PMFermiCOLPEm Resource

From:	Govan, Tekia
Sent:	Monday, September 08, 2014 3:49 PM
То:	'Michael K Brandon' (brandonm@dteenergy.com)
Cc:	FermiCOL Resource
Subject:	FW: Fermi ACRS letter
Attachments:	00-Fermi-Ltr draft final.docx

Mike:

The attached is not final but the context has been voted on by the ACRS Committee. When send you the final as soon as its complete.

Tekia

From: Brown, Christopher Sent: Monday, September 08, 2014 9:05 AM To: Govan, Tekia Subject: RE: Fermi ACRS letter

Tekia,

I have attached the voted out version. I am currently editing (grammar only) and will be sending the official version through the concurrence process this week. Expect the signed version at the end of next week.

Chris

From: Govan, Tekia Sent: Monday, September 08, 2014 8:52 AM To: Brown, Christopher Subject: Fermi ACRS letter

Good morning Christopher:

Could you let me know the status of the Fermi ACRS letter and when we can expect a copy?

Thanks Tekia Hearing Identifier:Fermi_COL_PublicEmail Number:1501

Mail Envelope Properties (F5A4366DF596BF458646C9D433EA37D70184CF322A24)

Subject:	FW: Fermi ACRS letter
Sent Date:	9/8/2014 3:49:27 PM
Received Date:	9/8/2014 3:49:28 PM
From:	Govan, Tekia

Created By: Tekia.Govan@nrc.gov

Recipients:

Expiration Date: Recipients Received:

"FermiCOL Resource" <FermiCOL.Resource@nrc.gov> Tracking Status: None "Michael K Brandon' (brandonm@dteenergy.com)" <brandonm@dteenergy.com> Tracking Status: None

Post Office: H	QCLSTR01.nrc.gov		
Files MESSAGE 00-Fermi-Ltr draft final.doo	Size 815 x	66715	Date & Time 9/8/2014 3:49:28 PM
Options Priority: Return Notification: Reply Requested: Sensitivity:	Standard No No Normal		

1 2 3 4 5		G:\ACRS LTRS\Draft Letter Fermi Rev7.docx 09/5/2014 MC/CLB DRAFT FINAL
6 7	The Honora	ble Allison M. Macfarlane
8	Chairman	
9		r Regulatory Commission
10	Washington	, DC 20555-0001
11		
12 13		
14	Subject: F	REPORT ON THE SAFETY ASPECTS OF THE DTE
15	,	LECTRIC COMPANY COMBINED LICENSE
16	A	APPLICATION FOR FERMI UNIT 3
17		
18	Deer Chairn	aan Maafarlana.
19 20	Dear Chaim	nan Macfarlane:
20		
21	During the 6	517 th meeting of the Advisory Committee on Reactor
22	Safeguards	(ACRS), September 4-6, 2014, we reviewed the NRC
23	staff's Adva	nced Safety Evaluation Report (ASER) for the DTE
24	Electric Con	npany (DTE) Combined License Application (COLA) for
25	Fermi Unit 3	3. This application conforms to the design-centered review
26	approach (C	OCRA). ¹ DCRA, which is Commission policy, allows the
27	staff to perfo	orm one technical review and reach a decision for a

¹ The DCRA is described in Regulatory Issue Summary (RIS) 2006-06, "New Reactor Standardization Needed to Support the Design-Centered Licensing Review Approach," as endorsed by the Commission's Staff Requirements Memorandum in response to SECY-06-0187, "Semiannual Update of the Status of New Reactor Licensing Activities and Future Planning for New Reactors," dated November 16, 2006.

28	reference COLA addressing issues outside the scope of the design
29	certification and to use this review and decision as a reference to
30	support decisions on other subsequent COLAs. The reactor design
31	selected for Fermi Unit 3 is the 1,520 MWe passive Economic
32	Simplified Boiling Water Reactor (ESBWR). Fermi Unit 3 is the
33	reference COLA for that design.

