List of Tables (Continued)

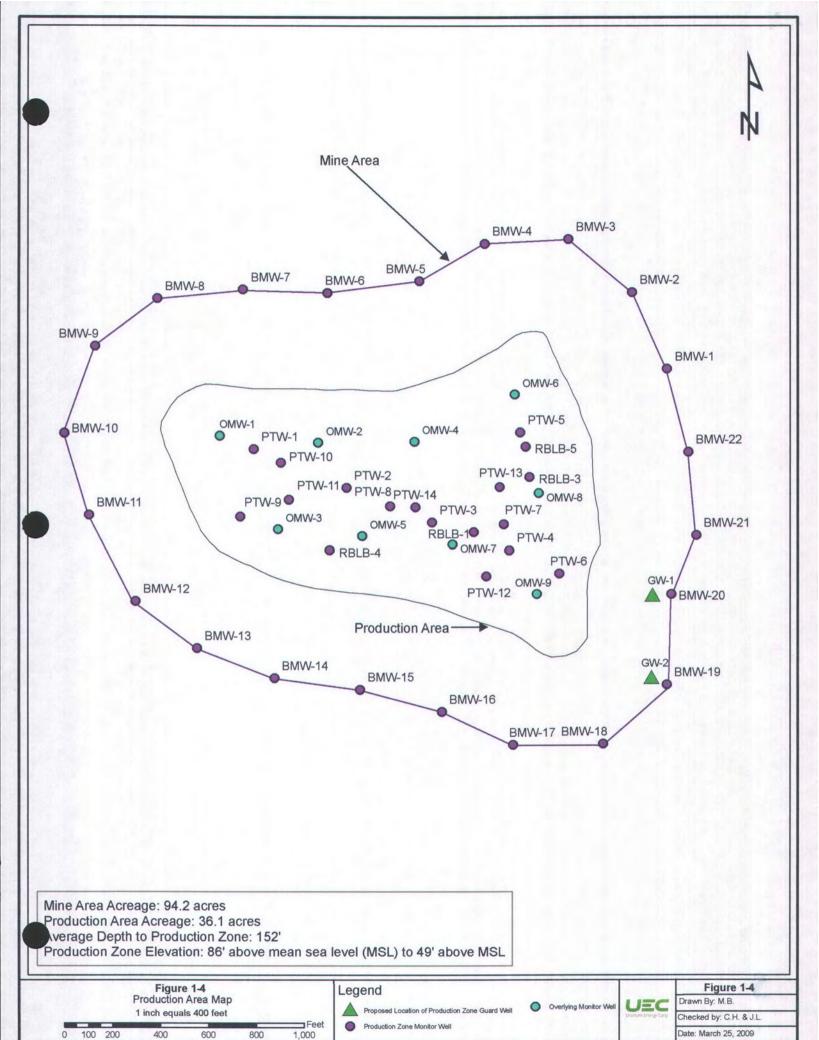
Table		Page
6.3	Designated Monitor Wells	6-4
6.4	Designated Baseline Wells	6-5
6.5	Proposed Upper Limits Control Parameters	6-7
7.1	Updated Production and Restoration Schedule	7-3
7.2	Updated Fluid Handling Requirements vs. Capacity	7-6
8.1	Wells Existing and Planned for PA-1	8-3
8.2	Total Depth of Existing Wells in PA-1	8-4
8.3	Well Plugging and Abandonment Cost Estimate	8-6
8.4	Support Information for P&A Cost Estimate	8-7
8.5	Groundwater Restoration Cost Estimate	8-8

United Sta	ites Nuclear	Regulatory Commission	Official Hearing Exhibit			
In the Matter of:		STRATA ENERGY, INC.				
in the matter of.		(Ross In Situ Recovery Uranium Project)				
EAR REGU	ASLBP #:	12-915-01-MLA-BD01				
NUCLEAR REGULATOR	Docket #:	04009091				
ATES	Exhibit #:	JTI016-00-BD01	Identified: 9/30/			
50 Abs S	Admitted:	9/30/2014	Withdrawn:			
CHIMO NO.	Rejected:		Stricken:			
****	Other:					

Identified: 9/30/2014

vii

Additional details such as Mine Area size, Production Area size, monitor well locations, baseline well locations, average depth to the production zone and the elevation, referenced to Mean Sea Level, (MSL) of the production zone are given on Figure 1-4 Production Area Map. Using data from 239 exploration holes, the production zone's depth from surface is given in Table 1.1, and its elevation (top and base with respect to MSL) is shown in Tables 1.2 and 1.3, respectively.

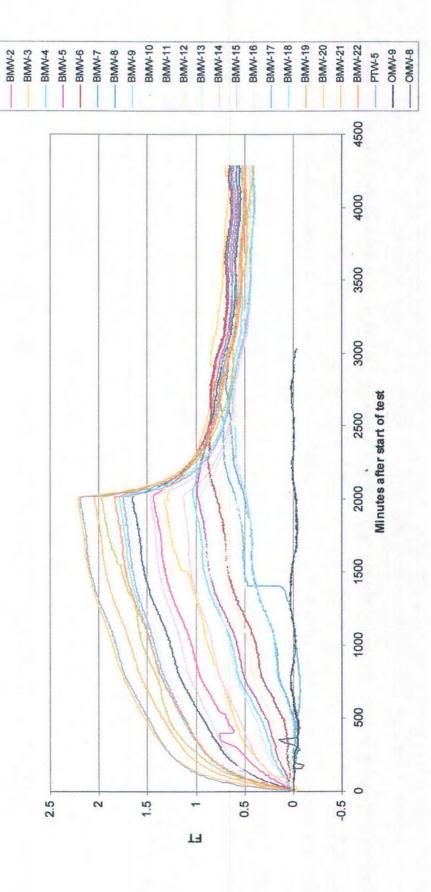

A review of Figure 1-4 shows that the Mine Area of PA-1 encompasses approximately 94 acres while the Production Area comprises just over 36 acres. There are 22 Production Zone Monitor Wells (BMW-1, 2, 3 ... 22) that encircle the proposed Production Zone. Interior wells labeled PTW-1 through PTW-14 (Pump Test Wells) and RBLB-1, 3, 4 and 5 (Regional Baseline Wells) are completed in the Production Zone. A fourth set of wells labeled as OMW-1 through OMW-9 are completed in the overlying Sand A. Lastly, the revised map shows two proposed Guard Wells (GW-1 and GW-2), which will be completed in the production zone. The wells serve the following purposes:

- (1) To provide baseline water quality information within the Mine Area, Production Area and overlying aquifer;
- (2) To provide a basis for conducting hydrologic testing of the aquifers; and
- (3) To provide a pattern of monitor wells for near-future production and restoration activities.

The number and placement of monitor and baseline wells conform to and exceed the requirements given in 30 TAC §§§ 331.82, 103 and 104. For example, according to § 331.82(g) designated monitor wells must be at least 100 feet inside any permit boundary, unless excepted by written authorization from the Executive Director; the nearest designated monitor well in PA-1 to the Mine Permit Boundary is approximately 225 feet inside the western boundary. Distances from all other parts of the monitor well ring to the Mine Permit Boundary significantly exceed the 100 foot requirement (see Figure 1-3 in Appendix B).

In addition to following the 100-foot requirement, the monitor well ring was designed to satisfy the requirements given in § 331.103(a). The monitor wells are within 400 feet of the Production Area; they are no greater than 400 feet apart; and the angle formed by lines drawn from any production well to the two nearest monitor wells does not exceed 75 degrees.

The number of monitor wells that must be completed in the first overlying aquifer is specified in § 331.103(b). According to the rule, a minimum of one well per four acres of production area is required; monitor wells OMW-1 through OMW-9 satisfy this coverage requirement. With respect to production zone monitor well density, revised rule §331.104(c) specifies that a minimum of 5 wells, or 1 well per 4 acres of production area, whichever is greater, shall be completed in the production zone. The production zone monitor well density in PA-1 exceeds the minimum requirement by a factor of 2. Figure 1-4 shows there are 18 production zone monitor wells distributed over 36 acres of production area, or 1 well per 2 acres. The addition of 2 Guard Wells inboard of BMW-19 and BMW-20 provides even more groundwater monitoring coverage than is required by the rules.



Referring again to Figure 1-4, it can be seen that PA-1 has 36 acres of production area and 9 overlying monitor wells. The distribution of the wells above the 36 acre production zone provides significant coverage for monitoring purposes. The well pattern also served to allow baseline water quality to be assessed throughout the overlying 36 acre zone.

With respect to characterizing Production Area baseline water quality, § 331.104(a)(2) requires the collection of a minimum of one or more samples from at least 5 designated production zone wells. In developing Production Area baseline water quality, UEC exceeded the minimum requirement by completing 17 wells. Sample analyses from 10 of the wells are included in this submission. Seven additional wells are scheduled to be sampled in early September. TCEQ is planning to collect samples from some of the baseline wells during the September sampling period. UEC plans to supplement the production zone water quality baseline data with results from the upcoming sampling.

Expanding the number of samples throughout the Production Area will significantly improve the accuracy of baseline conditions, and this in turn will allow for significant improvement in reaching the goals set out in the required Restoration Table.

As described above on page 1-4, UEC actually installed 8 additional production zone baseline wells, and thus there is a total of 18 monitor wells in the production area.

- BMW-1

Figure 4.7. Water level drawdown and recovery in Troll observation wells for the PTW-6 test.

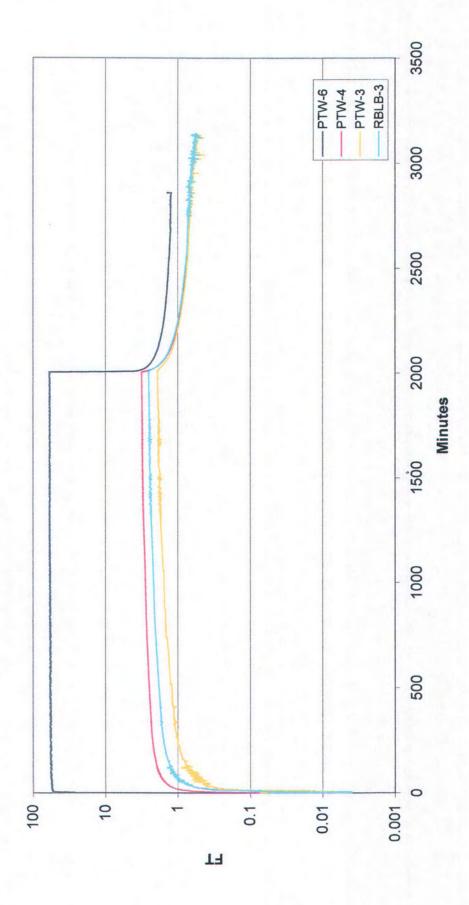


Figure 4.8. Water level drawdown and recovery from the Hermit data logger for the PTW-6 test.

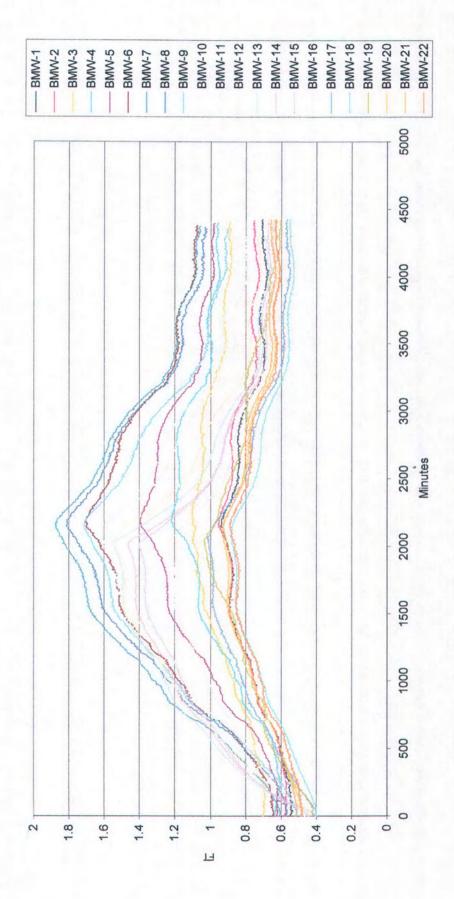


Figure 4.9. Water level drawdown and recovery from the Troll data loggers for the PTW-1 test.

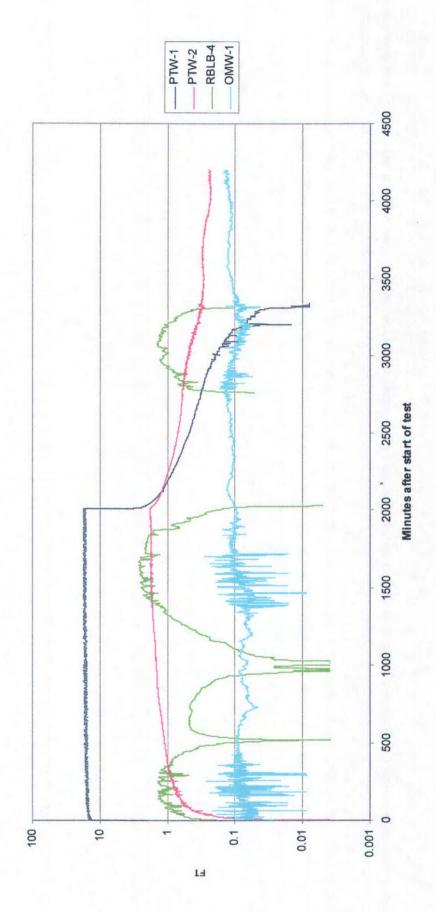


Figure 4.10. Water level drawdown and recovery from the Hermit data logger for the PTW-1 test.

Evaluation of the deeper subsurface geology shows significant confining layers between the base of Sand C and the top of Sand D. As demonstrated in the Mine Permit Application, Sand D too is adequately confined at its top and base with clay/shale layers.

5.2 Production Zone (Sand B)

For the purposes of hydrologic testing and baseline characterization, 18 wells were completed in Production Zone Sand B. As of August 2008, 10 of the wells had been sampled, and the results were included in the PAA application at that time. Anticipating that an additional 8 wells would be installed and made ready for sampling by September of 2008, UEC had requested TCEQ to observe the sampling event and to collect split samples from any of the baseline wells. After receiving the laboratory results on the additional 8 wells and completing a quality assurance/quality control review, UEC supplemented the production zone baseline water quality section of the application with the expanded database.

Figure 1-4 Production Area Map has been updated to show the location of all baseline wells associated with proposed PA-1, including 2 proposed Guard Wells. The wells labeled PTW-1 through PTW-14 and RBLB-1, 3, 4 and 5 are completed in Sand B. As can be seen from the map, the wells are distributed in a pattern that provides coverage throughout the production area. Covering the area in this manner not only provided a better basis for characterizing the water quality, it also provided a wider array of well locations for hydrologic testing (well pumping).

Water quality analyses for the 36-acre Production Area are presented in Table 5.2. A review of the table shows that the water quality fails to meet EPA Primary Drinking Water Standards; TDS, and more importantly uranium and radium-226, are in excess of the standards. Although the average TDS value of 636 mg/l exceeds EPA's 500 mg/l by approximately 138 mg/l, it is the presence of uranium and radium-226 that sets this water quality far apart from water quality that is deemed acceptable for human consumption. Because this 36 acre portion of the aquifer contains natural uranium mineralization, elevated levels of uranium and radium-226 are to be expected; it is the presence of these elements, and to a lesser extent several other constituents which are discussed below, that make Sand B quite different from overlying Sand A.

Table 5.2 Production Zone (Sand B) Water Quality

	PTW-1	PTW-2	PTW-3	PTW-4	PTW-5	PTW-6
Ca	87	90	110	109	104	106
Mg	11.3	10.9	17.5	15.1	15.9	16.5
Na	117	110	100	106	98	102
K	3.3	4.7	2.7	4.5	2.5	2.8
CO3	0	0	0	0	0	0
HCO3	322	251	346	338	360	344
SO4	47	61	45	50	11	38
Cl	165	166	166	1 66	1 66	167
NO3-N	< 0.01	0.02	0.02	0.05	< 0.01	< 0.01
F	0.79	0.67	0.65	0.62	0.57	0.57
SIO2	12.1	13.5	14.5	14.3	13.6	14.2
TDS	593	620	640	638	623	620
EC (umhos/cm)	1000	1020	1120	1120	1070	1110
Alk as CaCO3	264	206	284	277	295	282
pH (Std. Unit)	7.32	7.55	7.35	7.37	7.32	7.30
As	0.008	0.010	0.007	0.009	0.002	< 0.002
Cd*	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Fe	0.031	0.017	0.063	< 0.030	< 0.030	< 0.030
Pb*	< 0.002	< 0.002	< 0.002	< 0.002	0.002	0.004
Mn	0.012	0.006	0.025	0.015	0.008	0.013
Hg*	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004
Mo	0.136	0.070	< 0.010	< 0.043	< 0.010	< 0.010
Se ·	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
U	0.032	0.009	0.009	0.059	0.005	0.010
Ammonia-N	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ra-226 (pCi/l)	17.0	17.0	38.0	196.0	357.0	202.0
Plus/Minus	1.0	1.0	1.0	1.0	2.0	1.0

Revised: February 16, 2009

^{*}These elements do not occur naturally in the aquifer nor are they part of the process.

Table 5.2 Production Zone (Sand B) Water Quality

	RBLB-1	RBLB-3	RBLB-4	RBLB-5	High	Low	Average	STDEV
Ca	100	91	101	88	110	87	99	8
Mg	19.0	15.8	20.2	16.5	20.2	10.9	15.9	2.8
Na	98	95	100	94	117	94	102	7
K	6.6	8.9	7.1	4.4	8.9	2.5	4.7	2.0
CO3	ND	ND	ND	ND	0	0	0	**
HCO3	332	302	325	340	360	251	326	29
SO4	82	41	69	9	82	9	45	22
Cl	161	163	150	163	167	150	163	5
NO3-N	ND	ND	ND	ND	0.05	0.01	0.02	0.01
F	0.70	0.70	0.70	0.80	0.80	0.57	0.68	80.0
SIO2	32.2	31.6	32.0	31.6	32.2	12.1	21.0	8.9
TDS	644	614	666	584	666	584	624	23
EC (umhos/cm)	1160	1070	1140	1050	1160	1000	1086	50
Alk as CaCO3	272	253	266	279	295	206	268	23
pH (Std. Unit)	7.43	7.79	7.54	7.63	7.79	7.30	7.46	0.15
As	0.006	0.030	0.004	0.009	0.030	< 0.002	0.009	0.008
Cd*	ND	ND	ND	ND	< 0.001	< 0.001	< 0.001	**
Fe	ND	ND	ND	ND	0.060	ND	0.029	0.025
Pb*	ND	ND	ND	ND	0.004	< 0.002	0.002	**
Mn	0.020	0.020	ND	0.020	0.025	0.006	0.015	0.006
Hg*	ND	ND	ND	ND	< 0.0004	< 0.0004	< 0.0004	**
Mo	ND	ND	ND	ND	0.136	< 0.010	0.047	0.046
Se	0.001	0.002	0.001	0.001	0.003	0.001	0.002	**
U	0.062	0.080	0.006	0.060	0.080	0.005	0.033	0.028
Ammonia-N	ND	0.05	80.0	0.06	< 0.1	<0.1	<0.1	**
Ra-226 (pCi/l)	393.0	111.0	37.2	1090.0	1090.0	17.0	245.8	309.9
Plus/Minus	5.7	3.9	2.1	9.6	and Manager of	to recent year to a	of the section with a contract of the con-	tig out vertee growing seeds

Revised: February 16, 2009

^{*}These elements do not occur naturally in the aquifer nor are they a part of the process.

^{**}Not calculated - range is insignificant.

Table 5.2 Production Zone (Sand B) Water Quality

	PTW-7	PTW-8	PTW-9	PTW-10	PTW-11	PTW-12	PTW-13	PTW-14
Ca	97	104	94	89.5	87.2	94.6	101	89
Mg	16.4	18.1	13.3	17.4	16.8	15.6	17.5	17.9
Na	109	96	106	102	104	107	102	96
K	15.2	5.4	16.5	8.7	9.27	10.5	10.2	4.3
CO3	0	0	0	0	0	0	0	0
HCO3	325	336	368	354	334	334	331	325
SO4	54	52	19	12	17	31	44	59
Cl	163	166	168	162	163	164	156	164
NO3-N	< 0.113	< 0.113	1.73	1.43	<0.113	< 0.113	< 0.113	< 0.113
F	< 0.50	0.63	< 0.50	0.56	0.52	0.52	0.58	0.58
SIO2	35.4	35.1	35.9	33.5	32.9	32.9	37.5	21.8
TDS	668	698	624	614	658	642	672	638
EC (umhos/cm)	987	980	957	953	950	970	1020	1110
Alk as CaCO3	266	275	302	290	282	274	271	266
pH (Std. Unit)	7.55	7.74	7.56	7.59	7.35	7.47	7.54	7.96
As	0.018	< 0.010	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	0.022
Cd*	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.001
Fe	< 0.01	< 0.030	< 0.030	< 0.030	<0.030	< 0.030	0.059	< 0.030
Pb*	< 0.012	< 0.012	< 0.012	< 0.012	<0.012	< 0.012	< 0.012	< 0.012
Mn	< 0.010	< 0.010	< 0.010	< 0.010	0.013	< 0.010	0.017	0.013
Hg*	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001	0.0001	<0004
Mo	0.026	< 0.010	< 0.010	< 0.010	0.017	0.014	< 0.010	0.037
Se	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.003
U	0.804	0.134	0.135	0.099	0.166	0.163	0.156	0.086
Ammonia-N*	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1
Ra-226 (pCi/l)	1684.0	397.0	394.0	68.0	296	477.0	10.0	224.0
Plus/Minus	4.0	2.0	2.0	1.0	2.0	2.0	1.0	1.0

^{*}These elements do not occur naturally in the aquifer nor are they part of the process.

