APPENDIX C

Results for Kleinfelder Specimen ID K2-13-002

- Specimen Preparation Notes
- RCTS Testing Results

A-170 SPECIMEN PREPARATION NOTES

Specimen K2-13-002	Project No : 136473	Page <u>1</u> of <u>4</u>					
Boring No.: B-714	Date of Preparation:	10/12/13					
Sample No: 714-CS-01	Depth:	29.4 - 29.9 feet					
Disposition of Rock Core	Sample						
No Apparent Disturbance	Apparent Disturbance	parent Slaking Due to Coring					
Other (Describe) Sample consisted of a Limestone with Small to Large Sized Vugs							
Specimen Preparation No	tes						

Specifien Freparation Notes									
Trimming Method :	Rotary coring 1.5-inch OD c	with water lubricant, liameter core barrel	Affixation to Platens :	Epoxied to 2.8-inch diameter steel top cap and base pedesta					
Ave. Length (in.) :	4.0265	Ave. Diameter (in.):	1.451	L/D	2.8				
Total Unit Weight .		Moisture Content		% Saturation					
(pcf) :	129.8	(%)	8.7	(Assume SG = 2.70)	57.0				

Specimen Testing Comments

1) Sample 714-CS-01 was predominately a medium strong rock with small to large sized vugs (see Photo C.1 to C.2). Due to the rock hardness, the sample could not be trimmed by hand and it was decided to core the nominally 2.5-inch diameter sample with a 1.5-inch outside diameter (OD), thin-walled diamond-impregnated core barrel.

2) Sample was trimmed to an approximate 6-inch length and grouted into an CMU block on 10/12/13. See Photos C.3 through C.4.

3) Sample was cored on 10/13/13. See Photo C.5. One approximately 1.45-inch diameter specimen resulted from the air rotary coring. The specimen was of sufficient length for RCTS Testing and the sample ends were trimmed to the final length of about 4.0-inches.

4) Specimen was epoxied to the 2.8-inch diameter steel top cap and base pedestal on 12/10/13.

5) Testing commenced on 12/11/13 and was completed on 12/13/13. The full test sequence was completed, with confining pressures ranging from 3 psi to 40 psi.

See Attached Photographs

A-171 SPECIMEN PREPARATION NOTES

Specimen No: K2-13-002

Page 2 of 4

A-172 SPECIMEN PREPARATION NOTES

Specimen No: K2-13-002

Page 3 of 4

A-173 SPECIMEN PREPARATION NOTES

Specimen No: K2-13-002

Page 4 of 4

Photo C.7

Specimen after affixation to the steal top cap and base pedestal using epoxy. Note modeling clay placed in natural vugs to prevent membrane puncture during testing.

Kleinfelder Specimen ID: K2-13-002

Boring No: B-714 Sample No: CS-01

Limestone (Key Largo Formation) Depth = 29.4 ft – 29.9 ft (below existing ground surface) Total Unit Weight = 129.8 lb/ft³ Natural Moisture Content = 8.7% Estimated In-Situ Mean Effective Stress = 10 psi

Figure C.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests of Specimen K2-13-002

Duration of Confinement Time, t, minutes

Figure C.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests of Specimen K2-13-002

Figure C.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Test of Specimen K2-13-002

Figure C.4 Variation in Estimated Total Unit Weight with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests of Specimen K2-13-002

Figure C.5 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests of Specimen K2-13-002

Figure C.6 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Test of Specimen K2-13-002

Figure C.7 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests of Specimen K2-13-002

A-182 RCTS TEST RESULTS

Isotropic Confining Pressure, σ_o , kPa

Figure C.8 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests of Specimen K2-13-002

A-183 RCTS TEST RESULTS

Figure C.9 Variation in Estimated Total Unit Weight with Isotropic Confining Pressure from Resonant Column Tests of Specimen K2-13-002

Figure C.10 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests of Specimen K2-13-002

Figure C.11 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests of Specimen K2-13-002

Figure C.12 Comparison of the Variation in Material Damping Ratio with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests of Specimen K2-13-002

Figure C.13 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 10 psi (=1.4ksf=69kPa) from the Combined RCTS Tests of Specimen K2-13-002

Figure C.14 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 10 psi (=1.4ksf=69kPa) from the Combined RCTS Tests of Specimen K2-13-002

Figure C.15 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 10 psi (=1.4ksf=69kPa) from the Combined RCTS Tests of Specimen K2-13-002

Figure C.16 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 10 psi (=1.4ksf=69kPa) from the Combined RCTS Tests of Specimen K2-13-002

A-191 RCTS TEST RESULTS

Figure C.17 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 10 psi (=1.4ksf=69kPa) from the Combined RCTS Tests of Specimen K2-13-002

Figure C.18 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 40 psi (=5.8ksf=276kPa) from the Combined RCTS Tests of Specimen K2-13-002

Figure C.19 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 40 psi (=5.8ksf=276kPa) from the Combined RCTS Tests of Specimen K2-13-002

Figure C.20 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 40 psi (=5.8ksf=276kPa) from the Combined RCTS Tests of Specimen K2-13-002

Figure C.21 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 40 psi (=5.8ksf=276kPa) from the Combined RCTS Tests of Specimen K2-13-002

A-196 RCTS TEST RESULTS

Figure C.22 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 40 psi (=5.8ksf=276kPa) from the Combined RCTS Tests of Specimen K2-13-002

A-197 RCTS TEST RESULTS

Table C.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-
Amplitude Material Damping Ratio, Estimated Void Ratio, and Estimated Total Unit Weight with
Isotropic Confining Pressure from RC Tests of Specimen K2-13-002