34

Our ESBWR Subcommittee held six meetings (May 26, 2011, October 35 21, 2011, November 30, 2011, August 16, 2012, July 7, 2014, and 36 August 20, 2014), to review the COLA and the staff's ASER. During 37 these meetings, we met with representatives of the NRC staff, DTE 38 and its vendors, and the public. We also had the benefit of the 39 documents referenced. This letter fulfills the requirement of 10 CFR 40 52.87 that the ACRS report on those portions of the application that 41 concern safety. 42

43 CONCLUSION AND RECOMMENDATION

45	1. There is reasonable assurance that Fermi Unit 3 can be built and
46	operated without undue risk to the health and safety of the
47	public. The COLA for Fermi Unit 3 should be approved following
48	its final revision.
49	
50	2. There is reasonable assurance that the ESBWR design and the
51	Fermi Unit 3 site satisfy the requirements resulting from the
52	Fukushima Near-Term Task Force recommendations. However,
53	this review has identified generic issues related to seismic
54	reevaluations, mitigating strategies, and spent fuel pool
55	instrumentation. Further action by the staff is needed to resolve
56	these issues not only for Fermi 3 but also for currently operating
57	plants and COL applicants.
58	
59	BACKGROUND

- 60 On September 18, 2008, DTE submitted an application to the NRC for
- a COL to construct and operate Fermi Unit 3 in accordance with the

requirements of 10 CFR Part 52, "Licenses, Certifications, and
Approvals for Nuclear Power Plants." In the application, DTE stated
that the Fermi Unit 3 reactor will be an ESBWR located at the existing
site. The Fermi application is based on Revision 10 of the ESBWR
design control document (DCD).

67

68 **DISCUSSION**

⁶⁹ The Fermi site is located in Monroe County Michigan, 30 miles

⁷⁰ southwest of Detroit. Fermi Unit 1 is decommissioned and is in a safe

store status. Fermi Unit 2 is an operating boiling water reactor. Fermi

⁷² Unit 3 is proposed to be located on the same site southwest of Fermi

73 Unit 2.

74

75 DEPARTURES FROM THE ESBWR DCD

76 The Fermi Unit 3 COLA identified only one departure from the

⁷⁷ ESBWR design. The ESBWR DCD states that on-site storage space

- ⁷⁸ for a six-month volume of packaged waste is provided in the
- 79 Radwaste Building design. The Fermi Unit 3 Radwaste Building is
- so configured to accommodate a minimum of ten years volume of

81	packaged Class B and C waste, while maintaining space for at least
82	three months of packaged Class A waste. This departure involves a
83	redesign of the Radwaste Building that affects the arrangement of
84	systems and components within the building volume. The systems,
85	structures, and components requiring modifications are associated
86	with the Liquid Waste Management System and Solid Waste
87	Management System. The applicant stated that the existing Radwaste
88	Building Fire Protection and HVAC Systems have sufficient capacity to
89	accommodate the extra volume of Class B and C wastes, and require
90	no modification. The staff has approved this departure and we concur.
91	

92 SITE CHARACTERISTICS

Site characteristics include potential hazards in proximity of the plant,
 meteorology, hydrology, geology, seismology, and geotechnical

- 95 parameters. An applicant must show that the actual site
- 96 characteristics are bounded by the site parameters for the certified
 97 design.

There are two categories of surface-water use: withdrawal² (non-99 consumptive) and consumption ³. Groundwater is not used at Fermi. 100 Lake Erie is the principal source of water for the operation of Fermi 101 Unit 3. The most important Lake Erie parameter with respect to water 102 use is the lake water level. Fermi Unit 3 has been designed to operate 103 at full capacity assuming the lowest historical water level at the plant 104 intake basin. In addition, the safety-related Ultimate Heat Sink does 105 not require makeup for at least 72 hours and the onsite fire protection 106 system contains sufficient supplemental water to maintain core and 107 spent fuel pool cooling for at least 7 days. 108

109

The applicant followed current regulatory guidance to determine the Probable Maximum Flood, the Probable Maximum Precipitation, and flood design considerations for the site and showed that the maximum flood level for Fermi Unit 3 satisfies the enveloping site parameters in the DCD. The Fermi site is located outside the realm of significant impact due to flooding from local streams and rivers. The most severe

^{2 &}quot;Withdrawal" refers to water drawn from surface or groundwater sources that is eventually returned to the area from where it came.

^{3 &}quot;Consumption" refers to water that is withdrawn but not returned to the region.

