

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY NATIONAL EXPOSURE RESEARCH LABORATORY Research Triangle Park, NC 27711

Office of Research and Development

March 2, 2015

Br. 2

Docket No. 03008631 License No. 32-14048-04 Control No. 580712 Jug Mr. Dennis Lawyer U.S. Nuclear Regulatory Commission, Region I 2100 Renaissance Boulevard, Suite 100 King of Prussia, PA 19406-2713

Request for License Amendment || Dated March 2, 2015.

Dear Mr. Lawyer:

The U. S. Environmental Protection Agency (EPA) has ceased activities associated with radioactive materials at the Reproductive Toxicology Facility (RTF) located at 2525 Highway NC 54, Durham, North Carolina and is requesting an amendment to License No. 32-14048-04 to remove this location of use. The EPA notified the U.S. Nuclear Regulatory Commission (NRC) by letter dated May 1, 2013 (ML13134A199) about the program change and planned cessation of activities at the RTF, a leased building location. The main purpose of the May 1, 2013 letter was to notify the NRC about the timeline for vacating the facility. The last day of the current lease is April 24, 2015. The NRC accepted this notification on July 22, 2013 (ML13207A088). The NRC also indicated that a simplified MARSSIM survey would be required to demonstrate that the facility meets the NRC release criteria.

The RTF is one building with biomedical research laboratories. EPA has reasonably expected the building to be suitable for unrestricted release in accordance with NRC requirements based on use history. The EPA subsequently determined the building to be in Decommissioning Group 2. [NUREG-1757, Vol1, Rev 3, p. 9-1] No persistent contamination of work areas, nor building surfaces nor surface soil contamination has ever occurred. EPA has determined radionuclides of potential concern include longer half-life Hydrogen-3 and Carbon-14.

In preparation for conducting the final status survey, the Radiation Safety Office first performed operational clearance and exit surveys of each radioactive material use laboratory in accordance

{Over Please . . .}

586227 NMSS/RGNI MATERIALS-002

Page 1 of 3

with the site Radiation Safety Manual. No residual contamination was found. Next, AMEC Environment & Infrastructure, Inc. performed a scoping survey to make a better determination to support the design of a final status survey. Radiation scan surveys, direct static measurements and wipe samples were collected in representative areas of the RTF:

- 1. laboratory countertops and cabinets (71 samples)
- 2. chemical fume hoods (18 samples with 18 corresponding exhaust duct samples)
- 3. biological safety cabinet (16 samples)
- 4. sink traps (112 samples)
- 5. cold room [walk in refrigerated storage area] (4 samples)
- 6. rooftop filter and exhaust units (85 samples)
- 7. building vacuum system trap and strainer [consolidated system] (2 samples)
- 8. hazardous waste storage trailer. (4 samples)

For analysis, a combination of field screening and laboratory analysis was performed. The discussion of these eight representative areas surveyed appears in the larger Environmental Due Diligence Phase II Report. The results of the scoping survey by location are summarized in Figures 9C-9L (enclosure). All radiological results were less than the screening criteria of 5,000 dpm/100 cm² (total) and 1,000 dpm/100 cm² (removable) for beta radiation. Therefore, the final status survey design was for a Class 3 area because the impacted areas of the RTF are not expected to have measurable residual radioactivity above a small fraction of the release criterion and little or no potential for small areas of elevated activity.

In support of the submission of the NRC Form 314:

- 1. All activities authorized by License 32-14048-04 have ceased at the location specified in 10. A. 2525 Highway NC54, Durham, North Carolina.
- All radioactive materials procured and/or possessed by the licensee under License 32-14048-04 at the location specified in 10. A. – 2525 Highway NC54, Durham, North Carolina, have been transferred to the location specified in 10. D. – 109 T. W. Alexander Drive, Research Triangle Park, North Carolina.
- 3. All remaining radioactive waste associated with the location specified in 10. A. 2525 Highway NC54, Durham, North Carolina has already been dispositioned.
- 4. A Final Status Survey Report is enclosed. This report provides the documentation of the radiation survey conducted by AMEC Environmental & Infrastructure, Inc. for the EPA. The survey confirms that any remaining residual radioactivity is within the limits of 10 CFR 20, Subpart E, and is as low as reasonably achievable (ALARA). This report is furnished in one binder.

Additionally, a single CD-ROM electronic copy of the entire hardcopy submittal is provided in Adobe Acrobat Reader Portable Document Format (Adobe PDF)

In summary, the RTF meets the NRC criteria for unrestricted use and EPA requests that the RTF be removed from the 32-14048-04 license as soon as possible, no later than April 24, 2015.

Thank you for your attention to this request. Please contact me if you need any additional information regarding this license amendment request at 919-541-4307.

Sincerely, Jode W. Baken

Todd W. Baker, MSPH, CHP Radiation Safety Officer

Enclosures: [1] NRC Form 314; dated March 2, 2015. 2 pages in length.
[2] Figure 9C through Figure 9L Sampling Results, Radiation 1st or 2nd Floor Laboratories; 10 pages in length.
[3] EPA RTF Radiological Summary (Scoping Survey) table; 8 pages in length.
[4] Final Status Survey Report, U. S. Environmental Protection Agency, Reproductive Toxicology Facility (RTF) dated February 10, 2015; 114 pages in length including Appendix.
[5] CD-ROM containing Adobe Acrobat Files of this submittal.

cc:

Mr. Timothy H. Watkins, Senior Management Designee to the Radiation Safety Committee (w/o enclosures)
Dr. Michael F. Hughes, Chair, Radiation Safety Committee, (w/o enclosures)
Mr. Ritchie Buschow, Assistant Radiation Safety Officer, (w/o enclosures)

RTF Environmental Due Diligence Process Project File (w/o enclosures) Material License File

Reading File (w/o enclosures) RSO File (w/o enclosures)

NRC FORM 314	APPROVED BY OMB: NO. 3150-0028	EXPIRES: 02/28/2017
(02-2014) 10 CFR 30.36(j)(1); and 72.54(k)(5)(1)(1) CERTIFICATE OF DISPOSITION OF MATERIALS	Estimated burden per response to comply with this mand used by NRC as part of the basis for its determination in comments regarding burden estimate to the FOIA, Privac Nuclear Regulatory Commission, Washington, DC 2 Resource@nrc.gov, and to the Desk Officer, Office o (3150-0028), Office of Management and Budget, Wash information collection does not display a currently valid sponsor, and a person is not required to respond to, the in	hat the facility is released for unrestricted use. Sond y, and Information Collections Branch (T-5 F53), U.S. 3555-001, or by internet e-mail to Infocollects. f Information and Regulatory Affairs, NEOB-10202, ington, DC 20503, If a means used to impose an OMB control number, the NRC may not conduct or
LICENSEE NAME AND ADDRESS	LICENSE NUMBER	DOCKET NUMBER
U.S. Environmental Protection Agency 109 T.W. Alexander Drive	32-14048-04	
Research Triangle Park, (Durham) North Carolina	LICENSE EXPIRATION DATE	·
27709	July 31,	2024
A. LICENSE STATUS (Check the	appropriate box)	
This license has expired. This license has not yet expired; please		
B. DISPOSAL OF RADIOACT		
(Check the appropriate boxes and complete as necessary. If a		ttachments)
The licensee, or any individual executing this certificate on behalf of the licens		
1. No radioactive materials have ever been procured or possessed by		accord by the linearco
2. All activities authorized by this license have ceased, and all radioac under this license number cited above have been disposed of in the		ssessed by the licensee
✓ a. Transfer of radioactive materials to the licensee listed below:		
(Same License) authorized location 109 T. W. Alexander Drive,	Research Triangle Park, North C	Carolina
[The Main Campus location.]		
\checkmark 1. Directly by the licensee:		
Discharge to Sanitary Sewer / Decay in storage / License	d incineration	
2. By licensed disposal site:		
to		
✓ 3. By waste contractor:		
October 29, 2014 last shipment from 2525 Highway NC : Diversified Scientific Services, Inc., 657 Gallaher Road, 1		nmental Group, Inc., to
✓ c. All radioactive materials have been removed such that any remain Part 20, Subpart E, and is ALARA.	-	the limits of 10 CFR
C. SURVEYS PERFORMED A	ND REPORTED	
1. A radiation survey was conducted by the licensee. The survey confirm	ns:	
\checkmark a. the absence of licensed radioactive materials		
\checkmark b. that any remaining residual radioactivity is within the limits of 10 0	CFR 20, Subpart E, and is ALARA	۸. <u> </u>
2. A copy of the radiation survey results:		
a. is attached; or b. is not attached (Provide explanation); or	c. was forwarded to NRC on:	
3. A radiation survey is not required as only sealed sources were ever p	ossessed under this license, and	Date
a. The results of the latest leak test are attached; and/or	b. No leaking sources have eve	r been identified.
The person to be contacted regarding the information provided on this form:	· · · · · · · · · · · · · · · · · · ·	
NAME TITLE	TELEPHONE (Include Area Code) E-MAIL	ADDRESS
Fodd W. Baker Health Physicist-Radiation Safety Officer Officer	919-541-4307 bake	r.todd@epa.gov
Mail all future correspondence regarding this license to: U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Radiation S	afety Office Mail Code D242 03	Research Triangle Park
North Carolina, 27711		, resolution infangie f alk,
C. CERTIFYING OFF I CERTIFY UNDER PENALTY OF PERJURY THAT THE		ст
PRINTED NAME AND TITLE SIGNATURE	701	DATE
Todd W. Baker, Radiation Safety Officer Acting Director, Safety Health and Environmental Mgmnt. Office	W. Baker	03/02/2015
NARNING: FALSE STATEMENTS IN THIS CERTIFICATE MAY BE SUBJECT TO CIVIL AND/OR SUBMISSIONS TO THE NRC BE COMPLETE AND ACCURATE IN ALL MATERIAL RESPECT. 18 NILLFULLY FALSE STATEMENT OR REPRESENTATION TO ANY DEPARTMENT OR AGENCY	U.S.C. SECTION 1001 MAKES IT A CRI	MINAL OFFENSE TO MAKE A
NRC FORM 314 (02-2014)		

CERTIFICATE OF DISPOSITION OF MATERIALS

PLEASE READ THESE INSTRUCTIONS BEFORE COMPLETING NRC FORM 314.

Subpart E of 10 CFR Part 20 establishes the radiological criteria for license terminations/decommissioning of facilities licensed under 10 CFR Parts 30, 40, 50, 60, 61, 70, and 72, as well as other facilities subject to the Commission's jurisdiction under the Atomic Energy Act of 1954, as amended, and the Energy Reorganization Act of 1974, as amended.

INSTRUCTIONS

Section B, Item 2.

Licensees should describe the specific radioactive material transfer actions. If radioactive wastes were generated in terminating this license, the licensee should describe the disposal actions taken, including the disposition of low-level radioactive waste, mixed waste, greater-than-Class-C waste, and sealed sources.

Section B, Item 2.a.

The information provided concerning the transfer of radioactive material to another licensee should specify the date of the transfer, the name of the licensee recipient, an individual contact name and telephone number for the licensee recipient, and the recipient's NRC or Agreement State license number.

Section B, Item 2.b.

For disposal of radioactive materials, licensees should describe the specific disposal method or procedure (e.g., decay-in-storage). For those cases when radioactive materials are disposed of by a licensed disposal site or by a waste contractor, the licensee should specify the name, address, and telephone number of the licensee disposal site operator or waste contractor.

Section B, Item 2.c.

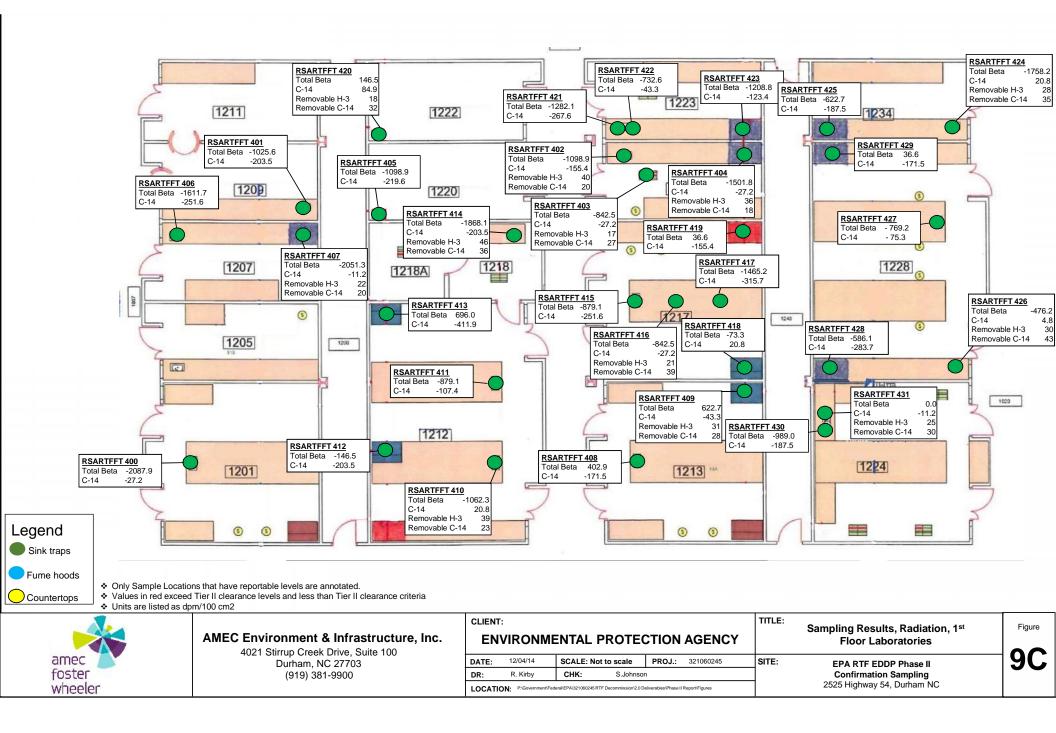
"Residual radioactivity," as defined in 10 CFR 20.1003, means radioactivity in 'areas' (structures, materials, soils, etc.) remaining as a result of activities (licensed and unlicensed) under the licensee's control from sources used by the licensee, excluding background radiation. ALARA is defined in 10 CFR 20.1003.

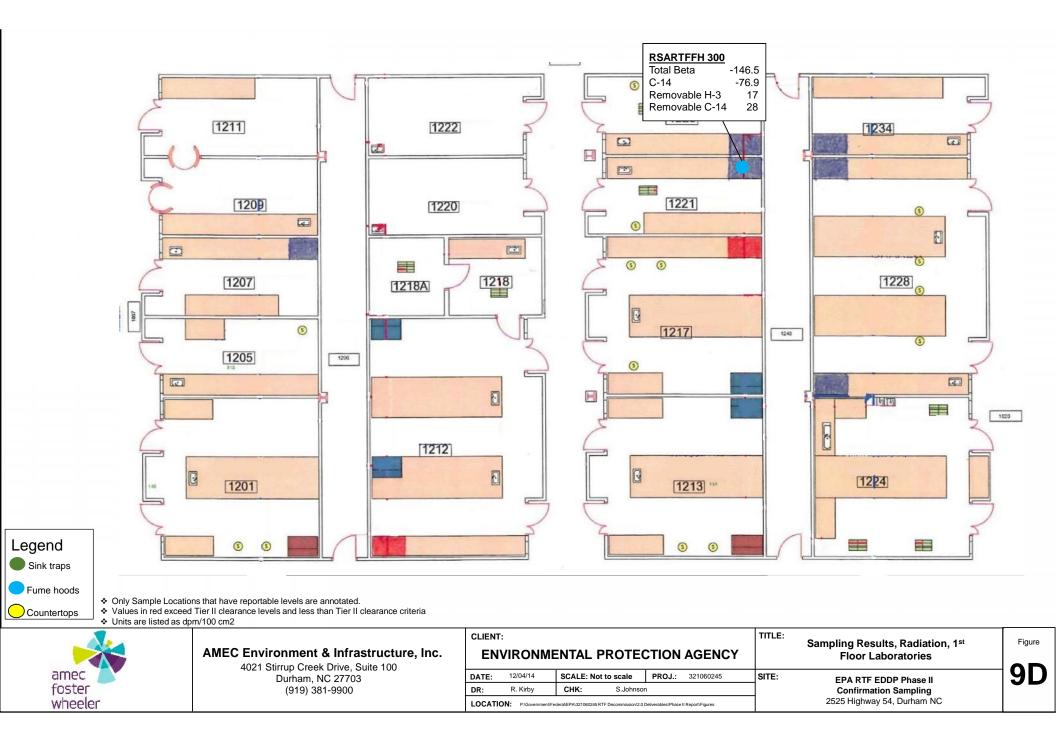
FILE CERTIFICATES AS FOLLOWS:

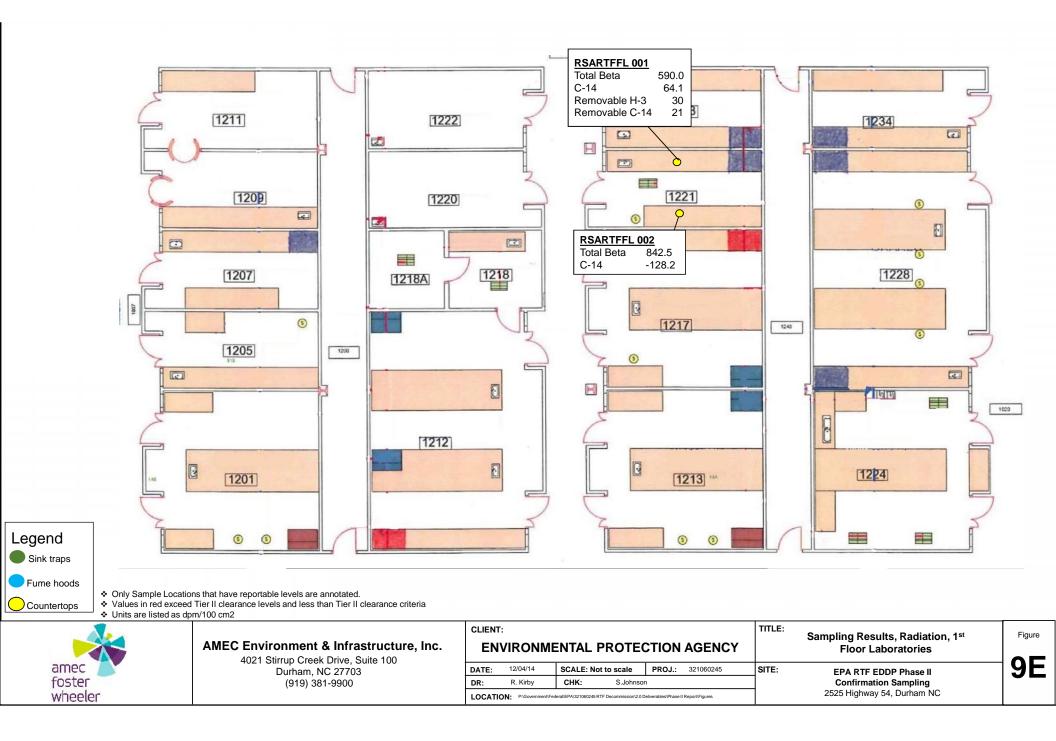
IF YOU ARE LOCATED IN:

ALABAMA, CONNECTICUT, DELAWARE, DISTRICT OF COLUMBIA, FLORIDA, GEORGIA, KENTUCKY, MAINE, MARYLAND, MASSACHUSETTS, NEW HAMPSHIRE, NEW JERSEY, NEW YORK, NORTH CAROLINA, PENNSYLVANIA, PUERTO RICO, RHODE ISLAND, SOUTH CAROLINA, TENNESSEE, VERMONT, VIRGINIA, VIRGIN ISLANDS, OR WEST VIRGINIA, SEND CERTIFICATES TO:

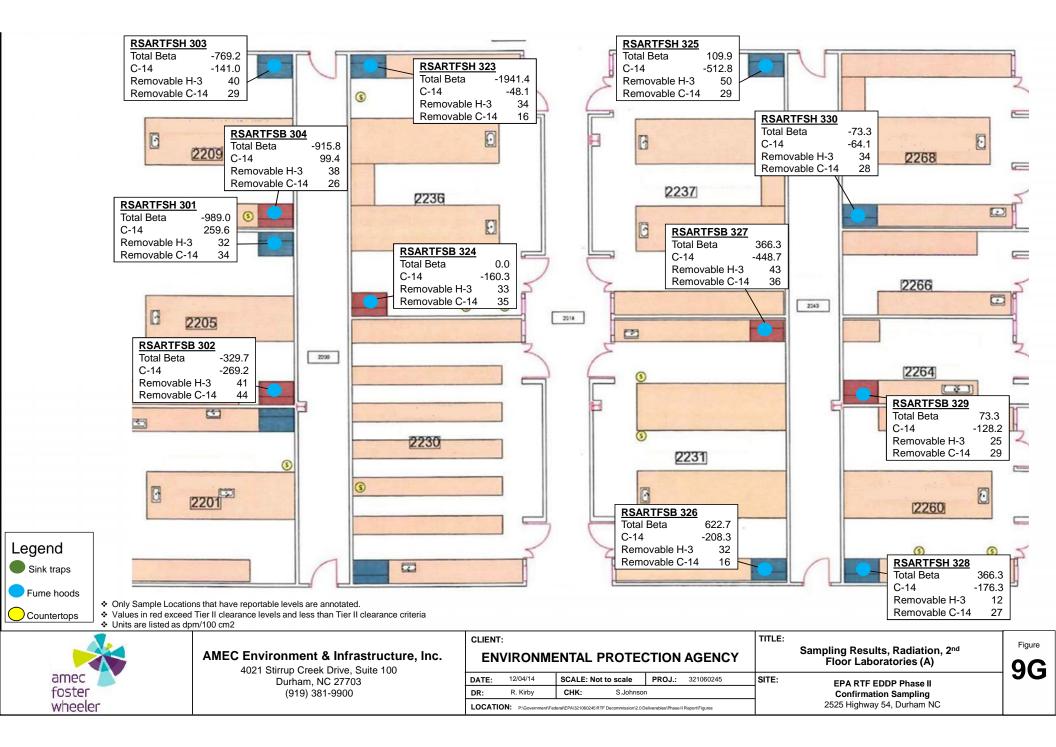
LICENSING ASSISTANT SECTION NUCLEAR MATERIALS SAFETY BRANCH U.S. NUCLEAR REGULATORY COMMISSION, REGION I 2100 RENAISSANCE BOULEVARD, SUITE 100 KING OF PRUSSIA, PA 19406-2713

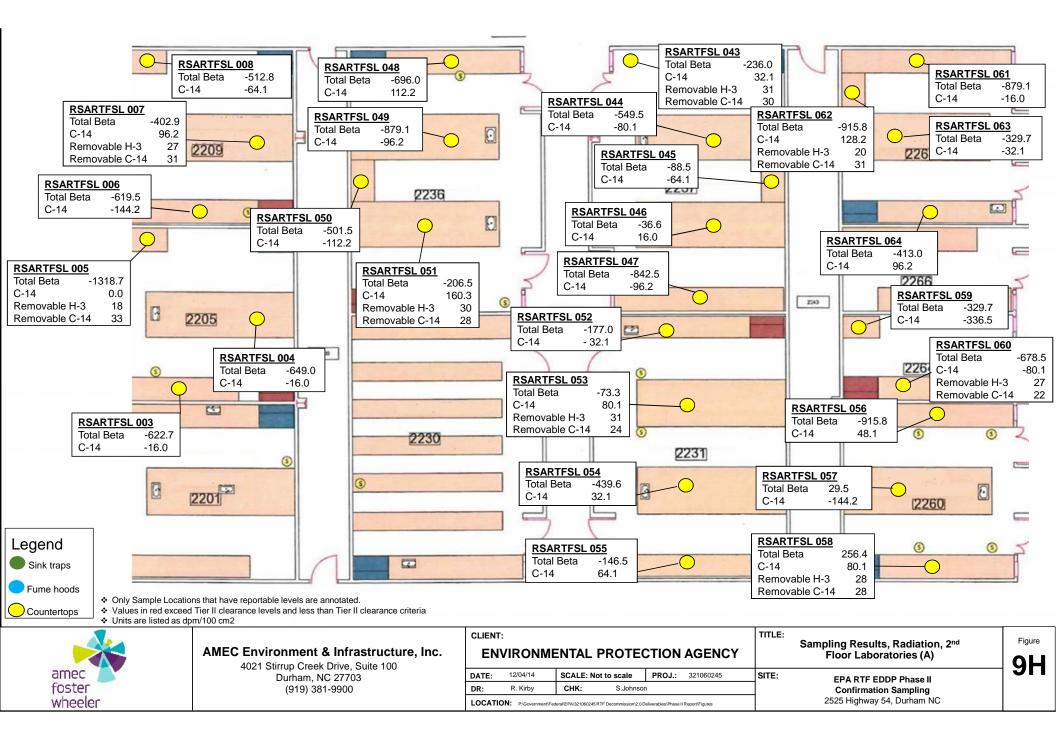

ILLINOIS, INDIANA, IOWA, MICHIGAN, MINNESOTA, MISSOURI, OHIO, OR WISCONSIN, SEND CERTIFICATES TO:

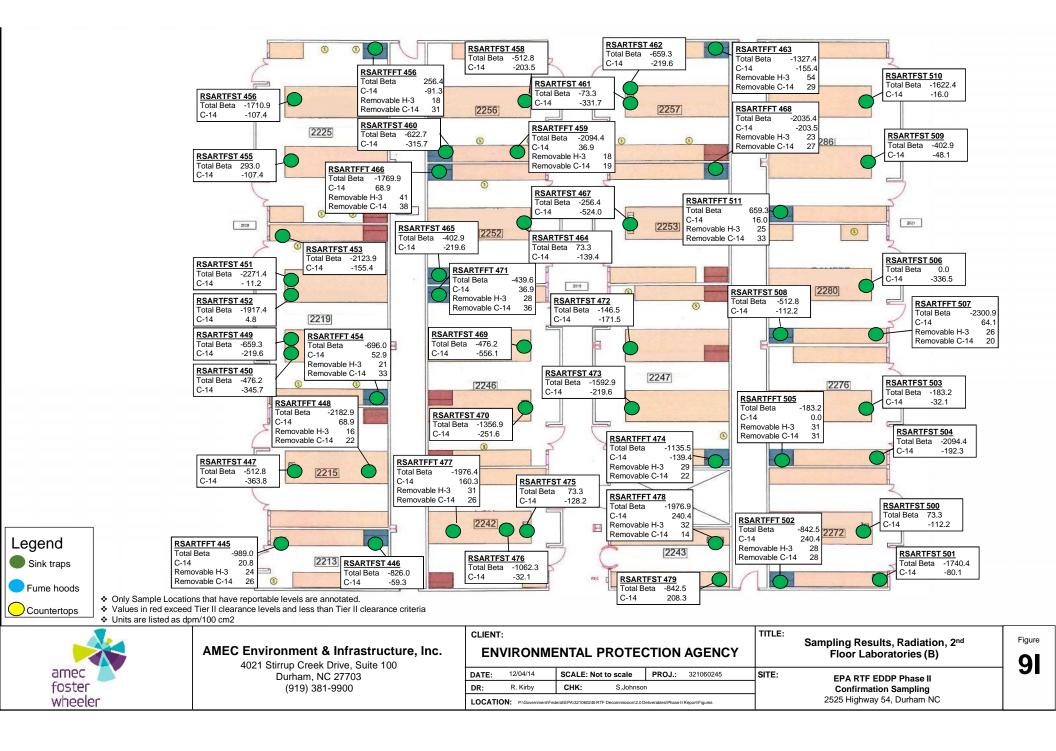

MATERIALS LICENSING SECTION U.S. NUCLEAR REGULATORY COMMISSION, REGION III 2443 WARRENVILLE ROAD, SUITE 210 LISLE, IL 60532-4352

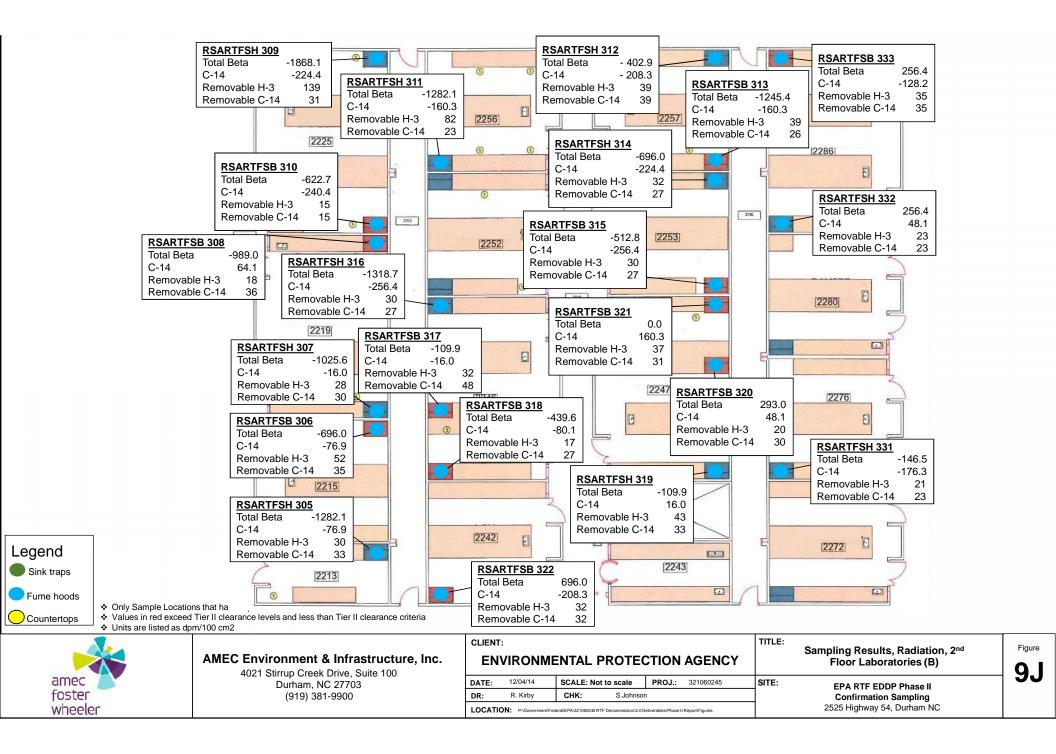

IF YOU ARE LOCATED IN:

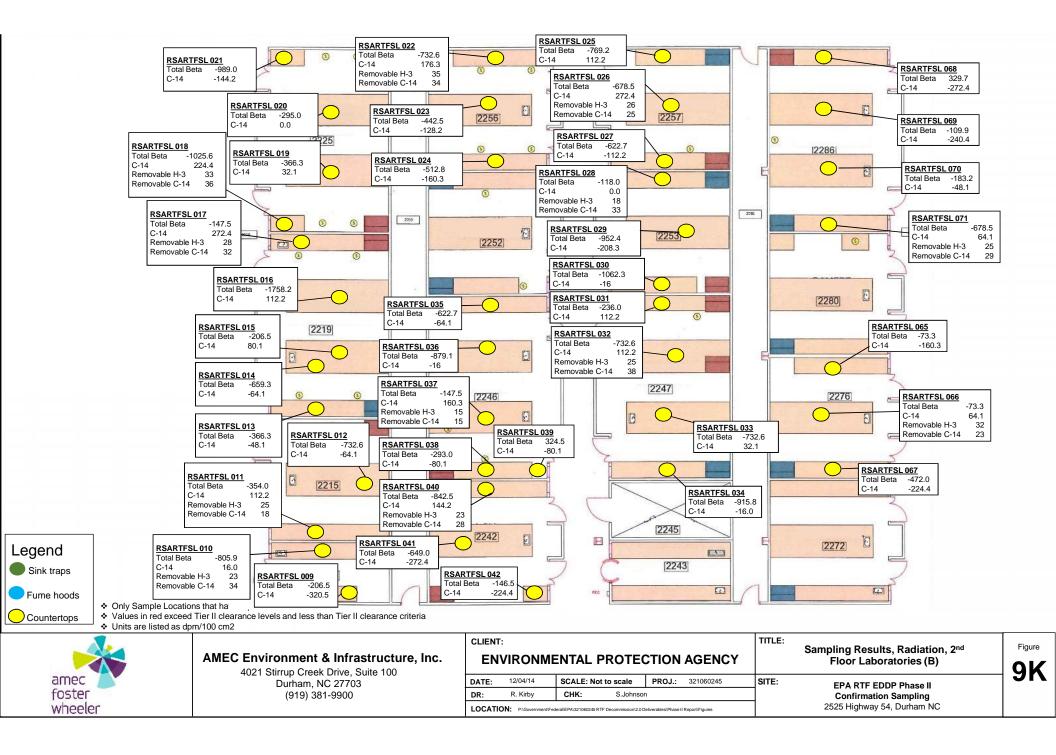
ALASKA, ARIZONA, ARKANSAS, CALIFORNIA, COLORADO, HAWAII, IDAHO, KANSAS, LOUISIANA, MISSISSIPPI, MONTANA, NEBRASKA, NEVADA, NEW MEXICO, NORTH DAKOTA, OKLAHOMA, OREGON, PACIFIC TRUST TERRITORIES, SOUTH DAKOTA, TEXAS, UTAH, WASHINGTON, OR WYOMING, SEND CERTIFICATES TO:

