Department of Energy

Washington, DC 20585

March 2, 2015

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Deputy Director Mail Stop: T8F5 Washington, DC 20555-0001

Subject: Lakeview, Oregon, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site's West Side Slope Rock Degradation Assessment

To Whom It May Concern:

This letter provides follow-up information to the U.S. Nuclear Regulatory Commission (NRC) letter dated November 12, 2014, which requested information about rock riprap monitoring on the west-facing side slope of the Lakeview, Oregon, UMTRCA Title I disposal cell. This letter also summarizes the U.S. Department of Energy's (DOE's) assessment of the 18 years of rock monitoring and establishes why DOE proposes to replace the annual gradation and durability rock monitoring with a more effective method for addressing any potential vulnerability of erosion on the cell's west side slope.

Response to NRC's November 12, 2014, Letter Item 3:

DOE sent NRC a partial response to Item 3 in a letter dated December 19, 2014, which transmitted the 2014 rock monitoring data and results. DOE has compiled the requested historical monitoring data and results for 1997 through 2014 and is including the available information as attachments to this letter.

- Attachment 1 provides summary data results and information, including (1) a graph plotting values for the mean diameter (D₅₀) results of the annual gradation monitoring conducted over the past 18 years; (2) tables identifying the various rock types, with descriptions, and durability classes/codes of rock present on the side slope; (3) a table summarizing the 6 years of rock durability monitoring results by durability class; and (4) a map showing the local reference to which the monitoring sample location coordinates apply.
- Available rock gradation monitoring data and results are provided by year for 1997 (Attachment 2) through 2014 (Attachment 19). Gradation monitoring in 1997 was performed by weight instead of rock count because it predated the gradation monitoring procedure established in the 1998 update to DOE's *Long-Term Surveillance Plan for the Collins Ranch Disposal Site, Lakeview, Oregon* (August 1994; LTSP).
- Durability monitoring data and results, including the field data logs, are provided for the 6-year period of 2009 (Attachment 14) through 2014 (Attachment 19) when durability monitoring was performed.

FSME20

Response to NRC's November 12, 2014, Letter Item 4:

The use of Global Positioning System (GPS) to retain sample locations was not included in the LTSP gradation monitoring procedure, and the requested GPS data are therefore not available. However, sample location coordinates using a local site reference (see Attachment 1) have been compiled for each year and are included in Attachments 2 through 19 when available. Some locating precision may have been lost during the field locating of these randomly generated sample locations.

Response to NRC's November 12, 2014, Letter Items 1 and 2:

The Type B size side-slope riprap used to construct the cell met the original computed D_{50} design size range of 2.7 to 3.9 inches. However, all parties involved at the time of construction (1987 and 1988) acknowledged that weathering would likely accelerate degradation of the available rock.

DOE has performed gradation monitoring in accordance with the procedure (a surrogate gradation analysis method) since 1998. The objectives of the monitoring were to provide a method for generally quantifying rock degradation over time. It was acknowledged when the rock gradation monitoring procedure was developed that the procedure had inherent limitations, including:

- The surrogate monitoring procedure method identified D_{50} by rock count, not by weight, which is the standard method for determining D_{50} in the laboratory.
- Only surface rocks were included in the monitoring instead of the entire riprap thickness profile. The more-exposed surface rocks may be more susceptible to accelerated weathering, thus conservatively skewing the data (i.e., provides a smaller D₅₀ result).
- The method conservatively measures the minimum rock dimension for sieve sizing, thus also conservatively skewing the data (i.e., provides a smaller D₅₀ result).

DOE has made field observations of the erosion protectiveness of the side-slope rock since completion of the disposal cell in 1989 and has performed rock gradation monitoring since 1997, including 6 years of rock durability monitoring. Relevant conclusions about the rock degradation include:

- The D₅₀ measurements obtained since 1997 (see graph in Attachment 1) indicate that degradation of the Type B size riprap is inconsistent but that it has occurred.
- Gradation monitoring results shown on the graph in Attachment 1 for the years 1997 to 2014 indicate variability in the D₅₀ measurement. Some of this variability is natural randomness, and some could result from different personnel performing the procedure. However, a rate of rock degradation cannot be determined.
- The annual gradation monitoring results shown on the graph in Attachment 1 indicate that the average D_{50} value for the 18-year monitoring period is 2.55 inches. Without the 1997 value, which was atypically performed by weight instead of rock count, the 17-year average D_{50} value is 2.53 inches. This is less than 0.2 inches below the calculated size range lower

limit of 2.7 inches, and represents a less than 6.5 percent size decrease. These values represent D_{50} based on rock count instead of weight, which is the standard method for determining D_{50} in the laboratory.

- Other layers of conservatism associated with the calculated D₅₀ size range of 2.7 to 3.9 inches include:
 - The vegetation present on the cell cover top slope provides flow resistant properties during storms and reduces the potential for erosion. This was not factored into the calculated D_{50} value; if it had been factored in, the required size range would be smaller.
 - More geographically precise weather data (Hydrometeorological Report 581^1) have become available since the original D_{50} value was calculated.
 - New methods for calculating the D_{50} value (Apt-Johnson²) became available after construction of the Lakeview disposal cell.
- Observations made at the site during the past 6 years since rock durability monitoring began indicate that the various classifications of durable rock and rock types are randomly distributed over the cell's west side slope (see Attachment 1 for general durability information and Attachments 14 through 19 for specific monitoring year information).
- Of the rocks monitored each year during the 6-year durability monitoring period, the sum of all Class A (highly durable) and Class B (durable) rocks, ranged from 56.4 percent to 71.8 percent (see the Summary of 2009 through 2014 Rock Durability Monitoring Results by Durability Class table in Attachment 1).
- Field observations indicate that large rocks are present throughout the riprap profile and are present at depth.
- Multiple visits to the two rock source quarries (Pepperling and Sheer's quarries) over the years have helped DOE understand the rock weathering mechanisms that have occurred at the disposal site and have provided evidence that the rock placed on the disposal cell will undergo similar weathering processes.
- Augur Hill, located immediately north of the disposal site, represents a good analog site for the disposal cell's west side slope because it is of similar slope and aspect and has historically undergone the same local weather conditions. This analog slope can be useful for predicting how the cell's west side slope will respond to storm events. Pleistocene-age glacial deposits identified on the top of Augur Hill indicate that the hilltop has remained in place without erosional compromise for thousands of years.

¹ U.S. Department of Commerce, 1998. *Hydrometeorological Report No. 58, Probable Maximum Precipitation Estimates for California*, October.

² Abt, S.R., T.L. Johnson, C.I. Thornton, and S.C. Trabant, 1998. "Riprap Sizing at the Toe of Embankment Slopes," *Journal of Hydraulic Engineering* 124(7): 672–677. This method is also published in NUREG-1623.

- The Lakeview disposal cell continues to meet the criteria in Title 40 *Code of Federal Regulations* Part 192, specifically Subpart A, which requires the cell to manage radon flux and remain protective for at least 200 years. This determination is based on the following:
 - Observations made during the 2014 annual inspection indicated that the cell's erosion protection is currently intact and functioning properly.
 - The 2010 Geoprobe technical borehole investigation demonstrated that water infiltration is not an issue, as identified in DOE's letter to NRC dated August 25, 2010. DOE initiated the investigation to assess potential saturated conditions within the cell.
 - Annual inspections have identified no changes in the cell cover to suggest that radon flux from the cell would exceed the design specifications.

Engineering principles suggest that, if erosion of the side slope occurs, it would originate near the top-slope/side-slope interface^{3, 4}. Any rilling on the top slope near this interface could channelize water flow. However, two conditions on the disposal cell would restrict the size of rills formed on the top slope, thus limiting any potential extent of water channelization: (1) the limited quantity of soil available to form a rill (4-inch-thick layer at the time of construction), and (2) the riprap rock cover is continuous beneath the top-slope soil cover, the slope crests, and the side slopes.

To verify continued protectiveness of the erosion control on the west side slope, DOE proposes to augment the current inspection plan by modifying the inspection checklist. Modifications would include adding a more rigorous, focused inspection of all rills that may form along the interface between the vegetated soil/rock top-slope cover and the rock-covered west side slope. The more focused inspection would include photographing any erosion rills annually, mapping locations of the features, inspecting the condition of erosion protection rock immediately downslope of a rill, and making repairs, as warranted, in accordance with the LTSP. Focusing on these areas will enable DOE to more proactively assess and mitigate potential failure points of the side-slope erosion protection. Because this augmented inspection approach more directly focuses on the potential development of vulnerabilities on the side slope, DOE will discontinue the annual rock gradation and durability monitoring.

In response to Item 1 of NRC's November 12, 2014, letter, which suggested that DOE consider plotting the monitoring data to draw conclusions about potential side-slope vulnerabilities, DOE believes that the original gradation and durability monitoring data were not intended to be used in this way, and such use could result in magnifying the data limitations identified in this letter.

³Horton, R.E., 1945. "Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology," *Bulletin of the Geological Society of America* 56: 275–370.

⁴ Mosley, M.P., 1974. "Experimental study of rill erosion," *Transactions of the American Society of Agricultural Engineers* 17(5): 909–916.

Document Control Desk

Additionally, isolated areas of rock degradation have less significance because, as indicated previously, erosion of the side slope would likely originate near the top-slope/side-slope interface.

DOE acknowledges that all rock will naturally degrade, that the rock on the Lakeview cell west side slope is degrading, and that the future effects of natural weather events and performance of the rock erosion protection at the site will always have inherent uncertainties. However, these uncertainties are partly why the LTSP requires both annual inspections and corrective actions. DOE believes that adding the proposed rill monitoring during annual inspections is the most effective method for addressing any potential vulnerability of erosion on the side slope. This added inspection element would obviate the need for continued rock gradation and durability monitoring.

Upon NRC's acceptance of this proposed change, DOE will update the site's LTSP.

Please call me at (970) 248-6016, or Terry Petrosky at (970) 248-6041, if you have any questions. Please send any correspondence to:

U.S. Department of Energy Office of Legacy Management 2597 Legacy Way Grand Junction, CO 81503

Sincerely,

Jalena Davvault Site Manager

Enclosure

cc w/enclosure: Z. Cruz, NRC D. Engstrom, OR Dept. of Energy G. Smith, GeoSmith Engineering (e) T. Petrosky, DOE-LM (e) C. Goodknight, SN3 (e) A. Houska, SN3 (e) File: LKD 0535.10 (rc grand junction)

Sites\Lakeview\2-25-15 Lakeview Rock Assessment Letter (NRC).docx

ATTACHMENT 1

Summary Data

This page intentionally left blank

.

Riprap Gradation Monitoring

< Used in 2009 Only >

Rock Type and Durability Class

Rock Type Identification Number	Rock Type Description	Durability Class	Durability Class Code
1	Donso, hard, very fine-grained, dark gray basait with no joints, white deposits, or alteration. Some hairlino fractures and a few grayish brown, case- hardened surfaces may be present.	Highly Durable	A
2	Dense, hard, dark gray to grayish brown, olivine basait. No joints or white deposits; olivine phenocrysts have allered to amber and brown material representing various minerals such as Iddingsite, antigorite, chlorite, and nontronite. On some exposed surfaces, altered olivine phenocrysts have weathered out to give a vesicular appearance.	Durable	в
3ə	Dense, fine-grained, grayish brown to brown basall with hairline fractures. Basalt is slightly altered and fractured outer surfaces have a brown, limonite-like coating.	Moderately Durebie	Са
3b	Greenish gray to green, donso baselt with hairline fractures. Some fractures may have white or light brown coalings. Deuteric and hydrothermal alteration have imparted a distinctive greenish cast to the basalt resulting from alteration of calcic plaglociase to the more sodic plaglociase, albite- oligociase.	Moderately Durable	Сь
4a	Fine-grained, highly fractured gray to greenish gray basalt. Hainline to open fractures are mostly coated with white to pink calcile and commonly with the zeolite mineral, analcime.	Susceptible to Near-Term Degradation	Da
4b	Greenish gray to grayish brown olivine basaft that is highly fractured. Olivine phenocrysts have altered to brown material, possibly nontronite.	Susceptible to Near-Term Degradation	Db
5	Fine- to medium-grained, soft, grayish green, highly altered basalt. Rock has a granular appearance, has relatively low specific gravity, is probably highly chlorilized, and it has commonly disintegrated (rubblized) into pieces smaller than 1 inch in diameter.	Nondurable - Crumbled/ Rubblized	Ē
6	Non-basallic rócks such as sandslone or quartzite	Highly Durable to Nondurable	A through E

July 22, 2009

LUSEd in 2010, 2011, 2012, Rock Types and Durability Classes and Subclasses 2013, and 2014 >

Rock Type Identification Number	Rock Type Description	Durability Class	Durability Class Code	Durability Subclass Code
	Dense, hard, very fine-grained, dark gray basalt with no joints, fractures, white deposits, or alteration.		A	, Au
	As above in Au, except with tight, hairline fracture(s). Asterisk indicates the number of tight, hairline fractures.	Highly	A	Ah*
. 1	As above in Au, except with open fracture(s). Asterisk indicates the number of open fractures in the rock that are ready to split.	Durable	Å	Ao*
	As above in Au, except that the rock has split along fractures since placement on the cover, but the rocks are still in place. ¹		A	As
2	Dense, hard, dark gray to grayish brown, olivine basalt. No joints or white deposits; olivine phenocrysts have altered to amber and brown material representing various minerals such as Iddingsite, antigorite, chlorite, and nontronite. On some exposed surfaces, altered olivine phenocrysts have weathered out to give a vesicular appearance.	Durable	В	
3a	Dense, fine-grained, gravish brown to brown basalt with haldline fracturos. Basalt is slightly altered and fractured outer surfaces have a brown, limonite-like coeting.	Moderately Durable	Са	
3b	Greenish gray to green, dense basalt with hairline fractures. Some fractures may have white or light brown coatings. Deuteric and hydrothermal alteration have imparted a distinctive greenish cast to the basalt resulting from alteration of calc, plagloclase to the more sodic plagloclase, albite-oligoclase.	Moderately Durable	Cb	
	Fino-grained, highly fractured gray to greenish gray basait. Hairline to open fractures are mostly coated with white to pink calcite and commonly with the zeolite mineral, analcime.	Susceptible to Near- Term Degradation	Da	
4b	Groonish gray to grayish brown olivine basalt that is highly fractured. Olivine phenocrysts have altered to brown material, possibly nontronite.	Susceptible to Near- Term Degradation	Db .	
5	Fine- to medium-grained, soft, gravish green, highly aftered basalt. Rock has a granular appearance, has relatively low specific gravity, is probably highly chloritized, and it has commonly disintegrated (rubblized) into pieces smaller than 1 inch in diameter.	Nondurable - Crumbled/ Rubblized	E	
6	Non-basallic rocks such as sandstone or quartzite.	Highly Durable to	F	

¹ "As" must be determined while the rocks are still in place on the side slope before the rocks are picked up for gradation monitoring. The size of the monitored rock reflects the size of the selected/marked split piece, not the size of the pre-split rock.

Rock Durability Class/Subclass Code	2009 Percent	2010 Percent	2011 Percent	2012 Percent	2013 Percent	2014 Percent		Comments
Au	NA ¹	27.7	11.2	9.7	18.0	14.2	Highly Durable	
Ah	NA ¹	13.8	11.5	15.9	12.0	20.5	Highly Durable	Sum of all Ah*
Ao	NA1	4.8	4.3	5.2	3.9	4.4	Highly Durable	Sum of all Ao*
As	NA1	0.8	1.4	1.3	0.8	1.5	Highly Durable	
Total A Class	37.5	47.2	28.5	32.1	34.7	40.6	Highly Durable	Sum of Au, Ah, Ao, and As
В	25.9	20.2	27.9	27.3	28.9	31.2	Durable	
Ca	21.4	14.4	16.7	18.3	13.6	8.6	Moderately Durable	
Сь	6.9	1.0	13.6	2.3	3,9	1.9	Moderately Durable	
Da	4.5	8.3	7.9	12.8	9.7	10.1	Susceptible to Near- Term Degradation	
Db	1.6	5.9	3.7	5.7	7.6	5.9	Susceptible to Near- Term Degradation	
Ε.	2.2	3.0	1.7	1.5	1.5	1.9	Nondurable - Crumbled/ Rubblized	
F	. 0	0	0.2	0.4	0	0	Varied	, , , , , , , , , , , , , , , , , , , ,
Total A Class + B Class	63.4	67.4	56.4	59.4	63.6	71.8	Highly Durable and Durable	Sum of all A and B rocks

Summary of 2009 through 2014 Rock Durability Monitoring Results By Durability Class

¹ NA = Not applicable. Only the category of Rock Durability Class Code A was monitored in 2009; subclass data was not included until the 2010 durability monitoring.

SITE ACCESS ROAD

EXPLANATION

----- SITE PROPERTY BOUNDARY EDA ENERGY DISSIPATION AREA

·

. . .

This page intentionally left blank

.

ATTACHMENT 2

1997 Rock Gradation Monitoring Data

This page intentionally left blank

Sample Year 1997	Sample Locations				
Sample Number	Longitudinal Distance (ft.)	Transverse Distance (ft.)			
1	99	149			
2	148	24			
3	256	151			
4	326	27			
5	421	102			
6	544	210			
7	642	211			
8	786	17			
9	818	123			
10	930	11			

.

.

U.S. Department of Energy Grand Junction Office 2597 B 3/4 Road Grand Junction, CO 81503

JAN 0 5 1998

Mr. Joseph J. Holonich, Chief Uranium Recovery Branch Division of Waste Management Office of Nuclear Material Safety and Safeguards Mail Stop T7J9 U.S. Nuclear Regulatory Commission Washington, DC 20555

Subject: Lakeview Rock Gradation Testing

Dear Mr. Holonich:

Design specification for diameter of basalt riprap, D_{50} , used for erosion protection on the side slope of the Lakeview Disposal Cell is 2.7 to 3.9 inches. Gradation testing of the riprap was performed in 1997 to compare the current condition of the rock to the design specification.

When first tested, in May and July 1997 (May-July test), the rock was subjected to a single hammer blow before it was sized and weighed. The more highly weathered rock readily broke. The hammer test was, in effect, an accelerated weathering test. When the rock was tested this way, the mean size of the rock, D_{50} was 2.2 inches.

Gradation tests were repeated in August 1997 without the hammer test. Results of the second tests showed that the mean size of the rock, as placed on the side slope of the disposal cell, is within the design specification, D_{50} , of 2.8 inches. (In a previous letter, this value was given, in error, as 2.4 inches. Source of the error was a change from a 2 inch. screen used in May to a 2.5 inch screen in July and August. This change in screens was not taken into account in the earlier calculation.)

A D_{50} of 2.8 inches is at the lower end of the 2.7 to 3.9 inch size range considered sufficient to resist the Probable Maximum Precipitation (PMP) event deemed appropriate for the Lakevicw Site. Therefore, DOE concludes that the current size of the riprap does not present a risk to human health, safety, or the environment at the present time. The riprap will be monitored annually, using the procedure developed by DOE, a procedure that DOE considers statistically valid. The procedure is based on the rock-size distribution obtained from this year's tests. A copy of this procedure will be sent to NRC separately.

As explained above, two separate gradation tests were performed this year on the side slope riprap. The first test included a hammer blow to approximate accelerated physical weathering.

JAN 05 1998

Mr. Joseph J. Holonich

-2-

The second test omitted this step. Except for this difference, the procedure was the same on both occasions.

Large Gibson sieves with 4-inch and $2\frac{1}{2}$ -inch openings (a sieve with 2 inch openings in May) were used to determine the mean particle size, D_{50} , of the riprap. Statistically random locations on the side slope were used for each test (see enclosed map).

Sieving Procedure:

 A tripod and scale for weighing, and sieves for sizing the rock, were placed uphill from each randomly determined sampling location. The scale was tared, and the tare included the empty weighing bucket.

(2) A 2-by-2 foot square was laid on the surface of the west-facing, riprapped slope. The southcast corner of the square was placed at the randomly selected sampling point. The 2-by-2 foot square was aligned along the fall line of the side slope. All riprap within the 2-by-2 foot square, down to the radon and infiltration barrier, a thickness of about 18 inches, was measured and weighed to produce a representative sample of minimum of size. Total weight of all rock in a typical square was about 600 pounds. Statistical sampling was based on American Society of Testing Materials Procedure No. D 1140.

- (3) A point intercept grid, made of 4-by-4 inch field fence, was placed on the wooden template. Rock directly beneath each intersection point on the grid was marked with white paint.
- (4a) In situ rock gradation test (no hammer test)
 - Painted rocks were removed one at a time and placed in a 5-gallon bucket. Care was taken to avoid breaking rocks while each was placed in the bucket.
 - or

(4b) Accelerated weathering gradation test (with hammer test)

Painted rocks were removed, one at a time, and struck with a single blow from a standard geologist's hammer. The number of pieces that resulted were counted, and all pieces were placed in a 5-gallon bucket. The more densely crystalline basalt tended to survive the hammer blow; the more visibly altered basalt did not. Rock that broke after one hammer blow was assumed to have already degraded.

(5) The 5-gallon bucket and rocks (or rock pieces) were weighed and the weight recorded. The sample was then sieved using the large Gibson sieves. The weight retained on each size of sieve was recorded.

JAN 0 5 1998

Mr. Joseph J. Holonich

(6) The remainder of the riprap sample within the 2-by-2 foot square was removed one rock at a time, down to the radon and infiltration barrier. Then each rock was struck with the hammer (May-July test) or not (August test), weighed, and sieved. The weights retained on each sieve were recorded. Riprap was removed from the test square one layer at a time, down to the bedding layer, to see if size of the riprap varied with depth. The depth of the rock sampled was measured and recorded.

