Attachment 2
RBG-47505

Calculation G.13.18.2.7-116, Rev. 0 Load Drop Calculation for Spent Fuel Pool Gates (FNS-GATE1 and FNS-GATE2)
(208 pages)

CALCULATION REFERENCE SHEET

CALCULATION NO: G13.18.2.7-116
REVISION:
I. EC Markups Incorporated (N/A to NP calculations)

None

II. Relationships:	Sht	Rev	Input Doc	Output Doc	$\begin{gathered} \text { Impact } \\ \text { Y/N } \end{gathered}$	Tracking No.
1. FB-1592	N/A	002	V	\square	N	
2. ER-RB-1996-0082-000	N/A	000	\square	\square	N	
3. G13.18.2.7*031	N/A	000	V	\square	N	
4. $4200.060-003-001 \mathrm{~A}$	N/A	A	V	\square	N	
5. G13.18.9.5*059	N/A	001	V	\square	N	
6. 8.2.102	N/A	000	V	\square	N	
7. 4223.321-258-007A	N/A	300	V	\square	N	
8. 0223.321-258-004	N/A	300	V	\square	N	
9. G13.18.2.7*091	N/A	000	V	\square	N	
10. 223.321	N/A	001	V	\square	N	
11. EV-003A	N/A	011	V	\square	N	
12. 0219.721-213-045	N/A	300	\square	\square	N	
13. EC-062H	N/A	006	V	\square	N	
14. PN-311	N/A	002	V	\square	N	
15. C62.500	N/A	003	\square	\square	N	
16. PID-34-02A	N/A	021	V	\square	N	
17. LDT-SFC	N/A	000	\square	\square	N	
18. PCD-SFC-001-CD-A	N/A	007	V	\square	N	
19. PCD-SFC-014-CD-A	N/A	007	V	\square	N	
20. PCD-SFC-006-CD-A	N/A	006	V	\square	N	
21. PCD-SFC-007-CD-A	N/A	010	V	\square	N	
22. PCD-SFC-006-CD-C	N/A	005	V	\square	N	
23. 228.000	N/A	004	V	\square	N	

III. CROSS REFERENCES:

1. EC 42063 "Seismic Qualification of Fuel Building Bridge Crane MHF-CRN1 for Load of 2500 lbs and Revision of Fuel Pool Gate Rigging Plan for Resubmission of License Amendment Request LAR-2010-04"
2. EC 14186 " 24 Month Cycles USAR Chapter 15 Safety Analysis"
3. NUREG/CR-6604, "RADTRAD: A Simplified Model for RADionuclide Transport and Removal And Dose Estimation", Published April December 1998 1997, and Supplement 1 Dated 6/8/99, and Supplement 2 Dated 10/2002.
4. Regulatory Guide 1.183, "Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors", July 2000
5. Code of Federal Regulations, Title 10, Section 50.67, "Accident Source Term"
6. NUREG-0800, Standard Review Plan (July 1981), Section 6.4 (Rev. 2), "Control Room Habitability Systems"
7. American Institute of Steel Construction (AISC). Manual of Steel Construction, $13^{\text {th }}$ Edition
8. General Electric Company, GESSAR II Nuclear Island Design, (22A7007)
9. Crane Technical Paper No. 410 "Flow of Fluids"
10. River Bend Technical Specifications Section 3.7.6, Fuel Pool Water Level
11. Web page http://www.engineeringtoolbox.com/water-dynamic-kinematic-viscosity-
d 596.html (Copy provided as Attachment C)
12. Perry's Chemical Engineer's Handbook, Sixth Edition, 1984
13. ASME III 1974, Section NA
IV. SOFTWARE USED:

Title: RADTRAD Version/Release: 3.02 Disk/CD No. N/A SDDF: 6244.400-912-001B Rev 300
V. DISKICDS INCLUDED:

Title: N/A Version/Release_Disk/CD No.
VI. OTHER CHANGES:

None

Section Description Page
1.0 CALCULATION COVER PAGE 1
2.0 CALCULATION REFERENCE SHEET 2
3.0 RECORD OF REVISION 4
4.0 TABLE OF CONTENTS 5
5.0 PURPOSE 6
6.0 CONCLUSION 6
7.0 INPUT AND DESIGN CRITERIA 7
8.0 ASSUMPTIONS 19
9.0 METHOD OF ANALYSIS 23
10.0 CALCULATIONS 26
ATTACHMENTS
ATTACHMENT A - RADTRAD Nuclide Input File 131
RBS_fhaRev1a266.nif
ATTACHMENT B - RADTRAD Results File 144
ATTACHMENT C - Water Dynamic and Kinematic Viscosity 182
ATTACHMENT D - Excel Spread Sheet Formula Views, 183
Sections 10.2 through 10.4

CALCULATION DETAILS
CALCULATION NO: G13.18.2.7-116
REVISION: 0

PAGE: 6

5.0 PURPOSE

The purpose of this calculation is to perform a load drop analysis for the Spent Fuel Pool gates (FNS-GATE1 and FNS-GATE2) during the rigging and gate movement operations to perform gate seal replacement. This load drop analysis will conform to the recommended guidelines within NUREG-0612.

6.0 CONCLUSION

The drop of a Spent Fuel Pool Gate (FNS-GATE1 or FNS-GATE2) and the associated rigging from a maximum height of 6.00 feet above the top of spent fuel bundles will result in a maximum of 209 damaged fuel rods. To provide additional margin for changes in rigging or fuel design, a failure of 266 rods is postulated and analyzed for dose consequences.

The dose analysis for a load drop resulting in a failure of 266 fuel rods with a decay time of 14 days (336 hours) gives the following Total Effective Dose Equivalent (TEDE) at the Exclusion Area Boundary (EAB), Low Population Zone (LPZ) and Control Room (CR). As shown in the results table, the dose resulting from a drop of a Spent Fuel Pool Gate and the associated rigging is less than the RG 1.183 dose limits and is bounded by the dose analyzed for the design basis Fuel Handling Accident in the Fuel Building.

Calculation Results
TEDE (REM)

Dose Receptor	Acceptance Criteria	FHA in Fuel Building	Gate Drop in Fuel Building
EAB* *	6.3	2.5725	1.2155
LPZ	6.3	0.33912	0.16017
CR	5	1.6790	0.87328

*Worst 2-hour period
Analysis of the penetration of the steel spent fuel pool liner as a result of the drop of the gate and associated rigging components has determined that the minimum required liner thickness required to prevent perforation resulting from object impact is less than the thickness of the stainless steel liner. Given the liner will not be penetrated due to impact of objects being moved for Spent Fuel Pool gate seal replacement, there will be no water leakage from the pool. Thus, no minimum water makeup capability to accommodate leakage from the load drop is required.

Analysis of a load drop on the spent fuel storage racks has determined that the impact force for each potential dropped object is bounded by the existing fuel storage rack load drop analysis. Thus, the required $\mathrm{k}_{\text {eff }}$ for stored spent fuel is maintained in the event that a load drop occurs during Spent Fuel Pool gate movement.
REVISION: 0
PAGE: 7

The assessment of the impact load drop on the Spent Fuel Pool Cooling piping located in the pool has determined that the Fuel Pool Cooling piping has adequate ductility to accommodate the impact of a fuel pool gate transitioning from an initial drop onto the spent fuel or racks and will not be perforated as a result of the impact. Based upon adequate ductility of the piping and the level of impact of the gate with the piping being below the minimum water level in the pool, it can be concluded that any damage to the piping will not affect the ability of the pool water to be transferred to or from the Spent Fuel Pool Cooling system. As a result, a load drop of the gates will not adversely affect the safe shutdown function to maintain spent fuel pool cooling.

The total weight of the objects utilized in this analysis is 2375 lbs . This is rounded to approximately 2500 lbs for inclusion in USAR Section 9.1.2.3.3. The use of "approximately 2500 lbs" in the USAR is appropriate given the conservatisms included in this calculation and the 20% margin included in the dose analysis to account for any minor changes in rigging or fuel design.

7.0 INPUT AND DESIGN CRITERIA

Definitions

AST	Alternate Source Term (same as RST)
CR	Control Room
EAB	Exclusion Area Boundary
FB	Fuel Building
FHA	Fuel Handling Accident
LPZ	Low Population Zone
RADTRAD	Radionuclide Transport and Removal and Dose Estimate
RG	Regulatory Guide
RPF	Radial Peaking Factor
RST	Revised Source Term (same as AST)
TEDE	Total Effective Dose Equivalent

Per References III. 4 and III.5, the calculated Total Effective Dose Equivalent (TEDE) limits are as follows:

EAB:	6.3 REM TEDE* (2 hour duration)
LPZ:	6.3 REM TEDE (30 day duration)
Control Room:	5 REM TEDE (30 day duration)

*Worst 2-hour period

Equations

$E_{\text {dif }}=1-\left[M_{1} /\left(M_{1}+M_{2}\right)\right]$
(Ref. III.8, pg. 15.7-21; Ref. II.3, pg. 6-7)
Where:
$\mathrm{E}_{\text {dif }}=$ Fraction of kinetic energy absorbed during impact
$M_{1}=$ Mass of Gate
$M_{2}=$ Mass of Impacted Fuel Bundles
$=$ (\# of fuel bundles)(Buoyant bundle wt, Ibs/bundle)
$E_{a b s}=(P E)\left(E_{\text {dif }}\right)$
(Ref. III.8, pg. 15.7-24; Ref. II.3, pg. 6-7)

Where:
$\mathrm{E}_{\mathrm{abs}}=$ Energy absorbed during impact
PE = Potential Energy
$\mathrm{E}_{\text {dif }}=$ Fraction of kinetic energy absorbed during impact
$F_{\text {comp }}=\left[\left(\mathrm{E}_{\mathrm{abs}}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
(Ref. III.8, pg. 15.7-24; Ref. II.5, pg. 15)
Where:
$\mathrm{F}_{\text {comp }}=$ number of fuel rod failures caused by compression
$\mathrm{E}_{\mathrm{abs}}=$ Energy absorbed during impact
$A i=A C$ * $F D$ * $F R P$ *FG *(1/DF)
(Ref. II.5_EC 14186 markup pg. 24)
Where:
$\mathrm{Ai}=$ total activity of isotope i released to the environment ($\mathrm{Ci} / \mathrm{MWt}$)
$A C=$ total activity in the reactor core (Ci/MWt)
FD = fraction of core damaged (unitless)
= Number of rods damaged / (Rods per bundle * Bundles in core)
FRP = maximum radial peaking factor (unitless)
FG = fraction of isotope activity in damaged rods escaping as gap release (unitless).
DF = decontamination factor within pool water for isotope i (unitless)

$$
\begin{equation*}
L=E_{i} /(U)\left(A_{i}\right) \tag{Ref.II.7,pg.4.2-240}
\end{equation*}
$$

Where:
$\mathrm{L}=$ Length of Damage (in)
$\mathrm{E}_{\mathrm{i}}=$ Total Impact Energy of Falling Object (in*lb)
$\mathrm{U}=$ Strain Energy for Unit Volume (in*lb/in ${ }^{3}$)
$A_{i}=$ Area of Impact Contact (in ${ }^{2}$)
$A_{i}=(N)(I)(t)$
(Ref. II.7, pg. 4.2-240)
Where:
$A_{i}=$ Area of Impact Contact (in^{2})
$\mathrm{N}=$ Number of Plates in Impact Zone
I = Contact Length per Plate (in)
t = Plate Thickness (in)
$E=U+K$
(Ref. II.9, pg. 4)
Where:
E = Total Energy
U = Potential Energy
$\mathrm{K}=$ Kinetic Energy
$U=(M)(G)(H)$
(Ref. II.9, pg. 4)
Where:
U = Potential Energy
$\mathrm{M}=$ Mass
G = Acceleration of Gravity
$H=$ Height of Drop
REVISION: 0
PAGE: 10
$K=1 / 2(M)\left(V^{2}\right)$
(Ref. II.9, pg. 4)
Where:
$\mathrm{K}=$ Kinetic Energy
$\mathrm{M}=$ Mass
$\mathrm{V}=$ Velocity
$\mathrm{T}^{3 / 2}=0.5 \mathrm{M} \mathrm{V}_{\mathrm{s}}{ }^{2} /\left(17,400 \mathrm{~K}^{2} \mathrm{D}^{3 / 2}\right)$
(Ref. II.4, pg. C-8)
Where:
$T=$ steel thickness to just be perforated, in
$M=$ mass of the missile, $\mathrm{lb}-\mathrm{s}^{2} / \mathrm{ft}$
$\mathrm{V}_{\mathrm{s}}=$ striking velocity of the missile normal to target surface, ft / s
$K=$ constant depending on the grade of the steel, K is usually $=1$
$D=$ diameter or equivalent diameter of the missile, in

Thickness required to prevent steel perforation $=T$ * $1.25 \quad$ (Ref. II.4 pg. 2)
Where:
$\mathrm{T}=$ steel. thickness to just be perforated, in

$$
V_{0}=(2 g h)^{1 / 2}
$$

(Ref. II.4, pg. E-4, 5-3)
Where:
$V_{0}=$ velocity of the missile at contact with the water surface, ft / s
$\mathrm{g}=$ gravitational acceleration $=32.17 \mathrm{ft} / \mathrm{s}^{2}$
$\mathrm{h}=$ distance between the missile and the water surface, ft
$V_{s}=[Z(H)]^{1 / 2}$
(Ref. II.4, pg. 5-2)
Where:
$\mathrm{V}_{\mathrm{s}}=$ velocity of the missile striking the steel surface, ft/s
$Z(H)=$ function for determination of striking velocity (see formulas below)
H = feet of fluid between fluid surface and surface of steel target

CALCULATION DETAILS

CALCULATION NO: G13.18.2.7-116
REVISION: 0
PAGE: 11

The following equations are from Ref. II.4, pg. 5-2:

$$
\begin{aligned}
& \left.Z_{1}(x)=(g / a)+\left(b A_{0}\right)\left[(1-2 a x) / 2 a^{2}\right)\right]+e^{-2 a x}\left[\left(V_{0}^{2}-(g / a)-\left(b A_{0} / 2 a^{2}\right)\right]\right. \\
& Z_{2}(x)=V_{2}^{2}+e^{-2 a x}\left\{\left(b A_{0} / 2 a^{2}\right)\left[e^{2 a L}(1-2 a L)-1\right)\right]+V_{0}^{2}+\left[(g / a)\left[\left(e^{2 a L}\left(\gamma / \gamma_{m}\right)-1\right)\right]\right\}
\end{aligned}
$$

Where:
$Z_{1}(x)=$ function for determining the striking velocity at depth $H=x$ when $0 \leq x \leq L$
$Z_{2}(x)=$ function for determining the striking velocity at depth $H=x$ when $x \geq L$
$\mathrm{a}=\left(\gamma^{*} \mathrm{~A}_{0}{ }^{*} \mathrm{C}_{\mathrm{D}}\right) /\left(2^{*} \mathrm{~W}\right) \quad$ (Ref. II.4, pg. 5-3)
$b=\left(\gamma^{*} g\right) / W$
(Ref. II.4, pg. 5-3)
$\mathrm{g}=$ gravitational acceleration $=32.17 \mathrm{ft} / \mathrm{s}^{2}$
(Ref. II.4, pg. 5-3)
$\mathrm{W}=$ weight of missile, lb
(Ref. II.4, pg. 5-3)
$\gamma=$ weight density of liquid, $\mathrm{lb} / \mathrm{ft}^{3}$
$\gamma_{\mathrm{m}}=$ weight density of missile, $\mathrm{lb} / \mathrm{ft}^{3}$
(Ref. II.4, pg. 5-3)
$\mathrm{x}=$ depth of missile center of gravity below the water surface, ft
(Ref. II.4, pg. 5-3, 5-5)
$\mathrm{A}_{0}=$ horizontal cross-sectional area of the missile (constant over length L), ft^{2} (Ref. II.4, pg. 5-3)
$C_{D}=$ drag coefficient given in table 5-1 of the reference or other references on fluid mechanics which is a function of L/d, R and shape of the missile (Ref. II.4, pg. 5-3, 5-4)
$\mathrm{L}=$ vertical length of the missile, ft (Ref. II.4, pg. 5-3)
$\mathrm{d}=$ characteristic dimension of the missile, for a rectangular surface $\mathrm{d}=$ width, ft (Ref. II.4, pg. 5-3, 5-4)
$R=$ Reynolds Number $=\left(V_{0}{ }^{*} d\right) / v$ (Ref. II.4, pg. 5-3)
$v=$ kinematic viscosity of the liquid, $\mathrm{ft}^{2} / \mathrm{s}$
$V_{0}=$ initial velocity of the missile at $x=0, \mathrm{ft} / \mathrm{s}$
$\mathrm{Vs}=$ striking velocity of the missile at $\mathrm{x}=\mathrm{H}, \mathrm{ft} / \mathrm{s}$
$\mathrm{V}_{2}=$ terminal velocity, $\mathrm{ft} / \mathrm{s}=\left[(\mathrm{g} / \mathrm{a})^{*}\left(1-\gamma / \gamma_{\mathrm{m}}\right)\right]^{1 / 2}$
$\mathrm{H}=$ depth of the fluid, ft
$a^{2}+b^{2}=c^{2}$
Where:
$a=$ triangle side length
$b=$ triangle side length
$c=$ triangle hypotenuse length
$M_{e}=\left(D_{x}+2 d\right){ }^{*} M_{x}$
Ref. II. 4 pg. 3-6
Where:
$\mathrm{M}_{\mathrm{e}}=$ Average effective mass of target during impact, lb
$\mathrm{M}_{\mathrm{x}}=$ Mass per unit length of steel beam, lb/in
$D_{x}=$ Maximum missile contact dimension in the x direction (longitudinal axis for beams), inches
$\mathrm{d}=$ depth of steel beam, inches
$E_{s}=\left(M_{m}^{2}{ }^{*} V_{s}^{2}\right) /\left[2^{*}\left(M_{m}+M_{e}\right)\right]$
Ref. II. 4 pg. 3-5
Where:
$\mathrm{E}_{\mathrm{s}}=$ strain energy, in-lb
$\mathrm{M}_{\mathrm{m}}=$ Mass of the missile, lb
$M_{e}=$ Effective mass of target during impact, lb
$V_{s}=$ Missile striking velocity, in/s