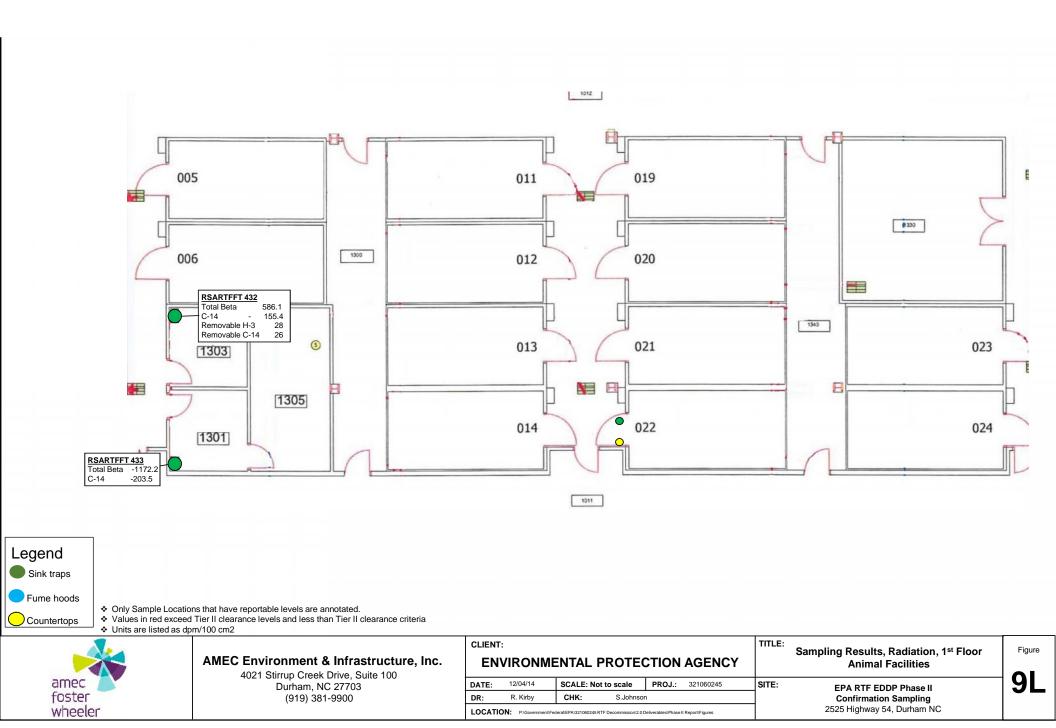

MATERIAL RADIATION PROTECTION SECTION U. S. NUCLEAR REGULATORY COMMISSION, REGION IV 1600 E. LAMAR BOULEVARD ARLINGTON, TX 76011-4511











		On-Site		LS	SC
		Total	Removable	Removable	Removable
		Beta	Beta	H-3	C-14
		DPM/	DPM/	DPM/	DPM/
Description	Sample ID	100cm ²	100cm ²	100cm ²	100cm ²
Filter / housing	RSAFRFRF 101	-439.6	-96.2		
Filter / housing	RSAFRFRF 102	2637.4	48.1		
Filter / housing	RSAFRFRF 103	2930.4	112.2		
Filter / housing	RSAFRFRF 104	-1758.2	-288.5		
Filter / housing	RSAFRFRF 105	-1391.9	-16.0		
Filter / housing	RSAFRFRF 106	146.5	192.3	38	21
Filter / housing	RSAFRFRF 107	-36.6	-192.3		
Filter / housing	RSAFRFRF 110	-439.6	-16.0		
Filter / housing	RSAFRFRF 111	-402.9	160.3	15	37
Filter / housing	RSAFRFRF 112	402.9	-272.4		
Filter / housing	RSAFRFRF 115	-842.5	-64.1		
Filter / housing	RSAFRFRF 116	-293.0	176.3	25	17
Filter / housing	RSAFRFRF 117	-1575.1	80.1		
Filter / housing	RSAFRFRF 118	-1501.8	0.0		
Filter / housing	RSAFRFRF 121	1465.2	-96.2		
Filter / housing	RSAFRFRF 123	3260.1	64.1		
Filter / housing	RSAFRFRR 108	-2527.5	-80.1		
Filter / housing	RSAFRFRR 109	-1428.6	-176.3		
Filter / housing	RSAFRFRR 113	-1135.5	64.1		
Filter / housing	RSAFRFRR 114	-1062.3	-128.2		
Filter / housing	RSAFRFRR 119	-2967.0	160.3	29	28
Filter / housing	RSAFRFRR 120	-3076.9	-144.2	20	20
Filter / housing	RSAFRFRR 122	-329.7	112.2	16	31
Filter / housing	RSAFRFRR 124	-2087.9	-288.5		01
Filter / housing	RSARTFRF 125	-3186.8	-80.1		
Filter / housing	RSARTFRF 126	-2564.1	16.0		
Filter / housing	RSARTFRF 127	-1794.9	-288.5		
Filter / housing	RSARTFRF 128	-1282.1	-112.2		
Filter / housing	RSARTFRF 129	-3296.7	-16.0		
Filter / housing	RSARTFRF 130	-4065.9	208.3	49	26
Filter / housing	RSARTFRF 131	-3076.9	0.0		
Filter / housing	RSARTFRF 132	-3370.0	-208.3		
Filter / housing	RSARTFRF 133	-3260.1	80.1	67	25
Filter / housing	RSARTFRF 134	-3113.6	-368.6		20
Filter / housing	RSARTFRF 135	-3113.6	272.4	21	31
Filter / housing	RSARTFRF 136	-3150.2	-352.6	21	01
Filter / housing	RSARTFRF 137	-3150.2	64.1		
Filter / housing	RSARTFRF 138	-2161.2	-16.0		
Filter / housing	RSARTFRF 139	-3003.7	-96.2		
Filter / housing	RSARTFRF 140	-1904.8	160.3		
Filter / housing	RSARTFRF 140	-1391.9	-112.2		
Filter / housing	RSARTFRF 141	-2197.8	96.2	38	31
Filter / housing	RSARTFRF 142 RSARTFRF 143	-3370.0	-112.2	30	31
Filter / housing	RSARTFRF 143	-2893.8	-112.2		
	RSARTFRF 144 RSARTFRF 145	-2693.8 -3626.4	-208.3		
Filtor / housing		- anzn 4	-//0.3		
Filter / housing Filter / housing	RSARTFRF 146	-2637.4	-112.2		

On-Site LSC Total Removable Removable Removable C-14 Beta H-3 Beta DPM/ DPM/ DPM/ DPM/ Description Sample ID 100cm² 100cm² 100cm² 100cm² **RSARTFRF 148** Filter / housing -3223.4 -304.5 Filter / housing **RSARTFRF 149** -3370.0 -64.1Filter / housing **RSARTFRF 150** -4945.1 -80.1 Filter / housing **RSARTFRF 151** -1465.2 -304.5 Filter / housing **RSARTFRF 152** -4725.3 -176.3 Filter / housing RSARTFRF 153 -4249.1 -352.6 Filter / housing 1465.2 -64.1 27 51 **RSARTFRF 154** RSARTFRF 155 Filter / housing 1648.4 -256.4 Filter / housing **RSARTFRF 156** 2234.4 -160.3 Filter / housing **RSARTFRF 157** -2783.9 -208.3 **RSARTFRF 158** Filter / housing -3223.4 -80.1 -224.4 Filter / housing RSARTFRF 159 -2893.8 -3772.9 Filter / housing **RSARTFRF 160** -160.3 Filter / housing **RSARTFRF 161** -3663.0 -80.1 Filter / housing **RSARTFRF 162** 3150.2 -173.1 Filter / housing **RSARTFRF 163** 195.5 1685.0 Filter / housing **RSARTFRF 164** -3076.9 67.3 Filter / housing RSARTFRF 165 -1135.5 131.4 Filter / housing **RSARTFRF 176** -4029.3 115.4 **RSARTFRF 177** -2710.6 -76.9 Filter / housing Filter / housing **RSARTFRR 166** -2197.8 227.6 45 30 Filter / housing **RSARTFRR 167** -1428.6 -189.1 Filter / housing **RSARTFRR 168** -3113.6 19.2 Filter / housing **RSARTFRR 169** -2161.2 163.5 Filter / housing -2674.0-76.9 **RSARTFRR 170** -3443.2 Filter / housing **RSARTFRR 171** -189.1 Filter / housing **RSARTFRR 172** -2490.8 307.7 27 26 Filter / housing -3113.6 35.3 **RSARTFRR 173** Filter / housing **RSARTFRR 174** 2674.0 19.2 Filter / housing 1208.8 -92.9 RSARTFRR 175 -1575.1 147.4 Filter / housing **RSARTFRR 178** Filter / housing **RSARTFRR 179** -1721.6 323.7 36 20 -2197.8 -12.8 Filter / housing **RSARTFRR 180** -2344.3 163.5 Filter / housing **RSARTFRR 181** Filter / housing **RSARTFRR 182** -2674.0 99.4 Filter / housing **RSARTFRR 183** -2014.7 195.5 -2527.5 Filter / housing **RSARTFRR 184** -92.9Filter / housing **RSARTFRR 185** -1941.4-44.9 Cold room **RSARTFSC 376** -696.0 259.6 27 28 Cold room **RSARTFSC 377** -1831.5 195.5 Cold room **RSARTFSC 378** -1868.1 195.5 Cold room **RSARTFSC 379** -2087.9 195.5

EPA RTF Radiological Summary

-269.2

99.4

-76.9

64.1

-240.4

41

38

52

18

15

44 26

35

36

15

-329.7

-915.8

-696.0

-989.0

-622.7

RSARTFSB 302

RSARTFSB 304

RSARTFSB 306

RSARTFSB 308

RSARTFSB 310

BSC

BSC

BSC

BSC

BSC

		On-Site		LS	SC 33
		Total Beta	Removable Beta	Removable H-3	Removable C-14
		DPM/	DPM/	DPM/	DPM/
Description	Sample ID	100cm ²	100cm ²	100cm ²	100cm²
BSC	RSARTFSB 313	-1245.4	-160.3	39	26
BSC	RSARTFSB 315	-512.8	-256.4	30	27
BSC	RSARTFSB 317	-109.9	-16.0	32	48
BSC	RSARTFSB 318	-439.6	-80.1	17	27
BSC	RSARTFSB 320	293.0	48.1	20	30
BSC	RSARTFSB 321	0.0	160.3	37	31
BSC	RSARTFSB 322	696.0	-208.3	32	32
BSC	RSARTFSB 324	0.0	-160.3	33	35
BSC	RSARTFSB 327	366.3	-448.7	43	36
BSC	RSARTFSB 329	73.3	-128.2	25	29
BSC	RSARTFSB 333	256.4	-128.2	35	35
Hoods	RSARTFFH 300	-146.5	-76.9	17	28
Hoods	RSARTFSH 301	-989.0	259.6	32	34
Hoods	RSARTFSH 303	-769.2	-141.0	40	29
Hoods	RSARTFSH 305	-1282.1	-76.9	30	33
Hoods	RSARTFSH 307	-1025.6	-16.0	28	30
Hoods	RSARTFSH 309	-1868.1	-224.4	139	31
Hoods	RSARTFSH 311	-1282.1	-160.3	82	23
Hoods	RSARTFSH 312	-402.9	-208.3	39	39
Hoods	RSARTFSH 314	-696.0	-224.4	32	27
Hoods	RSARTFSH 316	-1318.7	-256.4	30	27
Hoods	RSARTFSH 319	-109.9	16.0	43	33
Hoods	RSARTFSH 323	-1941.4	-48.1	34	16
Hoods	RSARTFSH 325	109.9	-512.8	50	29
Hoods	RSARTFSH 326	622.7	-208.3	32	16
Hoods	RSARTFSH 328	366.3	-176.3	12	27
Hoods	RSARTFSH 330	-73.3	-64.1	34	28
Hoods	RSARTFSH 331	-146.5	-176.3	21	23
Hoods	RSARTFSH 332	256.4	48.1	23	23
Hoods	RSARTFFH 900	200.4	-96.2	42	20
Hoods	RSARTFSH 901		240.4	55	17
Hoods	RSARTFSH 902		-96.2	61	19
Hoods	RSARTFSH 903		-496.8	64	32
	RSARTFSH 904		-490.8	79	32
Hoods Hoods	RSARTFSH 904		-224.4	79	24
Hoods	RSARTFSH 905		32.1	85	24 19
Hoods	RSARTFSH 907		256.4	32	20
Hoods	RSARTFSH 908		112.2	71	19
Hoods	RSARTFSH 909		-32.1	168	30
Hoods	RSARTFSH 910		-48.1	72	20
Hoods	RSARTFSH 911		-144.2	50	20
Hoods	RSARTFSH 912		-160.3	11	18
Hoods	RSARTFSH 913		-80.1	169	26
Hoods	RSARTFSH 914		-96.2	34	17
Hoods	RSARTFSH 915		-96.2	97	23
Hoods	RSARTFSH 916		-224.4	54	17
Hoods	RSARTFSH 917		-144.2	40	23

On-Site LSC Total Removable Removable Removable H-3 C-14 Beta Beta DPM/ DPM/ DPM/ DPM/ Description Sample ID 100cm² 100cm² 100cm² 100cm² **RSARTFFL 001** Countertop 590.0 64.1 30 21 Countertop **RSARTFFL 002** 842.5 -128.2RSARTFSL 003 -622.7 -16.0 Countertop Countertop **RSARTFSL 004** -649.0 -16.0 Countertop **RSARTFSL 005** -1318.7 18 33 0.0 Countertop RSARTFSL 006 -619.5 -144.2RSARTFSL 007 -402.9 96.2 27 31 Countertop RSARTFSL 008 -64.1 Countertop -512.8 -206.5 -320.5 Countertop RSARTFSL 009 23 Countertop **RSARTFSL 010** -805.9 16.0 34 RSARTFSL 011 18 Countertop -354.0 112.2 25 Countertop RSARTFSL 012 -732.6 -64.1 **RSARTFSL 013** -48.1 Countertop -366.3Countertop **RSARTFSL 014** -659.3 -64.1 Countertop **RSARTFSL 015** -206.5 80.1 **RSARTFSL 016** -1758.2 112.2 Countertop **RSARTFSL 017** -147.5 272.4 28 32 Countertop Countertop RSARTFSL 018 -1025.6 224.4 33 36 **RSARTFSL 019** -366.3 32.1 Countertop RSARTFSL 020 -295.0 Countertop 0.0 Countertop **RSARTFSL 021** -989.0 -144.2 **RSARTFSL 022** 176.3 35 34 Countertop -732.6 Countertop **RSARTFSL 023** -442.5 -128.2 **RSARTFSL 024** -512.8 -160.3 Countertop -769.2 112.2 Countertop **RSARTFSL 025** 272.4 26 25 Countertop **RSARTFSL 026** -678.5 **RSARTFSL 027** -622.7 -112.2 Countertop 33 **RSARTFSL 028** 18 Countertop -118.0 0.0 **RSARTFSL 029** -208.3 Countertop -952.4 Countertop RSARTFSL 030 -1062.3-16.0 112.2 **RSARTFSL 031** -236.0 Countertop Countertop RSARTFSL 032 -732.6 112.2 25 38 **RSARTFSL 033** -732.6 Countertop 32.1 **RSARTFSL 034** Countertop -915.8-16.0Countertop **RSARTFSL 035** -622.7 -64.1 Countertop RSARTFSL 036 -879.1 -16.0 Countertop RSARTFSL 037 -147.5160.3 15 15 Countertop RSARTFSL 038 -293.0 -80.1 Countertop **RSARTFSL 039** 324.5 -80.1 23 Countertop **RSARTFSL 040** -842.5 144.2 28 Countertop **RSARTFSL 041** -649.0 -272.4 Countertop **RSARTFSL 042** -146.5 -224.4 **RSARTFSL 043** -236.0 32.1 31 30 Countertop Countertop RSARTFSL 044 -549.5 -80.1 Countertop **RSARTFSL 045** -88.5 -64.1 **RSARTFSL 046** 16.0 Countertop -36.6 -96.2 Countertop RSARTFSL 047 -842.5

On-Site LSC Total Removable Removable Removable C-14 H-3 Beta Beta DPM/ DPM/ DPM/ DPM/ Description Sample ID 100cm² 100cm² 100cm² 100cm² **RSARTFSL 048** Countertop -696.0 112.2 Countertop **RSARTFSL 049** -879.1 -96.2Countertop **RSARTFSL 050** -501.5 -112.2 Countertop **RSARTFSL 051** 206.5 160.3 30 28 Countertop **RSARTFSL 052** -177.0-32.1 Countertop RSARTFSL 053 -73.3 80.1 31 24 Countertop **RSARTFSL 054** -439.6 32.1 Countertop RSARTFSL 055 -146.5 64.1 -915.8 48.1 Countertop RSARTFSL 056 Countertop RSARTFSL 057 29.5 -144.2 **RSARTFSL 058** Countertop 256.4 80.1 28 28 -336.5 Countertop RSARTFSL 059 -329.7 27 22 Countertop **RSARTFSL 060** -678.5 -80.1 Countertop **RSARTFSL 061** -879.1 -16.0 Countertop **RSARTFSL 062** -915.8 128.2 20 31 -32.1 **RSARTFSL 063** -329.7 Countertop **RSARTFSL 064** -413.0 96.2 Countertop Countertop RSARTFSL 065 -73.3 -160.3-73.3 32 23 Countertop **RSARTFSL 066** 64.1 RSARTFSL 067 -472.0 -224.4 Countertop Countertop **RSARTFSL 068** 329.7 -272.4 **RSARTFSL 069** -109.9 -240.4 Countertop -48.1 Countertop **RSARTFSL 070** -183.2 Countertop **RSARTFSL 071** 25 29 -678.5 64.1 **RSARTFFT 400** -2087.9 -27.2 Traps -1025.6 -203.5 Traps **RSARTFFT 401 RSARTFFT 402** -1098.9 -155.4 40 20 Traps 17 **RSARTFFT 403** -842.5 -27.2 27 Traps **RSARTFFT 404** -27.2 36 18 Traps -1501.8 RSARTFFT 405 -1098.9-219.6 Traps -251.6 **RSARTFFT 406** -1611.7 Traps **RSARTFFT 407** -2051.3 -11.2 22 20 Traps **RSARTFFT 408** 402.9 -171.5 Traps **RSARTFFT 409** 622.7 -43.3 28 Traps 31 Traps **RSARTFFT 410** -1062.320.8 39 23 -107.4 Traps **RSARTFFT 411** -879.1 -203.5 Traps **RSARTFFT 412** -146.5Traps **RSARTFFT 413** 696.0 -411.9 Traps **RSARTFFT 414** -1868.1 -203.5 46 36 **RSARTFFT 415** -879.1 -251.6 Traps 21 39 Traps **RSARTFFT 416** -842.5 -27.2 **RSARTFFT 417** -1465.2 -315.7 Traps **RSARTFFT 418** -73.3 20.8 Traps 36.6 -155.4 Traps RSARTFFT 419 Traps **RSARTFFT 420** 146.5 84.9 18 32 **RSARTFFT 421** -1282.1 -267.6 Traps Traps RSARTFFT 422 -732.6 -43.3

		On-Site		LS	SC
		Total Beta DPM/	Removable Beta DPM/	Removable H-3 DPM/	Removable C-14 DPM/
Description	Sample ID				
Description	Sample ID	100cm ²	100cm ²	100cm²	100cm ²
Traps	RSARTFFT 423	-1208.8	-123.4		
Traps T	RSARTFFT 424	-1758.2	20.8	28	35
Traps	RSARTFFT 425	-622.7	-187.5		10
Traps	RSARTFFT 426	-476.2	4.8	30	43
Traps	RSARTFFT 427	-769.2	-75.3		
Traps	RSARTFFT 428	-586.1	-283.7		
Traps	RSARTFFT 429	36.6	-171.5		
Traps	RSARTFFT 430	-989.0	-187.5		
Traps	RSARTFFT 431	0.0	-11.2	25	30
Traps	RSARTFFT 432	586.1	-155.4	28	26
Traps	RSARTFFT 433	-1172.2	-203.5		
Traps	RSARTFST 434	-36.6	-251.6		
Traps	RSARTFST 435	-944.0	-59.3	64	22
Traps	RSARTFST 436	-952.4	-139.4		
Traps	RSARTFST 437	-2448.4	-331.7		
Traps	RSARTFST 438	-737.5	-155.4		
Traps	RSARTFST 439	293.0	-155.4		
Traps	RSARTFST 440	-914.5	36.9	30	35
Traps	RSARTFST 441	329.7	-299.7		
Traps	RSARTFST 442	-1032.4	-283.7		
Traps	RSARTFST 443	-256.4	-43.3		
Traps	RSARTFST 444	-1150.4	-11.2	22	34
Traps	RSARTFST 445	-989.0	20.8	24	26
Traps	RSARTFST 446	-826.0	-59.3	27	20
Traps	RSARTFST 440	-512.8	-363.8		
	RSARTFST 447	-2182.9	-303.8	16	22
Traps Traps	RSARTFST 448	-659.3	-219.6	10	22
Traps Traps	RSARTFST 449	-476.2	-315.7		
Traps Traps	RSARTFST 450	-470.2	-315.7		
Traps	RSARTFST 451 RSARTFST 452				
Traps		-1917.4	4.8		
Traps	RSARTFST 453	-2123.9	-155.4	01	00
Traps	RSARTFST 454	-696.0	52.9	21	33
Traps T	RSARTFST 455	293.0	-107.4		
Traps	RSARTFST 456	-1710.9	-107.4	10	
Traps	RSARTFST 457	256.4	-91.3	18	31
Traps	RSARTFST 458	-512.8	-203.5		
Traps	RSARTFST 459	-2094.4	36.9	18	19
Traps	RSARTFST 460	-622.7	-315.7		
Traps	RSARTFST 461	-73.3	-331.7		
Traps	RSARTFST 462	-659.3	-219.6		
Traps	RSARTFST 463	-1327.4	-155.4	54	29
Traps	RSARTFST 464	73.3	-139.4		
Traps	RSARTFST 465	-402.9	-219.6		
Traps	RSARTFST 466	-1769.9	68.9	41	38
Traps	RSARTFST 467	-256.4	-524.0		
Traps	RSARTFST 468	-2035.4	-203.5	23	27
Traps	RSARTFST 469	-476.2	-556.1		

		On-Site		LS	SC 03
		Total Beta DPM/	Removable Beta DPM/	Removable H-3 DPM/	Removable C-14 DPM/
Description	Sample ID	100cm ²	100cm ²	100cm ²	100cm ²
•	RSARTFST 470	-1356.9	-251.6		
Traps Traps	RSARTFST 470	-439.6	-251.6	28	36
Traps Traps	RSARTFST 471	-439.0	-171.5	20	
Traps	RSARTFST 472 RSARTFST 473	-146.5	-171.5		
Traps	RSARTFST 473	-1592.9	-219.6	29	22
Traps	RSARTFST 474 RSARTFST 475	73.3	-139.4	29	22
Traps	RSARTFST 475	-1062.3			
Traps			-32.1	21	26
Traps	RSARTFST 477	-1976.4	160.3	31	26
Traps	RSARTFST 478	-1946.9	240.4	32	14
Traps	RSARTFST 479 RSARTFST 480	-842.5	208.3		
Traps		-1445.4	-208.3	25	22
Traps	RSARTFST 481	-769.2	-32.1	35	32
Traps -	RSARTFST 482	-622.7	-48.1		
Traps 	RSARTFST 483	-659.3	96.2		
Traps	RSARTFST 484	-1769.9	112.2		
Traps	RSARTFST 485	-549.5	192.3	18	30
Traps	RSARTFST 486	-1710.9	-128.2		
Traps	RSARTFST 487	732.6	256.4	25	23
Traps	RSARTFST 488	-659.3	112.2	31	21
Traps	RSARTFST 489	-1858.4	-16.0		
Traps	RSARTFST 490	-293.0	-96.2		
Traps	RSARTFST 491	146.5	32.1	28	20
Traps	RSARTFST 492	-1150.4	-176.3		
Traps	RSARTFST 493	-146.5	-16.0	15	28
Traps	RSARTFST 494	-439.6	-320.5		
Traps	RSARTFST 495	-1799.4	-128.2		
Traps	RSARTFST 496	-952.4	64.1	33	20
Traps	RSARTFST 497	-622.7	176.3		
Traps	RSARTFST 498	-1445.4	-224.4	33	22
Traps	RSARTFST 499	-549.5	-208.3		
Traps	RSARTFST 500	73.3	-112.2		
Traps	RSARTFST 501	-1740.4	-80.1		
Traps	RSARTFST 502	-842.5	240.4	28	28
Traps	RSARTFST 503	-183.2	-32.1		
Traps	RSARTFST 504	-2094.4	-192.3		
Traps	RSARTFST 505	-183.2	0.0	31	31
Traps	RSARTFST 506	0.0	-336.5		
Traps	RSARTFST 507	-2300.9	64.1	26	20
Traps	RSARTFST 508	-512.8	-112.2		
Traps	RSARTFST 509	-402.9	-48.1		
Traps	RSARTFST 510	-1622.4	-16.0		
Traps	RSARTFST 511	659.3	16.0	25	33
lead bricks	RSARTFSX 600	-549.5	68.9	59	28
lead bricks	RSARTFSX 601	-402.9	-219.6		
HazWaste Trailer	RSARTFFW 390	-219.8	38.5		
HazWaste Trailer	RSARTFFW 391	-1172.2	-201.9		
HazWaste Trailer	RSARTFFW 392	-1721.6	54.5	23	16

		On-Site		LSC	
		Total	Removable	Removable	Removable
		Beta	Beta	H-3	C-14
		DPM/	DPM/	DPM/	DPM/
Description	Sample ID	100cm²	100cm ²	100cm ²	100cm ²
HazWaste Trailer	RSARTFFW 393	-2087.9	-121.8		
Vacuum strainer	RSARTFFY 610	-183.2	-208.3	25	17
Vacuum strainer	RSARTFFY 611	293.0	-192.3		

FINAL STATUS SURVEY REPORT U.S. ENVIRONMENTAL PROTECTION AGENCY REPRODUCTIVE TOXICOLOGY FACILITY (RTF)

REVISION 0

Prepared for: U.S. Environmental Protection Agency Office of Research and Development National Health and Environmental Effects Laboratory Research Triangle Park, NC 27711

Prepared by: AMEC Environment & Infrastructure, Inc. 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703

February 2015

APPROVAL SHEET AND SIGNATURES

Prepared By:

Heath Downey, CHP Senior Health Physicist Date: February 9, 2015

Approved By:

Gordon Madison, CHP Senior Health Physicist Date: February 9, 2015

TABLE OF CONTENTS

EXECU	JTIVE \$	SUMMARYES 1-1
1.0	INTRO 1.1 1.2 1.3 1.4 1.5 1.6 1.7	DUCTION1-1Methodology and Guidance Used1-1Sampling and Survey Report Road Map1-2General Site Description1-2Current Site-Wide Conditions1-6Residual Radioactivity Profile1-6Decision Framework1-7Compliance Testing1-7
2.0	FIELD 2.1 2.2 2.3 2.4 2.5 2.6 2.7	IMPLEMENTATION2-1Mobilization2-1Survey Unit Designation2-1Survey Unit Sample Size Determination2-2Survey and Sample Locations2-32.4.1Building FSS Sample Locations2-3Investigation Levels2-3Direct Measurements and Scan Surveys2-42.6.1Portable Instruments2-42.6.2Portable Instrument Calibration2-42.6.3Measurement Detection Limitations2-52.6.4Portable Instrument Background Measurements2-92.7.1Instrument2-92.7.2Instrument Calibration2-102.7.3Measurement Detection Limitations2-102.7.4Instrument2-92.7.4Instrument Background Measurements2-102.7.4Instrument Detection Limitations2-102.7.4Instrument Background Measurements2-102.7.4Instrument Detection Limitations2-10
3.0	3.1 3.2 3.3	SURVEY AND SURVEY RESULTS.3-1Field Survey Results Overview3-1Data Assessment.3-1Survey Summary Results.3-23.3.1Scan Survey.3.3.2Total Surface Measurements.3.3.3Removable Surface Measurements.3-6YSIS OF RESULTS FOR COMPLIANCE.4-1
	4.1 4.2 4.3	Decision Rules 4-1 Field Survey Results Compared To DCGLs 4-1 Compliance Summary 4-2

TABLE OF CONTENTS (CONTINUED)

5.0	QUALI	TY CONTROL AND DATA QUALITY ANALYSIS
	5.1	Quality Assurance
		5.1.1 Quality Control Measurements
		5.1.2 Field Instrument Response Checks
		5.1.3 Sample Counter
	5.2	Measurement Uncertainty and Data Quality Indicators
	5.3	Overall Quality Assurance and Quality Control
6.0	SUMM	ARY AND CONCLUSIONS6-1
7.0	REFE	RENCES
тег	OF T	ABLES
2101		

	Radionuclides of Potential Concern for RTF and Supporting Structures	
	Preliminary Surface DCGLs Considered for Unrestricted Release	
	Summary of Decision Rules	
Table 2.1	Summary of FSS Units	2-2
Table 2.2	Class 3 Survey Unit Sample Size	2-2
Table 2.3	Number of FSS Surface Measurements Obtained per Survey Unit	2-3
Table 2.4	Final Status Survey Direct Measurement Investigation Levels	2-4
Table 2.5	Static Surface Contamination Measurement MDC Parameters	2-6
Table 2.6	Surface Scanning Measurement MDCscan Parameters and Values	2-8
Table 2.7	Removable Contamination Measurement MDC Parameters	2-10
Table 3.1	Scan Survey Results Summary	3-3
Table 3.2	Summary Statistics, Direct Gross Beta Static Measurement Data	3-4
Table 3.3	Summary Statistics, Tritium Removable Surface Activity Data	3-5
Table 3.4	Summary Statistics, C-14 Removable Surface Activity Data	3-5
Table 4.1	Compliance Comparison of Building Metrics	4-2
Table 5.1	Target Data Quality Indicators and Findings	5-5

LIST OF FIGURES

Figure 1.1:	Site Location Map	1-3
	RTF First Floor Layout	
Figure 1.3:	RTF Second Floor Layout	1-5
Figure 3.1:	FSS Results First Floor	2-3
Figure 3.2:	FSS Results Second Floor	2-4

LIST OF APPENDICES

Appendix A: Survey Unit Results and Data Evaluation

LIST OF ACRONYMS AND ABBREVIATIONS

ANSI	American National Standards Institute
cm² cpm	centimeters squared counts per minute
DCGL DCGL _{EMC} DCGL _W	derived concentration guideline level derived concentration guideline level, elevated measurement comparison derived concentration guideline level, survey unit average (median) concentration corresponding to the permissible limit
dpm DQA DQI	disintegration per minute Data Quality Analysis Data Quality Indicator
EMC EPA	elevated measurement comparison Environmental Protection Agency
FSS	Final Status Survey
gcpm GSA	gross counts per minute US General Services Administration
keV	kilo-electron volts
LBGR LCL ₉₅ LSC	lower bound of the gray region 95% lower confidence level liquid scintillation counting
m ² MARSSIM MDC MDC _{SCAN} MDCR	meters squared Multi-Agency Radiation Survey and Site Investigation Manual minimum detectable concentration minimum detectable concentration for scan surveys Minimum detectable count rate
ncpm NIST NORM NRC NUREG	net counts per minute National Institute of Standards and Technology naturally occurring radioactive material Nuclear Regulatory Commission U.S. NRC Nuclear Regulatory Commission Regulatory Report
QA/QC	Quality Assurance/Quality Control
RSA RTF	Removable Surface Activity Reproductive toxicology Facility
TSA	Total Surface Activity
UCL ₉₅	95% upper confidence level
VSP	Visual Sample Plan

EXECUTIVE SUMMARY

The RTF primarily consists of an 83,500 square-foot, 2-story building on a 5-acre parcel located at 2525 Highway 54, Durham, North Carolina. The property is EPA-occupied under a lease agreement between the property owner, Alexandria Real Estate Equities, and the US General Services Administration (GSA), on the EPA's behalf. The original lease was established in September 1993 for the yet-to-be constructed property, for occupancy between December 1994 and November 2014. The EPA has been the sole tenant since the RTF construction was completed in March 1995.

EPA seeks to free-release the RTF and supporting structures such that it will meet the criteria for unrestricted use and to remove the facility as an authorized location from the NRC radioactive materials license. This Final Status Survey (FSS) Report provides the design, field implementation and results of FSS conducted for the RTF.

The design and interpretation of the final radiological status survey of the building is based on the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) (NRC, 2000) approach. Building surface derived concentration guideline levels (DCGLs) were established as part of the unrestricted release process. The total surface activity concentration DCGLs are 120,000,000 disintegrations per minute (dpm) per 100 square centimeters (cm²) for tritium (H-3) and 3,700,000 dpm per 100 cm² for carbon 14 (C-14).

The null hypothesis for these surveys is that the residual radioactivity in the survey unit exceeds the established DCGLs. The survey data was compared to the DCGLs both statistically and with non-statistical comparisons. The radiological survey data demonstrate that the RTF is sufficiently below the DCGLs to confidently reject the null hypothesis. Concentrations of residual radioactivity were found to be very minimal and essentially indistinguishable from background. In the survey unit under consideration, the DCGL was met with greater than 95% confidence. For this FSS Report, the Sign Test is the statistical test for compliance evaluation since background is insignificant compared to the DCGLs. The Sign Test is a one-sample, non-parametric test that can be used to evaluate compliance with the DCGL.

Quality control (QC) measures were taken during the survey process to assess the accuracy and precision of the measured results. Review and analysis of the QC measures indicates that the data collected meet the data quality objectives and are acceptable for their intended use. In addition, no unexpected results or trends are evident in the data.

The final radiological status survey of the site concludes that all of the conditions and requirements for unrestricted radiological release have been met. This FSS Report submittal demonstrates that the RTF meets the criteria for unrestricted use, and therefore supports the decision to remove the facility as an authorized location from the NRC radioactive materials license.

1.0 INTRODUCTION

This radiological FSS report documents the radiological status of the RTF located at 2525 Highway 54, Durham, North Carolina. Radiological confirmatory and clearance surveys were conducted on the surfaces and systems associated with radioactive materials usage. Radiological surveys were conducted with a combination of portable instruments and laboratory analyses. Portable instruments used include scalers with alpha/beta scintillators and gamma scintillators, along with wipe sample counters (alpha/beta scintillator). The wipe samples were sent to an offsite laboratory for beta analysis by liquid scintillation counting with regions of interest for H-3 and C-14.