At each of the 10 sampling locations for each test (May-July and August), the total weight of the rock sieved and the total weight of rock retained on each size of sieve were measured and recorded. From this information, the percentage passing each size of sieve was determined. The mean particle size, D_{50} , was computed from the data on the weight of rock passing each size of sieve. Results are presented in the following table:

In Situ (No Hammer B	Fest low Applied)
Sample Location	D ₅₀ (inches)
SP1	2.5*
	2.6*
SP3	2.5*
SP4	2.7
SP5	2.7
SP6	3.2
SP7	2,7
SP8	3.4
SP9	2.5*
SP10	2.9
Mean	2.8
Standard Dev.	0.3
Standard Error	0.1

August 1997

Lakeview Riprap Baseline Gradation Data

May-July 1997	
Accelerated Aging Test	•
Each Rock Struck With a Haming	er)

	· · ·
Sample	D ₅₀
Location	(inches)
P1	1.6*
P2	2.7
P3	1.9*
P4	2.5*
P5	2.4*
P6	2.1*
Р7	3.0
P8	2.4*
Р9	0.9*
P10	2.3*
Mean	2.2
Standard Dev.	0.55
Standard Error	0.18

*Fails the design D₅₀ design specification for this site.

Based on these results, mean diameter of the riprap from the accelerated weathering (hammer) test is 2.2 inches and therefore insufficient to protect the cell from runoff associated with the

Mr. Joseph J. Holonich

specified design PMP storm event. Without the hammer test, the mean diameter, 2.8 inches, is sufficient to provide the requisite protection, although it is at the lower end of acceptable diameters, 2.7 to 3.9 inches.

Comparison of the results of the two tests (with and without the hammer test) shows that much of the rock in the riprap cover is significantly weakened by weathering. The original rock, as placed, had a D₅₀ between 2.7 and 3.9 inches. It has been exposed to weathering on the side slope for eight years. The hammer test is not that severe a test. The rock is held in one hand and hit with a hammer in the other. The rock breaks easily along visible and hairline cracks. In addition, the rock is altered. Most specimens are discolored and have a dusty or earthy appearance from growth of clay minerals. The clay minerals are alteration products that result from the chemical weathering of the original glassy and crystalline components of the basalt. Expansion of the crystal lattices that accompanies clay-mineral formation causes or allows small cracks to develop. Continued gradation monitoring will indicate whether disintegration of the riprap is a gradual (and continuing) weathering process or the result of rapid weathering that occurred just after the rock was placed and exposed to the elements. If the latter, further size reduction may not occur or may occur only very gradually.

Biointrusion Study

As a part of the monitoring of the Lakeview site, a test of the effects of root intrusion on the saturated hydraulic conductivity of the radon/infiltration barrier was also begun. The barrier, a compacted soil layer (CSL), was designed to limit the escape of radon and to limit infiltration of water into underlying tailings. Test results will be used to evaluate the need for long-term control or management of vegetation growing on the cover.

The top slope cover design for the Lakeview Disposal Cell has created conditions that favor the growth of deep-rooted plants rather than relatively shallow-rooted grasses because of the low water storage capacity of the topsoil. Many mature rabbitbrush plants and a few mature sagebrush plants now grow on the top of the disposal cell, and shrub density is expected to increase until it approaches or exceeds population levels (density) observed in native plant communities adjacent to the site.

The effects of root growth on the saturated hydraulic conductivity of the CSL was measured by using air-entry permeameters (AEPs). The AEP, based on a design by Bouwer (1966), consists of a round, 30-cm deep permeameter ring, air-tight cover, stand pipe graduated water reservoir, and vacuum gauge. Paired AEP measurements, one through the root crown of a rabbitbrush or sagebrush, and the other in an adjacent area with sparse or no vegetation were performed.

The three-stage tests consisted of: (1) measuring the rate of water-level drop in the reservoir, (2) measuring the pressure (tension) with the vacuum gauge after shutting off the water supply and allowing water to redistribute for a period of time (the vacuum gauge measurement was used to calculate the air-entry or bubbling pressure of the soil), and then (3) excavating the roots of selected plants to observe dye in preferred flow paths. Results presented in the following table suggest that the rabbitbrush and sagebrush plants may have had a subtle effect on the saturated

INH 05 1998

Mr. Joseph J. Holonich

hydraulic conductivity (K_{sab}) of the radon/infiltration barrier. In both paired tests, K_{sat} was slightly greater where plant roots penetrated the radon/infiltration barrier.

Paired Test Location	K _{sat} (cm/s)
1 - Rabbitbrush	6.5 x 10 ⁻⁵
1 - Barc Site	6.0 x 10 ⁻⁵
2 - Sagebrush	1.3 x 10 ⁻⁴
2 - Bare Site	1.1 x 10 ⁻⁴

The as-built K_{sab} for the radon barrier in 1988, according to the Completion Report, was between 1.0×10^{-8} and 1.0×10^{-9} cm/s. The mean K_{sab} , of the radon barrier in July 1997, as indicated by these preliminary results, is 9.01 x 10^{-5} cm/s, or between 4 and 5 orders of magnitude greater than it was in 1988. Additional saturated hydraulic conductivity testing of the cell cover is planned for the spring of 1998 to gain greater spatial coverage.

I would like to discuss these results and our monitoring plans with you on a conference call once you have had a chance to evaluate the information in this letter.

Sincerely,

Russel W. Edge / Project Site Manager

Enclosure

cc w/o enclosure: C. Jacobson, MACTEC-ERS C. Jones, MACTEC-ERS File LTSM21.4.3.1 (Record: O. Beyer)

I:Ve\Ikv-rock.r3

November 14, 1997

Lakeview Riprap Gradation Test Results, FY 1997

Mean diameter, defined as the diameter such that 50 percent of the stones by weight are smaller, of in-place riprap on the side slope of the Lakeview, Oregon, Title I disposal cell was determined by a sieving and weighing procedure. Each sample consists of all the rock in a test square, the entire thickness, down to the radon-infiltration barrier. Each test square was randomly located. In-place mean diameters were determined in order to compare them to the design mean diameter of 2.7 - 3.9 inches. Sieve sizes of 2.5-inches and 4.0-inches that closely match the specified design mean diameter were used in the determination.

Data supplied herewith are the baseline data for the LKV riprap. Samples labeled P1 to P10 are from the "accelerated weathering" test during which each stone was hit with a hammer to approximate accelerated physical weathering. These samples represent, at least approximately, w worst case. Samples P1, P4, and P7 were tested with a 2-inch sieve. The remaining seven samples were tested with the 2.5-inch sieve.

Samples labeled SP1 to SP10 are "in-place" samples. In-place samples were not subjected to the hammer test but were handle carefully to prevent breakage. In-place samples represent the current size and weight of the rock, the best case.

In the data tables, the depth or total thickness of the riprap is reported on the same line as the sample label. As stones were removed from the test square, they were place in a bucket. Six to 12 individual buckets of rock were removed from each 2-ft by 2-ft test square. For each bucket of rock, the total weight of the rock in the bucket and the weight of rock retained on each of the two sieves recorded. From this information, the percentage of the stones, by weight, passing each sieve was computed.

By knowing the percentage of rocks that pass through sieves that closely match the design mean diameter, 2.7-in. to 3.9-in., the current size of the rocks can be compared to the size of the rocks, as placed when the site was constructed. If 50 percent or more of the sample is retained on the smallest, 2.7 in. sieve, the riprap is still within design specification.

The attached sheets indicate the total weight of the stones collected in each bucket, and the

F.MOMENCS0023/DOCSVI STRESJ.NRC

weight retained on each sieve. Each bucket full of rocks is a subset of the total sample in the test square. The percentage or rock retained on the smallest size and the percentage passing through are computed for each bucket subset sample. Total weight of the sample is obtained by summing the pre-sieved subset weights, and again summed for the weight retained on each sieve. These cumulative weights are used to compute the mean diameter for the sample. Since the stones were obtained from the excavation one roughly horizontal layer at a time, computation of the mean size for individual subset samples provides insight into how the mean size varies with 'depth.

.

.

. P 1	inches deep =	•	10		• •			•
sample	we	lght retaine	d (kg)	· 9	6 relained	9	6 passing	
weight	4"	2"	< 2"	4"	2"	< 2"	4"	2"
12.8	3 [·] 4.4	7.0	1.4	34	55	11	66	11
18,2	. 1.8	12.6	3,8	10	69	21	90	21
.9,8	3 · 0.0	.4.6	5.2	• 0	47	53	100	53
· 14.8	3 2.4	4,4	8.0	16	30	54	.84	54
16.0	0.0	4.2	11.8	0	26	74	100	74
14.6	0.0	- 2.6	12.0	0	18	82	100	82
15.0) 3.4	8.0	3.6	· 23	53	. 24	77	24
17.6	6 O O	4.0	13.6	· 0	23	77	100	77
. 17.2	0.0	3,0	14.2	0	17	83	100	83
16.4	0.0	4.2	12.2	0	26	74	100	74
.152.4	12.0	54.6	85.8	8	36	56	92	56
				•		•		•

· P2 inches deep = 10

sample	Ŵ	reight retaine	ed (kg)		% retained	. 9	6 passing	
weight	4"	2.5"	< 2.5"	· 4"	2.5"	< 2.5"	4"	2,5"
22.2	3.0	15.2	4.0	14	68	18	86	18
22.8	2.0	11.6	9.2	. 9	51	40	91	40
22.6	2.0	10.2	10.4	9	45	46	91	46
22.8	1.6	9.8	11.4	.7	43	50	93	50
22.4	4.0	7.6	10.8	- 18	34	48	82	48
12.8	0.0	5.0	7.8	0	39	61	100	61
125.6	12.6	59.4	53,6	10	47	43	90	43

.

۰.

P3 inches deep = 14

sample	w	eight retaine	ed (kg)	ç	% retained	9	b passing	
weight	4"	2,5" .	< 2.5"	4"	2.5"	< 2.5"	4"	2.5"
18.4	2.0	13.2	3.2	11	72	17·	89	17
21.2	3.4	7.8	· 10.0 _i	16	37	47	⁻ 84	47
19.2	0.0	6.0	13.2	0	31	69	100	69
21.0	0.0	4.2	16.8	0	20	80	100	80
22.2	0.0	· · 7.0	15.2	0	32	68	100	68
20.6	0.0	9.4	11.2	. 0	· 46	. 54	100	54
21.8	0.0	5.6	16.2	0	26	74	100	- 74
19.4	0.0	5,8	13.6	0	30	70	100	70
14.0	0,0	1.0	13.0	0	7	93	100	. 93
177.8	5.4	60.0	112.4	3	34	63	97	63

......

P4	inches deep =		13.5		•			•
sample	. w	eight retaine	d (kg)	•	% retained	İ	% passing	·
weight	4 ".	2"	< 2"	4 "	2"	< 2"	4"	2"
16.0	4.4	11.2	0.4	28	70	3	73	3
11.8	0,0	9.4	2.4	0	80	20	100	20
17.4	3.6	9.0	4.8	21	52	28	,79	28
17.4	0.0	11.6	5.8	· 0	67	33	100	33
18.4	4.0	6,8	7.6	22	37	41	78	-41
17.6	1.2	10.6	5.8	7	60	33	93	33
18.4	3.0	11.4 ·	4.0	16	62	22	84	- 22
16.0	0.0	8,8	7.2	0	55	45	100	45
18.8	1.8	6,6	10.4	10	35	55	90	55
17.8	3,8	4.8	9.2	21	27	52	79	52
18.0	3.0	7.4	7.6	17	41	42	83	· · 42
14.4	1.4	2.4	10.5	10	<u>17</u>	73	79	52
202.0	26.2	100.0	75.7	13	50	37	87	38
P5	Inches deep =		12					•
sample	• · · · · · · · · · · · · · · · · ·	eight retaine	d (kg)		% retained		% passing	
weight	• 4"	2.5"	< 2.5"	4" ·	2.5"	< 2.5"	4"	2.5"
12.4	0.0	· 7,6	4.8	·. O	61	39	100	39
· 20,4	4.8	9.0	6.6	24	44	32	76	. 32
18.0	0.0	9.2	8.8 ₁	0	51	49	100	49
18.6	0,0	0,8	10.6	· 0	. 43	57	100	57
00.4	18	8.6	13.0	8	37	56	. 92	56
23.4	1.0				22	E2.	i on	53
23.4	2.2	8.4	12.0	10	31	33.	, 20	00
23.4 22.6 22.6	2.2 4.2	8.4 6.6	12.0 11.8	10 19	37 29	52	, 50 , 81	52
23.4 22.6 22.6 21.6	2.2 4.2 0.0	8.4 6,6 6.2	12.0 11.8 15.4	10 19 0	29 29	52 71	81 100	52 71
23.4 22.6 22.6 21.6 27.0	2.2 4.2 0.0 0.0	8.4 6.6 6.2 9.8	12.0 11.8 15.4 17.2	10 19 0	29 29 36	53 52 71 64	81 100 100	52 71 64

P6 Inches deep = 14

•••

. .

۰.

sample	M	eight retaine	ed (kg)	0	% retained	%	b passing	
weight	4"	2.5"	< 2.5"	4" ·	2.5"	< 2.5"	4"	2.5"
12,6	2.0	7,4	3.2	16	59	25	84	25
20,6	0.0	7.8	12.8	0	38	62	100	62
22.0	2.8	8.6	10.6	13	39	48	87	. 48
21.0	0.0	8.4	12.6	0	40	60	100	60
21.2	0.0	9.0 .	12.2	0	. 42	58	100	58
19.8	1.6	4.8	13.4	· · 8	24	68	92	68
22.4	8.8	7.0	6.6	39	31	29	61	29
18.8	2.0	1.6	15.2.	11	9	81	89	81
19.2	0.0	4.4	14.8	0	23	77	100	77
4.6	0.0	0.0	4 .6 ⁺	0	0	100	100	100
182.2	17.2	59.0	106.0	9	32	58	91	-58

.:

·

.

•

.

...

.

: •

-

.

.

P7	inches deep =		16	•		:		
sample	w	eight retaine	d (kg)	9	6 relained		% passing	
weight	. 4"	2"	< 2"	4"	2"	< 2"	4"	2"
22.	2 6.2	-15.0	1.0	28	68	5	72	5
14.	0 1.6	10.4	2.0	11	74	14	89	14
15.	2 3.6	9.4	2.2	24	62	- 14	, 76	· 14
17.	6 1.6	11.8	4.2	9	. 67	24	91	24
18.	6 6.4	11.0	1.2	34	59	6	` 6 6	. 6 .
· 18.	.0 2.8	10.4	4.8	16	58	27	84	27
20.	6 0.0	15,8	4.8	0	77	23	100	23
20.	.2 6.8	11.8	1.6	34	58	8	6 6 [·]	8
18.	6 2.4	10.2	6.0	13	55	32	87	32
19.	6 4.6	13.2	1.8	23	67	9	77	9
19.	.4 0.0	7.8	11.6	0	40	60	100	60
204.	.0 36.0	126.8	41.2	18	62	20	82	20
P8	inches deep =		[`] 15					

sample	w	eight retaine	ed (kg) 🕴		% retained		% passing	
weight	4"	2.5"	< 2.5"	4"	2.5"	< 2.5"	4"	2.5"
18.8	3,4	12.2	3.2	18	65 ⁻	17	82	17
16.8	1.4	10.8	4.6	8	64	27	92	27
20.6	1.4	7.2	12.0	7	35	58	93	- 58
20.8	0.0	7.6	13.2	0	· 37	63	100	63
18.6	0.0	2.4	16.2	0	13	87	100	87
20.2	3.4	13.6	3.2	. 17	67	16	. 83	· 16
24.2	2.6	1 1.4	10.2	्रे 11	47	42	89	42
25.6	2.4	6.8	16.4	9	27	64	91	64
21.4	2.2	6.2	13.0	10,	29	61	·90	61
15.6	0.0	1.2	14.4	0	8	92	100	92
202.6	16.8	79.4	106.4	8	39	53	92	53

P9 inches deep = 12

comple		Noight rotain	od (ka)	·	/ relained	. 0/		
sample	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	eignt retaint	au (ky)		% retained		passing	
weight	4"	2.5"	< 2.5"	4"	2.5"	< 2,5"	4"	2.5"
16.2	7.0	2.6	6.6	43	16	41	57	41
20.6	1.6	6.4	12.6	8	31	61	92	· 61
20.2	0.0	3.8	16.4	0	19	81	100	81
22.4	0.0	3.2	19.2	0	14	86.	100	· 86 ·
23.4	7.2	5.2	11.0	31	, 22	47	69	47
22.0	0.0	5.2	16.8	0	24	76	100	.76
17.6	0.0	0.8	16.8	0	. 5	95	100	95
142.4	15,8	27.2	99.4	11	19	70	89	. 70

.

.

P10	inches deep =		17					• .
sample	. We	eight retaine	d (kg)		% retained		% passing	
weight	4" ·	2.5"	< 2.5"	4" .	2.5"	< 2.5"	4"	2.5"
11.9) 2.4	6.8	2.6	· 20	57	22	80	23
19.0) 3.2	.8.0	7.8	-17	42	41	. 83	41
22.0) 1.4	8,2	12,4	6	37	56	94	56
21.4	0.0	5.6	15.8	0	· 26	74	100	74
21.8	0,0	9.2 [.]	12.6	0	42	58 :	100	58
17.8	3.8	6.6	7.4	21	37	42	79	42
22.0) 4.8	12.4	4.8	22	56	22	78	22
25.4	7.6	7.8	10.0	30	31	39	70	39
22.0	0.0	6.2	15.8	· 0	28	72	100	· 72
18,6	i 2.6	9.8	6.2	14	53	33	86	33
23.0) 1.4	4.4	17.2	. 6	19	75	94	75
19.0	0.0	0.8	18.2	0	4	96	100	96
 243.9	27.2	85.8	130.8	11	35	54.	89	54
						-		

.

۰,

ì

1

1 1

LAKEVIEW RIPRAP GRADATION TEST RESULTS BASELINE (AUG., 1997); design d50 2.7" - 3.9 " no hammer blow applied, in situ test

. •

SP1	inches deep =	n	bebrocer le						
sample		eight retaine	d (ka)			% retained		% passing	
weight	4"	2.5"	< 2.5"	່ 4 "		2,5"	< 2.5"	4"	2.5"
18,4	2.0	13.8	2.6		11	75	14	89	14
24.4	1.8	15.0 [°]	7.6	· ·	7	.61	31	93	-31
- 26.0) 2.0	8,2	15.8		8	. 32	61	92	61
29,2	2 3.4	13.6	12.2		12	47	42	88	42
29.6	s 4.6	6.2	18.8		16	21	64	'84	64
25.6	6,0	10.8	14.8		0	-42	58	100	58
29.8	<u> </u>	· 12.2	17.6		0	41	59	100	59
183.0) 13.8	79.8	89.4		8.	44	49	92	49
. •		· · · ·				- '			-
SP2	inches deep =	· .	12						
	······								:
sample	we	eight retaine	d (kg)			% retained		% oassing	
weight	· 4″	2.5	< 2.5"	4"		2.5"	< 2.5"	4"	2.5"
12.4	0.0	9.6	2.8	•	0	77	23	100	23
23.0) 2.4	12.4	8.2		10	54	36	90	36
. 17.6	6 0.0	4.2	13.4	• .	0	24	76	100	76
27.6	3 0.0	10,4	17.2	•	0	38	62	100	62
30.0) 6,0	12.2	11.8		20	41	39	80	39
23.4	1.6	7,6	14.2		7	32	61	· 93	61
21.6	3 1.4	10.2	10.0		6	47	46	94	46
31.6	6,8	16.2	8,6		22	51	27	78	27
32.6	3 1.8	17.0	13.8		6	52	. 42	94	42
26.0	0.0	9.2	16.8		0	35	65	100	65
245.8	3 20.0	109,0	116.8;		8	44	48	92	48
		·	•						
SP3	inches deep =		14						• .
	•								
sample	we	aight retaine	d (kg)		·. ·	% retained		: % passing	
weight	4"	2.5"	< 2.5"	4″		2.5"	< 2.5"	4"	2.5"
16,0) 5.4	8.6	2.0		34	54	13	66	12
19.2	2 0.0	10.6	8.6		0	55	.45	100	45
27.8	3.8	10,6	13.4		14	. 38	48	86 .	48
31.6	6,4	12.6	12.6		20	40	40	80	40
34,0) 7.2	16.0	10.8 [±]		21	. 47	32	. 79	32
25.8	3 . 0,0	8.2	17.6		.0	32	68	100	68
27.4	0.0 ·	9.0	18.4	•	0	- 33	67	100	67
29.8	3 0.0	14.0	15.8	•	· 0	47	53	100	53
32.8	3 0,0	9.2	23.6		•0	28	72	100	72
244.4	22.8	98.8	122.8		9	40	50	91	50
			• •		. ·				

. .

LAKEVIEW RIPRAP GRADATION TEST RESULTS BASELINE (AUG., 1997); design d50 2.7" - 3.9 " no hammer blow applied, in situ test

. . . .

.

