B 3.1 REACTIVITY CONTROL SYSTEMS

B 3.1.5 Shutdown Bank Insertion Limits

BASES

BACKGROUND The insertion limits of the shutdown and control rods are initial assumptions in all safety analyses that assume rod insertion upon reactor trip. The insertion limits directly affect core power and fuel burnup distributions and assumptions of available ejected rod worth, SDM and initial reactivity insertion rate.

The applicable criteria for these reactivity and power distribution design requirements are 10 CFR 50, Appendix A, GDC 10, "Reactor Design," GDC 26, "Reactivity Control System Redundancy and Protection," GDC 28, "Reactivity Limits" (Ref. 1), and 10 CFR 50.46, "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Nuclear Power Reactors" (Ref. 2). Limits on control rod insertion have been established, and all rod positions are monitored and controlled during power operation to ensure that the power distribution and reactivity limits defined by the design power peaking and SDM limits are preserved.

The rod cluster control assemblies (RCCAs) are divided among control banks and shutdown banks. Each bank may be further subdivided into two groups to provide for precise reactivity control. A group consists of two or more RCCAs that are electrically paralleled to step simultaneously. A bank of RCCAs consists of two groups that are moved in a staggered fashion, but always within one step of each other. The plant has four control banks and five shutdown banks. See LCO 3.1.4, "Rod Group Alignment Limits," for control and shutdown rod OPERABILITY and alignment requirements, and LCO 3.1.7, "Rod Position Indication," for position indication requirements.

The shutdown banks must be maintained above designed shutdown bank insertion limits and are typically near the fully withdrawn position during normal full power operations. Hence, they are not capable of adding a large amount of positive reactivity. Boration or dilution of the Reactor Coolant System (RCS) compensates for the reactivity changes associated with large changes in RCS temperature. The design calculations are performed with the assumption that the shutdown banks are withdrawn first. The shutdown banks can be fully withdrawn without the core going critical. This provides available negative reactivity in the event of boration errors. The shutdown banks are controlled manually by the control room operator. During normal unit operation , the shutdown

BACKGROUND (continued)

banks are either fully withdrawn or fully inserted. The shutdown banks are withdrawn above insertion limits specified in the COLR before withdrawing any control banks during an approach to criticality. The shutdown banks remain above the insertion limits specified in the COLR until the reactor is shutdown, except for surveillance testing required by SR 3.1.4.2. Since the shutdown banks are fully withdrawn while this Specification is applicable, they do not affect core power and burnup distribution, but merely add negative reactivity to shut down the reactor upon receipt of a reactor trip signal.

APPLICABLE On a reactor trip, all RCCAs (shutdown banks and control banks), SAFETY ANALYSES except the most reactive RCCA, are assumed to insert into the core. The shutdown banks shall be at or above their insertion limits and available to insert the maximum amount of negative reactivity on a reactor trip signal. The control banks may be partially inserted in the core, as allowed by LCO 3.1.6. "Control Bank Insertion Limits." The shutdown bank and control bank insertion limits are established to ensure that a sufficient amount of negative reactivity is available to shut down the reactor and maintain the required SDM (see LCO 3.1.1, "SHUTDOWN MARGIN (SDM)) following a reactor trip from full power. The combination of control banks and shutdown banks (less the most reactive RCCA, which is assumed to be fully withdrawn) is sufficient to take the reactor from full power conditions at rated temperature to zero power, and to maintain the required SDM at rated no load temperature (Ref. 3). The shutdown bank insertion limit also makes the reactivity worth of an ejected shutdown rod negligible.

The acceptance criteria for addressing shutdown and control rod bank insertion limits and inoperability or misalignment is that:

- a. There be no violations of:
 - 1. specified acceptable fuel design limits, or
 - 2. RCS pressure boundary integrity; and
- b. The core remains subcritical after accident transients.

As such, the shutdown bank insertion limits affect safety analysis involving core reactivity and SDM (Ref. 3).

The shutdown bank insertion limits preserve an initial condition assumed in the safety analyses and, as such, satisfy Criterion 2 of 10 CFR 50.36 (Ref. 4). LCO The shutdown banks must be within their insertion limits any time the reactor is critical or approaching criticality. This ensures that a sufficient amount of negative reactivity is available to shut down the reactor and maintain the required SDM following a reactor trip.

The shutdown bank insertion limits are defined in the COLR.

APPLICABILITY The shutdown banks must be within their insertion limits, with the reactor in MODES 1 and 2. The applicability in MODE 2 begins prior to initial control bank withdrawal, during an approach to criticality, and continues throughout MODE 2, until all control bank rods are again fully inserted by reactor trip or by shutdown. This ensures that a sufficient amount of negative reactivity is available to shut down the reactor and maintain the required SDM following a reactor trip. The shutdown banks do not have to be within their insertion limits in MODE 3, unless an approach to criticality is being made. In MODE 3, 4, 5, or 6, the shutdown banks may be fully inserted in the core and contribute to the SDM. Refer to LCO 3.1.1 for SDM requirements in MODES 3, 4, and 5. LCO 3.9.1, "Boron Concentration," ensures adequate SDM in MODE 6.

The Applicability requirements have been modified by a Note indicating the LCO requirement is suspended during SR 3.1.4.2. This SR verifies the freedom of the rods to move, and requires the shutdown bank to move below the LCO limits, which would normally violate the LCO.

ACTIONS <u>A.1.1, A.1.2 and A.2</u>

When one or more shutdown banks is not within insertion limits, 2 hours is allowed to restore the shutdown banks to within the insertion limits. This is necessary because the available SDM may be significantly reduced, with one or more of the shutdown banks not within their insertion limits. Also, verification of SDM or initiation of boration within 1 hour is required, since the SDM in MODES 1 and 2 is ensured by adhering to the control and shutdown bank insertion limits (see LCO 3.1.1). If shutdown banks are not within their insertion limits, then SDM will be verified by performing a reactivity balance calculation, considering the effects listed in the BASES for SR 3.1.1.1.

The allowed Completion Time of 2 hours provides an acceptable time for evaluating and repairing minor problems without allowing the plant to remain in an unacceptable condition for an extended period of time.

ACTIONS (continued	d)	
	<u>B.1</u>	
	withir applie base	shutdown banks cannot be restored to within their insertion limits in 2 hours, the unit must be brought to a MODE where the LCO is not cable. The allowed Completion Time of 6 hours is reasonable, d on operating experience, for reaching the required MODE from full er conditions in an orderly manner and without challenging plant erms.
SURVEILLANCE REQUIREMENTS	<u>SR 3.1.5.1</u>	
	Verification that the shutdown banks are within their insertion limits prior to an approach to criticality ensures that when the reactor is critical, or being taken critical, the shutdown banks will be available to shut down the reactor, and the required SDM will be maintained following a reactor trip. This SR and Frequency ensure that the shutdown banks are withdrawn before the control banks are withdrawn during a unit startup.	
	The Surveillance Frequency is based on operating experience, equipment reliability, and plant risk and is controlled under the Surveillance Frequency Control Program.	
REFERENCES	1.	10 CFR 50, Appendix A, GDC 10, GDC 26, and GDC 28.
	2.	10 CFR 50.46.
	3.	UFSAR, Section 15.4.
	4.	10 CFR 50.36, Technical Specification, (c)(2)(ii).

BASES