Table 5.2 Production Zone (Sand B) Water Quality

	RBLB-1	RBLB-3	RBLB-4	RBLB-5
Ca	100	91	101	88
Mg	19.0	15.8	20.2	16.5
Na	98	95	100	94
K	6.6	8.9	7.1	4.4
CO3	ND	ND	ND	ND
HCO3	332	302	325	340
SO4	82	41	69	9
Cl	161	163	150	163
NO3-N	ND	ND	ND	ND
F	0.70	0.70	0.70	0.80
SIO2	32.2	31.6	32.0	31.6
TDS	644	614	666	584
EC (umhos/cm)	1160	1070	1140	1050
Alk as CaCO3	272	253	266	279
pH (Std. Unit)	7.43	7.79	7.54	7.63
As	0.006	0.030	0.004	0.009
Cd*	ND	ND	ND	ND
Fe	ND	ND	ND	ND
Pb*	ND	ND	ND	ND
Mn	0.020	0.020	ND	0.020
Hg*	ND	ND	ND	ND
Mo	ND	ND	ND	ND
Se	0.001	0.002	0.001	0.001
U	0.062	0.080	0.006	0.060
Ammonia-N*	ND	0.05	0.08	0.06
Ra-226 (pCi/l)	393.0	111.0	37.2	1090.0
Plus/Minus	5.7	3.9	2.1	9.6

^{*}These elements do not occur naturally in the aquifer nor are they part of the process.

Table 5.2 Production Zone (Sand B) Water Quality

	High	Low	Average	STDEV	EPA Standard
Ca	110	87	97	7	NS
Mg	20.2	10.9	16.2	2	NS
Na	117	94	103	6	NS
K	16.5	2.5	7.5	4	NS
CO3	0	0	0	0.0	NS
HCO3	368	251	331	24	NS
SO4	82	9	42	20	250
Cl	168	150	163	4	250
NO3-N	1.73	0.02	0.38	0.65	10
F	0.80	0.52	0.63	0.09	4.0
SIO2	37.5	12.1	26.8	9.4	NS
TDS	698	584	638	28	500
EC (umhos/cm)	11 60	950	1041	68	NS
Alk as CaCO3	302	206	272	19	NS
pH (Std. Unit)	7.96	7.30	7.52	0.17	6.5 to 8.5
As	0.030	0.010	0.011	0.008	0.010
Cd*	< 0.005	< 0.001	< 0.005	**	0.005
Fe	0.063	0.031	0.034	0.018	0.300
Pb*	< 0.012	< 0.012	< 0.012	**	0.150
Mn	0.025	< 0.010	0.015	0.005	0.050
Hg*	< 0.0004	< 0.0001	< 0.0004	**	0.0020
Mo	0.136	0.014	0.036	0.036	NS
Se	0.010	0.001	0.003	0.002	0.050
U	0.804	0.005	0.151	0.230	0.030
Ammonia-N*	**	**	**	**	NS
Ra-226 (pCi/l)	1684.0	10.0	404.9	502.9	5.0
Plus/Minus	4.0	1.0			

Revised: March 27, 2009

NS: No standard

^{*}These elements do not occur naturlly in the aquifer nor are they part of the process.

^{**}Not calculated - range is insignificant.

Of the 18 Production Zone Sand B wells, 72% have uranium concentrations in excess of the EPA Drinking Water Standard of 0.030 mg/l. The average for all 18 wells is 0.115 mg/l or 3.8 times the standard. With regard to radium-226, 100% of the wells are in excess of the 5 pCi/l standard. The lowest radium-226 values were recorded in PTW-1, PTW-2 and PTW-13. The values for these wells are 17 pCi/l for both PTW-1 and PTW-2 and 10 pCi/l for PTW-13. Other production area wells have values far in excess of the 5 pCi/l standard. The average radium-226 concentration is 334 pCi/l, which is 67 times higher than the EPA Primary Drinking Water Standard of 5 pCi/l. The lowest radium-226 value of 10 pCi/l is two times higher than the drinking water standard and the highest value of 1,684 exceeds the drinking water standard by 337 times.

In summary, the Sand B aquifer does not meet EPA Primary Drinking Water Standards. Moreover, because of its high radium-226 content, water from this zone would not be suitable for long-term irrigated agriculture. Watering of livestock from this zone should also be avoided, especially since much higher quality water is locally present throughout the non-mineralized portions of the aquifer.

5.3 Mine Area (Sand B Perimeter Monitor Wells)

Referring back again to Figure 1-4 Production Area Map, the Production Zone Monitor Ring can be seen in relation to the 36- acre Production Area. The area encompassed by the monitor well ring is approximately 94 acres. All 22 wells were sampled and analyzed for the same 26 water quality constituents given in the tables for Sand A Non-production Zone and Sand B Production Zone. Not unexpectedly, the subsequent discussion will show that baseline water quality in the Mine Area is more similar to that in the Production Area. Since the Mine Area wells (i.e., those in the Production Zone Monitor Well Ring) are completed in Sand B, water quality should be quite similar; however, the levels of uranium and radium-226 should not be as high as they are in the Production Area.

Table 5.3 summarizes the water quality values for the 22 production zone monitor wells. It is immediately obvious from the table that the water quality in the Mine Area also fails to meet EPA Primary Drinking Water Standards. Unlike Sand B Production Zone, the Mine Area meets the drinking water standard for uranium; however, it does not meet the 5 pCi/l drinking water standard for radium-226.

Table 5.3 Baseline Monitor Wells (Production Zone)

	BMW-6	BMW-7	BMW-8	BMW-9	BMW-10
Ca	105	101	103	108	96
Mg	16.90	14.50	15.50	15.40	14.60
Na	99	100	104	105	103
K	3.16	3.34	3.81	2.92	3.28
CO3	0	0	0	0	0
HCO3	310	294	304	321	309
SO4	57	53	50	48	47
Cl	165	166	164	172	160
NO3-N	< 0.01	< 0.01	< 0.01	0.01	< 0.01
F	0.60	0.60	0.60	0.62	0.60
SIO2	13.3	13.2	12.3	13.0	15.3
TDS	640	653	658	680	610
EC (umhos/cm)	1090	1060	1070	1100	1050
Alk as CaCO3	254	241	249	263	253
pH (Std. Unit)	7.34	7.40	7.42	7.42	7.88
As	0.002	0.002	< 0.002	< 0.002	0.004
Cd*	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Fe	< 0.030	< 0.030	0.036	< 0.030	< 0.030
Pb*	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Mn	0.009	0.007	0.009	0.032	0.007
Hg*	< 0.0004	< 0.0004	< 0.0004	< 0.0004	< 0.0004
Mo	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Se	0.004	< 0.003	< 0.003	< 0.003	< 0.003
U	0.002	0.004	0.003	0.188	< 0.001
Ammonia-N*	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ra-226 (pCi/l)	2.9	1.8	1.7	1.8	1.5
Plus/Minus	0.1	0.1	0.1		

Revised: February 16, 2009

^{*}These elements do not occur naturally in the aquifer nor are they part of the process.

Mine Area water quality also falls short of meeting EPA's Primary Drinking Water Standard for TDS. The average TDS value for the Mine Area is 652 mg/l and the EPA standard is 500 mg/l. The lowest TDS value of 575 mg/l occurred in a single well (BMW-2).

It was previously mentioned that for certain parameters water quality can vary noticeably within an aquifer, and the range of variability for a constituent can be significant over a relatively short distance. A comparison of radium-226 values from the Production Zone with those in the Mine Area provides a good illustration of this point. The average radium-226 level in the monitor well ring is 33 times lower than the average in the Production Area. The monitor well ring average is 12 pCi/l compared to 405 pCi/l in the Production Area which is only 400 feet from the ring. Although radium-226 is considerably lower at a distance of 400 feet from the Production Area, many of the monitor wells have significantly elevated levels. Table 5.3 shows that approximately 45% of the monitor wells have radium-226 in excess of the drinking water standard. Eighteen percent of the wells exceed the 0.03 mg/l drinking water standard for uranium, and one of the monitor wells (BMW-9) is more than 6 times higher than the standard. Again, because the monitor well ring is located very near a delineated ore zone, values such as those listed in the tables are to be expected.

5.4 Water Quality Comparisons

Now that water quality information has been presented for all three zones, a single summary table has been prepared to allow an overall one-page comparison.

At the risk of being repetitive, the water quality comparisons given in Table 5.4 clearly show the significant variability in groundwater from the same aquifer. With the exception of considerably higher radium-226 levels in Production Area, water quality in the Production Area is quite similar to that in the Mine Area. Since wells from these areas are completed in the Production Zone Sand B, similarity can be expected. The main difference between the two areas is that commercial quantities of recoverable uranium are concentrated in the Production Area. However, as discussed above, significant portions of the Production Zone Monitor Well Ring (Mine Area), also have uranium mineralization but the main ore body lies approximately 400 feet inside the ring.

Mine Area water quality also falls short of meeting EPA's Primary Drinking Water Standard for TDS. The average TDS value for the Mine Area is 652 mg/l and the EPA standard is 500 mg/l. The lowest TDS value of 575 mg/l occurred in a single well (BMW-2).

It was previously mentioned that for certain parameters water quality can vary noticeably within an aquifer, and the range of variability for a constituent can be significant over a relatively short distance. A comparison of radium-226 values from the Production Zone with those in the Mine Area provides a good illustration of this point. The average radium-226 level in the monitor well ring is 28 times lower than the average in the Production Area. The monitor well ring average is 12 pCi/l compared to 334 pCi/l in the Production Area which is only 400 feet from the ring. Although radium-226 is considerably lower at a distance of 400 feet from the Production Area, many of the monitor wells have significantly elevated levels. Table 5.3 shows that approximately 45% of the monitor wells have radium-226 in excess of the drinking water standard. Eighteen percent of the wells exceed the 0.03 mg/l drinking water standard for uranium, and one of the monitor wells (BMW-9) is more than 6 times higher than the standard. Again, because the monitor well ring is located very near a delineated ore zone, values such as those listed in the tables are to be expected.

5.4 Water Quality Comparisons

Now that water quality information has been presented for all three zones, a single summary table has been prepared to allow an overall one-page comparison.

At the risk of being repetitive, the water quality comparisons given in Table 5.4 clearly show the significant variability in groundwater from the same aquifer. With the exception of considerably higher radium-226 levels in Production Area, water quality in the Production Area is quite similar to that in the Mine Area. Since wells from these areas are completed in the Production Zone Sand B, similarity can be expected. The main difference between the two areas is that commercial quantities of recoverable uranium are concentrated in the Production Area. However, as discussed above, significant portions of the Production Zone Monitor Well Ring (Mine Area), also have uranium mineralization but the main ore body lies approximately 400 feet inside the ring.

Table 5.4 Water Quality Comparisons (Sand A Non-Production Zone, Production Area Sand B and Production Zone Mine Area

	Overlying	Production	Production Zone
	Sand A	Area	Mine Area
	Average	Average	Average
Ca	184	99	97
Mg	18.7	15.9	17.5
Na	110	102	105
K	2.2	4.7	3.79
CO3	0	0	0
HCO3	331	326	319
SO4	99	45	58
C1	266	163	165
NO3-N	5.26	0.02	0.01
\mathbf{F}	0.45	0.68	0.58
SIO2	18.3	21.0	15.7
TDS	904	624	652
EC (umhos/cm)	1520	1086	1104
Alk as CaCO3	271	268	262
pH (Std. Unit)	7.24	7.46	7.58
As	0.018	0.009	0.008
Cd*	0.001	< 0.001	0.001
Fe	< 0.030	0.029	0.043
Pb*	0.002	0.002	0.002
Mn	0.020	0.015	0.017
Hg*	0.0004	< 0.0004	< 0.0004
Mo	0.012	0.047	0.035
Se	0.007	0.002	0.003
U	0.009	0.033	0.020
Ammonia-N*	<0.1	<0.1	0.1
Ra-226 (pCi/l)	2.3	245.8	12.1
All units are mg/l u	ınless otherwise noted.	and the control of t	

^{*}These elements do not occur naturally in the aquifer nor are they part of the process.

Table 5.4 Water Quality Comparisons (Sand A Non-Production Zone, Production Area Sand B and Production Zone Mine Area

	Overlying	Production	Production
	Sand A	Area	Zone
	Average	Average	Mine Area
	-	Sand B	Average
Ca	184	97	97.0
Mg	18.7	16.2	17.5
Na	110	103	105
K	2.2	7.5	3.79
CO3	0	0	0
HCO3	331	331	319
SO4	99	42	58
C1	266	163	165
NO3-N	5.26	0.38	0.01
F	0.45	0.63	0.58
SIO2	18.3	26.8	15.7
TDS	904	638	652
EC (umhos/cm)	1520	1041	11 04
Alk as CaCO3	271	272	262
pH (Std. Unit)	7.24	7.52	7.58
As	0.018	0.011	0.008
Cd*	< 0.001	<0.005	0.001
Fe	< 0.030	0.034	0.043
Pb*	0.002	< 0.012	0.002
Mn	0.020	0.015	0.017
Hg*	< 0.0004	< 0.0004	< 0.0004
Mo	0.012	0.036	0.035
Se	0.007	0.003	0.003
U	0.009	0.151	0.020
Ammonia-N*	<0.1	<0.1	< 0.1
Ra-226 (pCi/l)	2.3	404.9	12.1
Plus/Minus			and the second s

^{*}These elements do not occur naturally in the aquifer nor are they part of the process.

Clearly the biggest water quality difference shown on Table 5.4 is between the Overlying Non-production Sand A and the two areas within Production Zone Sand B (Production Area and Mine Area). Major differences can be seen in 9 of the water quality indicators listed below.

Sand A, the shallowest of the aquifers, has significant levels of nitrate compared to Sand B. The precipitous decline in nitrate levels from Sand A to the lower Sand B is yet another example of the hydraulic separation that exists between the two sands. Significant differences in chloride and TDS are additional indicators of the isolation between the two zones. At the PA-1 location in the proposed permit area, Sand A does not have strong uranium mineralization, and this is another indication that the sands are effectively isolated from one another. Because of their isolation, differences in certain water quality constituents are expected.

Lastly, it should be remembered from earlier discussions in this chapter that Sand A fails to meet EPA Primary Drinking Water Standards for two non-radiological constituents: TDS and arsenic. Unlike Sand A, Production Sand B fails to meet the drinking water standards for one non-radiological parameter (TDS) and two radiological parameters: radium-226 and uranium.

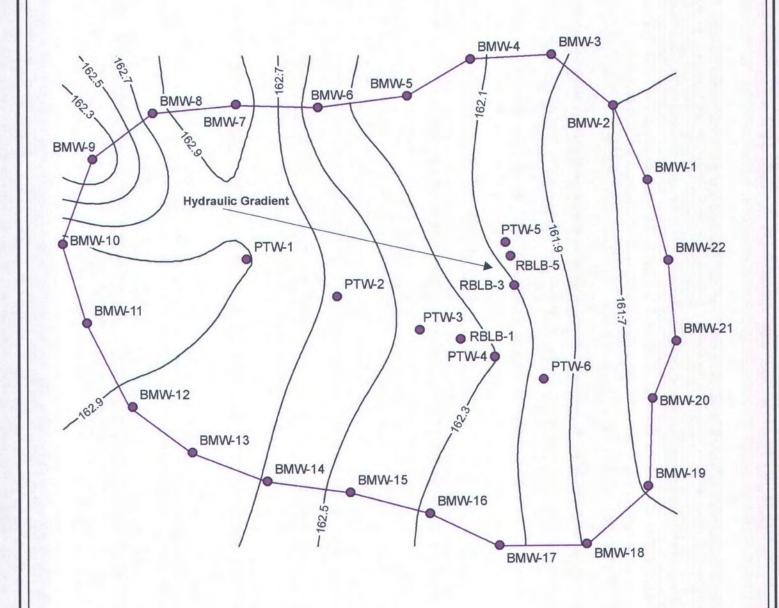
	Sand A Non- Production Zone	Sand B Production Area	Sand B Mine Area
Calcium (mg/l)	184	97	97
Sulfate (mg/l)	99	42	58
Chloride 9mg/l)	266	163	165
Nitrate (mg/l)	5.26	0.38	0.01
TDS* (mg/l)	904	638	652
Arsenic (mg/l)	0.018	0.011	0.008
Molybdenum (mg/l)	0.012	0.036	0.035
Uranium (mg/l)	0.009	0.151	0.020
Radium-226 (pCi/l)	2.3	405	12

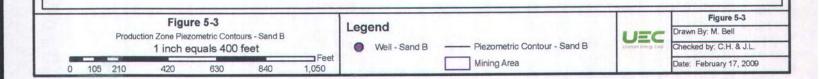
^{*}Total Dissolved Solids.

Clearly the biggest water quality difference shown on Table 5.4 is between the Overlying Non-production Sand A and the two areas within Production Zone Sand B (Production Area and Mine Area). Major differences can be seen in 9 of the water quality indicators listed below.

Sand A, the shallowest of the aquifers, has significant levels of nitrate compared to Sand B. The precipitous decline in nitrate levels from Sand A to the lower Sand B is yet another example of the hydraulic separation that exists between the two sands. Significant differences in chloride and TDS are additional indicators of the isolation between the two zones. At the PA-1 location in the proposed permit area, Sand A does not have strong uranium mineralization, and this is another indication that the sands are effectively isolated from one another. Because of their isolation, differences in certain water quality constituents are expected.

Lastly, it should be remembered from earlier discussions in this chapter that Sand A fails to meet EPA Primary Drinking Water Standards for two non-radiological constituents: TDS and arsenic. Unlike Sand A, Production Sand B fails to meet the drinking water standards for one non-radiological parameter (TDS) and two radiological parameters: radium-226 and uranium.


	Sand A Non- Production Zone	Sand B Production Area	Sand B Mine Area
Calcium (mg/l)	184	97	97
Sulfate (mg/l)	99	41	58
Chloride 9mg/l)	266	163	165
Nitrate (mg/l)	5.26	0.41	0.01
TDS* (mg/l)	904	636	652
Arsenic (mg/l)	0.018	0.011	0.008
Molybdenum (mg/l)	0.012	0.037	0.035
Uranium (mg/l)	0.009	0.115	0.020
Radium-226 (pCi/l)	2.3	334	12


^{*}Total Dissolved Solids.

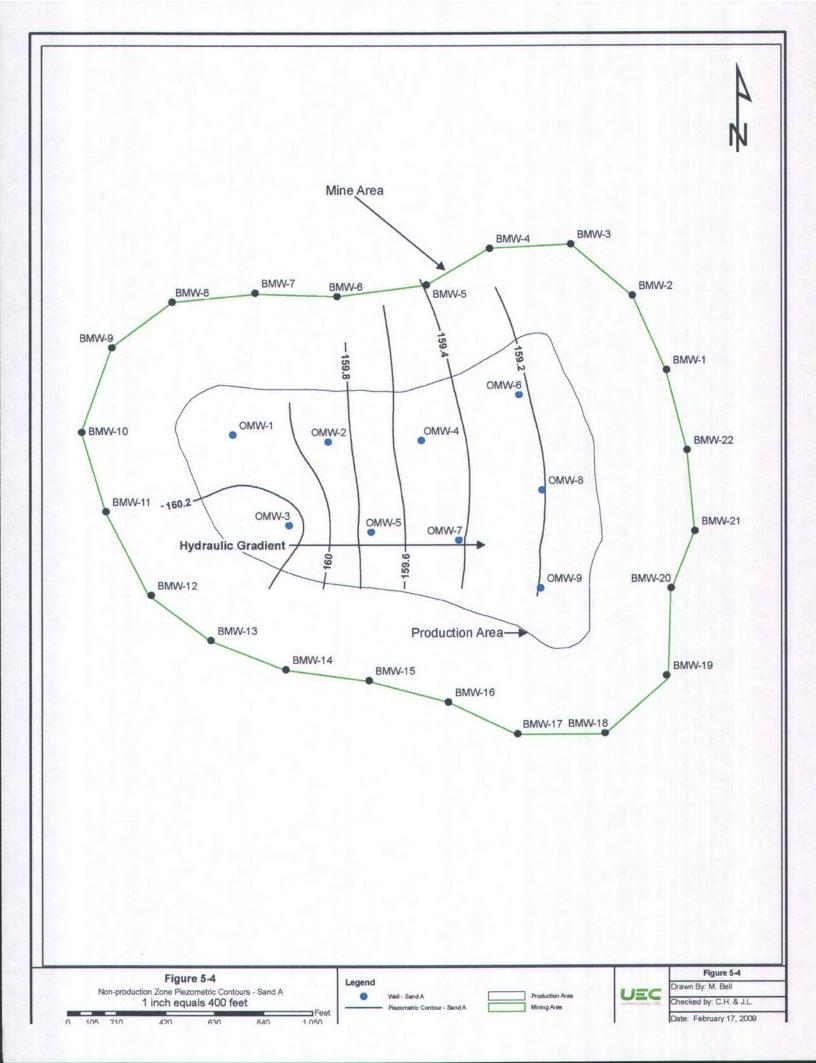

Up to this point the discussion has focused on the number and location of wells sampled, water quality differences, comparisons with drinking water standards, production area and mine area size, etc. Although all of these important and interesting topics are required elements of the PAA Application, additional information on water levels and TDS variability across the proposed Production Area must also be included in the Application. To that end, four maps are included herein: (1) Production Zone TDS Contours Map; (2) Non-production Zone TDS Contour Map; (3) Production Zone Piezometric Map; and (4) Non-production Zone Piezometric Map.