Radiological surveys were performed for all identified suspect areas within the RTF to address both total and removable residual contamination to release the facility in support of the overarching lease termination. The surveys were performed in accordance with methods approved using Derived Concentration Guideline Levels-wide area average using criteria established in U.S. NRC Nuclear Regulatory Commission Regulatory Report (NUREG) 1757, Vol 2 Rev 1 (NRC, 2006b) and the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), (NRC, 2000). Given the nature of historical usage at the RTF, the existing radiological surveys/assessments, and experience with similar research laboratories, it was not expected that any significant residual radioactivity would be identified. With this basis, the U.S. NRC screening level derived concentration guideline levels (DCGLs) were selected and provided the most straight forward approach. The objective of EPA is to free-release the RTF such that it will meet the screening criteria for unrestricted use and to remove the facility as an authorized location from the active NRC radioactive materials license. This report documents the final radiological status of RTF and demonstrates that the criteria for unrestricted use have been met, and serves to support the decision to remove the facility as an authorized location from the NRC radioactive materials license.

1.1 Methodology and Guidance Used

The FSS report incorporates methods outlined in MARSSIM (NRC, 2000). The data evaluated in this report is presented in the context of the MARSSIM data quality assessment methods. Where appropriate, conventional guidance from the NRC, U.S. Environmental Protection Agency (EPA), and accepted practice and methods used in radiological site assessment and characterization are utilized. Principal guidance documents referenced include:

- NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual" (NRC, 2000);
- EPA Quality Assurance (QA)/G-4, "Guidance for the Data Quality Objectives Process" (EPA, 2000); and
- NUREG-1757 Vol. 2, "Consolidated NMSS Decommissioning Guidance, Characterization, Survey, and Determination of Radiological Criteria" (NRC, 2006b).

1.2 Sampling and Survey Report Road Map

Section 1 of this report provides a brief introduction and discusses the RTF site history and current site conditions including radionuclides of concern. Section 2 discusses survey unit designation, survey instrumentation and methods. FSS sampling results and data evaluations are presented in Section 3. Section 4 evaluates FSS data for compliance against the decision criteria. Section 5 includes quality control and data quality assessment evaluations and discussions. Section 6 summarizes the FSS and concludes the outcome of the FSS. Appendices are included for the survey unit to provide additional detail where appropriate.

1.3 General Site Description

The RTF consists of an 83,500 square-foot, 2-story building on a 5-acre parcel located at 2525 Highway 54, Durham, NC (Figure 1.1). The property is EPA-occupied under a lease agreement. The EPA has been the sole tenant since the RTF construction was completed in March 1995. Since EPA's occupancy in 1995, space within the RTF main building has been used for one of three general uses: office space, laboratory activities, and facility support. The laboratory spaces encompass approximately 56 percent of the building, including the following: 24 specialized laboratories; 25 controlled-environment animal housing rooms, equipment, and cage sanitization areas; and 9 specialized shared facilities including, but not limited to, a photograph development system and refrigerator cold rooms. The majority of the RTF building and utility systems are located at the western, interior end of the building is improved with paved access roadways, approximately 150 parking spaces, and landscaped areas. A loading dock, cooling tower, 10,000 gallon diesel aboveground storage tank, and an EPA-occupied hazardous waste storage shed are located at the northwest corner of the building. Figure 1.2 provides a facility layout of the 1st floor of the RTF facility. Figure 1.3 provides a facility layout of the 2nd floor of the RTF facility.

Final Status Survey Report US EPA Reproductive Toxicology Center Date: February 2015

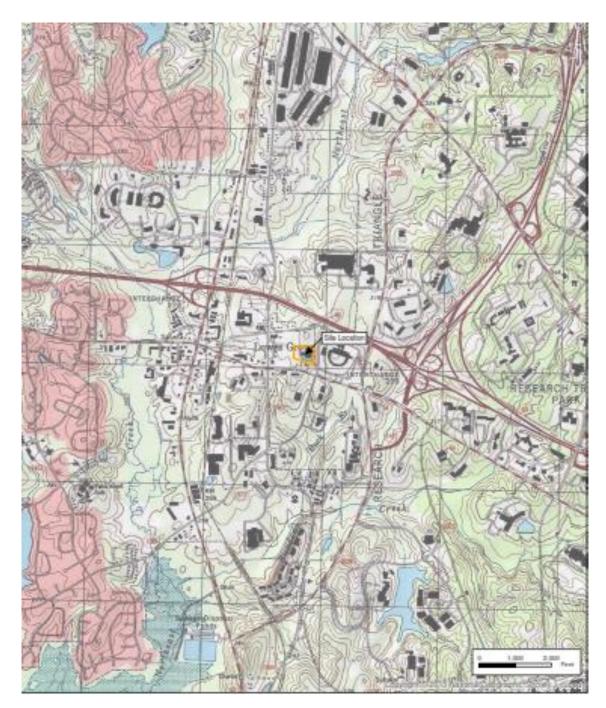


Figure 1.1 Site Location Map

Final Status Survey Report US EPA Reproductive Toxicology Center Date: February 2015

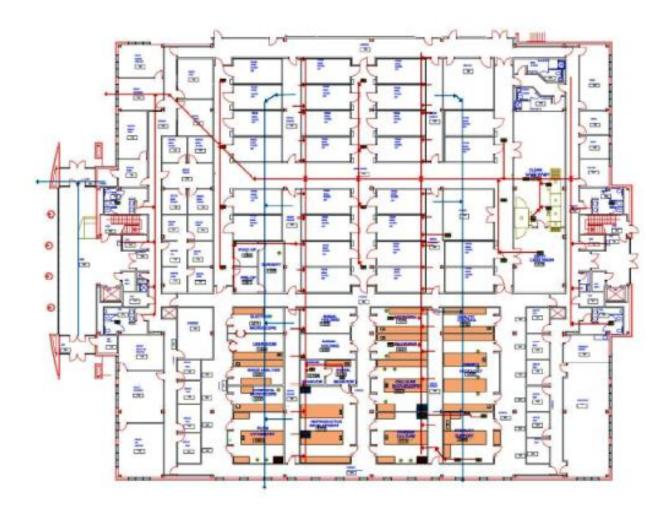


Figure 1.2 RTF First Floor Layout

Final Status Survey Report US EPA Reproductive Toxicology Center Date: February 2015

Figure 1.3 RTF Second Floor Layout

Review of historical information indicates that detailed final exit surveys were performed for 23 laboratory rooms of the RTF to obtain release from Radiation Safety Program requirements. No significant total or removable activity was identified during final exit surveys of the facility.

1.4 Current Site-Wide Conditions

Currently, the facility is in the process of being vacated by the tenant, EPA.

1.5 Residual Radioactivity Profile

Based on the review of historical records, process knowledge and the results of current radiological surveys, the residual radioactivity potential for site building structures can be isolated to a few credible source terms. Since a small variety of environmental samples, wastes, and sources have been handled in RTF, the following list of potential radionuclide contaminants were considered based on information contained in the EDDP Phase I Report Historical Site Assessment records search as shown in Table 1.1:

Nuclide	Name	Half-Life	Primary Emissions ¹	Comments
C-14	Carbon-14	5715 years	31 keV (beta)	Long half-life
H-3	Tritium	12 years	4 keV (beta)	Long half-life
I-125	lodine-125	59.4 days	6 kev (beta) 27 keV (gamma)	Medium half-life
P-32	Phosphorous-32	14.3 days	470 keV (beta)	Short half-life
P-33	Phosphorous-33	25.3 days	44 keV (beta)	Short half-life
S-35	Sulphur-35	87.2 days	28 keV (beta)	Medium half-life

TABLE 1.1 RADIONUCLIDES OF POTENTIAL CONCERN FOR RTF

Notes: 1 - Beta energies level presented are averaged energy values. keV = kilo-electron volts

However, with the exception of tritium (H-3) and carbon-14, the radionuclides listed above have medium to short half-lives, and significant levels are not expected to be present at the time of final survey.

Since the building will be released by the tenant (EPA) back to the owner for leasing to other tenants, and only low levels of sealed and unsealed sources were used in the facility, the RTF is considered a Group 2 facility, which does not require a formal decommissioning plan (NRC, 2006a). Therefore, the following screening levels [derived concentration guideline levels (DCGLs)] are appropriate to be considered for this scenario, as they are applicable to Decommissioning Groups 1-3 (NRC, 2006b). Table 1.2 is excerpted from Table H-1 of Volume 2 of NUREG 1757, *Characterization, Survey, and Determination of Radiological Criteria*.

TABLE 1.2PRELIMINARY SURFACE DCGLS CONSIDERED FOR UNRESTRICTED
RELEASE

Nuclide	Total (Fixed+Removable)
H-3	1.2E+08 dpm β/100 cm ²
C-14	3.7E+06 dpm β/100 cm ²

1.6 Decision Framework

The inputs providing the decision framework for measuring the residual radioactivity in each survey unit involve developing estimates of the central tendency (median) residual radioactivity concentration or surface activity, average residual radioactivity concentration or surface activity in locally elevated areas, and maximum residual radioactivity concentrations and surface activities. Direct measurements in the form of TSA (static) and RSA (smear) surface activity samples are the basis for the statistical tests and comparison to the decision rules.

1.7 Compliance Testing

The Sign Test was used to evaluate compliance with derived concentration guideline level, survey unit central tendency (median) concentration corresponding to the permissible limit (DCGL_w) for FSS. If the largest measurement of the sample population is below the DCGL_w, then the Sign Test will always show that the survey unit meets release criteria (NRC, 2000).

The Sign Test is a one-sample, non-parametric test that is used to evaluate compliance with the DCGL_w. The Sign Test is the recommended compliance evaluation procedure when the contaminant(s) under evaluation are not present at significant levels in background.

The combination of total and removable radiation survey data was used to demonstrate compliance with the release criterion. In addition to single-point comparisons of the measurement against the limit, the Sign Test was conducted. The decision to release a survey unit was based upon the outcome of the comparisons made in Table 1.3.

TABLE 1.3SUMMARY OF DECISION RULES

Survey Result	Conclusion
All measurements less than DCGL _w	Survey unit meets release criteria
Average greater than DCGL _w	Survey unit does not meet release criteria
Any measurement greater than DCGL_W and the average less than DCGL_W	Conduct Sign test and elevated measurement comparison

2.0 FIELD IMPLEMENTATION

This section of the report documents the FSS approach and process utilized for the RTF.

2.1 Mobilization

The survey team was briefed on the FSS package requirements associated with each individual survey unit which referenced the appropriate field sampling equipment and procedures to be used. A set of overview drawings of each survey unit for the building surfaces within the RTF was created. These drawings were then used in laying out the sampling and survey locations. Sample maps have been made as part of survey unit data in Appendix A.

Two types of radiation detection instruments were selected for this survey application. The first type of instrument employed is a portable alpha/beta surface monitor. The radiation detector was a solid state, dual-phosphor, scintillation detector designed to measure both the beta and alpha radiation emitted from a surface (direct measurement). The detector was coupled to a scaler/ratemeter to form a complete instrument/detector probe package. Direct readings were performed utilizing an Eberline Model E600 scaler/ratemeter with a Ludlum Model 43-89 dual-phosphor scintillation detector detector.

In addition to these field measurements, removable radioactivity samples (smears) were made in survey units. The instrument used was a sample counter for analyzing smear samples in the onsite counting laboratory. A Ludlum Model 2929 dual channel scalar with a Model 43-10-1 dual phosphor detector/sample tray system was utilized for counting smear samples collected during FSS on-site. The smear samples were then sent to a laboratory for liquid scintillation counting.

The instruments used in the surveys were calibrated, and frequently response checked and verified to be in working order and within established tolerance limits prior to use (American National Standards Institute [ANSI], 1997).

2.2 Survey Unit Designation

The survey unit represents the fundamental element for compliance demonstration during FSS results evaluation. There are numerous factors that influence the delineation of a survey unit and the design of the survey within the unit. Design of FSS Units was performed following the MARSSIM. One individual survey unit was identified and created based upon the potential likelihood of surfaces containing residual radioactivity. Each lab had a contamination clearance survey performed in 2014. No residual radioactivity readings above typical background levels were detected in surveyed areas. Therefore, the RTF was designated as a MARSSIM Class 3 survey unit classification for all impacted area surfaces.

Impacted areas of the RTF was designated as one FSS unit, generally following the contours of the building extents or particular floor and wing as applicable. The FSS unit covered the walls (up to 2 meters), floor, and installed equipment including fume hoods and countertops within each room. A summary of the FSS survey unit for the site is presented in Table 2.1.

TABLE 2.1SUMMARY OF FSS UNITS

FSS Unit Number	MARSSIM Survey Unit Class	Area (m²)	Description of Rooms Surveyed
RSARTFSS	3	<10,000	RTF impacted laboratory areas on 1 st and 2 nd floors

2.3 Survey Unit Sample Size Determination

The minimum sample size (N) and location of those samples for each survey unit was determined using the statistical sampling software, Visual Sample Plan (VSP) (Pacific Northwest National Laboratory [PNNL], 2014). VSP uses the statistical approach and algorithms referenced in MARSSIM to calculate the required minimum sample size for a given survey unit. In order to account and compensate for uncertainty in the computations of minimum sample size, as well as the possibility that some sample data may be lost or deemed unusable due to analytical and sampling error, minimum sample size computations were increased by twenty percent and rounded up to obtain sufficient data points to yield the desired power. VSP produced a sample distribution on scale drawings of the area(s) sampled within the survey unit.

Since Class 3 survey units are not expected to have measurable residual radioactivity above a small fraction of the DCGLs, the lower bound of the gray region (LBGR) was selected to be 10% of the DCGL. The standard deviation was also conservatively approximated high (30%) as a safety margin to reduce the chance of failing the decision criteria. The survey design parameters used to calculate the minimum required sample size for Class 3 Survey Units are shown in Table 2.2. This FSS report contains one Class 3 Survey Unit.

TABLE 2.2CLASS 3 SURVEY UNIT SAMPLE SIZE

Parameter	C-14
α decision error	0.05
β decision error	0.05
DCGL _w (dpm/100cm ²)	3.7E+06
LBGR (maximum estimated mean/median) (dpm/100cm ²)	3.7E+05
Standard Deviation (σ)(dpm/100cm ²)	1.1E+06
Relative Shift (Δ/σ)	3.0
Sample Size (N)	11
Additional 20%	3
FSS Sample Size	14

The table results above indicate that using the data from the calculation requires 14 samples (11+3), including the additional 20%. Therefore, it was used as the sample size for the building area Class 3 survey unit design.

The total number of samples planned and the number of samples obtained in the survey unit are presented in Table 2.3.

TABLE 2.3 NUMBER OF FSS SURFACE MEASUREMENTS OBTAINED PER SURVEY UNIT

Survey	MARSSIM	Number of Surface	Number of Surface
Unit ID	Survey Class	Measurements Planned	Measurements Obtained
RSARTFSS	3	14	14

2.4 Survey and Sample Locations

During FSS activities, the proposed location of each measurement was laid out using a simple random sample allocation protocol. The sampling design software *Visual Sample Plan, Version 7.0* (PNNL, 2014) was used to lay out the required number of measurements locations at random within the survey unit.

Drawings of the survey unit and actual sample locations, as determined in the field, are provided in Appendix A. After the measurement locations were allocated, an inspection of the survey unit was conducted to ensure that each sample location selected could be accessed and measured safely. Sample locations were next laid out on the building surfaces within the survey unit.

2.4.1 Building FSS Sample Locations

Surface measurements were collected for FSS evaluation for the areas included in this submittal report during September 2014. Figures of measurement locations for the survey unit are provided in Survey Unit Data Appendix A. Measurement locations were placed such that a sample would be representative of the sample media. Measurement density was defined by VSP using the assumptions stated earlier in this report.

2.5 Investigation Levels

Investigation levels (Table 2.4) for the direct measurement results were developed in accordance with the guidance found in MARSSIM. Any surface location measurement result greater than the investigation level was identified, marked, and further investigation performed to determine the extent of contamination at greater than the DCGL_w.

TABLE 2.4 FINAL STATUS SURVEY DIRECT MEASUREMENT INVESTIGATION LEVELS

Survey Unit Classification	Static Measurement Investigation Level	Static Net Investigation Level Eberline Model E600 with Ludlum Model 43-89 (most conservative)
Class 3	> 5,000 dpm/100 cm ²	>45 cpm

Investigation levels for the direct survey were derived using the most conservative assumption basis: the least sensitive instrument (lowest efficiency) of the inventory being used for the survey. It should be noted that two sets of instruments were used during performance of the field measurements. Therefore, using the most conservative investigation level (lowest instrument efficiency) ensures that an area with residual activity measured with a more efficient instrument would also warrant additional measurements to substantiate findings. For the purpose of this report, all reported counts per minute (cpm) or dpm values, unless otherwise specified, should be considered net values corrected for instrument background.

2.6 Direct Measurements and Scan Surveys

Direct measurements of the radiation emission from surfaces were made using static, 180-second counting intervals, over which the total counts were integrated. The direct measurements recorded were gross values. The data reduction process for the field measurement static (direct) data collected in this surface measurement sampling program involves corrections for the efficiency of the radiation detector to the subject radiation. However, it should be noted that for scanning surveys, raw field beta data were adjusted by the associated instrument backgrounds performed prior to the start of scanning in each room area, so that the net results could be directly compared to the surface DCGLs provided in Table 1.2.

2.6.1 Portable Instruments

The field measurement instrument used for direct static and scan measurements of surfacedeposited residual radioactivity was the Eberline Model E600 scaler/ratemeter with a Ludlum Model 43-89 dual-phosphor scintillation detector.

2.6.2 Portable Instrument Calibration

MARSSIM guidance was considered in establishing efficiency factors (calibration constants) used to reduce the instrument count rate data to units comparable to those used in the surface standards along with guidance from other sources including NUREG-1507 (NRC,1997), NCRP Report 112 (NCRP, 1991), and ANSI N323A (ANSI, 1997).

As defined in MARSSIM and NUREG-1507, instrument efficiency is that derived by measuring the surface emission rate of a clean, calibrated and certified National Institute of Standards and Technology (NIST) traceable, reference source. The observed emission rate (counts per unit time) is compared to the certified emission rate (betas per unit time) to arrive at the instrument

efficiency. The source efficiency relates the amount of activity truly present on the surface being measured to the observable particle emission rate. As such, the source efficiency captures the effects of backscatter, and self-absorption inherent in the surface being measured.

In addressing the issues associated with the derivation of the appropriate total efficiency for the measurement, MARSSIM states (page 6-24) that the use of a total efficiency derived from measurements made on certified 4π activity traceable sources "...is not a problem, provided that the calibration source exhibits characteristics similar to the surface contamination (i.e., radiation energy, backscatter effects, source geometry, self-absorption)." Each of these four parameters was addressed as follows:

Radiation Energy. Radiation energy was addressed by selecting a calibration source that was manufactured using the same radionuclide (C-14), the beta emitter of predominant concern from historical use. C-14 was selected and used to establish the total efficiency.

Source Geometry. The source geometry of interest is the point source. Previous surveys have demonstrated that there is no large area residual radioactivity and a small diameter source will be representative in terms of actual potential residual radioactivity.

Backscatter and Self-Absorption. Backscatter and self-absorption are more difficult to control in the measurement process since they are impacted by field variables, beyond the control of the surveyor. The desire is to represent the total surface activity on a given surface as accurately as possible. To do this, consideration for the surface(s) to be measured and their effect on backscatter and self-absorption must be taken into account. For RTF surveys, this was recognized very early in the process and controlled. It was also recognized that the errors that can arise because of the characteristics of surface (often non-conservative errors) are due to distinct and measurable differences between the backscatter and self-absorption characteristics of the calibration source as compared to the surface of interest. As suggested in NRC, 1997 and NCRP, 1991, the efficiency calibration source closely approximates the backscatter and self-absorption characteristics of laboratory surfaces.

By adopting this efficiency calibration source, it can be said with reasonable confidence that the total efficiency (as measured by exposing the detector to the check source and comparing its response to the stated total 4π activity) is appropriate for making measurements on laboratory surfaces, having taken into account both source efficiency and instrument efficiency.

Background and response checks were performed at least twice a day when in use, as a preoperational check, and post use to ensure the instrument was operating properly during the survey period. Background results are discussed in this Section and response check results are discussed in Section 5. The calibration data sheets for the instruments are provided in Appendix A.

2.6.3 Measurement Detection Limitations

In order to calculate the statistically significant surface radioactivity, which could be distinguished from background (*a posteriori* minimum detectable concentration [MDC]), it was necessary to

Final Status Survey Report US EPA Reproductive Toxicology Center Date: February 2015

convert the background measurement units from dpm/100 cm² to units of cpm. In this case, the more conservative metric, the geometric mean, was chosen to calculate the detection sensitivity achieved to prevent overstating the actual sensitivity achieved. The converted mean background count rates for the sampling period (cpm) along with other actual field measurement parameters are presented in Table 2.5. Using the actual instrument field measurement parameters, a calculation of the actual field measurement MDC achieved can be determined by solving Equation 2–1 as provided in Section 6.7.1 of MARSSIM (NRC, 2000).

$$MDC = \frac{3 + 4.65\sqrt{C_b}}{T_s \times \frac{A_p}{100cm^2} \times \epsilon_T}$$
 (Equation 2–1)

Where: MDC =the minimum surface radioactivity concentration above background
radioactivity (in dpm/100 cm²) that can be detected with 95% confidence. C_b =the total number of background counts over the sample count period (Ts). T_s =sample count time (in minutes). A_P =probe size (in cm²). \in_T =counting system efficiency in count/disintegration.

TABLE 2.5 STATIC SURFACE CONTAMINATION MEASUREMENT MDC PARAMETERS

Parameter		Eberline E600 with Ludlum 43-89	Eberline E600 with Ludlum 43-89
		3689 / 312071	1274 / 223946
		Beta	Beta
Cb	Background Counts	167	229
Ts	Sample count time (minutes)	3	3
A _P	Probe Size	100	100
€T	Instrument system efficiency in counts per disintegration	0.0091	0.0113
MDC	dpm/100 cm ²	2,311	2,164

Those locations with net residual surface radioactivity greater than the MDC are credited as having statistically distinguishable amounts of added radioactivity, while those less than the MDC are statistically indistinguishable from background values.

It is further important to note that the beta MDC (2,311 dpm/100 cm²) presented above is less than half of the corresponding beta Regulatory Guide 1.86 screening level (5,000 dpm/100 cm²).

MDC Scan Calculations

For any of the instrument systems, the detection sensitivity is affected not only by the factors influencing static measurements (as described above) but also by the detector's residence time over a given area and the uncertainty introduced by the human factors involved in moving the detector and interpreting the instrument response. The following formulation (NRC, 2000) is used to calculate the minimum detectable concentration, in dpm/100 cm², for each of the two scanning instrument systems used:

$$s_i = d' * \sqrt{b_i}$$
 (Equation 2–2)

- Where: s_i = the minimum detectable number of net source counts in the counting interval, *i* (probe residence time over a given source area).
 - *d'* = the index of sensitivity (the number of standard deviations between the means of background and radioactivity above background).
 - b_i = the number of background counts in the counting interval, *i*.

$$MDCR = s_i * (60/i)$$
 (Equation 2–3)

Where: *MDCR* = the minimum detectable count rate (above background) in cpm.

- s_i = the minimum detectable number of net source counts in the counting interval, *i* (probe residence time over a given source area).
- *i* = the length of the counting interval in seconds.

(Equation 2–4)

$$MDC_{SCAN} = \frac{MDCR}{\sqrt{p} \times \frac{A_{p}}{100 \text{ cm}^{2}} \times \mathcal{E}_{T}}$$

Where: $MDC_{SCAN} =$

the minimum surface radioactivity concentration above background radioactivity (in dpm/100 cm²) that can be reliably detected.

p =Surveyor efficiency.

 A_P = Probe size (in cm²).

 ε_{T} = Counting system efficiency in counts/disintegration.

Some of these parameters were derived from guidance in MARSSIM. The index of sensitivity (d') was selected to allow for a 95% probability of accepting true positive responses and a 60% probability of returning false positive results. Surveyor efficiency (p) was determined to be 0.5 for portable (hand-held) instruments. The surveyor efficiency accounts for the uncertainty of the operator performing the non-static scanning procedure and the judgment involved in determining the presence of elevated counts during scanning.

Table 2.6 presents the observed site conditions and instrument specific parameters affecting the minimum detectable scanning concentration (MDC_{scan}) for the scanning surveys performed. Using these values, an *a posteriori* assessment of the building or material surface MDC_{scan} can be determined.

The *a posteriori* MDC_{scan} for beta radioactivity achieved under the conditions described and observed during surveys in the RTF (assuming a nominal scan speed of 2 inches per second) are listed at the bottom of Table 2.6. The *a posteriori* MDC_{scans} presented for both hand-held detector systems are well below the total surface residual radioactivity benchmark concentration of $3.7E+06 \text{ dpm}/100\text{cm}^2$ beta providing a solid basis for confidence that the scanning surveys employed are capable of detecting localized concentrations of significance.

TABLE 2.6 SURFACE SCANNING MEASUREMENT MDCSCAN PARAMETERS AND VALUES

Parameter		3689 / 312071 Eberline Model E600 Scaler/Ratemeter With Ludlum Model 43-89 Detector Beta	1274 / 223946 Eberline Model E600 Scaler/Ratemeter With Ludlum Model 43-89 Detector Beta
Cb	Background Count Rate (cpm)	55.7	76.3
i	The residence time of the detector probe over a given surface area (the counting interval) in seconds.	1.4	1.4
d'	Index of sensitivity	1.38	1.38
р	Surveyor efficiency	0.5	0.5
A _P	Probe size (cm ²)	100	100
ε	Instrument system efficiency in counts/disintegration	0.0091	0.0113
MDCR	Minimum detectable count rate above background	96.6	113.0
MDC _{scan}	dpm/100 cm ²	10,612	10,003

2.6.4 Portable Instrument Background Measurements

Background measurements were made to assess the instrument background. Instrument background is defined as: "the response of the radiation-detecting instrument to sources of radiation in the environment such as cosmic radiation and to electronic noise in the instrumentation that may produce a measurable signal not due to radiation.

The assessment of an instrument's response to background radiation is important from two perspectives. First, it permits the assessment of the minimum sensitivity (detection limit) for the instrument and measurement process in the presence of background radiation. The *a posteriori* MDC is calculated from this actual background data. Second, by assessing the instrument's response to background radiation in terms of the units that field data will be collected, a correction can be applied to the field measurement data to permit determination of radioactivity present in excess of background.

Still, there was the need to measure and account for the instrument's response to other ubiquitous sources of background radiation (e.g., cosmic radiation) that could otherwise not be distinguished from the contaminant of concern. To correct the data for instrument sensitivity to background radiation, instrument background measurements were made. The variance in the recorded background data was small and within the range expected for beta-gamma background radiation (see Appendix A).

Time series plots of the background data sets, segregated according to the specific instrument/ detector probe with which the measurement was made, illustrate the lack of trend in the data over time and the overall stability of the instrument background count rate over the sampling period are provided in Appendix A. Coupled with the instrument response check measurements also performed over the entire sampling period, the stability in the measured beta background provides evidence of instrument stability. The time series plots of the background data set also reveal that the variability in the data set is small.

2.7 Removable Radioactivity Measurements

Technical smears were used to collect a sample of the removable radioactivity on building surfaces in the survey unit. The smear samples were collected by wiping the cloth filter over a 100 cm² area of the surface to be sampled using moderate pressure applied with two fingers. The smears were packaged to prevent sample contamination, labeled with a unique identification number linked to the location from which the smear sample was collected, and then measured for radioactivity on a Ludlum Model 2929 prior to shipment offsite for laboratory liquid scintillation counting (LSC) analysis.

To demonstrate compliance with the unrestricted release criterion for removable residual radioactivity, RSA measurements were taken after the direct static TSA measurements were collected. No attempt was made to adjust the RSA measurement data to account for smear collection efficiency.

2.7.1 Instrument

Smear samples were counted on a Ludium Model 2929 sample counter. Background and response checks were performed at least once a day when in use.

2.7.2 Instrument Calibration

The Ludium Model 2929 dual channel scaler with a Model 43-10-1 sample counting head equipped with a zinc sulfide (ZnS[Ag]) plastic scintillation detector was calibrated for beta. The beta channel was calibrated with a C-14 NIST traceable source. The calibration data sheets for the instrument are provided in Appendix A.

2.7.3 Measurement Detection Limitations

In order to calculate the statistically significant surface radioactivity, which could be distinguished from background (a posteriori MDC), Equation 2-1 was modified to remove the probe area term and account for different background and sample counting times as shown in Equation 2-6. The parameters for calculating the MDC are presented in Table 2.7.

$$MDC = \frac{3 + 3.29 \sqrt{R_B T_{S+B} (1 + \frac{TS+B}{TB})}}{T_{S+B} \in T}$$
 (Equation 2-6)

Where: MDC = the minimum surface radioactivity concentration above background radioactivity (in dpm/100 cm²) that can be detected with 95% confidence.

= the background count rate (cpm). Rh

= background counting time (in minutes). TΒ

 T_{S+B} = sample counting time (in minutes).

= counting system efficiency in count/disintegration ∈т

TABLE 2.7 REMOVABLE CONTAMINATION MEASUREMENT MDC PARAMETERS

		Ludlum Model 2929	
		50721	
	Parameter	Beta (C-14)	
Тв	Background Count Time (min)	10	
T _{S+B}	Sample Count Time (min)	3	
Rb	Background Count Rate (cpm)	36	
ε⊤	Instrument system efficiency in counts/disintegration	0.0208	
MDC	dpm/100 cm ²	832	

It is further important to note that the net MDC value listed in the above table is lower than the removable radioactivity Regulatory Guide 1.86 screening level and significantly less than the unrestricted release criterion presented in Table 1.2.

2.7.4 Instrument Background Measurements

As smears were collected, they were analyzed by a Ludlum Model 2929 alpha/beta sample counter prior to shipment offsite for laboratory LSC analysis. Background measurements were taken as part of the response checks for the instrument periodically prior to use. Beta background measurements are provided in Appendix A.

3.0 FIELD SURVEY AND SURVEY RESULTS

Field survey sampling results are presented by survey unit with a data assessment and comparison to the release criterion. Where anomalies or notable results were identified, additional discussion and data are presented for the specific survey unit. QC data is presented separately in Section 5 of this report. Each survey unit is presented with a summary of the survey results, figures showing the layout of each survey unit and the selected sample locations, data assessment tables, and a preliminary comparison to the decision criteria. Data associated with the survey unit and its associated evaluations are provided in the Appendix A of this report.

3.1 Field Survey Results Overview

A total of 14 direct static surface measurements and an equal number of removable surface measurements from the wall, floor, and equipment surfaces from the survey unit were collected and analyzed as part of FSS areas for this report.

No investigations were performed because of elevated scan results. No investigations were performed as a result of elevated measurements.

3.2 Data Assessment

The preliminary data review assesses the FSS data utilizing various numerical and graphical techniques. This includes summary statistics, histograms, and probability plots. Each technique was run to provide insight that would identify patterns, relationships, or potential anomalies in the distribution of the data. A key test of the data set is for goodness-of-fit. Goodness-of-fit is important because it identifies the underlying distribution of the data set and provides a statistical basis for comparison of appropriate metrics calculated from the data. The Anderson-Darling (AD) Test was used to measure the relative goodness-of-fit of the observed data distribution to the normal and lognormal standard distributions. Distributions other than normal and lognormal were evaluated but were discounted for this data set on the grounds that:

- Based on knowledge of the expected distribution of radioactivity in the environment and in background, the data were expected to be approximately lognormally distributed; and
- The probability plot and histogram generated (for a host of possible distributions) gave no good evidence that other than normal or lognormal distributions might be present.

Posting plots provide a visual representation of the sampling locations and the activity concentrations at those locations. Posting plots are also used to reveal the heterogeneities in the data, especially possible patches of locally elevated residual radioactivity. The Posting Plots are provided in Appendix A.

Once the survey unit data was assessed and verified that it is acceptable for comparison to the release criteria, it was evaluated against the DCGL_Ws.

This section of the report provides a summary of the FSS data and statistical data assessment. The data associated with each survey unit and its associated evaluations are provided in Appendix A of this report.

Survey Unit RSARTFSS

Survey Unit RSARTFSS covers the interior floors and wall (up to 2 meters) surfaces of the RTF and consists of less than 10,000 square meters (m²) of floor surface area. Figures 3.1 and 3.2 presents an overview of the survey unit. Fourteen survey locations were randomly selected within the Class 3 survey unit to represent the distribution of residual radioactivity for the survey unit Data associated with this survey unit are provided in Appendix A.

Total Surface Activity Scanning Results

Approximately 10 percent of the wall, floor, counter and cabinet surfaces area for Survey Unit RSARTFSS was surveyed by hand-scanning with the Eberline Model E600 scaler/ratemeter with a Ludlum Model 43-89 dual-phosphor scintillation detector (for beta). Instrument readings ranging from 80 cpm to 360 cpm (gross) beta were recorded during the scan survey, with no detectable activity noted, with MDA_{SCAN} value of 10,612 dpm/100 cm² beta. No elevated readings were identified during the scan survey. Therefore, no additional direct static measurements to investigate anomalies were performed.

Total Surface Activity Results

Fourteen randomly-placed direct static surface activity measurements were obtained for FSS in Survey Unit RSARTFSS with the Eberline Model E600 scaler/ratemeter portable radiation survey Instrument coupled with the Ludlum Model 43-89 dual-phosphor scintillation detector. The analytical results show that the mean/median removable radioactivity is appreciably below the DCGL_ws. Data quality assessments indicated that the results meet the data quality requirements and are acceptable for use. Figures 3.1 and 3.2 present the FSS results for field beta total surface activity levels for Survey Unit RSARTFSS.

Removable Results

Fourteen randomly-placed removable surface activity measurements (at the direct static locations) were obtained for FSS in Survey Unit RSARTFSS and analyzed on Site with the Ludlum Model 2929 sample counter, then shipped to an approved offsite laboratory for LSC analysis for H-3 and C-14 analysis. The analytical results show that the mean/median removable radioactivity is appreciably below the DCGL_w. Data quality assessments indicated that the results meet the data quality requirements and are acceptable for use. Figures 3.1 and 3.2 present the FSS results for both H-3 and C-14 removable surface activity levels for Survey Unit RSARTFSS.