Where:
$\mathrm{R}_{\mathrm{m}}=$ plastic resisting force, lb
$\mathrm{I}=$ moment of inertia, in ${ }^{4}$
$\mathrm{f}_{\mathrm{dy}}=$ allowable dynamic strength value $=(\mathrm{DIF}) * \mathrm{f}_{\text {stat }}$
DIF = dynamic increase factor = 1
$\mathrm{F}_{\text {stat }}=$ static strength (yield strength), psi
L = Length of beam, inches
$d=$ depth of steel beam, inches
$X_{e}=R_{m} L^{3} / 48 E l$
Ref. II. 4 pg. 4-5
Where:
$x_{e}=$ yield displacement, in
$\mathrm{R}_{\mathrm{m}}=$ plastic resisting force, lb
$L=$ Length of beam, inches
$\mathrm{E}=$ modulus of elasticity, $\mathrm{lb} / \mathrm{in}^{2}$
I = moment of inertia, in ${ }^{4}$
$\mu_{\mathrm{r}}=\left[\left(\mathrm{E}_{\mathrm{s}} /\left(\mathrm{x}_{\mathrm{e}}{ }^{*} \mathrm{R}_{\mathrm{m}}\right)\right]+0.5\right.$
Ref. II. 4 pg. 3-8
Where:
$\mu_{\mathrm{r}}=$ required ductility ratio
$\mathrm{E}_{\mathrm{s}}=$ strain energy, in-lb
$\mathrm{R}_{\mathrm{m}}=$ plastic resisting force, lb
$\mathrm{X}_{\mathrm{e}}=$ yield displacement, in

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	14

Data

$\mathrm{L}=$ Length of Spent Fuel Pool Gate $=24^{\prime}-45 / 8^{\prime \prime}=24.39 \mathrm{ft}$
(Ref. II.1, pg. A11)
W = Width of Spent Fuel Pool Gate $=4^{\prime}-91 / 4^{\prime \prime}=4.771 \mathrm{ft}$
(Ref. II.1, pg. A11)
T = Thickness of Spent Fuel Pool Gate $=43 / \mathbf{4}^{\prime \prime}=0.3958 \mathrm{ft}$
(Ref. II.1, pg. 17)
$M_{G}=$ Weight of Spent Fuel Pool Gate $=1600 \mathrm{lbs}$
(Ref. Il.1, pg. 28)
$M_{1}=$ Estimated Total Weight of Spent Fuel Pool Gate and Rigging = 2000 lbs
(Ref. III.1, pg. 4);
$M_{2}=$ Buoyant Weight of Fuel Bundle $=562 \mathrm{lbs}$
(Ref. II.5, pg. 15)
Clad Yield Strength $=200 \mathrm{ft}-\mathrm{lb}$
Spacing between Fuel Bundles $=6.25^{\prime \prime}=0.5208 \mathrm{ft}$
(Ref. II.5, pg. 15)
$L=$ Length of Intermediate Lifting Beam $=4^{\prime}-9^{\prime \prime}=4.75 \mathrm{ft}$
(Ref. II.3, pg. 4)

W = Width of Intermediate Lifting Beam $=5^{n}=0.4167 \mathrm{ft}$
(Ref. II.2, pg. 6)
$D=$ Depth of Intermediate Lifting Beam $=5^{\prime \prime}=0.4167 \mathrm{ft}$
Nominal Weight of HSS6x5x1/2 $=31.71 \mathrm{lbs} / \mathrm{ft}$
(Ref. II.2, pg. 6)
(Ref. II.2, pg. 6)

W = Width of Alternate Lifting Beam $=4 "=0.333 \mathrm{ft}$
$D=$ Depth of Alternate Lifting Beam $=6^{n}=0.5 \mathrm{ft}$
(Ref. III.7, pg. 1-82)
(Ref. III.7, pg. 1-26)

Nominal Weight of W6x12 Steel Beam $=12 \mathrm{lbs} / \mathrm{ft}$
(Ref. III.7, pg. 1-26)
$\mathrm{U}=$ Strain Energy for Unit Volume (in*lb/in ${ }^{3}$) $=19740 \mathrm{in}-\mathrm{lb} / \mathrm{in}^{3}$
$t=$ thickness of cell assembly $=0.075$ inches
Depth of poison material below top of rack $=16.22$ inches
Elevation of Top of Fuel Racks $=177^{\prime \prime}+70^{\prime} 1-5 / 16^{\prime \prime}=84.86^{\prime}$
Elevation of bottom of Gate $=90^{\prime}$
(Ref. III.7, pg. 1-27)
(Ref. II.7, pg. 4.2-240)
(Ref. II.7, pg. 3.2-1)
(Ref. II.7, pg. 4.2-235)
(Ref. II.8)
(Ref. II.2, pg. 8)
Elevation of bottom of Intermediate Lifting Beam $=115^{\prime}$
(Ref. II.2, pg. 8)
Elevation of bottom of Alternate Lifting Beam = 123'
(Ref. II.2, pg. 12)
Acceleration of Gravity $=32.174 \mathrm{ft} / \mathrm{sec}^{2}$
Impact Energy rating for Fuel Racks $=3800 \mathrm{ft}-\mathrm{lb}$
Spent Fuel and Cask Pool floor elevation $=70^{\prime} 0^{\prime \prime}$ or 70.0^{\prime}
(Ref. III.9, pg. B-10)
(Ref. II.10, pg. 1-18)
(Ref. II.11)

Spent Fuel Pool and Cask Pool floor steel liner thickness $=3 / 16^{\prime \prime}$ or $0.188^{\prime \prime}$
(Ref. II.12)
Elevation of Fuel and Cask Pool Curb $=113^{\prime} 4^{\prime \prime}$
(Ref. II. 13)

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	15

Approximate lift height above laydown floor elevation obstructions $=6 "$
(Ref. III.1, pg. 16)
Minimum water level above the top of irradiated fuel $=\geq 23^{\prime}$
(Ref. III.10, pg. 3.7-15)
Stored fuel bundle upper tie plate elevation $=84.6645$ '
Maximum Spent Fuel Pool Water Temperature 155.6 deg. F
(Ref. II.3, pg. 4)

Density of water @ 160 deg. F $60.994 \mathrm{lb} / \mathrm{ft}^{3}$
Kinematic viscosity of water @ 160 deg. $F=0.439 \mathrm{E}-5 \mathrm{ft}^{2} / \mathrm{s}$
(Ref. II.14, pg. 5)
(Ref. III.9, pg. A-6)

Allowable ductility ratio μ for steel elements, members proportioned to preclude lateral and local buckling; Flexure, compression and shear $\mu \leq 20$
(Ref. III.11)

Fuel Pool Cooling Lines Penetrating Spent Fuel Pool
(Ref. II.16)
SFC-012-001-3
SFC-012-014-3
SFC-012-006-3
SFC-012-007-3
Pipe Class (Spec. 228.000) of Spent Fuel Pool Cooling Piping = Class 153

Fuel Pool Cooling Piping Diameter and Schedule

SFC-012-001-3 12" diameter Schedule STD
SFC-012-014-3
SFC-012-006-3
SFC-012-007-3
$12^{\prime \prime}$ diameter Schedule STD
12" diameter Schedule STD
$12^{\prime \prime}$ diameter Schedule STD
(Ref. II. 23 pg. 16, II.17) (Ref. II. 23 pg. 16, II.17) (Ref. II. 23 pg. 16, II.17)
(Ref. II. 23 pg. 16, II.17)

Fuel Pool Cooling Piping Material
SFC-012-001-3 = SA312 Type 304 Stainless Steel SFC-012-014-3 = SA312 Type 304 Stainless Steel SFC-012-006-3 = SA312 Type 304 Stainless Steel SFC-012-007-3 = SA312 Type 304 Stainless Steel
(Ref. II. 23 pg. 167, II.18)
(Ref. II. 23 pg. 167, II.19)
(Ref. II. 23 pg. 167, II.20)
(Ref. II. 23 pg. 167, II.21)

PAGE: 16

Piping Parameters, $12^{\prime \prime}$ Schedule Standard
(Ref. III.9, pg. B-17)
Outer diameter $=12.75^{\prime \prime}$
Wall thickness $=0.375^{\prime \prime}$
Pipe weight per unit length $=49.56 \mathrm{lb} / \mathrm{ft}$ of length
Moment of inertia $(\mathrm{I})=279.3 \mathrm{in}^{4}$
Modulus of Elasticity, E , at 200 deg F for TP $304 \mathrm{SS}=27.7 \mathrm{E} 6 \mathrm{lb} / / \mathrm{in}^{2} \quad$ (Ref. III.12, pg. 6-92)
Material Properties, SA312 Type 304 Seamless Pipe
(Ref. III.13, pg. 76, 77)
Minimum Yield Strength $=30$ ksi
Minimum Ultimate Tensile Strength $=75 \mathrm{ksi}$
Distance Fuel Pool Cooling Piping Extends into Pool
SFC-012-001-3 = 1.302'
(Ref. II.18)
SFC-012-014-3 = 1.302'
(Ref. II.19)
SFC-012-006-3 = 1.5
SFC-012-007-3 = 1.33'
(Ref. II.20)
(Ref. II.21)

Elevation of Fuel Pool Cooling Piping Connection to Liner Embed

SFC-012-001-3 = 110' $0^{\prime \prime}$
SFC-012-014-3 = 110' $0^{\prime \prime}$
SFC-012-006-3 = 110' $0^{\prime \prime}$
SFC-012-007-3 = 110' $0^{\prime \prime}$
(Ref. II.18)
(Ref. II.19)
(Ref. II.20, II.22)
(Ref. II.21)

Elevation of First Support below Liner Embed Connection

$$
\begin{aligned}
& \text { SFC-012-001-3 }=86^{\prime} 0^{\prime \prime} \\
& \text { SFC-012-014-3 }=86^{\prime} 0^{\prime \prime} \\
& \text { SFC-012-006-3 }=92^{\prime} 0^{\prime \prime} \\
& \text { SFC-012-007-3 }=92^{\prime} 0^{\prime \prime}
\end{aligned}
$$

(Ref. II.18)
(Ref. II.19)
(Ref. II.20, II.22)
(Ref. II.21)

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	17

Meteorology Data (FB/RB X/Q Values)

EAB:	(0-2 hours):	$8.58 \mathrm{E}-04 \mathrm{sec} / \mathrm{m}^{3}$
LPZ:	(0-8 hours):	$1.13 \mathrm{E}-04 \mathrm{sec} / \mathrm{m}^{3}$
	($8-24$ hours):	$7.89 \mathrm{E}-05 \mathrm{sec} / \mathrm{m}^{3}$
	(1-4 days):	$3.65 \mathrm{E}-05 \mathrm{sec} / \mathrm{m}^{3}$
	(4-30 days):	$1.21 \mathrm{E}-05 \mathrm{sec} / \mathrm{m}^{3}$
CR:	($0-20 \mathrm{~min}$):	$1.62 \mathrm{E}-03 \mathrm{sec} / \mathrm{m}^{3}$
	($20 \mathrm{~min}-8 \mathrm{hr}$):	$4.05 \mathrm{E}-04 \mathrm{sec} / \mathrm{m}^{3}$
	($8-24$ hours):	$3.00 \mathrm{E}-04 \mathrm{sec} / \mathrm{m}^{3}$
	($1-4$ days):	$1.01 \mathrm{E}-04 \mathrm{sec} / \mathrm{m}^{3}$
	(4-30 days):	$1.62 \mathrm{E}-05 \mathrm{sec} / \mathrm{m}^{3}$

Power Level: 3100 MWt
Source Term:
(Ref. II.6)
(Ref. II.6)
(Ref. II.6)
(Ref. II.6)
(Ref. II.6)
(Ref. II.5_EC 14186 markup pg. 9) (Ref. II.5_EC 14186 markup pg. 9)
(Ref. II.5_EC 14186 markup pg. 9)
(Ref. II.5_EC 14186 markup pg. 9)

24 Month Fuel Cycle
Core Inventory (Ci/MW) at Time 0
$2.70 \mathrm{E}+04$
3.92E+04
5.52E+04
6.06E+04
5.17E+04
3.66E+02
7.02E+03

Kr-85m
$1.35 \mathrm{E}+04$
Kr-88
1.89E+04

Xe-133
Xe-135
$5.26 E+04$
1.99E+04

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	18

Fuel Building Volume:	7.42E5 ft ${ }^{3}$	(Ref. II.5_EC 14186 markup pg. 10)
CR Free Air Volume:	$1.88 \mathrm{E} 5 \mathrm{ft}^{3}$	(Ref. II.5_EC 14186 markup pg. 10)
CR Filtration Credited	ficiency: 0\%	(Ref. II.5_EC 14186 markup pg. 10)
CR Filtered Air Mode	ke Flow: 1700 cfm	(Ref. II.5_EC 14186 markup pg. 11)
CR Unfiltered Air Mod	leakage Flow: 300 cfm	(Ref. II.5_EC 14186 markup pg. 11)
CR Total Modeled Int	ow: 2000 cfm	(Ref. II.5_EC 14186 markup pg. 11)
CR Total Modeled Dis	w: 2000	(Ref. II.5_EC 14186 markup pg. 11)
Number of Bundles in	: 624	(Ref. II.5_EC 14186 markup pg. 17)
Core Radial Peaking	r: 2.00	(Ref. II.5_EC 14186 markup pg. 17)
Peak Assembly Burn	2,000 MWd/t	(Ref. II.5_EC 14186 markup pg. 17)
Maximum Fuel Rod P	ization: < 1200 psig	(Ref. II.5_EC 14186 markup pg. 17)
Minimum Spent Fuel	Water Depth: ≥ 23 feet	(Ref. II.5_EC 14186 markup pg. 17, Ref. III.10, pg. 3.7-15)
Number of Rods per B	le for GE 9x9 Fuel: 74	(Ref. II.5_EC 14186 markup pg. 17)

REVISION: 0

PAGE: 19

8.0 ASSUMPTIONS

1. The kinetic energy acquired by a falling fuel assembly may be dissipated in one or more impacts. This assumption is consistent with GE methodology used in GESSAR II 22A7007 (Ref. III.8, Section 15.7.4.3.1).
2. The kinetic energy of a dropped assembly is assumed to be absorbed by only the cladding, non-fuel components of the assembly, and other pool structures (i.e., no energy is absorbed by the fuel). This assumption is consistent with GE methodology used in GESSAR II 22A7007 (Ref. III.8, Section 15.7.4.3.1).
3. The fraction of the energy absorbed by the non-fuel parts of the assembly is assumed to be the same as the fraction of the structural material. As a result, the cladding absorbs $19 /(19+5)$ of the energy absorbed during impact. This assumption is consistent with GE methodology used in GESSAR II 22A7007 (Ref. III.8, Section 15.7.4.3.1).
4. For conservatism, dissipation of some of the mechanical energy of the falling Spent Fuel Pool Gate due to fluid drag is neglected. This assumption is consistent with GE methodology used in GESSAR II 22A7007 (Ref. III.8, Section 15.7.4.3.2).
5. For conservatism, the Spent Fuel Pool Storage racks are assumed to be 50% filled in Cases 2 and 4 (minimum impact fuel bundle cases) of the pool gate analysis. This condition would maximize the force of the gate on a fewer number of fuel bundles, failing a higher number of fuel rods.
6. In the design basis analysis, it is assumed that 50% of the energy is absorbed by the dropped fuel bundle and 50% by the struck assemblies. For conservatism, this analysis assumes that 100% of the energy is absorbed by the struck assemblies.
7. The decay time used in the radiological analysis is 14 days (336 hours). This decay time is based upon the gate seal replacement being done with the plant on-line or in non-refueling outage conditions. The minimum realistic refueling outage duration is 14 days, thus the minimum decay time for newly discharged fuel bundles in the spent fuel pool is 14 days. This is conservative based on the following:

Gate seal replacement is typically scheduled late in the operating cycle. As a result, the actual fuel decay time will be greater than the assumed 14 days.

The area of the gate and rigging members is significantly greater than the previously analyzed fuel bundle load drop, with a substantially larger number of fuel bundles impacted in the postulated gate and rigging drop scenario. A portion of these bundles will have been discharged prior to the most recent refueling outage with a minimum decay time exceeding 18 months. As a result, assuming all damaged bundles have a decay time of 14 days is conservative.
REVISION: 0

PAGE: 20

8. Regulatory Guide 1.183-based Assumptions

The following assumptions are documented in Ref. II. 5 EC 14186 markup Section 5.1 pages 18 and 19 with detailed summary of specific compliance to RG 1.183 located in Attachment C of the markup. The Attachment C discussion is applicable to the information reproduced below with the exception of the time after shutdown of 24 hours in Attachment C paragraph 3.3.a. For this analysis, the conformance statement is as follows:

3.3 The applicable requirements of Subsection 3.3 of Regulatory Position 3 state:

a) For non-LOCA DBAs in which fuel damage is projected, the release from the fuel gap and the fuel pellet should be assumed to occur instantaneously with the onset of the projected damage. Conformance: In this analysis, all of the activity which is available for release from the fuel to the pool or reactor cavity is assumed to have been instantaneously released from the fuel gap to the water at the onset of the gate load drop analysis, 336 hours after shutdown. This assumption from RG 1.183 is met in its entirety.
8.1 The gap activity fractions of Table 3 in Regulatory Position 3 of RG 1.183 (Ref. III.1) are utilized, as follows:

$\mathrm{I}-131$	0.08
All other halogens	0.05
Kr-85	0.10
All other noble gases	0.05

8.2 All gap activity in the damaged fuel rods is assumed to be instantaneously released.
8.3 Radionuclides considered include the xenons, kryptons, halogens, cesiums, and rubidiums. However, all particulate radionuclides species (some halogens, cesiums, and rubidiums) are assumed to be retained in the fuel pool (infinite decontamination factor) consistent with RG 1.183 Appendix B Section 3 (Ref. III.1). Also consistent with RG 1.183 Appendix B Section 3, all noble gases (xenons \& kryptons) escape to the environment.
8.4 Of the radioiodine released from the damaged fuel rods, 99.85% of the released iodine is effectively assumed to be in the form of elemental iodine and 0.15% of the released iodine is assumed to be in the organic species (Ref. III.1, Appendix B, Section 2.0).
8.5 Consistent with RG 1.183 Appendix B Section 4.1 and 5.3 (Ref. III.1), all radionuclide releases from the pool to the environment are assumed to occur over a 2-hour period. This is accomplished via a 2-hour linear release from the pool to the building atmosphere with a simulated instantaneous release to the environment.

