FINAL DATA REPORT Rev. 2 GEOTECHNICAL EXPLORATION AND TESTING

TURKEY POINT COL PROJECT FLORIDA CITY, FLORIDA

October 6, 2008

VOLUME 4

Prepared By:

MACTEC Engineering and Consulting, Inc. Raleigh, North Carolina

MACTEC Project No. 6468-07-1950

Prepared For:

Bechtel Power Corporation Subcontract No. 25409-102-HC4-CY00-00001

> <u>Contents</u> Appendix F – RCTS Data Reports Appendix G – Groundwater

FINAL DATA REPORT Rev. 2 GEOTECHNICAL EXPLORATION AND TESTING

TURKEY POINT COL PROJECT FLORIDA CITY, FLORIDA

October 6, 2008

VOLUME 4 Appendix F – RCTS Data Reports

Prepared By:

MACTEC Engineering and Consulting, Inc. Raleigh, North Carolina

MACTEC Project No. 6468-07-1950

Prepared For:

Bechtel Power Corporation Subcontract No. 25352-102-HC4-CY00-00001

APPENDIX F CONTENTS

Fugro Appendix A – B630-UD8 Fugro Appendix B – B630-UD2 Fugro Appendix C – B630-UD13 Fugro Appendix D – B630-UD16 Fugro Appendix E – B630-UD19 Fugro Appendix F – B630-UD23 Fugro Appendix G – B630-UD27

: :

6100 Hillcroft (77081) P.O. Box 740010 Houston, Texas 77274 Tel: 713-369-5400 Fax: 713-369-5518

June 24, 2008

Ms. Siesta Williams MACTEC 3301 Atlantic Avenue Raleigh, NC 27604

RE: Two (2) Reports For The Turkey Point Project

Dear Ms. Williams:

Fugro has completed two (2) RCTS tests, which are B630-UD8 and B630-UD2 for the Turkey Point project. Fugro has incorporated, as needed, Dr. Kenneth Stokoe's comments into the final reports. The final reports and the associated RCTS Test Approvals by Dr. Kenneth Stokoe have been attached.

Please let us know if you have questions. Thanks.

Very truly yours,

Fugro Consultants, Inc.

Jiewu Meng, PhD, P.E. Project Engineer

Enclosures

Bill De Groff

Bill DeGroff, P.E. Laboratory Department Manager

RCTS TEST APROVAL

PROJECT SITE/NAME | Turkey Point

Test ID	Sample ID	Depth B.S. (Ft)	Approved By (Initials)	Date
RCTS#A	B630-UD8	163.1	KH9\$	18 June OF
RCTS#B	B630-UD2	131.9	× HG V	18 June Of

Two RCTS tests for the site referenced above were tested, and two reports were prepared, by Fugro Consultants, Inc.

I have reviewed the data and associated results listed above and found them to be reasonable.

Approved By:

Shlor _ H

Dr. Kenneth Stokoe

Engicher minor comments on a few Rigney.

APPENDIX A

Specimen B630-UD8

Borehole B630 Sample UD8 Depth = 163.1 ft (49.7 m) Total Unit Weight = 118.7 lb/ft³ Water Content = 33.0 % Estimated In-Situ Ko = 0.5 Estimated In-Situ Mean Effective Stress = 47 psi

> FUGRO JOB #: 0401-1701 Testing Station: RC9

ÜGRO

Figure A.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

DCN# TUR512

Figure A.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

DCN# TUR512

Figure A.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure A.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure A.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

DCN# TUR512

Figure A.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure A.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure A.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure A.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

DCN# TUR512

Figure A.10 Comparison of the Variation in Material Damping Ratio with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure A.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 47 psi from the Combined RCTS Tests

Figure A.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 47 psi from the Combined RCTS Tests

DCN# TUR512

Figure A.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 47 psi from the Combined RCTS Tests

Figure A.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 47 psi from the Combined RCTS Tests

Figure A.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 187 psi from the Combined RCTS Tests

Figure A.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 187 psi from the Combined RCTS Tests

Figure A.18 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 187 psi from the Combined RCTS Tests

Figure A.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 187 psi from the Combined RCTS Tests

Figure A.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 187 psi from the Combined RCTS Tests Table A.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-AmplitudeMaterial Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Testsof Specimen B630-UD8

Isotropic Confining Pressure, σ_o		Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e	
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
12	1728	83	1609	77	659	0.76	0.85
23	3312	158	2230	107	775	0.70	0.84
47	6768	324	3183	153	924	0.42	0.83
97	13968	668	4530	217	1097	0.40	0.81
187	26928	1288	5967	286	1249	0.39	0.79

