criterion

HCVS DW Vent Consistent with Containment Capability 135 psig DW Vent Containment Compromised 120 psig Compromised Drywell Head Leakage Containment 105 psig (e.g. SOARCA) Structural 90 psig Ultimate DW Vent Design Capability 75 psig Specification (PCPL, 545°F) 60 psig 45 psig Containment Penetration Design 30 psig Degradation Envelope 15 psig 0 psig 600 °F 500 °F 200 °F 300 °F 700 °F 1000 °F 100 °F 400 °F 800 °F 900 °F

Phase 1 ACRS Open Items


Probability of Maximum Drywell Temperature under Various Severe Accident Sequences, Water Addition vs. No Water Addition Probability of Maximum Drywell Temperature under Various Severe Accident Sequences, water addition to RPV vs. water addition to Drywell

Phase 2 Terminology

- Severe Accident Water Addition (SAWA)
 - Providing water to reactor vessel or drywell postcore damage.
- Severe Accident Water Management (SAWM)
 Preserve wetwell vent path.

Phase 2 Guidance

BWR Vent Order Phase 2 Options

Phase 2 Guidance

Severe Accident Water Addition (SAWA)

- Water addition path RPV or Drywell
- Utilization (Motive force, Instrumentation)
- Severe accident deployment considerations (Temperature, Radiation)

Severe Accident Water Management (SAWM)

- Requires implementation of SAWA
- Requires use of the Phase 1 wetwell vent
- Designed to preserve wetwell vent path for a period of Sustained Operation, as defined in this guidance,

Severe Accident Drywell Vent (SADV)

- Requires implementation of SAWA
- Design Temperature 545°F after second Containment Isolation Valve
- Utilization (Motive force, Instrumentation)
- Severe accident deployment considerations (Temperature, Radiation)

Phase 2 Guidance

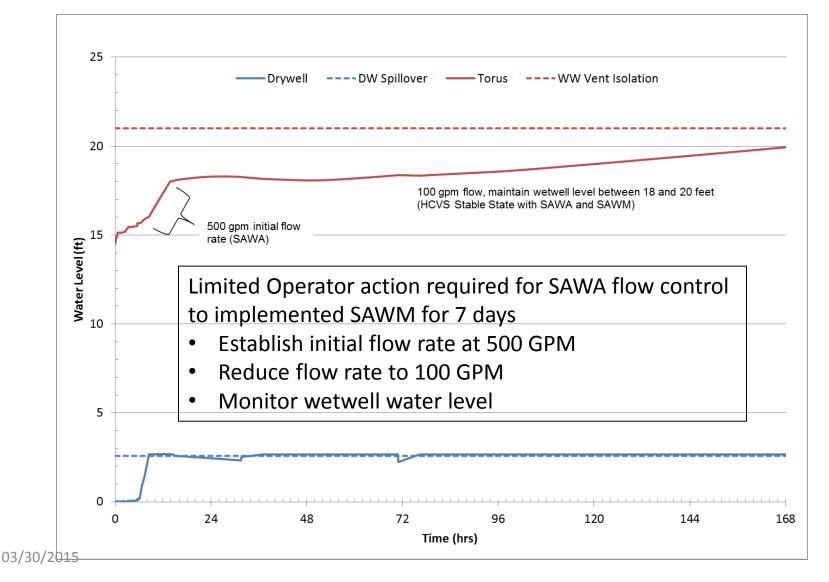
Draft JLD-ISG-2015-01 Section 4.1, 4.2 and 4.3

- Section 3 (ISG Method 1) will:
 - provide no specific guidance for the high temperature drywell vent option
 - state there are potential longer-term issues related to the CPRR rulemaking should a licensee decide to pursue this option
- NEI 13-02 guidance is written to require SAWA for B.2 options for either:
 - 545°F SADV option (ISG Method 2), or
 - SAWM approach for Phase 2 alternate venting strategy (ISG Method 3)