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	21

8.6 Consistent with RG 1.183 Appendix B Section 2 (Ref. III.1), the decontamination factor for organic iodine is assumed to be 1 . The pool decontamination factor for elemental iodine is assumed such that the overall pool decontamination factor is 200 for all iodine species with a 23 -foot water level above the postulated damaged fuel assembly.
8.7 The control room breathing rate is assumed to be $3.5 \mathrm{E}-04 \mathrm{~m}^{3} / \mathrm{sec}$. for the duration (Ref. III.1, Section 4.2.6).
8.8 The offsite breathing rates are as follows (Ref. III.1, Section 4.1.3):

$0-8$ hours:	$3.5 \mathrm{E}-04 \mathrm{~m}^{3} / \mathrm{sec}$
8-24 hours:	$1.8 \mathrm{E}-04 \mathrm{~m}^{3} / \mathrm{sec}$
$1-30$ days:	$2.3 \mathrm{E}-04 \mathrm{~m}^{3} / \mathrm{sec}$

8.9 Control Room Operator Occupancy Factors are as follows (Ref. III.1, Section 4.2.6):

$0-24$ hours:	1.0
$1-4$ days:	0.6
$4-10$ days:	0.4

Note: The Occupancy Factors are already included in the X/Q's. They will not be defined in the Control Room input, since in doing so they will be taken into account twice. Instead the occupancy factors in the RADTRAD model will be set to 1.0.
8.10 lodine Species Breakdown (Ref. III.1, Appendix B, Section 2):

Aerosol	0%
Elemental	57%
Organic	43%

9. The Intermediate Lifting Beam is TS5 $\times 5 \times 1 / 2$ per ER-RB-1996-082-000. This intermediate lifting beam is conservatively assumed to be HSS6x5x1/2 for the determination of the lifting beam mass only. The weight per foot of HSS $6 \times 5 \times 1 / 2$ bound the weight per foot of TS5 $\times 5 \times 1 / 2$. Therefore, the mass calculation of this beam using HSS6 $55 x^{1 / 2}$ weight per foot is conservative.
10. In the fuel impact damage cases, the length of the Intermediate Lifting Beam is assumed to be 5 ft . This length is conservative because the actual length of this beam is 4'-9" per ER-RB-1996-082-000 pg. 6 and assuming a greater length maximizes the potential energy change.
11. For the impact analysis on the pool liner and fuel storage racks, the density and viscosity water at 160 deg. F is used. This temperature exceeds the maximum pool temperature of the spent fuel pool water of 155.6 deg. F per Ref. II.14, pg. 5. Use of density and viscosity values for a slightly higher water temperature than the maximum pool water temperature is conservative as it results in a higher impact velocity.
12. For the impact analysis on the pool liner cases, the nominal top of active fuel is treated as the stored fuel bundle upper tie plate at elevation 84.6645' per Ref. II.3, pg. 4.
13. The purpose of this alternate lifting beam was to allow the option to have a rigging configuration that doesn't pull the crane hooks out of vertical. Per Ref. II.2, pg. 8, the Bridge Crane hook and Cask Crane hook are 9'-2" apart. For conservatism, the alternate lifting beam is assumed to be 12 ' in length.
14. For the impact analysis on the pool liner cases, the gate weight is assumed to be the weight of the gate and rigging to maximize the velocity and density of the object, thereby maximizing the penetration thickness of the pool liner.
15. For the impact analysis on the Fuel Pool Cooling piping, a strike area of 2 square inches is assumed. This is reasonable based upon the curvature of the nominal $12^{\prime \prime}$ piping and as all of the force is assumed to be delivered to the piping, when some force will be absorbed by the gates.
REVISION: 0

PAGE: 23

9.0 METHOD OF ANALYSIS

As in the design basis Fuel Handling Accident analysis, the potential energy associated with a free air drop will be calculated first. The drop height will be based on the distance from the approximate elevation of the bottom of the gate to the elevation of the Fuel Bundles. Two sets of fall geometries will be analyzed. The first fall geometry will have an air-drop impact with only one laydown impact. The second fall geometry will have an air-drop impact with two laydown impacts. Based on the irregularities in the Spent Fuel Pool Gate's geometry, there is the potential for the gate to fall on its edge (rather than on its face) before resting with this largest surface area against the spent fuel. These laydown impacts are calculated with 100\% of the potential energy being transmitted into the impacted fuel rods.

These impact energies (multiplied by a cladding to other structural material fraction) are then divided by the cladding yield strength to determine the number of fuel rod failures caused by compression. The fuel rod failures are totaled for each impact.

Three dropped objects are analyzed: the Spent Fuel Pool gate, an intermediate lifting beam, and an alternate lifting beam. The dimensions of W6x12 that is 12 ft in length are used for analysis of the Alternate Lifting Beam. The dimensions of TS5x5x1/2 are used for analysis of the Intermediate Lifting Beam. The bounding cases of all these dropped objects are totaled to determine the potential maximum number of failed fuel rods in compression.

The radiological analysis is performed utilizing the methodology described in calculation G13.18.9.5*059, Evaluation of Exclusion Area Boundary, Low Population Zone, and Control Room TEDE due to a Design Basis Fuel Handling Accident with Regulatory Guide 1.183 ASTbased Assumptions (Ref. II.5). Doses are evaluated at the Exclusion Area Boundary (EAB), Low Population Zone (LPZ), and the Control Room (CR) using the NRC-developed computer Code RADTRAD (Ref. III.3). These cases use the same methodology as the design basis Fuel Handling Accident (FHA) in the Fuel Building (FB) as described in USAR Section 15.7.4 with the following changes:

- The number of rods damaged in the load drop event represent the calculated number of rods damaged for a drop of the gate and rigging plus a nominal 20% margin to account for future fuel design or rigging configuration changes.
- An assumed decay time of 14 days (336 hours) rather than the 24 hour decay time assumed in the design basis FHA analysis.

A 2-hour linear release from the fuel pool to the building atmosphere is assumed with no credit taken for Fuel Building (FB) or Control Room (CR) filtration.
REVISION: 0
PAGE: 24

Abstract

The design basis decay time of 24 hours for Fuel Handling Accident analysis represents the earliest time that a fuel bundle discharged from the reactor could be handled during the refueling evolution. The gate seal replacement will be performed on-line or during nonrefueling shutdown conditions. As a result, the assumed decay time will be 14 days. This time period is based upon the minimum realistic refueling outage duration.

The second portion of the load drop analysis is to assess the effect of the dropped load on the spent fuel pool, cask pool, and gate opening area liner. The River Bend Fuel Building pools are equipped with a $3 / 16^{\prime \prime}$ thick stainless steel liner. The liner is designed to provide a leakproof barrier for the pools. If it is determined that the dropped load will not completely penetrate the stainless steel liner, no water leakage will result from the dropped load and consequently no water makeup to the pools as a result of the load drop event will be required. The cask pool has been previously analyzed for a drop of a 250 ton fuel storage cask in Reference II. 15 with no adverse impact to the structural integrity of the concrete pool structure. The cask drop analysis bounds the drop of all of the objects in the cask pool, gate area and spent fuel pool being analyzed in this calculation with respect to the concrete pool floor structure. As a result, this calculation will not analyze the concrete pool floor structure.

This portion of the calculation will also determine the impact velocities of the dropped objects on the fuel storage racks to be used in the effect on the fuel storage racks due to impact of the dropped objects.

The methodology used to determine the strike velocity on the submerged structures and the penetration in steel is from Reference II.4, BC-TOP-9A Revision 2, September 1984, "Topical Report, Design of Structures for Missile Impact" for a missile impacting steel when dropping through air and/or water. This methodology does consider buoyancy and drag forces during the object travel through the water and is the same general methodology used in Reference II. 15 associated with the analysis of the concrete structure for the cask drop.

The third portion of the load drop analysis is to assess the effect on the spent fuel storage racks as a result of a drop of the gate, intermediate beam or alternate beam on the spent fuel storage racks to ensure that the required $\mathrm{keff}_{\text {ef }}$ is maintained. This analysis compares the forces resulting from the subject dropped objects to the required force the racks must withstand per the rack design specification and analysis (References II. 7 and II.10).

The final portion of the load drop analysis is to assess the effect on the Spent Fuel Pool Cooling piping that penetrates into the Spent Fuel Pool and has the potential to be struck by the gate in a secondary impact (i.e. transition to Position II or Position III as described in Section 10.1.1). Note that only a falling gate has adequate mass to result in any potential damage to the Spent Fuel Pool Cooling piping. The distance between the nearest potential drop point and the piping is determined for each of the lines. Then the elevation where the top of the gate impacts the line is then determined to assess if any potential damage is below the minimum pool water level. If any potential damage is below the minimum water level, no loss of cooling function will occur as water will still flow into/out of the damaged piping. The velocity of the impact of the gate on the piping is determined using the Reference II.4, BC-TOP-9A

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	25

Revision 2, September 1984, "Topical Report, Design of Structures for Missile Impact" for a missile impacting steel when dropping through air and/or water. Note that this methodology is primarily for a missile impacting perpendicular to the target. In this case, the impact will not be directly perpendicular and thus, the velocity value will be conservative. The structural effect on the piping will be assessed using the methodology from Reference II.4, treating the piping as a simply supported steel beam.
REVISION: 0
PAGE: 26

10.0 Calculations

10.1 Damage to Fuel Bundles

The damage to the spent fuel bundles will be analyzed first. Three dropped objects are analyzed: the Spent Fuel Pool gate, an intermediate lifting beam, and an alternate lifting beam.

10.1.1 Spent Fuel Pool Gate

Fall Geometries

The following geometric orientations of Spent Fuel Pool Gate (FNS-GATE1 or FNS-GATE2) will be analyzed for a potential maximum and minimum number of fuel bundle impacts. All analyzed cases will begin with an impact in Position 1 and a final impact in Position 3. Two analyzed cases will incorporate a possible impact in Position 2 after Position 1 and before Position 3. There will be a total of 4 load drop cases analyzed.

Position 1

Position 2

Position 3

CALCULATION DETAILS
CALCULATION NO: G13.18.2.7-116
REVISION: 0
PAGE: 27

In the table below, the specifics of each load case are detailed.

	Position 1 Impact	Position 2 Impact	Position 3 Impact	Max or Min Impacted Fuel Bundles
Case 1	x		x	Max
Case 2	x		x	Min
Case 3	x	x	x	Max
Case 4	x	x	x	Min

Maximum Impacted Fuel Bundles

Position 1:

In order to estimate the maximum number of impacted fuel bundles for this geometry, the width and thickness must be divided by spacing between bundles.
(Width of Gate) / (Spacing between bundles)
$(4.771 \mathrm{ft}) /(0.5208 \mathrm{ft})=9.161$ or 10 bundles
(Thickness of Gate) / (Spacing between bundles)
$(0.3958 \mathrm{ft}) /(0.5208 \mathrm{ft})=0.7599$ or 1 bundle
Because the thickness of the gate is over half the spacing of fuel bundles, it has the maximum potential to hit two rows of fuel bundles.

Total Bundles $=(10$ bundles $)(2$ bundles $)=20$ impacted fuel bundles

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	28

Position 2:

In order to estimate the maximum number of impacted fuel bundles for this geometry, the length and thickness must be divided by spacing between bundles.
(Length of Gate) / (Spacing between bundles)
$(24.39 \mathrm{ft}) /(0.5208 \mathrm{ft})=46.83$ or 47 bundles
Because the fractional unit of length of the gate is over half the spacing of fuel bundles, it has the maximum potential to hit 48 rows of fuel bundles.
(Thickness of Gate) / (Spacing between bundles)
$(0.3958 \mathrm{ft}) /(0.5208 \mathrm{ft})=0.7599$ or 1 bundle
Because the thickness of the gate is over half the spacing of fuel bundles, it has the maximum potential to hit two rows of fuel bundles.

Total Bundles $=(48$ bundles $)(2$ bundles $)=96$ impacted fuel bundles

Position 3:
In order to estimate the maximum number of impacted fuel bundles for this geometry, the length and width must be divided by spacing between bundles.
(Length of Gate) / (Spacing between bundles)
$(24.39 \mathrm{ft}) /(0.5208 \mathrm{ft})=46.83$ or 47 bundles

CALCULATION DETAILS

CALCULATION NO: G13.18.2.7-116
REVISION: 0
PAGE: 29

For the maximized case this object has the potential to hit 48 rows of fuel bundles (impact across the full width of 46 bundles and partial width of one bundle on each end)
(Width of Gate) / (Spacing between bundles)
$(4.771 \mathrm{ft}) /(0.5208 \mathrm{ft})=9.161$ or 10 bundles
Total Bundles $=(48$ bundles $)(10$ bundles $)=480$ impacted fuel bundles

Minimum Impacted Fuel Bundles

The minimum number of impacted fuel bundles for each position is obtained by conservatively assuming that 50% of the Spent Fuel Pool racks are filled

Position 1:
In order to estimate the minimum number of impacted fuel bundles for this geometry, the width and thickness must be divided by spacing between bundles.
(Width of Gate) / (Spacing between bundles)
$(4.771 \mathrm{ft}) /(0.5208 \mathrm{ft})=9.161$ or 10 bundles
(Thickness of Gate) / (Spacing between bundles)
$(0.3958 \mathrm{ft}) /(0.5208 \mathrm{ft})=0.7599$ or 1 bundle
Total Bundles $=(0.50)(10$ bundles $)(1$ bundle $)=5$ impacted fuel bundles

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	30

Position 2:

In order to estimate the minimum number of impacted fuel bundles for this geometry, the length and thickness must be divided by spacing between bundles.
(Length of Gate) / (Spacing between bundles)
$(24.39 \mathrm{ft}) /(0.5208 \mathrm{ft})=46.83$ or 47 bundles
(Thickness of Gate) / (Spacing between bundles)
$(0.3958 \mathrm{ft}) /(0.5208 \mathrm{ft})=0.7599$ or 1 bundle
Total Bundles $=(0.50)(47$ bundles $)(1$ bundle $)=23$ impacted fuel bundles

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	31

Position 3:

In order to estimate the minimum number of impacted fuel bundles for this geometry, the length and width must be divided by spacing between bundles.
(Length of Gate) / (Spacing between bundles)
$(24.39 \mathrm{ft}) /(0.5208 \mathrm{ft})=46.83$ or 47 bundles
(Width of Gate) / (Spacing between bundles)
$(4.771 \mathrm{ft}) /(0.5208 \mathrm{ft})=9.161$ or 10 bundles
Total Bundles $=(0.50)(47$ bundles $)(10$ bundles $)=235$ impacted fuel bundles

	Max Impacted Fuel Bundles	Min Impacted Fuel Bundles
Position 1 Impact	20	5
Position 2 Impact	96	23
Position 3 Impact	480	235

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	32

Initial Potential Energy

$P E=M_{1}{ }^{*} H_{d}$
$M_{1}=$ Mass of Gate and Rigging Equipment = 2000 lbs
$H_{d}=($ Elev. bottom of Pool Gate - Elev. top of Fuel Racks $)=\left(90^{\prime}-84.27^{\prime}\right)=5.73 \mathrm{ft}$ use 6 ft
$\mathrm{PE}=(2000 \mathrm{lb})(6.00 \mathrm{ft})$
$P E=12000 \mathrm{ft}-\mathrm{lb}$

Energy Difference

The energy absorbed during the impact is determined based upon the relationship as given in the design basis Fuel Handling Accident analysis. For conservatism, M_{1} (weight of the Spend Fuel Pool Gate and associate rigging equipment) has been maximized and M_{2} (buoyant weight of the fuel bundles) has minimized.
$E_{\text {dif }}=1-\left[M_{1} /\left(M_{1}+M_{2}\right)\right]$
$M_{1}=$ Mass of Gate and Rigging Equipment $=2000$ lbs
$M_{2}=$ Mass of Impacted Fuel Bundles = (\# of fuel bundles)(562 lbs/bundle)

Case 1

This case analyzes the free air drop resulting in a position 1 impact, and one laydown impact in position 3 with maximized fuel bundle impacts.

For the first impact:
$E_{\text {dif }}=1-[2000 \mathrm{lb} /(2000 \mathrm{lb}+(20$ bundles $)(562 \mathrm{lb})]$
$\mathrm{E}_{\text {dif }}=1-[0.1511]$
$E_{\text {dif }}=0.8489$
For the second impact:
$\mathrm{E}_{\text {dif }}=1-[2000 \mathrm{lb} /(2000 \mathrm{lb}+(480$ bundles $)(562 \mathrm{lb})]$
$E_{\text {dif }}=1-[0.0074]$
$E_{\text {dif }}=0.9926$
Essentially all of the second impact energy would be absorbed. As a result, third or subsequent impacts need not be considered.

Energy Absorbed

The first impact absorbs 84.89% of the initial energy or,
$\mathrm{E}_{\mathrm{abs}}=(\mathrm{PE})(0.8489)$
$E_{a b s}=(12000 \mathrm{ft}-\mathrm{lb})(0.8489)$
$\mathrm{E}_{\mathrm{abs}}=10187 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(E_{\text {abs }}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(10187 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=40.32$ or 41 rods
The second impact involves a rebound consisting of 15.11% of the initial drop energy and the laydown drop energy. The laydown drop provides additional energy due to the potential energy change resulting from the change of the Spent Fuel Pool Gate center of gravity of approximately $1 / 2$ of the Spent Fuel Pool Gate length.