Ľ

Table A.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen B630-UD8; Isoptropic Confining Pressure, σ_0 =47 psi (6.8 ksf = 324 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
4.04E-04	3196	1.00	4.04E-04	0.41
8.14E-04	3196	1.00	8.14E-04	0.41
1.55E-03	3196	1.00	1.46E-03	0.45
2.71E-03	3170	0.99	2.55E-03	0.55
4.86E-03	3090	0.97	4.52E-03	0.68
8.70E-03	3011	0.94	7.91E-03	0.95
1.51E-02	2903	0.91	1.36E-02	1.26
2.53E-02	2762	0.86	2.18E-02	1.75
4.22E-02	2556	0.80	3.50E-02	2.65
7.15E-02	2254	0.71	5.58E-02	3.96
1.31E-01	1886	0.59	9.54E-02	5.48

* Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve * Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

1

Table A.3 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen B630-UD8; Isotropic Confining Pressure, σ₀= 47 psi (6.8 ksf = 324 kPa)

First Cycle				Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %
1.03E-03	3020	1.00	0.68	1.04E-03	3016	1.00	0.70
2.09E-03	3005	0.99	0.61	2.09E-03	3010	1.00	0.63
4.25E-03	2956	0.98	1.00	4.25E-03	2954	0.98	0.86
8.86E-03	2834	0.94	1.60	8.87E-03	2832	0.94	1.49

Table A.4Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen B630-UD8; Isoptropic Confining Pressure, σ_0 = 187 psi (26.9 ksf = 1288 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
3.09E-04	6071	1.00	3.09E-04	0.38
6.26E-04	6071	1.00	6.26E-04	0.41
1.21E-03	6071	1.00	1.14E-03	0.43
2.28E-03	6009	0.99	2.19E-03	0.46
4.16E-03	5935	0.98	3.95E-03	0.54
7.40E-03	5825	0.96	6.88E-03	0.73
1.28E-02	5666	0.93	1.19E-02	0.99
2.17E-02	5453	0.90	1.97E-02	1.30
3.69E-02	5120	0.84	3.25E-02	1.76
6.19E-02	4703	0.77	5.14E-02	2.68
1.03E-01	4115	0.68	8.04E-02	3.92
1.86E-01	3365	0.55	1.34E-01	5.34
2.64E-01	3175	0.52	1.80E-01	6.37

Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve
Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table A.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen B630-UD8; Isotropic Confining
Pressure, σ_0 =187 psi (26.9 ksf = 1288 kPa)

First Cycle				Tenth Cycle			
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
1.03E-03	5671	0.98	0.60	1.01E-03	5744	1.00	0.69
2.02E-03	5768	1.00	0.97	2.05E-03	5698	0.99	0.78
4.13E-03	5650	0.98	1.06	4.10E-03	5684	0.99	0.89
8.40E-03	5551	0.96	1.14	8.38E-03	5565	0.97	0.97

} !

APPENDIX B

Specimen B630-UD2

Borehole B630 Sample UD2 Depth = 131.9 ft (40.2 m) Total Unit Weight = 120.1 lb/ft³ Water Content = 33.8 % Estimated In-Situ Ko = 0.5 Estimated In-Situ Mean Effective Stress = 38 psi

> FUGRO JOB #: 0411-08-1701 Testing Station: RC5

Figure B.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure B.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure B.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure B.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure B.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure B.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

i

Figure B.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure B.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure B.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure B.10 Comparison of the Variation in Material Damping Ratio with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure B.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 38 psi from the Combined RCTS Tests

Figure B.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 38 psi from the Combined RCTS Tests

Figure B.13 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 38 psi from the Combined RCTS Tests

Figure B.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 38 psi from the Combined RCTS Tests

Figure B.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 38 psi from the Combined RCTS Tests Table B.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen B630-UD2

Isotropic Confining Pressure, σ_o			Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
9	1296	62	1354	65	605	0.68	0.86
19	2736	131	1918	92	719	0.44	0.86
38	5472	262	2688	129	850	0.28	0.85