SP4	inches deep =	• •	14					
sample weight	we 4"	eight retaine 2.5"	ed (kg) < 2.5"	4"	% relained 2.5"	< 2.5"	% passing 4"	2,5"
[.] 15.4	2.4	10.8	2.2	16	70	14	84	14
22.0	. 0.0	13.6	8.4	0	· 62	38	100	38
.25.8	1.8	10.2	13.8	· 7	40	53	,93	53
27.6	0,0	13.8	13.8	0	50	50	100	50
21.8	· 0.0	. 11.0	10.8	0	50	50	100	50
34.4	8.2	19.3	6.9	- 24	56	20	76	20
25.8	2.0	11.6	12.2	8	45	47	92	47
28,4	4.2	10.6	13.6	15	37	48	85	48
26.2	0.0	10.2	16.0	0	39	61	100	61
31.2	7.6	15.0	8.6	24	48	28	76	28
19.6	4.2	3,6	11.8	21	18	60	79	60
278:2	30.4	129.7	118.1	11	47	42	89	42
						=.	· · · · ·	
SP5	inches deep =		15.5					
	· .	labt antata a	a dias		0/	:	or	·
sample		aignt retaine	u(xg) :	4 11	% retained		% passing	0.5
weight	4	2.5	< 2.5	4	2.5	< 2.5	4"	2.5"
13.2	4.0	0.2	2.2	30 0	47	17	100 100	17
18.8	0.0	9,2	9,0	0	49	51	. 100	51
26.6	0,0	13,2	13.4	0	50	50,	100	50
21.4	2.0	7.4	12.0	9	35	56	91	56
31.6	· 2.4	19.8	9.6	8	62	30	92	30
28.4	0.0	12.6	15.8	0	44	56	100	56
30.2	5.2	15,8	9.2	1/	52	30	83	+ 30
27.2	3.6	9.6	14.01	13	35	51	87	. 51
<u>;</u> 31.6	1.6	16.8	13.2	• 5	53	42	95	42
20.0	0.0	8.6	. 11.4:	0	. 43	57	<u> </u>	
249.0	19.6	119.0	110.4	8	48	44	92	44
SP6	inches deep ≓		15				•	
sample	WA	inht retaine	d (ka) :		% retained		% nassing	
weight	· A "	2.5"	< 25"	4 "	2 5"	e 2 5"	V" hassing	2.6"
veight 26.6	- 4 F	20.2	18	47	2.5	7 2.0	- 29	2.5
20.0	 0 0	18 1	1.0 A R'	17	70	24	100	24
20.2	62 .	15.5	50	22	, 19 , 20	. 41	100	21
27.0	1.2	14.2	J.A.	20	50	19	11	18
20.6	1.0	19.2	4.0	9	09	. 22	91	22
29.0	1.0	10.2	9.2	5	. 63	32	94	32
28.4	5.4	10.0	1.0	19	56	25	81	25
28,0	7.6	12.8	1.6	27	46	27		27
182.8	27.2	115.4	40.2	15	63	22	85	22

-

. . .

.

.

•

•

.

•••

LAKEVIEW RIPRAP GRADATION TEST RESULTS BASELINE (AUG., 1997); design d50 2.7" - 3.9 " no hammer blow applied, in situ test .

.

...

SP7	inches deep =		11				:	
sample	w	elght retaine	d (kg)	9	6 retained	: %	b passing	
weight	4"	2.5"	< 2.5"	4"	2.5"	< 2.5"	4"	2.5"
	1.8	6.0	3,6	16	53	32	84	· 32
20.8	B· 0,0	8.2	12.6	0	39	61	100	. 61
22.6	5 1.2	10.8	10.6	5	. 48	47	95	47
22.0) 1.2	8.6	12.2	5	39	55	95	55
28.2	2 7.4	15.0	5.8	26	53	21	74	21
27.0) 5.2	. 9.6	12.2	19	36	45	81	45
· 27.0	0.0	15.8	11.2	0	59	41	100	41
28.2	2 2.0	15.4	10.8	7	55	38	93 · ·	38
26.6	6.4	8.2	12.0	24	31	45	76	45
23.6	5 1.6	5.2	16.8	7	22	71	. 93 -	71
237.4	26.8	102.8	107.8	11	43	45	89	45

SP8 inches deep =

15

4	sample	· · · w	eight retain	ed (kg)	ç	% retained	%	passing	•
	weight	4"	2.5"	< 2.5"	4"	2.5"	< 2.5"	4"	2.5"
	43.5	22.6	21.0	-0.1	52	48	· _0	. 48	-0
	27.0	9.4	16.2	1.4	35	60	5	65	5
	25.0	0.0	24.2	0.8	0	97	3	100	3
	23.8	2.0	20,4	1.4	8	86	6	.92	. 6
•	26.0	9,8	9.2	7.0 ⁺	38	35	27	• 62	27
	24.8	2.0	14.2	8.6	8	57	35	· 92	35
	170.1	45.8	105.2	19.1	27	62	11	73	. 11
						i		· · · ·	

SP9 inches deep = 10

sample	w	eight retaine	ed (kg)	9	6 retained	6 passing	assing	
weight	4"	2.5"	< 2.5"	4"	2.5"	< 2.5"	. 4"	2.5"
23.0	9,0	13.4	0.6	39	58	3	61	3
16.0	0,0	13,6	2.4	0	85	15	100	15
15.6	0.0	6.4	9.2	0	41	59	100	59
. 22.0	2.6	-5,8	13.6	12	26	62	88	62
20.4	0,0	7.4	13.0	0	. 36	64	100	64
25.2	0.0	6.8	18.4	0	` 27	73	100	73
12.2	0.0	3.6	8.6	0	30	70	100	. 70
134.4	11.6	57.0	65.8	9	42	49	91	-49

LAKEVIEW RIPRAP GRADATION TEST RESULTS BASELINE (AUG., 1997); design d50 2.7" - 3.9 " no hammer blow applied, in situ test

	SP10	Inches deep =		11	:	-		•	
:	sample	we	eight retaine	d (kg)	9	6 retained	1	% passing	
	welght	4"	2,5"	< 2.5"	4"	2,5"	< 2.5"	4"	2.5"
	19.6	5,8	12.2	1.6	30	62	8	70	8
	17.6	5 1.8	14.0	1.8	10	80	10	90	10
	14.4	0.0	6.6	7.8	0	46	54	100	54
	20.4	2.2	12.8	5.4	11	63	26	'89	26
	23.8	3 0.0	15.0	8.8	0	63	37	100	37
	21.0) 2.0	13.6	5.4	10	65	26	90	26
	22.0) 3.4	9.2	9.4	15	42	43	85	43
	25.4	2.0	10.8	12.6	8	43	50	92	. 50
•	29.2	2.4	7.2	19.6	8	25	67	92	67
	193.4	19.6	101.4	72.4	10	52	37	. 90	37

ĥ

۰.

· · · · ·

ATTACHMENT 3

1998 Rock Gradation Monitoring Data

This page intentionally left blank

Δ.

Sample Year 1998	Sample Locations			
Sample Number	Longitudinal Distance (ft.)	Transverse Distance (ft.)		
1	98	41		
2	171	208		
3	298	111		
4	304	132		
5	410	259		
6	590	235		
7	641	135		
8	739	230		
9	865	41		
10	912	124		

This page intentionally left blank

ATTACHMENT 4

1999 Rock Gradation Monitoring Data
•

Sample Year 1999	Sample Locations				
Sample Number	Longitudinal Transverse Distan npie Number Distance (ft.) (ft.)				
1	68	218			
2	185	177			
3	231	167			
4	306	209			
5	413	29			
6	572	118			
7	634	50			
8	724	242			
9	823	12			
10	937	130			
11	7	208			
12	156	169			
13	232	65			
14	314	204			
15	445	32			
16	565	236			
17	627	18			
18	791	213			
19	847	154			
20	920	34			
21	71	35			
22	107	269			
23	207	122			
24	368	113			
25	491	157			
26	562	227			
27	660	270			
28	719	56			
29	851	80			
30	948	125			

.

ъ. Э

,

1999

.

LAKEVIEW

D₅₀ by size - 4 seives

					_	cumulative				cumulative					
sample	total		number	retained			number	passing			percent	passing		D ₅₀	
number	painted	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	(inch)	P/F
WP 1	25	1	5	6	12	24	19	13	1	96	76	52	4	2.46	F
WP 2	24	0	4	3	16	24	20	17	1	100	83	71	4	2.19	F
WP 3	24	0	13	2	8	24	11	9	1	100	46	38	4	3.08	Р
WP4	24	2	11	4	6	22	11	7	1	92	46	29	4	3.09	Р
WP5	24	0	2	3	9	24	22	19	10	100	92	79	42	1.72	F
WP6	24	.0	11	5	5	24	13	8	3	100	54	33	13	2.90	Р
WP 7	25	0	4	3	11	25	21	18	7	100	84	72	28	2.00	F
WP 8	25	1	4	2	11	24	20	18	7	96	80	72	28	2.00	F
WP 9	23	5	9	7	1	18	9	2	1	78	39	9	4	3.28	Р
	24	4	12	3	5	20	8	5	0	83	33	21	0	3.33	Р
CP 1	25	1	12	4	6	24	12	8	2	96	48	32	8	3.04	Р
CP 2	22	1	10	2	7	21	11	9	2	95	50	41	9	3.00	Р
CP 3	25	1	6	3	13	24	18	15	2	96	72	60	8	2.31	F
CP 4	24	1	2	8	10	23	21	13	3	96	88	54	13	2.40	F
CP 5	24	4	1	4	7	20	19	15	8	83	79	63	33	2.07	F
CP 6	25	0	5	6	11	25	20	14	3	100	80	56	12	2.36	F
CP 7	25	2	4	1	9	23	19	18	9	92	76	72	36	1.89	F
CP 8	25	2	7	4	12	23	16	12	0	92	64	48	0	2.56	F
CP 9	22	6	· 8	4	3	16	8	4	1	73	36	18	5	3.38	Ρ
CP 10	20	1	12	2	3	19	7	5	2	95	35	25	10	3.25	Р
CP 11	25	0	4	5	9	25	21	16	7	100	84	64	28	2.11	F
CP 12	24	1	9	5	7	23	14	9	2	96	58	38	8	2.80	Р
CP 13	25	0	4	1	15	25	21	20	5	100	84	80	- 20	2.00	F
CP 14	24	1	6	3	10	23	17	14	4	96	71	58	17	2.30	F
CP 15	24	1	4	3	8	23	19	16	8	96	79	67	33	2.00	• F
CP 16	24	6	11	5	1	18	7	2	1	75	29	8	4	3.45	P
CP 17	25	0	4	5	9	25	21	16	7	100	84	64	28	2.11	F
CP 18	22	7	8	3	3	15	7	4	1	68	32	18	5	3.50	P
CP 19	25	2	11	(3	23	12	5	2	92	48	20	8	3.05	P
CP 20	24	0	3	5	8	24	21	16	8	100	88	67	33	2.00	F .
CP 21	24	6	1	/	3	18	. 11	.4	1	/5	46	1/	4	3.14	P
CP 22	24	4	11	1	2	20	9	2	0	83	38	8	0	3.27	P
CP 23	25	0	8	4	11	25	1/	13	2	100	68	52	8	2.45	-
CP 24	25	0	5	5	14	25	20	15	1	100	80	60	4	2.32	F
CP 25	25		8	1	9	24	16	15	6	96	64	60	24	2.22	
CP 26	24		7	11	3	21	14	3	0	88	58	13	0	2.91	۲ ۲
	23	2	10	10	1	21	11	1	0	91	48	4	0	3.05	۲
CP 28	25	2	6	3	6	23	17	14	8	92	68	56	32	2.25	F -
CP 29	25	0	1	0	17	25	24	24	7	100	96	96	28	1.82	F
CP 30	25	1	11	5	5	24	13	8	3	96	52	32	12	2.95	Р

Count data a	nalysis w/ 4 sieves
Mean	2.60
Standard Error	0.085
Median	2.46
Mode	2.0
Standard Devia	tion 0.53
Sample Variance	ce 0.29
Range	1.78
Minimum	1.72
Maximum	3.50
Sum	104.03
Count	40.00
Confidence Lev	vel(95.0%) 0.17

.

,

Count data analysis w/ 3	sieves
Mean	2.60
Standard Error	0.09
Median	2.46
Mode	2.00
Standard Deviation	0.54
Sample Variance	0.29
Range	1.73
Minimum	1.72
Maximum	3.45
Sum	103.90
Count	40.00
Confidence Level(95.0%)	0.17

ATTACHMENT 5

2000 Rock Gradation Monitoring Data

Sample Year 2000	Sample Locations						
Sample Number	Longitudinal Distance (ft.)	Transverse Distance (ft.)					
1	2	73					
2	139	124					
3	280	108					
4	329	127					
5	478	86					
6	558	251					
7	682	19					
8	747	82					
9	865	144					
10	901	78					

۲. .

,

05/16/00 LAKEVIEW D₅₀ by size - 4 seives

						cumulative				cumulative					
sample	total		number	retained			number	passing			percent	passing		D ₅₀	
number	painted	<u>4 - inch</u>	<u> 3 - inch</u>	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	(inch)	P/F
CP 1	25	3	6	4	8	22	16	12	4	88	64	48	16	2.56	F
CP 2	25	3	6	6	8	22	16	10	2	88	64	40	8	2.71	Р
CP 3	25	1	5	5	8	24	19	14	6	96	76	56	24	2.31	F
CP 4	24	1	1	3	12	23	22	19	7	96	92	79	29	1.92	F
CP 5	25	2	6	3	6	23	17	14	8	92	68	56	32	2.25	F
CP 6	23	3	4	4	6	20	16	12	6	87	70	52	26	2.42	F
CP 7	25	2	3	0	7	23	20	20	13	92	80	80	52	1.43	F
CP 8	25	4	8	5	6	21	13	8	2	84	52	32	8	2.95	Р
CP 9	24	6	10	5	3	18	8	3	. 0	75	33	13	0	3.40	Р
CP 10	<u>24</u>	2	10	3	8	<u>22</u>	<u>12</u>	<u>9</u>	1	<u>92</u>	<u>50</u>	<u>38</u>	4	<u>3.00</u>	Р
	245				•	218	159	121	49	89	65	49	20	2.52	F

May-00	
N4	o (o
wean	2.49
Standard Error	0.18
Median	2.49
Standard Deviation	0.568
Sample Variance	0.322
Range	2.0
Minimum	1.4
Maximum	3.4
Count	10

computed S.E. =	0.180
95% confidence interval	2.85
	2.14
n req'd (within 0.1")	α (%)
40	5
28	10
17	20
n req'd (within 0.2")	α (%)
10	5
7	10
4	20

.

٠

ATTACHMENT 6

2001 Rock Gradation Monitoring Data

Sample Year 2001	Sample Locations					
Sample Number	Longitudinal Distance (ft.)	Transverse Distance (ft.)				
. 1	42	213				
2	175	140				
3	221	38				
4	388	159				
5	486	227				
6	569	103				
7	602	243				
8	782	94				
9	828	146				
10	915	10				
11	29	11				
12	131	24				
13	295	186				
14	357	184				
15	440	200				
16	532	181				
17	654	197				
18	743	28				
19	861	54				
20	913	105				

06/01/01 LAKEVIEW

D₅₀ by size - 4 seives

					_		cumulative	:			cumulative)			
sample	total		number	retained			number	passing			percent	passing		D ₅₀	
number	painted	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	(inch)	P/F
CP 1	25	0	4	12	8	25	21	9	1	100	84	36	4	2.65	F
CP 2	24	0	5	7	11	24	19	12	1	100	79	50	4	2.50	F
CP 3	25	3	6	6	8	22	16	10	2	88	64	40	8	2.71	Р
CP 4	24	2	4	9	9	22	18	9	0	92	75	38	• 0	2.67	F
CP 5	24	2	7	3	9	22	15	12	3	92	63	50	13	2.50	F
CP 6	25	1	4	1	12	24	20	19	7	96	80	76	28	1.96	F
CP 7	24	1	12	3	4	23	11	8	4	96	46	33	17	3.08	Р
CP 8	25	2	8	2	12	23	15	13	1	92	60	52	4	2.46	F
CP 9	24	2	8	5	7	22	14	9	2	92	58	38	8	2.80	Р
CP 10	23	4	13	2	1	19	6	4	3	83	26	17	13	3.42	P
CP 11	23	1	10	8	2	22	12	4	2	96	52	17	9	2.97	Р
CP 12	23	0	15	5	3	23	8	3	0	· 100	35	13	0	3.23	Р
CP 13	25	0	4	3	9	25	21	18	9	100	84	72	36	1.89	F
CP 14	25	1	1	5	16	24	23	18	2	96	92	72	8	2.16	F
CP 15	25	0	7	5	12	25	18	13	1	100	72	52	4	2.46	F
CP 16	25	2	10	3	5	23	13	10	5	92	52	40	20	3.00	Р
CP 17	25	0	3	0	12	2 5	22	22	10	100	88	88	40	1.71	F
CP 18	24	2	9	4	9	22	13	9	0	92	54	38	0	2.88	P
CP 19	25	2	4	4	5	23	19	15	10	92	76	60	40	2.00	F
CP 20	<u>24</u>	0	4	6	8	<u>24</u>	<u>20</u>	<u>14</u>	<u>6</u>	<u>100</u>	<u>83</u>	<u>58</u>	<u>25</u>	<u>2.25</u>	F
	487				-	462	324	231	69	95	67	47	14	2.57	F

.

1-Jun-01						
Mean	2.56					
Standard Error	0.10					
Median	2.57					
Mode	2.50					
Standard Deviation	0.468					
Sample Variance	0.219					
Range	1.71					
Minimum	1.71					
Maximum	3.42					
Count	20					
Confidence Level(95.0%)	0.219					

computed S.E. = ·	0.1047		
95% confidence interval	2.77		
	2.36		
n req'd (within 0.1")	α (%)		
84	5		
59	10		
36	20		
n req'd (within 0.2")	α (%)		
21	5		
15	10		
9	20		

J

Ο

ATTACHMENT 7

2002 Rock Gradation Monitoring Data

Sample Year 2002	Sample Locations							
Sample Number	Longitudinal Distance (ft.)	Transverse Distance (ft.)						
1	. 31	205						
2	179	184						
3	291	162						
4	366	257						
5	482	197						
6	569	76						
7	607	230						
8	724	10						
9	867	28						
10	927	65						
11	7	19						
12	137	46						
13	299	11						
14	314	240						
15	468	132						
16	554	192						
17	634	186						
18	769	48						
19	842	52						
20	910	40						

٨

05/22/02 LAKEVIEW D₅₀ by size - 4 seives

	cumulative						1	cumulative	1						
sample	total		number	retained	ļ		number	passing			percent	passing		D ₅₀	
number	painted	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	(inch)	<u>P/F</u>
CP 1	24	1	9	3	8	23	14	11	3	96	58	46	13	2.67	F
CP 2	25	1	7	8	7	24	17	9	2	96	68	36	8	2.72	Р
CP 3	25	2	4	5	9	23	19	14	5	92	76	56	20	2.33	F
CP 4	19	4	7	5	1	15	8	3	2	79	42	16	11	3.21	Р
CP 5	25	1	3	6	8	24	21	15	7	96	84	60	28	2.19	F
CP 6	- 25	2	3	3	11	23	20	· 17	6	92	80	68	24	2.09	F
CP 7	25	2	5	4	10	23	18	14	4	92	72	56	16	2.35	F
CP 8	24	2	3	3	13	22	, 19	16	3	92	79	67	13	2.19	F
CP 9	24	1	7	3	- 8	23	16	13	5	96	67	54	21	2.38	F
CP 10	25	1	3	1	13	24	21	20	7	96	84	80	28	1.92	F
CP 11	24	1	8	5	8	23	15	10	2	96	63	42	8	2.70	Р
CP 12	25	0	• 5	9	4	25	20	11	7	100	80	44	28	2.58	F
CP 13	24	1	7	4	11	23	16	12	1	96	67	50	4	2.50	F
CP 14	23	1	8	8	5	22	14	6	1	96	61	26	4)	2.84	Р
CP 15	25	0	3	2	8	25	22	20	12	100	88	80	48	1.56	F
CP 16	25	1	6	8	9	24	18	10	1	96	72	40	4	2.66	F
CP 17	25	1	4	1	11	24	20	19	8	96	80	76	32	1.91	F
CP 18	25	0	4	0	13	25	21	21	8	100	84	84	32	1.85	F
CP 19	25	2	6	2	7	23	17	15	8	92	68	60	32	2.14	F
CP 20	<u>24</u>	2	5	4	8	<u>22</u>	<u>17</u>	<u>13</u>	<u>5</u>	<u>92</u>	<u>71</u>	<u>54</u>	21	<u>2.38</u>	F
	486	-			-	460	353	269	97	95	73	55	20	2.35	

5/22/2002	
Mean	2.36
Standard Error	0.088
Median	2.36
Mode	2.38
Standard Deviation	0.393
Sample Variance	0.154
Minimum	1.56
Maximum	3.21
Count	20
Confidence Level(95.0%)	0.183861

computed S.E. =	0.0878
95% confidence interval	2.53 2.19
n req'd (within 0.1")	α (%)
9	5
6	10
4	20
n req'd (within 0.2")	α (%)
2	5
2	10
1	20

. . . .

ATTACHMENT 8

2003 Rock Gradation Monitoring Data

Sample Year 2003	Sample	Locations
Sample Number	Longitudinal Distance (ft.)	Transverse Distance (ft.)
1	77	159
2	140	11
3	299	230
4	361	108
5	491	32
6	567	68
7	696	16
8	776	145
9	812	9
10	901	121
11	10	19
12	190	235
13	274	59
14	342	265
15	433	132
16	515	139
17	614	49
18	794	133
19	881	178
20	902	61
21	50	90
22	150	90
23	250	240
24	350	60
25	550	30
26	650	90
27	750	180

•

,

6/24-25/2003 LAKEVIEW

.