3.3 Survey Summary Results

This section provides a summary of the FSS results by survey unit and includes scan surveys, direct static measurements, and removable sample results.

Final Status Survey Report US EPA Reproductive Toxicology Center Date: February 2015

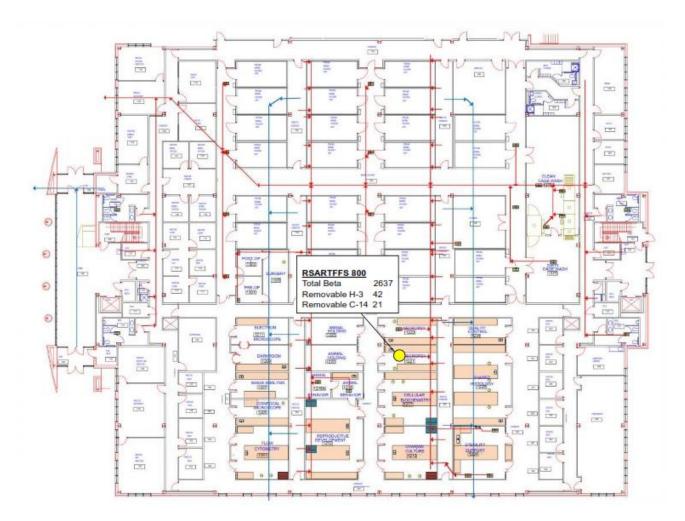


Figure 3.1 FSS Results First Floor (results in dpm/100 cm²)

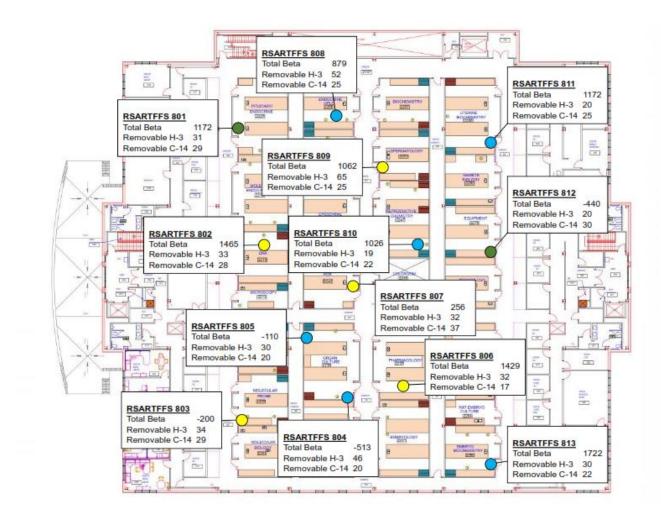


Figure 3.2 FSS Results Second Floor (results in dpm/100 cm²)

3.3.1 Scan Survey

Table 3.1 presents the summary results of the scan surveys, the number of volumetric samples obtained as a result of elevated scan survey readings, and the highest measurements obtained during static counts performed in locations where a discernible increase in the count rate was identified. Scan survey areas are around the direct static measurement locations. While the scans ranged from background to levels expected from NORM levels expected in the matrix, none of the reported scan results (adjusted for instrument background) exceeded 1% of the beta investigation level which was calculated to be 80% of the DCGL_w for Class 3 units. The survey unit surveyed was not identified as having residual surface radioactivity in excess of the total surface DCGL or had a significant potential for having residual surface radioactivity.

			Building S	can Results		
Survey Unit	Survey Unit Class	Percent of Survey Unit Surveyed (accessible	Number of Elevated Locations Identified	Recorded Background Reading (cpm)	Highest Scan Reading (gross cpm)	Highest Scan Reading (net cpm)
		surfaces)	and Sampled	β	β	β
RSARTFSS	3	~10	0	56	360	304

TABLE 3.1 SCAN SURVEY RESULTS SUMMARY

3.3.2 Total Surface Measurements

In addition to scan surveys, 3-minute direct static surface measurements were performed at FSS measurement locations using a beta scintillation detector. These 3-minute static measurements were used to verify that there were no areas of elevated residual radioactivity and to support the conclusion that residual radioactivity on building surfaces is less than the DCGL_w for the survey units. Table 3.2 provides a summary of the beta direct static readings performed at each measurement location. A full descriptive statistics report (designated RSARTFFT_DIRECT) is provided in Appendix A.

TABLE 3.2 SUMMARY STATISTICS, DIRECT GROSS BETA STATIC MEASUREMENT DATA

Poto 9	Survey Unit		
Beta - β Statistic	RSARTFSS		
Number of Measurements	14		
Arithmetic Mean	824.2		
Standard Deviation (sample)	914.9		
Standard Error of the Mean	244.5		
Coefficient of Variation	1.1		
Geometric Mean	1,123		
Maximum	2,637		
Median	1,044		
Minimum	-512.8		
Range	3,150		
UCL ₉₅ (median)	1,429		
LCL ₉₅ (median)	-219.8		

Note 1: Except for number of samples, standard error and the coefficient of variation (unitless) all statistics reported above are in units of dpm/100 cm².

3.3.3 Removable Surface Measurements

Summaries of the H-3 and C-14 removable results provided by the offsite laboratory from LSC analysis are presented in Table 3.3 and Table 3.4, respectively. Full descriptive statistics reports (designated RSARTFFT_REMH3 and RSARTFFT_REMC14) are provided in Appendix A.

TABLE 3.3 SUMMARY STATISTICS, TRITIUM REMOVABLE SURFACE ACTIVITY DATA

Tritium - H–3 Statistic	Survey Unit RSARTFSS	
Number of Measurements	14	
Arithmetic Mean	34.7	
Standard Deviation (sample)	12.8	
Standard Error of the Mean	3.4	
Coefficient of Variation	0.4	
Geometric Mean	32.7	
Maximum	64.8	
Median	32.2	
Minimum	18.6	
Range	46.2	
UCL ₉₅ (median)	41.7	
LCL ₉₅ (median)	20.4	

Note 1: Except for number of samples, standard error and the coefficient of variation (unitless) all statistics reported above are in units of dpm/100 cm².

TABLE 3.4 SUMMARY STATISTICS, C-14 REMOVABLE SURFACE ACTIVITY DATA

carbon-14 - C–14	Survey Unit	
Statistic	RSARTFSS	
Number of Measurements	14	
Arithmetic Mean	24.9	
Standard Deviation (sample)	5.3	
Standard Error of the Mean	1.4	
Coefficient of Variation	0.2	
Geometric Mean	24.4	
Maximum	37	
Median	24.6	
Minimum	16.7	
Range	20.3	
UCL ₉₅ (median)	28.9	
LCL ₉₅ (median)	20.2	

Note 1: Except for number of samples, standard error and the coefficient of variation (unitless) all statistics reported above are in units of dpm/100 cm².

4.0 ANALYSIS OF RESULTS FOR COMPLIANCE

As part of the data quality objective process, specified in MARSSIM (NRC 2000) and other environmental remediation and compliance guidance (EPA, 2000), the "*decision rule*" provides the objective basis for determining whether survey units meet the established criteria for release from radiological controls without restriction. The decision rules, identified below, specify conditions, based on final radiological status survey results, which must be met to enable release of the building from radiological controls.

4.1 Decision Rules

IF the evaluation of the FSS data from a single survey unit indicates that:

The mean/median surface activity concentration measurement result is less than the DCGL_w (1.2E+08 dpm/100cm² H-3 and 3.7E+06 dpm/100cm² C-14); **AND**

The unity rule is met if both radionuclides are present in a location; AND

There are no areas having locally elevated concentrations of residual radioactivity on the building surfaces greater than the DCGL_{EMC};

THEN conclude that the survey unit meets the criteria for release from radiological controls without restriction.

These decision rules ensure that residual radioactivity in this facility will not pose an unacceptable radiological risk under any reasonable future use or occupancy.

4.2 Field Survey Results Compared To DCGLs

The compliance comparisons provide the risk managers and decision-makers with the quantitative information necessary to decide whether the site can be released from radiological controls without restriction. In addition to the 95% upper confidence limit (UCL₉₅) estimate of the median, several additional metrics (e.g. arithmetic mean, maximum, etc.) are provided to offer risk managers and decision-makers additional insight regarding the magnitude of compliance or non-compliance.

Compliance comparisons for the beta survey unit are presented in Table 4.1.

Metric	RSARTFSS	
Unity	Power of Sign Test	~1
	Median	1,044
	UCL ₉₅ of Median	1,429
Total Beta (dpm/100cm ²)	Arithmetic Mean	824.2
	Geometric Mean	1,124
	Maximum	2,637
	Median	32.2
	UCL ₉₅ of Median	41.7
Removable H-3 (dpm/100cm ²)	Arithmetic Mean	34.7
	Geometric Mean	32.7
	Maximum	64.8
	Median	24.6
	UCL ₉₅ of Median	28.9
Removable C-14 (dpm/100cm ²)	Arithmetic Mean	24.9
	Geometric Mean	24.4
	Maximum	37

TABLE 4.1 COMPLIANCE COMPARISON OF BUILDING METRICS

4.3 Compliance Summary

The FSS demonstrates that the RTF meets all quantitative compliance decision rules to qualify for release from radiological controls, without restriction. This conclusion is summarized below.

DCGL Compliance

The central tendency (median) total surface residual radioactivity concentration on the building surfaces in each survey unit is below the $DCGL_w$ values of 1.2E+08 dpm/100cm² (H-3) and 3.7E+06 dpm/100cm² (C-14).

No single total surface activity measurement was identified as having beta total activity greater than 2,637 dpm/100cm², significantly below the DCGL_w values of 1.2E+08 dpm/100cm² (H-3) and 3.7E+06 dpm/100cm² (C-14). Additionally, no single H-3 or C-14 removable surface activity measurement was identified as having beta activity greater than 65 dpm/100cm² and 37 dpm/100cm² respectively. No locally elevated concentrations of residual radioactivity were identified above the investigation levels.

5.0 QUALITY CONTROL AND DATA QUALITY ANALYSIS

An important aspect of any survey or sampling evolution is the effort made to assure the quality of data collected. It was critical to assure the quality of all of the data through quality checks and controls, calibrations, and training. The purpose of data quality assessment (DQA) is to evaluate the data collected from the field in light of its intended use in decision making. Decision makers should obtain an understanding of the verity of the data used in the FSS from reading this section.

Quality checks and controls were designed into the FSS to ensure adequate data quality. QC measurements were designed to provide a means of assessing the quality of the data set as a whole and demonstrate that measurement results had the required precision and were sufficiently free of errors to accurately represent the residual radiological conditions within the building of the various survey units within the potentially impacted areas. The DQA uses guidance from MARSSIM and professional judgment.

5.1 Quality Assurance

The goal of QA is to identify and implement sampling and analytical methodologies that limit the introduction of error into analytical data. During sampling and survey activities at the site, controls were implemented to ensure sufficient data of adequate quality and usability was collected for confirming that the project's release levels were met. These controls also ensured that data was verified authentic, was appropriately documented and is technically defensible. QA was achieved through one primary approach: QC measurements.

5.1.1 Quality Control Measurements

A significant portion of the data comes from in situ field measurements using conventional health physics techniques and practices and from wipe samples measured by scintillation counting (onsite) and LSC (laboratory). Both require additional steps in order to ensure accuracy of the sampling techniques and analysis methodologies.

5.1.2 Field Instrument Response Checks

The data set used to present the quality of direct static surface measurements is the response of the instruments (Eberline Model E600 scaler/ratemeter portable radiation survey Instrument coupled with the Ludlum Model 43-89 dual-phosphor scintillation detector) to a surface deposited activity source with a known amount of radioactivity. The source contains C-14 radioactivity.

Prior to initiating a survey each day, periodically, and at the end of a survey each day, the survey instrument in use was used to make a measurement on the known concentration source. Instrument response check data for each probe used during the final status survey is sorted and presented for individual probes. Response check data sheets are provided in Appendix A. A total of 28 response check measurements were made with the 2 combinations of instrument packages used during the survey period.

A control chart is provided for each of the individual probes to graphically portray the steadfastness of the instruments' responses to the source over the sampling period in Appendix A. One C-14 check source was used to perform response checks on the Eberline Model E600 scaler/ratemeter portable radiation survey Instrument coupled with the Ludlum Model 43-89 dual-phosphor scintillation detector, so there is one control chart for each system. Notable is the relatively tight band within which the response checks fall. No degradation of the instruments' response was observed over the entire sampling period.

5.1.3 Sample Counter

The quality of removable measurements can be measured by the response of the instruments (Ludlum Model 2929) to a source of known radioactivity. A C-14 source for the beta response checks was used. Prior to counting smears, a source of known concentration was counted on the instrument to create the instrument QC Check Limits. Response check data sheets are provided in Appendix A.

A control chart is provided to graphically portray the steadfastness of the instruments' responses to the source over the survey period in Appendix A. No degradation of the instruments' response was observed over the entire survey period.

5.2 Measurement Uncertainty and Data Quality Indicators

Measurement uncertainty in the techniques prescribed for the FSS arises from two principal sources: field sampling variation and instrument/ laboratory measurement variation. Of the two sources, field-sampling variation would be the greatest contributor to overall uncertainty because of the inherent logistics of sample collection activities. To minimize the uncertainty contributed by field-sampling variation, field survey and sampling operations were governed by procedures and protocols, and survey personnel were trained on survey instrumentation use and sample collection techniques and procedures. Additionally, individuals who were well versed in the overall survey approach and its data quality objectives provided guidance and gave direction when unclear situations arose. The measurement methods, on the other hand, employed standard instrument and laboratory procedures whose aspects and nuances were well understood. Procedures and their associated rigor also governed instrument calibrations, source checks, and operations at the site.

An important activity in determining the usability of the data obtained during the survey of the RTF and Supporting Structures is assessing the effectiveness of the sampling and survey program relative to the design objectives (NRC 2000, EPA 2000). Data Quality Indicators (DQIs) were used as a cornerstone for quality comparisons performed against sampling and surveying activities. Identified deficiencies or short-comings were corrected and redirected, increasing the overall data quality and usability. Project goals for measurement uncertainty were developed in line with DQIs and assessed during sampling and survey activities. Upon completion of FSS of the potentially impacted areas, FSS activities were evaluated against the project goals developed for the project. Table 5.1 presents the target DQIs and summarizes the post-sampling data quality assessment.

Inspection of Table 5.1 indicates that the DQIs were achieved, and thus, the data are regarded as having sufficient quality to be useable for the intended purpose of confidently demonstrating that:

- All total surface measurement results are less than the DCGLw; AND
- There are no areas having locally elevated concentrations of residual radioactivity on building surfaces greater than the DCGL_{EMC}.

5.3 Overall Quality Assurance and Quality Control

Based on the forgoing analysis and observed practices in the field, the overall project QA/QC goals were obtained. There are no significant data problems or gaps, nor any procedural inadequacies that might compromise the findings of this survey report. The data collected in the FSS is regarded as high quality data and acceptable for its intended use.

DQI	Quality Objective	Significance	Action/Remark	Finding
Completeness	90%	Less than	A minimum 14 direct static	DQI
	completeness	complete data set	surface radioactivity	accepted.
		could decrease	measurements were	
		confidence in	planned in the single Class 3	
		supporting	survey unit of the RTF and	
		information.	Supporting Structures. As a	
			contingency, the minimum	
			sample size specified was	
			increased by 20% to	
			accommodate the possibility	
			that some data might be	
			lost, unusable, or otherwise	
			incomplete. A minimum of	
			14 direct static surface	
			measurements were actually	
			collected from and the Class	
			3 survey unit. Fourteen direct surface emission	
			measurements (14 was the specified minimum) were	
			obtained (100%).	

TABLE 5.1 TARGET DATA QUALITY INDICATORS AND FINDINGS

DQI	Quality Objective	Significance	Action/Remark	Finding
Comparability	Affects ability to combine data sets produced using different sampling and/or analytical methods.	Data collected from randomly selected locations within a survey area are unbiased and comparable by design and can be combined. Combining of other data sets would be subject to appropriate two- sample statistical test methods designed to detect significant differences between samples or populations.	Sampling procedures and protocols were used throughout the FSS process for remaining impacted Site areas. No critical deviation from these procedures was encountered.	DQI accepted.
Representativeness	Non- representative- ness increases or decreases Type I error depending on the bias.	Sample allocation included a minimum number of unbiased, randomly distributed sample locations based on survey design.	Sample allocation for Survey Units was identified using the computer software program Visual Sample Plan. The survey was designed to produce a random sample allocation distribution within the Class 3 survey unit. The sample locations selected meet the intent of the survey design and are considered representative of conditions of the RTF and Supporting Structures.	DQI accepted.

DQI	Quality Objective	Significance	Action/Remark	Finding
Precision	Measurement variability, due to techniques and/or technology, may increase uncertainty.	Field sampling and instrument operation were governed by procedures, background measurements, and source response check measurements were used to gauge reproducibility.	All sampling and field measurement processes were controlled by approved written procedures. Field instrument response checks also demonstrate the precision of the field survey measurement. All procedures were implemented. Instruments were calibrated to industry standard specifications and yielded responses to NIST certified calibration sources within ±10% of the known amount of radioactivity. Field responses to a low-activity response check source were consistently within the acceptable range of ±20%. As represented above, precision was acceptable.	DQI accepted.
Accuracy	Sampling and data handling can introduce bias and affect Type I and Type II errors.	Sampling and measurements were governed by procedures. Instruments were calibrated with NIST traceable sources.	All sampling and field measurement processes were controlled by approved written procedures. Analytical measurements were controlled by approved procedures. Survey and sampling results were recorded in accordance with approved written procedures.	DQI accepted.

6.0 SUMMARY AND CONCLUSIONS

On the basis of the analysis presented in this report, FSS data demonstrates that the survey unit associated with the potentially impacted areas has met the decision criteria.

More specifically, the FSS of the RTF demonstrates that:

- No unexpected results or trends are evident in the data.
- The sampling and survey results demonstrate that residual radioactivity in the potentially impacted area is very minimal and for the most part, indistinguishable from background levels.
- The data quality is judged to be excellent for its intended purpose.
- The amount of data collected from each survey unit is adequate to provide the required statistical confidence needed to decide that the DCGLs are met.
- The retrospective power of the Sign Test, used to judge compliance, was consistently near 100% and always greater than 95%.

Thus, the null hypothesis-that residual radioactivity in the survey units exists in concentrations above the applicable DCGLs should be rejected for the survey unit in the RTF. The areas surveyed and sampled during FSS are acceptable for release from further radiological controls.

7.0 REFERENCES

- American National Standards Institute (ANSI), 1997; Radiation Protection Instrumentation Test and Calibration, Portable Survey Instruments, N323A.
- EPA, 2000; Guidance for the Data Quality Objectives Process, EPA QA/G-4, EPA/600/R-96/055, Washington, D.C.
- National Council on Radiation Protection & Measurements (NCRP), 1991; Report No. 112, Calibration of Survey Instruments Used in Radiation Protection for the Assessment of Ionizing Radiation Fields and Radioactive Surface Contamination, Bethesda, MD, December, 1991.
- NRC 1992. Manual for Conducting Radiological Surveys in Support of License Termination, NUREG/CR-5849, Office of Nuclear Regulatory Research, Washington, DC.
- NRC, 1997; Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions, NUREG 1507, Office of Nuclear Regulatory Research, Washington, DC.
- NRC, 2000; Multi-Agency Radiation Survey and Site Investigation Manual Revision 1, NUREG-1575, Rev. 1, Office of Nuclear Regulatory Research, Washington, DC, Nuclear Regulatory Commission, August 2000.
- NRC, 2006a; Consolidated NMSS Decommissioning Guidance Decommissioning Process for Materials Licensees, NUREG-1757, Vol. 1, Rev. 2, Nuclear Regulatory Commission, September 2006.
- NRC, 2006b. Consolidated NMSS Decommissioning Guidance, Characterization, Survey, and Determination of Radiological Criteria. NUREG-1757 Vol. 2. Rev 1, September 2006.
- Pacific Northwest National Laboratory (PNNL), 2014; Visual Sample Plan, Version 7.0, (developed by John Wilson and James Davidson, Jr., Pacific Northwest National Laboratory). http://dqo.pnl.gov/vsp/index.htm.

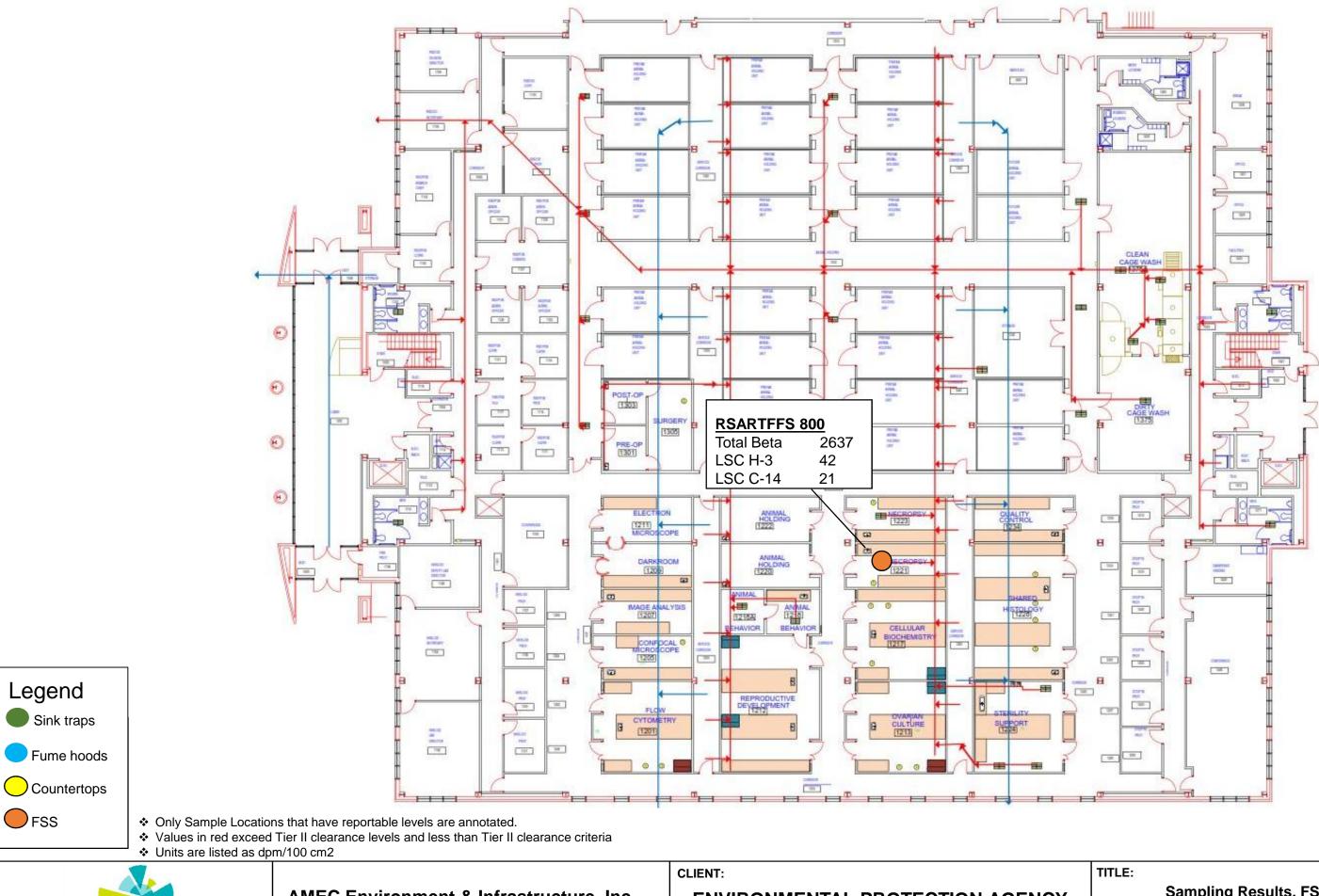
APPENDIX A

SURVEY UNIT RSARTFSS RESULTS AND DATA EVALUATION

EPA RTF Final Status Surveys

Total Surface Activity

		Beta TSA	Uncertainty	MDC
Sample ID	Date	dpm/100cm ²	dpm/100cm ²	dpm/100cm ²
RSARTFFS 800	09/24/14	2637.4	1446.6	2311.0
RSARTFSS 801	09/24/14	1172.2	1373.5	2311.0
RSARTFSS 802	09/24/14	1465.2	1388.4	2311.0
RSARTFSS 803	09/24/14	-219.8	1300.3	2311.0
RSARTFSS 804	09/24/14	-512.8	1284.3	2311.0
RSARTFSS 805	09/24/14	-109.9	1306.2	2311.0
RSARTFSS 806	09/24/14	1428.6	1386.6	2311.0
RSARTFSS 807	09/24/14	256.4	1325.8	2311.0
RSARTFSS 808	09/24/14	879.1	1358.4	2311.0
RSARTFSS 809	09/24/14	1062.3	1367.9	2311.0
RSARTFSS 810	09/24/14	1025.6	1366.0	2311.0
RSARTFSS 811	09/24/14	1172.2	1373.5	2311.0
RSARTFSS 812	09/24/14	-439.6	1288.3	2311.0
RSARTFSS 813	09/24/14	1721.6	1401.4	2311.0

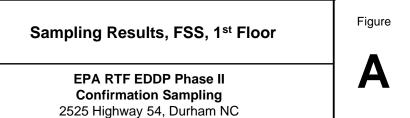

Uncertainty reported at 1.96 sigma.

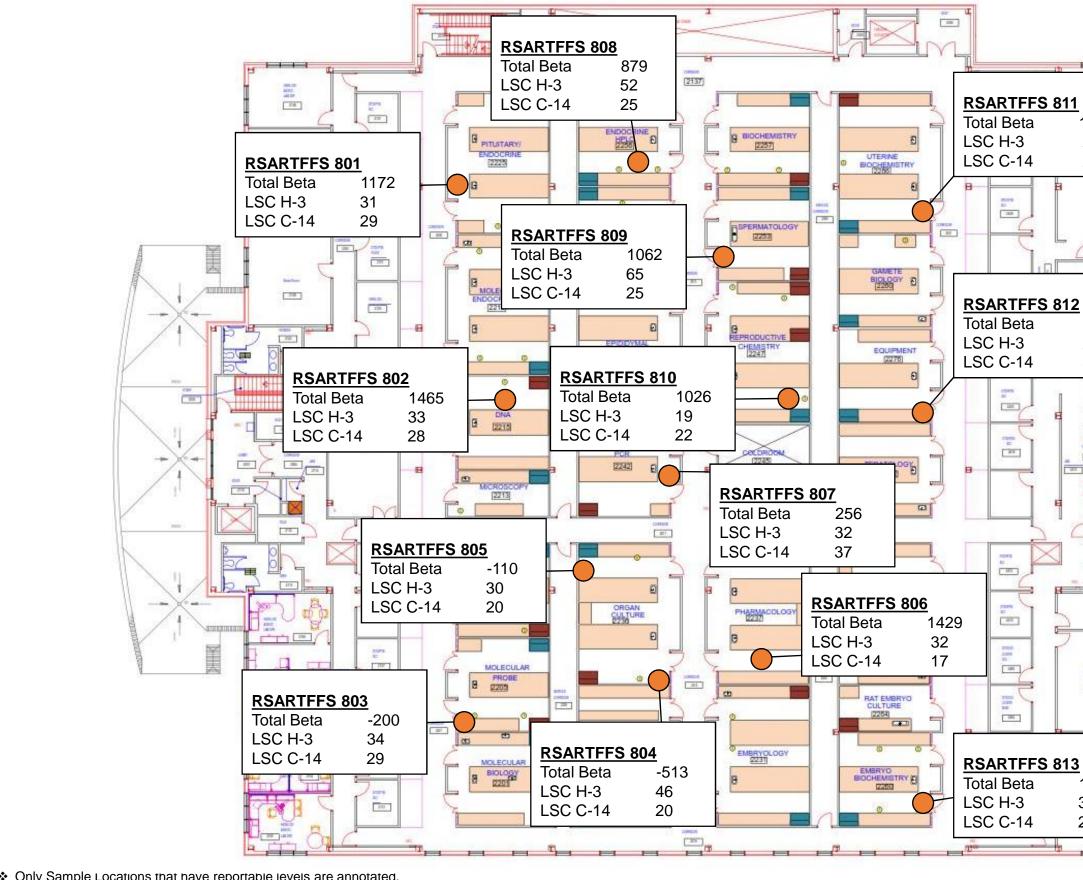
EPA RTF Final Status Surveys

Removable Surface Activity

		Onsite Analysis			ysis Laboratory LSC	
		Beta RSA Uncertainty MDC		Н-3	C-14	
Sample ID	Date	dpm/100cm ²	dpm/100cm ²	dpm/100cm ²	dpm/100cm ²	dpm/100cm ²
RSARTFFS 800	09/24/14	-32.1	369.5	822.5	42	21
RSARTFSS 801	09/24/14	-208.3	354.5	822.5	31	29
RSARTFSS 802	09/24/14	-336.5	343.2	822.5	33	28
RSARTFSS 803	09/24/14	-64.1	366.8	822.5	34	29
RSARTFSS 804	09/24/14	-288.5	347.5	822.5	46	20
RSARTFSS 805	09/24/14	-64.1	366.8	822.5	30	20
RSARTFSS 806	09/24/14	-288.5	347.5	822.5	32	17
RSARTFSS 807	09/24/14	-208.3	354.5	822.5	32	37
RSARTFSS 808	09/24/14	48.1	376.1	822.5	52	25
RSARTFSS 809	09/24/14	-272.4	348.9	822.5	65	25
RSARTFSS 810	09/24/14	32.1	374.8	822.5	19	22
RSARTFSS 811	09/24/14	-80.1	365.5	822.5	20	25
RSARTFSS 812	09/24/14	-160.3	358.7	822.5	20	30
RSARTFSS 813	09/24/14	-288.5	347.5	822.5	30	22

Uncertainty reported at 1.96 sigma.




amec foster wheeler

AMEC Environment & Infrastructure, Inc.

4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900

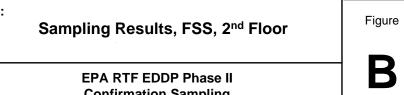
CLIENT	:					TITLE:
EN	VIRONM	ENTAL	PROTE	CTION	AGENCY	
DATE:	12/04/14	SCALE: No	ot to scale	PROJ.:	321060245	SITE:
DR:	R. Kirby	CHK:	S.Johnsoi	n		
LOCATI	ON: P:\Government\	Federal\EPA\321060245 I	RTF Decommission\2.0 [Deliverables\Phase	II Report\Figures	

- Only Sample Locations that have reportable levels are annotated.
- ✤ Values in red exceed Tier II clearance levels and less than Tier II clearance criteria
- Units are listed as dpm/100 cm2

4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900

CLIENT	:					TITLE:
EN	VIRONM	ENTAL	PROTEC	CTION	AGENCY	
DATE:	12/04/14	SCALE: No	ot to scale	PROJ.:	321060245	SITE:
DR:	R. Kirby	CHK:	S.Johnsor	1		
LOCATIO	ON: P:\Government\	Federal\EPA\321060245 I	RTF Decommission\2.0 D	eliverables\Phase	II Report\Figures	

Legend


Sink traps

Fume hoods

Countertops

FSS

Confirmation Sampling 2525 Highway 54, Durham NC

SURVEY UNIT RSARTFSS

DESCRIPTIVE STATISTICS AND COMPLIANCE TESTS

Descriptive Statistics Report

Summary Section of RSARTFFT_DIRECT									
Count 14	Mean 824.1786	Standard Deviation 914.8901	Standard Error 244.5147	Minimum -512.8	Maximum 2637.4	Range 3150.2			
Counts Section of RSARTFFT_DIRECTSum ofMissingDistinctTotalAdjustedRowsFrequenciesValuesValuesSumSum Squares141401311538.52.03911E+071.088131E+07									
Means Sectio	n of RSARTFFT	DIRECT							
			Geometric	Harmonic					
Parameter	Mean	Median	Mean	Mean	Sum	Mode			
Value	824.1786	1043.95	1123.596	-2037.587	11538.5	1172.2			
Std Error	244.5147				3423.206				
95% LCL	295.9367	-219.8	728.7527	747.7133	4143.114				
95% UCL	1352.42	1428.6	1732.367	-431.227	18933.89				
T-Value	3.370671								
Prob Level	0.005017299								
Count	14		10	14		2			
The geometric	mean confidence	e interval assum	nes that the ln(y)	are normally dist	ributed.				

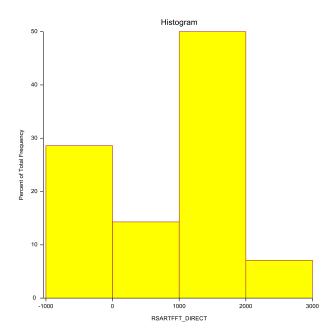
The harmonic mean confidence interval assumes that the In(y) are normally distributed.