Table B.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen B630-UD2; Isoptropic Confining Pressure, σ_o = 38 psi (5.5 ksf = 262 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average [⁺] Shearing Strain, %	Material Damping Ratio ^x , D, %
2.01E-04	2719	1.00	2.01E-04	0.27
4.01E-04	2719	1.00	4.01E-04	0.27
8.20E-04	2704	0.99	7.87E-04	0.32
1.55E-03	2689	0.99	1.47E-03	0.34
2.82E-03	2659	0.98	2.65E-03	0.40
5.00E-03	2600	0.96	4.55E-03	0.54
8.52E-03	2538	0.93	7.67E-03	0.74
1.41E-02	2445	0.90	1.21E-02	1.13
2.32E-02	2283	0.84	1.93E-02	1.70
3.74E-02	2099	0.77	2.92E-02	2.53
6.20E-02	1853	0.68	4.53E-02	4.04

* Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve * Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve Table B.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen B630-UD2; Isotropic Confining Pressure, σ_0 = 38 psi (5.5 ksf
=262 kPa)

First Cycle				Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %
1.02E-03	2638	1.00	0.14	1.02E-03	2640	1.00	0.37
2.04E-03	2635	1.00	0.38	2.03E-03	2648	1.00	0.44
4.15E-03	2584	0.98	0.78	4.17E-03	2576	0.97	0.53
1.01E-02	2482	0.94	1.04	1.01E-02	2484	0.94	1.15

i

FUGRO CONSULTANTS, INC.

6100 Hillcroft (77081) P.O. Box 740010 Houston, Texas 77274 Tel: 713-369-5400 Fax: 713-369-5518

July 10, 2008

Ms. Siesta Williams MACTEC 3301 Atlantic Avenue Raleigh, NC 27604

RE: Two (2) Reports For The Turkey Point Project

Dear Ms. Williams:

Fugro has completed two (2) RCTS tests, which are B630-UD13 and B630-UD16 for the Turkey Point project. Fugro has incorporated, as needed, Dr. Kenneth Stokoe's comments into the final reports. The final reports and the associated RCTS Test Approvals by Dr. Kenneth Stokoe have been attached.

Please let us know if you have questions. Thanks.

Very truly yours,

Fugro Consultants, Inc.

8

Jiewu Meng, PhD, P.E. Project Engineer

Enclosures

Bill De Groff

Bill DeGroff, P.E. Laboratory Department Manager

RCTS TEST APROVAL

PROJECT SITE/NAME Turkey Point

Test ID	Sample ID	Depth B.S. (Ft)	Approved By (Initials)	Date
RCTS#C	B630-UD13	190	KITSE	3 July 08
RCTS#D	B630-UD16	211	KHS (V)	3. Jun 08

Two RCTS tests for the site referenced above were tested, and two reports were prepared, by Fugro Consultants, Inc.

I have reviewed the data and associated results listed above and found them to be reasonable.

Approved By: K.H. Stoker R

Dr. Kenneth Stokoe

TUGRO

APPENDIX C

Specimen B630-UD13

Borehole 630 Sample UD13 Depth = 189.7 ft (57.8 m) Total Unit Weight = 117.1 lb/ft³ Water Content = 32.5 % Estimated In-Situ Ko = 0.5 Estimated In-Situ Mean Effective Stress = 55 psi

> FUGRO JOB #: 0411-08-1701 Testing Station: RC5

Figure C.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Page 54 of 537

Figure C.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure C.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure C.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure C.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure C.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure C.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure C.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure C.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure C.10 Comparison of the Variation in Material Damping Ratio with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure C.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 55 psi from the Combined RCTS Tests

Figure C.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 55 psi from the Combined RCTS Tests

Figure C.13 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 55 psi from the Combined RCTS Tests

Figure C.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 55 psi from the Combined RCTS Tests

Figure C.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 55 psi from the Combined RCTS Tests

Figure C.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 219 psi from the Combined RCTS Tests

Figure C.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 219 psi from the Combined RCTS Tests

Figure C.18 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 219 psi from the Combined RCTS Tests

Figure C.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 219 psi from the Combined RCTS Tests

Figure C.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 219 psi from the Combined RCTS Tests

Table C.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-AmplitudeMaterial Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Testsof Specimen B630-UD13

Isotropic C	onfining Pre	ssure, σ _o	Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
14	2016	96	1794	86	701	0.81	0.87
27	3888	186	2417	116	814	0.71	0.87
55	7920	379	3381	162	961	0.63	0.86
109	15696	751	4596	221	1118	0.54	0.85
219	31536	1509	5732	275	1243	0.46	0.84