•

D₅₀ by size - 4 seives

.

•

								cumulative	:			cumulative					
	sample	total		number	retained			number	passing			percent	passing		D ₅₀		
	number	painted	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	(inch)	P/F	
	CP 1	25	2	6	6		23	17	11	6	92	68	44	24	2.63	F	=
•	CP 2	22	2	6	5	7	20	14	9	2	91	64	41	9	2.70	Ρ	random + fill-in points
	CP 3	24	2	11	6	4	22	11	5	1	92	46	21	4	3.09	Р	
	CP 4	24	0	2	2	15	24	22	20	5	100	92	83	21	1.97	F	6/23-24/2003
	CP 5	24	6	7	0	6	18	11	11	5	75	46	46	21	3.14	Р	· · · · · · · · · · · · · · · · · · ·
	CP 6	25	0	2	1	11	25	23	22	11	100	92	88	44	1.64	F	Mean
	CP 7	24	3	9	5	5	21	12	. 7	2	88	50	29	8	3.00	Р	Standard Error
	CP 8	24	1	11	5	4	23	12	7	3	96	50	29	13	3.00	Р	Median
	CP 9	23	3	12	1	5	20	8	7	2	87	35	30	9	3.29	Р	Mode
	CP 10	25	2	6	7	8	23	17	10	2	92	68	40	8	2.68	F	Standard Deviation
	CP 11	21	8	9	0	2	13	4	4	2	62	19	19	10	3.72	Р	Sample Variance
	CP 12	25	1	13	5	2	24	. 11	6	4	96	44	24	16	3.12	Р	Minimum
	CP 13	25	1	2	7	11	. 24	22	15	4	96	88	60	16	2.27	F	Maximum
	CP 14	23	7	11	4	1	16	5	1	0	70	22	4	0	3.59	Р	Count
	CP 15	25	1	4	7	11	24	20	13	- 2	96	80	52	8	2.45	F	· · · · · · · · · · · · · · · · · · ·
	CP 16	23	4	7	4	5	19	12	8	3	83	52	35	13	2.94	Р	
	CP 17	22	4	4	6	5	18	14	8	3	82	64	36	14	2.75	Р	
	CP 18	23	3	3	6	5	20	17	11	6	87	74	48	26	2.54	F	
	CP 19	21	6	6	3	4	15	9	6	2	71	43	29	10	3.25	Р	
	CP 20	25	2	1	3	13	23	22	19	6	92	88	76	24	2.00	F	computed S.E. =
	CP 21	25	0	3	6	12	25	22	16	4	100	88	64	16	2.21	F	
	CP 22	24	2	5	4	11	22	17	13	2	92	71	54	8	2.41	F	95% conf. int.
	CP 23	23	6	9	3	3	17	8	5	2	74	35	22	9	3.39	Р	·
	CP 24	25	1	2	2	12	24	22	20	8	96	88	80	32	1.88	F	
	CP 25	25	4	8	3	4	21	13	10	6	84	52	40	24	2.92	Р	n req'd (within 0.1")
	CP 26	25	0	4	3	9	25	21	18	9	100	84	72	36	1.89	F	125
	CP 27	<u>22</u>	5	12	3	2	<u>17</u>	<u>5</u>	<u>2</u>	Q	77	<u>23</u>	· <u>9</u>	Q	<u>3.50</u>	Р	88
		642					566	391	284	102	88	61	44	16	2.67		54

,

n req'd (within 0.2") α (%) 31 5 22 10 13 20

random points

	6/23-24/2003	
2.74	Меал	2.79
0.110	Standard Error	0.121
2.75	Median	2.84
3.00	Mode	3.00
0.571	Standard Deviation	0.539
0.326	Sample Variance	0.29 1
1.64	Minimum	1.64
3.72	Maximum	3.72
27	Count	20

=	0.1098	computed S.E. =	0.1206	;
nt.	2.95	95% conf. int.	3.02	2
	2.52		2.55)
1")	α (%)	n req'd (within 0.1")	α (%)	
25	5	112	5	
88	10	79	10	
54	20	48	20	
2")	α (%)	n req'd (within 0.2")	α (%)	
31	5	28	5	
22	10	20	10	
13	20	12	20	

.

-

.

• . . .

,

This page intentionally left blank

·

· · · · ·

ATTACHMENT 9

2004 Rock Gradation Monitoring Data

ļ

.

Sample Year 2004	Sample	e Locations
Sample Number	Longitudinal Distance (ft.)	Transverse Distance (ft.)
1	69	49
2	179	262
3	220	8
4	334	30
5	478	22
6	527	19
7	665	62
8	768	230
9	823	123
10	949	86
11	99	162
12	115	213
13	249	135 -
14	309	165
15	466	173
16	555	170
17	661	246
18	785	207
19	835	60
20	944	103

.

•

7/13-14/2004 LAKEVIEW D₅₀ by size - 4 seives

sample	total		number	retained	1	cur	nulative nu	mber passi	ng _	cur	nulative pe	D ₅₀			
number	painted	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	(inch)	P/F
CP 1	25	2	2	5	13	23	21	16	3	92	84	64	12	2.23	F
CP 2	24	6	6	6	4	18	12	6	2	75	50	25	8	3.00	Р
CP 3	25	2	6	3	10	23	17	14	4	92	68	56	16	2.35	F
CP 4	25	1	4	2	10	24	20	18	8	96	80	72	32	1.95	F
CP 5	25	2	· 3	2	8	23	20	18	10	92	80	72	40	1.81	F
CP 6	25	1	2	3	. 8	24	22	19	11	96	88	76	44	1.69	F
CP 7	24	· 3	3	4	8	21	18	14	6	88	75	58	25	2.25	F
CP 8	25	9	5	1	2	16	11	10	8	64	44	40	32	3.30	Р
CP 9	24	5	8	1	7	19	11	10	3	79	46	42	13	3.13	Р
CP 10	24	4	5	5	6	20	15	10	4	83	63	42	17	2.70	Р
CP 11	25	1	1	11	7	24	23	12	5	96	92	48	20	2.52	F
CP 12	25	2	11	5	4	23	12	7	3	92	48	28	12	3.05	Р
CP 13	25	1	6	4	11	24	18	14	3	96	72	56	12	2.36	F
CP 14	25	0	1	4	12	25	24	20	8	100	96	80	32	1.88	F
CP 15	25	4	9	4	5	21	12	8	3	84	48	32	12	3.06	Р
CP 16	25	3	3	1	7	22	19	18	11	88	76	72	44	1.71	F
CP 17	24	4	11	5	4	20	9	4	0	83	38	17	0	3.27	Р
CP 18	24	2	5	3	10	22	17	14	4	92	71	58	17	2.30	F
CP 19	25	1	2	4	11	24	22	18	7	96	88	72	28	2.00	F
CP 20	24	2	11	6	2	22	11	5	3	92	46	21	13	3.09	Р

~

.

7/13-7/14/2004	
Mean	2.48
Standard Error	0.123
Median	2.36
Standard Deviation	0.551
Sample Variance	0.304
Range	1.61
Minimum	1.69
Maximum	3.30
Sum	49.65
Count	20
Confidence Level(95.0%)	0.258

computed S.E. =	0.1233
95% conf. int.	2.72 2.24
n req'd (within 0.1")	α (%)
36	5
25	10
15	20
n req'd (within 0.2")	α (%)
9	5
6	10
4	20
· · · ·

·

. .

.

.

This page intentionally left blank

ATTACHMENT 10

2005 Rock Gradation Monitoring Data

.

•

: I

Sample Year 2005	Sample Locations						
Sample Number	Longitudinal Distance (ft.)	Transverse Distance (ft.)					
1	61	81					
2	116	113					
3	239	165					
4	340	19					
5	478	92					
6	574	14					
7	619	149					
8	738	242					
9	847	6					
10	942	68					
11	5	78					
12	177	159					
13	253	86					
14	311	259					
15	420	162					
16	519	65					
17	614	57					
18	799	224					
19	828	110					
20	948	83					

`

Υ

07/13/05 LAKEVIEW D₅₀ by size - 4 selves

sample	total		number	retained		cumulative number passing			cumulative percent passing				D ₃₀				
number	painted	4 - inch	3 - inch	2.5 - ir.ch	1.5 - inch .	4 - ir.ch	3 - inch	2.5 - inch	1.5 - inch	4 - Inch	3 - inch	2.5 - ir.ch	1.5 - inch	(inch)	P/F	7/13/2005	
CP 1	25	3	6	3	9	22	16	13	4	88	64	52	16	2.44	F		
CP 2	25	0	3	2	12	25	22	20	8	100	88	80	32	1,88	F	Mean	2.41
CP 3	25	1	4	1	10	24	20	19	9	96	80	76	36	1.85	F	Standard Error	0.132
CP 4	24	3	7	7	5	21	14	7	2	83	58	29	8	2.56	9	Median	2.50
CP 5	24	2	5	2	5	22	17	15	10	92	71	63	42	1.90	F	Mode	#NVA
CP 6	25	2	7	6	8	23	16	10	2	92	64	40	8	2.71	P	Standard Deviation	0.591
CP 7	25	0	2	1	15	25	23	22	11	100	92	88	44	1.64	F	Sample Variance	0.349
CP 8	25	2	10	8	3	23	13	5	2	92	52	20	8	2,97	P	Range	2.114
CP 9	25	3	13	4	3	22	9	5	2	88	36	20	8	3.27	·Ρ	Minimum	1.25
CP 10	24	1	7	7	7	23	16	9	2	96	67	38	8	2.71	P	Maximum	3.36
CP 11	24	3	8	5	5	21	13	8	3	88	54	33	13	2.90	P	Sum	48.27
CP 12	24	0	7	. 3	9	24	17	14	5	100	71	58	21	2.28	F	Count	20
CP 13	24	1	0	3	9	23	23	20	11	95	96	83	46	1.61	F	Confidence Level(95.0%)	0.277
CP 14	25	4	8	5	5	21	13	8	3	84	52	32	12	2.95	Ρ		
CP 15	25	2	9	4	8	23	14	10	2	92	56	40	8	2.81	Ρ		
CP 16	25	1	5	3	9	24	19	16	7	98	76	64	28	2,11	F	computed S.E. =	0.132
CP 17	25	1	6	3	9	24	18	15	6	95	72	60	24	2.22	۴		
CP 18	24	5	11	3	5	19	8	S	0	79	33	21	0	3.36	P	95% conf. int.	2.67
CP 19	25	1	0	4	6	24	24	20	14	95	96	80	56	1.25	F		2,15
CP 20	25	0	8	5	6	25	17	12	6	100	68	48	24	2.55	F		

ATTACHMENT 11

2006 Rock Gradation Monitoring Data

Sample Year 2006 Sample Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Sample	Sample Locations					
Sample Number	Longitudinal Distance (ft.)	Transverse Distance (ft.)					
1	Data Records v	were not retained.					
2							
3							
4							
5							
6							
7		ı.					
8							
9							
10		. •					
11							
12							
13							
14	~						
15	· · · · · · · · · · · · · · · · · · ·						
16							
17							
18							
19							
20							

1

07/19/06 LAKEVIEW

D₅₀ by size - 4 seives

sample	total		number	retained		cumulative number passing				cumulative percent passing				D ₅₀	
number	painted	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	(inch)	P/F
CP 1	25	2	5	4	7	23	18	14	7	92	72	56	28	2.29	F
CP 2	25	0	1	4	10	25	24	20	10	100	96	80	40	1.75	F
CP 3	25	0	1	2	13	25	24	22	9	100	96	88	36	1.77	F
CP 4	25	0	2	3	14	25	23	20	6	100	92	80	24	1.96	F
CP 5	25	0	4	4	9	25	21	17	8	100	84	68	32	2.00	F
CP 6	25	5	6	3	9	20	14	11	2	80	56	44	8	2.75	P
CP 7	25	1	3	1	11	24	21	20	9	96	- 84	80	36	1.82	F
CP 8	24	7	8	5	2	17	9	4	2	71	38	17	8	3.38	Р
CP 9	23	3	4	3	6	20	16	13	7	87	70	57	30	2.25	F
CP 10	25	0	2	3	17	25	23	20	3	100	92	80	12	2.06	F
CP 11	25	1	3	1	8	24	21	20	12	96	84	80	48	1.56	F
CP 12	25	0	4	6	10	25	21	15	5	100	84	60	20	2.25	F ·
CP 13	25	0	4	7	9	25	21	14	5	100	84	56	20	2.33	F
CP 14	25	1	3	2	16	24	21	19	3	96	84	76	12	2.09	F
CP 15	25	2	1	2	9	23	22	20	11	92	88	80	44	1.67	F
CP 16	24	6	7	5	4	18	11	6	2	75	46	25	8	3.14	Р
CP 17	25	1	3	5	14	24	21	16	2	96	84	64	8	2.25	F
CP 18	25	2	5	4	5	23	18	14	9	92	72	56	36	2.20	F
CP 19	23	5	7	7	2	18	11	4	2	78	48	17	9	3.07	Р
CP 20	23	1	5	6	6	22	17	11	5	96	74	48	22	2.54	F
	492	37	78	77	181	455	377	300	119	92	77	61	24	2.20	

7/19/2006									
Mean	2.26								
Standard Error	0.112								
Median	2.23								
Mode	2.25								
Standard Deviation	0.501								
Sample Variance	0.251								
Range	1.81								
Minimum	1.56								
Maximum	3.38								
Sum	45.13								
Count	20								
Confidence Level(95.0%)	0.234								
computed S.E. =	0.112								
95% conf. int.	2.48								

5%	conf	. int.	2.48
			2.04

n req'd (within 0.1")	α (%)
24	5
17	10
10	20
n req'd (within 0.2")	α (%)
6	5
4	10
3	20
n req'd (within 0.15")	α (%)
11	5
8	10
5	20

• .

This page intentionally left blank

ATTACHMENT 12

2007 Rock Gradation Monitoring Data

.

.

,

Sample Year 2007	Sample Locations						
Sample Number	Longitudinal Distance (ft.)	Transverse Distance (ft.)					
1	Data Records were not retained						
2	Data Records w	ere not retained.					
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18	-						
19							
20							

•

•

i.

LAKEVIEW

.

7/10/2007

•

•

	number	retained		cun	nulative nu	imber pass	ing	cumulative percent passing				D50	
4 - inch	<u> 3 - Inch</u>	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	(inch)	P/F
3	4	4	7	21	17	13	- 6	88	71	54	25	2.36	F
1	4	6	10	24	20	14	4	96	80	56	16	2.35	F
1	7	7	8	24	17	10	2	96	68	40	8	2.68	F
0	7	5	8	25	18	13	5	100	72	52	20	2.44	F
2	5	5	7	23	18	13	6	92	72	52	24	2.43	F
2	3	3	7	22	19	16	9	92	79	67	38	1.93	F
0	1	3	12	25	24	21	9	100	96	84	36	1.79	F.
0	6	0	13	. 25	19	19	6	100	76	76	24	2.00	. F .
2	0	0	. 14	23	23	23	9	92	92	92	36	1.75	F
2	5	3	9	· 23	18	15	6	92	72	60	24	2.22	F
6	7	5	3	17	10	. 5	2	74	43	22	9	3.21	Р
. 1	6	3	11	24	18	15	4	96	72	60	16	2.27	F
0	3	11	8	25	22	11	3	100	88	44	12	2.57	F
4	8	2	6	19	11	9	3	83	48	39	13	3.06	P
0	1	2	11	· 25	24	22	11	100	96	· 88	44	1.64	F
2	3	0	13	23	20	20	7	92	80	80	28	· 1.92	F
4	7	2	8	21	14	12	4	84	56	48	16	2.63	F
4	4	7	7	19	15	8	1	83	65	35	4	2.75	P
1	5	3	9	23	18	• 15	6	96	75	63	25	2.17	F
0	4	7	8	25	21	14	6	100	84	56	24	2.31	F
		•						1					15% passing
35	90	78	179	456	366	288	109	93	. 75	59	22	2.26	F

.

07/10/07	
Mean	2.32
Standard Error	0.094
Median	2.33
Mode	#N/A
Standard Deviation	0.421
Sample Variance	0.177
Range	1.58
Minimum	1.64
Maximum	3.21
Sum	46.48
Count	20
Confidence Level(95.0%)	0.197
computed S.E. =	0.094
95% conf. int.	2.51
	2.14
n req'd (within 0.1")	α(%).
12	5
8	10
. 5	20

ATTACHMENT 13

2008 Rock Gradation Monitoring Data

Sample Year 2008	Sampl	ample Locations			
Sample Number	Longitudinal Distance (ft.)	Transverse Distance (ft.)			
1	10	200			
2	187	76			
3	226	251			
4	352	119			
5	445	111			
6	531	113			
7	671	113			
8	726	15			
9	832	181			
10	965	101			
11	32	95			
12	136	30			
13	256	92			
14	351	3			
15	408	14			
16	567	108			
17	657	262			
18	722	125			
19	870	32			
20	928	118			

06/24/08 LAKEVIEW

.

D₅₀ by size - 4 seives

									-						
sample	total		number	retained		CUI	nulative nu	mber passi	ng [cui	nulative pe	rcent passi	ng	D ₅₀	
number	painted	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	(inch)	P/F
CP 1	25	2	5	5	10	23	18	13	3	92	72	52	12	2.45	F
CP 11	24	5	7	5	5	19	12	7	2	79	50	29	. 8	3.00	Р
CP 2	25	· 1	4	4	• 12	24	20	16	. 4	96	80	64	16	2.21	F
CP 12	25	1	4	3	12	24	- 20	17	5	96	80	68	20	2.13	F
CP 3	25	2	8	3	10	23	15	12	2	92	60	· 48	8	2.58	F
CP 13	24	1	3	. 2	14	23	20	. 18	4	96	83	75	17	2.07	F
CP 4	25	1	1	5	12	- 24	23	18	6	96	92	72	24	2.04	F
CP 14	25	0	5	6	12	25	20	14	2	100	80	56	8	2.38	۴
CP 5	25	2	6	7	7	23	17	10	3	92	68	40	12	2.68	F
CP 15	25	3	6	3	7	22	16	13	6	88	64	52	24	2.43	۰F
CP 6	25	0	.4	3	10	25	21	18	8	100	84	72	· 32	. 1.95	F
CP 16	25	3	4	3	10	22	18	15	5	88	72	60	20	2.25	F
CP 7	25	0	2	1	7	25	23	22	15	100	92	88	60	1.14	F
CP 17	- 25	1	1	- 5	15	25	24	19	4	100	96	76	16	2.07	F
CP 8	25	2	5	2	10	23	18	16	6	92	72	64	24	2.15	F
CP 18	25	6	6	6	· 3	19	13	7	4	76	52	28	16	2.96	Р
CP 9	25	4	10	5	5	21	11	6	1	84	44	- 24	4	3.15	P
CP 19	25	1	4	5	9	24	20	15	6	96	80	60	24	2.22	F
CP 10	25	1	6	4	. 7	24	18	14	7	96	72	. 56	28	2.29	F
CP 20	25	0	5	7	12	25	20	13	1	100	80	`52	4	2.46	F

.

.

.

-

06/24/08	<u> </u>
Mean	2.33
Standard Error	0.098
Median	2.27
Mode	#N/A
Standard Deviation	0.437
Sample Variance	0.191
Range	2.01
Minimum	1.14
Maximum	3.15
Sum	46.60
Count	20
Confidence Level (95.0%)	0.204
computed S.E. =	0.098
95% conf. int.	2.52
	2.14

1

•

:

.

:

.

.

...

.

.

.

.

~

.

ATTACHMENT 14

2009 Rock Gradation and Durability Monitoring Data

Sample Year 2009	Sample	Locations
	Longitudinal	Transverse Distance
Sample Number	Distance (ft.)	(ft.)
1	9	92
2	102	84
3	246	146
4	392	130
5	454	246
6	578	143
7	679	192
8	796	48
9	828	211
10	931	122
11	33	254
12	103	157
13	251	73
14	322	92
15	424	213
16	503	49
17	681	103
18	761	110
19	809	37
20	903	40

.