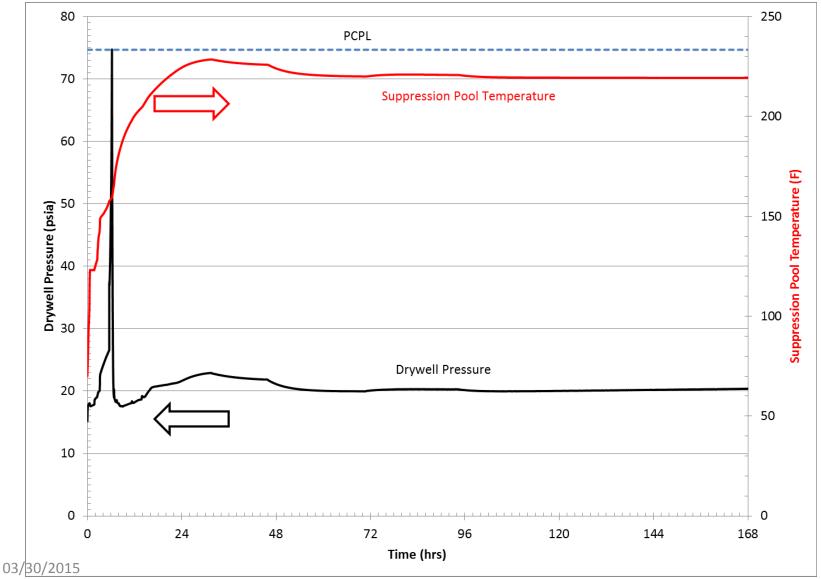
Option B.2 Conformance with Order Section A Functional Requirements Draft JLD-ISG-2015-01 Section 4.2

- NEI 13-02 will define functional requirements for B.2 Options
 - Order Section A is a logical starting point for defining functional requirements for:
 - SAWA most Section A requirements apply
 - ≻545°F SADV the full set of Section A requirements apply
 - NEI 13-02 Sections 4.1, 4.2, 5 and 6 will define for the SAWA and 545°F SADV options the functional requirements based on Order Section A for design considerations, quality requirements, training and maintenance

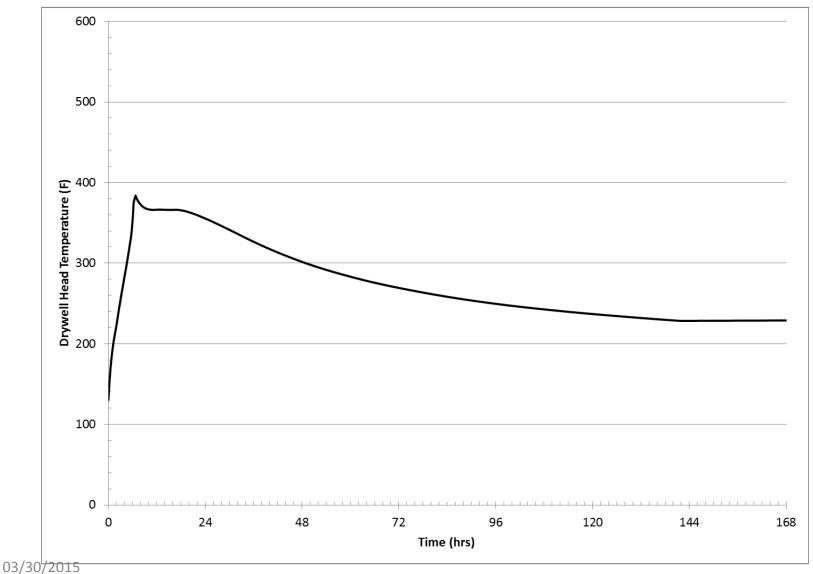
Operator Actions Required


- Operator action is required for vent control to implement anticipatory venting
- Operator action is required for SAWA will be similar to FLEX for RPPV makeup and portable electrical power
- Operator actions for venting and SAWA must be achievable under severe accident conditions
 - Radiological
 - Temperature and humidity

Wetwell Vent Preservation Time


Draft JLD-ISG-2015-01 Section 4.3.1

- Three tier approach for SAWM:
 - 7 days of Sustained Operation all subsequent actions beyond 7 days are not subject to Order EA-13-109
 - 72 hours to 7 days of Sustained Operation a functional description of alternate reliable containment heat removal will be included in Phase 2 OIP (similar to Order EA-12-049 S/D Refueling Modes)
 - <72 hours of Sustained Operation an evaluation of alternate reliable containment removal that includes equipment to be used and connection points will be described or committed to in Phase 2 OIP


MAAP 5.02 SAWM Simulation

MAAP 5.02 SAWM Simulation

MAAP 5.02 SAWM Simulation

72 Hour to 7 Day Functional Description

- Written plan that should address
 - Multiple means of alternate containment heat removal available
 - Include multiple approaches such as use of installed, portable or combinations of installed and portable equipment
 - List equipment available for use
 - Identify where electrical/mechanical connections can be made
 - Address accessibility of actions under severe accident condition
- ERO will be utilized to perform actions needed based on written plans
 - Detailed procedures are not required
 - Permanent modifications to plant are not required
- Example of possible tie in points
 - Cut into RCIC or HPCI test return line for suction path
 - Connect to SAWA connection for return path