1

Table C.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen B630-UD13; Isoptropic Confining Pressure, σ_0 = 55 psi (7.9 ksf = 379 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
3.88E-04	3381	1.00	3.88E-04	0.63
8.14E-04	3381	1.00	8.14E-04	0.63
1.58E-03	3381	1.00	1.47E-03	0.62
3.06E-03	3326	0.98	2.79E-03	0.70
5.66E-03	3272	0.97	5.09E-03	0.85
1.03E-02	3164	0.94	9.17E-03	1.17
1.81E-02	3033	0.90	1.57E-02	1.54
2.98E-02	2908	0.86	2.50E-02	2.01
5.17E-02	2629	0.78	4.19E-02	2.79
8.86E-02	2362	0.70	6.65E-02	4.11
1.65E-01	2002	0.59	1.14E-01	5.69

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Volume 4, Rev 2 - 10/6/2008

Table C.3 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen B630-UD13; Isotropic Confining Pressure, σ₀= 55 psi (7.9 ksf = 379 kPa)

First Cycle				Tenth Cycle			
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
1.02E-03	3420	1.00		1.04E-03	3407	1.00	
2.07E-03	3390	0.99	0.83	2.05E-03	3407	1.00	0.58
4.33E-03	3239	0.95	0.98	4.22E-03	3325	0.98	0.56
1.04E-02	3097	0.91	1.38	1.04E-02	3108	0.91	1.54

Table C.4Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen B630-UD13; Isoptropic Confining Pressure, σ_o = 219 psi (31.5 ksf = 1509 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
3.55E-04	5727	1.00	3.55E-04	0.46
7.29E-04	5727	1.00	7.29E-04	0.46
1.41E-03	5727	1.00	1.32E-03	0.46
2.69E-03	5691	0.99	2.50E-03	0.51
5.02E-03	5619	0.98	4.67E-03	0.61
9.09E-03	5513	0.96	8.45E-03	0.70
1.63E-02	5325	0.93	1.49E-02	0.92
2.77E-02	5141	0.90	2.47E-02	1.22
4.79E-02	4782	0.83	4.12E-02	1.80
8.05E-02	4398	0.77	6.60E-02	2.62
1.33E-01	3910	0.68	1.03E-01	3.68
2.49E-01	3283	0.57	1.76E-01	5.10

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table C.5 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen B630-UD13; Isotropic Confining Pressure, σ_o= 219 psi (31.5 ksf = 1509 kPa)

First Cycle				Tenth Cycle			
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
8.84E-04	5560	1.00		9.05E-04	5528	1.00	0.59
2.02E-03	5560	1.00	0.52	2.01E-03	5528	1.00	0.53
4.01E-03	5550	1.00	0.69	4.00E-03	5528	1.00	0.71
1.01E-02	5218	0.94	1.05	9.93E-03	5293	0.96	1.10

1

1

APPENDIX D

Specimen B630-UD16

Borehole 630 Sample UD16 Depth = 211.0 ft (64.3 m) Total Unit Weight = 116.3 lb/ft³ Water Content = 31.1 % Estimated In-Situ Ko = 0.5 Estimated In-Situ Mean Effective Stress = 60 psi

> FUGRO JOB #: 0411-08-1701 Testing Station: RC9

Figure D.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

DCN# TUR512

Figure D.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure D.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

DCN# TUR512

Figure D.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure D.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure D.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure D.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure D.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

DCN# TUR512

Figure D.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure D.10 Comparison of the Variation in Material Damping Ratio with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure D.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 60 psi from the Combined RCTS Tests

DCN# TUR512

Figure D.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 60 psi from the Combined RCTS Tests

Figure D.13 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 60 psi from the Combined RCTS Tests

Figure D.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 60 psi from the Combined RCTS Tests

Figure D.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 60 psi from the Combined RCTS Tests

Figure D.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 242 psi from the Combined RCTS Tests

Figure D.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 242 psi from the Combined RCTS Tests

Figure D.18 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 242 psi from the Combined RCTS Tests

Figure D.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 242 psi from the Combined RCTS Tests

DCN# TUR512

Figure D.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 242 psi from the Combined RCTS Tests Table D.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-AmplitudeMaterial Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Testsof Specimen B630-UD16

Isotropic C	Confining Pre	ssure, σ _o	Low-Ampl Moduli	itude Shear us, G _{max}	Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e
(psi)	(psf)	(kPa)	(ksf)	(MPa)	_(fps)	(%)	
15	2160	103	2127	102	765	1.21	0.85
30	4320	207	3042	146	913	1.09	0.85
60	8640	413	4303	207	1083	1.00	0.84
121	17424	834	6033	290	1277	0.85	0.82
242	34848	1667	8347	401	1488	0.69	0.79