Potential Energy Change

$C G_{1}=$ Center of Gravity (Position One) $=(\mathrm{L} / 2)=(24.39 \mathrm{ft}) / 2=12.20 \mathrm{ft}$
$\mathrm{CG}_{3}=$ Center of Gravity $($ Position Three $)=(\mathrm{T} / 2)=(0.3958 \mathrm{ft}) / 2=0.1979 \mathrm{ft}$
$C G_{\Delta}=$ Change in Center of Gravity $=\mathrm{CG}_{1}-\mathrm{CG}_{3}=12.20 \mathrm{ft}-0.1979 \mathrm{ft}=12.00 \mathrm{ft}$
Change in Potential Energy $=\left(C G_{\Delta}\right)\left(M_{1}\right)=24000 \mathrm{ft}-\mathrm{lb}$
The second impact:
$E_{2 \text { nd }}=(0.1511)(P E)+24000 \mathrm{ft}-\mathrm{lb}$
$E_{2 n d}=(0.1511)(12000 \mathrm{ft}-\mathrm{lb})+24000 \mathrm{ft}-\mathrm{lb}$
$E_{2 n d}=25813 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(E_{2 n d}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(25813 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=102.2$ or 103 rods
The total fuel rod failures during this scenario are:
Total Fuel Rod Failures $=\left(1^{\text {st }}\right.$ Impact $)+\left(2^{\text {nd }}\right.$ Impact $)=$
Total Fuel Rod Failures $=(41)+(103)=144$ rods

Case 2

This case analyzes the free air drop resulting in a position 1 impact, and one laydown impact in position 3 with minimized fuel bundle impacts.

For the first impact:
$\mathrm{E}_{\text {dif }}=1-[2000 \mathrm{lb} /(2000 \mathrm{lb}+(5$ bundles $)(562 \mathrm{lb})]$
$\mathrm{E}_{\text {dif }}=1-[0.4158]$
$E_{\text {dif }}=0.5842$
For the second impact:
$\mathrm{E}_{\text {dif }}=1-[2000 \mathrm{lb} /(2000 \mathrm{lb}+(235$ bundles $)(562 \mathrm{lb})]$
$E_{\text {dif }}=1-[0.0149]$
$E_{\text {dif }}=0.9851$
Essentially all of the second impact energy would be absorbed. As a result, third or subsequent impacts need not be considered.

Energy Absorbed

The first impact absorbs 58.42% of the initial energy or,
$E_{\text {abs }}=(P E)(0.5842)$
$E_{\text {abs }}=(12000 \mathrm{ft}-\mathrm{lb})(0.5842)$
$\mathrm{E}_{\mathrm{abs}}=7010 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(E_{\text {abs }}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(7010 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=27.75$ or 28 rods
The second impact involves a rebound consisting of 41.58% of the initial drop energy and the laydown drop energy. The laydown drop provides additional energy due to the potential energy change resulting from the change of the Spent Fuel Pool Gate center of gravity of approximately $1 / 2$ of the Spent Fuel Pool Gate length.

Potential Energy Change

$\mathrm{CG}_{1}=$ Center of Gravity (Position One) $=(\mathrm{L} / 2)=(24.39 \mathrm{ft}) / 2=12.20 \mathrm{ft}$
$\mathrm{CG}_{3}=$ Center of Gravity (Position Three) $=(\mathrm{T} / 2)=(0.3958 \mathrm{ft}) / 2=0.1979 \mathrm{ft}$
$C G_{\Delta}=$ Change in Center of Gravity $=C G_{1}-C G_{3}=12.20 \mathrm{ft}-0.1979 \mathrm{ft}=12.00 \mathrm{ft}$
Change in Potential Energy $=\left(C G_{\Delta}\right)\left(\mathrm{M}_{1}\right)=24000 \mathrm{ft}-\mathrm{lb}$
The second impact:
$E_{2 n d}=(0.4158)(P E)+24000 \mathrm{ft}-\mathrm{lb}$
$E_{2 n d}=(0.4158)(12000 \mathrm{ft}-\mathrm{lb})+24000 \mathrm{ft}-\mathrm{lb}$
$E_{2 n d}=28990 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(E_{2 n d}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(28990 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=114.8$ or 115 rods
The total fuel rod failures during this scenario are:
Total Fuel Rod Failures $=\left(1^{\text {st }}\right.$ Impact $)+\left(2^{\text {nd }}\right.$ Impact $)=$
Total Fuel Rod Failures $=(28)+(115)=143$ rods

Case 3

This case analyzes the free air drop resulting in a position 1 impact, and two laydown impacts in position 2 and 3 with maximized fuel bundle impacts.

For the first impact:
$\mathrm{E}_{\text {dif }}=1-[2000 \mathrm{lb} /(2000 \mathrm{lb}+(20$ bundles $)(562 \mathrm{lb})]$
$\mathrm{E}_{\mathrm{dif}}=1-[0.1511]$
$E_{\text {dif }}=0.8489$
For the second impact:
$\mathrm{E}_{\mathrm{dif}}=1-[2000 \mathrm{lb} /(2000 \mathrm{lb}+(96$ bundles $)(562 \mathrm{lb})]$
$E_{\text {dif }}=1-[0.0357]$
$E_{\text {dif }}=0.9643$
For the third impact:
$\mathrm{E}_{\text {dif }}=1-[2000 \mathrm{lb} /(2000 \mathrm{lb}+(480$ bundles $)(562 \mathrm{lb})]$
$E_{\text {dif }}=1-[0.0074]$
$E_{\text {dif }}=0.9926$
Essentially all of the third impact energy would be absorbed. As a result, fourth or subsequent impacts need not be considered.

Energy Absorbed

The first impact absorbs 84.89% of the initial energy or,
$E_{\text {abs }}=(P E)(0.8489)$
$E_{a b s}=(12000 \mathrm{ft}-\mathrm{lb})(0.8489)$
$\mathrm{E}_{\mathrm{abs}}=10187 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(\mathrm{E}_{\mathrm{abs}}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(10187 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=40.32$ or 41 rods
The second impact involves a rebound consisting of 15.11% of the initial drop energy and the laydown drop energy. The laydown drop provides additional energy due to the potential energy change resulting from the change of the Spent Fuel Pool Gate center of gravity of approximately $1 / 2$ of the Spent Fuel Pool Gate length.

Potential Energy Change

$C G_{1}=$ Center of Gravity $($ Position One $)=(\mathrm{L} / 2)=(24.39 \mathrm{ft}) / 2=12.20 \mathrm{ft}$
$\mathrm{CG}_{2}=$ Center of Gravity $($ Position Two $)=(\mathrm{W} / 2)=(4.771 \mathrm{ft}) / 2=2.386 \mathrm{ft}$
$C G_{\Delta}=$ Change in Center of Gravity $=\mathrm{CG}_{1}-\mathrm{CG}_{2}=12.20 \mathrm{ft}-2.386 \mathrm{ft}=9.814 \mathrm{ft}$
Change in Potential Energy $=\left(\mathrm{CG}_{\Delta}\right)\left(\mathrm{M}_{1}\right)=19628 \mathrm{ft}-\mathrm{lb}$
The second impact:
$E_{2 n d}=(0.1511)(P E)+19628 \mathrm{ft}-\mathrm{lb}$
$E_{2 n d}=(0.1511)(12000 \mathrm{ft}-\mathrm{lb})+19628 \mathrm{ft}-\mathrm{lb}$
$E_{2 n d}=21441 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(E_{2 n d}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(21441 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=84.87$ or 85 rods
The third impact involves a rebound consisting of 3.57% of the initial drop energy and the laydown drop energy. The laydown drop provides additional energy due to the potential energy change resulting from the change of the Spent Fuel Pool Gate center of gravity of approximately $1 / 2$ of the Spent Fuel Pool Gate length.

Potential Energy Change

$\mathrm{CG}_{2}=$ Center of Gravity $($ Position Two $)=(\mathrm{W} / 2)=(4.771 \mathrm{ft}) / 2=2.386 \mathrm{ft}$
$\mathrm{CG}_{3}=$ Center of Gravity (Position Three) $=(\mathrm{T} / 2)=(0.3958 \mathrm{ft}) / 2=0.1979 \mathrm{ft}$
$\mathrm{CG}_{\Delta}=$ Change in Center of Gravity $=\mathrm{CG}_{2}-\mathrm{CG}_{3}=2.386 \mathrm{ft}-0.1979 \mathrm{ft}=2.188 \mathrm{ft}$

CALCULATION DETAILS

Change in Potential Energy $=\left(\mathrm{CG}_{\Delta}\right)\left(\mathrm{M}_{1}\right)=4376 \mathrm{ft}-\mathrm{lb}$
The third impact:
$E_{3 \text { rd }}=(0.0357)(P E)+4376 \mathrm{ft}-\mathrm{lb}$
$E_{3 \text { rd }}=(0.0357)(12000 \mathrm{ft}-\mathrm{lb})+4376 \mathrm{ft}-\mathrm{lb}$
$E_{3 r d}=4804 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(E_{3 \text { rad }}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(4804 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$\mathrm{F}_{\text {comp }}=19.02$ or 20 rods

The total fuel rod failures during this scenario are:
Total Fuel Rod Failures $=\left(1^{\text {st }}\right.$ Impact $)+\left(2^{\text {nd }}\right.$ Impact $)+\left(3^{\text {rd }}\right.$ Impact $)=$
Total Fuel Rod Failures $=(41)+(85)+(20)=146$ rods

Case 4

This case analyzes the free air drop resulting in a position 1 impact, and two laydown impacts in position 2 and 3 with maximized fuel bundle impacts.

For the first impact:
$\mathrm{E}_{\text {dif }}=1-[2000 \mathrm{lb} /(2000 \mathrm{lb}+(5$ bundles $)(562 \mathrm{lb})]$
$\mathrm{E}_{\text {dif }}=1-[0.4160]$
$E_{\text {dif }}=0.5840$
For the second impact:
$E_{\text {dif }}=1-[2000 \mathrm{lb} /(2000 \mathrm{lb}+(23$ bundles $)(562 \mathrm{lb})]$
$E_{\text {dif }}=1-[0.1340]$
$E_{\text {dif }}=0.8660$

CALCULATION DETAILS

For the third impact:
$E_{\text {dif }}=1-[2000 \mathrm{lb} /(2000 \mathrm{lb}+(235$ bundles $)(562 \mathrm{lb})]$
$\mathrm{E}_{\text {dif }}=1-[0.0149]$
$E_{\text {dif }}=0.9851$
Essentially all of the third impact energy would be absorbed. As a result, fourth or subsequent impacts need not be considered.

Energy Absorbed

The first impact absorbs 58.40% of the initial energy or,
$E_{a b s}=(P E)(0.5840)$
$\mathrm{E}_{\text {abs }}=(12000 \mathrm{ft}-\mathrm{lb})(0.5840)$
$\mathrm{E}_{\mathrm{abs}}=7008 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(\mathrm{E}_{\mathrm{abs}}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(7008 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$\mathrm{F}_{\text {comp }}=27.74$ or 28 rods
The second impact involves a rebound consisting of 41.60% of the initial drop energy and the laydown drop energy. The laydown drop provides additional energy due to the potential energy change resulting from the change of the Spent Fuel Pool Gate center of gravity of approximately $1 / 2$ of the Spent Fuel Pool Gate length.

Potential Energy Change

$C G_{1}=$ Center of Gravity $($ Position One $)=(\mathrm{L} / 2)=(24.39 \mathrm{ft}) / 2=12.20 \mathrm{ft}$
$\mathrm{CG}_{2}=$ Center of Gravity $($ Position Two $)=(\mathrm{W} / 2)=(4.771 \mathrm{ft}) / 2=2.386 \mathrm{ft}$
$C G_{\Delta}=$ Change in Center of Gravity $=\mathrm{CG}_{1}-\mathrm{CG}_{2}=12.20 \mathrm{ft}-2.386 \mathrm{ft}=9.814 \mathrm{ft}$
Change in Potential Energy $=\left(\mathrm{CG}_{\Delta}\right)\left(\mathrm{M}_{1}\right)=19628 \mathrm{ft}-\mathrm{lb}$
The second impact:

$$
\mathrm{E}_{2 \mathrm{nd}}=(0.4160)(\mathrm{PE})+19628 \mathrm{ft}-\mathrm{lb}
$$

```
\(E_{2 n d}=(0.4160)(12000 \mathrm{ft}-\mathrm{lb})+19628 \mathrm{ft}-\mathrm{lb}\)
\(\mathrm{E}_{2 \text { nd }}=24620 \mathrm{ft}-\mathrm{lb}\)
\(F_{\text {comp }}=\left[\left(E_{2 n d}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}\)
\(F_{\text {comp }}=[(24620 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}\)
\(F_{\text {comp }}=97.45\) or 98 rods
```

The third impact involves a rebound consisting of 8.66% of the initial drop energy and the laydown drop energy. The laydown drop provides additional energy due to the potential energy change resulting from the change of the Spent Fuel Pool Gate center of gravity of approximately $1 / 2$ of the Spent Fuel Pool Gate length.

Potential Energy Change

$\mathrm{CG}_{2}=$ Center of Gravity $($ Position Two $)=(\mathrm{W} / 2)=(4.771 \mathrm{ft}) / 2=2.386 \mathrm{ft}$
$\mathrm{CG}_{3}=$ Center of Gravity $($ Position Three $)=(\mathrm{T} / 2)=(0.3958 \mathrm{ft}) / 2=0.1979 \mathrm{ft}$
$C G_{\Delta}=$ Change in Center of Gravity $=\mathrm{CG}_{2}-\mathrm{CG}_{3}=2.386 \mathrm{ft}-0.1979 \mathrm{ft}=2.188 \mathrm{ft}$
Change in Potential Energy $=\left(\mathrm{CG}_{\Delta}\right)\left(\mathrm{M}_{1}\right)=4376 \mathrm{ft}-\mathrm{lb}$
The third impact:
$E_{3 r d}=(0.0866)(P E)+4376 \mathrm{ft}-\mathrm{lb}$
$E_{3 \text { rd }}=(0.0866)(12000 \mathrm{ft}-\mathrm{lb})+4376 \mathrm{ft}-\mathrm{lb}$
$E_{3 \mathrm{rd}}=5415 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(\mathrm{E}_{3 \text { rd }}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(5415 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=21.43$ or 22 rods
The total fuel rod failures during this scenario are:
Total Fuel Rod Failures $=\left(1^{\text {st }}\right.$ Impact $)+\left(2^{\text {nd }}\right.$ Impact $)+\left(3^{\text {rd }}\right.$ Impact $)=$
Total Fuel Rod Failures $=(28)+(98)+(22)=149$ rods

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	41

	Damaged Fuel Rods
Case 1	144
Case 2	143
Case 3	146
Case 4	148

10.1.2 Alternate Lifting Beam

Fall Geometries

Lifting beams are long, slender members. For this reason, only two positions will be analyzed. Since the width and depth of both beams has the same potential for impacting rods, there is no need to analyze a position 3.

Position 1: Impact of beam on its end (width * depth).
Position 2: Impact of beam on its side (length * width).

	Position 1 Impact	Position 2 Impact	Max or Min Impacted Fuel Bundles
Case 1	x	x	Max
Case 2	x		Max
Case 3	x	x	Min
Case 4	x		Min

Initial Potential Energy
$P E=M_{1}{ }^{*} H_{d}$
A W6x12 beam (12 ft long) is used for calculation of the Alternate Lifting Beam.
$M_{1}=$ Mass of Beam and Rigging Equipment $=(12 \mathrm{ft})(12 \mathrm{lbs} / \mathrm{ft})=144 \mathrm{lbs}$ use 200 lbs
$H_{d}=($ Elev. bottom of Beam - Elev. top of Fuel Racks $)=\left(123^{\prime}-84.27^{\prime}\right)=38.73 \mathrm{ft}$ use 39 ft
PE = (200 lbs)(39 ft)
$\mathrm{PE}=7800 \mathrm{ft}-\mathrm{lb}$

Energy Difference

The energy absorbed during the impact is determined using the same relationship as given in the design basis Fuel Handing Accident analysis. For conservatism, M_{1} (weight of the Spend Fuel Pool Gate and associate rigging equipment) has been maximized and M_{2} (buoyant weight of the fuel bundles) has minimized.
$E_{\text {dif }}=1-\left[M_{1} /\left(M_{1}+M_{2}\right)\right]$
$M_{1}=$ Mass of Gate and Rigging Equipment = 200 lbs
$M_{2}=$ Mass of Impacted Fuel Bundles = (\# of fuel bundles)(562 lbs/bundle)

Geometry

Position 1:
In order to estimate the maximum/minimum number of impacted fuel bundles for this geometry, the width and thickness must be divided by spacing between bundles.
(Width of Beam) / (Spacing between bundles)
$(0.333 \mathrm{ft}) /(0.5208 \mathrm{ft})=0.6394$ or 1 bundle
Because the width of the beam is over half the spacing of fuel bundles, it has the maximum potential to hit two rows of fuel bundles.
(Depth of Beam) / (Spacing between bundles)
$(0.5 \mathrm{ft}) /(0.5208 \mathrm{ft})=0.9601$ or 1 bundle
Because the depth of the beam is over half the spacing of fuel bundles, it has the maximum potential to hit two rows of fuel bundles.

Maxiumum Impacted Bundles $=(2$ bundles $)(2$ bundles $)=4$ impacted fuel bundles
Minimum Impacted Bundles $=(1$ bundle $)(1$ bundle $)=1$ bundle

Position 2:

In order to estimate the maximum/minimum number of impacted fuel bundles for this geometry, the length and width/depth must be divided by spacing between bundles. Because the width and depth of the beam have the same potential to impact fuel bundles, no position 3 will be analyzed.
(Width of Beam) / (Spacing between bundles)
$(0.333 \mathrm{ft}) /(0.5208 \mathrm{ft})=0.6394$ or 1 bundle
Because the width of the beam is over half the spacing of fuel bundles, it has the maximum potential to hit two rows of fuel bundles.
(Length of Beam) / (Spacing between bundles)
$(12 \mathrm{ft}) /(0.5208 \mathrm{ft})=23.04$ or 24 bundles
Maxiumum Impacted Bundles = (2 bundles)(24 bundles) $=48$ impacted fuel bundles
Minimum Impacted Bundles $=(1$ bundle $)(24$ bundle $)=24$ bundle

Case 1

This case analyzes the free air drop impact and one laydown impact with maximized fuel bundle impacts.

For the first impact:
$\mathrm{E}_{\text {dif }}=1-[200 \mathrm{lb} /(200 \mathrm{lb}+(4$ bundles $)(562 \mathrm{lb})]$
$E_{\text {dif }}=1-[0.0817]$
$E_{\text {dif }}=0.9183$
For the second impact:
$\mathrm{E}_{\mathrm{dif}}=1-[200 \mathrm{lb} /(200 \mathrm{lb}+(48$ bundles $)(562 \mathrm{lb})]$
$E_{\text {dif }}=1-[0.0074]$
$E_{\text {dif }}=0.9926$
Essentially all of the second impact energy would be absorbed. As a result, third or subsequent impacts need not be considered.