<72 Hour Functional Level Description Supported by Procedures/Modifications</pre>

- Written plan that should address
 - Multiple means of alternate containment heat removal available
 - Include multiple approaches such as use of installed, portable or combinations of installed and portable equipment
 - List equipment available for use
 - Identify where electrical/mechanical connections can be made
 - Address accessibility of actions under severe accident condition
- ERO will be utilized to perform actions needed based on written plans, procedures and modifications
 - Detailed procedures are required for at least one method
 - Permanent modifications to plant are required for at least one method
- Examples of plant modifications
 - Install 5" flange in RCIC or HPCI test return line for suction path
 - Return to SAWA connection point

Alternate Containment Pressure Control

Draft JLD-ISG-2015-01 Section 4.3.2

- The guidance should instruct licensees to identify and include in their OIPs possible means of providing the alternative pressure control.
 - Guidance related to possible use of a non-severe accident capable drywell vent within either the 7 day Sustained Operation period or before alternate containment heat removal and pressure control is established has been removed
 - Any discussion of post severe accident use of the drywell vent that is not severe accident capable per Order EA-13-109 has been moved to Section 1.3, Procedure Interface.
 - Any use of a drywell vent within the 7 day period of sustained operation or prior to establishing alternate containment heat removal will be severe accident capable

SAWA Equipment

Draft JLD-ISG-2015-01 Section 4.3.3

- NEI 13 02 will contain guidance for Phase 2 OIPs to describe how SAWA components will be powered including a timeline that shows that components are available to support SAWA in support of 545°F SADV or SAWM
 - Motive force for SAWA may include power or pneumatics for valves in the SAWA flow path and instrumentation
 - These motive force requirements are not within the scope of the installed 24 hour dedicated equipment requirements of the Order
 - For less than 24 hours, an Order EA-12-049 Level "A" validation under severe accident conditions will be used to demonstrate acceptability (treated similar to a "Time Sensitive Action" (TSA))
 - Providing installed dedicated 24 hour motive force is an acceptable option

EA-12-049 Validation Process (4.3.3)

- Outlines a process that may be used by licensees to reasonably assure required tasks, manual actions and decisions for FLEX strategies are feasible and may be executed within the constraints identified
 - A graded approach for validation is used in order to apply a higher level of detail and rigor to validations for TSAs that occur shortly after the event. This is the timeframe where personnel resources would be assumed to be at minimum administrative staffing levels. Resources to accomplish the TSA are considered in the application of validation methods.
 - Identify the tasks, manual actions and/or decisions that require validation
 - Select the appropriate graded approach (Level A, B or C as discussed below) for the applicable decisions and/or actions

> Level A: Used for TSAs started within the first 6 hours

- > Level B: Used for TSAs started between 6 and 24 hours after the event
- Level C: Other tasks or manual actions in the OIP/FIP that are labor intensive or require significant coordination
- Level A will be selected for all SAWA TSAs required within the first 24 hours

Required Instruments for SAWM (4.3.3)

- NEI 13-02 Appendices C and I will include guidance regarding functional requirements such as how power to required instruments is ensured
 - -Includes portable and installed instruments
 - Portable instruments will typically be included as part of the SAWA pump skid mounted equipment

SAWM Installed Instruments (4.3.3)

- Installed SAWM instruments are the same is those discussed in the Phase 1 guidance
 - Design basis instruments with Technical Specification post accident functions
 - Designed to meet Regulatory Guide (RG) 1.97 requirements or similar qualification for pre-RG 1.97 plants
 - Evaluations performed per HCVS-WP-02 will demonstrate HCVS integrated dose will be bounded by design basis accident integrated dose
 - Post ELAP initial power provided by plant DC or AC through inverters
 - Powered by FLEX equipment before battery power is depleted as part of FLEX mitigation strategy (already evaluated)
 - Not necessary until SAWA flow needs to be controlled to implement the SAWM strategy
 - Phase 2 OIPs will describe how these instruments will be powered through the period of sustained operation or until alternate containment heat removal is established

Conclusion

- SAWM is a viable strategy for meeting Option
 B.2 of EA-13-109
- 545°F design boundary condition confirmed acceptable with SAWA
- HCV-WP-03 provides methods to address combustible gas challenges to HCVS design