Table D.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen B630-UD16; Isoptropic Confining Pressure, $\sigma_0 = 60$ psi (8.6 ksf = 413 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
3.41E-04	4335	1.00	3.41E-04	0.99
6.93E-04	4335	1.00	6.93E-04	0.99
1.36E-03	4304	0.99	1.25E-03	1.01
2.60E-03	4273	0.99	2.39E-03	1.04
4.78E-03	4212	0.97	4.35E-03	1.10
8.53E-03	4091	0.94	7.68E-03	1.31
1.47E-02	3912	0.90	1.28E-02	1.80
2.48E-02	3652	0.84	2.08E-02	2.58
4.23E-02	3347	0.77	3.34E-02	3.58
7.52E-02	2929	0.68	5.42E-02	5.29
1.06E-01	2662	0.61	7.23E-02	6.47

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table D.3	Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
	Strain from TS Tests of Specimen B630-UD16; Isotropic Confining Pressure, σ_0 = 60 psi (8.6 ksf =
	413 kPa)

First Cycle				Tenth Cycle			
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
1.01E-03	3981	1.00	0.77	1.01E-03	3988	1.00	1.05
2.04E-03	3972	1.00	0.96	2.07E-03	3910	0.98	0.73
4.17E-03	3885	0.98	1.21	4.19E-03	3868	0.97	1.14
8.72E-03	3713	0.93	1.86	8.75E-03	3701	0.93	1.81

.

.

.

.

Table D.4 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen B630-UD16; Isoptropic Confining Pressure, σ_o= 242 psi (34.8 ksf = 1667 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
2.21E-04	8430	1.00	2.21E-04	0.69
4.43E-04	8430	1.00	4.43E-04	0.69
9.09E-04	8430	1.00	8.54E-04	0.69
1.79E-03	8390	1.00	1.68E-03	0.70
3.42E-03	8312	0.99	3.21E-03	0.73
6.28E-03	8195	0.97	5.90E-03	0.77
1.11E-02	7993	0.95	1.03E-02	0.94
1.88E-02	7689	0.91	1.69E-02	1.33
3.12E-02	7279	0.86	2.72E-02	1.94
5.17E-02	6777	0.80	4.29E-02	2.81
9.00E-02	5945	0.71	7.02E-02	4.07
1.65E-01	4867	0.58	1.16E-01	5.91

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table D.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen B630-UD16; Isotropic Confining
Pressure, σ_0 = 242 psi (34.8 ksf = 1667 kPa)

First Cycle				Tenth Cycle			
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
9.81E-04	7797	1.00	0.64	9.85E-04	7764	0.99	0.60
1.98E-03	7713	0.99	0.46	1.94E-03	7872	1.00	0.58
3.96E-03	7720	0.99	0.54	3.94E-03	7779	0.99	0.83
8.03E-03	7625	0.98	1.09	8.02E-03	7638	0.97	1.09

FUGRO CONSULTANTS, INC.

6100 Hillcroft (77081) P.O. Box 740010 Houston, Texas 77274 Tel: 713-369-5400 Fax: 713-369-5518

July 12, 2008

Ms. Siesta Williams MACTEC 3301 Atlantic Avenue Raleigh, NC 27604

RE: Three (3) Reports For The Turkey Point Project

Dear Ms. Williams:

Fugro has completed three (3) RCTS tests, which are B630-UD19, B630-UD23, and B630-UD27 for the Turkey Point project. Fugro has incorporated, as needed, Dr. Kenneth Stokoe's comments into the final reports. The final reports and the associated RCTS Test Approvals by Dr. Kenneth Stokoe have been attached.

Please let us know if you have questions. Thanks.

Very truly yours,

Fugro Consultants, Inc.

Magne

Jiewu Meng, PhD, P.E. Project Engineer

Enclosures

Bill De Groff

Bill DeGroff, P.E. **'** Laboratory Department Manager

RCTS TEST APROVAL

PROJECT SITE/NAME | Turkey Point

Test ID	Sample ID	Depth B.S. (Ft)	Approved By (Initials)	Date
RCTS#E	B630-UD19	231.0	KHGD	SJuly Of
RCTS#F	B630-UD23	260.5	X 119(7)A	STally '08
RCTS#G	B630-UD27	294.0	KATE (7)	SJuly'OF
		··· <u> </u>		

Three RCTS tests for the site referenced above were tested, and three reports were prepared, by Fugro Consultants, Inc.

I have reviewed the data and associated results listed above and found them to be reasonable.

Approved By

H Stoker

Dr. Kenneth Stokoe

E See numer comments and suggestions on a faw figures A In Appendix F. The reported X of 150.116/ff3 on the cover A top 150.116/ff3 on the cover page can not be correct. Please correct to a 121.16/ff3.