,

07/15/09 LAKEVIEW D₂₀ by size - S serves

sample	total		number	retained				cumulat	ive number	passing		[cumulat	ive percent;	passing		D ₂₂			
number	painted	4 - Inch	S-Inch	2.5 - inch	1.5-inch	1-Inch	4-Inch	S-Inch	2,5-inch	1.5 - inch	1.0-inch	4-inch	3-inch	25-inch	1.5-inch 1	1.0 - inch	(inch)	P/F	7/15/2009	
CP 1	25	0	9	8	6	0	25	16	8	2	2	100	64	32	8	8	2.78	P		
CP 11	25	1	7	Ś	B	3	24	17	12	4	1	\$5	68	48	16	4	2.55	F	Mean	2,47
CP2	24	Ō	- 4	. 6	10	2	24	20	14	4	2	100	83	58	17	8	2.30	F	Standard Error	0.104
CP 12	23	3	6	3	5	4	20	14		6	2	87	61	46	26	9	2.58	F	Medlan	2.41
CP3	24	1	11	5	6	1	23	12	7	1	0	96	50	28	4	0	3.00	P	Mode	2.55
CP 13	25	Ó	2	3	18	3	25	23	20	4	1	100	92	80	16	. 4	2,03	F	Standard Deviation	0,466
CP 4	25	ā	.6	6	12	Ō	25	19	13	1	1	100	76	52	4	- 4	2.48	F	Sample Variance	0.217
CP 14	25		6	2	12	4	24	18	16	4	Ó	98	72	64	16	0	2.21	F	Rango	1.6
CPS	2	3	10	2	5	2	19	9	7	2	0	88	41	32	9	0	3.20	P	Minimum	1.73
CP 15	25	1	11	2	8	Ĩ	24	13	. 11	3	2	96	52	44	12	8	2.88	8	Maximum	3,33
CP 6	25	Ó	1	Õ	15	7	25	24	24	9	2	100	56	96	36	8	1.73	F	Sum	49,4
CP 16	25	1	Ś	5	11	3	24	19	14	3	C	96	76	56	12	0	2,38	F	Count	20
CP7	25	1	5	8	11	ō	24	19	11	Ó	. c	56	76	44	0	0	2.64	F	Confidence Level(95.0%)	0.218
CP 17	25	1	2	2	10	ġ	24	22	20	10	· 1	96	88	80	40	4	1.75	F		
CP8	25	Ó	3	4	14	3	25	22	18	4	1	100	88	72	16	4	211	F	computed S.E. =	0,104
CP 18	25		ŝ	5	10	1	22	7	12	2	1	88	68	48	8	. 4	2,55	F		
CP 9	24	2	15	3	. 3	Ó	22	7	4	1	1	52	29	17	4	. 4	3.33	P	95% conf. int.	2.67
CP 19	25	1	3	6	6	â	24	21	15	9	1	96	84	60	36	4	-2.08	F		2.26
CP 10	24	Å	ġ	6	3	ī	20	11	5	2	1	83	48	21	8	• 4	3,11	P		
CP 20	25	İ	2	6	9	5	25	23	17	8	. 3	100	92	88	32	12	2.00	F		
			-		•	-				-		•					•	30% passing	n rogic (within 0.17)	a (%)
	491	23	122	87	180	57	468	346	259	79	22	1 95	70	53	. 16	4	2.43	_ ۲	18	5
				••		•						•					•		13	10
																				AA

.

•

)

1.1

8 20

LAKEVIEW TYPE B RIPRAP 2009 DURABILITY SUMMARY TABLE (NUMBER OF OCCURRANCES RETAINED ON SIEVE)

			SIEVE SIZ	E	•				
DURABILITY							tota dura	i by billiy	
CLASS	4 - Inch	3 - Inch_	2.6 - Inch	1.5 - Inch	1-inch	< 1 - Inch	cla	SS	% of total
class A	· 10	41	26	· 84	22	1		184	37.5
class B	11	52	30	26	7	1		127	26,9
class Ca	1	·22	23	43	13	3		105	21.4
class Cb	0	2	6	16	8	2		34	6.9
class Da	1	3	1	7	6	4		22	4.6
class Db	0	• 2	- 1	4	1	0		8	1.6
class E	0	0	0	0	0	· 11		- 11	2.2
							-	491	
total by sleve									
size	23	122	87	180	67	22	491	total	
% of total	4.7	24.8	17.7	36.7	11.6	4.5			

PERCENTAGE BY SIEVE SIZE

		1 LIVLIN				
DURABILITY CLASS	4 - inch	3 - Inch	2.6 - Inch	1.5 - Inch	1-inch	< 1 <u>- Inch</u>
class A	43.5	33.6	29.9	48.7	38.6	4.6
class B	47.8	42.6	34.5	14.4	12.3	4.6
class Ca	4.3	18.0	26.4	23.9	22.8	13.6
class Cb	0.0	1.6	6,9	8,9	14.0	9.1
class Da	4.3	2,5	1.1	3.9	10.5	18.2
class Db	0.0	1.6	1.1	2.2	1.8	0.0
class E	0.0	0.0	0.0	0.0	0.0	50.0

PERCENTAGE BYOURABILITY CLASS

	-					
DURABILITY CLASS	<u>4 - inch</u>	3 - Inch	2.6 - inch	1.5 - inch	1-Inch	< 1 - inch
class A	5.4	22.3	14.1	45.7	12,0	0.5
class B	8.7	40.9	23.6	20.5	6.6	0.8
class Ca	1.0	21.0	21.9	41.0	12.4	2.9
class Cb	0.0	5.9	17.6	47.1	23.5	5.9
class Da	4.6	13.6	4.5	31.8	27.3	18.2
class Db	0.0	25.0	12.5	50.0	12.5	0.0
class E	0.0	0.0	0.0	0.0	0.0	100.0

.

Date 7/15/09

	random numb	ers pairs (x,y)	multip	lier	sample l	ocations	1		nu	mber retained]
Sample #	longitudinal (x)	transverse (y)	longitudinal (ft)	transverse (ft)	longitudinal distance (ft)	transverse distance (ft)	# painted	4"	3 "	21⁄2 "	11⁄2 "	1"	<
1	0.09	σ·34	10 0 x	270y	9	٩٢	25,		ABABAA ABB 9	Co Ca B Ca Ca A Co Ca 8	Da Ca ABA Ca	0	B Ja
11	0.33	0.94	100x	270ý	33	254	25	B	Db BB CaB	Ca A Ga Ga B E	A Da A Ca Ca A B B (8)	Db Ca Da 3	Ē
2	50.0	031	100x + 100	270y	loz_	84	25		ввав (4)	BACaACa ^{Ca} (j)	CaCaBCaA AAABA (0)	AB T	0.6 A. N
12	0.03	Ø.58	100x +100	270y	103	157	23_	AAB E	Ca ABBCa B (6)	B.C., A 3	A Ca Ca Ca Ca 5	Ch Da A Ca (4)	
3			100x + 200	270y									
13			100x + 200	270y							<u> </u>		
4			100x + 300	270y							!		
14			100x + 300	270y		•							
5			100x + 400	270y									
15			100x + 400	270y									

Lakeview Riprap Gradation Testing

Gradation	Testing	•
-----------	---------	---

Date	γ	1	(4	109
------	---	---	----	-----

.

.

	random numb	ers pairs (x, y)	multip	olier	sample	locations	•.•		nu	mber retained			7
Sample #	longitudinal (x)	transverse (y)	longitudinal (ft)	transverse (ft)	longitudinal distance (ft)	transverse distance (ft)	# painted	4 "	3"	2½"	1½"	1"	
	C.C.4	134	100 x	270y	•)	'yz -	25		ABAAB CCC	AACCA CCACB	CCCAB	AA	
$\left \right $	(.35	En Ch	100x	270y	33	254	1 5	CCC BB	ABBB	AA	BEAAB	<u> </u>	-
Ŗ	RE PO (C-SE	ESST	100x + 100	270y	162	24	35	34	AR	BBBBA	2664	da da	- -
12	1.13	<u>(</u> 4,9	100x + 100	270у	103	(57	25		1-07-68-3 1-1 02	4997A-	ABRESE	AAC	
3	646	6.54	100x + 200	270y	2.46	(46	25				89999		
13	C.51	C 27	100x + 200	270y	25/	73	25	<u>/</u>		84B 3 (4	A E Ca ADI Ca Co A Ca A NA Ca A Da A	AAA 3.	Da
4	6.92	(.4 6	100x + 300	270y	392	130	25.	· ·	AD6AC6B	BBBAAB~	AACa. Cb A AAAAACa Cb (Z)		Ca D
14	6.22	(.34)	$100x \div 300$	27 <u>0</u> y	322	92	25	B.	ABACaGu B (b)	5 B ②	BAAAAA CaACaABA	la la Ca Cb.(4)	
5	0.54	(.3)	100x + 400	270y	454	246	22-	AAB 3	BBBBD2BB Cb Da Ca (0)	BCL O	A ATA AA	A Da O	.
15	(-24	(7)	100x +400	270y	424	213	25.		BCaBBBA DaBCaAB (1)	BCa ©	Distata BBA AB	B ()	EE

* Durnhalite classification still under dévelopment ét need ed consistent observer. 1/2

|--|

2/2

	random numb	ers pairs (x,y)	multip	lier	sample l	locations			ການ	mber retained		
Sample #	longitudinal (x)	transverse (y)	longitudinal (ft)	transverse (ft)	longitudinal distance (ft)	transverse distance (ft)	# painted	4 "	.3 "	2½ "	1½"	1"
6	6.78	C-53	$100x \div 500$	270y	578	143	25		в ()		CaACbAA BBCbBCbA CbACbCb/5	Cb CaAF Da Acb
16	¢,c3	6.18	$100x \div 500$	270y	503	49	254	B	AA Cb CaA	ACAABCa 5	COBCOBCO ABCOAAA	ACLC6 3
7	6.79	0-71	100x - 600	270y	679	561	25.	A U	ABBBC	C6BDbCb BCcCaA	A Cach Da B Ch Ca Co A Da Ca (11)	
17	6.81	6.38	$100x \div 600$	270y	681	103	25.	8	8Cz 2	BC4	AACaBABA AACa (0)	AACbB AACaA Cb9
8	6.76	C. (9)	100x + 700	255y	796-	5+48	25.	-	CaBA 3	C6AB5 (4)	Ca AA Ga A Ca BAAACb A Ca Ca (14)	AAA 3
18	C.61	C.4(3	100x + 700	255y	761	1-1-6-110	25	BCaDa 3		AABCa B	Cb Cb A Ca A A Ca Ca B B (0)	A Ø
9	C : Z &	C-18	100x + 800	215y	828	2-4-5 211	25	B.A ©	BBABBA ABABCA ABAB(S)	ABA ③	BDLB	
19	6 69	C-17	100x + 800	215y	809	37	25	BD	B CaA 3	BABBBB O	AAACaA Ca (G)	ABCAA BCaCa BCaCa
10	CLZ	6-14	50x +900	130y	931	122	24-	baaa ©	ABBAAA CaBB	Da-CaCa Ch A B	Db Ca Da 3	Ca D
20	(.07	(3)	50x + 900	130v	903	40	25		BB	AAAACaCa	GaAAAA AfaAAZ	CaCaA BCa

· · · ·

ATTACHMENT 15

?

2010 Rock Gradation and Durability Monitoring Data

2010 Sample Number	Sample Locations	
	Longitudinal Distance (ft.)	Transverse Distance (ft.)
1	36	11
2	147	51
3	229	65
4	337	205
5	448	211
6	543	224
7	628	219
8	720	23
9	837	22
10	939	56
11	63	59
12	137	189
13	285	173,
14	356	46
15	490	. 186
16	503	116
17	646	157
18	748	56
19	877	155
20	942	8

· · ·
August 30,31 2010 LAKEVIEW. D₅₀ BY SIZE - 5 SIEVES GRADATION MONITORING

sample	total		number	retained			i		cumulat	lva number	passing	1		cumulat	ive percent	passing		D50	
number	painted	4 - inch	3 - inch	2.5 - inch	1.5 - inch	1-inch	<1-inch	4 - inch	<u>3 - inch</u>	2.5 - inch	1.5 - inch	1.0 - inch	4 - Inch	3 - inch	2.5 - inch	1.5 - inch	1.0 - inch	(inch)	P/F
CP 1	24	2	2	3	8	7	2	22	20	17	9	2	92	83	71	38	8	1.88	F
CP 11	26	0	9	1	12	2	2	26	17	16	4	2	100	65	62	15	8	2.25	F
CP 2	25	2	4	6	10	2	1	23	19	13	3	1	92	76	52	12	4	2.45	F
CP 12	26	1	7	6	10	0	2	25	18	12	· 2	2	96	69	46	8	8	2,58	F
CP 3	23	2	4	7	9	1	0	21	17	10	1	0	91	74	43	4	0	2.61	F
CP 13	23	0	4	4	12	1	2	23	19	15	3	2	100	83	6 5	13	9]	2.21	F
CP 4	24	1	8	4	7	1	3	23	15	11	4	3	96	63	46	17	13	2.63	F
CP 14	25	2	9	3	10	1	0	23	14	11	1	0	92	56	44	4	0	2,75	P
CP 5	24	1	11	10	2	0	0	23	12	2	0	0	96	50	8	0	0	3.00	P
CP 15	25	0	3	7	12	2	1	25	22	15	3	1	100	88	60	12	· 4	2,29	F
CP 6	26	2	6	9	6	0	2	23	17	8	2	2	92	68	32	8	8	2,75	P
CP 16	25	3	3	4	10	2	3	22	19	15	. 5	3	88	76	50	20	12	2.25	F
CP 7	25	0	5	4	12	2	2	25	20	16	4	2	100	80	64	16	8	2.21	F
CP 17	25	1	3	6	13	0	2	24	21	15	2	2	96	84	60	8	- 8	2.31	F
CP 8	25	0	2	8	13	2	0	25	23	15	2	0	100	92	60	8	0	2.31	F
CP 18	25	1	4	8	11	0	1	24	20	12	1	1	96	80	48	4	4	2.53	ਤ
Ch a	24	2	12		· 3	0	0	22	10	3	0	0	92	42	13	0	0	3.17	Р
CP 19	25	2	0	2	9	5	7	23	23	21	12	7	92	92	84	48	28	1,56	F
CP 10	24	1	5	4	1	3	3	23	17	13	8	3	96	71	54	25	13	2,36	F
CP 20	26	3	2	10	10	1	0	23	21	11	1	0	88	81	42	4	0	2,50	F
	494	26	104	113	186	32	33	468	364	251	65	33	95	74	51	13	7]	2.48	F

.

8/31/2	010
Mean	2.43
Standard Error	0.081
` Median	2.4036
Mode	2.25
Standard Deviation	0.3624
Sample Variance	0.1313
Range	1.61
Minimum	1.56
Meximum	3,17
Sum	48.67
Count	20
computed S.E. =	0.081
95% conf. int.	2.59
	2.27
n req'd (w:thin 0.1")	α (%)

5 10 20 7 5 3

LAKEVIEW TYPE B RIPRAP 2010 DURABILITY SUMMARY TABLE (NUMBER OF OCCURRENCES RETAINED ON SIEVE)

•

.

.

			SIEVE SIZ	E						
DURABILITY							total by			
CLASS &							durability			
SUBCLASS	4 - Inch	3 - inch	2.5 - inch	1.5 - inch	1-inch	< 1 - inch	class	% of total		
class Au	1	18	28	65	18	7	137	27.7		
class As	0	0	0	4	0	0	4	0.8		
class Ao1	. 1	6	4	4	0	0	15	3.0		
class Ao2	0	3	2	2	0	• 0] 7	′ 1.4		
class Ao3	0	1	0	0	0	0		0.2		
class Ao5	0	1	0	0	0	0	1	0.2		
class Ah1	0	6	8	23	2	2	4	8.3		
class Ah2	3	9	7	3	1	0	23	4.7	total "A"	% of
class Ah3	C	3	0	0	0	0		0.6	durability	total
class Ah4	1	0	0	0	· 0	0	1	0.2	233	47.2
class B	17	33	32	13	3	<u> </u>	- 100) 20.2		
ciass Ca	1	13	16	33	3	5	71	14.4		
class Cb	0	0	1	3	1	0] [5 1.0		
class Da	2	6	10	. 20	0	3	41	8.3		
class Db	0	5	5	13	4	2	29	5.9		
cíass E	0	0	0	3	0	12] 19	i 3.0		
							494	100.0		
total by sleve										
size	26	104	113	186	32	33	494 total			
% of total	5.3	21.t	22.9	37.7	6.5	· 6.7	100.0			

.

		PERCENT	AGE BY SI	EVE SIZE		
DURABILITY						
CLASS &						
SUBCLASS	4 - inch	3 - inch	2.5 - inch_	1.5 - inch	1-inch	< 1 - inch
class Au	3.8	17.3	24.8	34.9	56.3	21.2
class As	0.0	0.0	0.0	2.2	0.0	0.0
ciass Ao1	3.8	5.8	· 3.5	2.2	0.0	0.0
class Ao2	0.0	2,9	1.8	1.1	0.0	0.0
class Ao3	0.0	1.0	0.0	0.0	0.0	0.0
class Ao5	0.0	1.0	0.0	0.0	0.0	0,0
class Ah1	0.0	5.8	7.1	12.4	6.3	6.1
class Ah2	11.5	8.7	6.2	1.6	3.1	0.0
class Ah3	0.0	2.9	0.0	0.0	0.0	0.0
class Ah4	3.8	0.0	0.0	0.0	0.0	0,0
class B	65.4	31.7	28.3	7.0	9.4	6.1
class Ca	3.8	12.5	14.2	17.7	9.4	15.2
class Cb	0.0	0.0	0.9	1.6	3.1	0.0
class Da	7.7	5.8	8.8	10.8	0.0	9.1
class Db	0.0	4.8	4.4	7.0	12.5	6,1
class E	0.0	0.0	0.0	1.6	0.0	36.4
	100	100	100	100	100	100

LAKEVIEW TYPE B RIPRAP TESTING 2010 GRADATION BY WEIGHT SUMMARY

•

	weigi	ht.D ₅₀
sample	(mm)	inch
RR-11	60	2.36
RR-12	60	2,36
RR-13	60	2.36
RR-14	67	2,64
RR-15	53	2.09
RR-16	69	2,72
RR-17	50	1.97
RR-18	68	2,68
RR-19	31	1.22
RR-20	61	2.01

•

.

•

.

.

2010 gradation sample	s by weight
Mean Standard Error Medlan Mode Standard Deviation Sample Variance Range Minimum Maximum Sum Count	2.24 0.142 2.36 0.449 0.201 1.60 1.22 2.72 22.40 10
computed SE + 1.96 SE - 1.96 SE n rea'd (within 0.1")	0.142 2.52 1.98
16 16	5

•

•

	-
11	10
7	20

Kness		random num	pers pairs (x,y)	multip	lier	sample	locations	number retained								
		longitudinal (x)	transverse (y)	longitudinal (ft)	transverse (ft)	longitudinal distance (ft)	transverse distance (ft)	# painted	4"	3 "	2½ "	1½"	1"	<1"		
	6	0.43	0.83	100x+540	270y	543	224	25	B Da Z	Da Da Ahs Da B Ca 6	Cb Da Abl Au Au Da Abl Db Abl 9	E. Db Da E. Da Ca	0	E Da		
)"	16*	0.03	0.43	100x+500	270у	503	116	25	888 3)	Ca Cb B 3	BBDaB (4)	Da Ca Da Ca Au Ca Au Ca Au Ca (10)	AN AN	EEEF.		
	7	0 28	0.81	600 100x + 100	- 270y	628	Z19	25	0	B Ah2 B Au Da S	Ao2 Ah2 B Ao1 (4)	Ca Do Ca Ca Da Ahz Ah1 Au Au Ca Ca Ca (2)	06 CL	E Db		
([#]	17*	0.46	0.58	606 100x + 100	270у	646	157	25	Ah2.	Au Au Ah1	B Av Ca Ca Au Au O	Ah1 Au Au Au Au Ah1 Ao1 Au Au Ca Ca Au Au (13)		Au B		
	8	0.20	0.09	760 100x + 200	255. 27 0y	720	23	25	Ø	Ah2 Ay 2	Au Ca Ca B B Au Ao 2 Au (8)	Db Au Ah1 Ah1 Db Ah1 Au Ah1 Ah1 Ca Au Ah1 Au (3)	Au Au .	Ð		
₹5	18*	0 \$49	0.22	7 <i>6</i> 0 100x + 20 0	255. 270 9 ¹	748	56	25	Ah2.	B B Au Ah2	B Au Au Au Db Ahl CaCa 8	Αυ ΑΝΙΑυ Αυ Αυ ΑΝΙΑυ Αυ Β ΑΝΒΑυ (1)	Ø	Ca Ø		
	9	0.37	0110	500 100x + 300	2150 270 y	୫ ୬୪	22	. 24	BB.	Ah2 B Ah2 E Ao2 Ca Ao5 Au Ah1 Ao1 Ca Ca (2)	BAOI Ga BAN BBAU	Ao2 Ao1 Da 3	0	0		
reak" 7"	19*	- לדי ס	577.0	800 100x + 300	کر\5 بر 2 76ر ب	877	155	25	Da B	0	BAJ	Ca Ca Au Au Da Ahi Ahi Au Ca (9)	Ca Ah2 Ah1 Au B S	AMAUAUAU Ahi BAU		
	10	0.78	0.43	50 900 J00x + 400	130c 270 yJ	39 7 78	56	24	Ah2.	B Ca Db Db Ah2 Ao1	Au B Ahi B	Au Av Ahl Da Db Db Da (7)	Αυ Αυ Αυ (3)	Au Ca Ca		
5″	20*	0.84	0.06	450 900 1805: + 488	\30. 270)	42 984	8	26	BBB	B B	Au Ah1 Ah2 Ah2 Ah2 Da Au Da Ca Ah2	Ca Au Au Ca Ah 1 Au Ah 1 Da Au As	Au .			

.

·

.