Figure 5-1 Production Zone TDS Contour Map was constructed using TDS from the 22 monitor wells and the 10 interior production zone wells. TDS values from the nine overlying Sand A wells were used in making Figure 5-2 Non-production Zone TDS Contour Map. Similarly, the piezometric maps were made from water level measurements taken from the baseline wells when hydrologic testing was performed in June and July of this year

AH

6.0 <u>Proposed Restoration Table, Monitor Well Designations and Upper Control Parameters</u>

6.1 Groundwater Analysis Report Summary

As required by TCEQ, water quality values for the baseline wells must be given in a table provided by the agency titled Groundwater Analysis Report Summary: this requirement has been followed, and the water quality values for (1) the Non-production Zone (overlying Sand A); (2) Mine Zone Production Area; and (3) Production Area (Sand B) are summarized in Table 6.1. The well identification for each area is also included in the table.

6.2 Proposed Restoration Table

Using the values from Table 6.1, a proposed Restoration Table was prepared. Table 6.2 is the proposed Restoration Table. The revised table was developed in accordance with the revised rules of March 12, 2009 regarding restoration table values (30 TAC §331.104 and §331.107).

6.3 Designated Monitor Wells

The designated monitor wells are listed in Table 6.3.

6.4 <u>Designated Baseline Wells</u>

Designated baseline wells are given in Table 6.4.

6.5 Proposed Upper Limits Control Parameters

By far, the best parameters for indicating a change in water quality associated with in situ recovery or restoration operations are chloride and conductivity. These parameters not only provide the earliest indication of a possible excursion, they are also easy to measure, and changes can be quickly detected. In other words, they provide an immediate and reliable measure of change in water quality, and this in turn allows an operator to take corrective measures as soon as possible.

In the past, uranium was included as a third indicator for possibly suggesting that an excursion has occurred, but there was no scientific basis to support it as a proper indicator.

Table 6.1 GROUNDWATER ANALYIS REPORTS SUMMARY BASELINE WATER QUALITY

Company: Uranium Energy Corp

Mine: Goliad Project

Permit: URO 3075 Prod. Area:

Date Summarized: September 4, 2008

				,		PRODUC	PRODUCTION ZONE	ZE				WELL I.	D. BY AREA'	
P	PARAMETER	UNITS	NON PRO	NON PRODUCTION ZONE	ONE	MINE AREA**	EA**		PRODUC	PRODUCTION AREA		NON PROD.	NON PROD. ZONE PROD.	딢
			low	average	high	low		high	low	average		ZONE	Mine	Prod.
Ü	Calcium	mg/l	114	184	310	82	26	110	87	76	110	OMW-1	BMW-1	PTW1
M	agnesium	mg/l	9.2	18.7	32.4	14.5		20	10.9	16.2		OMW-2	Through	Thru
So	Sodium	mg/l	83	110	133	93		120	8	103		OMW-3	BMW-22	PTW.
P	tassium	mg/l	1.8	2.2	5.6	2.92		5.13	2.5	7.5		OMW-4		14
ŭ	ırbonate	mg/l	0	0	0	0		0	0	0		OMW-5		RBL-1
Bi	carbonate	mg/l	299	331	370	294		350	251	331		9-WMO		RBL-3
Su	lfate	mg/l	47	66	168	15		68	6	42		OMW-7		RBL-4
ひ	loride	mg/l	146	766	584	158		172	150	163		8-MMO		RBL-5
E	uoride	mg/l	0.36	0.45	0.62	0.51		0.65	0.52	0.63		0-MMO		
Ż	trate – N	mg/l	1.90	5.26	8.20	<0.01		0.01	0.02	0.38				
Si	lica	mg/l	16.1	18.3	21.4	12.3		18.1	12.1	26.8	37.5			
pł	F	std. units	86.9	7.24	7.39	7.28		8.18	7.30	7.52	7.96			
F	SC	mg/l	615	904	1340	575		705	584	638	869			
<u>ٽ</u>	onductivity	nmhos	1040	1520	2450	1040		1140	920	1041	1160			
A	kalinity	mg/l	245	271	303	241		287	50 6	272	302			
A	nmonia-N	mg/l	<0.1	<0.1	0.1	<0.1		0.2	<0.1	<0.1	△ 0.1			
A	senic	mg/l	0.010	0.018	0.031	<0.002		0.069	0.010	0.011	0.030			
Ű	ıdmium	mg/l	<0.001	0.001	0.001	<0.001		<0.001	<0.001	<0.005	<0.005			
Ī	uio	mg/l	<0.030	<0.030	<0.030	<0.030		0.196	<0.030	0.034	0.063			
ĭ	àd	mg/l	<0.002	0.007	0.003	<0.002		<0.002	<0.012	<0.012	<0.012			
Σ	anganese	mg/l	<0.003	0.02	0.00	0.007		0.050	<0.010	0.015	0.025			
Σ	ercury	mg/l	<0.004	0.0004	0.0004	<0.0004		<0.0004	<0.0004	<0.0004	<0.0004			
Σ	olybdenum	mg/l	<0.010	0.012	0.024	<0.01		0.481	0.014	0.036	0.136			
Se	lenium	mg/l	<0.003	0.007	0.012	<0.003		0.006	0.001	0.003	0.010			
Ü	Uranium	mg/l	9000	0.00	0.014	<0.001		0.188	0.005	0.151	0.804			
Z	Radium-226	pCi/l	0.5	2.3	9	6.0		41	10.0	404.9	1684.0			

^{*} List the identification numbers of wells used to obtain the high and low values for each parameter.

^{**}Monitor Wells

Table 6.2 Proposed Restoration Table

Calcium	97
Magnesium	16,2
Sodium	102
Potassium	7.1
Carbonate	0.0
Bicarbonate	332
Sulfate	41
Chloride	163
Fluoride	0.64
Nitrate-N	0.41
Silica	26.4
pH (Standard Units)	7.30 to 7.96
TDS	636
Conductivity (µmhos/cm)	1044
Alkalinity	272
Ammonia-N*	< 0.1
Arsenic	0.011
Cadmium*	< 0.005
Iron	0.038
Lead*	< 0.012
Manganese	0.015
Mercury*	< 0.0004
Molybdenum	0.037
Selenium	0.002
Uranium	0.115
Radium-226 (pCi/l)	333.8

Revised: July 11, 2009

^{*}These elements do not occur naturally in the aquifer and they are not part of the recovery process. In addition, these parameters have been exhaustively sampled throughout the history of ISR in Texas and shown to be nearly non-existent. Ammonia-N was used at a few project sites during the infancy of the industry but its use was discontinued. Since ammonia is no longer used in ISR operations, it should be removed from the restoration table. The other items (Cadmium, Lead and Mercury) too should be removed for the reasons just noted.

As indicated on Table 6.2 Proposed Restoration Table, ammonia, cadmium, lead and mercury do not naturally occur in the aquifer. A review of the baseline sampling analyses clearly shows this to be the case. It is also mentioned in the footnotes on Table 6.2, that these elements have been sampled exhaustively over the years at other ISR project sites and the record underscores the fact that they do not occur in the aquifers. When ammonia was briefly used at a few sites many years ago, it was certainly an appropriate element for monitoring and for restoration. However, since it is no longer used, there is no reason to include it in the list of pertinent elements.

In accordance with the revised rules, UEC requests that ammonia, cadmium, lead and mercury be excluded from the proposed restoration table. According to 30 TAC 331.104(b), any parameter except uranium and radium-226 may be excluded from a restoration table. In making a decision on this matter, the executive director may consider the following:

- 1. the element(s) does not naturally occur in the aquifer;
- 2. the element(s) are not included in the injection solution;
- 3. the element(s) are not dissolved by the mining process; or
- 4. any other applicable information provided by the applicant or permittee to support the exclusion of certain elements.

UEC believes that all four of the above points of consideration have been met: the elements do not occur in the production zone; the elements are not included in the proposed injection solution; because the elements are not in the aquifer, they are not subject to being dissolved by mining solutions; and lastly, extensive water quality sampling shows that these elements are not in the aquifer.

Table 6.4 Designated Production Zone Baseline Wells (Production Area)

PTW-1 PTW-2 PTW-3 PTW-4 PTW-5 PTW-6 PTW-7 PTW-8 PTW-9 PTW-10 PTW-11 PTW-12 PTW-13 PTW-14 RBLB-1 PBLB-3 RBLB-4 **RBLB-5**

Over the history of in situ uranium recovery in Texas, thousands of water samples that were routinely collected from hundreds of monitor wells rarely showed elevated uranium or radium-226. When excursions were detected, the indicators were invariably conductivity and chloride.

The use of uranium as an indicator parameter has come to the attention of the Nuclear Regulatory Commission (NRC). After evaluating it, NRC does not recommend using it as an indicator to detect excursions (see NUREG-1569, Nuclear Regulatory Commission's Standard Review Plan for In Situ Leach Uranium Extraction License Applications, Final Report, June 2003).

UEC is proposing to use the two best indicators (chloride and conductivity) for the Upper Limits Control Parameters. Using chloride and conductivity will provide the earliest warning of a possible excursion. UEC is also proposing that if an excursion is indicated by reaching or exceeding an upper control limit, part of the corrective action would include analyzing the water for uranium, radium-226 and other water quality constituents, as may be requested by TCEQ.

Table 6.5 lists the proposed upper control limits. The values given in Table 6.5 were derived by adding 25% to the highest value recorded in the production zone monitor wells. Non-production zone values were derived by adding 25% to the highest value recorded in overlying Sand A.

Table 6.5 Proposed Upper Limits Control Parameters

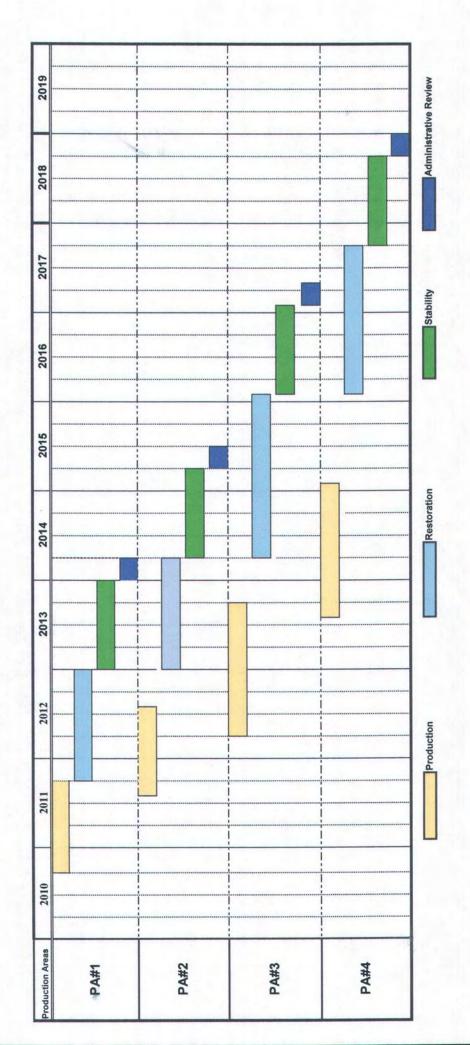
Production Area-1 (Overlying Sand A) Non-production Zone

Chloride: 730 mg/l

Conductivity: 3,062 µmhos

Production Area-1 (Production Zone Sand B)

Chloride: 210 mg/l


Conductivity: 1,450 µmhos

7.0 Updated Mine Plan

The affixed seal covers the entire contents of this chapter.

Updated Production and Restoration Schedule

(kgals) (kgals	Year 1 Mine Plan		- uel	Foh 2	Mar	Anr	May	o euril	vini	Alia	Sent	Oct	Nov	Dec	TOTAL
(Kgals) (Kgals		111111111111111111111111111111111111111	Jali	na l	IVIAI	ide	Iviay	DIDO	dung	Soci	1000	400,000	400,000	100,000	224 000
(kgals) (kga	dule 1	(kgals)										000,000	000,000	000,000	324,000
(tignals) (tign	dule 2	(kgals)												N.	
(kgals) (kgals)	dule 4	(kaals)													
(Kgals) (Kgals) <t< td=""><td>Module 5</td><td>(kgals)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Module 5	(kgals)													
(Kgals) (Kgals) (Kgals) <	Module 6	(kgals)												1	
(kgals) (kgals) <t< td=""><td>Module 7</td><td>(kgals)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Module 7	(kgals)													
(kgals) (kgals)	Module 8	(kgals)													
(Kgals) (Kgals) (Kgals) <	Module 9	(kgals)													٠
(Kgals) (Kgals) <t< td=""><td>Module 10</td><td>(kgals)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Module 10	(kgals)													
(kgals) (kgals) <t< td=""><td>Module 11</td><td>(kgals)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Module 11	(kgals)													
(kgals) (kgals) 108,000 108,000 108,000 108,000 33 (kgals) (kgals) (kgals) 108,000 </td <td>Module 12</td> <td>(kgals)</td> <td></td>	Module 12	(kgals)													
(kgals) (kgals) 108,000 <t< td=""><td>Module 13</td><td>(kgals)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Module 13	(kgals)													
(kgals) (kga	Module 14	(kgals)													1
(kgals) (kgals) 108,000 108,000 108,000 108,000 33 (kgals) (kgals) <td< td=""><td>Module 15</td><td>(kgals)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Module 15	(kgals)													
(kgals) (kgals) 108,000 <t< td=""><td>dule 16</td><td>(kgals)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td></t<>	dule 16	(kgals)													,
(kgals) (kgals) 108,000 108,000 108,000 108,000 108,000 33 (kgals) (kgals)		(kgals)													
(kgals) (kgals)	Total Production Flow	(kgals)										108,000	108,000	108,000	324,000
(kgals) (kgals)	Total Restoration Flow	(kgals)													
(kgals)	RO Feed	(kgals)													
(kgals)	RO Permeate	(kgals)													
(kgals) (kga	RO Brine	(kgals)												,	
ration-Wellfield Re-injection (kgals) ration-Wellfield Re-injection ration-Wellfield Re-injection ration-Wellfield Re-injection ration Robert ration Rober	Restoration Re-cycle	(kgals)													
sal Wells Capacity (kgals) 8,640 </td <td>storation-Wellfield Re-injection</td> <td>(kgals)</td> <td></td>	storation-Wellfield Re-injection	(kgals)													
ction Bleed (kgals) (kgals) 1,080 1,080 1,080 1,080 1,080 1,080 1,080 1,080 1,080 1,080 1,080 1,080 1,080 1,080 1,080 1,080 1,73 1,292 <td>Disposal Wells Capacity</td> <td>(kgals)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8,640</td> <td>8,640</td> <td>8,640</td> <td>25,920</td>	Disposal Wells Capacity	(kgals)										8,640	8,640	8,640	25,920
Effluents (kgals) 173 1743 <th< td=""><td>duction Bleed</td><td>(kaals)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1,080</td><td>1,080</td><td>1,080</td><td>3,240</td></th<>	duction Bleed	(kaals)										1,080	1,080	1,080	3,240
(kgals) (kga	er Effluents	(kgals)										173	173	173	518
(kgals) (kga	storation RO Brine	(kgals)													
(kgals) (kgals) 7,348 7,438	Rain Direct	(kgals)										39	39	39	118
(kgals) (kgals) (kgals) (kgals) Restoration Stability Admin. Closeout Reclaim. Well Field	Total	(kgals)										1,292	1,292	1,292	3,876
(kgals) (kgals) 180 <td< td=""><td>Disposal Capacity</td><td>(kaals)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7,348</td><td>7,348</td><td>7,348</td><td>22,044</td></td<>	Disposal Capacity	(kaals)										7,348	7,348	7,348	22,044
(kgals) 90 <t< td=""><td>al Tank Capacity</td><td>(kaals)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>180</td><td>180</td><td>180</td><td>540</td></t<>	al Tank Capacity	(kaals)										180	180	180	540
(Kgals) 7,438 7,438 7,438 7,438 Production Restoration Stability Admin. Closeout Reclaim. Well Field	Emergency Capacity	(kgals)										06	06	06	270
Production Restoration Stab. Stability Admin. Closeout	ergency Capacity Available	(kaals)										7,438	7,438	7,438	22,314
	6		Production		Restoration		Stab.	Stability			Closeout		Reclaim. w	fell Field	

Table 7.2 Year 2 Mine Plan		13 Jan	Update 14 Feb	d Fluid F	Handling 16 Apr	Capacity 17 Mav	y vs. Flui 18 June	d Dispos	sal Kequ	Irements 21 Sept	ated Fluid Handling Capacity vs. Fluid Disposal Requirements - (Continued) 14 15 16 17 18 19 20 21 22 3 Mar Apr May June July Aug Sept Oct Nov	nued)	24 Dec	TOTAL
Module 1 Module 2 Module 3 Module 4 Module 5 Module 6 Module 7 Module 10 Module 11 Module 11 Module 13 Module 13 Module 13 Module 14 Module 15	(kgals)	108,000	108,000	108,000	108,000	108,000	108,000	108,000	25,920 108,000 108,000	25,920 108,000 108,000	25,920 108,000 108,000	25,920 108,000 108,000	25,920 108,000 108,000	453,600 648,000 648,000 324,000 324,000
Total Production Flow Total Restoration Flow RO Feed RO Permeate RO Brine Restoration Re-cycle Restoration-Wellfield Re-injection	(kgals) (kgals) (kgals) (kgals) (kgals) (kgals)	108,000	216,000	216,000	216,000	216,000	216,000	216,000	216,000 25,920 12,960 9,720 3,240 12,960 22,680	216,000 25,920 12,960 9,720 3,240 12,960 22,680	216,000 25,920 12,960 9,720 3,240 12,960 22,680	216,000 25,920 12,960 9,720 3,240 12,960 22,680	216,000 25,920 12,960 9,720 3,240 12,960 22,680	2,484,000 129,600 64,800 48,600 16,200 64,800 113,400
Disposal Wells Capacity	(kgals)	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	103,680
Production Bleed Other Effluents	(kgals)	1,080	2,160	2,160	2,160	2,160	2,160	2,160	2,160	2,160	2,160	2,160	2,160	24,840
Restoration RO Brine	(kgals)				, 0		, ,		3,240	3,240	3,240	3,240	3,240	16,200
Kain Direct Total	(kgals)	1,292	2,372	2,372	2,372	2,372	2,372	2,372	5,612	5,612	5,612	5,612	5,612	43,585
Net Disposal Capacity	(kgals)	7,348	6,268	6,268	6,268	6,268	6,268	6,268	3,028	3,028	3,028	3,028	3,028	60,095
Lotal Tank Capacity Emergency Capacity	(kgals)	06	06	06	06	06	06	06	06	06	06	06	06	1,080
Emergency Capacity Available	(kgals)	7,438	6,358	6,358	6,358	6,358	6,358	6,358	00	3,118	3,118	3,118	3,118	61,175
		Production	R	Restoration		Stab. S	Stability		Admin. C	Closeout		Reclaim. Well Field	ell Field	