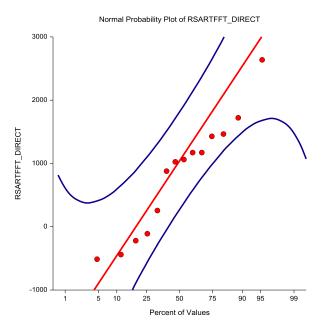
Variation Section of RSARTFFT_DIRECT

		Standard	Unbiased	Std Error	Interquartile	
Parameter	Variance	Deviation	Std Dev	of Mean	Range	Range
Value	837024	914.8901	932.6369	244.5147	1575.125	3150.2
Std Error	256700.9	198.4008		53.02484		
95% LCL	439904.8	663.2532		177.2619		
95% UCL	2172461	1473.927		393.9235		

Skewness and Kurtosis Section of RSARTFFT_DIRECT

					Coefficient	Coefficient
Parameter	Skewness	Kurtosis	Fisher's g1	Fisher's g2	of Variation	of Dispersion
Value	0.07614122	2.316761	0.0856001	-0.4184214	1.110063	0.669196
Std Error	0.3912855	0.4473365			0.3500241	
Trimmed Sect	tion of RSART	-FT_DIRECT				
	5%	10%	15%	25%	35%	45%
Parameter	Trimmed	Trimmed	Trimmed	Trimmed	Trimmed	Trimmed
Trim-Mean	797.7206	794.7411	817.0776	889.5928	1019.538	1043.95
Trim-Std Dev	794.3655	688.5137	607.9916	457.1396	181.5406	34.32971
Count	13	11	10	7	4	1


Mean-Deviation Section of RSARTFFT_DIRECT


Parameter	X-Mean	X-Median	(X-Mean)^2	(X-Mean)^3	(X-Mean)^4
Average	735.2275	698.6071	777236.6	5.217346E+07	1.399548E+12
Std Error	146.7439		238365.1	2.831116E+08	7.303234E+11

Descriptive Statistics Report

Quartile Sect	Quartile Section of RSARTFFT_DIRECT									
	10th	25th	50th	75th	90th					
Parameter	Percentile	Percentile	Percentile	Percentile	Percentile					
Value	-476.2	-137.375	1043.95	1437.75	2179.5					
95% LCL		-512.8	-219.8	1025.6						
95% UCL		1062.3	1428.6	2637.4						
NormalityTo	of Cootion of Di		CT.							
Normality re	st Section of Ra					Desision				
Test Name		Test	Prob	10% Critical	5% Critical	Decision				
Test Name		Value	Level	Value	Value	(5%)				
Shapiro-Wilk		0.9402528	0.4215727			Can't reject normality				
Anderson-Dar	rling	0.4280797	0.3113178			Can't reject normality				
Martinez-Iglew		0.9750178		1.305415	1.57245	Can't reject normality				
Kolmogorov-S		0.1320808		0.208	0.226	Can't reject normality				
D'Agostino Sk	kewness	0.1511859	0.879829	1.645	1.96	Can't reject normality				
D'Agostino Ku		-0.2060	0.836775	1.645	1.96	Can't reject normality				
D'Agostino Or	mnibus	0.0653	0.967876	4.605	5.991	Can't reject normality				

Plots Section of RSARTFFT_DIRECT

Descriptive Statistics Report

Percentile Section of RSARTFFT_DIRECT

Value 2637.4 2637.4 2179.5 1657.5	95% LCL	95% UCL	Exact Conf. Level
	1025.6	2637.4	95.36224
1437.75	1025.6	2637.4	97.18725
1300.4	1025.6	2637.4	96.17493
1172.2	879.1	1721.6	95.51371
1172.2	256.4	1721.6	97.43929
1089.775	-109.9	1465.2	97.15633
1043.95	-219.8	1428.6	96.48438
988.975	-219.8	1428.6	97.15633
879.1	-439.6	1172.2	97.43929
412.075	-439.6	1172.2	95.51371
73.25	-512.8	1062.3	96.17493
-137.375	-512.8	1062.3	97.18725
-219.8	-512.8	1062.3	95.36224
-384.65 -476.2 -512.8 -512.8			
	2637.4 2637.4 2179.5 1657.5 1465.2 1437.75 1300.4 1172.2 1089.775 1043.95 988.975 879.1 412.075 73.25 -137.375 -219.8 -384.65 -476.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Percentile Formula: Ave X(p[n+1])

Stem-Leaf Plot Section of RSARTFFT_DIRECT

Depth	Stem	Leaves
4	-0*	5421
5	0*	2
6		8
(6)	1*	001144
(6) 2		7
1	2*	
1		6

Unit = 100 Example: 1 |2 Represents 1200

Descriptive Statistics Report

Summary Se	ction of RSARTI	FT_REMH3				
-		Standard	Standard			
Count	Mean	Deviation	Error	Minimum	Maximum	Range
14	34.70714	12.84658	3.433392	18.6	64.8	46.2
Counts Secti	ion of RSARTFF	T_REMH3				
	Sum of	Missing	Distinct		Total	Adjusted
Rows	Frequencies	Values	Values	Sum	Sum Squares	Sum Squares
14	14	0	14	485.9	19009.65	2145.449
Means Section	on of RSARTFFT	_REMH3				
			Geometric	Harmonic		
Parameter	Mean	Median	Mean	Mean	Sum	Mode
Value	34.70714	32.15	32.67649	30.81058	485.9	
Std Error	3.433392				48.06749	
95% LCL	27.28975	20.4	26.55874	25.55992	382.0565	
95% UCL	42.12453	41.7	40.20344	38.7762	589.7435	
T-Value	10.1087					
Prob Level	1.586892E-07					
Count	14		14	14		0
The geometri	o maan oonfidana	a interval acqui	man that the $\ln(y)$	oro pormally di	otributod	

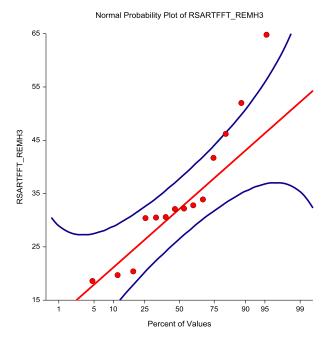
The geometric mean confidence interval assumes that the ln(y) are normally distributed. The harmonic mean confidence interval assumes that the 1/y are normally distributed.

Variation Section of RSARTFFT_REMH3

		Standard	Unbiased	Std Error	Interquartile	
Parameter	Variance	Deviation	Std Dev	of Mean	Range	Range
Value	165.0346	12.84658	13.09577	3.433392	14.925	46.2
Std Error	67.12742	3.694856		0.9874917		
95% LCL	86.73527	9.313177		2.489051		
95% UCL	428.3402	20.69638		5.531341		

Skewness and Kurtosis Section of RSARTFFT_REMH3

Parameter Value Std Error	Skewness 0.8859842 0.3983737	Kurtosis 3.316211 1.297452	Fisher's g1 0.9960483	Fisher's g2 1.058039	Coefficient of Variation 0.3701422 0.06179909	Coefficient of Dispersion 0.2694957
Trimmed Sec	tion of RSART	FFT_REMH3				
	5%	10%	15%	25%	35%	45%
Parameter	Trimmed	Trimmed	Trimmed	Trimmed	Trimmed	Trimmed
Trim-Mean	33.93016	33.37679	33.07551	32.59286	31.9381	32.15
Trim-Std Dev	10.67679	8.580095	6.711626	3.010389	1.003105	0.09354144
Count	13	11	10	7	4	1


Mean-Deviation Section of RSARTFFT_REMH3

Parameter	X-Mean	X-Median	(X-Mean)^2	(X-Mean)^3	(X-Mean)^4
Average	9.410204	8.664286	153.2464	1680.782	77879.4
Std Error	2.060528		62.3326	1061.097	43981.41

Quartile Sect	Quartile Section of RSARTFFT_REMH3								
	10th	25th	50th	75th	90th				
Parameter	Percentile	Percentile	Percentile	Percentile	Percentile				
Value	19.15	27.9	32.15	42.825	58.4				
95% LCL		18.6	20.4	32.1					
95% UCL		32.2	41.7	64.8					
Normality Tes	st Section of R	SARTFFT_REM							
		Test	Prob	10% Critical	5% Critical	Decision			
Test Name		Value	Level	Value	Value	(5%)			
Shapiro-Wilk V	N	0.8998109	0.1120737			Can't reject normality			
Anderson-Dar	0	0.6562294	0.08675183			Can't reject normality			
Martinez-Iglew	vicz	1.282085		1.305415	1.57245	Can't reject normality			
Kolmogorov-S	Smirnov	0.2393345		0.208	0.226	Reject normality			
D'Agostino Sk	ewness	1.675446	0.09384684	1.645	1.96	Can't reject normality			
D'Agostino Ku		1.0413	0.297729	1.645	1.96	Can't reject normality			
D'Agostino On	nnibus	3.8915	0.142883	4.605	5.991	Can't reject normality			

Plots Section of RSARTFFT_REMH3

Percentile Section of RSARTFFT_REMH3

Percentile 99 95	Value 64.8 64.8	95% LCL	95% UCL	Exact Conf. Level
90	58.4			
85	50.55			
80	46.2	32.1	64.8	95.36224
75	42.825	32.1	64.8	97.18725
70	37.8	32.1	64.8	96.17493
65	33.625	30.6	52	95.51371
60	32.8	30.5	52	97.43929
55	32.35	30.4	46.2	97.15633
50	32.15	20.4	41.7	96.48438
45	31.725	20.4	41.7	97.15633
40	30.6	19.7	33.9	97.43929
35	30.525	19.7	32.8	95.51371
30	30.45	18.6	32.2	96.17493
25	27.9	18.6	32.2	97.18725
20	20.4	18.6	32.2	95.36224
15	19.875			
10	19.15			
5	18.6			
1	18.6			

Percentile Formula: Ave X(p[n+1])

Stem-Leaf Plot Section of RSARTFFT_REMH3

Depth	Stem	Leaves	
2	1.	89	
3	2*	0	
3	.		
(7)	3*	0002223	
4	.		
4	4*	1	
3	.	6	
2	5*	2	
High		2 64	
Unit = 1	Example:	1 2 Represents	12

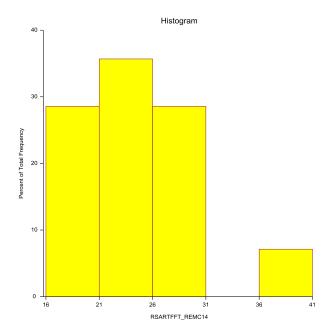
Summary Sec	tion of RSARTF					
Count 14	Mean 24.92857	Standard Deviation 5.265187	Standard Error 1.407181	Minimum 16.7	Maximum 37	Range 20.3
Counts Section Rows 14	on of RSARTFFT Sum of Frequencies 14	T_REMC14 Missing Values 0	Distinct Values 14	Sum 349	Total Sum Squares 9060.46	Adjusted Sum Squares 360.3886
Means Section	n of RSARTFFT	_REMC14				
			Geometric	Harmonic		
Parameter	Mean	Median	Mean	Mean	Sum	Mode
Value	24.92857	24.55	24.43211	23.9538	349	
Std Error	1.407181				19.70053	
95% LCL	21.88854	20.2	21.67485	21.41014	306.4396	
95% UCL	27.9686	28.9	27.54011	27.18336	391.5604	
T-Value	17.71526					
Prob Level	1.744942E-10					
Count	14		14	14		0
The geometric	mean confidence	e interval assum	es that the ln(y)	are normally dist	tributed.	

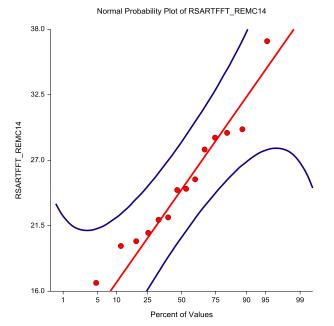
The harmonic mean confidence interval assumes that the II(y) are normally distributed.

Variation Section of RSARTFFT_REMC14

		Standard	Unbiased	Std Error	Interquartile	
Parameter	Variance	Deviation	Std Dev	of Mean	Range	Range
Value	27.7222	5.265187	5.36732	1.407181	8.275	20.3
Std Error	10.6848	1.434953		0.3835073		
95% LCL	14.56963	3.817018		1.020141		
95% UCL	71.95179	8.48244		2.267027		

Skewness and Kurtosis Section of RSARTFFT_REMC14


Parameter Value Std Error	Skewness 0.615151 0.4198741	Kurtosis 3.079725 0.749203	Fisher's g1 0.69157	Fisher's g2 0.7086838	Coefficient of Variation 0.211211 0.03727971	Coefficient of Dispersion 0.1640966
Trimmed Sect	tion of RSARTI	FFT_REMC14				
	5%	10%	15%	25%	35%	45%
Parameter	Trimmed	Trimmed	Trimmed	Trimmed	Trimmed	Trimmed
Trim-Mean	24.71508	24.60179	24.58673	24.5	24.2119	24.55
Trim-Std Dev	4.259008	3.521836	3.260355	2.58457	1.535253	0.09354144
Count	13	11	10	7	4	1


Mean-Deviation Section of RSARTFFT_REMC14

Parameter	X-Mean	X-Median	(X-Mean)^2	(X-Mean)^3	(X-Mean)^4
Average	4.07551	4.028572	25.74204	80.34266	2040.788
Std Error	0.8445101		9.921603	75.16656	1263.757

Quartile Sect	ion of RSARTF	FT_REMC14				
	10th	25th	50th	75th	90th	
Parameter	Percentile	Percentile	Percentile	Percentile	Percentile	
Value	18.25	20.725	24.55	29	33.3	
95% LCL		16.7	20.2	24.5		
95% UCL		24.6	28.9	37		
.			~ / /			
Normality le	st Section of R	SARTFFT_REM				_
		Test	Prob	10% Critical	5% Critical	Decision
Test Name		Value	Level	Value	Value	(5%)
Shapiro-Wilk \	N	0.9555287	0.6493075			Can't reject normality
Anderson-Dar	ling	0.2947329	0.5979882			Can't reject normality
Martinez-Iglev	vicz	1.090783		1.305415	1.57245	Can't reject normality
Kolmogorov-S		0.1264221		0.208	0.226	Can't reject normality
D'Agostino Sk	ewness	1.191758	0.2333561	1.645	1.96	Can't reject normality
D'Agostino Ku		0.8039	0.421482	1.645	1.96	Can't reject normality
D'Agostino Or	nnibus	2.0665	0.355855	4.605	5.991	Can't reject normality

Plots Section of RSARTFFT_REMC14

Percentile Section of RSARTFFT_REMC14

Percentile 99	Value 37	95% LCL	95% UCL	Exact Conf. Level
95	37			
90	33.3			
85	29.525			
80	29.3	24.5	37	95.36224
75	29	24.5	37	97.18725
70	28.4	24.5	37	96.17493
65	27.275	22.2	29.6	95.51371
60	25.4	22	29.6	97.43929
55	24.8	20.9	29.3	97.15633
50	24.55	20.2	28.9	96.48438
45	23.925	20.2	28.9	97.15633
40	22.2	19.8	27.9	97.43929
35	22.05	19.8	25.4	95.51371
30	21.45	16.7	24.6	96.17493
25	20.725	16.7	24.6	97.18725
20	20.2	16.7	24.6	95.36224
15	19.9			
10	18.25			
5	16.7			
1	16.7			

Percentile Formula: Ave X(p[n+1])

Stem-Leaf Plot Section of RSARTFFT_REMC14

Depth	Stem	Leaves
1	1S	6
2		9
4	2*	00
6	T	22
(3) 5	F	445
5	S	7
4	.	899
1	3*	
1	T	
1	F	
1	S	7

Unit = 1 Example: 1 |2 Represents 12

Descriptive Statistics

		Standard	Standard		
Variable	Count	Mean	Deviation	Error	Median
RSARTFFT_DIRECT	14	824.1786	914.8901	244.5147	1043.95

Two-Sided Confidence Interval of the Median

	95.0% C. I. of the Median			
Variable	Count	Median	Lower Limit	Upper Limit
RSARTFFT_DIRECT	14	1043.95	-219.8	1428.6

One-Sample T-Test

Variable: RSARTFFT_DIRECT

Alternative		Standard			Prob	Reject H0
Hypothesis	Mean	Error	T-Statistic	d.f.	Level	at α = 0.050
µ ≠ 5000	824.1786	244.5147	-17.0780	13	0.00000	Yes
μ < 5000	824.1786	244.5147	-17.0780	13	0.00000	Yes
μ > 5000	824.1786	244.5147	-17.0780	13	1.00000	No

Power for the One-Sample T-Test

Variable: RSARTFFT_DIRECT

This section assumes the population mean and standard deviation are equal to the sample values.

Alternative				Power	Power
Hypothesis	Ν	μ	σ	(α = 0.05)	(α = 0.01)
µ ≠ 5000	14	824.1786	914.8901	1.00000	1.00000
μ < 5000	14	824.1786	914.8901	1.00000	1.00000
μ > 5000	14	824.1786	914.8901	0.00000	0.00000

Quantile (Sign) Test

This Quantile test is equivalent to the Sign test if the Quantile Proportion is 0.5. Variable: RSARTFFT_DIRECT

Null	Quantile	Number	Number		H1: Q < Q0	
Quantile (Q0)	Proportion	Lower	Higher	Prob Level	Prob Level	Prob Level
5000	0.5	14	0	0.000122	0.000061	1.000000

Wilcoxon Signed-Rank Test Variable: RSARTFFT_DIRECT

Sum of Ranks (W) 0	Mean of W 52.5	Std Dev of W 15.92561	of Z		Number Sets of Ties 1	Multiplici Factor 6	ity	
	Exact Pro	bability*	Approximation Without Continuity Correction			Approximation With Continuity Correction		
Alternative	Prob	Reject H0		Prob	Reject H0		Prob	Reject H0
Hypothesis	Level	(α = 0.050)	Z-Value	Level	(α = 0.050)	Z-Value	Level	(α = 0.050)
Median ≠ 5000			3.2966	0.000979	Yes	3.2652	0.001094	Yes
Median < 5000			-3.2966	0.000489	Yes	-3.2652	0.000547	Yes
Median > 5000			-3.2966	0.999511	No	-3.3280	0.999563	No

*Exact probabilities are given only when there are no ties.

Tests of Assumptions Variable: RSARTFFT_DIRECT

Assumption	Value	Prob Level	Decision ($\alpha = 0.050$)
Skewness Normality	0.1512	0.879829	Cannot reject normality
Kurtosis Normality	-0.2060	0.836775	Cannot reject normality
Omnibus Normality	0.0653	0.967876	Cannot reject normality

Descriptive	Statistics
-------------	------------

			Standard	Standard	
Variable	Count	Mean	Deviation	Error	Median
RSARTFFT_H3	14	34.70714	12.84658	3.433392	32.15

Two-Sided Confidence Interval of the Median

			95.0% C. I. of the Media		
			Lower	Upper	
Variable	Count	Median	Limit	Limit	
RSARTFFT_	H3 14	32.15	20.4	41.7	

One-Sample T-Test

Variable: RSARTFFT_REMH3

Alternative		Standard			Prob	Reject H0
Hypothesis	Mean	Error	T-Statistic	d.f.	Level	at α = 0.050
µ ≠ 1000	34.70714	3.433392	-281.1484	13	0.00000	Yes
μ < 1000	34.70714	3.433392	-281.1484	13	0.00000	Yes
μ > 1000	34.70714	3.433392	-281.1484	13	1.00000	No

Power for the One-Sample T-Test

Variable: RSARTFFT_REMH3

This section assumes the population mean and standard deviation are equal to the sample values.

Alternative				Power	Power
Hypothesis	Ν	μ	σ	(α = 0.05)	(α = 0.01)
µ ≠ 1000	14	34.70714	12.84658	1.00000	1.00000
μ < 1000	14	34.70714	12.84658	1.00000	1.00000
μ > 1000	14	34.70714	12.84658	0.00000	0.00000

Quantile (Sign) Test

This Quantile test is equivalent to the Sign test if the Quantile Proportion is 0.5. Variable: RSARTFFT_REMH3

Null Quantile (Q0)	Quantile Proportion	Number Lower	Number Higher		H1: Q < Q0 Prob Level	
1000	0.5	14	0	0.000122	0.000061	1.000000

Wilcoxon Signed-Rank Test Variable: RSARTFFT_REMH3

Sum of Ranks (W)	Mean of W	Std Dev of W	of		Number Sets of Ties	Multiplic Factor	ity	
0	52.5	15.92953	8 0		0	0		
	Exact Pro	bability*		nation With y Correction			ation With y Correction	
Alternative	Prob	Reject H0		Prob	Reject H0		Prob	Reject H0
Hypothesis	Level	(α = 0.050)	Z-Value	Level	(α = 0.050)	Z-Value	Level	(α = 0.050)
Median ≠ 1000	0.000122	Yes	3.2958	0.000982	2 Yes	3.2644	0.001097	Yes
Median < 1000	0.000061	Yes	-3.2958	0.000491	l Yes	-3.2644	0.000549	Yes
Median > 1000	1.000000	No	-3.2958	0.999509) No	-3.3272	0.999561	No

*Exact probabilities are given only when there are no ties.

Tests of Assumptions Variable: RSARTFFT_REMH3

Assumption	Value	Prob Level	Decision ($\alpha = 0.050$)
Skewness Normality	1.6754	0.093847	Cannot reject normality
Kurtosis Normality	1.0413	0.297729	Cannot reject normality
Omnibus Normality	3.8915	0.142883	Cannot reject normality

Descriptive Statistics

		Standard	Standard		
Variable	Count	Mean	Deviation	Error	Median
RSARTFFT_REMC14	14	24.92857	5.265187	1.407181	24.55

Two-Sided Confidence Interval of the Median

		95.0% C. I. of the Median			
		Lower	Upper		
Variable	Count	Median	Limit	Limit	
RSARTFFT_REMC14	14	24.55	20.2	28.9	

One-Sample T-Test

Variable: RSARTFFT_REMC14

Alternative		Standard			Prob	Reject H0
Hypothesis	Mean	Error	T-Statistic	d.f.	Level	at α = 0.050
µ ≠ 1000	24.92857	1.407181	-692.9256	13	0.00000	Yes
µ < 1000	24.92857	1.407181	-692.9256	13	0.00000	Yes
μ > 1000	24.92857	1.407181	-692.9256	13	1.00000	No

Power for the One-Sample T-Test

Variable: RSARTFFT_REMC14 This section assumes the population mean and standard deviation are equal to the sample values.

Alternative Hypothesis	N	μ	σ	Power (α = 0.05)	Power (α = 0.01)
µ ≠ 1000	14	24.92857	5.265187	1.00000	1.00000
μ < 1000	14	24.92857	5.265187	1.00000	1.00000
μ > 1000	14	24.92857	5.265187	0.00000	0.00000

Quantile (Sign) Test

This Quantile test is equivalent to the Sign test if the Quantile Proportion is 0.5. Variable: RSARTFFT_REMC14

Null Quantile (Q0)	Quantile Proportion	Number Lower	Number Higher		H1: Q < Q0 Prob Level	
1000	0.5	14	0	0.000122	0.000061	1.000000

Wilcoxon Signed-Rank Test Variable: RSARTFFT_REMC14

Sum of Ranks (W) 0	Mean of W 52.5	Std Dev of W 15.92953	of	Zeros	Number Sets of Ties 0	Multiplic Factor 0	ity	
	Exact Pro	bability*	Approximation Without Continuity Correction			Approximation With Continuity Correction		
Alternative Hypothesis	Prob Level	Reject H0 (α = 0.050)	Z-Value	Prob Level	Reject H0 (α = 0.050)	Z-Value	Prob Level	Reject H0 (α = 0.050)
Median ≠ 1000		Yes	3.2958	0.000982	· · · ·	3.2644	0.001097	Yes
Median < 1000	0.000061	Yes	-3.2958	0.000491	Yes	-3.2644	0.000549	Yes
Median > 1000		No	-3.2958	0.999509) No	-3.3272	0.999561	No

*Exact probabilities are given only when there are no ties.

Tests of Assumptions Variable: RSARTFFT_REMC14

Assumption	Value	Prob Level	Decision ($\alpha = 0.050$)
Skewness Normality	1.1918	0.233356	Cannot reject normality
Kurtosis Normality	0.8039	0.421482	Cannot reject normality
Omnibus Normality	2.0665	0.355855	Cannot reject normality

SURVEY UNIT RSARTFSS FIELD DATA

AMEC RADIOLOGICAL SURVEY FORM

						Su	irvey Num	ber: 🧾	N/A		Page	∍_ <u>/</u>	_of <u>2</u> _
Location	EPA F	275	Requester	NA	\$				Date	9-24-	14 Time	e c	3800
Purpose											RWP #		V/A
	- 7	Instrument and Probe Typ	pe and Serial I	Number			:	Surveyor(s)	Printed Name		Surve	yor(s) S	Signature
E600 3	4× 3689/4	13-89 5/A 312071	2929 5/A	150721	43-10 \$/A1 C	046118	Ron	ald C	SMO		R	Co	~~
MODE SIN 83	0276 /	SIN 726752						MEDE		/	D.G. MI	1 uli	AN
											1 1/2		
					MA ACTIVITY ached Yes				MA ACTIVITY ached Yes	No	RADIA	TION S	SURVEY
					_/Radionuclid	e <u>C14</u>	% Eff. <u>/</u>		_/Radionuclid	e <u>C14</u>			
#	ITEM DE	SCRIPTION/LOCATION	3 min cpm	Bkg.3 cpm ^{wir}	<u>dpm</u> 100 cm ^{2 (1)}	T/R/F ⁽²⁾	3 min	Bkg. 10 cpm 11/11	dpm 100 cm ^{2 (1)}	T/R/F ⁽²⁾	mrem/	nr ⁽³⁾	Distance
	RSAR	TFF5800	239	167	2637,4	Т	106	360	-321	R			
	RSAR	TFSS BOI	199		1172,2	Т	95		-203,3	R			
		802	207		1465,2	Т	87		- 376.5	R			
		803	161		-219.8	Т	104		-641	R			
		804	153		-512,13	Т	90		-288,5	R			
		805	164		-109.9	Т	104		-641)	R			
		806	206		14236	Т	90		-7553.5	R			
		807	174		25614	Т	95		-208,3	R			
		808	191		\$79,1	Т	111		48,1	R			
		809	196	·	102,3	Т	91		-272.4	R			
		810	195		1025.6	Т	110		32.1	R			
		811	199		1172,2	Т	103		-80.1	R			_
		812	155		-439.6	. 1	98	•••-	-160:3	R			
	1	813	214	4	1721,6	Т	90	∀	-288,5	R			
⁽¹⁾ If area) cm ² , record as dpm/probe, or	r dpm/LAW.	⁽²⁾ Total/Re	movable/Fixed	I. ⁽³⁾ Indica	ate type, if ot	her than gai	mma (i.e., n or	- <u>β</u>).			
rtemarks					1 ~	~							
Reviewe	d by:			J.	vet=72x						Da		29/14
						,						FRN-	0007a

RADIOLOGICAL SURVEY MAP

	SCAN AT SAMPLE	н. С. С. С		
SAMPLE LOCATION #	B SCAN (CPM)	V BKGD (cpm)	YSCAN (CPM)	
RSARTEES 800	150-360	1200	1200 - 1300	
RSARTF55801	100-280	1000	1100-1200	
802	120-220	·800	1000-1100	
803	90-230	800	800 - 900	
804	80-190	800	800 - 900	
805	100-230	800	800-900	
804	120-280	800	1000-1100	
807	90-150	900	800-900	
803	120-240	300	1000-1100	
809	130-250	300	1000 - 1100	
810	130-240	700	1100-1200	
811	80-190	900	1100-1200	
812	140-220	700	700-800	
813	120-220	900	1400-1500	

All radiation readings are gamma in mrem/h unless noted.

FRN-0007b

SURVEY UNIT RSARTFSS

OFFSITE LABORATORY LSC SAMPLE ANALYSIS DATA REPORTS

Tritium, Carbon-14, and Technetium-99 Case Narrative

AMEC

ENVIRONMENTAL Phase II - 321060245

Work Order Number: 1409516

- 1. This report consists of the raw instrument data and supporting information for 14 swipe samples received by ALS on 9/23/2014.
- 2. These samples were prepared according to procedure SOP700R12.
- 3. The samples were analyzed for the presence of Tritium, Carbon-14, and Technetium-99. The analyses were completed on 9/26/2014.
- 4. Four calibration blanks (CB) and a Method Blank were run with this set of 14 samples. One Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) for each analyte were analyzed for this set of 14 samples.
- 5. After the analysis, it was determined that several samples fell below the established quench range for analysis. This is believed to be a factor of the reduced count times and subsequent large uncertainty associated with this count time.
- 6. Per PM instructions, there will be no activity calculations reported. Only the instrument raw data will be given to the client. The sample specific efficiency was not calculated. The efficiency and background equations have been provided to the client so that they may calculate a more accurate efficiency for each sample. Also, the calibration range for the quench curve calibration has been provided. Any samples falling outside of this range may not conform to the given equations.
- 7. In order to determine an appropriate analysis window that would be applicable to the analysis of the three requested nuclides, an energy calibration was performed. Upon determination of the energy calibration, an analysis window was set up so that the approximate efficiency of Tritium, Carbon-14, and Technetium-99 were 20%, 25%, and 40%, respectively. These efficiencies are based on relatively low quench samples, and as such if the quench increases, these efficiencies will be reduced accordingly.

- 8. Tritium CB2, CB4, Carbon CB4 and Technetium CB2 had count rates that fell outside of the control limits for the geometry of interest. This is believed to be a factor of the reduced count times and subsequent large uncertainty associated with this count time. Data quality is not believed to be affected by these excursions.
- 9. The radiometric recovery for the H-3 laboratory control sample and the C-14 laboratory control sample duplicate fell outside of the acceptance limits. This is believed to be a factor of the reduced count time and the amount of activity added to the sample.
- 10. No further anomalous situations were encountered during the preparation or analysis of these samples. All remaining quality control criteria were met.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Much Ser for Shiloh Summy Shiloh Summy

Radiochemistry Primary Data Reviewer

9-30-14 Date

Radiochemistry Final Data Reviewer

%Recovery	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	121.00%	94.40%	110.90%	113.80%	110.90%	122.20%	na
LumEx%	0.91	4.13	4.32	4.57	4.41	4.46	0.53	4.28	3.77	3.56	2.74	0.89	2.78	2.62	2.98	2.99	0.76	0.78	3.88	3.56	4.30	4.58	0.59	0.59	0.91
Tc-99 CPM	8.00	6.50	4.00	8.50	8.00	8.50	8.00	7.00	8.00	7.50	9.50	5.50	9.00	8.50	5.50	8.50	8.50	7.00	8.50	8.00	30.00	31.50	18.00	15.00	9.00
C-14 CPM Tc-99 CPM	7.50	6.00	8.00	7.50	7.00	5.50	5.50	5.00	9.50	7.00	8.00	9.50	6.50	7.00	7.50	7.00	10.00	7.50	22.50	21.00	16.50	15.50	18.50	19.50	6.50
H-3 CPM	4.00	8.00	6.00	6.50	7.00	9.00	6.00	6.00	6.50	10.00	11.50	7.50	3.50	4.00	4.00	5.50	6.00	6.00	68.00	54.50	11.00	8.50	8.50	8.50	7.50
#H	137.7	124.4	120.0	118.6	110.8	121.5	119.5	128.8	114.9	123.8	137.7	132.6	127.2	120.7	113.9	134.3	134.4	134.9	133.6	133.3	130.0	137.9	135.8	135.6	119.1
Time	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Rack- Pos	13-1	56-2	56-3	56-4	56-5	56-6	13-2	56-8	56-9	56-10	56-11	13-3	48-1	48-2	48-3	48-4	13-4								
Sample	CB1	1409516-1	1409516-2	1409516-3	1409516-4	1409516-5	1409516-6	1409516-7	1409516-8	1409516-9	1409516-10	CB2	1409516-11	1409516-12	1409516-13	1409516-14	CB3	MB1	LCS (H-3)	-csd (H-3)	-CS (TC-99)	-CSD (TC-99)	-CS (C14)	-CSD (C14)	CB4
Date Collected	-	9/24/2014	9/24/2014	9/24/2014	9/24/2014	9/24/2014	9/24/2014 1	9/24/2014 1	9/24/2014	9/24/2014	9/24/2014	-	/2014	9/24/2014	/2014	/2014				'	4120114		_	_	-
Matrix	WIPE	WIPE	WIPE	WIPE	WIPE	WIPE	WIPE	WIPE	WIPE	WIPE	WIPE	WIPE	WIPE	WIPE	WIPE	WIPE		B L	Y		X				
LabID	CB1	1409516-1	1409516-2	1409516-3	1409516-4	1409516-5	1409516-6	1409516-7	1409516-8	1409516-9	1409516-10	CB2	1409516-11	1409516-12	1409516-13	1409516-14		ancek		0					
FieldID		RSARTFFS 800	RSARTFSS 801	RSARTFSS 802	RSARTFSS 803	RSARTFSS 804	RSARTFSS 805	RSARTFSS 806	RSARTFSS 807	RSARTFSS 808	RSARTFSS 809		RSARTFSS 810	RSARTFSS 811	RSARTFSS 812	RSARTFSS 813			First Review:		Second Review				

I:\Oprtns\RAD\INST\LSC\LS6500\AMEC\1212231\1409516_RAW DATA

ALS Environmental -- FC

Sample Number(s) Cross-Reference Table

OrderNum: 1409516 Client Name: AMEC Client Project Name: Environmental Phase II Client Project Number: 321060245 Client PO Number:

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Coliected
RSARTFFS 800	1409516-1	· · · · · · · · · · · · · · · · · · ·	WIPE	24-Sep-14	10:30
RSARTFSS 801	1409516-2		WIPE	24-Sep-14	11:00
RSARTFSS 802	1409516-3		WIPE	24-Sep-14	12:45
RSARTFSS 803	1409516-4		WIPE	24-Sep-14	12:55
RSARTFSS 804	1409516-5		WIPE	24-Sep-14	13:00
RSARTFSS 805	1409516-6		WIPE	24-Sep-14	13:05
RSARTESS 806	1409516-7		WIPE	24-Sep-14	13:10
RSARTFSS 807	1409516-8		WIPE	24-Sep-14	13:15
RSARTFSS 808	1409516-9	<u> </u>	WIPE	24-Sep-14	13:20
RSARTFSS 809	1409516-10		WIPE	24-Sep-14	13:25
RSARTFSS 810	1409516-11		WIPE	24-Sep-14	13:35
RSARTESS 811	1409516-12	<u>. </u>	WIPE	24-Sep-14	13:45
RSARTFSS 812	1409516-13		WIPE	24-Sep-14	13:50
RSARTFSS 813	1409516-14		WIPE	24-Sep-14	14:00