- potential flooding condition at the Fermi Unit 3 site involves a storm-related high surge from Lake Erie.
- 118

119	According to ANS/ANSI-2.8-1992, the probable maximum water surge
120	and seiche is calculated based on a probable maximum wind storm
121	(PMWS). This standard indicates that analysis parameters for the
122	PMWS should be determined by a meteorological study. In lieu of a
123	study, the following standard values may be used for the area of the
124	Great Lakes in the vicinity of the site: 1) Set maximum over-water
125	wind speed to ~ 160 km/hr (100 mph), 2) Set lowest pressure within
126	the PMWS to ~950 mbar, 3) Apply a most critical, constant
127	translational speed during the life of the PMWS, 4) Assume that wind
128	speeds over water vary diurnally from 1.3 (day) to 1.6 (night) times the
129	overland speed and 5) Assume that winds blow 10 degrees across the
130	isobars over the water body.

131

In order to determine the maximum postulated flood level at the site,
the predicted storm surge is combined with the Lake Erie 100-year
high water level. Storm simulation and coastal engineering models

were used to calculate the run-up that occurs when waves encounter 135 a shoreline or embankment. The analysis shows that the maximum 136 flood level for Fermi Unit 3 satisfies the enveloping site parameter in 137 the DCD. Historically, southwest-to-northeast winds have created 138 seiches with large waves on Lake Erie, sometimes causing flooding 139 on eastern shores. The staff examined the historical events and 140 determined that such large waves do not affect southwestern areas of 141 the coast. The staff reviewed the flooding analysis submitted by DTE 142 and found it to be acceptable. 143

144

Fermi Unit 3 is connected to the offsite power grid by three 345kV 145 transmission lines. Fermi Unit 2 is connected to the grid by two 345kV 146 transmission lines and three 120kV transmission lines. All of these 147 transmission lines are routed through a common corridor for 148 approximately four miles before the lines diverge and are routed to 149 separate offsite power substations. The Unit 2 transmission lines also 150 pass through the Unit 3 switchyard, but do not have any connections 151 in that switchyard. The transmission line allocations to specific towers 152 and the spacing of the 345kV towers and 120kV towers in the 153

common corridor ensure that at least one 345kV supply will remain
 available to each unit following structural damage to any tower line.
 This configuration satisfies current regulations for physical and
 electrical separation of redundant offsite power connections for each
 unit.

159

The offsite power transmission lines are vulnerable to damage by high 160 winds or other storm-related conditions that may affect the common 161 corridor. Damage to the offsite power supplies for Unit 3 is mitigated 162 by the ESBWR design features that include two non-safety-related 163 standby diesel generators and two non-safety-related ancillary diesel 164 generators. The availability and reliability of these diesel generators 165 are managed by Regulatory Treatment of Non-Safety Systems 166 (RTNSS) controls. Furthermore, the ESBWR design can maintain 167 passive core cooling, containment functions, and spent fuel cooling for 168 at least 72 hours without any AC power. Considering these design 169 features, we conclude that there is reasonable assurance that plant 170 safety can be maintained with this offsite power transmission line 171 configuration. 172

173

174 FUKUSHIMA REQUIREMENTS

175 <u>Seismic Reevaluation</u>

176	In 2011, the NRC Near-Term Task Force (NTTF) issued a series of
177	recommendations for improving nuclear power plant safety in the U.S.
178	following the Fukushima earthquake and tsunami. Recommendation
179	2.1 stated that plants should reevaluate the seismic hazards at their
180	sites against current NRC requirements and guidance. The NRC
181	issued a letter dated March 12, 2012, requesting that all operating
182	nuclear power plants in the U.S. re-evaluate seismic hazards using
183	the most recent information and methodologies available. The letter
184	stated that nuclear power plant sites in the Central and Eastern U.S.
185	(CEUS) should use the seismic source model in NUREG–2115,
186	"Central and Eastern United States Seismic Source Characterization
187	for Nuclear Facilities," to characterize their seismic hazards. Following
188	the issuance of this letter to the operating nuclear power plants, the
189	staff also requested all COL and Early Site Permit (ESP) applicants to
190	address this issue.

192	To address NTTF Recommendation 2.1, the staff requested additional
193	information from DTE pertaining to the seismic hazard evaluation. The
194	NRC staff asked DTE to reassess the calculated seismic hazard for
195	the Fermi Unit 3 site using the NUREG-2115 seismic source model
196	and to modify its ground motion response spectra (GMRS) and
197	foundation input response spectra (FIRS) as needed.