Table 7.2	-	20	Updated		landling	Capacity	Fluid Handling Capacity vs. Fluid Disposal Requirements - (Continued)	d Dispos	sal Kequ	rements	- (Conti	nued)	36	
Year 3 Mine Plan		25 Jan	Z6 Feb	Mar Mar	Apr Apr	May 29	30 June	July	Aug 32	Sept	Oct Oct	Nov	Dec	TOTAL
Module 1	(kgals)	Stab.	Stab.	Stab.	Stab,	Stab.	Stab.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	
Module 2	(kgals)	25,920	25,920	25,920	25,920	25,920	Stab.	Stab.	Stab.	Stab.	Stab.	Stab.	Admin.	129,600
Module 3	(kgals)						25,920	25,920	026,62	076'67	026'02	Stab.	Stab.	129,600
Module 4	(kgals)	108,000										026,62	75,920	159,840
Module 5	(kgals)	108,000	108,000	108,000										324,000
Module 6	(kgals)		108,000	108,000	108,000	108,000	108,000	108,000						648,000
Module 7	(kgals)				108,000	108,000	108,000	108,000	108,000	108,000				648,000
Module 8	(kgals)								108,000	108,000	108,000	108,000	108,000	540,000
Module 9	(kgals)										108,000	108,000	108,000	324,000
Module 10	(kgals)													
Module 11	(kgals)													
Module 12	(kaals)													
Module 13	(kaals)													i
Modulo 14	(Vasic)													
Module 14	(Kapla)													,
Module 15	(Kgals)													
Module 16	(kgals)													
Total Deaduction Class	(Special)	216,000	216,000	216,000	216,000	216,000	216,000	216,000	216 000	216 000	216.000	216.000	216.000	2.592.000
Total Flourence Flow	(kaple)	25,000	25,000	25,020	25,020	25,020	25 920	25 920	25 920	25 920	25 920	25 920	25 920	311 040
lotal Restoration Flow	(Kgais)	25,920	026,62	026,62	42,050	42,050	12,050	12 060	12 060	12 060	12 960	12 960	12 960	155 520
KO Feed	(Kgals)	12,960	12,960	12,960	12,900	09671	006,21	002,31	0,200	0,200	0,200	2,300	2,200	446.640
RO Permeate	(kgals)	9,720	9,720	9,720	9,720	9,720	9,720	9,720	9,720	9,120	9,720	9,720	9,720	10,040
RO Brine	(kgals)	3,240	3,240	3,240	3,240	3,240	3,240	3,240	3,240	3,240	3,240	3,240	3,240	38,880
Restoration Re-cycle	(kgals)	12,960	12,960	12,960	12,960	12,960	12,960	12,960	12,960	12,960	12,960	12,960	12,960	155,520
Restoration-Wellfield Re-injection	(kgals)	22,680	22,680	22,680	22,680	22,680	22,680	22,680	22,680	22,680	22,680	22,680	22,680	272,160
Disposal Wells Capacity	(kgals)	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	103,680
Production Bleed	(kaals)	2.160	2.160	2.160	2.160	2.160	2,160	2,160	2,160	2,160	2,160	2,160	2,160	25,920
Other Efflients	(knale)	173	173	173	173	173	173	173	173	173	173	173	173	2.074
Restoration BO Brine	(knals)	3 240	3 240	3 240	3.240	3.240	3.240	3.240	3.240	3.240	3.240	3.240	3,240	38,880
Pain Direct	(knale)	39	39	39	39	39	39	39	39	39	39	39	39	472
Total	(kgals)	5,612	5,612	5,612	5,612	5,612	5,612	5,612	5,612	5,612	5,612	5,612	5,612	67,345
Not Dienoral Canaditu	(kasle)	3 028	3 028	3 028	3 028	3 028	3.028	3.028	3.028	3.028	3.028	3.028	3.028	36.335
Tel Tel Capacity	(kapla)	100	100	190	180	180	180	180	180	180	180	180	180	2 160
Total Lank Capacity	(Kgals)	001	001	001	001	001	000	000	8	200	200	00	8 8	1,000
Emergency Capacity	(kgals)	90	90	90	90	90	90	06	06	90	90	90	90	000,1
Emergency Capacity Available	(kgals)	3,118	3,118	3,118	3,118	3,118	3,118	3,118	3,118	3,118	3,118	3,118	3,118	37,415
	Ь	Production	R	Restoration		Stab. St	Stability		Admin. c	Closeout		Reclaim. w	Well Field	
	1					P	Period	,	4	Processing		8	Reclamation	

C
-
7

Year 4		37	38	39 40 41 42 43 44 45 46 Way May Inne hilly Aur Sent Oct Nov	40	41 VeM	42	43	A10	Sent 45	, 46 Oct	A7 Nov	48 Dec	TOTAL
		Jall	Can	Iviai	100	IVIAY	onino	dino	Snu	ochi	500		3	1
Module 1	(kgals)	Admin.	Reclaim.	Admin.	Admin.	Admin.	Admin.	Reclaim.						. ,
Module 3	(kgals)	Stab.	Stab.	Stab.	Stab.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	Reclaim.	
Module 4	(kgals)	25,920	25,920	25,920	Stab.	Stab.	Stab.	Stab.	Stab.	Stab.	Admin.	Admin.	Admin.	77,760
Module 5	(kgals)				25,920	25,920	25,920	25,920	25,920	Stab.	Stab.	Stab.	Stab.	129,600
Module 6	(kgals)									25,920	25,920	25,920	25,920	103,680
Module 7	(kgals)													
Module 8	(kgals)	108,000												108,000
Module 9	(kgals)	108,000	108,000	108,000										324,000
Module 10	(kgals)		108,000	108,000	108,000	108,000	108,000	108,000						648,000
Module 11	(kgals)				108,000	108,000	108,000	108,000	108,000	108,000				648,000
Module 12	(kgals)								108,000	108,000	108,000	108,000	108,000	540,000
Module 13	(kgals)										108,000	108,000	108,000	324,000
Module 14	(kgals)													
Module 15	(kgals)													
Module 16	(kgals)													
	(Jenela)	246 000	246 000	246,000	246,000	246,000	246,000	216,000	216,000	216,000	216,000	216 000	216,000	2 592 000
Total Postoration Flow	(kgals)	25 920	25,920	25 920	25 920	25 920	25,920	25,920	25,920	25.920	25.920	25.920	25,920	311.040
DO Food	(kgals)	12,950	12 960	12 960	12 960	12 960	12 960	12 960	12 960	12.960	12.960	12.960	12.960	155,520
DO Dormonto	(kgale)	9 720	9 720	9 720	9 720	9 720	9 720	9 720	9 720	9.720	9.720	9.720	9.720	116.640
NO refilleate	(kgala)	2 240	3 240	3 240	3 240	3 240	3 240	3 240	3 240	3 240	3 240	3 240	3 240	38 880
KO Brine	(kgals)	3,240	12 050	12 060	12 060	12 960	12 960	12 960	12 960	12 960	12 960	12 960	12 960	155 520
storation Re-cycle	(Kgais)	12,300	12,300	006,21	006,21	000,000	20000	20,000	00000	2000	000,00	000000	00000	270,020
Restoration-Wellfield Re-injection	(kgals)	22,680	22,680	22,680	22,680	22,680	72,680	72,680	72,680	72,680	72,680	72,680	72,680	777,160
Disposal Wells Capacity	(kgals)	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	103,680
Production Bleed	(kaals)	2.160	2.160	2.160	2.160	2,160	2,160	2,160	2,160	2,160	2,160	2,160	2,160	25,920
Other Effluents	(kaals)	173	173	173	173	173	173	173	173	173	173	173	173	2,074
Restoration RO Brine	(kaals)	3.240	3.240	3,240	3,240	3,240	3,240	3,240	3,240	3,240	3,240	3,240	3,240	38,880
Rain Direct	(kgals)	39	39	39	39	39	39	39	39	39	39	39	39	472
Total	(kgals)	5,612	5,612	5,612	5,612	5,612	5,612	5,612	5,612	5,612	5,612	5,612	5,612	67,345
Net Disposal Capacity	(kaals)	3.028	3.028	3,028	3,028	3,028	3,028	3,028	3,028	3,028	3,028	3,028	3,028	36,335
Total Tank Capacity	(kgals)	180	180	180	180	180	180	180	180	180	180	180	180	2,160
Emergency Capacity	(kgals)	06	06	06	06	06	06	06	06	06	06	06	06	1,080
Emergency Capacity Available	(kaals)	3,118	3,118	3,118	3,118	3,118	3,118	3,118	3,118	3,118	3,118	3,118	3,118	37,415
Constitution of the consti		Production		Restoration			Stability			Closeout		Reclaim.	Well Field	
	1		1					1	1		1			

C	١
-	
•	
(l
7	
7	Ţ
Ľ	`

Table 7.2			Updated		Handling	g Capacit	ty vs. Flui	d Dispos	al Redui	rements	Fluid Handling Capacity vs. Fluid Disposal Requirements - (Continued)	(pani		
Year 5 Mine Plan		49 Jan	50 Feb	Mar 51	Apr 52	May 53	54 June	55 July	Aug 56	57 Sept	Oct 58	Nov	Dec 60	TOTAL
Module 1	(kgals)													
Module 2	(kgals)													
Module 3	(kgals)				1									
Module 4	(kgals)	Admin.	Admin.	Admin.	Admin.	Reclaim.				1				
Module 5	(kgals)	Stab.	Stab.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	Reclaim.			,
Module 6	(kgals)	25,920	Stab.	Stab.	Stab.	Stab.	Stab.	Stab.	Admin.	Admin.	Admin.	Admin.	Admin.	25,920
Module 7	(kgals)		25,920	25,920	25,920	25,920	25,920	Stab.	Stab.	Stab.	Stab.	Stab.	Stab.	129,600
Module 8	(kgals)							25,920	25,920	25,920	25,920	25,920	Stab,	129,600
Module 9	(kgals)												25,920	25,920
Module 10	(kgals)													
Module 11	(kgals)													
Module 12	(kgals)	108,000												108,000
Module 13	(kgals)	108,000	108,000	108,000										324,000
Module 14	(kgals)		108,000	108,000	108,000	108,000	108,000	108,000						648,000
Module 15	(kgals)				108,000	108,000	108,000	108,000	108,000	108,000				648,000
Module 16	(kgals)								108,000	108,000	108,000	108,000	108,000	540,000
Total Dendingtion Florin	(Jenste)	216,000	246,000	246,000	216,000	246,000	218,000	216,000	216 000	216,000	108 000	108 000	408 000	2 268 000
Total Restoration Flow	(kgals)	25 920	25 920	25,920	25 920	25 920	25.920	25,920	25,920	25,920	25.920	25.920	25.920	311.040
PO Food	(kasie)	12 960	12 960	12 960	12 960	12 960	12 960	12 960	12 960	12 960	12 960	12 960	12 960	155 520
DO Permeste	(kasis)	9 720	9 720	9 720	9 720	9 720	9 720	9 720	9 720	9 720	9 720	9 720	9 720	116 640
DO Bring	(kasle)	3 240	3 240	3 240	3 240	3 240	3 240	3 240	3 240	3 240	3 240	3 240	3 240	38 880
Restoration Re-cycle	(kgale)	12.960	12 960	12.960	12.960	12.960	12.960	12,960	12.960	12,960	12.960	12.960	12.960	155.520
Restoration-Wellfield Re-injection	(kgals)	22,680	22,680	22,680	22,680	22,680	22,680	22,680	22,680	22,680	22,680	22,680	22,680	272,160
Disposal Wells Capacity	(kgals)	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	103,680
Production Bleed	(kgals)	2,160	2,160	2,160	2,160	2,160	2,160	2,160	2,160	2,160	1,080	1,080	1,080	22,680
Other Effluents	(kgals)	969	173	173	173	173	173	173	173	173	173	173	173	2,596
Restoration RO Brine	(kgals)	3,240	3,240	3,240	3,240	3,240	3,240	3,240	3,240	3,240	3,240	3,240	3,240	38,880
Rain Direct	(kgals)	39	39	39	39	39	39	39	39	39	39	39	39	472
Total	(kgals)	6,135	5,612	5,612	5,612	5,612	5,612	5,612	5,612	5,612	4,532	4,532	4,532	64,628
Net Disposal Capacity	(kgals)	2,505	3,028	3,028	3,028	3,028	3,028	3,028	3,028	3,028	4,108	4,108	4,108	39,052
Total Tank Capacity	(kgals)	180	180	180	180	180	180	180	180	180	180	180	180	2,160
Emergency Capacity	(kgals)	06	06	06	06	06	06	06	06	06	06	06	06	1,080
Emergency Capacity Available	(kgals)	2,595	3,118	3,118	3,118	3,118	3,118	3,118	3,118	3,118	4,198	4,198	4,198	40,132
		Production	Re	Restoration		Stab. Sta	Stability		Admin.	Closeout		Reclaim. W	Well Field	
						Pe	Period			Processing		Re	Reclamation	

Capaci	
Handling	
Fluid	
Updated	
0.1	
Table 7.2	

Table 7.2			Updated	y Fluid He	andling	Capaci	ty vs. FI	uid Dispo	osal Rec	quireme	Fluid Handling Capacity vs. Fluid Disposal Requirements - (Continued)	ntinued)		
Year 6		61	62 Eah		64	65 May	99	79 Inhv	A110	69 Sent	70	Nov 71	Dec 72	TOTAL
Mine Plan		Jan	Led	Mar	Idh	INIAY	anne	July	Snw	ndac	100	MON	200	10.0
Module 1	(kgals)													
Module 3	(kaals)													
Module 4	(kgals)													,
Module 5	(kgals)													
Module 6	(kgals)	Admin.	Admin.	Reclaim.										1
Module 7	(kgals)	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	Reclaim.					
Module 8	(kgals)	Stab.	Stab.	Stab.	Stab.	Stab.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	1
Module 9	(kgals)	25,920	25,920	25,920	25,920	Stab.	Stab.	Stab.	Stab.	Stab.	Stab.	Admin.	Admin.	103,680
Module 10	(kgals)					32,400	32,400	32,400	32,400	Stab.	Stab.	Stab.	Stab.	129,600
Module 11	(kgals)									32,400	32,400	32,400	32,400	129,600
Module 12	(kgals)													,
Module 13	(kgals)													
Module 14	(kgals)													
Module 15	(kgals)													
Module 16	(kgals)	108,000												108,000
Total Broduction Flour	(brosle)	108 000					,							108.000
Total Floudetion Flow	(cipgu)	000,001	000 10	000 10	000 10	20 400	20 400	22 400	22 400	22 400	22 400	22 400	22 400	262 000
Total Restoration Flow	(kgais)	25,920	026,62	026,62	026,62	32,400	32,400	32,400	32,400	32,400	32,400	32,400	32,400	104 440
RO Feed	(kgals)	12,960	12,960	12,960	12,960	16,200	16,200	16,200	16,200	16,200	16,200	10,200	10,200	101,440
RO Permeate	(kgals)	9,720	9,720	9,720	9,720	12,150	12,150	12,150	12,150	12,150	12,150	12,150	12,150	136,080
RO Brine	(kgals)	3,240	3,240	3,240	3,240	4,050	4,050	4,050	4,050	4,050	4,050	4,050	4,050	45,360
Restoration Re-cycle	(kgals)	12,960	12,960	12,960	12,960	16,200	16,200	16,200	16,200	16,200	16,200	16,200	16,200	181,440
Restoration-Wellfield Re-injection	(kgals)	22,680	22,680	22,680	22,680	28,350	28,350	28,350	28,350	28,350	28,350	28,350	28,350	317,520
Disposal Wells Capacity	(kgals)	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	103,680
Production Bleed	(kaals)	1.080												1,080
Other Effluents	(kgals)	969	173	173	173	173	173	173	173	173	173	173	173	2,596
Restoration RO Brine	(kgals)	3.240	3.240	3.240	3,240	4.050	4,050	4,050	4,050	4,050	4,050	4,050	4,050	45,360
Rain Direct	(kgals)	39	39	39	39	39	39	39	39	39	39	39	39	472
Total	(kgals)	5,055	3,452	3,452	3,452	4,262	4,262	4,262	4,262	4,262	4,262	4,262	4,262	49,508
Net Disposal Capacity	(kgals)	3,585	5,188	5,188	5,188	4,378	4,378	4,378	4,378	4,378	4,378	4,378	4,378	54,172
Total Tank Capacity	(kgals)	180	180	180	180	180	180	180	180	180	180	180	180	2,160
Emergency Capacity	(kgals)	06	06	06	06	06	06	06	06	06	06	06	06	1,080
Emergency Capacity Available	(kgals)	3,675	5,278	5,278	5,278	4,468	4,468	4,468	4,468	4,468	4,468	4,468	4,468	55,252
		Production		Restoration		-	Stability		Admin.	Closeout			Well Field	
						4	Period			Processing		2	Reclamation	

quirements	81
Require	OB
Disposal	70
Fluid	78
Updated Fluid Handling Capacity vs. Fluid Disposal Require	77
landling	76
Fluid F	75
Updated	7.4
	70
Table 7.2	

1. 0.00			(, , , , ,		6						Charge I all a light in a light i	1		
Year 7		73	74	75	92	77	78	62	80	81	82	83	84	-
Mine Plan		Jan	Feb	Mar	Apr	May	June	July	Ang	Sept	Oct	Nov	Dec	TOTAL
Module 1 Module 2	(kgals) (kgals)													
Module 3	(kgals)													. 1
Module 4	(kgals)													
Module 6	(kgals)													
Module 7	(kgals)													
Module 8	(kgals)													
Module 9	(kgals)	Admin.	Admin.	Admin.	Admin.	Admin.	Reclaim.							i
Module 10	(kgals)	Stab.	Stab.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	Reclaim.			
Module 11	(kgals)	Stab.	Stab.	Stab.	Stab.	Stab.	Stab.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	,
Module 12	(kgals)	32,400	32,400	32,400	32,400	Stab.	Stab.	Stab,	Stab.	Stab.	Stab.	Admin.	Admin.	129,600
Module 13	(kgals)					32,400	32,400	32,400	32,400	Stab.	Stab.	Stab.	Stab.	129,600
Module 14	(kgals)									32,400	32,400	32,400	32,400	129,600
Module 15	(kgals)													
Module 16	(kgals)													
Total Production Flow	(kaals)												•	
Total Restoration Flow	(knale)	32 400	32 400	32 400	32.400	32.400	32.400	32.400	32.400	32.400	32,400	32,400	32,400	388,800
PO Food	(kgals)	16.200	16,200	16.200	16.200	16.200	16,200	16.200	16.200	16,200	16,200	16,200	16,200	194,400
RO Permeate	(kgals)	12.150	12,150	12.150	12.150	12.150	12.150	12,150	12,150	12,150	12,150	12,150	12,150	145,800
RO Brine	(kaals)	4.050	4,050	4,050	4,050	4,050	4,050	4,050	4,050	4,050	4,050	4,050	4,050	48,600
Restoration Re-cycle	(kgals)	16,200	16,200	16,200	16,200	16,200	16,200	16,200	16,200	16,200	16,200	16,200	16,200	194,400
Restoration-Wellfield Re-injection	(kgals)	28,350	28,350	28,350	28,350	28,350	28,350	28,350	28,350	28,350	28,350	28,350	28,350	340,200
Disposal Wells Capacity	(kgals)	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	103,680
Dood of or Dood	(Jensle)			,					,				-	-
Other Efficients	(kaple)	173	173	173	173	173	173	173	173	173	173	173	173	2.074
Ouriel Emidents	(kgals)	4 050	4 050	4 050	4 050	4 050	4 050	4 050	4 050	4.050	4.050	4.050	4.050	48,600
Dain Direct	(kasis)	30	39	30	39	39	39	39	39	39	39	39	39	472
Total	(kgals)	4 262	4 262	4.262	4.262	4.262	4.262	4.262	4.262	4.262	4.262	4.262	4.262	51,145
	(cingal)	070	4 270	4 270	4 270	4 378	4 278	4 278	A 378	4 378	4 378	4 378	4 378	52 535
Net Disposal Capacity	(kgals)	180	180	180	180	180	180	180	180	180	180	180	180	2,160
Emergency Capacity	(kgals)	06	06	06	06	06	06	06	06	06	06	06	06	1,080
Emergency Capacity Available	(kaals)	4.468	4.468	4.468	4,468	4,468	4,468	4,468	4,468	4,468	4,468	4,468	4,468	53,615
Company (company)		Production		Restoration			Stability		Admin.	Closeout		Reclaim.	Well Field	
	1													

	٩	Ļ	7
	ı	٦	۰
		١	٥
			٥
	Ī	7	'n
	ı	1	١

Year 8 Mine Plan		85 Jan	Feb 86		88 Apr	May 89	90 June	91 July	87 88 89 90 91 92 93 94 6 Mar Apr May June July Aug Sept Oct Nov	93 Sept	94 Oct	95 Nov	96 Dec	TOTAL
Module 1 Module 2 Module 3 Module 4 Module 5 Module 5 Module 6 Module 8 Module 9 Module 11	(kgals)	Admin. Admin.	Reclaim.	Admin.	Admin.	Admin	Reclaim							
Module 13	(kgals)	Stab.	Stab.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	Reclaim.			1
Module 14	(kgals)	Stab.	Stab.	32 400	32 400	Stab.	Stab.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	129.600
Module 16	(kgals)	02,100	201,100	201,120	201.120	32,400	32,400	32,400	32,400	Stab.	Stab.	Stab.	Stab.	129,600
Total Deschiption Close	(blead)												,	٠
Total Restoration Flow	(kgals)	32.400	32,400	32,400	32,400	32,400	32,400	32,400	32,400					259,200
RO Feed	(kaals)	16,200	16,200	16,200	16,200	16,200	16,200	16,200	16,200					129,600
RO Permeate	(kgals)	12,150	12,150	12,150	12,150	12,150	12,150	12,150	12,150					97,200
RO Brine	(kgals)	4,050	4,050	4,050	4,050	4,050	4,050	4,050	4,050				,	32,400
Restoration Re-cycle	(kgals)	16,200	16,200	16,200	16,200	16,200	16,200	16,200	16,200		,			129,600
Restoration-Wellfield Re-injection	(kgals)	28,350	28,350	28,350	28,350	28,350	28,350	28,350	28,350					226,800
Disposal Wells Capacity	(kgals)	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	103,680
Production Bleed	(kaals)			,										1
Other Effluents	(kgals)	173	173	173	173	173	173	173	173			,		1,382
Restoration RO Brine	(kaals)	4.050	4.050	4.050	4.050	4,050	4,050	4,050	4,050	,				32,400
Rain Direct	(kaals)	39	39	39	39	39	39	39	39	39	39	39	39	472
Total	(kgals)	4,262	4,262	4,262	4,262	4,262	4,262	4,262	4,262	39	39	39	39	34,254
Net Disposal Capacity	(kgals)	4,378	4,378	4,378	4,378	4,378	4,378	4,378	4,378	8,601	8,601	8,601	8,601	69,426
Total Tank Capacity	(kgals)	180	180	180	180	180	180	180	180	180	180	180	180	2,16
Emergency Capacity	(kgals)	06	06	06	06	06	06	06	06	06	06	06	06	1,080
Emergency Capacity Available	(kgals)	4,468	4,468	4,468	4,468	4,468	4,468	4,468	4,468	8,691	8,691	8,691	8,691	70,506
		Production	R	Restoration		Stab. s	Stability		Admin. c	Closeout		Reclaim. N	Well Field	