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	45

Energy Absorbed

The first impact absorbs 91.83% of the initial energy or,
$\mathrm{E}_{\mathrm{abs}}=(\mathrm{PE})(0.9183)$
$\mathrm{E}_{\mathrm{abs}}=(7800 \mathrm{ft}-\mathrm{lb})(0.9183)$
$E_{a b s}=7163 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(\mathrm{E}_{\text {abs }}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(7163 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=28.35$ or 29 rods
The second impact involves a rebound consisting of 8.17% of the initial drop energy and the laydown drop energy. The laydown drop provides additional energy due to the potential energy change resulting from the change of the Spent Fuel Pool Gate center of gravity of approximately $1 / 2$ of the Spent Fuel Pool Gate length.

Potential Energy Change

$\mathrm{CG}_{1}=$ Center of Gravity (Position One) $=(\mathrm{L} / 2)=(12 \mathrm{ft}) / 2=6 \mathrm{ft}$
$\mathrm{CG}_{3}=$ Center of Gravity (Position Three) $=(\mathrm{T} / 2)=(0.3333 \mathrm{ft}) / 2=0.1667 \mathrm{ft}$
$C G_{\Delta}=$ Change in Center of Gravity $=C G_{1}-\mathrm{CG}_{3}=6 \mathrm{ft}-0.1667 \mathrm{ft}=5.833 \mathrm{ft}$
Change in Potential Energy $=\left(\mathrm{CG}_{\Delta}\right)\left(\mathrm{M}_{1}\right)=1167 \mathrm{ft}$-lb
The second impact:
$E_{2 n d}=(0.0817)(P E)+1167 \mathrm{ft}-\mathrm{lb}$
$E_{2 n d}=(0.0817)(7800 \mathrm{ft}-\mathrm{lb})+1167 \mathrm{ft}-\mathrm{lb}$
$E_{2 n d}=1804 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(E_{2 n d}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(1804 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$\mathrm{F}_{\text {comp }}=7.14$ or 8 rods
The total fuel rod failures during this scenario are:

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	46

Total Fuel Rod Failures $=\left(1^{\text {st }}\right.$ Impact $)+\left(2^{\text {nd }}\right.$ Impact $)=$
Total Fuel Rod Failures $=(29)+(8)=37$ rods

Case 2

This case analyzes the free air drop impact with the maximum potential for impacted fuel rods.
For the first impact:
$\mathrm{E}_{\text {dif }}=1-[200 \mathrm{lb} /(200 \mathrm{lb}+(48$ bundles $)(562 \mathrm{lb})]$
$E_{\text {dif }}=1-[0.0074]$
$E_{\text {dif }}=0.9926$
Essentially all of the first impact energy would be absorbed. As a result, second or subsequent impacts need not be considered.

Energy Absorbed

The first impact absorbs 99.26% of the initial energy or,
$\mathrm{E}_{\mathrm{abs}}=(\mathrm{PE})(0.9926)$
$\mathrm{E}_{\mathrm{abs}}=(7800 \mathrm{ft}-\mathrm{lb})(0.9926)$
$E_{a b s}=7742 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(E_{\text {abs }}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(7742 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=30.65$ or 31 rods

Case 3

This case analyzes the free air drop impact and one laydown impact with minimized fuel bundle impacts.

For the first impact:
$E_{\text {dif }}=1-[200 \mathrm{lb} /(200 \mathrm{lb}+(1$ bundles $)(562 \mathrm{lb})]$
$\mathrm{E}_{\text {dif }}=1-[0.2625]$

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	47

$$
E_{\text {dif }}=0.7375
$$

For the second impact:
$E_{\text {dif }}=1-[200 \mathrm{lb} /(200 \mathrm{lb}+(24$ bundles $)(562 \mathrm{lb})]$
$E_{\text {dif }}=1-[0.0146]$
$E_{\text {dif }}=0.9854$
Essentially all of the second impact energy would be absorbed. As a result, third or subsequent impacts need not be considered.

Energy Absorbed

The first impact absorbs $\mathbf{7 3 . 7 5 \%}$ of the initial energy or,

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{abs}}=(\mathrm{PE})(0.7375) \\
& \mathrm{E}_{\mathrm{abs}}=(7800 \mathrm{ft}-\mathrm{lb})(0.7375) \\
& \mathrm{E}_{\mathrm{abs}}=5753 \mathrm{ft}-\mathrm{lb} \\
& \mathrm{~F}_{\mathrm{comp}}=\left[\left(\mathrm{E}_{\mathrm{abs}}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb} \\
& \mathrm{~F}_{\text {comp }}=[(5753 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb} \\
& \mathrm{~F}_{\text {comp }}=22.77 \text { or } 23 \mathrm{rods}
\end{aligned}
$$

The second impact involves a rebound consisting of 26.25% of the initial drop energy and the laydown drop energy. The laydown drop provides additional energy due to the potential energy change resulting from the change of the Spent Fuel Pool Gate center of gravity of approximately $1 / 2$ of the Spent Fuel Pool Gate length.

Potential Energy Change

$\mathrm{CG}_{1}=$ Center of Gravity (Position One $)=(\mathrm{L} / 2)=(12 \mathrm{ft}) / 2=6 \mathrm{ft}$
$\mathrm{CG}_{3}=$ Center of Gravity $($ Position Three $)=(\mathrm{T} / 2)=(0.3333 \mathrm{ft}) / 2=0.1667 \mathrm{ft}$
$C G_{\Delta}=$ Change in Center of Gravity $=\mathrm{CG}_{1}-\mathrm{CG}_{3}=6 \mathrm{ft}-0.1667 \mathrm{ft}=5.833 \mathrm{ft}$
Change in Potential Energy $=\left(C G_{\Delta}\right)\left(\mathrm{M}_{1}\right)=1167 \mathrm{ft}-\mathrm{lb}$

The second impact:
$E_{2 n d}=(0.2625)(P E)+1167 \mathrm{ft}-\mathrm{lb}$
$E_{2 n d}=(0.2625)(7800 \mathrm{ft}-\mathrm{lb})+1167 \mathrm{ft}-\mathrm{lb}$
$E_{2 n d}=3215 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(E_{2 \text { nd }}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(3215 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=12.73$ or 13 rods
The total fuel rod failures during this scenario are:
Total Fuel Rod Failures $=\left(1^{\text {st }}\right.$ Impact $)+\left(2^{\text {nd }}\right.$ Impact $)=$
Total Fuel Rod Failures $=(23)+(13)=36$ rods

Case 4

This case analyzes the free air drop impact with the minimum potential for impacted fuel rods.
For the first impact:
$\mathrm{E}_{\mathrm{dif}}=1-[200 \mathrm{lb} /(200 \mathrm{lb}+(24$ bundles $)(562 \mathrm{lb})]$
$E_{\text {dif }}=1-[0.0146]$
$E_{\text {dif }}=0.9854$
Essentially all of the first impact energy would be absorbed. As a result, second or subsequent impacts need not be considered.

Energy Absorbed

The first impact absorbs 98.54% of the initial energy or,

$$
E_{a b s}=(P E)(0.9854)
$$

$$
\mathrm{E}_{\mathrm{abs}}=(7800 \mathrm{ft}-\mathrm{lb})(0.9854)
$$

$$
\mathrm{E}_{\mathrm{abs}}=7686 \mathrm{ft}-\mathrm{lb}
$$

$$
F_{\text {comp }}=\left[\left(\mathrm{E}_{\mathrm{abs}}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}
$$

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	49

$$
\begin{aligned}
& F_{\text {comp }}=[(7686 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb} \\
& F_{\text {comp }}=30.42 \text { or } 31 \text { rods }
\end{aligned}
$$

	Damaged Fuel Rods
Case 1	37
Case 2	31
Case 3	36
Case 4	31

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	50

10.1.3 Intermediate Lifting Beam

Fall Geometries

Lifting beams are long, slender members. For this reason, only two positions will be analyzed.
Since the width and depth of both beams has the same potential for impacting rods, there is no need to analyze a position 3.

Position 1: Impact of beam on its end (width * depth).
Position 2: Impact of beam on its side (length * width).

	Position 1 Impact	Position 2 Impact	Max or Min Impacted Fuel Bundles
Case 1	x	x	Max
Case 2	x		Max
Case 3	x	x	Min
Case 4	x		Min

Initial Potential Energy

$P E=M_{1}{ }^{*} H_{d}$
A HSS6x5x¹2 beam (5 ft long) is used for calculation of the Intermediate Lifting Beam.
$M_{1}=$ Mass of Beam and Rigging Equipment $=(5 \mathrm{ft})(31.71 \mathrm{lbs} / \mathrm{ft})=158.55 \mathrm{lbs}$ use 175 lbs
$H_{d}=($ Elev. bottom of Beam - Elev. top of Fuel Racks $)=\left(115^{\prime}-84.27^{\prime}\right)=30.73 \mathrm{ft}$ use 31 ft
$P E=(175 \mathrm{lb})(31 \mathrm{ft})$
$P E=5425 \mathrm{ft}-\mathrm{lb}$

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	51

Energy Difference

The energy absorbed during the impact is assumed to be the same relationship as given in the original calculation. For conservatism, M_{1} (weight of the Spend Fuel Pool Gate and associate rigging equipment) has been maximized and M_{2} (buoyant weight of the fuel bundles) has minimized.
$E_{\text {dif }}=1-\left[M_{1} /\left(M_{1}+M_{2}\right)\right]$
$\mathrm{M}_{1}=$ Mass of Beam and Rigging Equipment $=(5 \mathrm{ft})(31.71 \mathrm{lbs} / \mathrm{ft})=158 \mathrm{lbs}(175 \mathrm{lbs}$ is conservatively used for all further calculation)
$M_{2}=$ Mass of Impacted Fuel Bundles = (\# of fuel bundles)(562 lbs/bundle)

Geometry

Position 1:

In order to estimate the maximum/minimum number of impacted fuel bundles for this geometry, the width and thickness must be divided by spacing between bundles.
(Width of Beam) / (Spacing between bundles)
$(0.4167 \mathrm{ft}) /(0.5208 \mathrm{ft})=0.8001$ or 1 bundle
For the maximized case this object has the potential to hit two rows of fuel bundles (impact across the partial width of two bundles)
(Depth of Beam) / (Spacing between bundles)
$(0.4167 \mathrm{ft}) /(0.5208 \mathrm{ft})=0.8001$ or 1 bundle
For the maximized case this object has the potential to hit two rows of fuel bundles (impact across the partial width of two bundles)

Maxiumum Impacted Bundles $=(2$ bundles $)(2$ bundles $)=4$ impacted fuel bundles
Minimum Impacted Bundles $=(1$ bundle $)(1$ bundle $)=1$ bundle

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	52

Position 2:

In order to estimate the maximum/minimum number of impacted fuel bundles for this geometry, the length and width/depth must be divided by spacing between bundles. Because the width and depth of the beam have the same potential to impact fuel bundles, no position 3 will be analyzed.
(Width of Beam) / (Spacing between bundles)
$(0.4167 \mathrm{ft}) /(0.5208 \mathrm{ft})=0.8001$ or 1 bundle
For the maximized case this object has the potential to hit two rows of fuel bundles (impact across the partial width of two bundles)
(Length of Beam) / (Spacing between bundles)
$(5 \mathrm{ft}) /(0.5208 \mathrm{ft})=9.601$ or 10 bundles
For the maximized case this object has the potential to hit eleven rows of fuel bundles (Impact across the full width of 9 bundles and partial width of one bundle on each end.)

Maxiumum Impacted Bundles $=(2$ bundles $)(11$ bundles $)=22$ impacted fuel bundles
Minimum Impacted Bundles $=(1$ bundle $)(10$ bundle $)=10$ bundles

Case 1

This case analyzes the free air drop impact and one laydown impact with maximized fuel bundle impacts.

For the first impact:
$\mathrm{E}_{\text {dif }}=1-[175 \mathrm{lb} /(175 \mathrm{lb}+(4$ bundles $)(562 \mathrm{lb})]$
$\mathrm{E}_{\mathrm{dif}}=1-[0.0722]$
$E_{\text {dif }}=0.9278$
For the second impact:
$\mathrm{E}_{\text {dif }}=1-[175 \mathrm{lb} /(175 \mathrm{lb}+(22$ bundles $)(562 \mathrm{lb})]$
$\mathrm{E}_{\text {dif }}=1-[0.0140]$

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	53

$E_{\text {dif }}=0.986$
Essentially all of the second impact energy would be absorbed. As a result, third or subsequent impacts need not be considered.

Energy Absorbed

The first impact absorbs $\mathbf{9 2 . 7 8 \%}$ of the initial energy or,
$E_{a b s}=(P E)(0.9278)$
$\mathrm{E}_{\mathrm{abs}}=(5425 \mathrm{ft}-\mathrm{lb})(0.9278)$
$\mathrm{E}_{\mathrm{abs}}=5033 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(\mathrm{E}_{\text {abs }}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(5033 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=19.92$ or 20 rods
The second impact involves a rebound consisting of 7.22% of the initial drop energy and the laydown drop energy. The laydown drop provides additional energy due to the potential energy change resulting from the change of the Spent Fuel Pool Gate center of gravity of approximately $1 / 2$ of the Spent Fuel Pool Gate length.

Potential Energy Change

$\mathrm{CG}_{1}=$ Center of Gravity $($ Position One $)=(\mathrm{L} / 2)=(5 \mathrm{ft}) / 2=2.5 \mathrm{ft}$
$\mathrm{CG}_{3}=$ Center of Gravity (Position Three) $=(\mathrm{T} / 2)=(0.4167 \mathrm{ft}) / 2=0.2084 \mathrm{ft}$
$\mathrm{CG}_{\Delta}=$ Change in Center of Gravity $=\mathrm{CG}_{1}-\mathrm{CG}_{3}=2.5 \mathrm{ft}-0.2084 \mathrm{ft}=2.292 \mathrm{ft}$
Change in Potential Energy $=\left(C G_{\Delta}\right)\left(M_{1}\right)=401 \mathrm{ft}-\mathrm{lb}$
The second impact:

$$
\begin{aligned}
& \mathrm{E}_{2 \mathrm{nd}}=(0.0722)(\mathrm{PE})+401 \mathrm{ft}-\mathrm{lb} \\
& \mathrm{E}_{2 \mathrm{nd}}=(0.0722)(5425 \mathrm{ft}-\mathrm{lb})+401 \mathrm{ft}-\mathrm{lb} \\
& \mathrm{E}_{2 \mathrm{nd}}=792.7 \mathrm{ft}-\mathrm{lb} \\
& \mathrm{~F}_{\text {comp }}=\left[\left(\mathrm{E}_{2 \mathrm{nd}}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	54

$F_{\text {comp }}=[(792.7 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=3.14$ or 4 rods
The total fuel rod failures during this scenario are:
Total Fuel Rod Failures $=\left(1^{\text {st }}\right.$ Impact $)+\left(2^{\text {nd }}\right.$ Impact $)=$
Total Fuel Rod Failures $=(20)+(4)=24$ rods

Case 2

This case analyzes the free air drop impact with the maximum potential to impact fuel bundles.
For the first impact:
$\mathrm{E}_{\text {dif }}=1-[175 \mathrm{lb} /(175 \mathrm{lb}+(22$ bundles $)(562 \mathrm{lb})]$
$E_{\text {dif }}=1-[0.0140]$
$E_{\text {dif }}=0.986$
Essentially all of the first impact energy would be absorbed. As a result, second or subsequent impacts need not be considered.

Energy Absorbed

The first impact absorbs 98.60% of the initial energy or,
$\mathrm{E}_{\mathrm{abs}}=(\mathrm{PE})(0.9860)$
$\mathrm{E}_{\mathrm{abs}}=(5425 \mathrm{ft}-\mathrm{lb})(0.9860)$
$\mathrm{E}_{\mathrm{abs}}=5349 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(\mathrm{E}_{\text {abs }}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(5349 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$\mathrm{F}_{\text {comp }}=21.17$ or 22 rods

Case 3

This case analyzes the free air drop impact and one laydown impact with minimized fuel bundle impacts.

For the first impact:
$\mathrm{E}_{\text {dif }}=1-[175 \mathrm{lb} /(175 \mathrm{lb}+(1$ bundles $)(562 \mathrm{lb})]$
$\mathrm{E}_{\text {dif }}=1-[0.2374]$
$E_{\text {dif }}=0.7626$
For the second impact:
$\mathrm{E}_{\text {dif }}=1-[175 \mathrm{lb} /(175 \mathrm{lb}+(10$ bundles $)(562 \mathrm{lb})]$
$\mathrm{E}_{\text {dif }}=1-[0.0302]$
$E_{\text {dif }}=0.9698$
Essentially all of the second impact energy would be absorbed. As a result, third or subsequent impacts need not be considered.

Energy Absorbed

The first impact absorbs 76.26% of the initial energy or,
$E_{a b s}=(P E)(0.7626)$
$\mathrm{E}_{\text {abs }}=(5425 \mathrm{ft}-\mathrm{lb})(0.7626)$
$E_{\text {abs }}=4137 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(E_{\text {abs }}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(4137 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=16.38$ or 17 rods
The second impact involves a rebound consisting of 23.74% of the initial drop energy and the laydown drop energy. The laydown drop provides additional energy due to the potential energy change resulting from the change of the Spent Fuel Pool Gate center of gravity of approximately $1 / 2$ of the Spent Fuel Pool Gate length.

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	56

Potential Energy Change

$\mathrm{CG}_{1}=$ Center of Gravity $($ Position One $)=(\mathrm{L} / 2)=(5 \mathrm{ft}) / 2=2.5 \mathrm{ft}$
$\mathrm{CG}_{3}=$ Center of Gravity (Position Three) $=(\mathrm{T} / 2)=(0.4167 \mathrm{ft}) / 2=0.2084 \mathrm{ft}$
$\mathrm{CG}_{\Delta}=$ Change in Center of Gravity $=\mathrm{CG}_{1}-\mathrm{CG}_{3}=2.5 \mathrm{ft}-0.2084 \mathrm{ft}=2.292 \mathrm{ft}$
Change in Potential Energy $=\left(\mathrm{CG}_{\Delta}\right)\left(\mathrm{M}_{1}\right)=401 \mathrm{ft}-\mathrm{lb}$
The second impact:
$E_{2 n d}=(0.2374)(P E)+401 \mathrm{ft}-\mathrm{lb}$
$E_{2 n d}=(0.2374)(5425 \mathrm{ft}-\mathrm{lb})+401 \mathrm{ft}-\mathrm{lb}$
$E_{2 n d}=1689 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(E_{2 \text { nd }}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(1689 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=6.69$ or 7 rods
The total fuel rod failures during this scenario are:
Total Fuel Rod Failures $=\left(1^{\text {st }}\right.$ Impact $)+\left(2^{\text {nd }}\right.$ Impact $)=$
Total Fuel Rod Failures $=(17)+(7)=24$ rods

Case 4

This case analyzes the free air drop impact with the minimum potential to impact fuel bundles.
For the first impact:
$\mathrm{E}_{\text {dif }}=1-[175 \mathrm{lb} /(175 \mathrm{lb}+(10$ bundles $)(562 \mathrm{lb})]$
$\mathrm{E}_{\text {dif }}=1-[0.0302]$
$E_{\text {dif }}=0.9698$
Essentially all of the first impact energy would be absorbed. As a result, second or subsequent impacts need not be considered.

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	57

Energy Absorbed

The first impact absorbs 96.98% of the initial energy or,
$\mathrm{E}_{\mathrm{abs}}=(\mathrm{PE})(0.9698)$
$\mathrm{E}_{\mathrm{abs}}=(5425 \mathrm{ft}-\mathrm{lb})(0.9698)$
$\mathrm{E}_{\mathrm{abs}}=5261 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=\left[\left(E_{\text {abs }}\right)(19 /(19+5))\right] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=[(5261 \mathrm{ft}-\mathrm{lb})(19 /(19+5))] / 200 \mathrm{ft}-\mathrm{lb}$
$F_{\text {comp }}=20.82$ or 21 rods

	Damaged Fuel Rods
Case 1	24
Case 2	22
Case 3	24
Case 4	21

By totaling the bounding cases of each dropped object (pool gate, intermediate lifting beam, and alternate lifting beam), a maximum total number of 209 fuel rods will fail in compression.

Dose Analysis

Based upon the load drop analysis, the maximum number of damaged rods is 209. This number of rods is increased 20% to account for potential future fuel design changes or changes in rigging. This provides the following number of damaged rods to use in the dose analysis:

209 damaged rods * $1.20=265.2$ use 266 damaged rods
The activity of each isotope released to the environment is determined using the following relationship:

$$
A i=A C * F D * F R P * F G *(1 / D F)
$$

where:
$\mathrm{Ai}=$ total activity of isotope i released to the environment (Ci/MWt)
$\mathrm{AC}=$ total activity in the reactor core (Ci/MWt)
FD $=$ fraction of core damaged (unitless)
= Number of rods damaged $/$ (Rods per bundle * Bundles in core)
FRP = maximum radial peaking factor (unitless)
FG = fraction of isotope activity in damaged rods escaping as gap release (unitless).
DF = decontamination factor within pool water for isotope i (unitless)

AC for each isotope is shown in the following table:
Source Term:
(Ref. II.5_EC 14186 markup pg. 9)
24 Month Fuel Cycle

Isotope
I-131
I-131
l-132
I-133
I-134
I-135
Kr-85
$\mathrm{Kr}-85 \mathrm{~m}$
Kr-87
Kr-88
Xe-133
Xe-135

Core Inventory (Ci/MW) at Time 0
$2.70 \mathrm{E}+04$
3.92E+04
5.52E+04
$6.06 \mathrm{E}+04$
5.17E+04
3.66E+02
7.02E+03
$1.35 \mathrm{E}+04$
1.89E+04
$5.26 \mathrm{E}+04$
$1.99 \mathrm{E}+04$

FD = fraction of core damaged (unitless)
= Number of rods damaged $/$ (Rods per bundle * Bundles in core)
Number of rods damaged $=266$

Number of Rods per Bundle for GE 9x9 Fuel: 74
Number of Bundles in Core: 624
(Ref. II.5_EC 14186 markup pg. 17)
(Ref. II.5_EC 14186 markup pg. 17)

FD $=266$ rods damaged / (74 rods per bundle * 624 Bundles in core)
$\mathrm{FD}=0.005761$ or $\underline{5.761 E-3}$

FRP = maximum radial peaking factor (unitless)
Core Radial Peaking Factor: 2.00
(Ref. II.5_EC 14186 markup pg. 17)
$F R P=\underline{2.0}$

FG = fraction of isotope activity in damaged rods escaping as gap release (unitless).
From Assumption 8.8.1, the gap activity fractions of Table 3 in Regulatory Position 3 of RG 1.183 (Ref. III.1) are utilized, as follows:

$$
\mathrm{I}-131 \quad 0.08
$$

All other halogens $\quad 0.05$
$\mathrm{Kr}-85 \quad 0.10$
All other noble gases $\quad 0.05$
$F G_{1-131}=\underline{0.08}$
$F G_{\text {Other halogens }}=0.05$
$F G_{K r-85}=\underline{0.10}$
$F G_{\text {other noble gases }}=\underline{0.05}$

DF = decontamination factor within pool water for isotope i (unitless)
DF Noble Gases = 1
Per Assumption 8.8.6:
DF lodines $=200$

Ai for each isotope is calculated using an Excel spread sheet shown on the following page. A copy of the formula view of the spread sheet is also included on the subsequent page.

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	61

Gate Drop Case 266 failed rods		FD	FRP	FG	DF	Ai	$\mathrm{Ai}^{*} 3100 \mathrm{MWt}$
	AC						
Isotope	$\begin{gathered} 24 \mathrm{Mo} \text { Core } \\ \text { Inventory (Ci/MW) } \\ \text { at time }=0 \end{gathered}$	FHA Damaged Fuel - Fraction of Core	FHA Damaged Fuel - Radial Peaking Factor	AST FHA Gap Fraction Released	Effective Pool DF	Activity Released (Ci/MWt)	Activity Released (Ci)
1-131	$2.70 \mathrm{E}+04$	$5.761 \mathrm{E}-03$	2.00	0.08	200	$1.244 \mathrm{E}-01$	$3.857 \mathrm{E}+02$
1-132	$3.92 \mathrm{E}+04$	$5.761 \mathrm{E}-03$	2.00	0.05	200	$1.129 \mathrm{E}-01$	$3.500 \mathrm{E}+02$
1.133	$5.52 \mathrm{E}+04$	$5.761 \mathrm{E}-03$	2.00	0.05	200	$1.590 \mathrm{E}-01$	$4.929 \mathrm{E}+02$
1-134	$6.06 \mathrm{E}+04$	$5.761 \mathrm{E}-03$	2.00	0.05	200	$1.745 \mathrm{E}-01$	$5.411 \mathrm{E}+02$
1-135	$5.17 \mathrm{E}+04$	$5.761 \mathrm{E}-03$	2.00	0.05	200	$1.489 \mathrm{E}-01$	$4.616 \mathrm{E}+02$
1-136	N/A	N/A	N/A	N/A		N/A	N/A
		\%	St	\%er	\cdots	TIT:	\cdots
KR-83m	N/A	N/A	N/A	N/A		N/A	N/A
Kr -85	$3.66 \mathrm{E}+02$	$5.761 \mathrm{E}-03$	2.00	0.1	1	4.217E-01	$1.307 \mathrm{E}+03$
KR-85m	$7.02 \mathrm{E}+03$	$5.761 \mathrm{E}-03$	2.00	0.05	1	$4.044 \mathrm{E}+00$	$1.254 \mathrm{E}+04$
Kr-87	$1.35 \mathrm{E}+04$	$5.761 \mathrm{E}-03$	2.00	0.05	1	$7.777 \mathrm{E}+00$	$2.411 \mathrm{E}+04$
KR-88	$1.89 \mathrm{E}+04$	5.761E-03	2.00	0.05	1	1.089E+01	3.375E+04
KR-89	N/A	N/A	N/A	N/A		N/A	N/A
	T7\%	E	Mest	Q: C ,		:	me
Xe-131m	N/A	N/A	N/A	N/A		N/A	N/A
Xe-133m	N/A	N/A	N/A	N/A		N/A	N/A
Xe -133	$5.26 \mathrm{E}+04$	$5.761 \mathrm{E}-03$	2.00	0.05	1	$3.030 \mathrm{E}+01$	9.393E+04
Xe-135m	N/A	N/A	N/A	N/A		N/A	N/A
Xe-135	$1.99 \mathrm{E}+04$	$5.761 \mathrm{E}-03$	2.00	0.05	1	$1.146 \mathrm{E}+01$	$3.554 \mathrm{E}+04$
Xe-137	N/A	N/A	N/A	N/A		N/A	N/A
Xe-138	N/A	N/A	N/A	N/A		N/A	N/A

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	62

Formula view of Excel Spread Sheet

	A	B	C	D	E	F	G	H
189								
190	Isotope	24 Mo Core Inventory (Ci/MW) at time $=0$	FHA Damaged fuel Fraction of Core	FHA Damaged Fuel- Radial Peaking Factor	AST FHA Gap Fraction Released	Effective Pool DF	Activity Released (C1/MWt)	Activity Released (Ci)
191	1-131	27000	-266/(74*624)	2	0.08	200		=6191*3100
192	1-132	39200	$=266 /\left(74^{*} 624\right)$	2	0.05	200		=6192*3100
193	1-133	55200	=266/(74*624)	2	0.05	200		=G193*3100
194	1-134	60600	$=266 /\left(74^{*} 624\right)$	2	0.05	200		=G194*3100
195	1-135	51700	$=266 /\left(74^{*} 624\right)$	2	0.05	200	=(8195*C195*D195*E195)/F195	=6195*3100
196	1-136	N/A	N/A	N/A	N/A		N/A	N/A
197								
198	KR-83m	N/A	N/A	N/A	N/A		N/A	N/A
199	Kr -85	366	=266/(74*624)	2	0.1	1	=(B199*C199*D199*E199)/F199	=6199*3100
200	KR-85m	7020	$=266 /\left(74^{*} 624\right)$	2	0.05	1	$=\left(\mathrm{B200}{ }^{*} \mathrm{C} 200^{*} \mathrm{D} 200^{*} \mathrm{E} 200\right) / \mathrm{F} 200$	=G200*3100
201	Kr-87	13500	=266/(74*624)	2	0.05	1	=(B201*C201*D201*E201)/F201	=6201*3100
202	KR-88	18900	$=266 /\left(74^{*} 624\right)$	2	0.05	1	$=\left(\mathrm{B202}{ }^{*} \mathrm{C} 202^{*} \mathrm{D} 202^{*} \mathrm{E} 202\right) / \mathrm{F} 202$	=6202*3100
203	KR-89	N/A	N/A	N/A	N/A		N/A	N/A
204								
205	Xe-131m	N/A	N/A	N/A	N/A		N/A	N/A
206	xe -133m	N/A	N/A	N/A	N/A		N/A	N/A
207	Xe-133	52600	$=266 /\left(74^{*} 624\right)$	2	0.05	1	$=\left(\mathrm{B207*}{ }^{\text {C207* }}\right.$ - $207 * *$ E207 //F207	$=6207 * 3100$
208	Xe-135m	N/A	N/A	N/A	N/A		N/A	N/A
209	Xe-135	19900	$=266 /\left(74^{*} 624\right)$	2	0.05	1	=(B209*C209*D209*E209)/F209	=6209*3100
210	Xe-137	N/A	N/A	N/A	N/A		N/A	N/A
211	Xe-138	N/A	N/A	N/A .	N/A		N/A	N/A

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	63

RADTRAD Model - Load Drop over Spent Fuel Pool - 336 Hours Decay with no Credit Taken for FB, Containment Integrity or CR Filtration

A RADTRAD CR model based on ventilation system parameters as described in Sections 7, 8 and 9 is developed as discussed below. Note that this model is identical to the model developed for Case 1 in calculation G13.18.9.5*059 (Ref. II.5) with the exception of the source term and the assumed decay time. RADTRAD model information from G13.18.9.5*059 is provided in this section. References for the various inputs are provided in the inputs section of this calculation, thus the references are not duplicated in this section.

The activity released to the environment previously calculated is modeled to be released at ground level from the Fuel Building in a time period not to exceed 2 hours. This is accomplished by purging the actual $F B$ free volume at a very high rate while releasing the available activity in the Fuel Pool over a 2 hour period. All leakage is immediately released to the environment from the FB without holdup, plateout, or dilution.

RADTRAD Volume 1 represents the FB

- RBS FB volume is modeled as $7.42 \mathrm{E}+05 \mathrm{ft}^{3}$
- 100\% of the AST FHA source term exiting the pool is released to the Environment
- No additional inputs

RADTRAD Volume 2 represents the Environment

- No inputs

RADTRAD Volume 3 represents the Control Room

- Control Room habitability volume equals $188,000 \mathrm{ft}^{3}$
- No additional inputs

RADTRAD Pathway 1 represents the FB leakage term (total release in 24 hours)

- FB air exhaust rate modeled as $7.42 \mathrm{E}+09 \mathrm{cfm}$ (to allow for a 2 hour release)
- 0\% efficient filters for elemental \& organic species
- No additional inputs.

RADTRAD Source Term:

- User Inventory file RBS_FHARev1a266.nif. This file is developed by using the calculated release for the individual isotopes (Ai) previously determined based upon a failure of 266 fuel rods.
- Modeled RBS AEP power level as 3100 MWth

Model isotopic decay and daughter in-growth

- Use the user defined RADTRAD release fraction file, rbs fharev1.fft. This file defines a . 001 hour release duration with a 100% release fraction in that period after allowing a 336-hour decay period.
- The specified iodine species fractions are 0.57 elemental and 0.43 organic
- Use the default RADTRAD FGR 11 \& 12 dose conversion factors for the MACCS 60 isotope inventory, FGR11\&12.inp

CALCULATION DETAILS	CALCULATION NO:			G13.18.2.7-116
	REVISION:	0		
	PAGE:	64		

- No additional inputs

RADTRAD Analysis Results

Calculation Results

TEDE (REM)

Dose Receptor	Acceptance Criteria	Gate Drop in Fuel Building
EAB *	6.3	1.2155
LPZ	6.3	0.16017
CR	5	0.87328

*Worst 2-hour period

10.2 Damage to Pool Liner

In assessing the damage to the pool liner the following cases are analyzed based upon the load path.

Drop from Maximum Lift Height

The maximum lift height occurs when transferring the gate from the cask pool to the laydown area on the Fuel Building 113' elevation. Objects analyzed for this drop are the gate, intermediate lifting beam and alternate lifting beam. Potential points of impact for this drop are:

1) Cask pool floor at 70' elevation;
2) Cask pool shelf at 93^{\prime} elevation;
3) Gate opening at 88 ' elevation.

Load Drop with Gate in Pool

This scenario is during the movement of the gate from its installed location in the spent fuel pool to the gate opening between the spent fuel pool and cask pool, through the gate opening, then into the cask pool. Objects analyzed for this drop are the gate, intermediate lifting beam and alternate lifting beam. Potential points of impact for this drop are:

1) Spent fuel pool or cask pool floor at 70' elevation;
2) Gate opening floor at 88 ' elevation.

Load Drop onto Fuel Storage Racks

This scenario postulates a load drop during movement of the load in the spent fuel pool area that impacts the fuel storage racks. Objects analyzed for this drop are the gate, intermediate lifting beam and alternate lifting beam. This scenario only determines the impact velocity of the objects as an input to the evaluation in Section 10.3.

10.2.1 Drop from Maximum Lift Height

The maximum lift height occurs when transferring the gate from the cask pool to the laydown area on the Fuel Building 113' elevation. Objects analyzed for this drop are the gate, intermediate lifting beam and alternate lifting beam. Potential points of impact for this drop are:

1) Cask pool floor at 70' elevation;
2) Cask pool shelf at 93 ' elevation;
3) Gate opening at 88 ' elevation.

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	66

Determine Pool Minimum Water Level Elevation

TS Minimum water level above the top of irradiated fuel $=\geq 23^{\prime}$
(Ref. III.10, pg. 3.7-15)
Stored fuel bundle upper tie plate elevation = 84.6645'
(Ref. II.3, pg. 4 and Assumption 8.12)
Pool Min Level Elevation = Top of Irradiated Fuel Elevation + Min TS Water Coverage
Pool Min Level Elevation $=84.6645^{\prime}+23^{\prime}=107.6645^{\prime} \quad$ use 107.7'

Determine Maximum Object Lift Elevation

For the initial movement the objects being evaluated had the following elevations:
Elevation of bottom of Gate $=90^{\prime}$
(Ref. II.2, pg. 8)
Elevation of bottom of Intermediate Lifting Beam $=115^{\prime}$
(Ref. II.2, pg. 8)
Elevation of bottom of Alternate Lifting Beam = 123'

Maximum Lift Elevation of the Gate Bottom
Elevation of Fuel and Cask Pool Curb $=113^{\prime} 4$ "
Approximate lift height above laydown floor elevation obstructions $=6^{\prime \prime}$ (Ref. III.1, pg. 16)
Max Gate Bottom Lift Elevation = Curb elevation + lift height above obstructions
Max Gate Bottom Lift Elevation $=113^{\prime} 4^{\prime \prime}+6^{\prime \prime}=113^{\prime} 10^{\prime} \quad$ use $115^{\prime} \mathbf{0}^{\prime \prime}$ or 115.0'

Using the elevations of the bottom of the gate, intermediate lifting beam and alternate lifting beam from the initial movement, determine the Maximum Lift Elevation for the Intermediate Beam and Alternate Beam.