1

SCR111 ©1 1 1 1 QME Gara Gala		2.00 CDM	11114 • • •		E REPEAT	'S: 1	PRINTER) ~	S10	
		CPM					RS232		:010	
E DEL DE ANK			IC# :							
TOTEL.AT		NO LIQUID	AQC : LUMEX:	NO LOW S	REPEAT: AMPLE RE	EJ: O	DISK	e N	COIT	
BATA BUFFE	₹ ES EUE	L. DATA	A WILL GO) TO PRINT	ER ONLY	*				
OW LEVEL	4 12	YES		1 C - COMBEC	Г (О М - ВА.	17.1	លាមព្រះ			•
HAN: 50.0 HAN: 251.0		.0 %E\$ 0 %E1		n sorter 1. sørter			3KG. SUB: 3KG. SUB:	0		
HAN: 401.0							3KG (118:	0		
AM POS	TIME	H#			lat tin	102	8.8.1.1 <u>81.15</u> 4	103	LUMEX	ELAPSE
NO	MIN		СРМ	%ERROR	CPM	%ERROR	CPM	%ERROR	%	TIM
2 56-2	-2:00-1 ; 2:00-1;		- <u>11.00</u> 8.00	42.64	7.00 6.00	53.45 57.74				
2 50 ° 2 11 56 11	2.00 17		6.00	57.74	8.00	50.00	6.50 4.00		4.13	5.39
4 56-4	2.00 1		6.50	55.47	7.50	51.64	8.50		4.32 4.57	8.0) 10.7:
5 56-5	2.00 1		7.00	5,	7.00	53.45	8,00		4.41	13.4
6 56-6	2.00 12		9.00	47.14	5.50	60.30	8.50		4.46	16.1
· 7 56 7	2.00 1	10.6	6.50		-9:50		7.00			
8 56-8	2.00 12	28.8	6.00	57.74	5.00	63.25	7.00		4.28	21.5
9-56-9	2.00 11	14.9	6.50	55.47	9.50	45.88	8.00	00-00	3.71	24.20
10 56-10	2.00 12	23.8	10.00	44.72	7.00	53 476	7.50	51.64	3.56	26.90
56.20	(-i)(i) = 1		11.50	41.70	8.00	50.00	9.50	45.88	2.74	22.60
12 56 12	- 2 00 t			43.64	9.50	45.88		<u>50,00</u>	11.49	- 32.34
13 48-1			3.50	25 59	6.50	55.4Z	9.00	47.14	2.78	35.1
14 48-2	2.00 12		4.00	70.71	7.00	53.45	8,50	48.51	262	. 12 - Aŭ
15 48-3			4.00	70.71	2.50	51.64	5.50	0.0^{-30}	2.98	40.53
16 48-4	2.00 13		5.50	60.30	7.00	53.45	8.50	48.51	2.99	43.22
18 48-6	2.00-13		<u> </u>	<u>44,72</u> <u>45,88</u>		<u>-47.14</u>			<u></u>	
10 40 0			68.00	17 15	22.50		12.50		- 6.34-	
20 48-8	2.00 13			19.16	22.50			48.51	3.88	51.34
21 48-9	2.00 13		11.00		16.50	30 .88 33.82	8.00 30.00		3.56 4 .30	54.01 56.75
22 48-10	2.00 13		8.50		15.50	35.92		20.02	4.30	50.77
*3 48-11 -	2.00 13			-37-80		-37.14				62-14
24 48-12	2.00 13			42-64				-31.62	5.82	- 64.9
· · · · · · · · · · · · · · · · · · ·		17.1	- 13.00	-39.22					8.55-	67.7%
26 16-2	2.00 10)Z.8	3.50	75.59	6.50	55.47	7.00	53.45	2.51	20.43
27 16-3	2.00 11		6.50	55.4	9.00	1.1.1.4	2.00	47.14	2.47	73.13
28 16-4	2.00 12		8.00	50.00	12.00	40.32	9.50	45.88	2.75	75 B
29 16-5	2.00 12		7.50	51.64	8.50	46,54	9.50		2.71	78.54
30 16-6	2.00 10		8.00	50.00	6.00	57.74	7.00		2,88	81.23
	· ()() [1]		6.00		8,50	48.51	8.00		2,43	83.90
32 16-8 33 1	2.00 11		10.50 5.50	43.54	9.00	47.14	7.00		2.13	86.65
34 16-10	2.00 11			() ()() 75 50	8.00	50.00	6.50		3.23	89.3
34 18-10 <u>35-16-11</u>	-2.00 11		3.50 	75.59	9.50 	45.88	7.00		2.50	92.07
26 16-12	-2.00 13					53.45		<u>- 12,64</u> - 45, 39	35.11 <u>4.94</u>	94.81
37 28-1	2.00 11		3.00	81.65	4.00	- 33,43- 70,71	8.50	-4 <u>5.84</u> 18.51		<u>97,48</u>
58-28-2	5:00 11				4.00 <u>13.50</u> -				3.0 -10.31-	100.30 -102.9 9
	- 00 E			51.64	11.50		11.00	42.64	2.61	102.55
40 28-4	2.00 1			50.00	6.50		6.50		2.37	108.40
				1.5 4						
41 28-5	2.00 t		8.30	* * 11	7.00		6.00	57.24	2.35	111.07

PAGE: 1

											PAGE: :
Mi 🔪	POS	TIME	11#	Let T. Ps		latif by				(目前上で	D APSED
′ NO		MIN		CPM	%ERROR	CPM	%ERROR	CPM	%ERROR	%	ТСМЕ
		2.00	1,170,131	6.00	57.74	7.00	53.45	7.50	51.64	2.40	116.47
44	28 8		(1, 2, 3)	6.50		12.00	40.82	6.00	57.74	2.24	119.16
	28-9		111.4	3.50		6.50	55,47	6.00	57.74	2.85	121.89
	28-10		119.8	8,50		9.00	47.14	5.00	63.25	2.36	1416L
	-28-11-		121-0			- <u>-11.50</u> -	۹۹ مار به ۱۹۹۷ مر <u>فع بر منا</u>				
	28-12		112.0	4.00	70.71	7.50	51.64	5.50		3.08	130.04
	50-1		115.8	7.50		8,00	50.00	4.50		1.36	132.85
50	50-2		128.0	6.00	57.74	9.50	45.88	5.50		2.59	135.55
51	19 <u>3</u>	(2.50)	1100-2	6.50	55.47	4.50	66.67	6.00		3.22	138.25
52	50-4	2.00	118.4	6.50		9.50	45.88	7.00		5 I.A.	110
53	50~5	2.00	145.0	8.50		10.00	4	7.50		2.81	143.65
54	50-6	2.00	111.0	6.50		4.00	70.71	11.50	41.20	2.26	146.34
55	50 - 7	2.00	116.9	8.50	48.51	9.50	45.88	2.50	a5.88	2,00	1.49.06
56	50-8	2.00	115.8	2.50	89.44	7.00	53.45	7.00		2.61	151.75
	50.89	()()	446 P	5.00	63.25	7.50	51.64	7.00	53.45	2.28	151,44
	50-10	~~?~(}()	-+::``} +	7.00	53.45	,	53.45		-35.36-	5.65	
	50-11		1. 1	6.50	55.00	' 8.00	50.00	7.50	51.64	2.96	159, 86
	50 12		165.0	8.50		7.50	-51.64		44-72	772	162 57
	33-1 -		116.7	4.50	66.67	6.00	57 - 14	6.00	57.24	2.79	165.36
	33-2		115.0	7.00		9.00	47.14	4.50	n í .	1.41	168.07
	33-3		170.9	6.00	57.74	8.00	50.00	8.00	50-00	2,36	120.26
	33-4		177.3	7.50		7.0 0	53.45	8.00	50.00	3.29	173.46
	11-15		1/4 4	8.50	48.51	7.50	51.64	9.50	45.88	2.51	176.15
	33-6		.174.5	9.00		12.50	40.00	9,50	45.88	2.26	178.86
	33-7		180.9	10.50	01.60	13.00	10 on	6.50	55.47	3.05	181.53
	33-8		200.1	9.00	47.14	10.00	44.72	14.00	37.80	3.65	184.22
	33-9-		135.0	10.00		10.00			+9:4	<u> </u>	+36-:28
	33-10		246.7	8.00		11.00	42.64		- 36.51 -	5.64	-189.6#
	3111		158.0	5.00	63.25	7.50	51.64	12.50	40.00	5 15	192.29
	33-12		196.0	8.50	48.51	8.00	50.00	8.00	50.00	1.46	194.99
	40-1		()	9.00		11.00	42.64	14.50		4.61	197.76
	40-2		175.0	10.00		8.00	50.00	11.00	42.64	2.33	200.46
	40-3		204.3	5.50		8.50	40.54	11.00	42.64	3.11	203.15
	40-4		139.9		100.00	6.00	57.74		48. 4)	205 .85
	10-5 4 0-6		205.8	18.50		11.00		12.50		2.40	208.56
	40-6		<u></u>	5.00 		6.50	55.47	12.50		2.18	211.24
	40 8						<u>45.88</u> 47.14	<u> </u>	- 42.64	-5.48	
	40-9		185.2	7.00	13 45	7.00	53.45	10.50			
	40-10		172.8			<u> </u>		10.50		2.60	219.33
	40-11		140.7	8.50	48.51	8.50		9.00		. 1.	324.72
	40-12		173.1	9.50	45.88	10.00	44.72	6.50		3.48	227.42
			121.4	4.00	70.71	8,50	48.51	5.00	63.25		227.42
	25-2		120.6	7.50	51.64	8.50	48.51	9.50	45,88	1.69	232.91
	25-3			5,50	60.30	13.00	39.22	8.50	48.51	2.06	232.91
	25-4		129.5	11.00		8.50	48.51	7.50	51.64	3.15	233.81
	25-5		137.1	4.50		5,50	4 0.01	7.00	53.45	1.59	240.99
	25-6		142.0	4.00		5.50	60.30	8.00	50.00	1.56	243.69
	25-7-		133-0		45.88		47 1 1	<u></u>		4.31	

B65_11_692601 JNg13014 55 9/27/14 JNg13014

PAGE: 2

BSF Version Instrument Ty Data Capture (User Filename User Number User Id User Comments Preset Count Calculation M H# Selected Sample Repeats Printer Output Blank Count IC# or SCR Se Replicates RS232 Output N Two-Phase Sele AQC Choice Cycle Repeats Data Buffer Ou Scintillator (Lumex Selected Low Sample Rep Low Level Sele Half Life Corr Window Limits Preset %Error Norm Multiplie Background CPM Window Limits Preset %Error Norm Multiplie Background CPM	Time Date Time Dde Mode lected lected Mode lected lected lected le	Mode ount n Date w 1 1 w 2 2 w 3	: 3 : LS : 26 : C:\ : 11 : H-3 : LS : 2.00 : CPM : YES : 1 : STD : NO : NO : NO : NO : 1 : EDIT : NO : NO : 1 : EDIT : LIQU : NO : 0 : YES	Sep 2014 \LS Wi ,C-14,TC 6500 0 JID 0000 0000 0000 0000	14:47:44 INCONNECTIO	N\DATA2'	\USER11\UN09	2601.BSF
Sam Rack LumEx ElTime	Time	H#	CPM Isol	%Errl	CPM Iso2	%Err2	CPM Iso3	%Err3
-1 56-1 13.41 2.64	2.00	123.8	11.00	42.64	7.00	53.45	9.50	45.88
2 56-2 4.13 5.39	2.00	124.4	8.00	50.00	6.00	57.74	6.50	55.47
3 56-3 4.32 8.07	2.00	120.0	6.00	57.74	8.00	50.00	4.00	70.71
4 56-4 4.57 10.73	2.00	118.6	6.50	55.47	7.50	51.64	8.50	48.51
5 56-5 4.41 13.41	2.00	110.8	7.00	53.45	7.00	53.45	8.00	50.00
6 56-6 4.46 16.12	2.00	121.5	9.00	47.14	5.50	60.30	8.50	48.51
7 56-7 5.01 18.81	2.00	110.6	6.50	55.47	9.50	45.88	7.00	53.45
8 56-8 4.28 21.51	2.00	128.8	6.00	57.74	5.00	63.25	7.00	53.45
9 56-9 3.77 24.20	2.00	114.9	6.50	55.47	9.50	45.88	8.00	50.00
10 56-10 3.56 26.90	2.00	123.8	10.00	44.72	7.00	53.45	7.50	51.64
11 56-11 2.74 29.60	2.00	137.7	11.50	41.70	8.00	50.00	9.50	45.88
				Page 1			m m	to Dull 1

Page 1

55 9/27/194 JP 4/30/4

-12 56 13	2 00 120 7		11_09260			0.00	
-12 56-12 11.49 32.29	2.00 129.7	10.50	43.64	9.50		8.00	
13 48-1 2.78 35.11	2.00 127.2	3.50	75.59	6.50	55.47	9.00	47.14
14 48-2 2.62 37.82	2.00 120.7	4.00	70.71	7.00	53.45	8.50	48.51
$15 ext{ 48-3}$ 2.98 ext{ 40.51}	2.00 113.9	4.00	70.71	7.50	51.64	5.50	60.30
16 48-4 2.99 43.22	2.00 134.3	5.50	60.30	7.00	53.45	8.50	48.51
* 17 48~5 8.79 45.93	2.00 130.7	10.00	44.72	9.00	47.14	6.50	55.47
18 48-6	2.00 131.4	9.50	45.88	9.00	47.14	12.50	40.00
19 48-7	2.00 133.6	68.00	17.15	22.50	29.81	8.50	48.51
3.88 51.34 20 48-8	2.00 133.3	54.50	19.16	21.00	30.86	8.00	50.00
3.56 54.05 21 48-9	2.00 130.0	11.00	42.64	16.50	34.82	30.00	25.82
4.30 56.75 22 48-10	2.00 137.9	8.50	48.51	15.50	35.92	31.50	25.20
4.58 59.47 23 48-11	2.00 132.0	14.00	37.80	14.50	37.14	26.50	27.47
8.83 62.19 24 48-12	2.00 133.4	11.00	42.64	14.50	37.14	20.00	31.62
5.82 64.91 -25 16-1	2.00 109.1	13.00	39.22	5.00	63.25	8.00	50.00
8.55 67.72 26 16-2	2.00 107.8	3.50	75.59	6.50	55.47	7.00	53.45
2.51 70.41 27 16-3	2.00 116.6	6.50	55.47	9.00	47.14	9.00	47.14
2.47 73.13 28 16-4	2.00 120.0	8.00	50.00	12.00	40.82	9.50	45.88
2.75 75.83 29 16-5	2.00 126.2	7.50	51.64	8.50	48.51		
2.71 78.54 30 16-6	2.00 120.2	8.00				9.50	45.88
$\begin{array}{r} 30 & 10-0 \\ 2.88 & 81.25 \\ 31 & 16-7 \end{array}$			50.00	6.00	57.74	7.00	53.45
2.43 83.96	2.00 115.7	6.00	57.74	8.50	48.51	8.00	50.00
32 16-8 2.13 86.65	2.00 116.1	10.50	43.64	9.00	47.14	. 7.00	53.45
33 16-9 3.23 89.35	2.00 117.2	5.50	60.30	8.00	50.00	6.50	55.47
34 16-10 2.50 92.07	2.00 116.7	3.50	75.59	9.50	45.88	7.00	53.45
35 16-11 35.11 94.81	2.00 239.2	46.50	20.74	9.50	45.88	10.50	43.64
36 16-12 7.96 97.48	2.00 131.2	8.50	48.51	7.00	53.45	9.50	45.88
37 28-1 3.02 100.30	2.00 119.1	3.00	81.65	4.00	70.71	8.50	48.51
38 28-2 10.31 102.99	2.00 225.4	10.50	43.64	13.50	38.49	11.50	41.70
39 28-3 2.61 105.69	2.00 125.8	7.50	51.64	11.50	41.70	11.00	42.64
40 28-4	2.00 113.3	8.00	50.00	6.50	55.47	6.50	55.47
2.37 108.40 41 28-5	2.00 114.9	6.50	55.47	7.00	53.45	6.00	57.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.00 116.3	6.00	57.74	7.00	53.45	5.50	60.30
2.49 113.79 43 28-7	2.00 114.3		57.74	7.00	53.45	7.50	51.64
			Page 2		55	$\neg \gamma$	9/20/14
					01 1	JF.	11 2010-1

9/27/14

		в65_	11_09260	01.ASC			
2.40 116.47 44 28-8	2.00 112.7	6.50	55.47	12.00	40.82	6.00	57.74
2.24 119.16 45 28-9	2.00 111.4	3.50	75.59	6.50	55.47	6.00	57.74
2.85 121.89 46 28-10	2.00 119.8	8.50	48.51	9.00	47.14	5.00	63.25
2.36 124.61 47 28-11	2.00 121.0	4.50	66.67	11.50	41.70	11.50	41.70
7.37 127.32 48 28-12	2.00 112.0	4.00	70.71	7.50	51.64	5.50	60.30
3.08 130.04 49 50-1	2.00 115.8	7.50	51.64	8.00	50.00	4.50	66.67
2.36 132.85 50 50-2	2.00 128.0	6.00	57.74	9.50	45.88	5.50	60.30
2.59 135.55 51 50-3	2.00 124.7	6.50	55.47	4.50	66.67	6.00	57.74
3.22 138.25 52 50-4	2.00 118.4	6.50	55.47	9,50	45.88	7.00	53.45
2.19 140.97 53 50-5	2.00 145.0	8.50	48.51	10.00	44.72	7.50	51.64
2.81 143.65 54 50-6	2.00 111.0	6.50	55.47	4.00	70.71	11.50	41.70
2.76 146.34	2.00 116.9	8.50	48.51	9.50	45.88	9.50	45.88
2.00 149.06 56 50-8	2.00 115.8	2.50	89.44	7.00	53.45	7.00	53.45
2.61 151.75 57 50-9	2.00 116.2	5.00	63.25	7.50	51.64	7.00	53.45
2.28 154.44 58 50-10	2.00 133.1	7.00	53.45	7.00	53.45	16.00	35.36
5.65 157.15 59 50-11	2.00 124.1	6.50	55.47	8.00	50.00	7.50	51.64
2.96 159.86 60 50-12	2.00 165.0	8.50	48.51	7.50	51.64	10.00	44.72
7.72 162.57 61 33-1	2.00 116.7	4.50	66.67	6.00	57.74	6.00	57.74
2.79 165.36 62 33-2	2.00 115.0	7.00	53.45	9.00	47.14	4.50	66.67
2.41 168.07 63 33-3	2.00 170.9	6.00	57.74	8.00	50.00	8.00	50.00
2.36 170.76	2.00 177.3	7.50	51.64	7.00	53.45	8.00	50.00
3.29 173.46	2.00 174.4	8.50	48.51	7.50	51.64	9.50	45.88
2.51 176.15	2.00 174.5	9.00	47.14	12.50	40.00	9.50	45.88
2.26 178.86	2.00 180.9	10.50	43.64	13.00	39.22	6.50	55.47
3.05 181.53 68 33-8	2.00 200.1	9.00	47.14	10.00	44.72	14.00	37.80
3.65 184.22	2.00 135.0	10.00	44.72	10.00	44.72	10.50	43.64
5.80 186.93 70 33-10	2.00 246.7	8.00	50.00	11.00	42.64	15.00	36.51
5.64 189.61 71 33-11	2.00 158.0	5.00	63.25	7.50	51.64	12.50	40.00
2.19 192.29 72 33-12	2.00 196.0	8.50	48.51	8.00	50.00	8.00	50.00
1.46 194.99 73 40-1	2.00 269.0	9.00	47.14	11.00	42.64	14.50	37.14
$\begin{array}{rrrr} 4.61 & 197.76 \\ & 74 & 40-2 \\ & & & & & \\ \end{array}$	2.00 175.0	10.00	44.72	8.00	50.00	11.00	42.64
2.33 200.46			Page 3			Ċ	Malsoliy
				ć	55 91.	27/14	
					· V	' /	

		в65_	11_09260	1.ASC			
75 40-3	2.00 204.3		60.30	8.50	48.51	11.00	42.64
3.11 203.15 76 40-4	2.00 139.9	2.00	100.00	6.00	57.74	8.50	48.51
2.29 205.85 77 40-5	2.00 205.8	18.50	32.88	11.00	42.64	14.00	37.80
2.40 208.56 78 40-6	2.00 166.3	5.00	63.25	6.50	55.47	12.50	40.00
2.18 211.24 79 40-7	2.00 235.9	8.50	48.51	9.50	45.88	11.00	42.64
5.48 213.93	2.00 130.0	7.50	51.64	9.00	47.14	5.50	60.30
6.67 216.62 81 40-9	2.00 185.2	7.00	53.45	7.00	53.45	10.50	43.64
2.60 219.33 82 40-10	2.00 172.8	8.50	48.51	10.50	43.64	13.00	39.22
5.48 222.02 83 40-11	2.00 140.7	8.50	48.51	8.50	48.51	9.00	47.14
3.92 224.72 84 40-12	2.00 173.1	9.50	45.88	10.00	44.72	6.50	55.47
3.48 227.42 85 25-1	2.00 121.4	4.00	70.71	8.50	48.51	5.00	63.25
2.00 230.21	2.00 120.6	7.50	51.64	8.50	48.51	9.50	45.88
1.69 232.91 87 25-3	2.00 114.5	5.50	60.30	13.00	39.22	8.50	48.51
2.06 235.61 88 25-4	2.00 129.5	11.00	42.64	8.50	48.51	7.50	51.64
3.15 238.29 89 25-5	2.00 137.1	4.50	66.67	5.50	60.30	7.00	53.45
1.59 240.99 90 25-6	2.00 142.0	4.00	70.71	5.50	60.30	8.00	50.00
1.56 243.69 91 25-7 4.84 246.39	2.00 133.0	9.50	45.88	9.00	47.14	9.00	47.14

55 9/27/14 Mg/20/14

•

IO:H-3.(2 · 1 · 4 (10				28 SEP /	014 13:30
USER:11	CC	MMENT:L	S 6500			
PRESET TIME :	2.00					
DATA CALC :	CPM H	t YE S	SABPLE REPEATS:	1	PRINTER	: STD
COUNT BLANK :	NO \cdots	3 t (40	PEPERCARE:	I	R+232	:EOIT
rwo phase :	NO AG	C : NO	CYCLE REPLATS :	1	DISK	:EDIT
SCINTILLATOR:		CE 🖉 – MG	电中心的 网络非常无法	0		
LOW LEVEL :	YES HA	LF LIFE	CORRECTION DATE:		none	
۰ .	- 15 e - e - REGE	1.1	-1.000000 L.000000) 8KG	. SUB:	0

	21	第二者に見た コート・シー	1.001083	1.000000	8KG. SU8:	0
CHAN: 251.0 -	400.0	%ERROR: 1.75	FACTOR:	1.000000	BKG. SUB:	0
0 20° 401 0	550 .0	"ERROR: 1.75	FACTOR:	1.000000	BKG. SUB:	0

SAM	POS	TIME	H#	LUATE DA		h ui TE P a	102		<u>a en s</u> e	LUMEX	ELAPSED
NO		HIN		CPM	%ERROR	CPM	%ERROR	CPM	%ERROR	%	TIME
	13-1	2 00	137.7	4.00	70.71	7 60	Б1 <i>I А</i>	0.00	FA 00	0.01	
۹.						7.50	51.64	8.00		0.91	2.60
		-1()	1122-15	6.00	57.74	5.50	60.30	8.00	50.00	0.53	5.29
-3	134~3	-3.00	132.6	7.50	51.64	9.50	45.88	5.50	60.30	0.89	7, 98
-4	13-4	γ^{*} (10)	134.4	6.00	5 . 1	10.00	14 72	8.50	48.51	0.76	10.64
- 5	13-5	2.00	134.9	6.00	57.74	7.50	51.64	7.00	53.45	0.78	13.33
6	13-6	2.00	135.8	8.50	-8-51	18.50	32.33	18.00		0.59	16.00
	13-7	2.00	135.6	8.50	48.51	19.50	32.03	15.00) to of	14 14 14	13.69
-8	13-8	2.00	119.1	7.50	51.64	6.50	55.47	9.00	1 AZ 1.4	0.91	21.38
9	13-9	2.00	235.3	11.50	41.70	13.00	· · ·	15.50	5.92	7.88	24.07
10	(3 -)0	P 00	132.6	6.00	57.74	11.50	41.70	7.50	51.64	0.24	16.14
11	13-11	2.00	2144	7.50	5164	9.50	45.88	10.50	43.64	1.88	29.43
12	13-12	5.00	131-4	5.50	60.00	6.00	57.74	6.00	57.74	0.82	32.11
13	10-1	°.00	137.3	5.50	60.30	6.00	57.74	8.00	50.00	1.10	34, 91
4	10-2	2.00	172.8	3.00	81.65	9.00	र्ग दिने	6.50) 55 aZ	1.19	37.58
15	10-3	2.00	138.5	4.50	66.67	9.50	45.88	7.50	51.64	0.98	40.28
$1 \notin i$	ite e	2 OO	249.5	6.00	57.74	7.50	51.64	10.00) an 20	0 84	42.26
17	10-5	2.00	230.2	8.50	48.SL	9.50	45.88	11.00	42.64	1.18	45.64
,	•	00	125	5,50	60.3 0	9.00	47.14	7.50	51.64	1.61	48.34

-

B65_11_092801 55 mg/30/14 9129/14 mg/30/14

BSF Version Instrument Ty Data Capture User Filename User Number User Id User Comments Preset Count Calculation M H# Selected Sample Repeat Printer Outpur Blank Count IC# or SCR Se Replicates RS232 Output I Two-Phase Sele AQC Choice Cycle Repeats Data Buffer Of Scintillator O Lumex Selected Low Level Sele Half Life Corr Window Limits Preset %Error Norm Multiplic Background CPM Window Limits Preset %Error Norm Multiplic Background CPM	Time ode s t Mode lected Mode ected utput Mode choice ject Count ection rection Date Window 1 Iso1 er Iso1 4 1 Window 2 Iso2 er Iso2 4 2 Window 3 Iso3 er Iso3 er Iso3	: 3 : LS : 28 : C:\ : 11 : H-3 : LS : 2.0 : CPM : YES : 1 : STD : NO : NO : NO : NO : NO : NO : NO : LIQU : NO	Sep 2014 \LS V ,C-14,TC 6500 0 7 7 7 900 0000 0000 0000 0000 0000	13:27:00 VINCONNECTIO	N\DATA2	\USER11\UN09	2801.BSF
Sam Rack LumEx ElTime	TÌme H#	CPM ISO1	%Err1	CPM ISO2	%Err2	CPM Iso3	%Err3
1 13-1 0.91 2.60	2.00 137.7	4.00	70.71	7.50	51.64	8.00	50.00
2 13-2 0.53 5.29	2.00 119.5	6.00	57.74	5.50	60.30	8.00	50.00
-3 13-3 0.89 7.98	2.00 132.6	7.50	51.64	9.50	45.88	- 5.50	60.30
→4 13-4 0.76 10.64	2.00 134.4	6.00	57.74	10.00	44.72	8.50	48.51
5 13-5 0.78 13.33	2.00 134.9	6.00	57.74	7.50	51.64	7.00	53.45
6 13-6 0.59 16.00	2.00 135.8	8.50	48.51	18.50	32.88	18.00	33.33
$\begin{array}{c} 0.59 & 10.00 \\ 7 & 13-7 \\ 0.59 & 18.69 \end{array}$	2.00 135.6	8.50	48.51	19.50	32.03	15.00	36.51
-8 13-8 0.91 21.38	2.00 119.1	7.50	51.64	6.50	55.47	9.00	47.14
9 13-9 7.88 24.07	2.00 235.3	11.50	41.70	13.00	39.22	15.50	35.92
10 13-10 0.74 26.74	2.00 132.6	6.00	57.74	11.50	41.70	7.50	51.64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.00 225.4	7.50	51.64	9.50	45.88	10.50	43.64
			Page 1	:	912	alay M	P.9/30/4

		B65_11_092801.ASC				
12 13-12	2.00 131.4	5.50 60.30		57.74	6.00	57.74
$\begin{array}{cccc} 0.82 & 32.11 \\ & 13 & 10-1 \\ 1 & 10 & 34 & 01 \end{array}$	2.00 137.3	5.50 60.30	6.00	57.74	8.00	50.00
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.00 172.8	3.00 81.65	9.00	47.14	6.50	55.47
1.19 37.3815 $10-30.98$ 40.28	2.00 138.5	4.50 66.67	9.50	45.88	7.50	51.64
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.00 249.5	6.00 57.74	7.50	51.64	10.00	44.72
$17 10-5 \\ 1.18 45.64$	2.00 230.2	8.50 48.51	9.50	45.88	11.00	42.64
$\begin{array}{ccc} 1.10 & 49.04 \\ 18 & 10-6 \\ 1.61 & 48.34 \\ \end{array}$	2.00 175.7	5.50 60.30	9.00	47.14	7.50	51.64

Malsdy

.

<u>LS6500</u>

ALS

		CountTime			•		Position		
Date	Sample ID	(min.)	Rack & Position	Test	User #	Batch ID	Check	Initials	Comments
9/25/14	1409002 - 4	30	22 - 5	Hy land		34140922-1	55	53	MA
	-5		6	3	1				
	-6		- 7						
	-2		- 8						
		· · · · · · ·		-	<u> </u>				
<u> </u>	-10		- 10			# 	╎─┤─┤		
	-11		- 11	$\left\{ \begin{array}{c} 1 \\ 1 \end{array}\right\}$			╞╼╏╴┨	<u>}</u>	
	-iz			$\left \right $					
	31-140122-1632	<u></u>	1 - 2	┝╍┨─┤			┟─┼─┤	{}	
	1409002-13		- 3						
	1 -14		- 4				╞╼╌┠╴┦		
	-15		- 5						
	-16		- 6						
	~17		- 7						
	-18		- 8						
<u> </u>	-19								
	3H140922-MB		- 10 - 11						
			-1 - 11	┠──╂──┨					
	-ILCSD		40 - 1	┠─┨╼╾┧					
	-1CB3	1	. r - 2						
126/14	Daily QC	10	1,3 -1-3,1-2		13		35	53	nnt
126/14	<u>C</u> [5]	200	56 - 1	H. CI4(CA	_IP		35	55	MALUNX 75
	140 516-7			~	_1		1		
	-2		- 3						
	-3		<u>- 4</u>						
			- 5						
			- 6						
· .					r		-	<u> </u>	
nalvet /	Date 65 9/	120/14							
naiyət/		<i>M</i> [1]				7			FORM 762r6.XLS (3/7/0

Note: Each page is copied as completed and included with the workorder/run documentation; reviewed subsequently

444450

Instrument ID:

LS6500

ALS

		CountTime					Position		
Date	Sample ID	(min.)	Rack & Position	Test	User#	Batch ID	Check	Initials	Comments
9[74]ly	1409516-7	200	56 - 8	H, CHITA	11		55	55	NALUNEX 759
	-8		- 9	- í					
	-9		- 10	<u> </u>					
	V -10		- 1/						
	CB2 140 4516 - 11		<u>v - 12</u>	+			<u></u>		LUMex75
	190 15 16 - 11		48 - 1	+					
	-12		1 - 2	+				┝╍╍╂╍╍╍┤╼╸	
	-13 -(4	<u> </u>	- 5	┼╍┠──					``
	CB3	···	- 7	<u> </u>					LUMEY 750
	MB		- 6	┼╍╂╍╍╍		· · · · ·			
	LCSI		- 7	+					``
	LesDI		- 8						i
	LCS2		- 9						
	LCSD2		- 10						
	1 CS 3		· - //						LUMAY 750
	CSD3 CBY		r - 12						
	CBY	 	16 - 1						
	1409519-1			<u> </u>					
	-2		- 3				+		
	-3		- 4					┝──┤──┥──	
	-4	<u> </u>	<u> </u>	+				└ <u></u>	
	-5			┼ ┨──					
			- 7	+					
	-8			┼ ╂──			╶╂╴╂──		
	-9	├─── ╂╼╼──┤	- 10	┼╂──					
	-0	╏╾╾╾╴┨	- 1/	+ +					LUA4275
	C & 5		· - 12	+ +					
	1409519-11		78 - 1		y				· · · · ·

Analyst / Date <u>55</u> 9/30/14

FORM 762r6.XLS (3/7/09)

Note: Each page is copied as completed and included with the workorder/run documentation; reviewed subsequently

<u>LS6500</u>

ALS

Date	Sample ID	CountTime (min.)	Rack & Position	Test	User #	Batch ID	Position Check	Initials	Comments
9/26/14	1409519-12	200	28 - 2	4, CM/E8	11		55	55	NA LUMAY 750
<u>1(AB) 7</u>	1104511 14	100	1 - 3	in Citiken					/V/1 LUM44/3
	-4		- 4						
	-15		- 5						
	-16		- 6			\ \			
	-17		- 7						
	-18		- 9						
	-19		- 9						
	1 -20		- 10					3	
	<u>CB6</u>		- 11	╂╾╼┠╼╍┥					LUNIX > 50L
	1409519-21	<u> </u>	1 - 12				<u> </u>		······
	-22		50 - 1					<u> </u>	
}	-23		- 2				+		
	-24	·····							
	-25 -26		- 4						
	-27								
	-28		- 6				<u> </u>	··	····
	-29		- 8						
	1 -30		- 9						
	CB7 140 4519-31		- 10						LUMER 7 504
	140 95 19-31		- 11						
	1 -32		- 12						LUNEY 750
	-33		33 - 1						
	- 39		<u> </u>						
	-35		- 3						
	-36		- 4	$ \dots $					
	-37		- 5	<u> </u>					
/	-38		- 6						/·
V [-39	V	Y - 7	I Y . I	Y	V			
Analyst /	Date <u>55 9</u>	130/14							FORM 762r6.XLS (3/7/09)

Note: Each page is copied as completed and included with the workorder/run documentation; reviewed subsequently

444452

<u>LS6500</u>

ALS

		CountTime					Position		_
Date	Sample ID	(min.)	Rack & Position	Test	User #	Batch ID	Check	Initials	Comments
7/26/14	1409519-40	200	<u> 53 - 8</u>	H- CH 10#	11		55	S5	NA
1	CB8 1409519-41	3	- 4		1	(.			1 LUNER 759
	1409510-41		- 10						
	<u>ו - אַג</u>		- 11						
	-43		V - 12						
	-44		40 - 1						
	-45		1 - 2						
	-46 -47		- 3						*."
	-47		- 4						
	-48		- 5						
	-49		- 6						
	r -50		- 7						Uner 75
	CB		- 8						
	1409519-51		- 9			l			
_	-52		- 10						Lumer 75
	-53		· · · · · · · · · · · · · · · · · · ·						
	-54		V - 12						
	- 55		25 - 1						
	-56		<u> </u>						·
	~57		- 3						
	-58		- 4						
	-59		- 5						
	1 -60	/	- 6		_/				
r	CB2	V	<u>y - 7</u>		<u> </u>	l V			/ LUNX 75
12614	Da:14 QC RN 140926 - 7431	10	13 -1-31-2		12		*	55	NA
Dilly	RN 140926 - 1031	10	<u> 46 - 1</u>	RAZA	ĨF	RNKU926-1	35	\$	NA
	-165	9.80	1 - 2						
	-IMBI	20	- 3						
	1409535-1		- Y_						
•	L -IREP	V	1 5			1	k		<u> </u>

Analyst / Date <u>55 4/30/14</u>

FORM 762r6.XLS (3/7/09)

Note: Each page is copied as completed and included with the workorder/run documentation; reviewed subsequently