Module 2 (%gale) Module 3 (%gale) Module 4 (%gale) Module 5 (%gale) Module 6 (%gale) Module 7 (%gale) Module 6 (%gale) Module 6 (%gale) Module 7 (%gale) Module 8 (%gale) Module 9 (%gale) Module	Mine Plan		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	TOTAL
(Kgals) (Kgals) (Kgals) <	dule 1	(kgals)													
(Kgals) (Kgals) (Kgals) Kgals) (Kgals) Admin.	dule 2	(kgals)													
(Kgals) (Kgals) (Kgals) Kgals) Kgals Kgals <th< td=""><td>dule 3</td><td>(kgals)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	dule 3	(kgals)													
(Kgals) (Kgals) (Kgals) Admin. Admin. <td>dule 4</td> <td>(kgals)</td> <td></td>	dule 4	(kgals)													
(Kgals) (Kgals) (Kgals) Admin. Admin. <td>dule 5</td> <td>(kgals)</td> <td></td>	dule 5	(kgals)													
(Kgals) (Kgals) (Kgals) Kgals) Kgals) Kgals) Kadmin. Admin. Admin. </td <td>dule 6</td> <td>(kgals)</td> <td></td>	dule 6	(kgals)													
(Kgals) (Kgals) Admin. Racialm. Admin. Adm	dule 7	(kgals)													
(kgals) Kgals) Kgals) Kgals) Kgals) Kgals) Kgals) Kgals) Admin.	dule 8	(kgals)													
(kgals) (kgals) Admin. Admin	dule 9	(kgals)													
(kgals) (kgals) Admin. A	dule 10	(kgals)													
(kgals) Admin. Rectain. (kgals) Admin. Admin	dule 11	(kgals)													í.
(kgals) Admin. Admin. Admin. Admin. Admin. Admin. Admin. Admin. Admin. A	Jule 12	(kgals)													
(kgals) Admin.	Jule 13	(kgals)													
(kgals) Admin.	Jule 14	(kgals)	Admin.	Reclaim.											
(kgals) Stab. Admin. Admin.<	Jule 15	(kgals)	Admin.	Admin.	Admin.	Admin.	Admin.	Reclaim.							
(kgals) . </td <td>dule 16</td> <td>(kgals)</td> <td>Stab.</td> <td>Stab.</td> <td>Admin.</td> <td>Admin.</td> <td>Admin.</td> <td>Admin.</td> <td>Admin.</td> <td>Admin.</td> <td>Admin.</td> <td>Reclaim.</td> <td></td> <td></td> <td>1</td>	dule 16	(kgals)	Stab.	Stab.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	Admin.	Reclaim.			1
(kgals) Carrolle															
(kgals) - </td <td>al Production Flow</td> <td>(kgais)</td> <td></td>	al Production Flow	(kgais)													
(kgals) . </td <td>al Restoration Flow</td> <td>(kgals)</td> <td></td>	al Restoration Flow	(kgals)													
(kgals) . </td <td>Feed</td> <td>(kgals)</td> <td></td>	Feed	(kgals)													
(kgals) S,640 8,640 <	Permeate	(kgals)													
(kgals) 8,640 <	Brine	(kgals)													,
(kgals) 8,640 <	toration Re-cycle	(kgals)													٠
(kgals) 8,640 <	toration-Wellfield Re-injection	(kgals)													
(kgals) - </td <td>posal Wells Capacity</td> <td>(kgals)</td> <td>8,640</td> <td>103,680</td>	posal Wells Capacity	(kgals)	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	8,640	103,680
(kgals) - </td <td>duction Bleed</td> <td>(kgals)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>i</td>	duction Bleed	(kgals)								1					i
(kgals) 39 <t< td=""><td>er Effluents</td><td>(kgals)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	er Effluents	(kgals)													
(kgals) 39 <t< td=""><td>storation RO Brine</td><td>(kgals)</td><td></td><td></td><td>1</td><td>1</td><td></td><td>-</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></t<>	storation RO Brine	(kgals)			1	1		-			1				
(kgals) 8,601 <	Direct	(kgals)	39	39	39	39	39	39	39	39	39	39			393
(kgals) 8,601 <	al	(kgals)	39	39	39	39	39	39	39	39	39	39			393
(kgals) 8,691 <	Library Committee	(Jenste)	8 604	8 604	8 604	8 601	8 601	8 601	8 601	8.601	8.601	8.601		1	86.007
(Kgals) 8,691 8,69	Disposal capacity	(kasle)	180	180	180	180	180	180	180	180	180	180			1,800
(kgals) 8,691 8,691 8,691 8,691 8,691 8,691 8,691 8,691 8,691 8,691 Pield	al Falls Capacity	(kgals)	06	06	06	06	06	06	06	06	06	06			006
Ingrish Coloring Destruction Stability Admin Colorent Reclaim Well Field	Canada Available	(kaale)	8 691	8 691	8 691	8 691	8.691	8.691	8.691	8.691	8.691	8,691			86,907
	lergency capacity Available		orioiton Post		20,0	.00,0			. 0010						

During operations, UEC will submit plugging and abandonment cost estimates for the anticipated number of wells needed as the project goes forward. The cost estimates will be in current dollars and will include labor, materials, equipment and supplies.

For PA-1, it is anticipated that the wells listed in Table 8-1 will be needed. As the table shows, 18 production zone baseline wells and 22 production zone monitor wells are in place, and it is estimated that 192 injection and recovery wells will be needed for operations in PA-1.

With respect to total depth and casing size, the proposed injectors and extractors will be completed at an average total depth of approximately 200 feet below ground level, and the well casing will be 6 inch diameter PVC. For the existing wells, actual total depths are known, and these depths are summarized in Table 8-2.

Table 8.1 Wells Existing and Planned for PA-1

Injectors/	Overlying	Production Zone	Production Zone
Extractors	Monitor Wells	Baseline Wells	Monitor Wells
192*	9**	18**	22**

^{*}To be completed.
** Existing

Table 8.2 Total Depth of Existing Wells in PA-1

	Depth (Feet)		Depth (Feet)		Depth (Feet)		Depth (Feet)
OMW-1	97	BMW-1	209	BMW-10	194	BMW-19	218
OMW-2	110	BMW-2	206	BMW-11	183	BMW-20	200
OMW-3	106	BMW-3	205	BMW-12	180	BMW-21	206 208
OMW-4	119	BMW-4	193	BMW-13 BMW-14	188 206	BMW-22	208
OMW-5	120 123	BMW-5 BMW-6	204 201	BMW-14 BMW-15	210		
OMW-6 OMW-7	119	BMW-7	199	BMW-15	206		
OMW-7 OMW-8	119	BMW-8	195	BMW-17	191		
OMW-9	113	BMW-9	197	BMW-18	212		
Oliliv	113	D 111111	2,7,				
	400						
PTW-1	190						
PTW-2	211						
PTW-3	210						
PTW-4	208						
PTW-5	207						
PTW-6	206						
PTW-7	201						
PTW-8	216						
PTW-9	206						
PTW-10	210						
PTW-11	206						
PTW-12	215						
PTW-13	216						
PTW-14	228						
RBLB-1	205						
RBLB-3	220						
RBLB-4	205						
RBLB-5	183						

A well plugging and abandonment cost estimate is provided in Table 8.3. Information in support of the estimate is summarized in Table 8.4. The estimate is based on current costs and a 20% contingency is included.

With the adoption of new rules as of March 12, 2009, applicants are required to provide a cost estimate for groundwater restoration in a production area authorization application. UEC has completed a detailed cost estimate and it is summarized in Table 8.5.

Table 8.3 Well Plugging and Abandonment Cost Estimate

LUGG	ING COST COMP	ONENT	Unit	Quantity	;	Cost/ Unit	Total Cost
	Cement Cos	rts	·				
	a)	Plugging Monitor Wells (MW-1, MW-2,etc.)	Each Welf	22	\$	191.00	\$4,202
	b)	Plugging Overlying Wells (OMW-1, OMW-2,etc.)	Each Well	9	\$	109.00	\$981
	c)	Plugging Baselne Wells (PTW-1, RBLB-1,etc.)	Each Well	18	\$	233.00	\$4,194
	d)	Plugging Injection Wells (Proposed Wells)	Each Well	67	\$	275.00	\$18,425
	e)	Plugging Extractor Wells (Proposed Wells)	Each Well	125	\$	275.00	\$34,375
	SUBTOTAL		_	241	_	_	\$62,177
<u>.</u>	Labor Costs						
	a)	Foreman (@ 10 wells per day)	Per Day	24	\$	640.00	\$15,424
	b)	2 Equipment Operator (@10 wells per day)	Per Day	24	\$	800.00	\$19,280
	c)	4 Laborer (@ 10 wells per day)	Per Day	24	\$	480.00	\$11,568
	SUBTOTAL						\$46,272
	Other Costs						
	a)	Cement Plugging Charge (Equipment)	Each Well	241	\$	50.00	\$12,050
	b)	Dirt Work & Reclamation (2 hours)	Each Well	241	\$	100.00	\$24,100
	c)	Surveying	Each Well	241	\$	35.00	\$8,435
	SUBTOTAL						\$36,150
	SUBTOTAL					-	\$144,599
				20	% Cor	ntingency	\$28,920
			TOTAL P	LUGGING COS	ST		\$173,519
		AVERAGE PLUGGING (COSTS PER WELL	24	41 We	ils	\$720 /

Table 8.4 Support Information for P&A Cost Estimate

	-				
Well Name	Well Depth (ft)	Casing Size (in)	Sacks Req'd	\$/Sack	Total Cost
BMW-1	209	5	28.50	7.00	199.49
BMW-2	206	5	28.09	7.00	196.62
BMW-3	205	5	27.95	7.00	195.67
BMW-4	193	5	26.32	7.00	184.21
BMW-5	204	5	27.82	7.00	194.71
BMW-6	201	5	27.41	7.00	191.85
	100	_	07.40	7.00	400.04

Monitor Well Cement Costs

BMW-6 27.13 7.00 189.94 BMW-7 199 5 5 7.00 186.12 26.59 BMW-8 195 197 5 26.86 7.00 188.03 BMW-9 5 7.00 185.17 26.45 **BMW-10** 194 5 7.00 174.67 24.95 **BMW-11** 183 5 171.81 **BMW-12** 180 24.54 7.00 5 7.00 179.44 25.63 **BMW-13** 188 5 7.00 196.62 28.09 **BMW-14** 206 5 7.00 200.44 **BMW-15** 210 28.63

5 28.09 7.00 196.62 **BMW-16** 206 5 7.00 182.31 26.04 **BMW-17** 191 5 202.35 28.91 7.00 **BMW-18** 212 5 7.00 208.08 29.73 **BMW-19** 218 5 7.00 190.90 27.27

BMW-20 200 206 5 28.09 7.00 196.62 BMW-21 5 7.00 198.53 28.36 **BMW-22** 208

> 191.37 Average

Overlying Well Ceme	nt	Costs
---------------------	----	-------

Well Name	Well Depth (ft)	Casing Size (in)	Sacks Req'd	\$/Sack	Total Cost
OMW-1	97	5	13.23	7.00	92.58
OMW-2	110	5	15.00	7.00	104.99
OMW-3	106	5	14.45	7.00	101.17
OMW-4	119	5	16.23	7.00	113.58
OMW-5	120	5	16.36	7.00	114.54
OMW-6	123	5	16.77	7.00	117.40
OMW-7	119	5	16.23	7.00	113.58
OMW-8	119	5	16.23	7.00	113.58
OMW-9	113	5	15.41	7.00	107.86

Average 108.81

Average 232.78

Baseline Cement Costs

Well Name	Well Depth (ft)	Casing Size (in)	Sacks Req'd	\$/Sack	Total Cost
PTW-1	190	5	25.91	7.00	181.35
PTW-2	211	5	28.77	7.00	201.39
PTW-3	210	5	28.63	7.00	200.44
PTW-4	208	5	28.36	7.00	198.53
PTW-5	207	5	28.23	7.00	197.58
PTW-6	206	5	28.09	7.00	196.62
PTW-7	201	6	39.47	7.00	276.26
PTW-8	216	6	42.41	7.00	296.88
PTW-9	206	6	40.45	7.00	283.14
PTW-10	210	6	41.23	7.00	288.63
PTW-11	206	6	40.45	7.00	283.14
PTW-12	215	6	42.22	7.00	295.51
PTW-13	216	6	42.41	7.00	296.88
PTW-14	228	5	31.09	7.00	217.62
RBLB-1	205	5	27.95	7.00	195.67
RBLB-3	220	5	30.00	7.00	209.98
RBLB-4	205	5	27.95	7.00	195.67
RBLB-5	183	5	24.95	7.00	174.67

Injector & Extractor Cement Costs

Well Name	Well Depth (ft)	Casing Size (in)	Sacks Req'd	\$/Sack	Total Cost
injector	200	6	39.27	7.00	274.89
extractor	200	6	39.27	7.00	274.89

Labor (Costs	241	wells						
Qty.	Type		Rate/	hr hr	hrs/day		Wells / day # days		day rate
~-y.	1 Foreman		\$	80.00		8	10	24	\$ 640.00
	2 Equipment Operator		\$	50.00		8	10	24	\$ 800.00
	4 Laborers		\$	15.00		8	10	24	\$ 480.00

Table 8.5 Groundwater Restoration Cost Estimate Uranium Energy Corp - Goliad Project Mining Unit Groundwater Restoration Costs Production Area-1 (Sand B)

			Pro	duction		(Sand B)				
Wellfield	Nominal	Nominal	Number of Patt	erns	Averag	e Open	Effective	Flare	i 1	Wellfield
	Pattern	Pattern Area			Inte	erval	Porosity	Factor		Affected Pore
1	Dimensio				Ì					Volume
ł	ns	1								(gallons)
1	""		-							
	ļ	(ft²)			1 (ft)			1	
PAA-B	144 x 144	20695		30		11	0.28	1.875		26,818,944
1 APV =	[144 X 144	26,818,944			<u> </u>					
	PV Circulated:						Total	Operating		Number
6 APV =	r v Circulated.	160,913,663					Gallons	Flow Rate	Total	of
	ON COST CO						Treated	GPM	Cost	Days
<u>1.</u>		Electrical Costs	oing from Wellfield /1,00	M aal	\$	0.294	160,913,663	600	\$47,250	186
	a)		_	ro gai.	Ψ	0.204	80,456,832	300	V ,200	
	b)		lation for Reinjection		s	0.440	80,456,832	300	\$35,401	186
	C)	RO Feed for Treats			4	0.440	60,342,624	225	400,401	
	d)		teinjection /1,000 gal.		_	0.209	140,799,455	525	\$29,376	186
	e)	Surface Reinjection			\$	1.437	20,114,208	75	\$28,910	186
	f)	Wastewater Dispos	sal /1,000 gal.		\$	1.43/	20,114,206	75	\$140,937	186
	SUBTOTAL								\$140,837	100
<u>2.</u>	Treatment C						No. Elutions	37	\$14,880	186
	a)	IX Treatment Costs			/ and 2 th	MAZ loodine		37	\$14,000	
	L \	\$400/elution, 1 elui	tion every 5 days (assum r Reverse Osmosis Unit	ning 3 mg.	/i atrici∠ii) 1.000 oolii	nci nci	80.456.832	300	\$75,388	
	b)	chemicals and mer		L (\$0.8377	i,ooogai ii	ı	, :,		4. -1	
	SUBTOTAL	Gronnous and me							\$90,266	
<u>3.</u>	Repairs and	Maintenance								
_	a)	Wellfield and Wast	e Water Treatment /mo		\$	21,740	6	months	\$130,440	
	b)	RO and process ed	quipment /mo		\$	4,500	6	months	\$27,000	
	SUBTOTAL								\$0	
<u>4.</u>	Labor									
	a)	Project Engineer			per hour		16	months	\$302,400	
	b)	Engineer			per hour		6	months	\$100,800	
	c)	RSO			per hour		18	months	\$302,400	
	d)	Office Manager			per hour		6	months	\$100,800	
	e)	Electrician			per hour		6	months	\$100,800	
	f)	Geologist			per hour		6	months	\$100,800	
	g)	Foreman		\$100.00	per hour		6	months	\$100,800	
	h)	4 Operators		\$100.00	per hour		6	months	\$100,800	
	i)	2 Laborers		\$100.00	per hour		6	months	\$100,800	i
	SUBTOTAL								\$1,310,400	
<u>5.</u>	Contract Lab	oratory Analysis					4-		940.000	
	a)		88 UCL samples per ye	ar @\$100)		1.5	years	\$13,200	
		Stabilization Samp								
	b)	18 Wells	- 3 complete Assays @	⊉\$350					\$18,900	•
	SUBTOTAL								\$32,100	
<u>6.</u>	Operating E				s	3,480	6		\$20,880	
	a)	Supplies /mo			3	1,000	6		\$6,000	
	b)	Vehicle Fuel /mo			\$ \$	1,950	6		\$11,700	
	c)	Office Utilities /mo	l		Ð	1,000	•		\$38,580	•
	SUBTOTAL								400,000	
7	CURTOTAL								\$1,612,265	-
<u>7.</u>	SUBTOTAL						20%	Contingency	\$322,457	
	TOTAL OB	PATING COST TO	RESTORE GROUNDW	ATER AT	FULL PR	ODUCTION			\$1,934,742	
	IOIALOPE		, LD I OI L OI COINDIN							
	UNIT REST	ORATION OPERAT	ING COST				30	Patterns	\$64,491	/Pattern
	311111201									

Revised: March 30, 2009

Company:

Uranium Energy Corp.

Goliad

dentification: Sample Id:

PTW-7

Laboratory:

Jordan Laboratories (A Xenco Laboratories Company)

Report Date:

10/17/2008

Work Order No.:

312096-001

Lab Description: Sample Date/Time: M46-1073

09/09/2008 10:25

RANGE

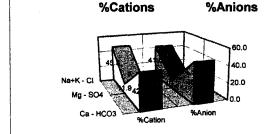
MAJOR AND SECONDARY CONSTITUENTS (Group 1)

ITEM	mg/L	epm	Conductance	%ерт
CALCIUM (Ca)	97.00	4.84	251.70	42.76
MAGNESIUM (Mg)	16.40	1.35	62.85	11.92
SODIUM (Na)	109.00	4.74	231.84	41.89
POTASSIUM (K)	15.20	0.39	27.99	3.43
	TOTAL CATION	11.32		
CARBONATE (CO3)	0.0	0.00	0.00	0.00
BICARBONATE (HCO3)	325.0	5.33	232.22	48.17
SULFATE (SO4)	54.4	1.13	83.70	10.24
CHLORIDE (CI)	163.0	4.60	348.99	41.59
NITRATE (NO3-N)	<0.113		·	
FLUORIDE (F)	<0.5 <u>Total</u>	Conductance:	<u>1239.29</u>	
SILICA (SIO2)	35.4			

TOTAL ANION

11.06

TOTAL ION 815


ACCURACY CHECK

TDS (180 c)				668.0	
TDS (total ion -	0.5 HCO3)			652.9	
EC (25 c)				987.0	umhos/cm
EC(DIL) =	101.6 X	12.50	_ =	1270.0	umhos/cm
ALK. as CaCO	3			266.0	
рН				7.55	Std. Unit

ION	1.024	0.96 to 1.04
TDS _	1.023	0.90 to 1.10
EC _	1.025	0.95 to 1.05

MINOR and TRACE CONSTITUENTS (Group 2)

ITEM	mg/L
ARSENIC (As)	0.018
CADMIUM (Cd)	<0.005
IRON (Fe)	<0.010
LEAD (Pb)	<0.012
MANGANESE (Mn)	<0.010
MERCURY (Hg)	<0.0001
MOLYBDENUM (Mo)	0.026
SELENIUM (Se)	<0.010
URANIUM (U)	0.804
AMMONIA-N (NH3-N)	<0.1
TURBIDITY (NTU)	4.47

RADIATION-PICOCURIES/LITER

RADIUM 226 1684.0 +/- 4.0

Gross Alpha +/- +/- +/- +/-

NOTE: QC documentation is on file at Jordan Labs 842 Cantwell Ln Corpus Christi, TX 78408

Remarks:

Checked by:

Company: lentification: Uranium Energy Corp.

Goliad

Sample Id: Laboratory: PTW-8

Jordan Laboratories (A Xenco Laboratories Company)

Report Date:

10/17/2008

Work Order No.:

Lab Description:

Sample Date/Time:

311727-001

M46-1062

09/03/2008 00:00

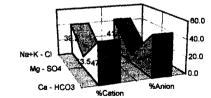
RANGE

MAJOR AND SECONDARY CONSTITUENTS (Group 1)

ITEM	mg/L	epm	Conductance	%ерт
CALCIUM (Ca)	104.00	5.19	269.86	47.14
MAGNESIUM (Mg)	18.10	1.49	69.36	13.52
SODIUM (Na)	96.40	4.19	205.04	38.09
POTASSIUM (K)	5.39	0.14	9.93	1.25
	TOTAL CATION	11.01		
CARBONATE (CO3)	0.0	0.00	0.00	0.00
BICARBONATE (HCO3)	336.0	5.51	240.08	48.82
SULFATE (SO4)	52.4	1.09	80.62	9.67
CHLORIDE (CI)	166.0	4.68	355.41	41.51
NITRATE (NO3-N)	<0.113			
FLUORIDE (F)	0.63 <u>Total</u>	Conductance:	<u>1230.31</u>	
SILICA (SIO2)	35.1			

TOTAL ANION

11.28


814 TOTAL ION

ACCURACY CHECK

ALK. as CaCO3 pH	275.0 7.74 Std. Unit	%Cations	%Anions
EC (DIL) = 103.2 X 12.50			
EC (25 c)	980.0 umhos/cm	EC 1.04	0.95 to 1.05
TDS (total ion - 0.5 HCO3)	646.0	TDS 1.08	0.90 to 1.10
TDS (180 c)	698.0	ION0.97	\
			KANUE

MINOR and TRACE CONSTITUENTS (Group 2)

ITEM	mg/L
ARSENIC (As)	<0.010
CADMIUM (Cd)	<0.005
IRON (Fe)	<0.030
LEAD (Pb)	<0.012
MANGANESE (Mn)	<0.010
MERCURY (Hg)	< 0.0001
MOLYBDENUM (Mo)	<0.010
SELENIUM (Se)	<0.010
URANIUM (U)	0.134
AMMONIA-N (NH3-N)	<0.1
CURBIDITY (NTU)	

RADIATION-PICOCURIES/LITER

RADIUM 226	397.0 +/-	2.0
Gross Alpha	+/-	
Gross Beta	+/-	

NOTE: QC documentation is on file at Jordan Labs 842 Cantwell Ln Corpus Christi, TX 78408

Remarks:

pН

Checked by:

Company:

Uranium Energy Corp.