UGRO

APPENDIX E

Specimen B630-UD19

Borehole 630 Sample UD19 Depth = 231.0 ft (70.6 m) Total Unit Weight = 121.9 lb/ft³ Water Content = 26.6 % Estimated In-Situ Ko = 0.5 Estimated In-Situ Mean Effective Stress = 66 psi

> FUGRO JOB #: 0411-08-1701 Testing Station: RC9

Figure E.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure E.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure E.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure E.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

ļ

Figure E.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure E.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure E.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure E.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure E.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure E.10 Comparison of the Variation in Material Damping Ratio with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure E.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 66 psi from the Combined RCTS Tests

Figure E.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 66 psi from the Combined RCTS Tests

Figure E.13 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 66 psi from the Combined RCTS Tests

i

Figure E.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 66 psi from the Combined RCTS Tests

ŧ.

Figure E.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 66 psi from the Combined RCTS Tests

Figure E.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 265 psi from the Combined RCTS Tests

Figure E.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 265 psi from the Combined RCTS Tests

Figure E.18 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 265 psi from the Combined RCTS Tests

į

Figure E.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 242 psi from the Combined RCTS Tests

i

Figure E.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 242 psi from the Combined RCTS Tests Table E.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen B630-UD19

Isotropic Confining Pressure, σ_o		Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e	
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
17	2448	117	1854	89	699	0.64	0.72
33	4752	227	2617	126	830	0.50	0.71
66	9504	455	3705	178	987	0.41	0.71
132	19008	909	5579	268	1209	0.36	0.71
265	38160	1826	7729	371	1420	0.34	0.70

ļ

1

 \mathbf{N}

Table E.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen B630-UD19; Isoptropic Confining Pressure, σ_{o} = 66 psi (9.5ksf = 455 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
3.29E-04	3762	1.00	3.29E-04	0.41
7.01E-04	3762	1.00	7.01E-04	0.41
1.33E-03	3728	0.99	1.27E-03	0.46
2.47E-03	3705	0.98	2.32E-03	0.49
4.45E-03	3637	0.97	4.18E-03	0.55
7.81E-03	3570	0.95	7.27E-03	0.65
1.33E-02	3452	0.92	1.22E-02	0.85
2.18E-02	3312	0.88	1.96E-02	1.29
3.54E-02	3107	0.83	3.04E-02	1.99
5.82E-02	2831	0.75	4.71E-02	2.94
9.82E-02	2473	0.66	7.46E-02	4.24
1.66E-01	2172	0.58	1.16E-01	5.77

 1.66E-01
 2172
 0.58
 1.16E-01
 5.77

 * Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

^x Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

ļ

Table E.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen B630-UD19; Isotropic Confining Pressure, σ_0 = 66 psi (9.5 ksf =
455 kPa)

	Fir	st Cycle		Tenth Cycle			
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
1.05E-03	3628	1.00	0.24	1.04E-03	3679	1.00	0.47
2.12E-03	3615	1.00	0.52	2.13E-03	3597	0.98	0.42
4.31E-03	3554	0.98	0.84	4.31E-03	3555	0.97	0.74
8.93E-03	3431	0.95	1.09	8.96E-03	3420	0.93	1.08

ļ

Table E.4 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen B630-UD19; Isoptropic Confining Pressure, σ_o = 265 psi (38.2 ksf = 1826 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
2.99E-04	7729	1.00	2.99E-04	0.34
6.09E-04	7729	1.00	6.09E-04	0.34
1.16E-03	7729	1.00	1.12E-03	0.36
2.20E-03	7652	0.99	2.11E-03	0.37
4.02E-03	7614	0.99	3.86E-03	0.39
7.23E-03	7500	0.97	6.87E-03	0.44
1.22E-02	7354	0.95	1.16E-02	0.57
1.99E-02	7163	0.93	1.88E-02	0.74
3.26E-02	6834	0.88	2.96E-02	1.06
5.19E-02	6412	0.83	4.67E-02	1.78
8.07E-02	5896	0.76	6.70E-02	2.88
1.28E-01	5301	0.69	9.85E-02	4.19
1.57E-01	5057	0.65	1.14E-01	5.05

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table E.5 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen B630-UD19; Isotropic Confining Pressure, σ₀= 265 psi (38.2 ksf = 1826 kPa)

	First	Cycle		Tenth Cycle				
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	
2.00E-03	7251	1.00	0.12	1.99E-03	7279	1.00	0.32	
4.03E-03	7186	0.99	0.35	4.03E-03	7192	0.99	0.40	
8.17E-03	7091	0.98	0.60	8.16E-03	7103	0.98	0.58	

i

i.

