Palo Verde/NRC Pre-submittal Meeting Risk Informed Completion Times

February 18, 2015

Introductions

Bryan Thiele Department Leader Risk Informed Project Manager

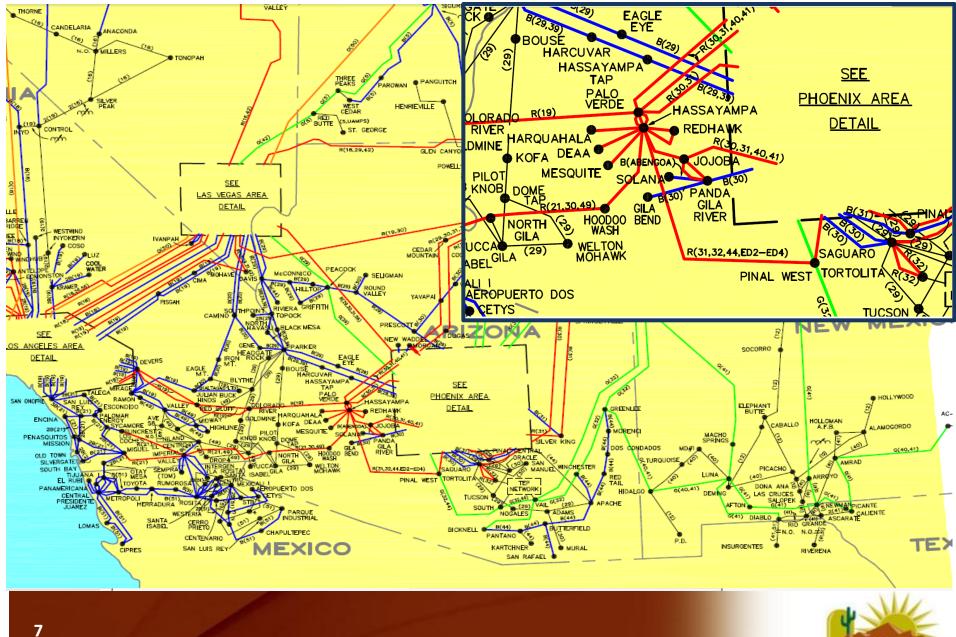
Agenda

Introduction Bryan Thiele
Palo Verde Overview Thomas Romay
License Amendment Thomas Weber
PRA Summary Everett DePue
Implementation Plan Bryan Thiele
Path Forward and Closing Comments Bryan Thiele

Desired Meeting Outcomes

- Summarize PVNGS design with focus on unique features
- Discuss license amendment content and variances from TSTF 505
- Provide overview of PRA models
- Discuss implementation plan
- Describe path forward

Palo Verde Design Overview


Tom Romay Shift Manager Senior Reactor Operator

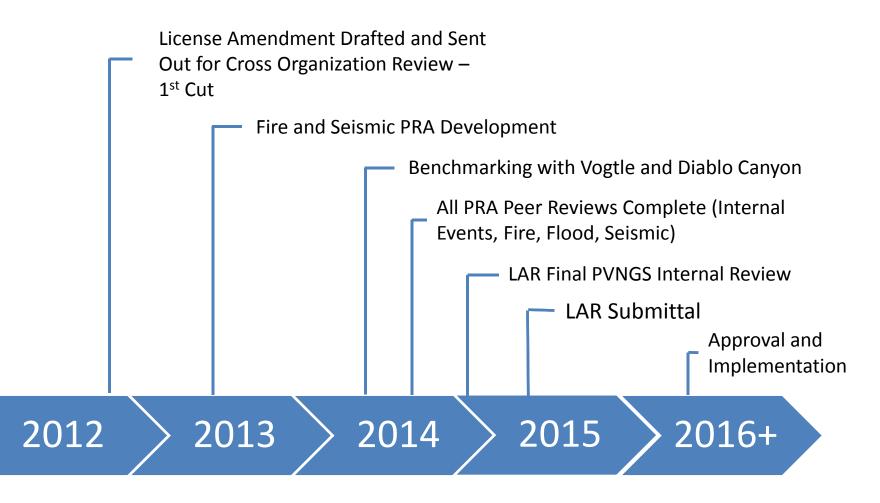
Transmission Network

VERDE

0

Palo Verde Design Features

- Three identical, separate Units, minimal shared SSCs
- No pressurizer PORVs
- Low leakage RCP seals following loss of seal cooling
- Four channels of class instrumentation (two trains w/2 channels each) with separate power
- Demonstrated capability to feed SG with no AC/DC power