Report Date:

10/17/2008

dentification:

Goliad

Work Order No.:

312051-002

Sample Id:

PTW-9

Lab Description:

M46-1070

Laboratory:

Jordan Laboratories (A Xenco Laboratories Company)

Sample Date/Time:

09/08/2008 11:15

MAJOR AND SECONDARY CONSTITUENTS (Group 1)

ITEM	mg/L	epm	Conductance	%epm
CALCIUM (Ca)	94.10	4.70	244.17	43.39
MAGNESIUM (Mg)	13.30	1.09	50.97	10.11
SODIUM (Na)	106.00	4.61	225.46	42.60
POTASSIUM (K)	16.50	0.42	30.38	3.90
	TOTAL CATI	ON 10.82		
CARBONATE (CO ₃)	° 0.0	0.00	0.00	0.00
BICARBONATE (HCO3)	368.0	6.03	262.94	54.00
SULFATE (SO4)	19.1	0.40	29.39	3.56
CHLORIDE (CI)	158.0	4.74	359.70	42.44
NITRATE (NO3-N)	1.73			
FLUORIDE (F)	<0.5	Total Conductance:	<u>1203.01</u>	
SILICA (SIO2)	35.9			

TOTAL ANION

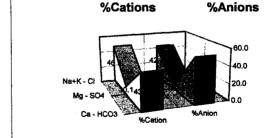
11.17

TOTAL ION

823

ACCURACY CHECK

TDS (180 c)				624.0
TDS (total ion - 0.	5 HCO3)			638.6
EC (25 c)				957.0 umhos/cm
EC(DIL) =	96.0 X	12,50	=	1200.0 umhos/cm
ALK. as CaCO3			-	302.0
pН			_	7.56 Std. Unit


ION	0.969
TDS	0.977
EC	0.997

0.96 to 1.04 0.90 to 1.10 0.95 to 1.05

RANGE

MINOR and TRACE CONSTITUENTS (Group 2)

ITEM	mg/L
ARSENIC (As)	<0.010
CADMIUM (Cd)	<0.005
IRON (Fe)	<0.030
LEAD (Pb)	<0.012
MANGANESE (Mn)	<0.010
MERCURY (Hg)	< 0.0001
MOLYBDENUM (Mo)	<0.010
SELENIUM (Se)	<0.010
URANIUM (U)	0.135
AMMONIA-N (NH3-N)	<0.1
TURBIDITY (NTU)	9.4

RADIATION-PICOCURIES/LITER

RADIUM 226	394.0 +/-	2.0
Gross Alpha	+/-	
Gross Beta	+/-	

NOTE: QC documentation is on file at Jordan Labs 842 Cantwell Ln Corpus Christi, TX 78408

Remarks:

Checked by Jonne Meth

Company:

Uranium Energy Corp.

Report Date:

10/17/2008

dentification:

Gollad

Work Order No.:

312051-001

Sample Id:

PTW-10

Lab Description:

M46-1069

Laboratory:

Jordan Laboratories (A Xenco Laboratories Company)

Sample Date/Time:

09/08/2008 09:50

MAJOR AND SECONDARY CONSTITUENTS (Group 1)

ITEM	mg/L	epm	Conductance	%epm
CALCIUM (Ca)	89.50	4.47	232.24	42.31
MAGNESIUM (Mg)	17.40	1.43	66.68	13.56
SODIUM (Na)	102.00	4.44	216.96	42.03
POTASSIUM (K)	8.70	0.22	16.02	2.11
	TOTAL CATION	10.56		
CARBONATE (CO3)	0.0	0.00	0.00	0.00
BICARBONATE (HCO3)	354.0	5.80	252.94	54.59
SULFATE (SO4)	12.3	0.26	18.93	2.41
CHLORIDE (CI)	162.0	4.57	346.85	43.00
NITRATE (NO3-N)	1.43			
FLUORIDE (F)	0.56 <u>Total</u>	Conductance:	<u>1150.61</u>	
SILICA (SIO2)	33.5			

TOTAL ANION 781

614.0

10.63

EC

TOTAL ION

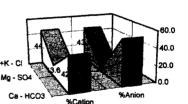
ION	0.993
TDS	1.016

RANGE

0.96 to 1.04 0.90 to 1.10 0.95 to 1.05

TDS (total ion - 0).5 HCO3
EC (25 c)	
EC(DIL) =	95.2
47.77 C-CO.	

TDS (180 c)


CO3) 604.4 umhos/cm 95.2 X 12.50 = 1190.0 umhos/cm 290.0

ALK. as CaCO3 pH

7,59 Std. Unit

%Cations %Anions

ACCURACY CHECK

MINOR and TRACE CONSTITUENTS (Group 2)

ITEM	mg/L
ARSENIC (As)	<0.010
CADMIUM (Cd)	<0.005
IRON (Fe)	<0.030
LEAD (Pb)	<0.012
MANGANESE (Mn)	<0.010
MERCURY (Hg)	< 0.0001
MOLYBDENUM (Mo)	<0.010
SELENIUM (Se)	<0.010
URANIUM (U)	0.099
AMMONIA-N (NH3-N)	<0.1
TURBIDITY (NTU)	<1.00
• • • • • • • • • • • • • • • • • • • •	

RADIATION-PICOCURIES/LITER

RADIUM 226	68.0 +/-	1.0
Gross Alpha	+/-	
Gross Beta	+/-	

NOTE: QC documentation is on file at Jordan Labs 842 Cantwell Ln Corpus Christi, TX 78408

Remarks:

Checked by James Mett

Company:

Uranium Energy Corp.

dentification: Sample Id:

PTW-11

Goliad

Laboratory:

Jordan Laboratories (A Xenco Laboratories Company)

Report Date:

10/17/2008

Work Order No.:

Sample Date/Time:

312207-01

Lab Description:

M46-1085

09/10/2008 09:05

MAJOR AND SECONDARY CONSTITUENTS (Group 1)

ITEM	mg/L	epm	Conductance	%epm
CALCIUM (Ca)	87.20	4.35	226.27	41.47
MAGNESIUM (Mg)	16.80	1.38	64.38	13.17
SODIUM (Na)	104.00	4.52	221.21	43.11
POTASSIUM (K)	9.27	0.24	17.07	2.26
	TOTAL CAT	TION 10.49		
CARBONATE (CO3)	0.0	0.00	0.00	0.00
BICARBONATE (HCO3)	344.0	5.64	245.79	53.21
SULFATE (SO4)	17.3	0.36	26.62	3.40
CHLORIDE (CI)	163.0	4.60	348.99	43.40
NITRATE (NO3-N)	<0.113			
FLUORIDE (F)	0.52	Total Conductance:	<u>1150.33</u>	
SILICA (SIO2)	32.9			

TOTAL ANION

658.0

603.0

10.60

EC

TOTAL ION 775

12.50

ION	0.990
TDS	1.091

RANGE

0.96 to 1.04 0.90 to 1.10 0.95 to 1.05

ALK. as CaCO3	
рH	

TDS (total ion - 0.5 HCO3)

TDS (180 c)

EC (25 c)

EC(DIL) =

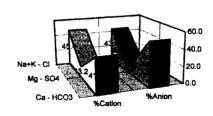
282.0

7.35 Std. Unit

950.0 umhos/cm

1200.0 umhos/cm

MINOR and TRACE CONSTITUENTS (Group 2)


96.0

ITEM	mg/L
ARSENIC (As)	<0.010
CADMIUM (Cd)	<0.005
IRON (Fe)	<0.030
LEAD (Pb)	<0.012
MANGANESE (Mn)	0.013
MERCURY (Hg)	<0.0001
MOLYBDENUM (Mo)	0.017
SELENIUM (Se)	<0.010
URANIUM (U)	0.166
AMMONIA-N (NH3-N)	<0.1
TURBIDITY (NTU)	<1.00

%Cations **%Anions**

1.043

ACCURACY CHECK

RADIATION-PICOCURIES/LITER

RADIUM 226 Gross Alpha **Gross Beta** 296.0 +/-

NOTE: QC documentation is on file at Jordan Labs 842 Cantwell Ln Corpus Christi, TX 78408

Remarks:

Checked by

Company: dentification: Uranium Energy Corp.

Goliad

Sample Id:

PTW-12

Laboratory:

Jordan Laboratories (A Xenco Laboratories Company)

Report Date:

ite:

Work Order No.:

Lab Description: Sample Date/Time: 10/17/2008

312096-003

M46-1075

09/09/2008 13:15

DANGE

MAJOR AND SECONDARY CONSTITUENTS (Group 1)

ITEM	mg/L	epm	Conductance	%ерт
CALCIUM (Ca)	94.60	4.72	245.47	43.29
MAGNESIUM (Mg)	15.60	1.28	59.78	11.76
SODIUM (Na)	106.50	4.63	226.53	42.48
POTASSIUM (K)	10.50	0.27	19.34	2.46
	TOTAL CATION	10.90		
CARBONATE (CO3)	0.0	0.00	0.00	0.00
BICARBONATE (HCO3)	334.0	5.47	238.65	50.91
SULFATE (SO4)	31.3	0.65	48.16	6.06
CHLORIDE (CI)	164.0	4.63	351.13	43.03
NITRATE (NO3-N) FLUORIDE (F) SILICA (SIO2)	<0.113 0.52 32.9	al Conductance:	1189.05	

TOTAL ANION

274.0

7.47 Std. Unit

TOTAL ION 790

			642.0	
			622.9	
			970.0	umhos/cm
X	12.50	=	1230.0	umhos/cm

ALK. as CaCO3 pH

TDS (180 c)

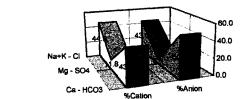
EC (25 c) EC (DIL) =

H

TDS (total ion - 0.5 HCO3)

10.75

ACCURACY CHECK


		KANOL
ION	1.014	0.96 to 1.04
TDS	1.031	0.90 to 1.10
EC	1.034	0.95 to 1.05

%Anions

MINOR and TRACE CONSTITUENTS (Group 2)

98.4

ITEM	mg/L
ARSENIC (As)	<0:010
CADMIUM (Cd)	<0.005
IRON (Fe)	<0.030
LEAD (Pb)	<0.012
MANGANESE (Mn)	<0.010
MERCURY (Hg)	<0.0001
MOLYBDENUM (Mo)	0.014
SELENIUM (Se)	<0.010
URANIUM (U)	0.163
AMMONIA-N (NH3-N)	<0.1
TURBIDITY (NTU)	<1.00

%Cations

RADIATION-PICOCURIES/LITER

RADIUM 226 Gross Alpha Gross Beta

	477.0 +/		 2.0
	+,	<u>ا </u>	SAL
,		,	

NOTE: QC documentation is on file at Jordan Labs 842 Cantwell Ln Corpus Christi, TX 78408

Remarks:

Checked by: Jan Muth

Company:

Uranium Energy Corp.

Report Date:

10/17/2008

dentification:

SILICA (SIO2)

Goliad

Work Order No.:

312096-002

Sample Id:

PTW-13

Lab Description:

M46-1074

Laboratory:

Jordan Laboratories (A Xenco Laboratories Company)

Sample Date/Time:

09/09/2008 11:55

MAJOR AND SECONDARY CONSTITUENTS (Group 1)

ITEM	mg/L	epm	Conductance	%epm
CALCIUM (Ca)	101.00	5.04	262.08	45.09
MAGNESIUM (Mg)	17,50	1.44	67.06	12.88
SODIUM (Na)	102.00	4.44	216.96	39.70
POTASSIUM (K)	10.20	0.26	18.78	2.33
	TOTAL CATION	11.18		
CARBONATE (CO3)	0.0	0.00	0.00	0.00
BICARBONATE (HCO3)	331.0	5.42	236.51	50.51
SULFATE (SO4)	43.9	0.91	67.55	8.51
CHLORIDE (CI)	156.0	4.40	334.00	40.98
NITRATE (NO3-N)	<0,113			
FLUORIDE (F)	0.58 <u>Total</u>	Conductance:	<u>1202.93</u>	

TOTAL ANION

37.5

<u>10.74</u>

ACCURACY CHECK

			TOTAL ION	-	800
TDS (180 c)					672.0
TDS (total ion - 0.5	HCO3)				634.2
EC (25 c)					1020.0 umhos/cm
EC (DIL) =	100.8	X	12.50	_ =	1260.0 umhos/cm
ALK. as CaCO3				_	271.0
рН					7.54 Std. Unit
۲					

		<u>RANGE</u>
ION	1.041	0.96 to 1.04
TDS	1.060	0.90 to 1.10
EC	1.047	0.95 to 1.05

MINOR and TRACE CONSTITUENTS (Group 2)

ITEM	mg/L
ARSENIC (As)	<0.010
CADMIUM (Cd)	<0.005
IRON (Fe)	0.059
LEAD (Pb)	<0.012
MANGANESE (Mn)	0.017
MERCURY (Hg)	0.0001
MOLYBDENUM (Mo)	<0.010
SELENIUM (Se)	<0.010
URANIUM (U)	0.156
AMMONIA-N (NH3-N)	<0.1
TURBIDITY (NTU)	2.56

RADIATION-PICOCURIES/LITER

RADIUM 226	10.0 +/-	1.0
Gross Alpha	+/-	28.
Gross Beta	+/-	

NOTE: QC documentation is on file at Jordan Labs 842 Cantwell Ln Corpus Christi, TX 78408

Checked by:

Jam mitts

Remarks:

Company: 3

URANIUM ENERGY CORP

Report Date:

04/02/2009

Identification: 🖔

PTW-14/CBP-1

Work Order No.:

307201

Sample Id: Laboratory:

Jordan Laboratories (A Xenco Laboratories Company)

Lab Description: Sample Date/Time:

M46-885 07/02/2008 13:45

MAJOR AND SECONDARY CONSTITUENTS (Group 1)

ITEM	mg/L	epm	Conductance	%epm
CALCIUM (Ca)	89.10	4.45	231,20	43.52
MAGNESIUM (Mg)	17.90	1.47	68.60	14.41
SODIUM (Na)	96.30	4.19	204.83	41.00
POTASSIUM (K)	4.28	0.11	7.88	1.07
	TOTAL CATION	10.22		
CARBONATE (CO3)	<u> </u>	0.00	0.00	0.00
BICARBONATE (HCO3)	325.0	5.33	232.22	47.66
SULFATE (SO4)	58.7	1.22	90.32	10.94
CHLORIDE (CI)	164.0	4.63	351.13	41.40
NITRATE (NO3-N)	<0.113			
FLUORIDE (F)	0.58 <u>To</u>	tal Conductance:	<u>1186.17</u>	
SILICA (SIO2)	21.8			

TOTAL ANION

11.17

778 TOTAL ION

ACCURACY CHECK


TDS (180 c)	638.0
TDS (total ion - 0.5 HCO3)	615.2
EC (25 c)	1110.0 umhos/cm
EC (DIL) = 103 X 12.50 =	1288.8 umhos/cm
ALK. as CaCO3	266.0
pH	7.96 Std. Unit

ION	0.914
TDS	1.037
EC	1.086

RANGE 0.96 to 1.04 0.90 to 1.10 0.95 to 1.05

MINOR and TRACE CONSTITUENTS (Group 2)

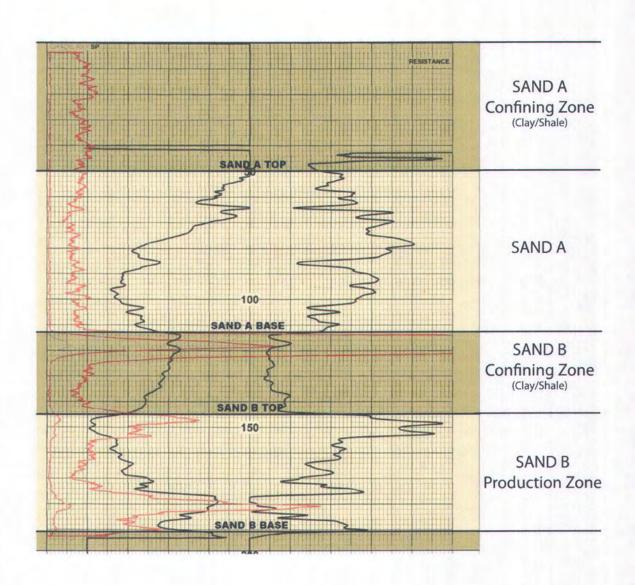
ITEM	mg/L
ARSENIC (As)	0.022
CADMIUM (Cd)	<0.001
IRON (Fe)	<0.030
LEAD (Pb)	<0.012
MANGANESE (Mn)	0.013
MERCURY (Hg)	<0.0001
MOLYBDENUM (Mo)	0.037
SELENIUM (Se)	<0.012
URANIUM (U)	0.086
AMMONIA-N (NH3-N)	<0.1
Turbidity	9.15 NT⊍

RADIATION-PICOCURIES/LITER

RADIUM 226 RADON 222

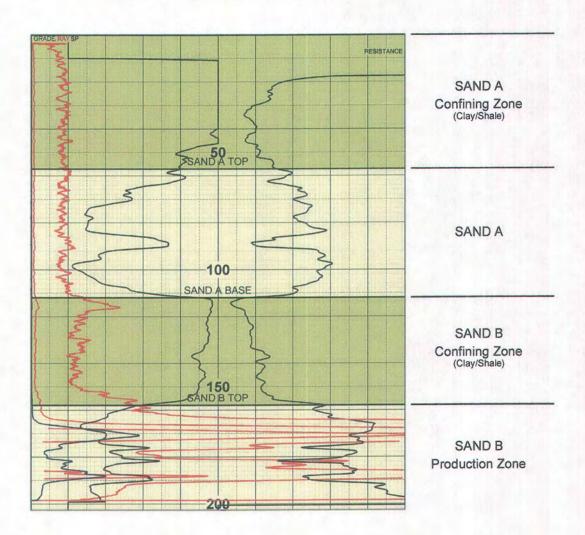
NOTE: QC documentation is on file at Jordan Labs 842 Cantwell Ln Corpus Christi, TX 78408

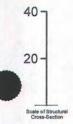
Remarks:


Turbidity= 9.15 NTU Note: Samples are reduced & contain H2S that can lead to a significant increase in Turbidity.