198

To supplement the seismic sources that are evaluated in NUREG-199 2115, DTE compiled records of additional earthquakes that occurred 200 within 320 km of the Fermi site between 2009 and 2012. In 201 accordance with the methods in NUREG-2115, they then screened 202 out earthquakes with moment magnitudes below 2.9. The compilation 203 and screening assessments considered all possible causes for the 204 earthquakes (e.g., natural ground motion, injection wells, hydraulic 205 fracking). All earthquakes with moment magnitudes of 2.9 or above 206 were included in the updated seismic catalog. DTE appropriately 207 accounted for additional earthquake experience during this interval. 208

209

210	In February 2013, the applicant submitted Revision 5 of the Fermi
211	Unit 3 FSAR that describes the updated seismic hazard analyses.
212	The staff concluded that the applicant has adequately addressed
213	the required information and has evaluated the seismic hazards at
214	the Fermi Unit 3 site against the current state-of-knowledge and
215	the NRC requirements.

216

We agree that the ESBWR seismic design requirements provide 217 adequate margins above the Fermi Unit 3 site specific hazard. 218 However, we have observed anomalies in the calculated 219 variations of uncertainty with ground motion frequency at Fermi 220 and other sites. We will work with the staff to better understand 221 the analysis methods and computations, since they can affect the 222 seismic hazard assessments for currently operating plants and 223 other COL applicants. 224

225

Despite the ongoing discussions with the staff about the variation
of uncertainty with ground motion frequency, the ESBWR seismic

design requirements provide adequate margins above the Fermi
Unit 3 site-specific seismic hazard. Therefore, we have
reasonable assurance of the Fermi Unit 3 safety against design
basis seismic events.

- 232
- 233

234 <u>Seismic Design and Category 1 Structures</u>

Safety-related systems, structures, and components (SSCs) are 235 designed to withstand safe-shutdown earthquake (SSE) loads and 236 other dynamic loads, including wind loads, missiles and those due to 237 reactor building vibration caused by suppression pool dynamics. The 238 ESBWR standard plant design parameters envelope the RG 1.60 239 Revision 1 ground spectra anchored to 0.3 g and a high-frequency 240 hard rock spectra anchored to 0.5g peak ground acceleration (PGA). 241 Based on the updated seismic hazard and Fermi Unit 3 site-specific 242 soil-structure interaction analyses, the applicant developed site-243 specific seismic inputs consisting of performance- based surface 244 response spectra, foundation input response spectra, site-specific 245 ground motion time histories, and subsurface material profiles with 246

corresponding dynamic properties used in the site-specific soil
structure interaction analyses.

249

The site-specific foundation input response spectra are enveloped by 250 the ESBWR certified seismic design response spectra in both 251 horizontal and vertical directions. The applicant also performed 252 analyses to address the following two Fermi Unit 3 site-specific 253 conditions: (1) to confirm that the ESBWR standard plant design is 254 applicable to the Fermi Unit 3 site-specific conditions, where some 255 structures are partially embedded in the rock base, with an engineered 256 granular backfill surrounding the structures from the top of the rock to 257 the grade level of the plant; (2) to confirm that the standard plant 258 design is applicable even though the DCD requirements for the 259 engineered granular backfill that surrounds the seismic Category I 260 structures are not being met in all cases. 261

262

The site-specific structural models for the reactor and fuel buildings
used accepted analytical practices; e.g., plate finite elements arranged
in a uniform mesh that was used to represent the exterior walls below

grade and basemats. The staff reviewed the seismic design and
accepted the adequacy of the structural response to the revised
seismic source term. All nuclear safety issues relating to the seismic
design and the seismic Category I structural response have been
resolved.

271

One topic of discussion was the approach that the applicant used to 272 justify the low probability of potential dissolution voids (karst) in the 273 bedrock at the Fermi Unit 3 site. The applicant first noted that karst 274 formation is less likely in areas that have been formerly covered by ice 275 sheets and are now covered by glacial deposits, because glaciers 276 typically eroded away carbonate material or filled in existing karst 277 features. Second, the applicant noted the absence of large voids or 278 cavities due to dissolution in the subsurface investigations at the 279 Fermi 3 site. Finally, the applicant noted the absence of any large 280 voids and cavities in bedrock exposures at the nearby Denniston 281 Quarry. The staff determined that the applicant has adequately 282 justified the conclusion that the evidence supports a low probability of 283 karst formation at the site. To further substantiate that there are no 284

subsurface faults or deformation features that could cause a hazard, 285 the staff developed a generic license condition that has been applied 286 to all new plant COLA's requiring the applicant to map and evaluate 287 the bedrock surface exposed during site excavation. For Fermi Unit 3 288 this would involve all safety-related structures including the nuclear 289 island excavations and should identify solutioned bedrock. The relief 290 of the mapped bedrock surfaces will provide important evidence on 291 the presence of hidden voids in these rocks. Any identification of 292 potential solutioned bedrock will necessarily lead to further study by 293 both direct sampling as well as remote sensing. 294