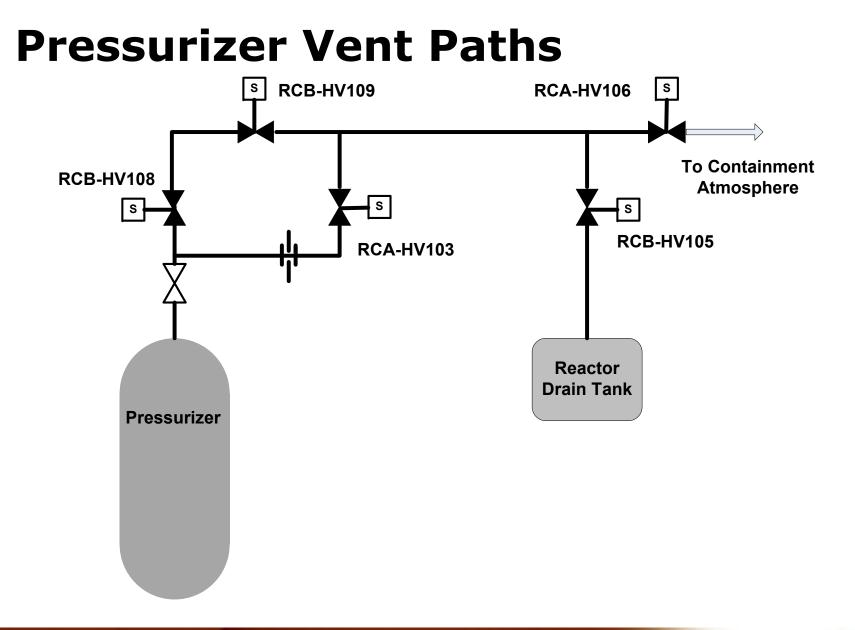


License Amendment Request

Thomas Weber Department Leader Nuclear Regulatory Affairs

RICT Timeline

PVNGS LAR Content


- Based on TSTF 505-A & NEI 06-09-A
 - Scope includes components modeled in PRA
 - 25 LCOs
 - Mode 1 and 2 only
 - New TS Section 5.5 Program
 - Variances from TSTF 505 addressed in LAR and include:
 - RICT added to two LCOs not in TSTF 505
 - Miscellaneous variances described in LAR

TS 3.4.12, Pressurizer Vents

- Not in TSTF 505 or NUREG 1432
- In PV Safety Analysis
- Modeled in PRA
- RICT added to Two Required Actions
 - Note added to preclude use of RICT when all pressurizer vent paths are intentionally made inoperable

TS 3.7.3, Main Feedwater Isolation Valves (MFIVs)

- Not in TSTF 505 but is in NUREG 1432
- LAR adds restoration action
- MFIVs modeled in PRA
- RICT added to Two Required Actions

Miscellaneous Variances

- TS 3.7.2, Main Steam Isolation Valves (MSIVs)
 - Did not add RICT for restoration conditions associated with MSIV actuator trains
- TS 3.7.4, Atmospheric Dump Valves (ADVs)
 - Note added to preclude use of RICT when all ADV lines are intentionally made inoperable
- TS 3.7.9, Ultimate Heat Sink (UHS)
 - Added new 1 hour restoration condition for UHS
 - Note added to preclude use of RICT when the UHS is intentionally made inoperable
- TS 3.8.7, Inverters
 - Revised note since PVNGS design has two inverters per train supporting 4 channels of vital instruments
 - Note precludes use of RICT for two or more inverters intentionally made inoperable resulting in a loss of safety function

Summary

- LAR to remove "Second Completion Time" (TSTF 439) in progress
- Minimizing LARs at PVNGS that have changes to TSTF 505 LCOs
- Monitoring TSTF 505 Operating Experience
- Participating in Industry Committees
- Monitoring TSTF 505 RAIs