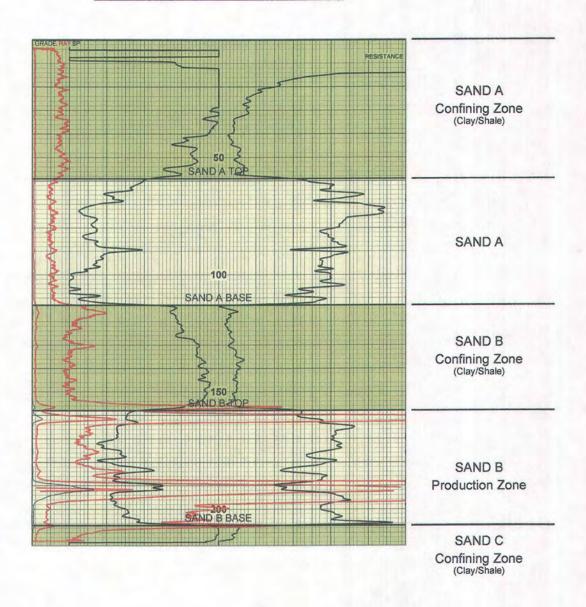
Checked by:

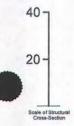
32201-BMW-9



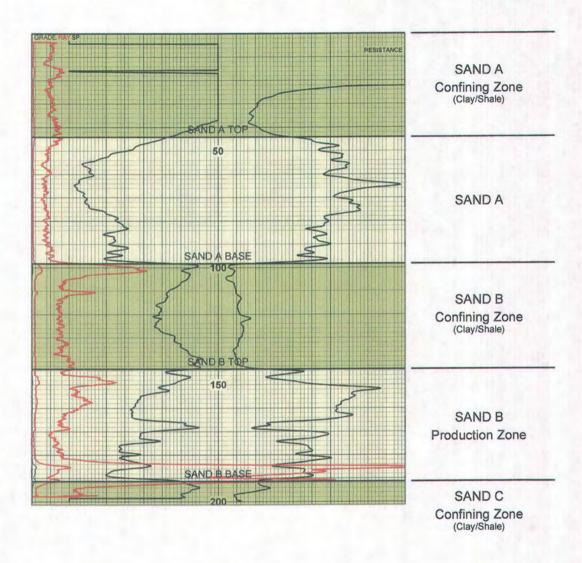

TD 195 FT GL 230.8 FT

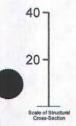
TD 201 FT GL 232.3 FT

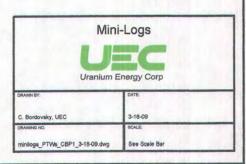




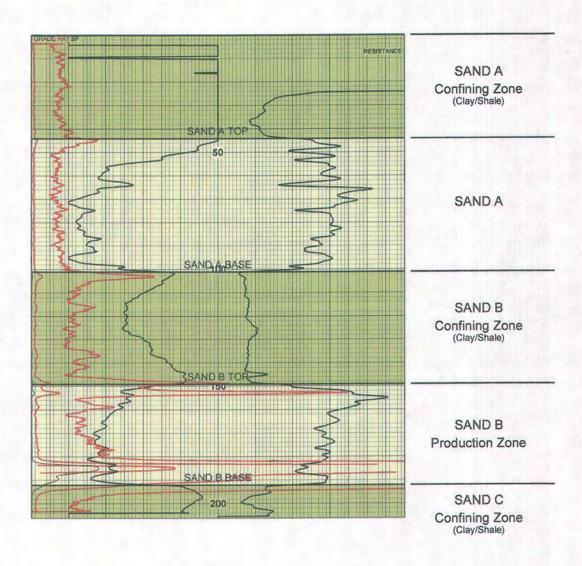
TD 216 FT GL 237.4 FT







TD 200 FT GL 226.8 FT



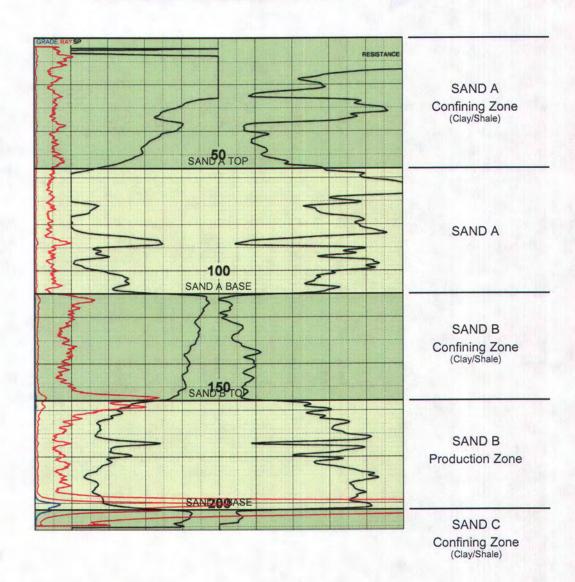
TD 206 FT GL 227.6 FT

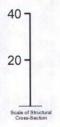
TD = Total Depth GL = Ground Level FT = Feet Mini-Logs

Uranium Energy Corp

DRAWN BY:

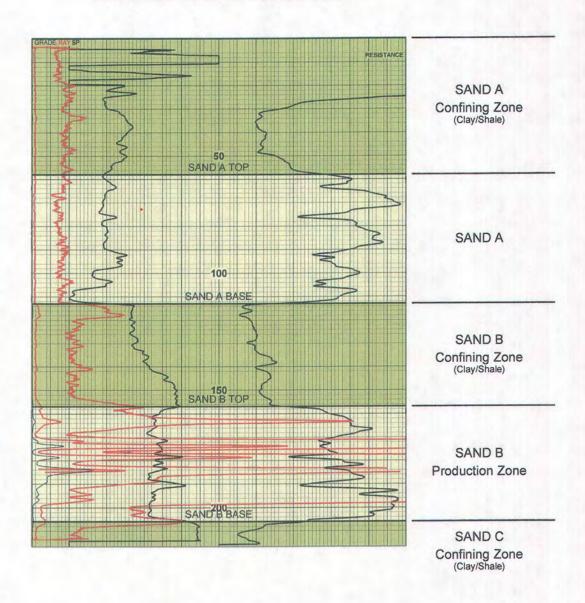
C. Bordovsky, UEC

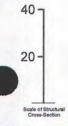

DRAWN NO.