* gradation by weigh

Thirknes	2010 L	akeview Ripra	ip Gradation Te	esting, pg 1/2								D	ate Aug 3.0-3,	2010.	
1101010		random num	bers pairs (x, y)	multip	olier	sample	locations		number retained						
		longitudinal (x)	transverse (y)	longitudinal (ft)	trånsverse (ft)	longitudinal distance (ft)	transverse distance (ft)	# painted	4"	3 "	2½ "	11% "	Į »»	<1" ·	
	1	0.36	0.04	100x	270y	36	11	24	B A01	B Ca (Z)	Ca Ca Av	Cb Ca AU Da Abi Aoi Au Da 8	B AU DE CAAU B AU	Ca Db	
12"	11*	0.63	0.22	100x	270y	63	59	26 25	Q	Au Da Ahl Au B B Au B·B	B	Db Da As Au Au As B Ch Au Ca Da Ch (12)	Au Au Z	Da Au	
	2	०.५७	0.19	100x + 100	270y	147	51	25	B Ca	AU AU BB	B Ca Áh1 B Au Ah1 (6)	CaBDaAu AhlCaAo2 AhlAuCa (10)	Ca Áu E	Ca D	
8"	12*	0.37	0.70	100x + 100	270y	137	189	25 z.6	B	Ca Ahz Ahl Ad Db Ca Db (7)	Ca Gn Ca Av Ah1 Au 6	B Da Ca Au Ahl DbCa As Au Au (10)	, O	EE	
Ĭ	3	0.29	0.24	100x +200	270y	229	65	23	BB	Da Ahz CaAos	Ahz Au B Ahl Au Au Ca (7)	B Au Ahl Au Ca Da Au Ca Ca	Au	Ø	
:12"	13*	0.85	0.64	100x +200	270y	285	173	23	0	BBBAu (4)	Da BB Da	Da Dà Db B Ah1 Ah1 Au B B Au Au Au (13)	Ah1 ()	Da E ©	
	4	0.37	0.76	100 <i>x</i> + 300	270y	33 7	205	2.4	Ah4 0	$\begin{array}{c} A_{U} B & A_{0} 1 & A_{0} 1 \\ A_{U} B & B & A_{0} 2 \\ \hline & & & & \\ & & & & \\ & & & & \\ & & & &$	BDABB	Ca BE Au Aki Au Aol (7)	Db .	EEE 3	
11"	14*	0.56	0.17	100 <i>x</i> + 30 0	270y	356	46	25	B Au	Db AJ B AU G AU B B AH2	Au BB	Au Ca Au Au Au B Au Au Au Ca	Au Q	()	
	5	0.48	0.78	100x +400	270y	448	211	24	B (;)	Ao1 B CaB Ah1 B Ah3 B B Ah1 Ao2	B Ay B DL A.1 B Ca Ay B B (0)	Da B	Ø	0	
11"	15*	0.90	0.69	100x +400	270y	490	186	25	(0)	Au Ah 3 B	B Au DD Da Db B Da (7)	AU AU B DO B AU AU DO DO AU AU DO DO	AU DD	E	

* gradation by weigh

ATTACHMENT 16

2011 Rock Gradation and Durability Monitoring Data

Sample Year 2011	Sample Locations						
Sample Number	Longitudinal Distance (ft.)	Transverse Distance (ft.)					
1	17	180.9					
2	198	121.5					
3	212	118.8					
4	345	102.6					
5	445	175.5					
6	599	62.1					
7	667	99.9					
.8	794	132.6					
9	884	199.95					
10	934.5	20.8					
11	99	132.3					
12	196	37.8					
13	282	234.9					
14	394	226.8					
15	425	45.9					
16	528	164.7					
17	684	86.4					
18	730	175.95					
19	894	131.15					
20	948	26					

~

September 7 - 8, 2011 D₅₀ by size - 5 selves

.

.

LAKEVIEW .

•

sample	total		number	retained					cumulat	, Ive number	passing	. (cumulat	iva percent	passing		D60			
number	painted	4 - Inch	3 - inch	2.5 - inch	1.5 - Inch	1-inch	<1-inch	4 - inch	3 - inch	2.5 - inch	1.5 - Inch	1:0 - Inch	4 - Inch	3 - inch	2.5 - Inch	1.5 - inch	1.0 - inch	(inch)	P/F	Sept. 8,	2011
CP 1	23	0	3	6	8	6	0	23	20	14	6	0	100	87	61	2,6	0	2.19	F		
CP 11	24	2	8	4	· 8	1	1	22	-14	10	2	1	92	58	42	8	4	2.76	P	Mean	2.49
CP 2	24	0	4	8	. 11	0	1	24	20	12	1	1	100	83	50	4	4	2.50	F	Standard E	0.109
CP 12	25	2	8	3	6	4	2	· 23	15	12	6	2	92	60	48	24	8	2,58	F	Median	2.53
CP 3	24	2	3	4	13	2	0	22	19	16	2	0	92	79	63	8	0	2.27	F	Mode	2,68
CP 13	25	1	12	4	5	1	2	24	12	· 8	3	2	96	48	32	12	8.	3.04	P	Standard E	0.489
CP 4	24	1	6	2	7	5	3	23	17	15	8	3	96	71	63	33	13	2.07	F	Sample Va	0.239
CP 14	26	3	11	. 9	2	1	0	23	12	3	· 1	0	88	46	12	4	0	3.09	Р	Range	1.67
CP 6	25	1	6	2	13	1	2	24	18	16	3	2	96	72	64	[:] 12	8	2.23	·F	Minimum	1.70
CP 15	24	2	5	6	10	1	0	22	17	. 11	1	0	9 2	71	46	4	· • 0]	2.68	F	Maximum	3.37
CP 6	24	0	8	5	11	0	0	24	16	· 11	0	0	100	87	· 46	O,	0	2.60	F	Sum .	49.79
CP 16	24	1	7	0	. 6	6	5	23	16	16	11	5	96	67	67	- 46	21	1.70	F	Count	20
CP 7 .	25	2	4	1	14	2	2	23	19	· 18	4	2	92	76	72	16	8	2.11	F		
CP 17	24	1	2	1	13	4	3	23	21	20	. 7	3	96	88	83	29	13	1.88	F		
CP 8	23	2	15	3	3	0	0	21	6	3	0	- 0	91	26	13	- 0	0	3.37	Р	computed S.E. =	0.109
CP 18	24	0	2	3	15	2	2	24	22	19	4	2	100	. 92	. 79	17	. 8	2.03	F	· . · .	
CP 9	23	4	7	4	4	1	· 3	19	12	8	4	3	- 83	52	35	. 17	ć . 13	2.94	Р	95% conf. inf.	2.70
CP 19	25	2	7	4	9	2	1	23	16	12	. 3	1	92	64	48	12	. 4	2.56	F		2.28
CP 10	24	5	11	3	5	0	0	19	8	· 5	0	0	79	33	21	0	0	3.36	P		
CP 20	24	3	4	1	7	9	0	21	17	16	9	. 0	88	71	67	38	0	1.93	F	•	
							- 1													n reg'd (within 0.1")	α (%)
totel sum	484	34	133	73	169	48	27	450	317	244	75	27	93	65	50	15	6	2.49	F	. 22	5
								-									•				10
																		•		. 9	20
										•		•								· .	•

-

.

.

.

.'

.

.

. . .

.

•

.

.

.

.

·

Durability		Rock C	· · · · · · · · · · · · · · · · · · ·	Total By				
Class & Subclass	4 Inch	3 Inch	2.5 Inch	1.5 Inch	1 inch	< 1 Inch	Durability Class	Percent of Lotal
Class Au	2	9	. 5	23	14	1	54	1125
Class As	0	1	2	3	0.	1	7	F4
Class Ao1	1	9.	4	5	0	0	19	3:97
Class Ao2	0	1	· 0	Q	0	0	1	02
Class Ao3	1	0	0	0	0	0	1	0.2
Class Ao4	0	0	0	0	0	0	0	0
Class Ao5	0 ·	0	0	· 0	0	0	0	0.75
Class Ah1	0	14	11	10	1	.1	37	
Class Ah2	2	7	0	2	2	0	13	27
Class Ah3	1	4	1	0	0	0	6	12
Class Ah4	0	0	0	0	· 0	0	0	0
Total A Class	7	45	23	43	17	3	138	28.5
Class B	17	46	27	35	9	1	135	27.9
Class Ca	1	20	9	43	. 4	4	81	-16:/
Class Cb	7	13	9	30	7	0	66	13.6
Class Da	1	6	. 1	10	9	11	38	
Class Db	1	3	4	5	1	4	18	2.7372
Class E	0	0	0	3	1	4	8	
Class F	0	0	0	0	0	0	0.	0
Total by Sieve Size	34	133	73	169	48 ·	27	484	
-Percent of Total	7.0		15.1	34.9	9.9	5.6.	100	
Total by Durability Class	-	-	-	-		-	484	

2011 Durability Monitoring - Percent of Total Rock Count By Durability Class and Sieve Size

Durability Class			Percent by Sieve Si	ze (Retained on Siev	/e)	
& Subclass	4 Inch	3 Inch	2.5 Inch	1.5 Inch	1 Inch	< 1 Inch
Class Au	5.9	6.8	6.8	13.6	29.2	3.7
Class As	0.0	0.8	2.7	1.8	0.0	3.7
Class Ao1	2.9	6.8	5.5	3.0	0.0	0.0
Class Ao2	0.0	0.8	0.0	0.0	0.0	0.0 ·
Class Ao3	2.9	0.0	0.0	0.0	0.0	0.0
Class Ao4	0.0	0.0	0.0	0.0	0.0	0.0
Class Ao5	0.0	0.0	0.0	0.0	0.0	0.0
Class Ah1	0.0	10.5	15.1	5.9	2.1	3.7
Class Ah2	5.9	5.3	0.0	1.2	4.2	0.0
Class Ah3	2.9 .	3.0	1.4	0.0	0.0	0.0
Class Ah4	0.0	0.0	0.0	0.0	0.0	0.0
Total A Class	20.6	34.0	31.5	25.4	35.4	11.1
Class B	50.0	34.6	37.0	20.7	18.8	3.7
Class Ca	2.9	15.0	12.3	25.4	8.3	14.8
Class Cb	20.6	9.8	12.3	17.8	14.6	0.0
Class Da	2.9	4.5	1,4	5.9	18.8	40.7
Class Db	2.9	2.3	5.5	3.0	2.1	14.8
Class E	0.0	0.0	0.0	1.8	2.1	14.8
Class F	0.0	0.0	0.0	0.0	0.0	0.0
Total Percent	100	100	100	100	100	100

.

.

2011 Durability Monitoring – Percent Durability Class By Sieve Size

.

Durability Class	· · · · · · · · · · · · · · · · · · ·	Perce	nt by Sieve Size (R	etained on Sieve	e)		Total
& Subclass	4 Inch	3 Inch	2.5 Inch	1.5 Inch	1 Inch	< 1 Inch	Percent
Class Au	3.7	16.7	9.3	42.6	25.9	1.9	100
Class As	0	14.3	28.6	42.9	0	14.3	100
Class Ao1	5.3	47.4	21.1	26.3	0	0	100
Class Ao2	0	100	0	0	0	0	100
Class Ao3	100	0	0	0	0	0	0
Class Ao4	0	0	0	0	0	0.	NA ¹
Class Ao5	0	0	0	0	0	0	NA
Class Ah1	0	37.8	29.7	27.0	2.7	2.7	100
Class Ah2	15.4	53.9	0	15.4	15.4	· 0	100
Class Ah3	16.7	66.7	16.7	0	0	0	100
Class Ah4	0	0	0	0	0	0 -	NA
Class B	12.6	34.1	20.0	25.9	6.7	0.7	100
Class Ca	1.2	24.7	11.1	53.1	4.9	4.9	100
Class Cb	10.6	19.7	13.6	45.5	10.6	0	100
Class Da	2.6	15.8	2.6	26.3	23.7	29.0	100
Class Db	5.6	16.7	22.2	27.8	5.6	22.2	100
Class E	0	. 0	0	37.5	12.5	50.0	100
Class F	0	0	0	0	0	0	NA

.

.

2011 Durability Monitoring – Percent Sieve Size By Durability Class

1 NA = Not Applicable

Conservation-turning rock to find smalled t demension.

	random numb	ers nairs (x u)	multin	lier	sample	locations				number sets	ined
	longitudinal (x)	transverse (y)	longitudinal (ft)	transverse (ff)	longitudinal distance (ft)	transverse distance (ft)	# painted	4"	3"	21/2 "	1½ h1
1	017	0.67	100x	270y	17	180.9	3.3		Au, B, Da	Da, Ahi, Aoi, Ca, B, Ca	Ahi, Cb Ca, Au Au, Ca
11	0.99	0.49	100x	270y	99 ·	132,3	24	Aa,B	Ahz, B, Au B, Db, Aoi B B	B, Cb, Db Db	B, Au, Cb, Au, Au Cb
2	 0.98	0.45	100x + 100	270y	198	121.5	24		As, Da, B Ca	As, Ca, Ao Ah, Cb, Aoy Cb By Cb	B,Ah Cb,Da Ahi,Cb
. 12	0.96	0.14	100x +100	270y	196	37.8	25	₿,A04,	10, Ahz, AOI Ca, Ahz, AO2 B: Ahi	Ca, Cb, B;	Ca,B) Ca,Ca
3	0.12	0.44	100x + 200	270y	212	118.8	24	Db,Ca	сь, В, В	Ab, B, Db Db	Cb, Da Cb, Db Cb, Da Ca, Ca
13	0.82	0.87	100x +200	270y	282	234.9	24 25	В	B, Ahi, Ah3, B B, B, Da, Ca Ca, B, B, B	Cb, Au, B, B Car	Da, Db Ca
4	0.45	0.38	100x + 300	270y	345	102.6	34	Ahz	B, B, Ahz, Ca Ahi, B,	Au, B	B, Ca, Ca, B,
14	0.94	0.84	100x + 300	270y	394	226.8	26	СЬ,СЬ,В	Ca, Cb, Cb Db, Ca, Ahz B, Cb, B, Db	As, B, Ca, B Ahi, Ani, B B, Ahi	B, C.b,
5	0.45	0.65	100x +400	270y	445	175.5	巧	В	Ahz, Ahi, Au Ahi, Aoi, Ca	B, Ahi,	Ca, An B, Ca, E, B, C
15	0.25	0.17	100x + 400	270y	425	45.9	개	Cb, Ah3	Aoi, Cb, Aoj Ca B, Ati	Ahi, B, B, B B, Au	Au, Ah Ca, Ah Aoi Au

2011 Lakeview Riprap Gradation and Durability Monitoring

. •

september 2, 2011 Sample location Stakes placed 9/6/11 . Monstoring Field Work Date 9/7-9/8/11. Dan Nordeen-gradation Kyle Turley-durability/rock type

Page 1 of 2

1

2011 Lakeview Riprap Gradation Testing, pg 2/2

	random numb	pers pairs (x, y)	multip	lier	sample	locations		-		number reta	ained
	longitudinal (x)	fransverse (y)	longitudinal (ft)	transverse (ft)	longitudinal distance (ft)	transverse distance (ff)	# painted	4"	3"	. 2½ "	1½"
6	0.99	0.23	100x+500	270y	599	62.1	24		Ahz, Ahi, B B, Cbs, Cb, Ahi B	Ca, Ca, Cb, Ca AOI,	B, Ca, Ca AO1, AS, A Cb, Cb, D
16	0.28	0.61	100x+500	270y	528	164.7	224	B	B, Ca, B, AO, Aut, Ca, Ca	G	Cal, Ca. Au, Ob
.7	0.67	0.37	100x + 600	270y	667	99.9	25	Bj Ah2	B, Da, Ca. Ahi,	₿	Ahi, cb, C Au, Cb, I Cb, Ca, B Da, Cb
17	0.84	0.32	100x + 600	270y	684	86.4	24	Au	Cay B	Ahı,	Ahi, Ahi, Ca, Cb, Ca Au, Ca, C B, B
8	0.94	0.52	100x + 700	255y	7 94	132.6	23	С.Ь,СЬ	Ca, Ahi, Ahi B, B, B, Ahi Au, Ah2, B, Cb B, B, Au, Cb	Au, Cb, B	B, Da, C
18	0.30	0.69	100x + 700	255y	730	. 175.95	24		Ahi,Db,Cb	B, Ahi, Ahi	B. Ca., B Cb, Au, C Au, B, E Ahz, Ca., A
9	0.84	0.93	100x + 800	215y	. 884	199.95	23	B, B, B, AOI	Ahz, Au, B Ahi, Ca, Ahz Cb	В, В,СЬ,В	Cb,Cb,C
19	0.94	0.61	100x + 800	215y	891	131.15	25	В,В	B,Ca,Da,Ca Ahi,B,B	Bj. B, Au, B	B, Ca, Ca B, AS, B,
10	0.69	0.16	50x +900	130y	934.5	20.8	24	Cb,B,B,B,B,B	A01, Au, B Cb, B3, Cb, Da A01, Ca, B, Au	Ah3,B,Cb	B, B, Ca Ca
20	0.96	0.20	50x +900	130y	948	26	24	Cb, B, Da	B, Ca, B, A01	В	Ca, Cb, 1 QbE, Ca

September 2, 2011

.

Page 2 of 2

ATTACHMENT 17

2012 Rock Gradation and Durability Monitoring Data

)

	and the second second second second second second second second second second second second second second second	
Sample Year 2012	Sample	Locations
	Longitudinal	Transverse Distance
Sample Number	Distance (ft.)	(ft.)
1	13	18.8
2	152	62.1
3	246	189
4	378	243
5	407	234.9
6	599	194.4
7	693	203
8	776	66.3
9	838	199.95
10	936	96.2
11	58	256.5
12	171	221.4
13	276	162
14	305	143.1
15	435	83.7
16	588	64.8
17	685	8.1
18	745	71.4
19	809	21.5
20	933	110.5

Durability		······································	Siev	/e Size		·····	Total By		
Class & Subclass	4 Inch	3 Inch	2.5 Inch	1.5 Inch	1 Inch	<1 Inch	Durability Class	Percent of Total	
Class Au	1	6	11	23	5	0	46	9.7	
Class As	1	3	0	.1	1	0	6	1.3	
Class Ao1	2	4 ·	2	6	0	0	. 14	2.9	
Class Ao2	2	4	1	1	0	0	· 8	1.7	
Class Ao3	0	1	1	0	0	0	2	0.4	
Class Ao4	0	0	0	0	0	0	0	0.0	
Class Ao5	0	1	0.	0	0	0	1	0.2	
Class Ah1	3	. 19	10	19	2	0	53	11.1	
Class Ah2	2	10	4	6	0	0	22	4.6	
Class Ah3	0	0	0	1	0	0	1	0.2	
Class Ah4	0	0	0	0	0	0	0	0.0	
Total A Class	11	48 .	29	57	8	. 0	153	32.1	
Class B	19	58	39	12	2	0	130	27.3	
Class Ca	4	17	22	37	6	1	87	18.3	
Class Cb	0	1	3	5	2	0	11	2.3	
Class Da	3	8	· 9	23	6	12	61	12.8	
Class Db	1	6	7	9	2	2	27	5.7	
Class E	0	0	0	4	3	0	7	1.5	
Class F	0	0	0	0	0	2	2	0.4	
Total by Sieve Size	38	138	109	147	29	15	476		
Percent of Total	8.0	29.0	22.9	30.9	6.1	3.2	100	-	
Total by Durability Class		_		_	_	-	476	100	

2012 Type B Riprap Durability Monitoring Summary Table – Number of Occurrences Retained on Sieve

Durability Class			Śiev	e Size		· · · · · · · · · · · · · · · · · · ·
& Subclass	4 Inch	3 Inch	2.5 Inch	1.5 Inch	1 Inch	< 1 Inch
Class Au .	2.6	4.3	10.1	15.6	17.2	0.0
Class As	2.6	2.2	0.0	0.7	3.4	0.0
Class Ao1	5.3	2.9	1.8	4.1	0.0	0.0
Class Ao2	5.3	· 2.9	0.9	0.7	0.0	0.0
Class Ao3	0.0	0.7	0.9	0.0	0.0	0.0
Class Ao4	0.0	0.0	0.0	0.0	0.0	0.0
Class Ao5	0.0	0.7	0.0	0.0	0.0	0.0
Class Ah1	7.9	13.8	9.2	12.9	6.9	0.0
Class Ah2	5.3	7.2	3.7	4.1	0.0	0.0
Class Ah3	0.0	0.0	Ó.O	0.7	0.0	0.0
Class Ah4	0.0	0.0	0.0	0.0	. · 0.0	0.0
Class B	50.0	42.0	35.8	8.2	6.9	0.0
Class Ca	10.5	12.3	20.2	25.2	20.7	6.7
Class Cb	0.0	0.7	2.8	3.4	6.9	0.0
Class Da	- 7.9	5.8	8.3	15.6	20.7	80.0
Class Db	2.6	4.3	6.4	6.1	6.9	13.3
Class E	0.0	0.0	0.0	2.7	10.3	0.0
Class F	0.0	0.0	0.0	0.0	0.0	13.3
Total Percent	100	100	100	100	100	100

•

2012 Type & Riprap Durability Monitoring Summary Table – Percentage Passing By Sieve Size

.

.