APPENDIX F

Specimen B630-UD23

Borehole 630 Sample UD23 Depth = 260.5 ft (79.4 m) Total Unit Weight = 121.3 lb/ft³ Water Content = 27.1 % Estimated In-Situ Ko = 0.5 Estimated In-Situ Mean Effective Stress = 75 psi

> FUGRO JOB #: 0411-08-1701 Testing Station: RC8

Figure F.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure F.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure F.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

ł

Figure F.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure F.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

i

Figure F.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure F.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure F.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure F.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure F.10 Comparison of the Variation in Material Damping Ratio with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure F.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 75 psi from the Combined RCTS Tests

Figure F.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 75 psi from the Combined RCTS Tests

1

T

Figure F.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 75 psi from the Combined RCTS Tests

Figure F.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 75 psi from the Combined RCTS Tests

Figure F.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 300 psi from the Combined RCTS Tests

Figure F.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 300 psi from the Combined RCTS Tests

Figure F.18 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 300 psi from the Combined RCTS Tests

Figure F.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 300 psi from the Combined RCTS Tests

Figure F.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 300 psi from the Combined RCTS Tests Table F.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen B630-UD23

Isotropic Confining Pressure, σ_o		Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e	
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
19	2736	131	1908	92	711	0.92	0.73
37	5328	255	2612	125	831	0.79	0.73
75	10800	517	3742	180	993	0.66	0.72
150	21600	1034	5405	259	1191	0.57	0.71
300	43200	2067	7663	368	1409	0.49	0.69

.

Table F.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen B630-UD23; Isoptropic Confining Pressure, $\sigma_o = 75$ psi (10.8 ksf = 517 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
3.24E-04	3713	1.00	3.24E-04	0.66
6.60E-04	3713	1.00	6.60E-04	0.66
1.30E-03	3679	0.99	1.21E-03	0.74
2.43E-03	3656	0.98	2.26E-03	0.88
4.62E-03	3589	0.97	4.21E-03	1.08
8.71E-03	3523	0.95	7.83E-03	1.31
1.52E-02	3417	0.92	1.37E-02	1.58
2.50E-02	3302	0.89	2.20E-02	1.94
4.17E-02	3043	0.82	3.50E-02	2.49
6.85E-02	2760	0.74	5.48E-02	3.33
1.14E-01	2451	0.66	8.59E-02	4.39

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

* Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table F.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen B630-UD23; Isotropic Confining Pressure, σ_0 = 75 psi (10.8 ksf =
517 kPa)

First Cycle				Tenth Cycle			
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
1.00E-03	3694	1.00	0.45	1.01E-03	3677	0.99	0.28
2.00E-03	3700	1.00	0.51	2.00E-03	3715	1.00	0.55
4.09E-03	3616	0.98	0.68	4.10E-03	3617	0.97	0.67
8.43E-03	3515	0.95	1.07	8.47E-03	3500	0.94	1.00

Table F.4 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen B630-UD23; Isoptropic Confining Pressure, σ_o = 300 psi (43.2 ksf = 2067 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
2.58E-04	7696	1.00	2.58E-04	0.49
5.02E-04	7696	1.00	5.02E-04	0.49
1.01E-03	7696	1.00	9.61E-04	0.57
1.92E-03	7635	0.99	1.82E-03	0.61
3.55E-03	7562	0.98	3.34E-03	0.68
6.32E-03	7489	0.97	5.94E-03	0.78
1.09E-02	7365	0.96	1.01E-02	0.91
1.82E-02	7146	0.93	1.66E-02	1.13
3.04E-02	6822	0.89	2.73E-02	1.43
4.81E-02	6430	0.84	4.19E-02	1.88
7.89E-02	5847	0.76	6.63E-02	2.67
1.24E-01	5386	0.70	9.81E-02	3.75
1.54E-01	5138	0.67	1.38E-01	4.68

⁺ Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

¦

.