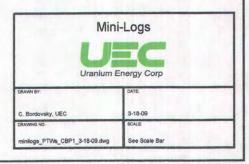

minings_PTWs_CBP1_3-18-09.dwg

See Scale Bar

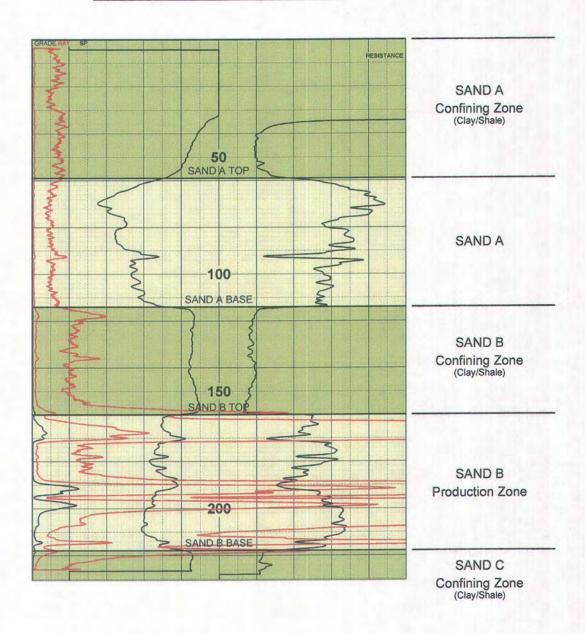
TD 212 FT GL 232.2 FT

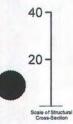






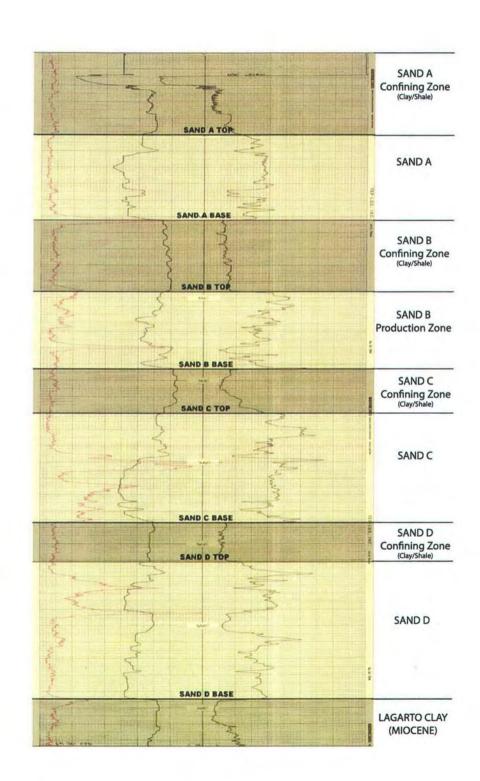
TD 216 FT GL 232.3 FT

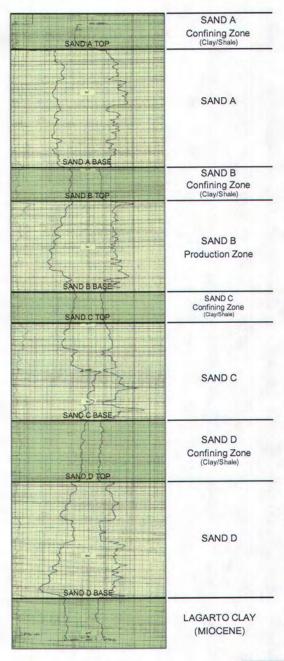


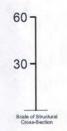


32201-CBP-1/P/W-14

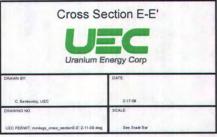
TD 228 FT GL 237.7 FT



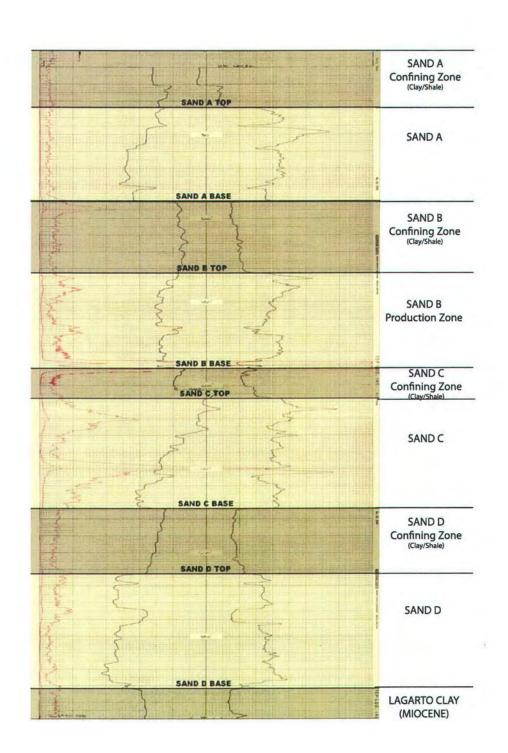

TD 424 FT GL 230.8 FT

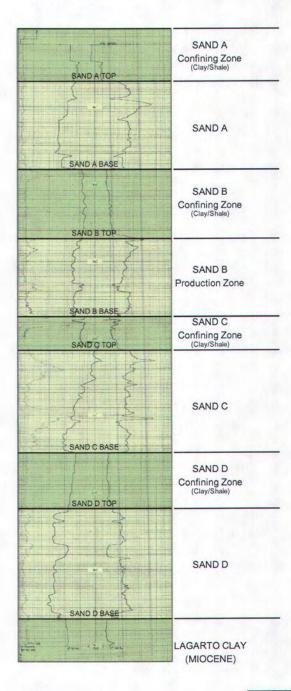


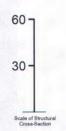

32201-54

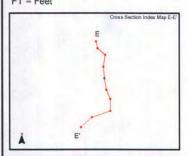


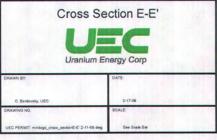
TD 400 FT GL 210.8 FT

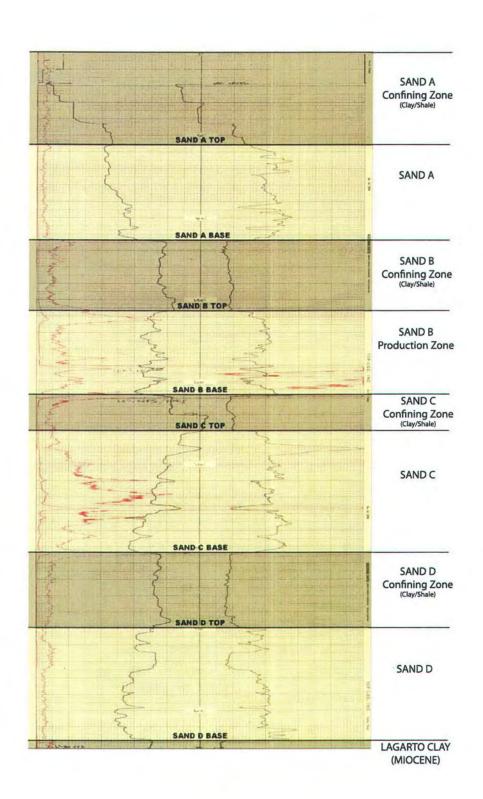


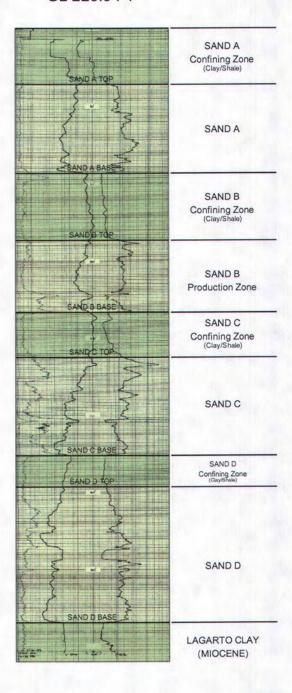


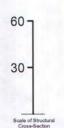

TD 400 FT GL 220.4 FT

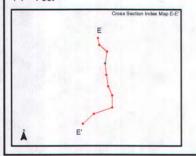


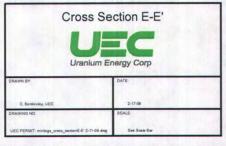

TD 400 FT GL 220.4 FT

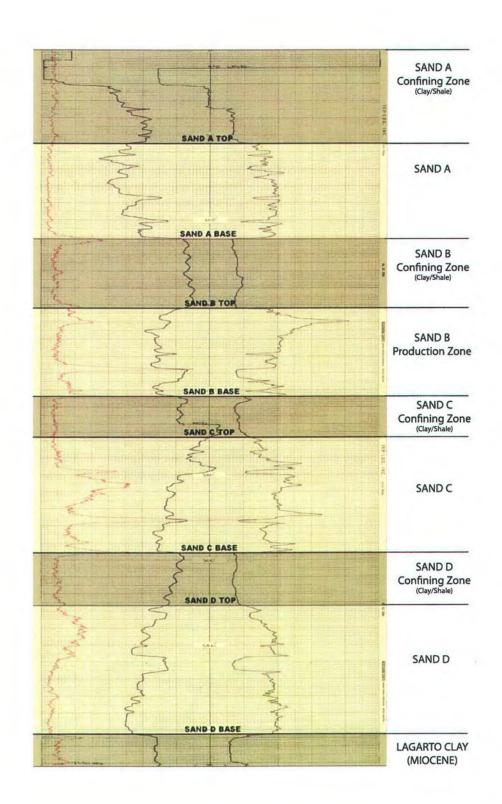

TD = Total Depth GL = Ground Level FT = Feet

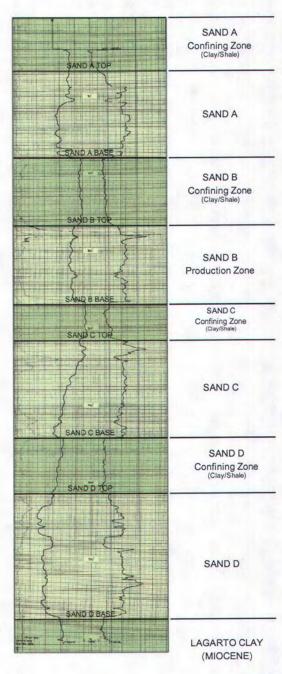


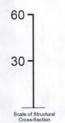

TD 424 FT GL 235.5 FT



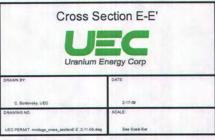

TD 400 FT GL 223.9 FT

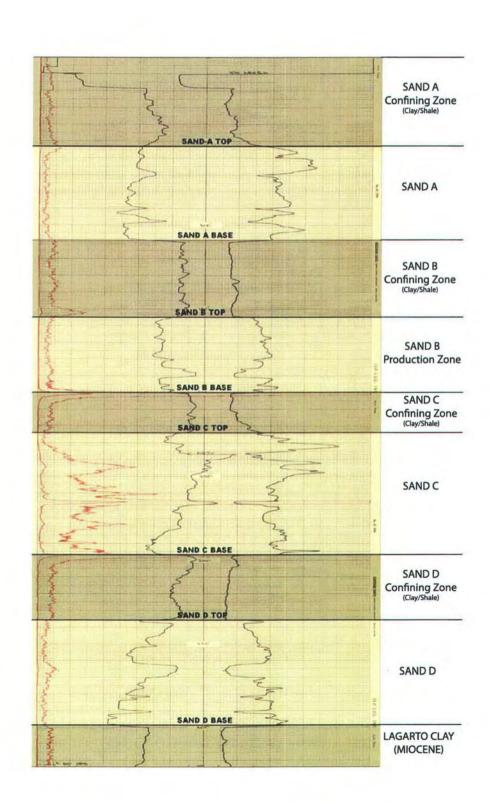

TD = Total Depth GL = Ground Level FT = Feet

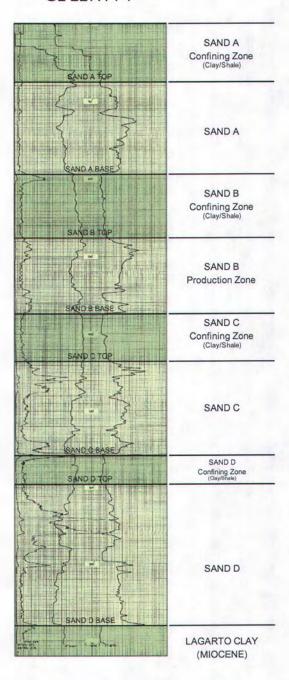


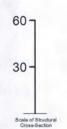

TD 422 FT GL 234.9 FT



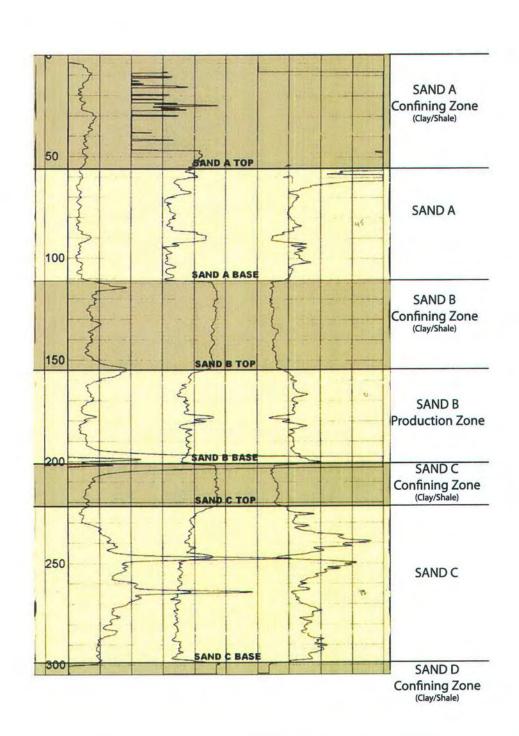

TD 400 FT GL 218.1 FT

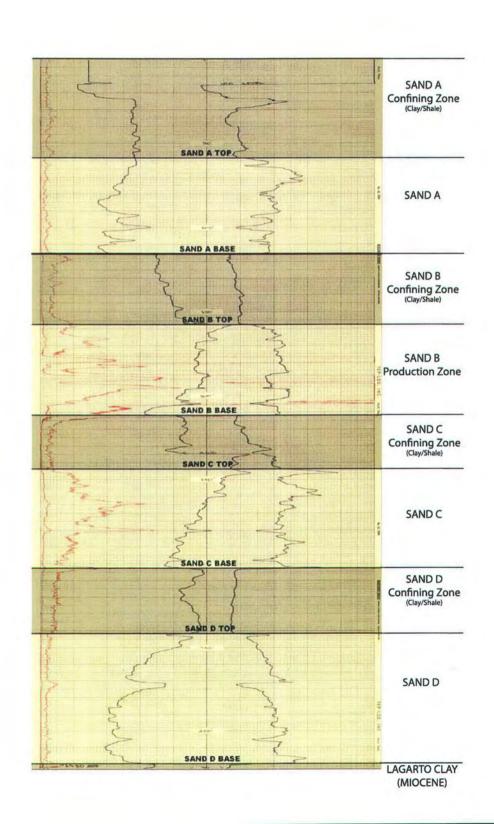

TD = Total Depth GL = Ground Level FT = Feet



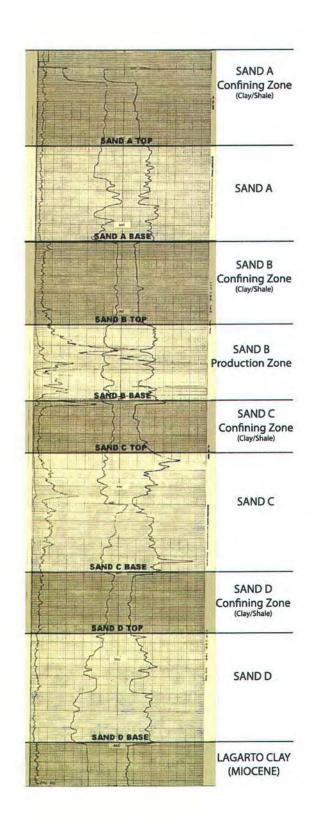

TD 424 FT GL 231.9 FT

TD 400 FT GL 227.1 FT

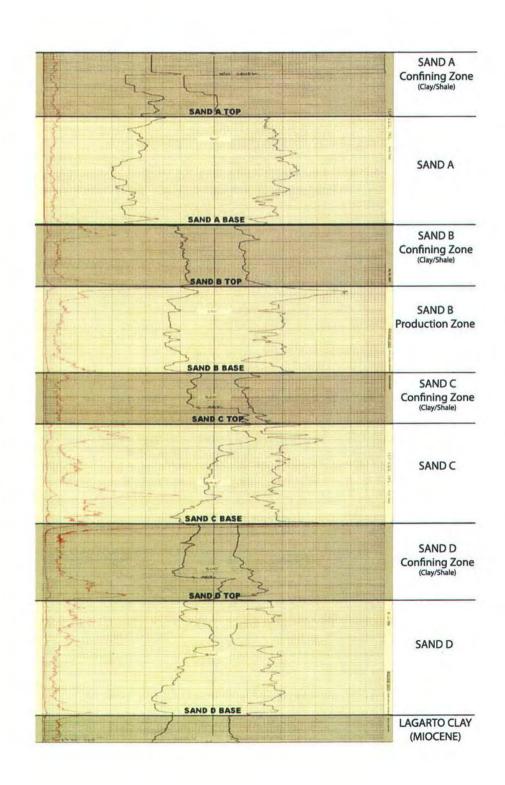

TD = Total Depth
GL = Ground Level
FT = Feet



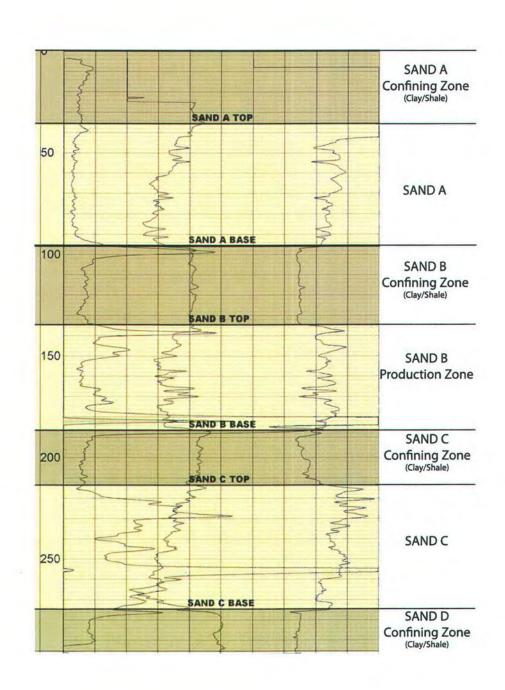
TD 305 FT GL 230.5 FT



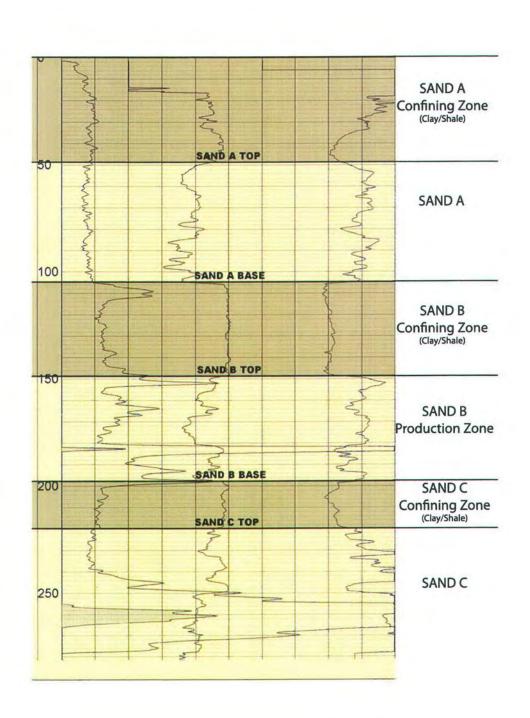
TD 423 FT GL 234.4 FT



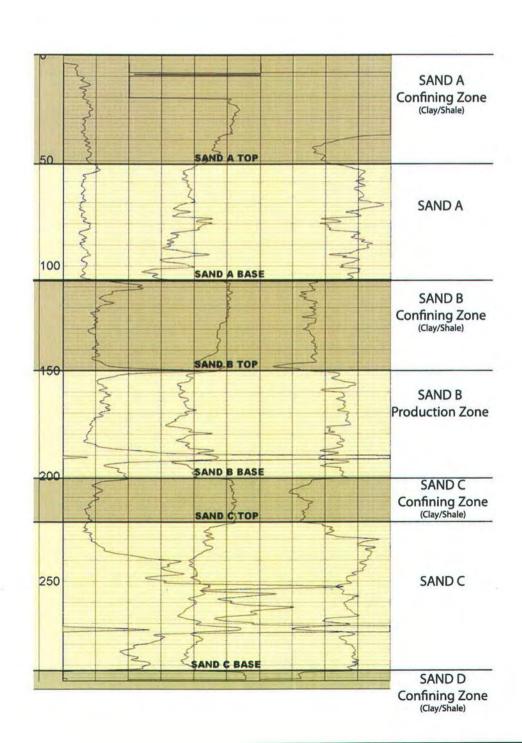
TD 425 FT GL 228.3 FT



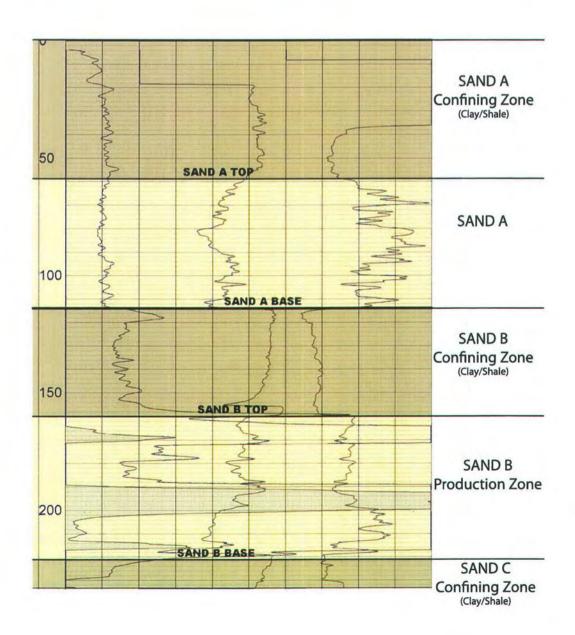
TD 402 FT GL 224.7 FT



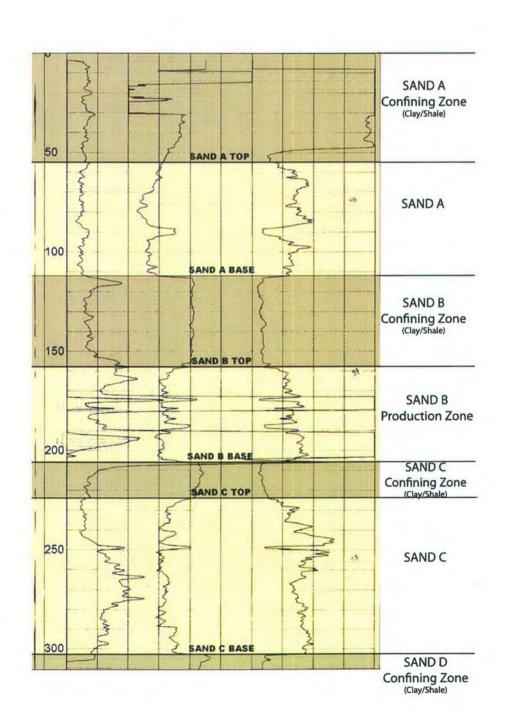
TD 297 FT GL 222.9 FT



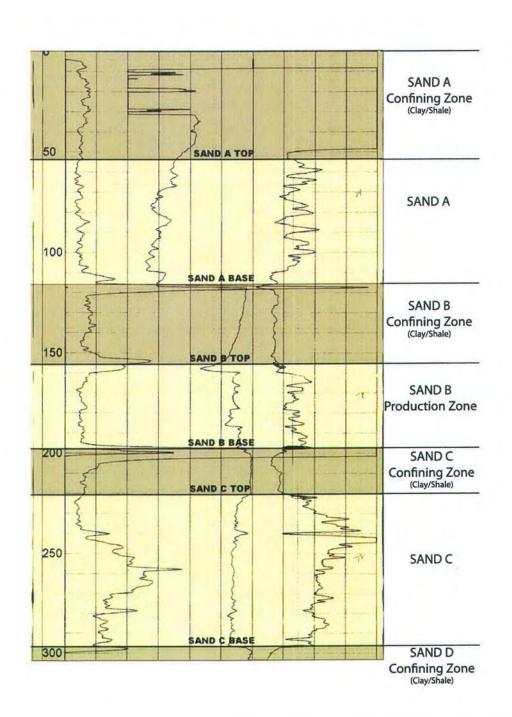
TD 283 FT GL 231.5 FT



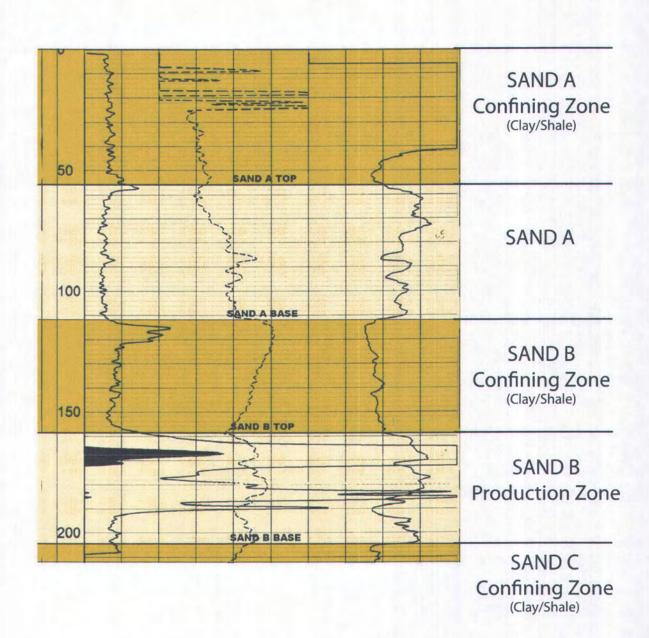
TD 297 FT GL 232.4 FT



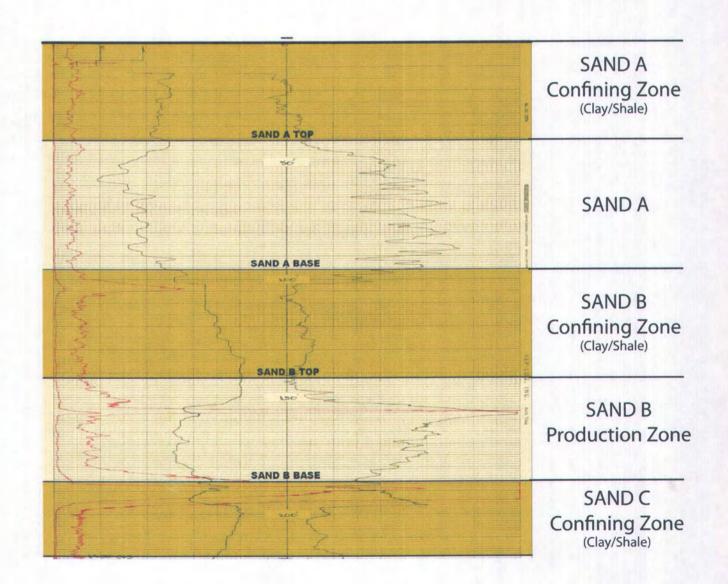
TD 234 FT GL 237.2 FT



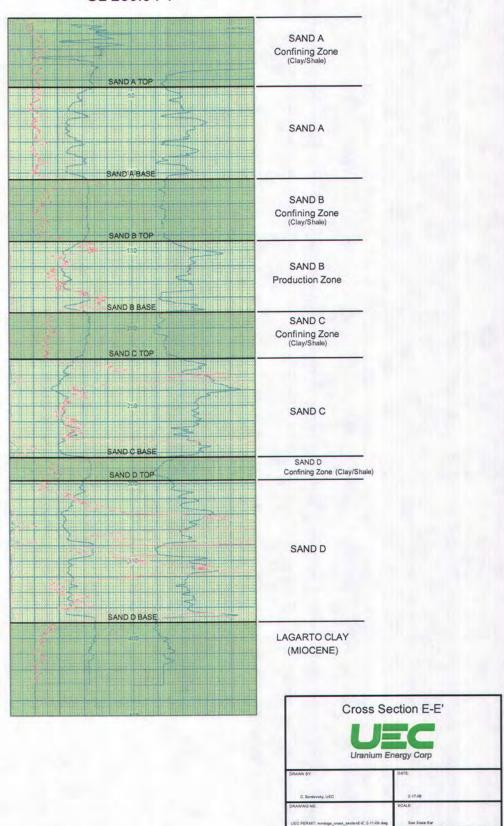
TD 311 FT GL 231.3 FT



TD 304 FT GL 229.8 FT

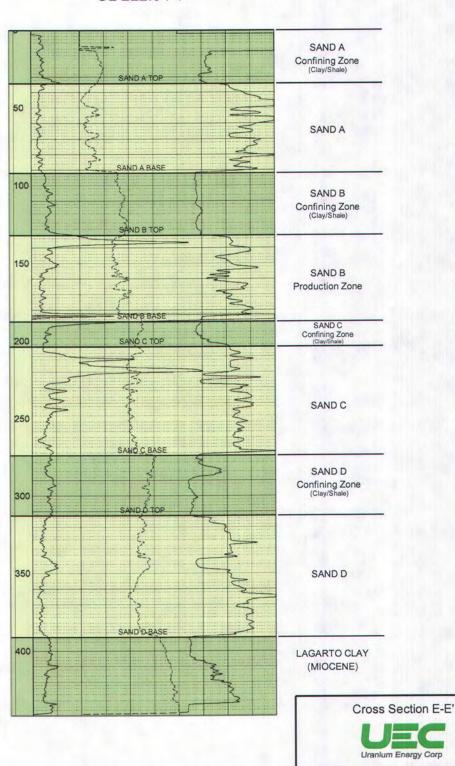


TD 213 FT GL 232.7 FT



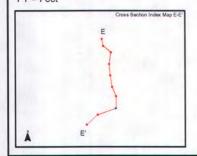
TD 220 FT GL 227.1 FT

TD 430 FT GL 230.5 FT

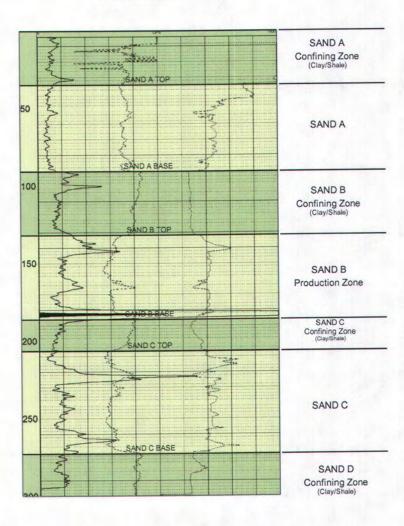

30 -

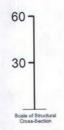
TD = Total Depth GL = Ground Level FT = Feet

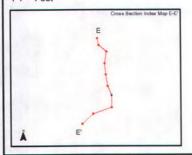
Cross Section Index Map E-€'

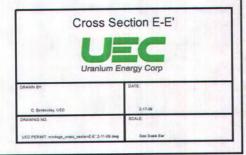


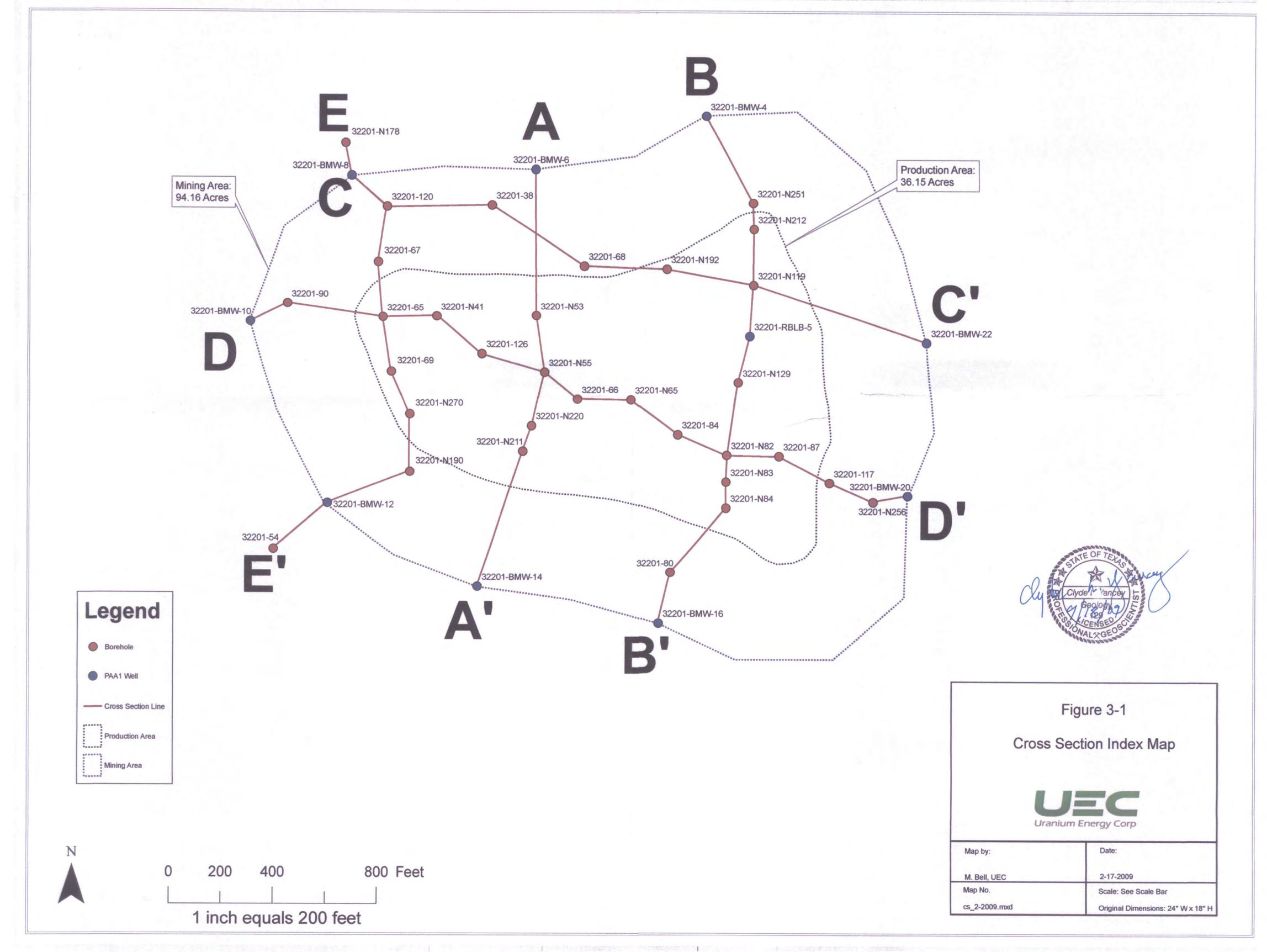
TD 440 FT GL 222.3 FT

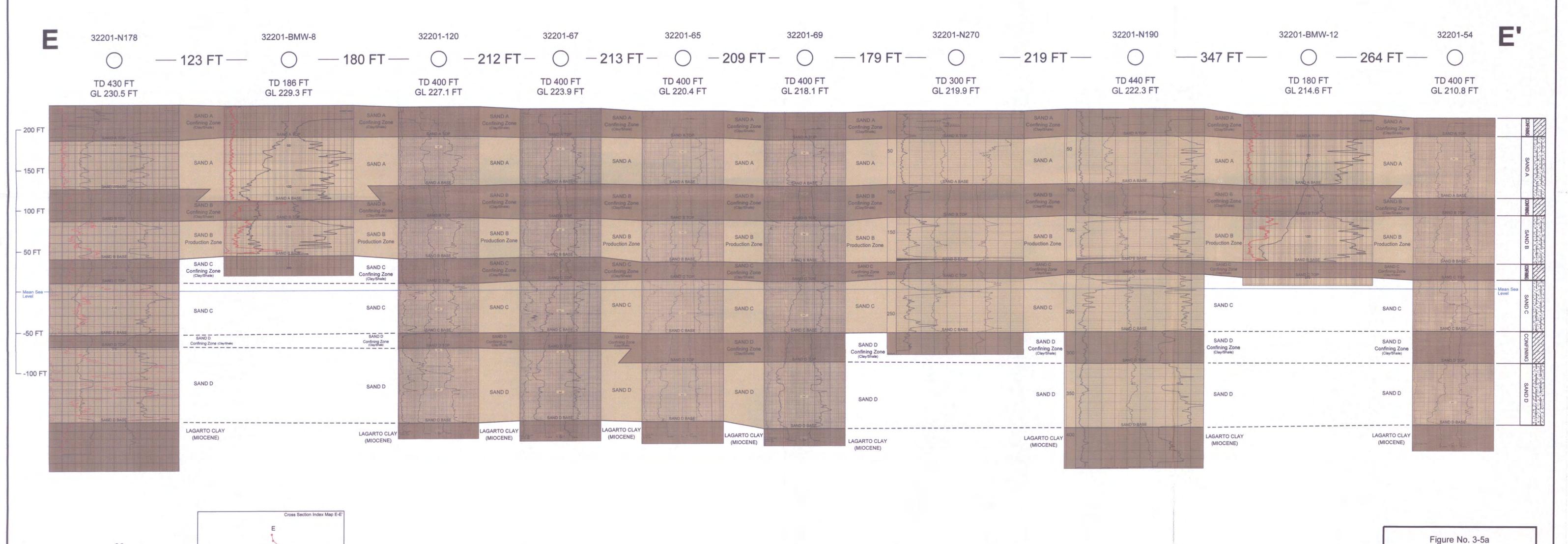

30 -


TD = Total Depth GL = Ground Level FT = Feet




TD 300 FT GL 219.9 FT





TD = Total Depth GL = Ground Level FT = Feet

TD = Total Depth

GL = Ground Level FT = Feet

Scale of Structural Cross-Section Cross Section E-E'

Clara Clyde L. Vancey Geology
129

DRAWN BY:

C. Yancey, UEC (Breaks)
C. Bordovsky, UEC (CAD)

DRAWNING NO.

SCALE: