

Applicability of EPRI Work on Digital Common-Cause Failure (CCF) to Embedded Digital Devices (EDDs)

Ray Torok (<u>rtorok@epri.com</u>)

NRC Public Meeting on Safe Use of Embedded Digital Devices

October 9, 2014

Contents

- Review EPRI project on common-cause failure (CCF)
- Expected characteristics of embedded digital devices (EDDs)
- CCF contexts for EDDs
- Review important CCF concepts
- Summary and Conclusions

EPRI Project on Common-Cause Failure (CCF) Supporting NEI effort on NEI 01-01

- Provide technical input on CCF issues
- Refocus the conversation
 - It's not just about diversity or 100% testability
 - It's about protecting against plant level CCF effects
- More holistic approach
 - Assess susceptibility to digital failure and CCF from all sources
 - Credit design features that address vulnerabilities (including diversity where appropriate)
 - Apply engineering judgment to assess CCF protection
 - Use coping analysis where appropriate

Expected Characteristics of EDDs

First, what are EDDs?

- Special purpose devices with predefined functionality?
- Subcomponents that can affect the primary system function, but have no human interface?
- Subcomponents that can affect primary function, but need very limited configuration settings?
- Subcomponents that come in as part of mods, but
 - Mod team not aware of digital component
 - Not evaluated or reviewed by digital experts
 - Need for digital review not recognized

Is this what the RIS is really after?

Expected Characteristics of EDDs, cont'd

- Commercial grade
 - Not developed to nuclear safety design or QA standards
 - Large operating history
 - "Dedicated" for safety applications per NP-5652* and TR-106439
- Limited digital expertise needed to get it working?? Could imply:
 - Limited functionality and configurability
 - Default configurations/built-in algorithms
 - Limited I/O, settings/adjustments
 - Limited communication capability

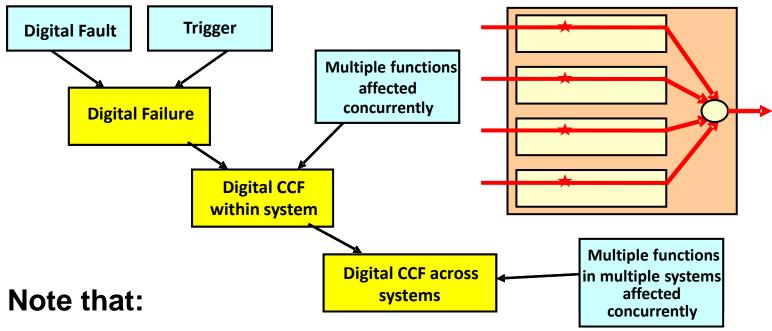
^{*} Superseded by: Plant Engineering: Guideline for the Acceptance of Commercial-Grade Items in Nuclear Safety-Related Applications - Revision 1 to EPRI NP-5652 and TR-102260, 3002002982, September 2014

CCF Contexts – Which Apply to EDDs?

- Redundant divisions of identical equipment/software
- Combining functions in a single controller
- Combining controls for multiple systems on a single platform
- Multiple systems with identical platforms or software elements
- Non-safety systems with internal redundancy that share resources (e.g., power supplies, timing signals, etc.)
- Multiple plant systems or controllers that share resources (e.g., data networks, workstations, sensors, etc.)

Note: EDDs could be in ESF breakers, motor control centers, diesel controllers, sequencers, time-delay relays, etc.

EPRI CCF Project Approach Draw From and Expand Existing Guidance on CCF


- Consider all contributors to protection against CCF effects both failure prevention and mitigation, including:
 - Traditional hardware practices quality assurance, qualification testing, etc.
 - Software development practices e.g., standards, coding practices
 - Defensive design measures in software, hardware, architecture, procedures, operation, etc.
 - Failure/hazard analysis

Which apply to EDDs?

- Test coverage
- Performance records
- Risk and fault tree analysis (FTA) insights
- Backup systems
- Coping and safety analysis insights, including "bounding" analysis

CCF Concepts – Ingredients for Software CCF: Faults and Triggers

- Not all digital faults/failures become CCFs
- Not all digital failures and CCFs are safety-significant
- Defect-free software is neither expected nor needed
- Eliminating faults and triggers reduces likelihood of failure / CCF

CCF susceptibility evaluation assesses devices for design measures and practices that reduce the likelihood of faults and triggers

CCF Concepts - Example of Trigger Avoidance System Constrained to Well Understood and Tested Trajectories

Complete domain of behavior

- May contain residual digital faults

Path exercised continuously in normal situations

Influence factors during continuous operation:

- normal process inputs (validated before use)
- short-term memory (as little as possible)
- clock interrupts (thorough verification)
- (process-related interrupts: none)
- (resource management: static)

Path exercised in occasional but tested situations

Influence factors that could disrupt cyclic behavior:

- initialization (only once)
- operator requests (single channel)
- hardware failures (single channel)
- exceptions (very simple)
- codified dates & times (e.g., Y2K)
- plant transients: affect all channels

Path exercised in unanticipated or untested trajectories

A robust system avoids unanticipated and untested trajectories

CCF Protection Important Considerations

- CCFs can start with single random hardware failures, defects in software or hardware, or environmental disturbances
- If a defensive design measure that avoids a particular type of failure has been demonstrated, then that failure is unlikely
- Ensure credited defensive measures are maintained a historical challenge for non-safety
- Evaluation credits protective (preventive and mitigative) measures both inside and outside the digital system
- Risk-benefit of additional protection ("reasonably practicable")
- Adequate CCF protection tailored based on risk significance and complexity

CCF Protection – Important Considerations, cont'd

- Tools that reduce likelihood of software defects, e.g., static analyzers, automated design tools
- Safety vs. non-safety dependence on process vs. design
- Coping/bounding analysis assumptions best estimate?
- Failure analysis techniques (e.g., FMEA, systems theoretic process analysis (STPA), and fault tree analysis) to:
 - identify potential vulnerabilities
 - identify combinations of spurious actions of multiple components
- Processed-based development standards

Summary and Conclusions EPRI Digital CCF Guidance Will Apply to EDDs

- Most of the same CCF contexts are possible
- Same evaluation considerations apply:
 - Look at both prevention and mitigation
 - Look at both process and product
 - Tailor based on safety significance and complexity
 - Credit operating experience
 - Test coverage
 - Failure/hazard analysis insights
- Commercial grade dedication evaluations will be important
- CCF evaluation approach is consistent with CGD guidance assess all evidence and apply engineering judgment

Together...Shaping the Future of Electricity