Isotropic	c Confining σ ₀	Pressure,	Low-Ai Shear M G	nplitude Iodulus, ^{max}	Low- Amplitude Shear Wave Velocity, V _s	Low- Amplitude Material Damping Ratio, D _{min}	Estimated Void Ratio, e	Estimated Total Unit Weight, γ _t
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	(Unitless)	(pcf)
3	432	21	143100	6852	5960	0.49	0.411	129.8
5	720	34	143300	6859	5960	0.49	0.411	129.8
10	1440	69	143700	6882	5970	0.46	0.411	129.8
20	2880	138	142800	6839	5950	0.46	0.411	129.8
40	5760	276	143500	6868	5960	0.44	0.411	129.8

Table C.2Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with
Shearing Strain from TS Tests of Specimen K2-13-002; Isotropic Confining Pressure
 $\sigma_0 = 10 \text{ psi} (=1.4 \text{ ksf} = 69 \text{ kPa})$

Second Cycle				Tenth Cycle			
Peak Shearing Strain, γ, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, γ, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
3.58E-04	121700	1.00	0.59	3.56E-04	122300	1.00	0.63
6.12E-04	121200	0.99	0.69	6.10E-04	121600	1.00	0.66
1.01E-03	121500	1.00	0.71	9.95E-04	122800	1.01	0.77
1.77E-03	123130	1.01	1.03	1.73E-03	126410	1.04	0.95

Table C.3Variation in Shear Modulus, Normalized Shear Modulus, and Material Damping with
Shearing Strain from RC Tests of Specimen K2-13-002; Isotropic Confining Pressure
 $\sigma_0 = 10 \text{ psi} (=1.4 \text{ ksf} = 69 \text{ kPa})$

Peak Shearing Strain, γ, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average Shearing Strain, % ⁽¹⁾	Material Damping Ratio, D, % ⁽²⁾
6.12E-05	143800	1.00	5.42E-05	0.43
9.85E-05	143700	1.00	8.79E-05	0.45
2.10E-04	143700	1.00	1.94E-04	0.43
3.63E-04	143600	1.00	3.33E-04	0.43
6.30E-04	143400	1.00	5.87E-04	0.45
1.01E-03	143100	1.00	9.30E-04	0.46
2.02E-03	142400	0.99	1.88E-03	0.50
3.60E-03	141400	0.98	3.35E-03	0.53
5.83E-03	140100	0.97	5.57E-03	0.62
8.79E-03	137800	0.96	8.28E-03	1.02

⁽¹⁾ Average Shearing Strain from the First Three Cycle of the Free Vibration Decay Curve or from Half Power Damping for shearing strains less than 0.001%

(2) Average Damping Ratio from the First Three Cycle of the Free Vibration Decay Curve or from Half Power Damping for shearing strains less than 0.001%

Table C.4Variation in Shear Modulus and Material Damping with Frequency from RC/TS Tests
of Specimen K2-13-002; Isotropic Confining Pressure $\sigma_0 = 10 \text{ psi} (=1.4 \text{ ksf} = 69 \text{ kPa})$

Approximate Shearing Strain, γ , %	Frequency, Hz	Shear Modulus, G, ksf	Material Damping Ratio, D, %
0.001	0.1	124300	0.96
	0.5	122800	0.77
	1.0	125400	0.70
	5.0	125900	0.54
	316.6	143100	0.46

Table C.5 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen K2-13-002; Isotropic Confining Pressure $\sigma_0 = 40$ psi (=5.8 ksf = 276 kPa)

Second Cycle				Tenth Cycle			
Peak Shearing Strain, γ, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, γ, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
3.49E-04	121300	1.00	0.50	3.48E-04	121500	1.00	0.53
6.00E-04	121500	1.00	0.68	5.98E-04	121700	1.00	0.73
1.01E-03	121100	1.00	0.70	1.00E-03	122000	1.00	0.72
1.79E-03	121730	1.00	0.78	1.75E-03	124860	1.03	0.79

Table C.6Variation in Shear Modulus, Normalized Shear Modulus, and Material Damping with
Shearing Strain from RC Tests of Specimen K2-13-002; Isotropic Confining Pressure
 $\sigma_0 = 40 \text{ psi} (=5.8 \text{ ksf} = 276 \text{ kPa})$

Peak Shearing Strain, γ, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average Shearing Strain, % ⁽¹⁾	Material Damping Ratio, D, % ⁽²⁾
5.96E-05	143700	1.00	5.32E-05	0.42
9.99E-05	143700	1.00	8.83E-05	0.42
2.01E-04	143600	1.00	1.85E-04	0.40
3.60E-04	143500	1.00	3.34E-04	0.42
6.24E-04	143300	1.00	5.78E-04	0.43
1.10E-03	142800	0.99	1.03E-03	0.46
2.42E-03	141700	0.99	2.26E-03	0.53
3.59E-03	140800	0.98	3.36E-03	0.59
6.18E-03	138900	0.97	5.86E-03	0.75
8.71E-03	135700	0.95	8.32E-03	1.26

⁽¹⁾ Average Shearing Strain from the First Three Cycle of the Free Vibration Decay Curve or from Half Power Damping for shearing strains less than 0.001%

(2) Average Damping Ratio from the First Three Cycle of the Free Vibration Decay Curve or from Half Power Damping for shearing strains less than 0.001%

Table C.7Variation in Shear Modulus and Material Damping with Frequency from RC/TS Tests
of Specimen K2-13-002; Isotropic Confining Pressure $\sigma_0 = 40$ psi (=5.8 ksf = 276 kPa)

Approximate Shearing Strain, γ , %	Frequency, Hz	Shear Modulus, G, ksf	Material Damping Ratio, D, %
0.001	0.1	124100	0.89
	0.5	122000	0.72
	1	124700	0.72
	5	124100	0.64
	316.3	142800	0.46