Max Lift Elevation of Intermediate Beam
= Max Gate Bottom Lift El. + (Initial Lift Int. Beam Bottom El. - Initial Lift Gate Bottom El.)
Max Lift Elevation of Intermediate Beam $=115.0^{\prime}+\left(115^{\prime}-90^{\prime}\right)=140^{\prime}$

Max Lift Elevation of Alternate Beam
= Max Gate Bottom Lift El. + (Initial Lift Alt. Beam Bottom El. - Initial Lift Gate Bottom El.)
Max Lift Elevation of Alternate Beam $=115^{\prime}+\left(123^{\prime}-90^{\prime}\right)=148^{\prime}$

Determine Object Air Drop Distance

Air Drop Distance $=$ Max Lift Elevation - Pool Min Level Elevation
Gate Air Drop Distance $=$ Max Lift Elevation - Pool Min Level Elevation
Gate Air Drop Distance $=115^{\prime}-107.7^{\prime}=7.3^{\prime}$
Intermediate Beam Air Drop Distance $=$ Max Lift Elevation - Pool Min Level Elevation
Intermediate Beam Air Drop Distance $=140^{\prime}-107.7^{\prime}=32.3^{\prime}$
Alternate Beam Air Drop Distance $=$ Max Lift Elevation - Pool Min Level Elevation
Alternate Beam Air Drop Distance $=148$ - 107.7 ${ }^{\prime}=40.3^{\prime}$

Determine Water Drop Distance

Water Drop Distance $=$ Pool Min Level Elevation - Elevation of Impact Point
Cask Pool Floor Water Drop Distance $=107.7-70^{\prime}=37.7^{\prime}$
Cask Pool Shelf Water Drop Distance $=107.7^{\prime}-93^{\prime}=14.7^{\prime}$
Gate Opening Water Drop Distance $=107.7^{\prime}-88^{\prime}=19.7^{\prime}$

The equation to determine strike velocity is selected based upon the relationship of object length (L) to water depth (H) as follows:
$Z_{1}(x)=$ function for determining the striking velocity at depth $H=x$ when $0 \leq x \leq L$
$Z_{2}(x)=$ function for determining the striking velocity at depth $H=x$ when $x \geq L$
The following table provides a summary of the air drop distance, water drop distance H, the length of the dropped object, and the selected strike velocity function based upon the criteria above for each Maximum Lift Load Drop case.

CALCULATION DETAILS

CALCULATION NO: G13.18.2.7-116
REVISION: 0
PAGE: 68

Case Description	Air Drop Distance, h ft	Water Drop Distance, H ft	ft	Strike Velocity Function
Gate Drop to Cask Pool Floor	7.3^{\prime}	37.7^{\prime}	24.39^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$
Gate Drop to Cask Pool Shelf	7.3^{\prime}	14.7^{\prime}	24.39^{\prime}	$\mathrm{Z}_{1}(\mathrm{x})$
Gate Drop to Gate Opening	7.3^{\prime}	19.7^{\prime}	24.39^{\prime}	$\mathrm{Z}_{1}(\mathrm{x})$
Intermediate Beam Drop to Cask Pool Floor	32.3^{\prime}	37.7^{\prime}	4.75^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$
Intermediate Beam Drop to Cask Pool Shelf	32.3^{\prime}	14.7^{\prime}	4.75^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$
Intermediate Beam Drop to Gate Opening	32.3^{\prime}	19.7^{\prime}	4.75^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$
Alternate Beam Drop to Cask Pool Floor	40.3^{\prime}	37.7^{\prime}	12^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$
Alternate Beam Drop to Cask Pool Shelf	40.3^{\prime}	14.7^{\prime}	12^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$
Alternate Beam Drop to Gate Opening	40.3^{\prime}	19.7^{\prime}	12^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$

For the Object Drop cases to assess liner damage, the following equations will be used:

$$
\begin{equation*}
V_{0}=(2 g h)^{1 / 2} \tag{Ref.II.4,pg.E-4,5-3}
\end{equation*}
$$

Where:
$V_{0}=$ velocity of the missile at contact with the water surface, ft/s
$\mathrm{g}=$ gravitational acceleration $=32.17 \mathrm{ft} / \mathrm{s}^{2}$
$\mathrm{h}=$ distance between the missile and the water surface, ft

$$
\begin{equation*}
V_{s}=[Z(H)]^{1 / 2} \tag{Ref.II.4,pg.5-2}
\end{equation*}
$$

Where:
$\mathrm{V}_{\mathrm{s}}=$ velocity of the missile striking the steel surface, ft/s
$Z(H)=$ function for determination of striking velocity (see formulas below)
$\mathrm{H}=$ feet of fluid between fluid surface and surface of steel target

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	69

The following equations are from Ref. II.4, pg. 5-2:

$$
\begin{aligned}
& \left.Z_{1}(x)=(g / a)+\left(b A_{0}\right)\left[(1-2 a x) / 2 a^{2}\right)\right]+e^{-2 a x}\left[\left(V_{0}^{2}-(g / a)-\left(b A_{0} / 2 a^{2}\right)\right]\right. \\
& Z_{2}(x)=V_{2}^{2}+e^{-2 a x}\left\{\left(b A_{0} / 2 a^{2}\right)\left[e^{2 a L}(1-2 a L)-1\right)\right]+V_{0}^{2}+\left[(g / a)\left[\left(e^{2 a L}\left(\gamma / \gamma_{m}\right)-1\right)\right]\right\}
\end{aligned}
$$

Where:
$Z_{1}(x)=$ function for determining the striking velocity at depth $H=x$ when $0 \leq x \leq L$
$Z_{2}(x)=$ function for determining the striking velocity at depth $H=x$ when $x \geq L$
$a=\left(\gamma^{*} A_{0}{ }^{*} C_{D}\right) /(2 * W)$
(Ref. II.4, pg. 5-3)
$b=\left(\gamma^{*} g\right) / W$
(Ref. II.4, pg. 5-3)
$\mathrm{g}=$ gravitational acceleration $=32.17 \mathrm{ft} / \mathrm{s}^{2}$
(Ref. II.4, pg. 5-3)
W = weight of missile, lb
(Ref. II.4, pg. 5-3)
$\gamma=$ weight density of liquid, $\mathrm{lb} / \mathrm{ft}^{3}$
(Ref. II.4, pg. 5-3)
$\gamma_{\mathrm{m}}=$ weight density of missile, $\mathrm{Ib} / \mathrm{ft}^{3}$
(Ref. II.4, pg. 5-3)
$x=H=$ depth of missile center of gravity below the water surface, ft (Ref. II.4, pg. 5-3, 5-5)
$\mathrm{A}_{0}=$ horizontal cross-sectional area of the missile (constant over length L), ft^{2} (Ref. II.4, pg. 5-3)
$C_{D}=$ drag coefficient given in table 5-1 of the reference or other references on fluid mechanics which is a function of $L / d, R$ and shape of the missile (Ref. II.4, pg. 5-3, 5-4)
$L=$ vertical length of the missile, ft
$\mathrm{d}=$ characteristic dimension of the missile, for a rectangular surface $\mathrm{d}=$ width, ft (Ref. II.4, pg. 5-3, 5-4)
$R=$ Reynolds Number $=\left(V_{0} * d\right) / v$
$v=$ kinematic viscosity of the liquid, $\mathrm{ft}^{2} / \mathrm{s}$
(Ref. II.4, pg. 5-3)
$\mathrm{V}_{0}=$ initial velocity of the missile at $\mathrm{x}=0, \mathrm{ft} / \mathrm{s}$
(Ref. II.4, pg. 5-3, 5-5)

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	70

$\mathrm{Vs}=$ striking velocity of the missile at $\mathrm{x}=\mathrm{H}, \mathrm{ft} / \mathrm{s}$
$V_{2}=$ terminal velocity, $\mathrm{ft} / \mathrm{s}=\left[(\mathrm{g} / \mathrm{a}) *\left(1-\gamma / \gamma_{\mathrm{m}}\right)\right]^{1 / 2}$
$\mathrm{H}=$ depth of the fluid, ft
(Ref. II.4, pg. 5-3)
(Ref. II.4, pg. 5-3)
(Ref. II.4, pg. 5-1)

$$
\begin{equation*}
\mathrm{T}^{3 / 2}=0.5 \mathrm{M} \mathrm{~V}_{\mathrm{s}}^{2} /\left(17,400 \mathrm{~K}^{2} \mathrm{D}^{3 / 2}\right) \tag{Ref.II.4,pg.C-8}
\end{equation*}
$$

Where:
$T=$ steel thickness to just be perforated, in
$\mathrm{M}=$ mass of the missile, $\mathrm{lb}-\mathrm{s}^{2} / \mathrm{ft}$
$\mathrm{V}_{\mathrm{s}}=$ striking velocity of the missile normal to target surface, ft / s
$K=$ constant depending on the grade of the steel, K is usually $=1$
$\mathrm{D}=$ diameter or equivalent diameter of the missile, in

The inputs for the maximum lift load drop cases are as follows:

All cases:

$$
\begin{array}{ll}
\mathrm{g}=\text { Acceleration of Gravity }=32.174 \mathrm{ft} / \mathrm{sec}^{2} & \text { (Ref. III.9, pg. B-10) } \\
\gamma=\text { Density of water @ } 160 \text { deg. } \mathrm{F}=60.994 \mathrm{lb} / \mathrm{ft}^{3} & \text { (Ref. III.9, pg. A-6) } \\
v=\text { Kinematic viscosity of water @ } 160 \text { deg. } \mathrm{F}=0.439 \mathrm{E}-5 \mathrm{ft}^{2} / \mathrm{s} & \text { (Ref. III.11) } \\
\mathrm{K}=\text { constant related to grade of steel }=1 &
\end{array}
$$

The inputs for the maximum lift gate load drop cases are as follows:
$\mathrm{L}=$ Length of Spent Fuel Pool Gate $=24.39 \mathrm{ft}$
$\mathrm{d}=$ Width of Spent Fuel Pool Gate $=4.771 \mathrm{ft}$
$t=$ Thickness of Spent Fuel Pool Gate $=0.3958 \mathrm{ft}$
$\mathrm{W}=$ Weight of Spent Fuel Pool Gate and Rigging $=2000 \mathrm{lbs}$
(Ref. II.1, pg. A11)
(Ref. II.1, pg. A11)
(Ref. II.1, pg. 17)
(Ref. III.1, pg. 4);
REVISION: 0
PAGE: 71

Case Description	Air Drop Distance, h ft	Water Drop Distance, Hft	Lft	Strike Velocity Function
Gate Drop to Cask Pool Floor	7.3^{\prime}	37.7^{\prime}	24.39^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$
Gate Drop to Cask Pool Shelf	7.3^{\prime}	14.7^{\prime}	24.39^{\prime}	$\mathrm{Z}_{1}(\mathrm{x})$
Gate Drop to Gate Opening	7.3^{\prime}	19.7^{\prime}	24.39^{\prime}	$\mathrm{Z}_{1}(\mathrm{x})$

$\gamma_{\mathrm{m}}=$ weight density of missile, $\mathrm{lb} / \mathrm{ft}^{3}=$ weight, $\mathrm{lb} /\left(\mathrm{L}, \mathrm{ft} * \mathrm{~d}, \mathrm{ft}{ }^{*} \mathrm{t}, \mathrm{ft}\right)$
$\gamma_{\mathrm{m}}=$ weight density of gate, $\mathrm{lb} / \mathrm{ft}^{3}=2000 \mathrm{lb} /(24.39 \mathrm{ft} * 4.771 \mathrm{ft} * 0.3958 \mathrm{ft})=43.424 \mathrm{lb} / \mathrm{ft}^{3}$

For Gate Drop to Cask Pool Floor

Determine V_{0}
$V_{0}=(2 g h)^{1 / 2}$
Where:
$\mathrm{V}_{0}=$ velocity of the missile at contact with the water surface, ft/s
$\mathrm{g}=$ gravitational acceleration $=32.17 \mathrm{ft} / \mathrm{s}^{2}$
$\mathrm{h}=$ distance between the missile and the water surface, ft
$V_{0}=\left(2 * 32.17 \mathrm{ft} / \mathrm{s}^{2 *} 7.3 \mathrm{ft}\right)^{1 / 2}=21.672 \mathrm{ft} / \mathrm{s}$

Determine R

Note that d in the Reynolds number represents the width of the gate.
$R=\left(V_{0} * d\right) / v=(21.672 \mathrm{ft} / \mathrm{s} * 4.771 \mathrm{ft}) / 0.439 \mathrm{E}-5 \mathrm{ft}^{2} / \mathrm{s}=2.355 \mathrm{E} 7$

Determine C_{D}

In determining C_{D} for rectangular bodies $L=$ length of the body, $d=$ width
Gate length (height) $=24.39^{\prime} \quad$ Gate width $=4.771^{\prime}$
$\mathrm{L} / \mathrm{d}=24.39^{\prime} / 4.771^{\prime}=5.112$
Using Ref. II.4, pg. 5-4 Table 5-1 $\quad C_{D}=1.20$

Determine A_{0}

$\mathrm{A}_{0}=$ horizontal cross-sectional area of the missile (constant over length L), ft^{2}
(Ref. II.4, pg. 5-3)
$\mathrm{A}_{0}=$ gate width * gate thickness $=4.771^{*} 0.3958=1.888 \mathrm{ft}^{2}$

Determine Coefficient a

$\mathrm{a}=\left(\gamma^{*} \mathrm{~A}_{0}{ }^{*} \mathrm{C}_{\mathrm{D}}\right) /(2 * \mathrm{~W})=\left(60.994 \mathrm{lb} / \mathrm{ft}^{3} * 1.888 \mathrm{ft}^{2} * 1.20\right) /\left(2^{*} 2000 \mathrm{lb}\right)=0.035$

Determine Coefficient b

$\mathrm{b}=\left(\gamma^{*} \mathrm{~g}\right) / \mathrm{W}=\left(60.994 \mathrm{lb} / \mathrm{ft}^{3} * 32.17 \mathrm{f} / \mathrm{s}^{2}\right) / 2000 \mathrm{lb}=0.981$

Determine Terminal Velocity V_{2}

$V_{2}=\left[(\mathrm{g} / \mathrm{a})^{*}\left(1-\gamma / \gamma_{\mathrm{m}}\right)\right]^{1 / 2}=\left[\left(32.17 \mathrm{ft} / \mathrm{s}^{2} / 0.035\right)^{*}\left(1-\left(60.994 \mathrm{lb} / \mathrm{ft}^{3} / 43.424 \mathrm{lb} / \mathrm{ft}^{3}\right)\right)\right]^{1 / 2}$
$V_{2}=[919.143 *(1-1.405)]^{1 / 2}$
$V_{2}=[-372.253]^{1 / 2}$
As the square root of a negative number is indeterminate, this indicates that the gate will float as the density of the gate is less than the density of water. Although the value determined for the overall gate density is correct, it is unlikely that the gate will float. Therefore the thickness of the gate will be adjusted to achieve a gate density greater than water. The smaller gate thickness will be used throughout this case. This will ultimately reduce the impact area experienced by the liner which increases the penetration thickness and is thus conservative. Note that this dimension adjustment is only used for this case.

The adjusted gate thickness is 0.275^{\prime} or $3.3^{\prime \prime}$
The adjusted density of the gate is as follows:

$$
\gamma_{\mathrm{m}}=2000 \mathrm{lb} /(24.39 \mathrm{ft} * 4.771 \mathrm{ft} * 0.275 \mathrm{ft})=62.499 \mathrm{lb} / \mathrm{ft}^{3}
$$

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	73

Determine Revised A_{0}

$\mathrm{A}_{0}=$ horizontal cross-sectional area of the missile (constant over length L), ft^{2} (Ref. II.4, pg. 5-3)
$A_{0}=$ gate width * gate thickness $=4.771^{*} 0.275=1.312 \mathrm{ft}^{2}$

Determine Revised Coefficient a

$\mathrm{a}=\left(\gamma^{*} \mathrm{~A}_{0}{ }^{*} \mathrm{C}_{\mathrm{D}}\right) /(2 * \mathrm{~W})=\left(60.994 \mathrm{lb} / \mathrm{ft}^{3} * 1.312 \mathrm{ft}^{2} * 1.20\right) /\left(2^{*} 2000 \mathrm{lb}\right)=0.024$
Determine Revised Terminal Velocity V_{2}
$V_{2}=\left[(\mathrm{g} / \mathrm{a})^{*}\left(1-\gamma / \gamma_{m}\right)\right]^{1 / 2}=\left[\left(32.17 \mathrm{ft} / \mathrm{s}^{2} / 0.024\right)^{*}\left(1-\left(60.994 \mathrm{lb} / \mathrm{ft}^{3} / 62.499 \mathrm{lb} / \mathrm{ft}^{3}\right)\right)\right]^{1 / 2}$
$\mathrm{V}_{2}=\left[1340.417^{*}(1-0.976)\right]^{1 / 2}=5.681 \mathrm{ft} / \mathrm{s}$

Determine $Z_{2}(x)$

Note that $x=H$ such that the result of $Z_{2}(x)$ can be directly used to determine strike velocity.
$Z_{2}(x)=V_{2}{ }^{2}+e^{-2 a x}\left\{\left(b A_{0} / 2 a^{2}\right)\left[e^{2 a L}(1-2 a L)-1\right)\right]+V_{0}{ }^{2}+\left[(g / a)\left[\left(e^{2 a L}\left(\gamma / \gamma_{m}\right)-1\right)\right]\right\}$
For simplicity the various intermediate relations in the formula are determined individually. Only results values are listed without units.
$V_{2}{ }^{2}=(5.681 \mathrm{ft} / \mathrm{s})^{2}=32.274$
$e^{-2 a x}=e^{(-2 * 0.024 * 37.7)}=0.164$
$\left(\mathrm{bA}_{0} / 2 \mathrm{a}^{2}\right)=(0.981 * 1.312) /\left(2 *(0.024)^{2}\right)=1117.250$
$2 \mathrm{aL}=2^{*} 0.024 * 24.39=1.171$
$\mathrm{e}^{2 \mathrm{aL}}=\mathrm{e}^{(1.171)}=3.225$
$\left.\left[\mathrm{e}^{2 \mathrm{aL}}(1-2 \mathrm{aL})-1\right)\right]=[((3.225(1-1.171))-1]=-1.551$
$V_{0}{ }^{2}=(21.672 \mathrm{ft} / \mathrm{s})^{2}=469.676$
$\mathrm{g} / \mathrm{a}=32.17 / 0.024=1340.417$
$\gamma / \gamma_{\mathrm{m}}=60.994 \mathrm{lb} / \mathrm{ft}^{3} / 62.499 \mathrm{lb} / \mathrm{ft}^{3}=0.976$