. ·

Durability Class		<u> </u>	Sieve Siz	ze		<u>,</u>	Total
& Subclass	4 Inch	3 Inch	2.5 Inch	1.5 Inch	1 Inch	< 1 Inch	Percent
Class Au	2.2	13.0	23.9	50.0	10.9	0.0	100
Class As	16.7	50.0	0.0	16.7	16.7	0.0	100
Class Ao1	14.3	28.6	1,4.3	42.9	0.0	0.0	100
Class Ao2	25.0	50.0 ·	12.5	12.5	0.0	0.0	100
Class Ao3	0.0	0.0	0.0	0.0	0.0	0.0	· 0
Class Ao4	0.0	0.0	0.0	0.0	0.0	0.0	0
Class Ao5	0.0	0.0	0.0	0.0	0.0	0.0	0
Class Ah1	5.7	35.8	18.9	35.8	3.8	0.0	100
Class Ah2	9.1	45.5	18.2	27.3	0.0	0.0	100
Class Ah3	0.0	0.0	0.0	100.0	0.0	0.0	100
Class Ah4	0.0	0.0	0.0	0.0	0.0	0.0	0
Class B	14.6	44.6	30.0	9.2	1.5	0.0	100
Class Ca	4.6	19.5	25.3	42.5	6.9	1.1	100
Class Cb	0.0	. 9.1	27.3	45.5	18.2	0.0	100
Class Da	4.9	13.1	14.8	37.7	9.8	19.7	100
Class Db	3.7	22.2	25.9	33.3	7.4	7.4	100
Class E	0.0	0.0	0.0	57.1	42.9	0.0	100
Class F	0.0	0.0	0.0	0.0	0.0	100.0	100

2012 Type B Riprap Durability Monitoring Summary Table – Percentage Passing By Durability Class

-4

08/29/12 LAKEVIEW D₅₀ by size - 5 seives

.

sample	total		number	retained				1	cumulat	ive number	passing			cumulat	ive percent	passing		D ₅₀			
number	painted	4 - inch	3 - inch	2.5 - inch	<u>1.5 - inch</u>	1.0-inch	<1-inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	1.0 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	1.0 - inch	(inch)	P/F	08/29	/12
CP 1	25	6	7	6	5	0	1	19	12	6	1	1	76	48	24	4	4	3.07	FP		
CP 11	25	1	8	8	6	2	0	24	16	8	2	0	96	64	32	8	ol	2.78	P	Mean	2 74
CP 2	24	0	9	6	4	3	2	24	15	9	5	2	100	63	38	21	8	2.75	P	Standard E	0.111
CP 12	23	2	7	5	7	2	0	21	14	9	2	0	91	61	39	9	o	2.75	P	Median	2.75
CP 3	. 25	2	8	7	-8	0	0	23	15	8	0	0	92	60	32	0	o	2.82	P	Mode	2.75
CP 13	24	· 1	10	5	7	1	. 0	23	13	8	1	· 0	96	54	33	4	0	2.90	P	Standard [0.497
CP 4	23	5	14	2	2	0	0	18	4	2	0	0	78	17	9	0	0	3.54	FP	Sample Va	0.247
CP 14	24	1	6	4	12	1	0	23	17	13	1	0	96	71	54	4	o	2.42	F	Range	2.00
CP 5	23	9	11	1	1	1	0	14	3	2	1	0	61	13	9	4	o	3.77	P	Minimum	1.77
CP 15	25	1	2	8	13	1	0	24	22	14	1	0	96	88	56	4	o	2.38	F	Maximum	3.77
CP 6	22	1	·11	4	4	1	1	21	10	6	2	1	95	45	27	9	5	3.09	Р	Sum	54.83
CP 16	25	0	4	5	13	2	1	25	21	16	3	1	100	84	64	12	4	2.23	F	Count	20
CP 7	21	4	13	2	2	0	0	17	4	2	. 0	0	81	19	10	0	o	3.50	Р		
CP 17	25	0	2	1	13	5	4	25	23	22	9	4	100	92	88	36	16	1.77	F		
CP 8	25	0	3	6	. 8	3	5	25	22	16	8	5	100	88	64	32	20	2.06	F	computed S.E. =	0.111
CP 18	25	0	5	11	9	0	0	25	20	9	0	0	100	80	36	0	o	2.66	F		
CP 9	22	1	2	6	9	4	0	21	19	13	4	0	95	86	59	18	0	2.28	F	95% conf. int.	2.96
CP 19	25	2	6	5	9	0	3	23	17	12	3	3	105	77	55	14	14	2.40	F		2.52
CP 10	23	1	9	6	5	2	0	22	13	7	2	0	88	52	28	8	0	2.96	Р		
CP 20	24	1	1	11	10	1	0	23	22	11	-1	. 0	. 100	96	48	4	0	2.52	F		
			•														•	· •		n reg'd (within 0.1")	α (%)
total sum	478	38	138	109	147	29	17	440	302	193	46	17	92	63	40	10	4	2.71	Р	23	5
																	•	•		16	10
			•															:		10	20

.

• •

~

. [random numb	ers pairs (x, y)	multip	lier	sample	locations 1/F				number reta	ained
		longitudinal (x)	transverse · (y)	Longitudinal ¹ (ft)	Transverse ² (ft)	longitudinal distance (ft)	transverse distance (ft)	# painted	4"	3"	2½"	1½,
	1	0.13	0.44	100 <i>x</i>	270y	13	118.8	25	B, B, As, B, B, B, B	B, Ahi, B, B, Ah Da, Ahi	Ah2, B, Ca, B B, Ahi	E, Caje Db
	11	0.58	0.95	100x	270y	58	256.5	1 25	В	B, Da, As, Au Ca, Ao2, B, B	B,B, B, Au, Ca Ca, Ca, B	Cay As, F B, Ca
	2	0.52	0.23	100x + 100	270y	152	62.1	24		B, Aha, Da, B Da, B, Cas B, Ah	Da, B, Au, A03 Ob, Ahz	Pa, Cb, S
	12	0.71	0.82	100x + 100	270y	171 171 0,mit	221.4	23	B,Ca	B, Ca, B, Aha Ca, B, B	Aha, Au, B,B Db,	B, Ca, C Aha, A
	3	0.46	0.70	100x + 200	270 <i>y</i>	246	189	25	B, Au,	B; B; A05, B, Db, Ca, Ca, Ahi	Au, Ca, Ca, B, Ca, Ahi, B	Ahi, E Au, Ca Ca, Ca
	13	0.76	0.60	100x + 200	270y	276	162	a4	Cay	AO2, B, Ahi B, Ahi, Ah2 Da, Ah2, Ahi	Db,Ca,B,B Au	Ahz,Ah Db,Ah Au
	4	0.78	0.90	100x + 300	270y .	378	·243	23	B, Da, Ao, Aha, AOa	Ahz, B, Au Au, Ca, B Aol, Au, Au	Ahi, Da,	B, Au,
	14	0.05	0.53	100x + 300	270y	305	143.1	24	В,	Ahz, Ahz, Ao Ahy, B, B,	Da, Ca, AOI Ca	Ahi, Al Ahi, Al E, Ca, f
	5	6 0.07	0.87	100 <i>x</i> + 400	270 <i>y</i>	407	234.9	23	A02, B, B, B, Ca, B A01, B, B	Aol, B, Db, B, B, B, B, As, Aol, D	a Aoz	Ahi
	15	0.35	0.31	100x + 400	270y	435	83.7	25	B	Au, B,	B, An, B, B Au, Db, B, B	Au,Ahı Ahı, Cb B,Ahı,

1011 hille, M

August 24, 2012

.

amt = ann M. Houska

Page 1 of 2

.

014 Monitoring Dates: 011 Monitoring Team: Craig Goodknight 8/29/12 8/29+20/12 Kyle Turley

	2012	Lakeview Ripra	p Gradation av	nd Durability Moni	toring, pg 2/2	N							Date	
	[:	random numb	ers pairs (x, y)	multip	lier	sample	locations	T			number reta	lined		
		longitudinal (x)	transverse (y)	longitudinal ¹ (ft)	Transverse ² (ft)	longitudinal distance (ft)	transverse distance (ft)	# painted	4 "	3 "	2½ "	1%"	1"	<1"
/	6	0.99	0.72	100x + 500	270y	599	194.4	22	Ahi	(a, B, B, B, B B, B, Aw, B, B Ca,	Ca,Ca,Ca,B	Ca, Au, B, Au	Dæ	Dæ.
\checkmark	16	0.88	0.24	100x + 500	270y	588	64.8	25		Ahi, Db, Ahi, B	B, Ahi, Au, Ca B	Day Day:Day:Da DayDb, Ahi, Au Day DayCa, Au	B,Au	Da
\checkmark	7	0.93 ·	0.75	100x + 600	270y	693	2075	21	B, Ahi, Da, Aha,	B, Ahi, Ahi, Df B, Ca, Ahz, B, Ca, B, Da, C	a Ahi, Ca	Au, Da		
V	17	0.85	0.03	100x + 600	270y	685	8.1	25		Ahz, B	В,	Au, AOZ Ca, Da, Db, Da Ca, Db, Ahi, Au Ahi, Au	Au, Au, B, Ahi, Au	F, F, Db, Ca
V	8	0.76	0.26	100x + 700	255y	776	66.3	25	· ·	Db, Ahi, B	Db, Au, Ca. Cb,Ca, B	Au, Ca,, Da Ca, Ca, Ca, Da, Db,	Ca, Cb, Ca	Da, Da, Da Daj Da
· V	/18	0.45	0.28	100x + 700	255y	745	71.4	25		B, Au, B, Ahi Ahi,	Db, B, Au, Cb Au, B, Aoi, Db Ca, Da Ca	Db,Ca,B,Ahi Da,DayAy,Al Ca	2	
STAR	, 9	0.38	0.93	100x + 800	215y	838	199.95	22	Ahi	Ca,B	Ca,B,B,B,B,B,B	8, Ca, Ahi, Au Au, Au, Ca Ca, Aoi	CarCb, Da,C	g.
D¥	19	0.09	0.10	100x + 800	215y	809	21.5	25	Da, Db	B, B, Ca, B Ca, B	B, Ca, Da Da, Ahi	Da, Cb, Ca Cb, Au, Ca Cb, Da, Co		Da, Da, Da
v	- 10	0.72	0.74	50x + 900	130y	936	96.2	23	Ca	Ahi, B, Ahi, B Ahi, Db, As, B Ca	B,B,Ah1,Db Cay B	Ca,Ca,Ca,Di Da	Db, Ca	
. V	20	0.66	0.85	50 <i>x</i> + 900	130y	933	110.5	24	8	B	B,Ahi, B,Ahi, B Au, Da,Ahz, B Da, Da	B, Ca, Ca, Ahi Da, Ca, Du, Ahi Ahi, Ca	Ahi ,	、 、

Measured along side slope/top slope break; measurements start from the south end of the west side slope.
Measured down slope from top of side slope.

August 24, 2012

.

Monitoring Dates: 8 29 Monitoring Team: Cray Good Knight

.

ATTACHMENT 18

2013 Rock Gradation and Durability Monitoring Data

.

Sample Year 2013	Sample	e Locations		
Sample Number	Longitudinal Distance (ft.)	Transverse Distance (ft.)		
1	98	124.2		
2	173	99.9		
3	266	99.9		
4	346	75.6		
5	410	194.4		
6	517	10.8		
7	629	37.8		
8	743	89.3		
9	853	137.6		
10	924	2.6		
11	80	140.4		
12	200	156.6		
13	239	218.7		
14	379	259.2		
15	490	197.1		
16	596.	48.6		
17	672	162		
18	731	249.9		
19	882	178.5		
20	913	101.4		

08/27/13 LAKEVIEW

.

•

 D_{50} by size - 5 seives

•

sample	total	number retained					cumulative number passing					
number	painted	4 - inch	3 - inch	2.5 - inch	1.5 - inch	1.0-inch	<1-inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	1.0 - inch
CP 1	25	4	6	7	7	1	0	21	15	8	1	.0
CP 11	24	0	6	4	7	4	3	24	18	14	7	3
CP 2	23	2	8	3	9	1	. 2	21	13	. 10	1	0
CP 12	25	2	7	5	7	2	0	23	16	11	4	2
CP 3	25	0	10	7	6	1	1	25	15	8	2	1
CP 13	24	3	5	5	8	1	2	21	16	11	3	2
CP 4	23	0	6	2	9	4	2	23	17	15	.6	2
CP 14	23	4	16	2	1	0	0	19	3	1	0	0
CP 5	24	3	12	3	4	0	2	21	9	6	2	2
CP 15	25	0	5	3	9	6	2	25	20	17	~8	2
CP 6	25	1	8	4	10	1	1	24	16	12	2	1
CP 16	25	0	2	2	16	4	1	25	23	21	5	1
CP 7	25	1	3	3	7	10	1	24	21	18	11	1
CP 17	25	0	7	7	. 8	2	1	25	18	11	. 3	1
CP 8	24	4	10	7	2	1	0	20	10	3	1	0
CP 18	22	9	10	2	0	1	0	13	3	1	1	0
CP 9	23	4	13	4	0	0	2	19	6	. 2	2	2
CP 19	25	4	10	5	· 3	0	3	21	11	6	3	3
CP 10	24	1	10	5	6	0	2	23	13	8	2	2
CP 20	- 25	1	6	2	12	2	2	24	18	16	4	2
total sum	484	43	160	82	131	41	27	441	281	199	68	ا 27

. .

8 27 13

	cumulat	ive percent	passing		D ₅₀			
4 - inch	3 - inch	2.5 - inch	1.5 - inch	1.0 - inch	(inch)	P/F	08/27/13	
84	60	· 32	4	0	2.82	Р		
100	75	58	··· 29	13	2.21	F	Mean	2.70
91	57	43	4	0	2.75	Р	Standard Error	0.129
92	64	· 44	16	8	2.65	F	Median	2.70
100	60	32	8	4	2.82	Р	Mode	2.82
- 88 -	67	46	13	8	2.60	F	Standard Deviation	0.579
100	74	65	26	9	2.11	F	Sample Variance	0.335
83	13	4	0	· 0	3.53	Р	Range	2.22
88	38	25	8	8	3.25	Р	Minimum	1.58
100	80	68	32	8	2.00	F	Maximum	3.80
96	64	48	8	4	2.56	F	Sum	54.06
100	92	84	20	4	1.97	F.	Count	20
96	84	72	44	4	1.58	F		
100	72	44	12	4	2.61	F		
83	42	13	4	0	3.20	Ρ	computed S.E. =	0.129
59	14	5	5	0	3.80	Р		
83	26	9	9	9	3.42	Р	95% conf. int.	2.96
91	48	· 26	13	13	3.05	Р		2.45
92	52	32	8	8	2.95	Р		
100	75	67	17	8	2.17	F		
				•		L	n req'd (within 0.1")	α(%)
. 91	58	41	14	6	2.76	P	43	5
						I	30	10
							18	20

•

•

•

Durability		Rock C	Total By						
Class & Subclass	4 Inch	3 Inch	2.5 Inch	1.5 Inch	1 Inch	< 1 Inch	Durability Class	Percent of Total	
Class Au	3	27	15	32	9	1	87	18:0	
Class As	0	3	. 0	1	0	0	4	0.88	
Class Ao1	0	1	3	4	1	0	9	<u>.</u>	
Class Ao2	1	3	0	0	0	0	4	10.8	
Class Ao3	2	1	1	1	0	0	5	0	
Class Ao4	0	1	0	0	0	0	1	10.2	
Class Ao5	0	0	0	0	0	0	0	0	
Class Ah1	1	20	11	8.	2	1	43	8.9	
Class Ah2	1	5	4	4	0	0	14	2946	
Class Ah3	1	0	0	0	0	,0	1 .	2002-19072-19	
Class Ah4	0	0	0	0	0	0	0	6000-54-10-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-	
Total A Class	9,	61	34	50	12	2	168 ·	34-7	
Class B	26	66	25	20	3	0	140	2819	
Class Ca	4	9	8	29	15	1	66	13'6	
Class Cb	0	4	3	6	5	1	19	39	
Class Da	1	8	6	18	3	11	47	97	
Class Db	3	12	5	6	3	8	37	76	
Class E	0	0	· 0	4	0	3	7	15 State	
Class F	0	0	0	0	0	0	0	0.0	
Total by Sieve Size	43	160	81	133	41	26	484		
Percentiofational	1. 18 [.] 9	3310	65:216-72	SI 2725	103-18 ¹ 5	5437	100		
Total by Durability Class	-	<u> </u>		-		-	484	25 (100) 	

2013 Durability Monitoring - Percent of Total Rock Count By Durability Class and Sieve Size

Durability Class	Percent by Sieve Size (Retained on Sieve)									
& Subclass	4 Inch	3 Inch	2.5 inch	1.5 Inch	1 Inch	< 1 Inch				
Class Au	7.0	16.9	18.5	24.1	22.0	3.8				
Class As	0.0	1.9	0.0	. 0.8	0.0	0.0				
Class Ao1	0.0	0.6	3.7	3.0	24	0.0				
Class Ao2	2.3	1.9	0.0	0.0	0.0	0.0				
Class A03	4.7	0.6	. 1.2	0.8	0.0	0.0				
Class Ao4	0.0	0.6	0.0	0.0	0.0	0.0				
Class Ao5	0.0	0.0	0.0	0.0	0.0	0.0				
Class Ah1	2.3	12.5	13.6	6.0	4.9	3.8				
Class Ah2	2.3	3.1	4.9	3.0	0.0	0.0				
Class Ah3	2.3	0.0	0.0	0.0	0.0	0.0				
Class Ah4	0.0	0.0	0.0 .	0.0	0.0	0.0				
Total A Class	20.9	38.1	42.0	37.6	29.3	7.7				
Class B	60.5	41.3	30.9	15.0	7.3	0.0				
Class Ca	9.3	5.6	9.9	21.8	36.6	3.8				
Class Cb	0.0	2.5	3.7	4.5	12.2	3.8				
Class Da	2.3	5.0	7.4 ·	13.5	7.3	42.3				
Class Db	7.0 ·	7.5	6.2	4.5	7.3	30.8				
Class E	0.0	0.0	0.0	3.0	0.0	11.5				
Class F	0.0	0.0	0.0	0.0	0.0	0.0				
Total Percent	100	100	100	100	100	100				

2013 Durability Monitoring - Percent Durability Class By Sieve Size

Durability Class	Percent By Sieve Size (Retained on Sieve)									
& Subclass	4 Inch	3 Inch	2.5 Inch	1.5 Inch	1 inch	< 1 Inch	Percent			
Class Au	3.4	31.0	17.2	36.8	10.3	1.1	100			
Class As	0.0	75.0	0.0	25.0	0.0	0.0	100			
Class Ao1	0.0	11.1	33.3	44.4	11.1	0.0	100			
Class Ao2	25.0	75.0	0.0	0.0	0.0	0.0	100			
Class Ao3	40.0	20.0	20.0	20.0	0.0	0.0	100			
Class Ao4	0.0	100.0	0.0	0.0	0.0	0.0	100			
Class Ao5	0.0	0.0	0.0	0.0	0.0	0.0	0			
Class Ah1	2.3	46.5	25.6	18.6	4.7	2.3	100			
Class Ah2	7.1	35.7	. 28.6	28.6	0.0	Ò.0	100			
Class Ah3	100.0	0.0	0.0	0.0	0.0	0.0	100			
Class Ah4	0.0	0.0	0.0	0.0	0.0	0.0	0			
Total A Class	5.4	36.3	20.2	29.8	7.1	1.2	100			
Class B	18.6	47.1	17,9	14.3	2.1	0.0	100			
Class Ca	6.0	13.6	12.1	43.9	22.7	1.5	100			
Class Cb	0.0	21.0	15.8	31.6	26.3	5.3	100			
Class Da	2.1	17.0	12.8	38.3	6.4	23.4	100			
Class Db	8.1	32.4	13.5	16.2	8.1	21.6	100			
Class E	0.0	0.0	0.0	57.1	0.0	42.9	100			
Class F	0.0	0.0	0.0	0.0	0.0	100.0	100			

2013 Durability Monitoring – Percentage Sieve Size By Durability Class
	random : pairs	nunbers (x,y)	multi	plier	sample	locations					number retai	ned p	eves 31/2 " an Oceang. Cal	a 2," are no culation of D	t part of 50 was not
	long (x)	trans (y)	long (ft)	trans (ft)	long distance (ft)	trans distance (ft)	# painted	4 "	3½"	3 "	2½ "	2 "	11/2 "	1neir inclu 1"	<1"
	0.98	0.46	100x	270y	98.0	124.2	975)	Caj Bi Ang Bi;	Anuj Bj, Bj	Caji Db' Bj	Curzi Daj Daj Dabj Bj Cbj B	Dbj Cbj Bj	CajCajCijAu	Cb _{j;}	Previously marked, doited rocks exist at this l ocation
1	0:80	0.52	100 <i>x</i>	270y	80.0	140.4	(24)			Bj Bj CBj Bj: Daj Daj	Au; Ahi;Cb; B;	Auj Dbj Auj Auj Daj	Caj Cbj	AujCaj Bj Cbj	Dbj Ej Da
2	0.73	0.37	100x+100	270y	173.0	99.9	23)	Aw; A02;	Β; Αιι	Ahzj Ahzj Au Dbj; Daj B	Ahr, Daj Caj	Aw, Aw; B; Aw;	Ahr; Au; Da; Ca; Da;	Db;	
2	1.00	0.58	100x+100	270y	200.0	156.6	25)	Bj Dbj	ВјВјАиј	Caj Auj Ahij Dbj	Bj Auj Bj Bj	Аиј Аиј Сај A03, Auj Bj Bj	Au; Da;	Са; Са;	Dbj
3	0.66	0.37	100x+200	270y [,]	266.0	99.9	25)			B; B; B; B; Aol, B; Au, Aoz; B; B;	Aos; Ahı; Au; B; Ahı; Db; Ahı	BiCajBiDaj Bj	Ca;	Ca;	Da; Previously marke cotted rocks exi
3	0.39	0.81	100x+200	بر270	239.0	218.7	25	Au; Ah3; B	Ану;	Bi BiAtujB;	Ahıj Bj Bj Day Bj	Dibji Diaji Dogi,	DajEjEjCbj Bj	Ca;	Day; Db
4	0.46	0.28	1 00 x+300	270y	346.0	75.6	(23)		B;B;An	Db; Db; Au;	Ач; В	Da; Ahz; Ahi;	Au;Ca;Au; B;Au;AO;	Са;В;Са;Ац	Daj Da

Rock Gradation Monitoring performed by Dan Nordeen; Durability monitoring performed by Gray Goodkught, S.M. Stoller.