PRA Models

Everett DePue Senior Engineer PRA Lead for TSTF-505

Summary of PRA Models

- PRA models developed and peer reviewed
 - Internal events
 - Internal flood
 - Internal fire
 - Seismic
- RG 1.200 Rev. 2 hazards screened and peer reviewed
- Total CDF/LERF meet RG 1.174 Rev. 2 limits
- Internal events and internal flood risk very low
- CDF/LERF dominated by internal fire and seismic hazards

Internal Events PRA

- Peer review by CEOG conducted in 1999
- Self-assessment performed against entire RA-Sa-2009 in 2015
- RA-Sa-2009 Supporting Requirements met to Capability Category II except:
 - Some sub-elements of SY-C1, SY-C2 System
 Notebook Documentation need completion
 - To be completed prior to RICT Program implementation

Internal Flood PRA

- Industry Peer Review conducted in 2010
- All ASME/ANS PRA requirements met to Capability Category II after peer review findings addressed

Internal Fire PRA

- PVNGS is not NFPA-805 plant,
 Fire PRA complies with methods in NUREG/CR-6850
- Industry Peer Review conducted in 2012
- Follow-up Industry Peer Review conducted in 2014 - addressed 2012 findings
- All ASME/ANS requirements met to Capability Category II after peer review findings addressed

Seismic PRA

- Industry peer review conducted in 2013
- All ASME/ANS requirements met to Capability Category II after peer review findings addressed except
 - SPR B7 Complementary Success Logic
 - Meets Capability Category II for ASME/ANS RA-Sb-2013

Plant-Specific Modeling

- RICT CRMP model will be either:
 - Real time risk model as currently used for existing Technical Specification CRMP OR
 - Pre-solved solutions (STP approach)
- Common Cause treatment will be in accordance with NEI 06-09-A or Regulatory Guide 1.177 Rev. 1

Plant Modifications

- PRA models rely on installation of modifications or taking compensatory measures
- RICT Program will not be implemented until modifications complete or compensatory measures in place
- FLEX strategies not yet reflected in the PRA models – conservatism

Summary

- All hazards have been evaluated in accordance with RG 1.200 Rev. 2
- All PRA models peer reviewed
- Capability Category II met for all PRA models with three exceptions
- Total CDF/LERF meet RG 1.174 Rev. 2

Implementation Plan

Bryan Thiele Department Leader Risk Informed Project Manager

Implementation Plan

- Engineering coordinate RICT implementation
- Cross organization team supporting implementation
- RICT implemented in Modes 1 and 2 only
- CRMP tool PRA Models will include Internal Events, Internal Flooding, Fire, and Seismic
- Procedure changes, training, and qualifications will support RICT CRMP capability
 - Extensive use of industry participation & benchmarking to develop program, procedures, training

Procedures

- Revise 40DP-9RS01, Operations
 Department Online Nuclear Risk
 Management Mode 1 and 2, to include
 - RICT
 - Risk management action times
 - Risk management action determinations
 - PRA functionality
- New RICT Program Procedure

Training

- Licensed Operators
 - Hands-on training on RICT calculations
 - Classroom training to address how RICT impacts Station Operations
- Station Management
 - Affected managers trained on process, expectations, limitations
 - Multi-discipline management representatives attend annual MIT nuclear operational risk management (NORM) course
- Engineering
- Work Management

Communications

- Industry peers via TSTF-505 task force
- Site-wide communication
 - Newsletter
 - VP weekly video
 - While submittal under review
 - Once submittal is approved
- Leader Alignment Meetings
- Department All Hands Meetings

Modifications

- DC ammeter circuits
- Non-class 1E DC motor circuits
- Replace RCP control cables with fire rated cables
- Install new Steam Generator (SG) makeup pump that utilizes FLEX connections
- Breaker coordination on risk significant nonclass 1E motor control centers/panels

Path Forward and Closing Comments

Bryan Thiele Department Leader Risk Informed Project Manager

Path Forward

- Resolve Fire PRA peer review findings and complete documentation
- Submit LAR in June
- Finalize scope and install modifications
- Develop procedures, software and training in parallel with NRC review
- Implement in late 2016

We **<u>SAFELY</u>** and *<u>efficiently</u>* generate electricity for the <u>long term</u>