		CountTime		1			Position		
Date	Sample ID	(min.)	Rack & Position	Test	User #	Batch ID	Check	Initials	Comments
9128114	140 40 36 -4	30	21 - 3	1294	2	TC140922-2	دک	\$5	NA;
	r -9	1	- 4		1			1	
	1404061-4		- 5						
	1409067-4 1409062-4		- 6						
	1 ~13	K	- 7						
	1409243-4	9.80	- 8						
	-9	27.25	- 9						
	-14	30	- 10						
	1409311-4		- 1/						
<u> </u>	-6		<u>k - 12</u>						
	<u>~7</u>		60 - 1						
	-7D		$1 - \lambda$						
	-18		- 3						
	~~~	F	- 4						
	-27	25.65	- 5	$\square$					
	140 9337-4	30	<u> </u>						
	-4	<b>\</b>	- /						
	-14		- 8						
	1 -19 To hard 22 21 05		- 4	┝╾┠╌╍╴					
	TC 140922-22 CS	V	<u>v - 10</u>		V	1			
9/28/14	TC140922-1CB3 -2CB3	60	$\frac{26}{10} - \frac{1}{10}$	Y	8	TC140922-1,-2		55	
9/28/14	Daily QC CR 1409516-6	100	<u>13 - 13,1-2</u> 13 - 1	11 Curch	- 11	····	55 5)	55	NA NA
VIES 107	1110 95 16 -6	~~~~	1 - 2	н, снла			<u> </u>	<u> </u>	17
┠╼━╾╂───┤	(B2					<u>├──</u>			
┝╾╌╂───┤	683		- 4						
┠───┨────┤	MB								
┠───╂╵╍──┤	2053								
	LCSD3		- 7	┟─┠──┤					
	$\frac{26505}{6B4}$		8						
	L134	•	r - 0		. V	r	,	•	V

Analyst / Date 55 9/30/14

FORM 762r6.XLS (3/7/09)

Note: Each page is copied as completed and included with the workorder/run documentation; reviewed subsequently

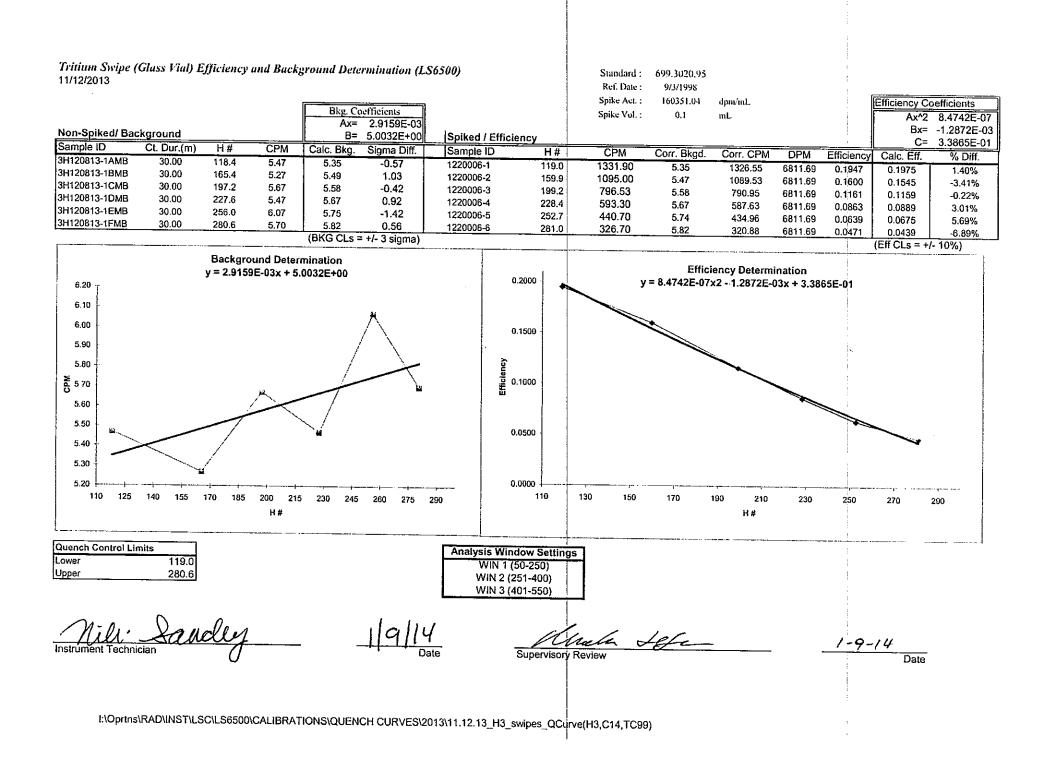
÷

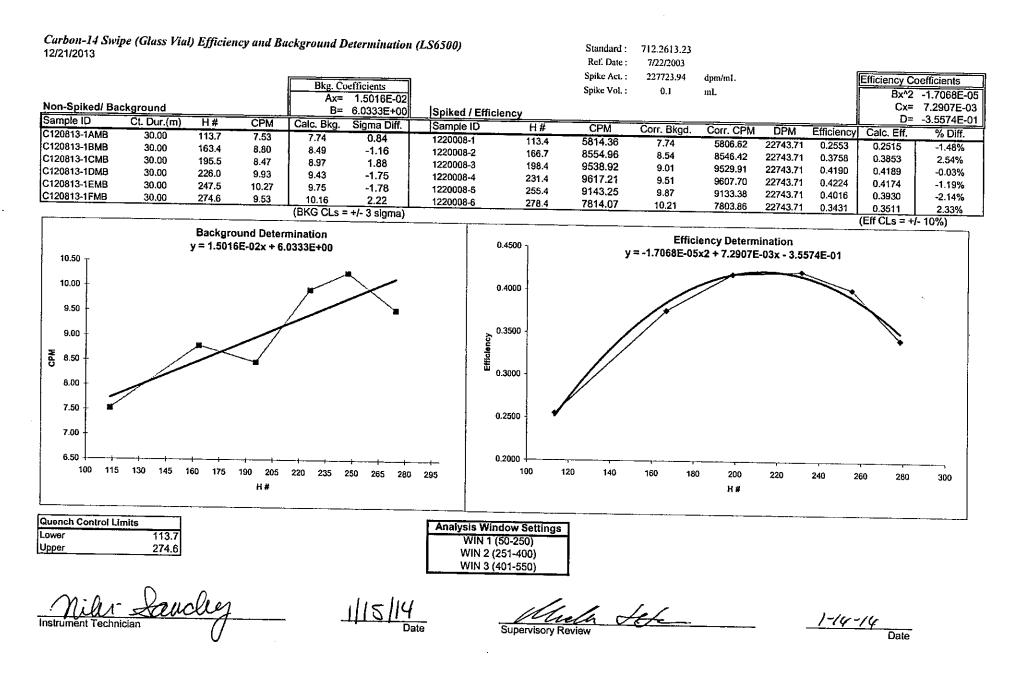
5

# <u>LS6500</u>

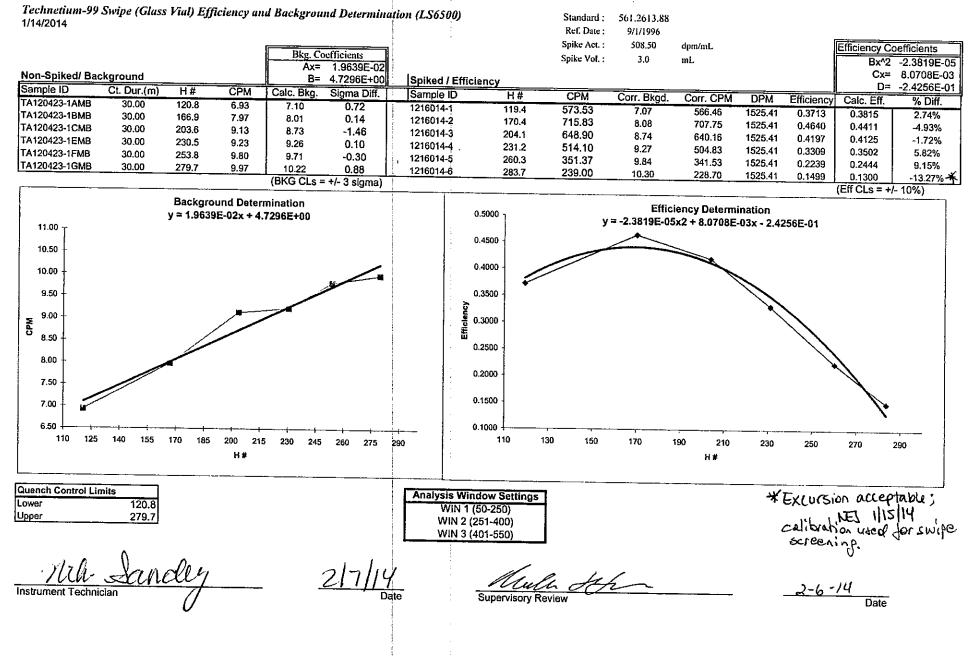
1

		CountTime					Position		
Date	Sample ID	(min.)	Rack & Position	Test	User #	Batch ID	Check	Initials	Comments
4/28/4	1409519-10	2.00	13 - 9	H. CNTON		·····	55	55	NA
1	CRG	Í	1 - 10	<b>″</b> 1	l j			4	
	1409579-12		- 11						
	1409519-12 286 CB7		+ - 12						
	CB7		10 - 1	<u> </u>					
	1409519-32 CB8	<u> </u>		<u> </u>					
	C (38	<b></b>							
	140 95 19-41		- 4	<u> </u>					
	<u></u>	<b>  </b>	- 5						<i>_</i>
9129/14	Daily QC	10	1,3 -1-3,1-2		1.3		55	55	NA
4124.4	Dany ac		φ -1-3,1×						
				· · · ·			1 · · ·		
	<u></u>					· · ·			
			-						
			-						
	•		· · /						· · · · · · · · · · · · · · · · · · ·
				<b></b>					
	<u> </u>		-						
			<del></del>						
			-					<u> </u>	
				<u> </u>					
2				<b> </b>					
<u></u>		12 - 11/1							55 9/30/14
Analyst	/ Date_ <u>55</u> _4/	130/19				;			FORM 762r6.XLS (3/7/09)


Note: Each page is copied as completed and included with the workorder/run documentation; reviewed subsequently


444456

FieldID	LabID	Standard Info.	Sample Date	Sample Time	Additional DI (mL)	Rack/Position	Nitromethane	]
	CB1		9/24/2014	1030		56-1	5	13-1
RSARTFFS 800	1409516-1		9/24/2014	1100		1 - 2		1
RSARTFFS 801	1409516-2		9/24/2014	1245		-3		1
RSARTFFS 802	1409516-3		9/24/2014	1255		-4		
RSARTFFS 803	1409516-4		9/24/2014	1300		-5		1
RSARTFFS 804	1409516-5		9/24/2014	1305		-6		1
RSARTFFS 805	1409516-6		9/24/2014	1310		-7		13-2
RSARTFFS 806	1409516-7		9/24/2014	1315		-8		
RSARTFFS 807	1409516-8		9/24/2014	1320		-9		1
RSARTFFS 808	1409516-9		9/24/2014	1325		-10		1
RSARTFFS 809	1409516-10		9/24/2014	1335		-11		1
	CB2					+ -12	5	13-3
RSARTFFS 810	1409516-11		9/24/2014	1335		48 - 1		
RSARTFFS 811	1409516-12		9/24/2014	1345		1 -2		1
RSARTFFS 812	1409516-13		9/24/2014	1350		-3		1
RSARTFFS 813	1409516-14		9/24/2014	1400	+1.15	-4		
	CB3					-5	5	13-4
	MB					-6	1	1-5
	LCS 1	<u>S1</u>				-7		
	LCSD 1	<u>S1</u>				-8		
	LCS 2	S2				-9		1
	LCSD 2	<u>S2</u>				-10		1
	LCS 3	<u>S3</u>				-11		13-6
	LCSD3	S3				レール	V	1-7
	<del>- ୧୫</del> ୫-୯୫	· · · · · · · · · · · · · · · · · · ·				16 -1	5	13-6 1-7 1-8
	B- 9)20/1	٩						-
		27	ρ: Standard	s Information				
		Standard ID	Aliquot	Pipette	Reference Date	Activity (DPM)		
<b>S</b> 1	³ Н	648.4095.58 7/3	3/15 _{0.1 mL}	RS-013	9/3/1998	6936.91		
S2	⁹⁹ Tc	898.3610.39 7]		RS-013	6/29/2009	496.88		
S3	I⁴C	617.4095.54 7/		RS-013	4/18/2002	283.94		
	UG-LLT	Lot # 97-14192						


Spiked By: Witnessed By:

Date: Date:





I:\Oprtns\RAD\INST\LSC\LS6500\CALIBRATIONS\QUENCH CURVES\2013\12.21.13_C14_swipes_QCurve(H3,C14,TC99)



1:\Oprtns\RAD\INST\LSC\LS6500\CALIBRATIONS\QUENCH CURVES\2014\1.14.14_Tc99_swipes_QCurve(H3,C14,TC99)

### DAILY INSTRUMENT PERFORMANCE CHECKS - LS6500 (LL OFF, LUMEX OFF)

### Daily IPCs consist of the following standards;

·	Efficiency Check	- , ,			
	Eckert&Ziegler	Tritium Standard	Eckert&Ziegler C-14 Standard		
	Lot H92218		Lot 92228		
	101700.00	dpm	102420.00	dpm	
	3/4/2013	REF	3/4/2013	REF	
	3/4/2018	EXP	3/4/2018	EXP	

Historical Control Limits	as of 03/25/13 JP	
	Decay Corrected Tritium	Carbon-14
UCL (3 sigma)	66070.55	81980.18
UWL (2 sigma)	64497.44	80028.27
Mean Value	62924.33	78076.36
LWL (2 sigma)	61351.22	76124.45
LCL (3 sigma)	59778.11	74172.54

#### Instrument re-calibrated for all tests starting 11/14/2012.

•

			Decay Corrected			
<u>Obs</u>	Date	<u>H-3 CPM</u>	<u>H-CPM</u>	PASS?	<u>C-14 CPM</u>	PASS?
507	9/26/2014	56258.30	61448.23	OK	78528.3	OK
508	9/26/2014	56257.70	61447.58	OK	78544.4	OK
509	9/27/2014	56332.30	61538.57	OK	78548.7	OK
510	9/28/2014	56328.80	61544.26	OK	78588.6	OK
511	9/29/2014	56410.10	61642.61	OK	78544.2	OK

	DA	DAILY CHECK LL ON ⁹⁹ Tc SOURCE- LS6500						
		⁹⁹ Tc stand 836.3020. 2/12/2014	70	KNOWN	OF 2/26/07 dpm/g			
		2/12/2015			58000.38 58000.38	dpm		
		Historical	Control Li	mits	2/19/14 NES	-		
		<u>blank</u>	B	lank Quenc	<u>h #</u>	<u>spike</u>		
	UCL (3 sigma)	21.1869		68.5218		12454.2597		
	UWL (2 sigma)	19.6736		66.7343		12164.6258		
	Mean Value	16.8150		59.5842		11585.3579		
	LWL (2 sigma)	13.8892		52.7320		11006.0900		
	LCL (3 sigma)	12.4263		50.4678		10716.4561		
Obs # Date	Blank C.R.	Pass?	Quench #	Pass	Spiked C.R.	Pass?		
507 9/26/2014	15.6	OK	57	OK	11834.1	OK		
508 9/26/2014	15	OK	57.4	OK	11735.5	OK		
509 9/27/2014	17.5	OK	57.9	OK	11589.1	OK		
510 9/28/2014	16	OK	57.1	OK	11717.2	OK		
511 9/29/2014	13.2	LWL	57.8	OK	11815.4	OK		

# LS6500 Tritium Swipe in Glass Vial Background Determination

Interim control limits are established from the initial calibration for the geometry of interest. Limits are +/- 3 standard deviations from the initial unquenched calibration blank data. Once enough historical data is acquired, new historical limits are set as follows: Control limits for reagent blanks are established from 30 individual historical data points (10 batches). Limits are +/- 3 standard deviations from 30 individual historical data points (10 batches). Limits are +/- 3 standard deviations from 30 individual historical data points. Individual reagent blanks and the average of reagent blanks from each batch are in control if the Count Rate (CPM) is within the established control limits.

#### **CURRENTLY UNDER INTERIM LIMITS!**

	Updated on 11/14/13 NES						Individual Reagent Blanks			Average of Reagent Blanks		eagent Blanks
			Count	Count								
COUNT			Duration	Rate								
DATE	#	Sample ID	(m)	(CPM)	Total Cts.	Mean	LCL	UCL	Pass ?	LCL	UCL	Pass?
9/26/2014	19	CB1	2	4	8.00		3.78	7.46	PASS			
9/26/2014	20	CB2	2	7.5	15.00		3.78	7.46	HIGH			
9/26/2014	21	CB3	2	6.00	12.00	5.83	3.78	7.46	PASS	3.78	7.46	PASS
9/26/2014	22	CB4	2	7.5	15.00		3.78	7.46	HIGH			· · · · · · · · · · · · · · · · · · ·
	23						· ·					
	24					7.50				3.78	7.46	HIGH

# LS6500 Carbon-14 Swipe in Glass Vial Background Determination

Interim control limits are established from the initial calibration for the geometry of interest. Limits are +/- 3 standard deviations from the initial unquenched calibration blank data. Once enough historical data is acquired, new historical limits are set as follows: Control limits for reagent blanks are established from 30 individual historical data points (10 batches). Limits are +/- 3 standard deviations from 30 individual historical data points (10 batches). Limits are +/- 3 standard deviations from 30 individual historical data points. Individual reagent blanks and the average of reagent blanks from each batch are in control if the Count Rate (CPM) is within the established control limits.

#### **CURRENTLY UNDER INTERIM LIMITS!**

	Updated on 1/14/14 NES							Individual Reagent Blanks			Average of Reagent Blanks	
COUNT DATE	#	Sample ID	Count Duration (m)	Count Rate (CPM)	Total Cts.	Mean	LCL	UCL	Pass ?	LCL	UCL	Pass ?
9/26/2014		CB1	2	7.5	15.00		6.66	11.30	PASS			
9/26/2014	17	CB2	2	9.5	19.00		6.66	11.30	PASS			
9/26/2014	18	CB3	2	10.00	20.00	9.00	6.66	11.30	PASS	6.66	11.30	PASS
9/26/2014	19	CB4	2	6.5	13.00		6.66	11.30	LOW	·····		
	20											
	21					6.50				6.66	11.30	LOW

# LS6500 Tc-99 Swipe in Glass Vial Background Determination

Interim control limits are established from the initial calibration for the geometry of interest. Limits are +/- 3 standard deviations from the initial unquenched calibration blank data. Once enough historical data is acquired, new historical limits are set as follows: Control limits for reagent blanks are established from 30 individual historical data points (10 batches). Limits are +/- 3 standard deviations from 30 individual historical data points (10 batches). Limits are +/- 3 standard deviations from 30 individual historical data points. Individual reagent blanks and the average of reagent blanks from each batch are in control if the Count Rate (CPM) is within the established control limits.

#### **CURRENTLY UNDER INTERIM LIMITS!**

	Updated on 1/15/14 NES						Individual Reagent Blanks			Average of Reagent Blanks		
COUNT DATE	#	Sample ID	Count Duration (m)	Count Rate (CPM)	Total Cts.	Mean	LCL	UCL	Pass ?	LCL	UCL	Pass ?
9/26/2014		CB1	2	8	16.00	mourr	6.13	10.61	PASS			1 033 :
9/26/2014		CB2	2	5.5	11.00		6.13	10.61	LOW			
9/26/2014	18	CB3	2	8.50	17.00	7.33	6.13	10.61	PASS	6.13	10.61	PASS
9/26/2014	19 20	CB4	2	9	18.00	<u> </u>	6.13	10.61	PASS			······
	21					9.00				6.13	10.61	PASS

### SURVEY UNIT RSARTFSS

## INSTRUMENT CALIBRATION AND QA/QC DATA

PORTABLE INSTRUMENT RESPONSE CHECK SHEET Page	of
PORTABLE INSTRUMENT RESPONSE CHECK SHEET Page	of

ē,

Instrument: <u>E600</u>	Serial No: 368	<b>9</b> Probe: <u>4</u>	<u>'3-89</u>	Serial No:	<u>3/207/</u>
Cal. Due Date: <u>/2-02-</u>	2014	Response Check	Location: 🦽	Room	2138

	βγ Channel		,
Source Isotope: <u>C-14</u>	Source ID: <u>4459</u>	Source Jig ID:	.PA
Source Reference Reading:	1.476. Z Kepn +20%_	1.771 Kcpn -20%	1.181 Kcpm
Bkgd Reference Reading:	184.2 cpm +20%_	221. 04 cpm -20%	147. 36p

		Respo	onse Checks		
Da	ate/Time	βγ Bkgd.	βγ Reading	Remarks	Initials
9-16-14	1000	ZOU COM	1.414 Kep	Good	Re
9-16-14	1645	191 Cpm	1.42.5 Kepa		Re
9-17-14	0725	164 cm	1494 4		Re
9-17-14	1640	195 cm	1,4431Kcpn	Good	pc
9-18-14	0730	183. cpm	1H71Kcpm	Good	RC
9-18-14	1700	175 CPM_	1,390 Kapn	Good	R
9-19-14	0715	162cm	1,656 KCPM	Goul	Re Re
9-19-14	1610	204 CPM	1,467 Kcp	Good	Re
9-22-14	0715	193, cpn_	1,574 Rep	Good	RC
9-22-14	1615	209 cpg	1.515 Kepm	Geod	R
9-23-14	0730	190 CPM	1,511 Kepn	Good	Ra
9-23-14	1625	168 cpm	1,506Kep	Good	Re
9-24-14	0720	167 срм	1. 516 Repn	Bood	Re Re
9-24-14	1820	185 cpm	1,466 Kepn	Good	Re
9-25-14	0715	193 Cpm	1,573 Kepn	Good	Re
			_		
·	<u> </u>				
			·		
				· · · · · · · · · · · · · · · · · · ·	

Review: _

Thet

Date: <u>9/29/14</u> FRN-0005

.

**INSTRUMENT QC CHECK SHEET** 

Page ____ of ____

Date:	9-6-14	Time:
	,	Serial No: <u>3689</u>
Probe:		Serial No: 312071
Cal. Performe	ed Date: <u>[2-02-20</u>	13 Cal. Due Date: 12-02-2014
Source Isotor	oe: <u>C-[4</u>	Source #:
QC Check Lc	ocation: ROOM Z132	8
Jig Used:	Yes No (circle one)	Jig ID#
QC	Counting Results	Range Calculation
Count No.	Count Result	Source Ref. Reading: <u>14</u> 76.2X 20% = <u>295.2</u> 4
1	1508	Avg. + 20% = 1771. 444
2	1446	Avg 20% = <u>1180.96</u>
3	1 484	Acceptable Range:
4	1460	From $\frac{118/\text{Keen}}{(\text{Avg.} - 20\%)}$ to $\frac{177}{(\text{Avg.} + 20\%)}$
5	1483	(///g. 20/0)
	Add results, list in Total	Comments: <u>BKg REF : 184.2 CPm x 208</u> =36.89
Total	7381	AVG + 20% = 221.04 AVG - 20% = 147.36
	Divide the total by 5	
Source Reference Reading	1476.2	From 147 Cpm TO 221 Cpm
(Average)		
HERREY , JAN , HERREY , JAN , HERREY		

Performed By: <u>JOSEPH E. MEDELLINGLA Madella</u> Date: <u>9.16.14</u> RSO Review: <u>Date: 1/16/14</u>



Outer Physical Check: Pass

#### **Calibration Certificate ID Number: 31207179772-2**

As Found

771 Volts

As Left

771 Volts

Customer:		Safety & Control S outh Avenue	Services, Inc.	Instrument Ludlum Model 43-89	Serial Number 312071
Probe Mod	del & SN	Isotope	Efficiency	NIST Source ID	Geometry
Internal F		C-14	0.0091 C/D	C-14 (SN: 488-10-9)	On Contact
Internal F		Cs-137	0.2162 C/D	Cs-137(Beta) (SN: 98CS5004751)	@1cm
Internal F		Cs-137	0.2536 C/D	Cs-137(Beta) (SN: 98CS5004751)	On Contact
Internal F		Sr/Y-90	0.1989 C/D	Sr/Y-90 (SN: 63962 (Beta))	On Contact
Internal F		Tc-99	0.0793 C/D	Tc-99 (SN: 63963 (Beta))	@1cm
Internal F		Tc-99	0.0853 C/D	Tc-99 (SN: 63963 (Beta))	On Contact
Internal F	Probe	Co-60	0.0934 C/D	Tc-99 (SN: 63963 (Beta))	On Contact
Internal F	Probe	Th-230	0.0966 C/D	Th-230 (SN: S-963)	@1cm
Internal F	Probe	Th-230	0.2012 C/D	Th-230 (SN: S-963)	On Contact

Comments: Calibrated with E-600 SN 3689 (Calibration Due Date = 12/02/2014) Added Cs-137 efficiencies 7/29/14 dsc. Added C-14, Sr-90 and Co-60 9/12/14 dsc.

Tap Test: Pass

**Electronics Checks** 

**High Voltage** 

QA Calibrated by: **Review:** 

Date: 06/17/2014 Expires: 06/17/2015

Atmospheric Conditions - Temperature: 72° F Humidity: 29% Barometric Pressure: 29.94 in/hg

This calibration was performed by RSCS using one or more of the following NIST Traceable radiation sources:

Tech Ops Model 773 Cs-137 Beam Calibrator (S/N S-110), characterized using Exradin Model A6 (S/N 185) and Keithley Electrometer Model 617 (S/N 0547677) in accordance with methods specified in RSCS TSD 11-008, with estimated uncertainty of 6.0%. J.L. Shepherd and Associates Model 89 Cs-137 Box Calibrator (S/N 9141), characterized using Exradin, Model A6 (S/N 185), A3 (S/N 197), A12 (S/N XA091124), and Keithley Electrometer Model 617 (S/N 0547677) in accordance with methods specified in RSCS TSD 11-001, with estimated uncertainty of 2.7%. RSCS Neutron Calibrator, AmBe Source Model NUMEC-AM-31 (S/N Am-478), characterized using Far West Technologies Model FWAD-1 "HAWK" TEPC (S/N 021) in accordance with the methods specified in RSCS TSD 13-002, with estimated uncertainty of 9.4%.

Calibrations performed in conformance to the following documents: ANSI N323A (1997); RSCS New Hampshire Radioactive Material License Number 381R. RSCS calibration services

are performed in accordance with the RSCS Radiation Protection Program Manual and Standard Operating Procedures. Calibration Laboratory is operated in accordance with ANSI/NCSL Z540-1-1994

This calibration certificate shall not be reproduced except in full without the express written consent of RSCS, Inc.



#### **Calibration Certificate** ID Number: 368974112-1

#### Joan Ervey Customer: Radiation Safety & Control Services, Inc. 91 Portsmouth Avenue Stratham, NH 03885

Instrument

Eberline Model E-600

Serial Number 3689

	an an an Araba an Araba. An Araba an Ar	Precision Check		
Test 1	Test 2	Test 3	Mean	Results
7.98 Kcpm	7.98 Kcpm	8.01 Kcpm	7.99 Kcpm	Satisfactory

Target Value	As Found	As Left
		710 1011
80 Kcpm	80.7 Kcpm #	80.47 Kcpm #
20 Kopm	19.85 Kopm #	19.85 Kopm #
8 Kopm	7.98 Kcpm #	7.98 Kcpm #
2 Kcpm	1.996 Kcpm #	1.996 Kcpm #
800 cpm	801 cpm #	801 cpm #
200 cpm	201 cpm #	201 cpm #
	8 Kopm 2 Kopm 800 opm	20 Kcpm         19.85 Kcpm #           8 Kcpm         7.98 Kcpm #           2 Kcpm         1.996 Kcpm #           800 cpm         801 cpm #

Readings with * Indicate ranges where As-Found readings are >20% of Target value. Readings with ** Indicate As-left readings are >10.00% of Target value Readings with # indicate ranges where pulser was used.

MTE Instrument Type		Model	CalDueDate
Pulser	· Lu	dlum 500-4 SN: 98756	07/07/2015
Outer Physical Check: Pass		Electronics Checks	As Found As Left
	Tap Test: <i>Pass</i>	High Voltage	898 Volts 898 Volts

Calibrated by: Rel Rel

QA Review:

#### Calibration Date: 12/02/2013 Expires: 12/02/2014

Atmospheric Conditions - Temperature: 71°F Humidity: 19% Barometric Pressure: 29.90"hg

This calibration was performed by RSCS using one or more of the following NIST Traceable radiation sources: Tech Ops Model 773 Cs-137 Beam Calibrator (S/N S-1110), characterized using Exradin Model A6 (S/N 185) and Keithley Electrometer Model 617 (S/N 0547677) in accordance with The of the second secon

the methods specified in RSCS TSD 13-002, with estimated uncertainty of 9.4% Calibrations performed in conformance to the following documents: ANSI N323A (1997); RSCS New Hampshire Radioactive Material License Number 381R, RSCS calibration services are performed in accordance with the RSCS Radiation Protection Program Manual and Standard Operating Procedures. Calibration Laboratory is operated in accordance with ANSI/NCSL Z540-1-1994

This calibration certificate shall not be reproduced except in full without the express written consent of RSCS, Inc.

Radiation Safety and Control Services, Inc. 91 Portsmouth Ave. Stratham, NH 03885 1-800-525-8339 (603) 778-2871 Fax (603) 778-6879 www.radsafety.com

## PORTABLE INSTRUMENT RESPONSE CHECK SHEET Page ____ of ____

Instrument: <u>EGG</u>	<i>00</i> Serial No: <u></u>	<u>1274</u> Probe: _	43-89	Serial No: <u>223944</u>
Cal. Due Date:	12.6.14	Response Che	ck Location:	RM 2138

	βγ Channe	, <u>ne provinsi da ca</u>	· · · ·
Source Isotope:	Source ID:/455	Source Jig ID	N/A
Source Reference Reading:	2.238 kcpm +209	6 2.69 Kopm	-20% 1.79 kepm
Bkgd Reference Reading:	229.8 cpm +200	6 276 cpm	-20% 184 cpm

		Respo	onse Checks		
Dat	e/Time	βγ Bkgd.	$\beta\gamma$ Reading	Remarks	Initials
9-17-14	0815	229 cpm	2.16Kcan	Guod	RE
9-17-14	1650	221 Cpm	D.14 Kapp	Good	Re
9-18-14	0730	210 CPM	Z. II KCPM	Good	PL
9-18-14	1710	ZU9CPM	Z. 19 Kcpm	Good	RC
9-19-14	07:30	219 cpm	Q.16 Kcpm	Good	<u>2C</u>
9-19-14	1615	195 cpm	2.16 Kcpm	Good	Re
9-22-14	0725	ZOZ CAM	2.17 KGPM 1.99 Kcpm	Cosel	Re
9-22.14	1610	219 CPM	1.99 Kepm	Good	re Re
9-23-14	07 30	201 cpn	2.00 Kcpm	Good	Re
9-23-14	1615	203 cpn	2.21 Kgpn	Good	RC
9-24-14	0730	205 cpm	2.23 KGpm	Good	Re
9-24-14	1825	209 Cpm	2.17 RCM 2.26 K.CPM	- Good Four	Re Re Re
9-25-14	0700	193 Cpm	2.26 K.CPM	Good	Re
		V			
				·	
	<b></b>				
		· · · ·	-		
·					

Review:

Tobot

_____Date: _____

**INSTRUMENT QC CHECK SHEET** 

Page ____ of ____

Date:	9.17.1	4	Time: <i>0 800</i>
Instrument:			Serial No: 0/274
Probe:	43-89	· · · · · · · · · · · · · · · · · · ·	Serial No:
Cal. Performe	ed Date:/	2.6.13	Cal. Due Date: 12 · 6 · 14
Source Isotop	ре: <u>С</u> ,	4	Source #: 4459
QC Check Lo	cation:		
Jig Used:	(circle	No one)	Jig ID#/M
QC	Counting Re	sults	Range Calculation
Count No.	C14 Count	Result	Source Ref. Reading: <u>2-236_</u> X 20% = <u>0-4474</u>
1	2.33 1	238	Avg. + 20% = $2.69 k$
2	2.11 K		Avg 20% = <u>1. 79 K</u>
3	2,31 10	251	Acceptable Range:
4	2,19 K	217	From $\frac{1.79 \text{ kcpm}}{(\text{Avg.} - 20\%)}$ to $\frac{2.69 \text{ kcpm}}{(\text{Avg.} + 20\%)}$
5	2.25 K	220	(Avg 20%) (Avg. + 20%)
	Add results,	list in Total	Comments:
Total	11.19K	1149	BKGD REF: 229.8 X 20% = 45.96
	Divide the te	otal by 5	AVG+20%=275.76 AVG-20%=183.84
Source Reference Reading			FROM 184 cpm TO 276 cpm
(Average)	2.238 K	229.8	

Performed By: <u>JOSEPH E. MEDELLIN J.4. Medellan</u> Date: <u>9.17.14</u> RSO Review: <u>Ht. D.y</u> Date: <u>9.17.14</u> FRN-0006



Customer:		Safety & Control buth Avenue	Services, Inc.	Instrument Ludlum Model 43-89	Serial Number 223946
Probe Mo	del & SN	Isotope	Efficiency	NIST Source ID	Geometry
Internal		C-14	0.0113 C/D	C-14 (SN: 488-10-9)	On Contact
Internal		Co-60	0.0072 C/D Gamma	Co-60 (SN: 394-H)	@1cm
Internal		Cs-137	0.2267 C/D	Cs-137(Beta) (SN: 98CS5004751)	On Contact
Internal		Sr/Y-90	0.1672 C/D	Sr/Y-90 (SN: 63962 (Beta))	@1cm
Internal		Tc-99	0.0824 C/D	Tc-99 (SN: 63963 (Beta))	@1cm
Internal	Probe	Co-60	0.0924 C/D Poto	To 00 (CNI: 62062 (Data))	

Internal Probe Internal Probe Internal Probe	Tc-99 Th-230 Th-230	0.0947 C/D 0.0725 C/D 0.1780 C/D	Tc-99 (SN: 63963 Th-230 (SN: S- Th-230 (SN: S- Th-230 (SN: S-	963)	@1c On Conta @1c On Conta
Outer Physical Check: Pass			Electronics Checks	As Found	As Left
	Тар	o Test: Pass	High Voltage	674 Volts	674 Volts

Comments: Calibrated with E-600 SN 003685 (Calibration Due Date = 3/26/2015). Efficiencies updated 9/2/2014 with background and check source readings verified. Check Source Acceptance Range (On Contact) with 0.25 µCi Cs-137 source (SN 154) = 2.0 to 3.0 kcpm on Alpha Plus Beta Channel. Added Cs-137 and C-14 efficiencies. dsc 9/12/14.

Date: 06/17/2014 QA Calibrated by: Review: Expires: 06/17/2015

Atmospheric Conditions - Temperature: 72° F Humidity: 29% Barometric Pressure: 29.94 in/hg

This calibration was performed by RSCS using one or more of the following NIST Traceable radiation sources:

This calibration was performed by RSCs using one or more of the following NIST fraceable radiation sources: Tech Ops Model 773 Cs-137 Beam Calibrator (S/N S-1110), characterized using Exradin Model A6 (S/N 185) and Keithley Electrometer Model 617 (S/N 0547677) in accordance with methods specified in RSCS TSD 11-008, with estimated uncertainty of 6.0%. J.L. Shepherd and Associates Model 89 Cs-137 Box Calibrator (S/N 9141), characterized using Exradin, Model A6 (S/N 185), A3 (S/N 197), A12 (S/N XA091124), and Keithley Electrometer Model 617 (S/N 0547677) in accordance with methods specified in RSCS TSD 11-001, with estimated uncertainty of 2.7%.

RSCS Neutron Calibrator, AmBe Source Model NUMEC-AM-31 (S/N Am-478), characterized using Far West Technologies Model FWAD-1 "HAWK" TEPC (S/N 021) in accordance with the methods specified in RSCS TSD 13-002, with estimated uncertainty of 9.4% Calibrations performed in conformance to the following documents: ANSI N323A (1997); RSCS New Hampshire Radioactive Material License Number 381R. RSCS calibration services are performed in accordance with the RSCS Radiation Protection Program Manual and Standard Operating Procedures. Calibration Laboratory is operated in accordance with ANSI/NCSL Z540-1-1994

This calibration certificate shall not be reproduced except in full without the express written consent of RSCS, Inc.



#### **Calibration Certificate ID Number:** 0127474265-0

Customer: Joan Ervey Radiation Safety & Control Services, Inc. 91 Portsmouth Avenue Stratham, NH 03885

Instrument Eberline Model E-600 Serial Number 01274

		Precision Check		
Test 1	Test 2	Test 3	Mean	Results
8.00 Kcpm	8.04 Kcpm	8.01 Kcpm	8.02 Kcpm	Satisfactory

	Accuracy Check				
Range	Target Value	As Found	As Left		
100K	80 Kcpm	80.5 Kcpm #	80.5 Kcpm #		
100K	20 Kcpm	20.0 Kcpm #	20.0 Kcpm #		
10K	8 Kcpm	8.00 Kcpm #	8.00 Kcpm #		
10K	2 Kcpm	1.997 Kcpm #	1.997 Kcpm #		
1K	800 cpm	803 cpm #	803 cpm #		
1K	200 cpm	197 cpm #	197 cpm #		

Readings with * indicate ranges where As-Found readings are >20% of Target value. Readings with ** indicate As-left readings are >10.00% of Target value Readings with # indicate ranges where pulser was used.

MTE Instrument Type	Model	CalDueDate
Pulser	Eberline MP-2 SN: 886	10/29/2014
Outer Physical Check: Pass		
-	Tap Test: <i>Pass</i>	

Comments: High Voltage Adjustment: Set at 898 V - As-Found = 908, As-Left = 898

Calibrated by:

200

QA - the Review:

Calibration Date: 12/06/2013 Expires: 12/06/2014

Atmospheric Conditions - Temperature: 74°F Humidity: 18% Barometric Pressure: 29.83"hg

This calibration was performed by RSCS using one or more of the following NIST Traceable radiation sources (Cs-137 Beam Source SN S-1110, Cs-137 Box Calibrator SN 9141, AmBe NUMEC-AM-31 Neutron Calibrator), in conformance to the following standards: ANSI N323A (1997), RSCS New Hampshire Radioactive Material License Number. 381R, RSCS calibration services are performed in accordance with the RSCS Radiation Protection Program Manual and Standard Operating Procedure . This calibration certificate shall not be reproduced except in full without the express written consent of RSCS, Inc

Estimated uncertainty for measurements collected using the JL. Shepherd and Associates Model 89 calibrator: 2.7% Estimated uncertainty for measurements collected using the Tech Ops Model 773 calibrator: 6.0% Estimated uncertainty for measurements collected using the AmBe Neutron souce calibrator: 9.4%

Radiation Safety and Control Services, Inc. 91 Portsmouth Ave. Stratham, NH 03885 1-800-525-8339 (603) 778-2871

Fax (603) 778-6879 www.radsafety.com

# PORTABLE INSTRUMENT RESPONSE CHECK SHEET Page __ of __

Instrument: <u>2929</u>	Serial No: <u>5072</u>	/ Probe:	43-10	_ Serial No: <u>046/18</u>
Cal. Due Date: <u>9 · 10 ·</u>	· 15 F	Response Chec	k Location: _	RM 2138

	βγ	Channel		
Source Isotope: <u>C</u> 14	Source ID:	4459	Source Jig ID	~/A
Source Reference Reading:	2510.6	+20%	3013	-20% <u>2008</u>
Bkgd Reference Reading:	344.2	+20%	413	-20% <u>275</u>

	Resp	oonse Checks		
Date/Time	βγ Bkgd.	βγ Reading	Remarks	Initials
9.17.14 / 0730	369	2565	PASS PRE (	m
9.17.14 / 1720		2625	PASS POST	DN
9.18.14/ 0730	359	2526	PASS PRE C	Dan
9.18.14 / 1630	363	2572	PASS POST	Jan
9.19.14/ 0730	340	2724	PASS PRE (	Dan
9.19.14/ 1645	355	2387	PASS POST	Don
9.22.14/ 0730	346	2601	PASS PRE (	Jan.
9.22.14/ 1625	330	2613	PASS POST	re
9-23-14 / 0730	326	2523	PASS PRE	m
9.23.14 / 1645	332	2642	PASS POST	Ret
9.24.14/ 0730	360	2554	PASS PRE	Chr.
9.24-14 / 1840	357	2677	PASS POST	ai
9.25.14 / 0730	352	2380	PASS PRE	m
,				
	-			
				· · · · · · · · · · · · · · · · · · ·

1tet

Review: _____

_____ Date: _____

**INSTRUMENT QC CHECK SHEET** 

Page / of /

_			
Date: <u>9</u>	.16.14		Time:0900
Instrument: _	2929		Serial No: <u>50721</u>
Probe:	43-10	•	Serial No: 046118
Cal. Performe	ed Date:	7.10.14	Cal. Due Date:? - / 0 - / 5
Source Isotor	ре: <u>С-</u> 1		Source #: 4459
QC Check Lc	ocation:		
Jig Used:	Yes	No e one)	Jig ID# N/A
QC	Counting Re	sults	Range Calculation
Count No.	1 min C, 4 Coun	10 m i v t Result BKCrD	Source Ref. Reading: <u>2510.6</u> X 20% = <u>502.12</u>
1	2529		Avg. + 20% = <u>3012,72</u>
2		357	Avg 20% = <u>2008, 48</u>
3	2474	366	Acceptable Range:
4	2500	335	From $\frac{2008}{(Avg 20\%)}$ to $\frac{30/3}{(Avg. + 20\%)}$
5	2521	338	(Avg 20%) (Avg. + 20%)
	Add results	, list in Total	Comments:
Total	12553	1721	BKGD = 344.2 × 20% = 68.84
	Divide the t	otal by 5	AVG+20% = 413.04
Source Reference Reading			AVG - 2090 = 275.36 FROM 275 +0 413
(Average)	2510.6	344.2	
	·		· ·

Performed By: <u>JOSEPH E. MEDELLIN J.G. Mudillan</u> Date: <u>9.16.14</u> RSO Review: <u>Date: 9 46 H</u>



#### **Calibration Certificate ID Number: 5072181951-0**

<b>MEC - CO</b> 275 Logos Ct.		Instrument Ludlum Model 2929	Serial Number 50721	
uite A		Probe Model Ludlum 43-10	Serial Number 046118	
	Precision	Check		
Test 2		Mean	Results	
1 9.98 Kcr	om 9.99 Kcpi	m 9.98 Kcpm	Satisfactory	
	Accuracy	Check		
Target Va			As Left	
400 Kcr	om 399.1	288 Kcpm #	399.288 Kcpm #	
100 Kcr	om 99.	71 Kcpm #	99.717 Kopm #	
40 Kcp			39.928 Kcpm #	
·		· ·	9.980 Kcpm #	
4 Kcpr			4.001 Kcpm #	
		· ·	0.999 Kcpm #	
			399 cpm #	
		· .	100 cpm #	
& SN Isotope	pulser Efficiency	NIST Source IE	) Geometr	
18 C-14 18 Th-230	0.0208 C/D 0.3546 C/D			
E Instrument Type		Nodel	CalDueDate	
r man americ Type		00-4SN: 98756		
Pulser	Ludium 50	00-4SIN: 96756	07/07/2015	
	Ludium 50	Electronics Checks	07/07/2015 As Found As Left	
	rand Junction, CO 81505 Test 2 9.98 Kcp 9.98 Kcp 100 Kcp 100 Kcp 100 Kcp 10 Kcp 10 Kcp 10 Kcp 10 Kcp 10 Kcp 10 Kcp 10 kcp 10 cp 100 cp	Test 2         Test 3           9.98 Kcpm         9.99 Kcp           Accuracy         Accuracy           Target Value         A           400 Kcpm         399.           100 Kcpm         99.           400 Kcpm         399.           100 Kcpm         99.           40 Kcpm         39.9           10 Kcpm         9.9           40 Kcpm         39.9           10 Kcpm         9.9           400 cpm         33           100 cpm         10           ranges where As-Found readings are >20% of Target value. Reading ranges were calibrated using a pulser           SN         Isotope         Efficiency           18         C-14         0.0208 C/D	Probe Model Ludium 43-10       Precision Check       Test 2     Test 3     Mean       9.98 Kcpm     9.99 Kcpm     9.98 Kcpm       Accuracy Check       Target Value     As Found       400 Kcpm     399.288 Kcpm #       100 Kcpm     9.98 Kcpm       400 Kcpm     39.928 Kcpm #       100 Kcpm     9.980 Kcpm #       400 Kcpm     39.928 Kcpm #       100 Kcpm     9.980 Kcpm #       400 cpm     39.928 Kcpm #       100 Kcpm     9.980 Kcpm #       400 cpm     399.928 Kcpm #       100 kcpm     9.980 Kcpm #       400 cpm     399.928 Kcpm #       100 cpm     100 cpm #       ranges where As-Found readings are >20% of Target value. Readings with ** indicate As-left readings are >1       ranges were calibrated using a pulser     Efficiency     NIST Source II       18     C-14     0.0208 C/D     C-14 (SN: 488-10	

QA Calibrated by:  $\sim$ Review: 🖌

3£,

Date: 09/10/2014 Expires: 09/10/2015

Atmospheric Conditions - Temperature: 73° F Humidity: 37% Barometric Pressure: 30.08 In/hg

Atmospheric Conditions - temperature: //3' F Huminduy: 37% Barometric Pressure:30.06 m/mg This calibration was performed by RSCS using one or more of the following NIST Traceable radiation sources: Tech Ops Modol 773 Cs-137 Beam Calibrator (SN S1110), characterized using Exradin Model A6 (S/N 185) and Keithley Electrometer Model 617 (S/N 0547677) in accordance with methods specified in RSCS TSD 11-008, with estimated uncertainty of 6.0%. JL, Shopherd and Associates Model 89 Cs-137 Box Calibrator (S/N 9141), characterized using Exradin, Model A6 (S/N 185), A3 (S/N 197), A12 (S/N XA091124), and Keithley Electrometer Model A6 (S/N 185), A3 (S/N 197), A12 (S/N XA091124), and Keithley

a.t. on upment and Associates Model 67 (SIN 9647677) In accordance with methods specified in RSCS TSD 11-001, with estimated uncertainty of 2.7%. RSCS Neutron Calibrator, AmBe Source Model NUMEC-AM-31 (SIN Am-478), characterized using Far West Technologies Model 74 (SIN 147), A12 (SIN XA031124), and Keithley Electrometer Model 617 (SIN 0647677) in accordance with methods specified in RSCS TSD 11-001, with estimated uncertainty of 2.7%. RSCS Neutron Calibrator, AmBe Source Model NUMEC-AM-31 (SIN Am-478), characterized using Far West Technologies Model FWAD-1 "HAWK" TEPC (SIN 021) in accordance with the methods specified in RSCS TSD 13-002, with estimated uncertainty of 9.4% Calibrations performed in accordance the following documents: ANSI N323A (1997); RSCS New Hampshire Radioactive Material License Number 381R. RSCS calibration services are performed in accordance with the RSCS Radiation Protection Program Manual and Standard Operating Procedures. Calibration Laboratory is operated in accordance with ANSI/NSSL 2540-1-1994 Tbis calibration certificate shall not be reprodueed even in full with the accordance with a performed in conduction of the full with the accordance with and Standard Operating Procedures.

This calibration certificate shall not be reproduced except in full without the express written consent of RSCS, Inc.

Radiation Safety and Control Services, Inc. 91 Portsmouth Ave. Stratham, NH 03885 1-800-525-8339 (603) 778-2871 Fax (603) 778-6879

www.radsafety.com

## PORTABLE INSTRUMENT RESPONSE CHECK SHEET ______ of _____ of _____

Instrument: <u>MOD</u>	EL 3	Serial No: <u>2502 76</u>	_ Probe:	SPA-B	Serial No: <u>726 75</u> 2
Cal. Due Date:	4.25.	1 <u>5</u> Resp	onse Che	ck Location:	

	βγ <b>C</b> Ι	nannel			
Source Isotope: <u>Am a4/</u>	Source ID:3	5D-1	Source Jig ID		N/A
Source Reference Reading:	5.6 Kepm	+20%	6.7 kepm	-20%	4.5 kcpm
Bkgd Reference Reading:	1.3 K.c.pm	_ +20%	1. Le kepm	-20%	1 kepm

		Respo	onse Checks		
Date/	/Time	βγ Bkgd.	βγ Reading	Remarks	Initials
9-18-19 0	800	1.3 Kcpm	5Kepm	P455	Re
9.18.14	1700	1.3 Kepn 1.2 Kepm	5 Kcpm	PASS	Ond
9.19.14 /	0715	1.2 Kcpm	5 kcpm	PASS	Dan
9-19-14	1625	1.2 Kepn	5 Kepm	P.455	Re
9-22-14	0705	1.2 Kcpn	5 Kcan	PAPS	ne
9-22-14	1620	1.2 Kapu	5Kcpm	RASS	Pe
9-23-14	0705	1.3 KCpm	5 KCPM	pass	,la
9-23-14	1630	1.3 K can	5Kcpn	Pa 55	Re
9-24-19	0715	1.3K GPM	SKCON	PASS	RC
9-24-14	18 45	1.3K Cpm	6 K cpm	PASS	RC
9-25-14	0720	1.2K Cpn	5 Kcpn	PASS	RC
•					
			· · · · · · · · · · · · · · · · · · ·		

_____ Date: _____9/29/ Hot Review: ____ FRN-0005

,

### **INSTRUMENT QC CHECK SHEET**

Page ____ of ___

Date:	7.18.14		Time:0730
Instrument: <u>۲</u>	UDLUM N	NODEL 3	Serial No:
Probe:	F SPA-8	,	Serial No: 726752
Cal. Performe	ed Date: <u> </u>	25.14	Cal. Due Date: 4.25.15
Source Isotop	ре: <u>Ам 24</u>	11	Source #: <i>Source #:SD - /</i>
QC Check Lo	cation:		
Jig Used:	Yes		Jig ID#/A
QC	Counting Res	sults	Range Calculation
Count No.	Count	Result BkGD	Source Ref. Reading: <u>5.6 kcpm</u> X 20% = <u>/,/2 kcpm</u>
1	5 K	1.3K	Avg. + 20% = <u>6.72 kcpm</u>
2	6K	1.4 K	Avg 20% = <u>4. 48 k.c.pm</u>
3	5 K	1.25 K	Acceptable Range:
4	Le K	1.25 K	From $\frac{4.5 \text{ kcpm}}{(\text{Avg 20\%)}}$ to $\frac{10.7 \text{ kcpm}}{(\text{Avg. + 20\%)}}$
5	le K	1.3 K	(////g. / 20///)
	Add results,	list in Total	Comments:
Total	28K	6.5 K	BKGD REF.: 1.3 Kcpm X 20% = 0.26
	Divide the to	otal by 5	AVG + 20% = 1.56  kepm
Source Reference Reading			AVG - 2096 = 1.04 Kcpm FROM   Kcpm TO 1.6 Kcpm
(Average)	5.6K	1.3k	

Performed By: <u>JOSEPH E. MEDELLIN J.4. Mudellin</u> Date: <u>9.18.14</u> RSO Review: <u>Htt. Date</u>: <u>9.18.14</u>



#### **Calibration Certificate ID Number: 25027678401-1**

Instrument Customer: Joan Ervey Radiation Safety & Control Services, Inc. Ludlum Model 3-002C 91 Portsmouth Avenue Stratham, NH 03885

**Probe Model** Thermo Electron SPA-8 Serial Number 250276

Serial Number

726752

		Precision Check		
Test 1	Test 2	Test 3	Mean	Results
1.00 Kcpm	1.00 Kcpm	1.00 Kcpm	1.00 Kcpm	Satisfactory

	Accuracy Check						
Range	Target Value	As Found	As Left				
X100	400 Kcpm	400 Kcpm #	400 Kcpm #				
X100	100 Kcpm	100 Kcpm #	100 Kcpm #				
X10	40 Kcpm	40 Kcpm #	40 Kcpm #				
X10	10 Kcpm	10 Kcpm #	10 Kcpm #				
X1	4 Kcpm	4 Kcpm #	4 Kcpm #				
X1	1 Kcpm	1 Kcpm #	1 Kcpm #				
X.1	400 cpm	400 cpm #	400 cpm #				
X.1	100 cpm	100 cpm #	100 cpm #				

Readings with * indicate ranges where As-Found readings are >20% of Target value. Readings with ** indicate As-left readings are >10.00% of Target value Readings with # indicate ranges where pulser was used.

Probe Model & SN	Isotope	Efficiency	NIST Source ID	Geometry
SPA-8 726752	Am-241	0.0151 C/D	Am-241 (SN: 33386-60 (Alpha))	@1cm
SPA-8 726752	Co-57	0.0506 C/D	Co-57 (SN: 129584)	@1cm
SPA-8 726752	Co-60	0.0288 C/D	Co-60 (SN: 394-H)	@1cm
SPA-8 726752	Cs-137	0.0200 C/D	Cs-137(Gamma) (SN: 14290)	@1cm
SPA-8 726752	I-125	0.0145 C/D	I-129 (SN: NES-186S)	@1cm

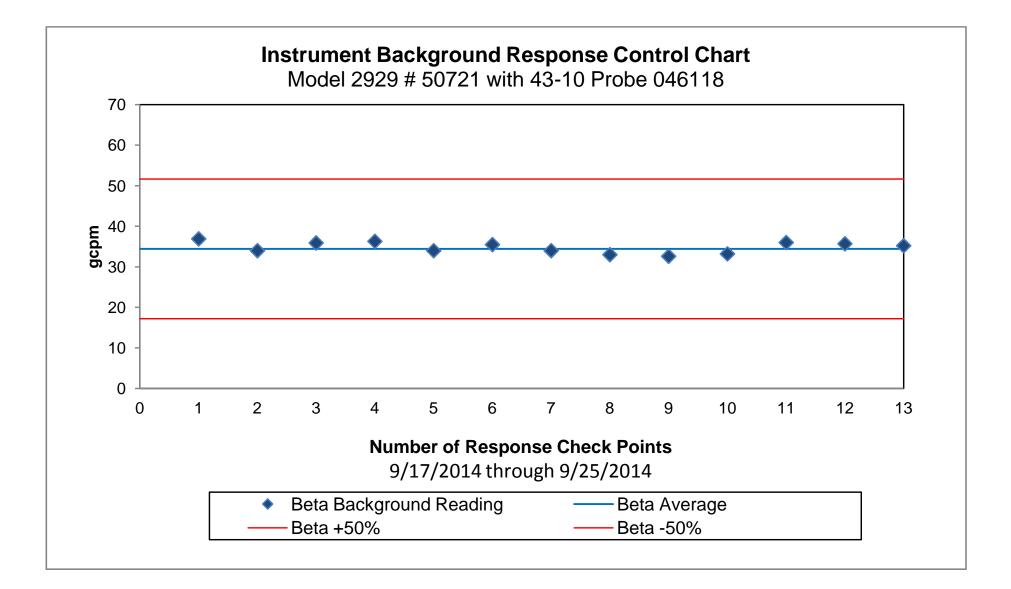
MTE Instrument Type		Model	CalDueDate		
Pulser	Ludlu	Ludlum 500-4 SN: 98756		07/07/2015	
Outer Physical Check: Pass	Mechanical Zero: Pass	Electronics Checks	As Found	As Left	
Internal Check: Pass Geotropism Check: Pass	Tap Test: Pass	High Voltage	700 Volts	700 Volts	

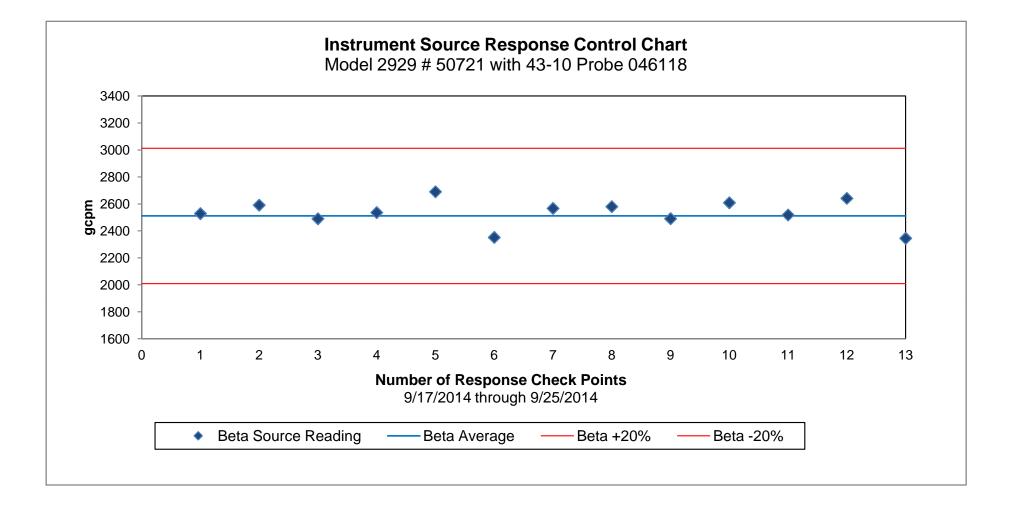
Comments: Updated 9-16-2014 to add I-125 Efficiency

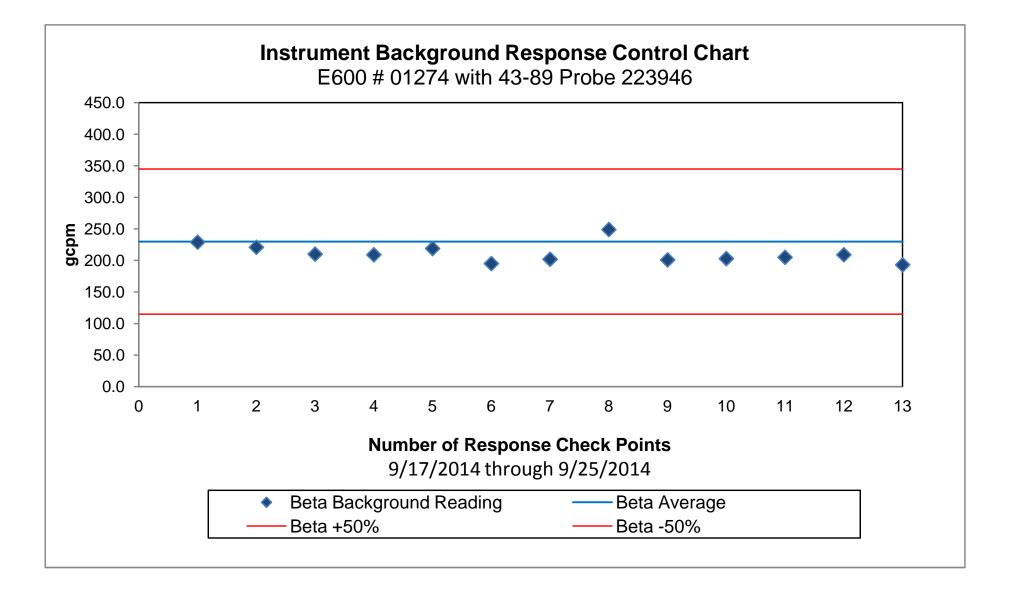
Calibrated by:

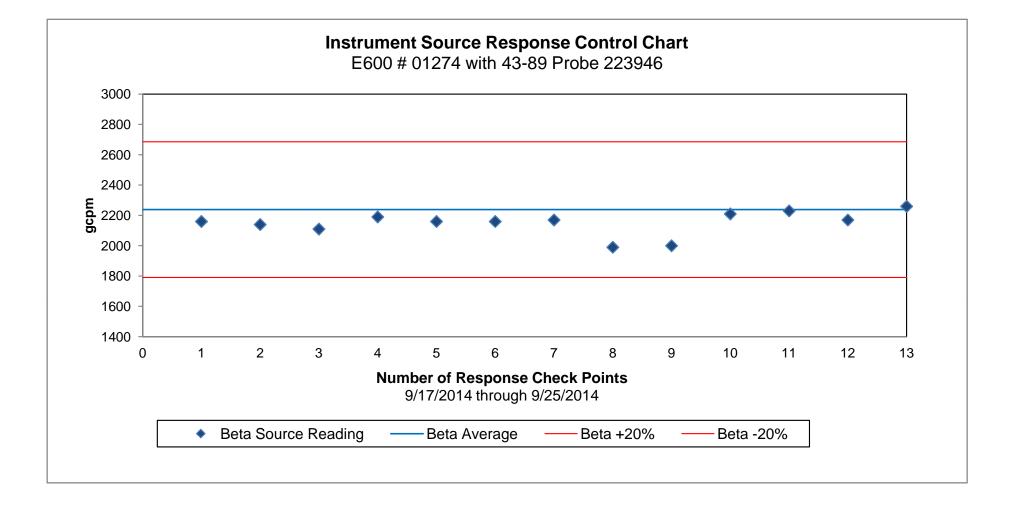
QA Review:

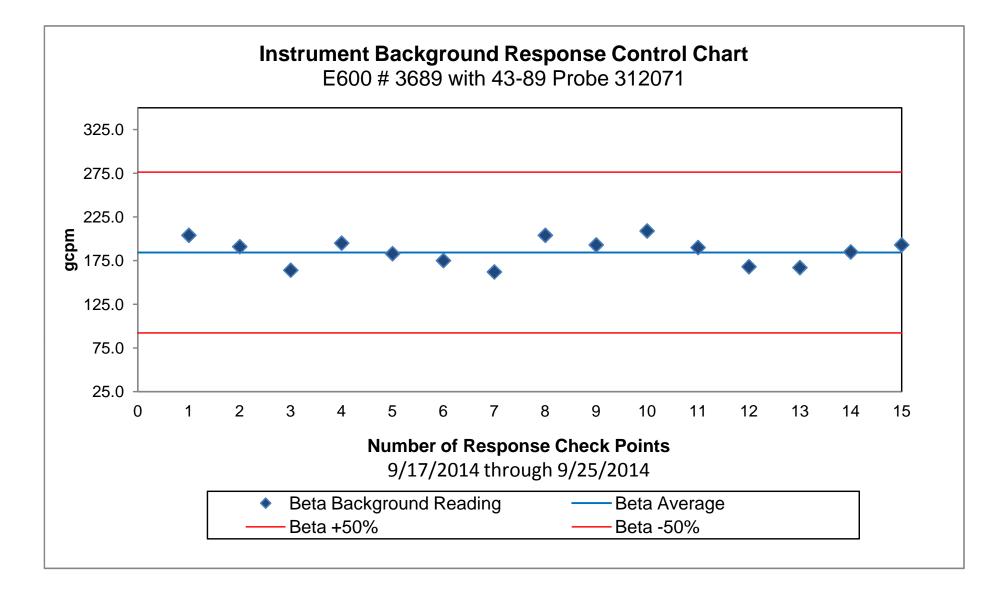
#### Calibration Date: 04/25/2014 Expires: 04/25/2015

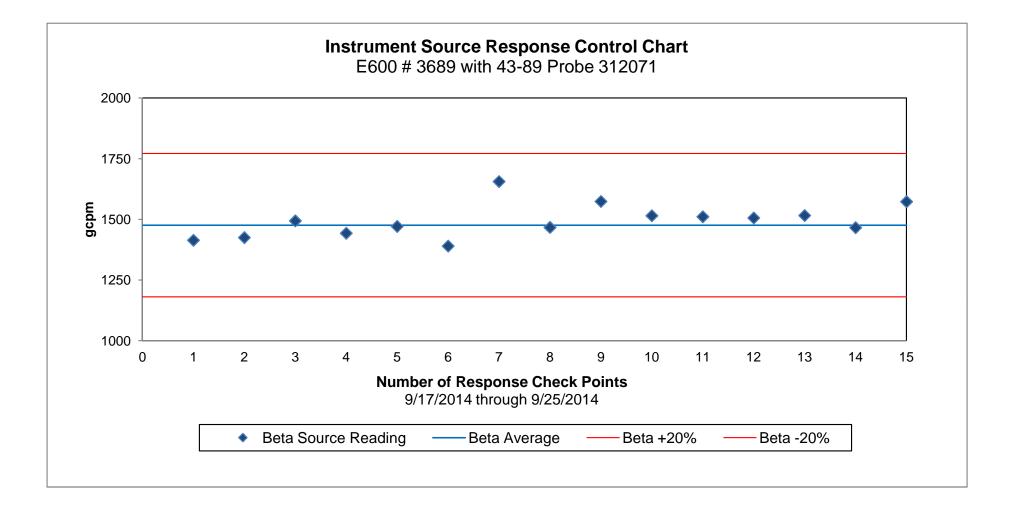

Atmospheric Conditions - Temperature: 72°F Humidity: 17% Barometric Pressure: 29.90"hg


This calibration was performed by RSCS using one or more of the following NIST Traceable radiation sources:


This calibration was benchmed by RSCs using one of more of mor Calibrations performed in conformance to the following documents: ANSI N323A (1997); RSCS New Hampshire Radioactive Material License Number 381R. RSCS calibration services


are performed in accordance with the RSCS Radiation Protection Program Manual and Standard Operating Procedures. Calibration Laboratory is operated in accordance with ANSI/NCSL Z540-1-1994


This calibration certificate shall not be reproduced except in full without the express written consent of RSCS, Inc.














This is to acknowledge the receipt of your letter/application dated

, and to inform you that the initial processing which includes an administrative review has been performed.

32-14048-04(

There were no administrative omissions. Your application was assigned to a technical reviewer. Please note that the technical review may identify additional omissions or require additional information.

Please provide to this office within 30 days of your receipt of this card

A copy of your action has been forwarded to our License Fee & Accounts Receivable Branch, who will contact you separately if there is a fee issue involved.

Your action has been assigned Mail Control Number When calling to inquire about this action, please refer to this control number. You may call us on (610) 337-5398, or 337-5260.

NRC FORM 532 (RI) (6-96)

Sincerely, Licensing Assistance Team Leader.