295

DTE performed an assessment of the tornado and hurricane wind speeds that may occur at the Fermi site. That assessment demonstrated that site-specific wind speeds are bounded by the wind loads that are applied for the ESBWR design. According to ESBWR DCD Table 2.0-1, hurricane-generated missiles must be evaluated for Seismic Category NS and Seismic Category II structures that house Regulatory Treatment of Non-Safety Systems (RTNSS) equipment.

The DTE analyses confirmed that the impacts from site-specific hurricane missiles are bounded by the ESBWR design parameters.

ESBWR DCD Table 2.0-1 also specifically notes that tornado missiles 306 do not apply to Seismic Category NS and Seismic Category II 307 Therefore, tornado-generated missiles that may impact buildings. 308 structures that contain RTNSS equipment are not evaluated for the 309 ESBWR design, and they are not evaluated as part of the site-specific 310 analyses. ESBWR DCD Table 19A-4 notes that the Ancillary Diesel 311 Generator Building and the Turbine Building structures are designed 312 for tornado wind loads. The Electrical Building, Service Water 313 Building, and Plant Service Water Structures are designed for 314 hurricane wind loads. However, for wind-driven missiles, all of these 315 buildings are designed only to withstand the design-basis hurricane 316 missiles. 317

318

Because the ESBWR design can maintain passive core cooling, containment functions, and spent fuel cooling for at least 72 hours without any AC power, operation of RTNSS equipment is not required

until approximately 72 hours after the plant is shut down. However, 322 because of this inconsistency in the wind-driven missile analyses, it is 323 unclear that structures which house RTNSS equipment that is credited 324 for mitigation of beyond-design-basis external events will survive site-325 specific tornado-generated missiles. We note that the FLEX regional 326 response centers are intended to provide support for defense in depth 327 mitigating strategies if onsite RTNSS equipment is not available after 328 72 hours. 329

330

331 Mitigation Strategies for Beyond Design Basis External Events

332 To address NTTF Recommendation 4.2 regarding mitigation

333 strategies for beyond-design-basis external events, NRC Order EA-

12-049 outlines a three-phase approach. The initial phase requires the

use of installed equipment and resources to maintain or restore core

cooling, containment, and spent fuel pool cooling without AC power.

337 The transition phase requires providing sufficient, portable, onsite

equipment and consumables to maintain or restore these functions

until they can be accomplished with resources brought from offsite.

The final phase requires obtaining sufficient offsite resources to

341	sustain those functions indefinitely. The staff endorsed the
342	methodologies described in the industry guidance document Nuclear
343	Energy Institute (NEI) 12–06, Revision 0, "Diverse and Flexible
344	Coping Strategies (FLEX) Implementation Guide," to provide an
345	acceptable approach for satisfying the applicable requirements.
346	

Fermi Unit 3 references the ESBWR passive design features that 347 provide core cooling, containment, and spent fuel pool cooling for 3 348 days without relying on AC power. The ESBWR design also includes 349 available onsite equipment to maintain required safety functions in the 350 longer term (from 3 to 7 days), which is controlled by Regulatory 351 Treatment of Non-Safety Systems (RTNSS) requirements. In order to 352 ensure that there is an integrated approach for the mitigation 353 strategies, the staff proposed the following license condition: 354

At least one (1) year before the latest date set forth in the schedule for completing the inspections, tests, and analyses in the ITAAC submitted in accordance with 10 CFR § 52.99(a), DTE Electric Company shall use the guidance contained in JLD-ISG-2012-01, "Compliance with Order EA-

12-049, Order Modifying Licenses with Regard to 360 Requirements for Mitigation Strategies for Beyond-Design-361 Basis External Events," Revision 0 and the information 362 presented in Fermi FSAR Section 01.05 to complete the 363 development of strategies and guidance for maintaining and, 364 if necessary, restoring core cooling, containment, and spent 365 fuel pool cooling capabilities beginning 72 hours after loss of 366 all normal and emergency ac power sources, including any 367 alternate ac source under 10 CFR 50.63. These strategies 368 must be capable of: 369

- Mitigating a simultaneous loss of all ac power sources,
 both from the onsite and offsite power systems, and
 loss of normal access to the normal heat sink,
- Maintaining core cooling, containment, and spent fuel
 pool cooling capabilities for Fermi Unit 3 during and
 after such an event affecting both Fermi Units 2 and 3,
 and
 - Being implemented in all plant modes.
- 378

377

Before initial fuel load, DTE Electric Company shall fully implement the strategies and guidance required in this license condition, including procedures, training, and acquisition, staging or installing of equipment and

consumables relied upon in the strategies.