Table F.5 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen B630-UD23; Isotropic Confining Pressure, σ_o= 168 psi (43.2 ksf = 2067 kPa)

First Cycle				Tenth Cycle			
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
9.87E-04	6865	1.00	0.54	9.81E-04	6898	1.00	0.44
2.02E-03	6865	1.00	0.54	2.01E-03	6898	1.00	0.49
4.05E-03	6865	1.00	0.47	4.04E-03	6893	1.00	0.42
8.17E-03	6817	0.99	0.55	8.17E-03	6820	0.99	0.68

ļ

I

FUGRO

APPENDIX G

Specimen B630-UD27

Borehole 630 Sample UD27 Depth = 294.0 ft (89.6m) Total Unit Weight = 121.3 lb/ft³ Water Content = 25.5 % Estimated In-Situ Ko = 0.5 Estimated In-Situ Mean Effective Stress = 84 psi

> FUGRO JOB #: 0411-08-1701 Testing Station: RC8

Figure G.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure G.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

1

Figure G.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure G.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

!

Figure G.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure G.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure G.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure G.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure G.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure G.10 Comparison of the Variation in Material Damping Ratio with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure G.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 84 psi from the Combined RCTS Tests

Figure G.13 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 84 psi from the Combined RCTS Tests

Figure G.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 84 psi from the Combined RCTS Tests

Figure G.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 84 psi from the Combined RCTS Tests

Figure G.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 338 psi from the Combined RCTS Tests

Figure G.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 338 psi from the Combined RCTS Tests

Figure G.18 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 338 psi from the Combined RCTS Tests

Figure G.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 338 psi from the Combined RCTS Tests

Figure G.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 338 psi from the Combined RCTS Tests Table G.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen B630-UD27

Isotropic Confining Pressure, σ_o		Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e	
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
21	3024	145	2246	108	771	0.87	0.71
42	6048	289	3108	149	905	0.86	0.70
84	12096	579	4401	211	1075	0.52	0.69
169	24336	1164	6283	302	1279	0.50	0.68
338	48672	2329	8549	410	1485	0.47	0.67

.

1

1

l
Table G.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen B630-UD27; Isoptropic Confining Pressure, σ_o = 84 psi (12.1 ksf = 579 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
4.10E-04	4404	1.00	4.10E-04	0.52
8.37E-04	4404	1.00	8.37E-04	0.54
1.58E-03	4367	0.99	1.50E-03	0.55
2.94E-03	4318	0.98	2.77E-03	0.66
5.34E-03	4244	0.96	4.96E-03	0.81
9.49E-03	4147	0.94	8.73E-03	1.01
1.61E-02	4026	0.91	1.45E-02	1.36
2.71E-02	3780	0.86	2.35E-02	1.89
4.50E-02	3508	0.80	3.78E-02	2.62
7.47E-02	3183	0.72	5.90E-02	3.62
1.27E-01	2797	0.63	9.28E-02	5.11

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

| | | |

i.

.

Table G.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen B630-UD27; Isotropic Confining Pressure, σ_0 = 84 psi (12.1 ksf = 579 kPa)

First Cycle			Tenth Cycle				
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
1.00E-03	4074	0.98	0.53	1.00E-03	4061	0.98	0.39
1.98E-03	4074	0.98	0.42	1.99E-03	4061	0.98	0.42
3.99E-03	4068	0.98	0.66	4.03E-03	4027	0.97	0.63
8.23E-03	3942	0.95	1.09	8.25E-03	3933	0.95	1.13

1

Table G.4 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen B630-UD27; Isoptropic Confining Pressure, σ_o = 338 psi (48.7 ksf = 2329 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
2.41E-04	8564	1.00	2.41E-04	0.47
4.81E-04	8564	1.00	4.81E-04	0.47
9.67E-04	8564	1.00	9.28E-04	0.48
1.83E-03	8495	0.99	1.75E-03	0.53
3.39E-03	8413	0.98	3.22E-03	0.56
6.12E-03	8291	0.97	5.82E-03	0.60
1.06E-02	8180	0.96	9.92E-03	0.74
1.76E-02	7925	0.93	1.62E-02	1.04
2.88E-02	7566	0.88	2.59E-02	1.49
4.30E-02	7151	0.84	3.83E-02	1.90
6.79E-02	6562	0.77	5.77E-02	2.69

^{*} Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve ^{*} Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

;

Table G.5 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen B630-UD27; Isotropic Confining Pressure, σ_0 = 338 psi (48.7 ksf = 2329 kPa)

First Cycle			Tenth Cycle				
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
1.01E-03	8551	1.00	0.45	1.02E-03	8486	1.00	0.47
2.03E-03	8551	1.00	0.47	2.05E-03	8486	1.00	0.35
4.10E-03	8551	1.00	0.53	4.07E-03	8523	1.00	0.63
8.31E-03	8362	0.98	0.77	8.32E-03	8352	0.98	0.75

i

i

i

1

í

ł