8/23/2013

.

• •

2013 Lakeview Riprap Gradation and Durability Monitoring

8/23	/2013							2013 L	akeview Riprap G	radation and Dura	bility Monitoring				2 of 3
Γ	random pairs	numbers (x,y)	multi	plier	sample	locations					number retain	ied .			
	long (x)	trans (y)	long (ft)	trans (ft)	long distance (ft)	trans distance (ft)	# painted	4 "	31/2 "	3"	2½"	2"	1½"	I.,	< 1"
14	0.79	0.96	100 <i>x</i> +300	270y	379.0	259.2	23)	B;B;∙Db;B; ;;	Ahij Bi Bj Bj Dbi Asj Asj Dbj	B; Ahij B;Caj Caj Ahij Db; Caj	Ahz, Ahz,	Bj			-
5	0.10	0.72	100x +400	270y	410.0	194.4	24)	В;В;АОз;	AO4;Ahı;Ahı; Db; Db;	Ahij AwjAhzj AloziCa; B; Bi	Db; B; B;	Auj Bj Bj	زطD ز		E, Db;
15	0.90	0.73	100 <i>x</i> +400	270y	490.0	197.1	25)		В; В;	Сь; Аи; В	B; Ahı; B	Ahz; Au; B; Au	Au; Ahi; Au; Da, B	Caj Dbj Auj Bj Daj Auj	Da,Cb
6	0.17	0.04	100 <i>x</i> +500	270y	517.0	10.8	25	A03	A02.	Au; Au; Ah; B; B; Da; Ah!i	Db; Db; Au; Au;	Ca; Db;A01;Da Au; Au; B	Au; Ca; Da	Au	Db
16	0.96 [.]	0.18	10 0 x+500	270y	596.0	48.6	25		Ahz	В;	Da;B;	B; Au; Au Ca; Au; Ca; Ca; Ca	E; Au; Au; Ca; B; Ca; Ca; Au.	Au; Au; Ahı; Cb;	Dbj
7	0.29	0.14	100x +600	270y	629.0	37.8	75)	Bi		B; Ahi, Db;	Са; Ач; Са;	Ca; Ca; Ca;	Ahz; Ahi; Ahi Ca;	Ca; Ca; Da; Cb; Ca; Au; Ca; Ca; Ca; Da	Cai
17	0.72	0.60	100 <i>x</i> +600	270y	672.0	162.0	25)			Bi Dbi Au; Bi Bi Bi Ahi	Da; AOI; Ahz; B,Ca; Ahi; B	AhijCb; Aoi Aoi, Db; Ahi	Au; Da;	AOI; Ahi;	Db

8/23/2013

•

۰.۰

•• ;

۰.

2013 Lakeview Riprap Gradation and Durability Monitoring

N -

Γ	random pairs	numbers (x,y)	multi	plier	sample	locations					number retain	ned	
	long (x)	trans (y)	long (ft)	trans (ft)	long distance (ft)	trans distance (ft)	# painted	4 "	31/2 "	3 "	21⁄2 "	2"	11/2 "
8	0.43	0.35	100x+700	255y	743.0	89.3	24)	Bi Ahij Bi Bi	B; B;	B; B; Da; Au; Au; Ahi; B; B;	Ca; B; Au; A01; Cb; B; Ca;	Caj	Ca
1	8 0.31	0.98	100x +700	255y	731.0	249.9	3¥	B; Da; B; B; B; B;Ca; B; Db	Au; B; B; Au; B	Ahij BjDaj B Ca	Ahı; Au;		
9	0.53	0.64	100x +800	215y	853.0	137.6	<u>9</u> 3)	B; B;Ca; B	B; B; B;	B; B; As; Ca; B; Ahi; Au; Au; B; Au	B; Au; Au; Ca		
1	9 0.82	0.83	100x +800	215y	882.0	: 178.5	25)	BiCajB;B	B; A03; B	B; AhlyAhz Da; Ahly Au Au;	B; Ahz; Au; B; Ahi;	Cb; Da	As
11	0.48	0.02	50x +900	130y	924.0	2.6	24)	Ahz	Ahi;B;B	Ahij Au; Ahi B; Daj B; B	B; Au; B; AOI Ahi	Au; Ca; Au B	Ca; Ca;
2(0.26	0.78	50x+900	130y	913.0	101.4	<u>(</u> 15)	Bì .		Au;Ca; Au; Ahi;Cb;Cb	Au; Au;	Ca; B; Da; Da; Ahz;	Ca;E) D Ca;B) [Ah1;

-

This page intentionally left blank

ATTACHMENT 19

٦

.

2014 Rock Gradation and Durability Monitoring Data

ŋ

Sample Year 2014	Sample	e Locations
Sample Number	Longitudinal Distance (ft.)	Transverse Distance (ft.)
1	52	213.3
2	182	197.1
3	243	226.8
4	305	148.5
5	469	243
6	579	37.8
. 7	660	72.9
8	719	17.9
9	876	191.4
10	927.5	111.8
11	24	94.5
12	149	143
13	246	256.5
14	316	256.5
15	456	16.2
16	502	29.7
17	626	83.7
18	797	33.2
19	800	165.6
20	946.5	87.1

~

,

09/16/14

LAKEVIEW

D₅₀ by size - 5 seives

4

.

.

Note: D₅₀ is the median rock size at a given location

-

· · · ·

sample	total		number	retained					cumulat	live number	passing			cumulat	tive percent	passing		D ₅₀			
number	painted	4 - inch	3 - inch	2.5 - inch	1.5 - ínch	1.0-inch	<1-inch	4 - ínch	3 - inch	2.5 - inch	1.5 - inch	1.0 - inch	4 - inch	3 - inch	2.5 - inch	1.5 - inch	1.0 - inch	(inch)	P/F	09/16/14	
CP 1	24	0	6	8	9	1	0	24	18	10	1	0	100	75	42	4	0	2.63	F	Statistics of the Media	n D ₅₀ 's
CP 11	25	1	8	7	7	1	1	24	16	9	2	1	96	64	36	8	4	2.75	P		
CP 2	24	2	8	6	7	1	0	22	14	8	. 1	0	92	58	33	4	0	2.83	Р	Mean	2,84
CP 12	24	4	3	6	9	1	1	20	17	11	2	1	83	71	46	8	4	2.58	F	Standard Error	0.088
CP 3	25	2	15	6	2	0	0	23	8	2	0	0	92	32	8	0	0	3.30	P	Median	2.69
CP 13	24	8	9	5	2	0	0	16	7	2	0	· 0	67	29	· · 8	0	O	3.56	P	Mode	2.58
CP 4	24	0	5	7	9	0	3	24	19	12	3	3	100	79	50	13	13	2.50	F	Standard Deviation	0.395
CP 14	23	4	14	4	0	1	0	19	5	1	1	0	83	22	4	4	0	3.46	Р	Sample Variance	0.156
CP 5	23	4	10	6	3	0	0	19	9	3	0	0	83	39	13	0	o	3.25	Р	Range	1.29
CP 15	25	1	4	9	9	2	0	24	20	11	2	0	96	80	· 44	8	o	2.58	F	Minimum	2.27
CP 6	24	2	7	3	3	6	3	22	15	12	9	3	92	63	50	38	13	2.50	F	Maximum	3.56
CP 16	21	6	8	3	2	2	. 0	15	7	4	2	0	71	33	19	10	o	3.44	Р	Sum	56.82
CP 7	25	0	4	7	13	0	1	25	21	14	1	1	100	84	56	4	4	2.38	F	Count	- 20
CP 17	25	0	8	5	11	0	1	25	17	12	1	1	100	68	48	4	. 4	2.55	F		
CP 8	22	3	3	6	8	1	1	19	16	10	2	1	86	73	45	9	5	2.58	F		÷
CP 18	24	2	4	3	13	1	1	22	18	15	2	1	92	75	63	8	4	2.27	F	computed SE	0.088
CP 9	25	3	8	3	5	3	3	22	14	11	6	3	88	56	44	24	12	2.75	P	eenipatea - H	0.000
CP 19	23	1	12	4	6	0	0	22	10	6	0	0	88	40	24	0	0	3.21	Р	95% conf. int	3.01
CP 10	25	0		9	6	1	2	25	18	9	3	2	109	78	39	13	9	2.64	F		2 67
CP 20	23	2	9	3	8	1	0	21	12	9	1	0	84	48	36	4	0	3.06	P		2.01
total sum	478	45	152	110	132	22	17	433	281	171	- 39	17	91	59	36	8	4	2.81	Р	n req'd (within 0.1°)	α (%) 5
																		•		. 7	10
																Note: Des i	s the median	rock size a	at a location	1	20
																Note: D ₅₀ i	s the median	i rock size a	at a location	4	20

.

-

.

•.

.

.

.

This page intentionally left blank

.

Durability		Rock	Count by Sieve	e Size (Retain	ed on Sieve)	<u></u>	Total By	Percent of
Class & Subclass	4 Inch	3 Inch	2.5 Inch	1.5 Inch	1 Inch	< 1 Inch	Durability Class	Tiotal
Class Au	3	16	14	28	7	0	68	14:2
Class As	0	2	1	4	0	0	7	15
Class Ao1	3	4	3	4	0	0	14	2.9
Class Ao2	1	5	0	1	0	0	7	1.5
Class Ao3	0	0	0	0	0	0	· 0	OF-
Class Ao4	0	0	0	0	0	0	0	O the
Class Ao5	0	0	0	0	0	0	0	C D Inc
Class Ah1	2	24	20	25	1	0	72	15:1
Class Ah2	3	12 ·	5	6	0	0	26	5.4
Class Ah3	0	0	0.	0	0	0	0	C Out
Class Ah4	0	0	0	0	0	0	0	20
Total A Class	12	63	43	68	8	. 0	194	40:6
Class B	27 ·	59	32	26	3	2	149	31.2
Class Ca	3	14	13	8	3	0	41	8.6
Class Cb	0	2	3	3	1	0	9	1.9
Class Da	2	6	13	17	5	5	48	¥ 10°1
Class Db	1	8	5	9	2	3	28	5.9
Class E	0	0	1	1	0	7	9	1.9 M
Class F	0	0	0	. 0	0	0	0	OF 6
Total by Sieve Size	45	152	110	132	22	17	478	
Percent of Total	94	31.8	23.0 3 9	27.6	4.6	Saal 3:6	100	
Total by Durability Class	-	-	·	-	-	-	478	

2014 Durability Monitoring - Percent of Total Rock Count By Durability Class and Sieve Size

Durability Class			Percent by Sieve Siz	e (Retained on Siev	/e)	
& Subclass	4 Inch	3 Inch	2.5 Inch	1.5 Inch	1 Inch	< 1 Inch
Class Au	6.7	10.5	12.7	21.2	31.8	0.0
Class As	0.0	1.3	0.9	3.0	0.0	0.0
Class Ao1	6.7	2.6	2.7	3.0	0.0	0.0
Class Ao2	2.2	3.3	0.0	0.8	0.0	0.0
Class Ao3	0.0	0.0	0.0	0.0	0.0	0.0
Class Ao4	0.0	0.0	0.0	0.0	0.0	0.0
Class Ao5	0.0	0.0	0.0	0.0	0.0	0.0
Class Ah1	4.4	15.8	18.2	18.9	4.5	0.0
Class Ah2	6.7	7.9	4.5	4.5	0.0	0.0
Class Ah3	0.0	0.0	0.0	0.0	0.0	0.0
Class Ah4	0.0	0.0	0.0	0.0	0.0	0.0
Total A Class	26.7	41.4	39.1	51.4	36.4	0.0
Class B	60.0	38.8	29.1	19.7	13.6	11.8
Class Ca	6,7	9.2	11.8	6.1	13.6	0.0
Class Cb	0.0	1.3	2.7	2.3	4.5	0.0
Class Da	4.4	3.9	11.8	12.9	22.7	29.4
Class Db	2.2	5.3	4.5	6.8	9.1	17.6
Class E	0.0	0.0	0.9	0.8	0.0	41.2
Class F	0.0	0.0	0.0	0.0	0.0	0.0
Total Percent	100	100	100	100	100	100

2014 Durability Monitoring - Percent Durability Class By Sieve Size

Durability		Perce	nt By Sieve Size (I	Retained on Siev	e)		Total
Class & Subclass	4 Inch	3 Inch	2.5 Inch	1.5 Inch	1 Inch	< 1 Inch	Percent
Class Au	4.4	23.5	20.6	41.2	10.3	0.0	100
Class As	0.0	28.6	14.3	57.1	0.0	0.0	100
Class Ao1	21.4	28.6	21.4	28.6	0.0	0.0	100
Class Ao2	14.3	71.4	0.0	14.3	0.0	0.0	100
Class Ao3	0.0	0.0	0.0	0.0	0.0	0.0	0
Class Ao4	0.0	0.0	0.0	0.0	0.0	0.0	0
Class Ao5	0.0	0.0	0.0	0.0	0.0	0.0	0
Class Ah1	2.8	33.3	27.8	34.8	1.4	0.0	100
Class Ah2	11.5	46.2	19.2	23.1	0.0	0.0	100
Class Ah3	0.0	0.0	0.0	0.0	0.0	0.0	0
Class Ah4	0.0	0.0	0.0	0.0	0.0	0.0	0
Total A Class	6.2	32.5	22.2	35.1	4.1	0.0	·· 100
Class B	18.1	39.6	. 21.5	17.4	2.0	1.3	100
Class Ca	7.3	34.1	31.7	19.5	7.3	0.0	100
Class Cb	0.0	22.2	33.3	33.3	11.1	0.0	100
Class Da	4.2	12.5	27.1	.35.4	10.4	10.4	100
Class Db	3.6	28.6	17.9	32.1	7.1	10.7	. 100
Class E	0.0	0.0	11.1	11.1	0.0	77.8	100
Class F	0.0	0.0	0.0	0.0	0.0	0.0	0

2014 Durability Monitoring - Percentage Sieve Size By Durability Class

Durability		Percer	nt By Sieve Size (I	Retained on Siev	e)		Totai
Class & Subclass	4 Inch	3 Inch	2.5 Inch	1.5 Inch	1 Inch	< 1 Inch	Percent
Class Au	4.4	23.5	20.6	41.2	10.3	0.0	100
Class As	0.0	28.6	14.3	57.1	0.0	0.0	100
Class Ao1	21.4	. 28.6	21.4	28.6	0.0	0.0	100
Class Ao2	14.3	71.4	0.0	14.3	0.0	0.0	100
Class Ao3	0.0	0.0	0.0	0.0	0.0	0.0	0
Class Ao4	0.0	0.0	0.0	0.0	0.0	0.0	0
Class Ao5	0.0	0.0	0.0	0.0	0.0	0.0	0
Class Ah1	2.8	33.3	27.8	34.8	1.4	0.0	100
Class Ah2	11.5	46.2	19.2	23.1	0.0	0.0	100
Class Ah3	0.0	0.0	0.0	0.0	0.0	0.0	0
Class Ah4	0.0	0.0	0.0	0.0	0.0	0.0	0
Total A Class	6.2	32.5	22.2	35.1	4.1	0.0	100
Class B	18.1	39.6	. 21.5	17.4	2.0	1.3	100
Class Ca	7.3	34.1	31.7	19.5	7.3	0.0	100
Class Cb	0.0	22.2	33.3	33.3	11.1	0.0	100
Class Da	4.2	12.5	27.1	.35.4	10.4	10.4	100
Class Db	3.6	28.6	17.9	32.1	7.1	10.7	100
Class E	0.0	0.0	11.1	11.1	0.0	77.8	100
Class F	0.0	0.0	0.0	0.0	0.0	0.0	0

2014 Durability Monitoring - Percentage Sieve Size By Durability Class

9/11/2014

2014 Lakeview Riprap Gradation and Durability Monitoring

.

Date monitored Sept. 16, 2014 Kyle Turley Gradation monitoring 1013 Graig Goudknight Durability munitoring

	random pairs	numbers (x,y)	multi	plier .	sample f	ocations				· .	number retained	Craig Gounknight I	Jurability Munitoring
	long (x)	trans (y)	long (ft)	trans (ft)	long distance (ft) Y	trans distance (ft) ×	# painted	4 "	3 "	2½"	1½ "	1"	< 1"
ľ	0.52	0.79	100 <i>x</i>	270 <i>y</i>	52.0	213.3 .	24		BAhz BBth Au	Ah, Da Au Ah, B Db B Cæ	Ah, Ao, Clo Do Da B Au B B	СЬ	
11	0.24	0.35	100x	270y	24.0	94.5	дъ́	B	Aha B Ca Alaz Au Do B Ah,	Ah,, Ca, B Ahz An, Au Aha	Db, Ca, B, E Au B B	Da,	ŧ,
2	0.82	0.73	100x+100	270y	182.0	197.1	24	B Ahr	BAOICACAB BBB	BAUZ AU Ca B Da	As Da Ahi Ca. Au Cares	Au 	
12	0.49	0.53	100x+100	270y	149.0	143.1	24	BBBB	Du Dhi Ahz	Ca Au Au BAXe Ca B	AS B Au Au Ah, Ah, B Da Ah,	Au .	B
3	0.43	0.84	100x+200	270y	243.0	226.8	255	Da Ca	B Da Ah_1 B Au Au B Ah_1 Ah_1 B Db B Ah_2 Ca Ah_1	Ahi Da Ch Da B Ca	Ga (Da)		
13	0.46	0.95	100x +200	270y	246.0	256.5	24	Ag BAUB ADI BBB	Ah, Btb Ab, Au to Da BB	Ahi Ca Ahi Th Ahi	Catho		
4	0.05	0.55	100x +300	27 <u>0</u> y	305.0	148.5	24		BAUBGa Aoz	BBDaBB Aug	Da Au Ahz Ga Au Du Ao, Ah, Da		ERD

9/11/2014

2014 Lakeview Riprap Gradation and Durability Monitoring

	random pairs	numbers (x,y)	multi	plier	sample	locations					number retained	
	long (x)	trans (y)	long (ft)	trans (ft)	long distance (ft)	trans distance (ft)	# painted	4 "	3"	2½"	11⁄2 "	
14	0.16	0.95	100x+3 <u>0</u> 0	270y	316.0	256.5	23	ALBBB	B Db Da B Ah, Ah, Ah, Ca Ah, B Ah, Au B Ah2	Ahz Da Dho Ahi	· ·	TD0
5	0.69	0.90	100x +400	270y	469.0	243.0	23 24	AUBBDD	BAUBBAHI AnzBBBB	BEBASCOB	Da B Db	
15	0.56	0.06	100x +400	270y	456.0	16.2	26	B	BAN, BAhi	B Ah, Ca B Ah, B Ah, Ah, B	AN, Da Da B Au Ca B Da B	100
6	0.79	0.14	100 <i>x</i> +500	270y	579.0	37.8	24	BB.	BBBCOB BCa	Ane G. Da	B Ah, Ah,	Au Ai
10	0.02	0.11	100x+500) 270y	502.0	29.7	21	Ca Ca Ao, Ao, B. B	BB Ad Anz Ca Anz BAhr	Pu Da Ca	BB.	Au
7	0.60	0.27	100x +600) 270y	660.0	72.9	2 ^E D		Ahr Db Ahz B	.Ca BAnTaba B Da	Ahz Au Ahz Au Au Ahi Ahi Da B Ahi Ahi Ahi Da	
17	0.26	0.31	100x+600) 270y	626.0	83.7	250		Gacb B B An An, Cab	Ah, Au Ca B B	At Da Tho Au Ah, Ah, Ta Cho B B Da	

.

2 of 3

	•	
		•

9/11/2014

. *•*

.

2014 Lakeview Riprap Gradation and Durability Monitoring

.

	random numbers vairs (x, y) mu		multi	multiplier sample location		locations	number retained						
	long (x)	trans (y)	long (ft)	trans (ft)	long distance (ft)	trans distance (ft)	# painted	4 "	3 "	21⁄2 "	11⁄2"	133	<1"
8	0.19	0.07	100x +700	255y	719.0	17.9	22	AMBBAN	Pa Aba B	AhiBBB B Aoi	B B Ahi Au Au B Aoi Au	Ga	Da
18	0.97	0.13	100x+700	255y	797.0	33.2	EA	B Da	Ahi BAu B	Ahi B Db	Au BB Ah, Ah, Au Ahi BB Bb Au Ch Ca	B	Ta
9	0.76	0.89	100 <i>x</i> +800	215у	876.0	191.4	25	B B Anz	B Do Ag Ca Da Aoi Au Aoz	BAUB	Ah, Ah, Au, Ah, Db	TO B B	EDAB
19	0.00	0.77	100x +800	215y	800.0	165.6	23	Ah,	BBAUBAHI AGANIGAGAB AU AU	Da Lu Ch Ah,	13 Aoz Au B Au Au		
10	0.55	0.86	50x +900	130y	927.5	111.8	25	- -	VaBAUBAOR Da Xy	Ao, Ah, Au Da Th Ca Ao, Shi Su	AO, Ah, An An Da Au	Ca.	ED
20	0.93	0.67	50x +900	130y	946.5	87.1	23	BAhr	BAQ Ahida BAhi BAhz BAhi	Au Ahy B	An: As Ani Do Au Ani Au Ahi	Аи	

.

. 3 of 3

-

. •

.

.

·

This page intentionally left blank

.