384	The staff concluded that the proposed license condition for Fermi Unit
385	3, as set forth in the schedule for completing the inspections, tests,
386	and analyses in the ITAAC submitted in accordance with 10 CFR
387	52.99(a), was acceptable and meets applicable guidance in JLD-ISG-
388	2012-01 Revision 0 and NEI 12–06, Revision 0.

389

We concur with this approach. However, we note that the staff is 390 silent about how RTNSS equipment survivability and operability can 391 be assured in the transition phase following an external event that 392 involves beyond-design-basis conditions. This lack of guidance is a 393 generic issue that needs to be clarified not only for this applicant but 394 also for all currently operating plants and future COL applicants. 395 396 **Reliable Spent Fuel Pool Instrumentation** 397 The staff evaluated Fermi Unit 3 proposed spent fuel pool (SFP) level 398 instrumentation with respect to NRC Order EA-12-051. The SFP level 399

instrumentation meets the requirements of NRC Order EA-12-051.

DTE will develop operating procedures, testing, and calibration
requirements for the installed instrument channels. A proposed
License Condition ensures that personnel will be trained on how to
establish alternate power connections to the level instruments.

405

Order EA-12-051 also requires that the primary and backup SFP 406 water level instrument channels be reliable at temperature, humidity, 407 and radiation levels consistent with the SFP water at beyond design 408 basis accident conditions for an extended period of time. However, 409 while it is clear that saturation temperature and humidity conditions 410 would exist for the SFP, we note that the staff is silent about the actual 411 radiation levels that are required for equipment gualification in beyond-412 design-basis conditions. This lack of guidance is another generic issue 413 that needs to be clarified not only for this applicant but also for 414 operating plants and future COL applicants. 415 416

417 Emergency Preparedness

418	The Fukushima accident highlighted the need to better determine the
419	levels of plant and offsite staffing needed to respond to a multi-unit
420	event. Additionally, there is a need to ensure that the communication
421	equipment that is relied on has adequate power to coordinate the
422	response to an event during an extended loss of AC power. The
423	applicant proposed and the staff accepted a license condition related
424	to communications and staffing for emergency planning actions.

425 **"Communications**:

At least two (2) years prior to scheduled initial fuel load, the 426 licensee shall have performed an assessment of on-site and off-427 site communications systems and equipment required during an 428 emergency event to ensure communications capabilities can be 429 maintained during prolonged station blackout conditions. The 430 communications capability assessment will be performed in 431 accordance with NEI 12–01, "Guideline for Assessing Beyond 432 **Design Basis Accident Response Staffing and Communications** 433 Capabilities", Revision 0. 434

At least one hundred eighty (180) days prior to scheduled initial
fuel load, DTE shall complete implementation of corrective
actions identified in the communications capability assessment
described above, including any related emergency plan and

- implementing procedure changes and associated training.
- 440 Staffing:

441	At least two (2) years prior to scheduled initial fuel load, the
442	licensee shall have performed assessments of the on-site and
443	augmented staffing capability to satisfy the regulatory
444	requirements for response to a multi-unit event. The staffing
445	assessments will be performed in accordance with NEI 12–01,
446	"Guideline for Assessing Beyond Design Basis Accident
447	Response Staffing and Communications Capabilities", Rev 0.
448	At least two (2) years prior to scheduled initial fuel load, the
449	licensee shall revise the Fermi 3 Emergency Plan to include the
450	following:
451	Incorporation of corrective actions identified in the staffing
452	assessments described above.
450	Identification of how the augmented staff will be notified
453	Identification of how the augmented staff will be notified
454	given degraded communications capabilities. "
455	The proposed License Condition ensures that communications and
456	staffing will be adequate for emergency planning operations. We
457	concur with this approach.

459

460 SUMMARY

- There is reasonable assurance that Fermi Unit 3 can be built and
- ⁴⁶² operated without undue risk to the health and safety of the public. The
- ⁴⁶³ Fermi Unit 3 COLA should be approved following its final revision.

464	Sincerely,
465	John W. Stetkar, Chairman
466	
467	

468 **REFERENCES**

⁴⁶⁹ Detroit Edison Fermi Unit 3 COLA (Final Safety Analysis Report), Rev. 6

- 470 (ML14055A128)
- 471

Chapter	Chapter Title	Transmittal Memo (Accessions Numbers)	ASER (Accession Numbers)
1	Introduction and Interfaces	ML14141A115	ML14080A144
2	Site Characteristics	ML12170A540	ML121020116
	Section 2.5 (Geology, Seismology, and Geotechnical Engineering)	ML14134A128	ML14101A417
3	Design of Structures, Components, Equipment and Systems	ML12160A508	ML121020121
	Sections 3.7 and 3.8, Seismic Design and seismic Category 1 Structures	ML14167A206	ML14162A375
	Section 3.9, Mechanical Systems and Components	ML14149A269	ML14140A161
4	Reactor	ML111090943	ML111090945
5	Reactor Coolant system and Connected Systems	ML112351087	ML112351095
6	Engineered safety Features	ML112280314	ML112280318
7	Instrumentation and Control Systems	ML111100094	ML111100100
8	Electric Power	ML111110427	ML110960626
	Section 8.2, Offsite Power System	ML14051A444	ML14051A415
9	Auxiliary Systems	ML112990155	ML113000122
10	Steam and Power Conversion System	ML121090162	ML121909187
11	Radioactive Waste Management	ML112971484	ML113000081
12	Radiation Protection	ML112971501	ML113000087
13	Conduct of Operations	ML112580477	ML112971304
	Section 13.3, Emergency Planning	ML14049A162	ML14036A294
14	Initial Test Program	ML121730494	ML12151A291
15	Safety Analyses	ML111120179	ML111120193
16	Technical Specifications	ML112231346	ML11203843
17	Quality Assurance	ML112560380	ML112630120
18	Human Factors Engineering	ML111101035	ML111101066
19	Probabilistic Risk Assessment and Severe Accidents and Loss of Large Areas of the Plant due to Explosions or Fires	ML112580541	ML112580548

473 474

476 477	While it was clear that the applicant has included all the known
478	seismic activity in the region around the Fermi site, whether natural or
479	induced with moment magnitudes greater than 2.9, certain specific
480	information could be clarified:
481	 For completeness, the FSAR and the SER could reference
482	the updated seismicity catalogs, including the period from
483	2009 to 2012, that include induced earthquakes in northeast
484	Ohio originating from disposal of fluids by injection into the
485	subsurface. This is in contrast to the earthquake catalog used
486	by the USGS in preparing the 2014 National Seismic Hazard
487	Maps and they are not tectonic earthquakes that provide clues
488	to the occurrence of future earthquakes.
489	 The updated seismicity catalog prepared by the NRC staff
490	shows seven earthquakes within a 320-km radius of the
491	Fermi Unit 3 site that exceed a magnitude of 3 and have
492	occurred between 2009 and 2012. In contrast the applicant
493	has only identified two earthquakes that have occurred
494	over this same period in the Fermi Unit 3 region. The

495	difference is caused by applicant identifying events of
496	moment magnitude greater than 2.9, while the NRC staff's
497	identified events are based on magnitudes greater than 3,
498	not moment magnitudes. The NRC staff for purposes of
499	clarity should identify their updated events as magnitude 3
500	and not moment magnitude. Pre-2009 earthquake catalog
501	data derived from the CEUS-SSC study is based on
502	moment magnitudes and the staff has used this catalog for
503	the pre-2009 period.

504

505

Order EA-12-051 requires that the primary and backup SFP water level instrument channels be 506 reliable at temperature, humidity, and radiation levels consistent with the SFP water at 507 508 saturation conditions for an extended period. The licensee identified that the radiation levels for gualification of the Fermi SFP would be based on a water level at one foot above the top of the 509 fuel assemblies. This is not consistent with a beyond design basis external event where 510 radiation levels at the location of SFP level sensors and the processing electronics could be 511 considerably higher based on the contribution of radiation levels from BDBEE reactor core 512 513 damage of a nature similar to the damage that occurred at Fukushima. Thus we recommend 514 that the gualification radiation levels be determined based on an analysis that determines 515 estimated radiation levels based on the scenario noted above.