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	74

$Z_{2}(x)=V_{2}{ }^{2}+e^{-2 a x}\left\{\left(\mathrm{bA}_{0} / 2 \mathrm{a}^{2}\right)\left[\mathrm{e}^{2 \mathrm{aL}}(1-2 \mathrm{aL})-1\right)\right]+\mathrm{V}_{0}{ }^{2}+\left[(\mathrm{g} / \mathrm{a})\left[\left(\mathrm{e}^{2 \mathrm{aL}}\left(\gamma / \gamma_{\mathrm{m}}\right)-1\right)\right]\right\}$
$Z_{2}(x)=32.274+0.164\{(1117.250)[-1.551]+469.676+[(1340.417)[(3.225(0.976)-1)]\}$
$Z_{2}(x)=32.274+0.164\{-1732.855+469.676+2878.679\}=297.216$
Determine $\underline{V}_{\mathbf{s}}$
$V_{s}=[Z(H)]^{1 / 2} \quad$ (Ref. II.4, pg. 5-2)
Where:
$\mathrm{V}_{\mathrm{s}}=$ velocity of the missile striking the steel surface, ft/s $\mathrm{Z}(\mathrm{H})=$ function for determination of striking velocity $H=$ feet of fluid between fluid surface and surface of steel target
$V_{s}=[297.216]^{1 / 2}=17.239 \mathrm{ft} / \mathrm{s}$
Convert the impact area to equivalent diameter D
The impact area is equal to A_{0} calculated previously.
$\mathrm{A}_{0}=1.312 \mathrm{ft}^{2}$
$1.312 \mathrm{ft}^{2}$ * $144 \mathrm{in}^{2} / \mathrm{ft}^{2}=188.928 \mathrm{in}^{2}$
188.928 in $^{2}=\pi r^{2} \quad r=7.755$ in
$D=2^{*} r=2 * 7.755 \mathrm{in}=15.509 \mathrm{in}$
Determine M
$M=W / g$
$M=2000 \mathrm{lb} / 32.17 \mathrm{ft} / \mathrm{s}^{2}=62.170 \mathrm{lb}-\mathrm{s}^{2} / \mathrm{ft}$

Determine Steel Penetration Thickness
$\mathrm{T}^{3 / 2}=0.5 \mathrm{M} \mathrm{V}_{\mathrm{s}}{ }^{2} /\left(17,400 \mathrm{~K}^{2} \mathrm{D}^{3 / 2}\right)$
(Ref. II.4, pg. C-8)
Where:
T= steel thickness to just be perforated, in
$M=$ mass of the missile, $\mathrm{lb}-\mathrm{s}^{2} / \mathrm{ft}$
$\mathrm{V}_{\mathrm{s}}=$ striking velocity of the missile normal to target surface, ft / s
$K=$ constant depending on the grade of the steel, K is usually $=1$
$\mathrm{D}=$ diameter or equivalent diameter of the missile, in
$\mathrm{T}^{3 / 2}=0.5^{*} 62.170 *(17.239)^{2} /\left(17,400 *(1)^{2}\left(15.509^{3 / 2}\right)\right)=0.008693$
$\mathrm{T}=0.042$ in
The analysis methodology to calculate $Z_{2}(x)$ and T has been input into an Excel spread sheet. The results of the spread sheet for the previously calculated case is on the following page. Note that there are differences in some values due to variations the significant figures stored in Excel verses those displayed in the manual calculation. Due to the Excel limitations with respect to formatting, some of the variables are indicated by description rather than symbol. The spread sheet method will be used in all of the subsequent cases.

CALCULATION DETAILS

CALCULATION NO: G13.18.2.7-116
REVISION: 0
PAGE:

Gate Drop from Max Lift Height to Pool Floor 70'
Gate Length L
Gate Width, d
Gate thickness (reduced to obtain density greater than water)
Gate weight, W
Gate density
water density @ 160F
water kinematic viscosity @ 160F
water density/gate density
drop distance in air
drop distance in water
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$
Reynolds no $=\left(\right.$ Vo ${ }^{*}$ d)/viscosity
Check L/d using gate length and width
Check L/D using gate width and thickness
Value

Drag Coefficient CD
Ao $=$ width ${ }^{*}$ thickness
a = (water density * Drag Coeff * Ao)/ (2*W)
$\mathrm{b}=$ (water density * g)/w
Terminal Velocity, V2 = SQRT((g*)(1-density water/density gate)/a)
0.164
$\exp \left(-2^{*} \mathrm{a}^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water
bAo
1.287
$\exp (2 \mathrm{aL})$
3.226

2aL
V2^2
1.171

Vo^2
469.682
bAo*[exp(2aL)*(1-2aL)-1]/2a^2
-1732.907
$\mathrm{g}^{*}(\exp (2 \mathrm{aL})$ * wtr dens/gate dens -1$) / \mathrm{a} 2878.065$
Z2x
296.504
$V s=(2 x)^{\wedge} 0.5$
$17.219 \mathrm{ft} / \mathrm{s}$
Convert impact area to equivalent diameter
mass $=$ weight $/ \mathrm{g}$
thickness T
24.390 ft
4.771 ft
0.275 ft
2000.000 lb
$62.499 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
$60.994 \mathrm{lb} / \mathrm{cuft}$
$4.390 \mathrm{E}-06 \mathrm{sqft} / \mathrm{s}$
0.976
7.300
ft
37.700 ft
$21.672 \mathrm{ft} / \mathrm{s}$
2.355E+07
$5.681 \mathrm{ft} / \mathrm{s}$
Units

ft
ft / s
5.112
17.349
1.200
1.312 ft 2
0.024
0.981
ft / s
ft 2

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	77

For Gate Drop to Cask Pool Shelf

$\left.Z_{1}(x)=(g / a)+\left(b A_{0}\right)\left[(1-2 a x) / 2 a^{2}\right)\right]+e^{-2 a x}\left[\left(V_{0}^{2}-(g / a)-\left(b A_{0} / 2 a^{2}\right)\right]\right.$
Determine V_{0}
$V_{0}=(2 g h)^{1 / 2}$
Where:
$\mathrm{V}_{0}=$ velocity of the missile at contact with the water surface, ft/s
$\mathrm{g}=$ gravitational acceleration $=32.17 \mathrm{ft} / \mathrm{s}^{2}$
$\mathrm{h}=$ distance between the missile and the water surface, ft
$V_{0}=\left(2 * 32.17 \mathrm{ft} / \mathrm{s}^{2 *} 7.3 \mathrm{ft}\right)^{1 / 2}=21.672 \mathrm{ft} / \mathrm{s}$

Determine R

Note that d in the Reynolds number represents the width of the gate.
$R=\left(V_{0} * d\right) / v=(21.672 \mathrm{ft} / \mathrm{s} * 4.771 \mathrm{ft}) / 0.439 \mathrm{E}-5 \mathrm{ft}^{2} / \mathrm{s}=2.355 \mathrm{E} 7$

Determine C_{D}

In determining C_{D} for rectangular bodies $L=$ length of the body, $d=$ width
Gate length $($ height $)=24.39^{\prime} \quad$ Gate width $=4.771^{\prime}$
$\mathrm{L} / \mathrm{d}=24.39^{\prime} / 4.771^{\prime}=5.112$
Using Ref. II.4, pg. 5-4 Table 5-1 $\quad C_{D}=1.20$

Determine A_{0}

$A_{0}=$ horizontal cross-sectional area of the missile (constant over length L), ft^{2} (Ref. II.4, pg. 5-3)
$\mathrm{A}_{0}=$ gate width * gate thickness $=4.771^{*} 0.3958=1.888 \mathrm{ft}^{2}$

Determine Coefficient a

$$
a=\left(\gamma * A_{0} * C_{D}\right) /(2 * W)=\left(60.994 \mathrm{lb} / \mathrm{ft}^{3} * 1.888 \mathrm{ft}^{2} * 1.20\right) /(2 * 2000 \mathrm{lb})=0.0345
$$

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	78

Determine Coefficient b

$b=\left(\gamma^{*} g\right) / W=\left(60.994 \mathrm{lb} / \mathrm{ft}^{3} * 32.17 \mathrm{ft} / \mathrm{s}^{2}\right) / 2000 \mathrm{lb}=0.981$

Determine $\boldsymbol{Z}_{1}(\mathbf{x})$

Note that $x=H$ such that the result of $Z_{2}(x)$ can be directly used to determine strike velocity.
$\left.Z_{1}(x)=(g / a)+\left(b A_{0}\right)\left[(1-2 a x) / 2 a^{2}\right)\right]+e^{-2 a x}\left[\left(V_{0}{ }^{2}-(g / a)-\left(b A_{0} / 2 a^{2}\right)\right]\right.$
For simplicity the various intermediate relations in the formula are determined individually. Only results values are listed without units.
$e^{-2 a x}=e^{\left(-2 * 0.0345^{*} 14.7\right)}=0.3627$
$b A_{0}=(0.981$ * 1.888$)=1.852$
$2 \mathrm{ax}=2$ * 0.0345 * $14.700=1.014$
$V_{0}{ }^{2}=(21.672 \mathrm{ft} / \mathrm{s})^{2}=469.676$
$\mathrm{g} / \mathrm{a}=32.17 / 0.0345=932.464$
$\left.\left(\mathrm{bA}_{0}\right)\left[(1-2 \mathrm{ax}) / 2 \mathrm{a}^{2}\right)\right]=(1.852)\left[(1-1.014) / 2^{*}(0.0345)^{2}\right]=-10.892$
$e^{-2 a x}\left[\left(V_{0}{ }^{2}-(g / a)-\left(b A_{0} / 2 a^{2}\right)\right]=(0.3627)\left[(469.676)-(932.464)-\left(1.852 / 2^{*} 0.0345^{2}\right)\right]=-450.029\right.$
$Z_{1}(x)=(g / a)+\left(b A_{0}\right)[(1-2 a x) / 2 a]+e^{-2 a x}\left[\left(V_{0}^{2}-(g / a)-\left(b A_{0} / 2 a^{2}\right)\right]\right.$
$Z_{1}(x)=932.464+(-10.892)+(-450.029)=471.543$

Determine $\mathrm{V}_{\mathbf{s}}$
$V_{s}=[Z(H)]^{1 / 2}$
(Ref. II.4, pg. 5-2)
Where:
$\mathrm{V}_{\mathrm{s}}=$ velocity of the missile striking the steel surface, ft/s
$Z(H)=$ function for determination of striking velocity
$\mathrm{H}=$ feet of fluid between fluid surface and surface of steel target
$V_{s}=[471.543]^{1 / 2}=21.712 \mathrm{ft} / \mathrm{s}$

CALCULATION NO:	G13.18.2.7-116
REVISION:,	0
PAGE:	79

Convert the impact area to equivalent diameter D

The impact area is equal to A_{0} calculated previously.
$\mathrm{A}_{0}=1.888 \mathrm{ft}^{2}$
$1.888 \mathrm{ft}^{2} * 144 \mathrm{in}^{2} / \mathrm{ft}^{2}=271.872 \mathrm{in}^{2}$
271.872 in $^{2}=\pi r^{2} \quad r=9.302$ in
$D=2^{*} r=2 * 9.302$ in $=18.605$ in
Determine M
$\mathrm{M}=\mathrm{W} / \mathrm{g}$
$\mathrm{M}=2000 \mathrm{lb} / 32.17 \mathrm{ft} / \mathrm{s}^{2}=62.170 \mathrm{lb}-\mathrm{s}^{2} / \mathrm{ft}$
Determine Steel Penetration Thickness
$\mathrm{T}^{3 / 2}=0.5 \mathrm{M} \mathrm{V}_{\mathrm{s}}{ }^{2} /\left(17,400 \mathrm{~K}^{2} \mathrm{D}^{3 / 2}\right)$
(Ref. II.4, pg. C-8)
Where:
T = steel thickness to just be perforated, in
$\mathrm{M}=$ mass of the missile, $\mathrm{lb}-\mathrm{s}^{2} / \mathrm{ft}$
$\mathrm{V}_{\mathrm{s}}=$ striking velocity of the missile normal to target surface, ft/s
$K=$ constant depending on the grade of the steel, K is usually $=1$
$D=$ diameter or equivalent diameter of the missile, in
$\mathrm{T}^{3 / 2}=0.5^{*} 62.170$ * $(21.712)^{2} /\left(17,400 *(1)^{2}\left(18.605^{3 / 2}\right)=0.010494\right.$
$\mathrm{T}=0.048 \mathrm{in}$
The analysis methodology to calculate $Z_{1}(x)$ and T has been input into an Excel spread sheet. The results of the spread sheet for the previously calculated case is shown on the following page. Note that there are differences in some values due to variations the significant figures stored in Excel verses those displayed in the manual calculation. Due to the Excel limitations with respect to formatting, some of the variables are indicated by description rather than symbol. The spread sheet method will be used in all of the subsequent cases.
Gate Drop from Max Lift Height to Cask Shelf Value Units
Gate Length L24.390 ft
Gate Width, d4.771 ft
Gate thickness 0.396 ft
Gate weight, W 2000.000 lb
Gate density
water density @ 160F
water kinematic viscosity @ 160F
water density/gate density$43.424 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
$60.994 \mathrm{lb} / \mathrm{cuft}$drop distance in air
$4.390 \mathrm{E}-06 \mathrm{sq} \mathrm{ft} / \mathrm{s}$1.405
drop distance in water 14.700 ft7.300 ft
Vo where h is drop distance in air, $V=(2 \mathrm{gh})^{\wedge}{ }^{2}$ $21.672 \mathrm{ft} / \mathrm{s}$
Reynolds no $=\left(\mathrm{Vo}^{*} \mathrm{~d}\right) /$ viscosity 2.355E+07
Check L/d using gate length and width 5.112
Check L/D using gate width and thickness 12.054
Drag Coefficient CD 1.200
Ao = width * thickness 1.888 ft2
a = (water density * Drag Coeff * Ao)/ (2*W) 0.035
b = (water density * g$) / \mathrm{W}$
$\exp \left(-2^{*} a^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water 0.362
bAo 1.853
$2 a x$ 1.016
Vo^2 469.682
g/a 931.017
bAo*[(1-2ax)]/2a^2 -12.318
$\exp (-2 a x) *\left[\left(V 0^{\wedge} 2-(g / a)-\left(b A o / 2^{*} a^{\wedge} 2\right)\right]\right.$ -447.965
Z1x 470.734
$\mathrm{Vs}=(Z \mathrm{x})^{\wedge} 0.5$ $21.696 \mathrm{ft} / \mathrm{s}$
Convert impact area to equivalent diameter 18.606 in
mass $=$ weight/g
thickness
62.170 $\mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
0.048 in

For Gate Drop to Gate Opening

Gate Drop from Max Lift Height to Gate Opening	Value	Units
Gate Length L	24.390	ft
Gate Width, d	4.771	ft
Gate thickness	0.396	ft
Gate weight, W	2000.000	lb
Gate density	43.424	$\mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density @ 160F	60.994	$\mathrm{lb} / \mathrm{cuft}$
water kinematic viscosity @ 160F	$4.390 \mathrm{E}-06$	sq ft/s
water density/gate density	1.405	
drop distance in air	7.300	ft
drop distance in water	19.700	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	21.672	ft / s
Reynolds no =(Vo $\left.{ }^{\text {* }} \mathrm{d}\right) /$ viscosity	2.355E+07	
Check L/d using gate length and width	5.112	
Check L/D using gate width and thickness	12.054	
Drag Coefficient CD	1.200	
Ao = width * thickness	1.888	ft 2
$\mathrm{a}=($ water density * Drag Coeff * Ao)/ (2*W)	0.035	
$\mathrm{b}=\left(\right.$ water density ${ }^{\text {* }} \mathrm{g}$ //W	0.981	
$\exp \left(-2^{*} \mathrm{a}^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water	0.256	
bAo	1.853	
2ax	1.361	
Vo^2	469.682	
g/a	931.017	
bAo*[(1-2ax)]/2a^2	-280.401	
$\exp (-2 \mathrm{ax}) *\left[\left(\mathrm{Vo}{ }^{\wedge} 2\right.\right.$-(g/a)-(bAo/2*a^2)]	-317.088	
Z1x	333.528	
$\mathrm{Vs}=(\mathrm{Zx})^{\wedge} 0.5$	18.263	ft / s
Convert impact area to equivalent diameter	18.606	in
mass $=$ weight/g	62.170	$\mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness	0.038	in

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	82

Intermediate Beam Cases
The inputs for the maximum lift intermediate beam load drop cases are as follows:
$\mathrm{L}=$ Length of Intermediate Lifting Beam $=4.75 \mathrm{ft}$
(Ref. II.2, pg. 6)
$\mathrm{d}=$ Width of Intermediate Lifting Beam $=0.4167 \mathrm{ft}$
(Ref. II.2, pg. 6)
$t=$ Thickness of Intermediate Lifting Beam $=0.4167 \mathrm{ft}$
(Ref. II.2, pg. 6)
$\mathrm{W}=$ Weight of Beam and Rigging $=175 \mathrm{lbs}$
(Section 10.1.3)

Case Description	Air Drop Distance, h ft	Water Drop Distance, H ft	Lft	Strike Velocity Function
Intermediate Beam Drop to Cask Pool Floor	32.3^{\prime}	37.7^{\prime}	4.75^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$
Intermediate Beam Drop to Cask Pool Shelf	32.3^{\prime}	14.7^{\prime}	4.75^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$
Intermediate Beam Drop to Gate Opening	32.3^{\prime}	19.7^{\prime}	4.75^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$

$\gamma_{\mathrm{m}}=$ weight density of missile, $\mathrm{lb} / \mathrm{ft}^{3}=$ weight, $\mathrm{lb} /(\mathrm{L}, \mathrm{ft} * \mathrm{~d}, \mathrm{ft} * \mathrm{t}, \mathrm{ft})$
$\gamma_{\mathrm{m}}=$ weight density of beam, $\mathrm{lb} / \mathrm{ft}^{3}=175 \mathrm{lb} /(4.75 \mathrm{ft} * 0.4167 \mathrm{ft} * 0.4167 \mathrm{ft})=212.177 \mathrm{lb} / \mathrm{ft}^{3}$

For Intermediate Beam Drop to Cask Pool Floor

Intermediate Beam Drop from Max Lift Height to Pool Floor 70'
Beam Length L 4.750
Beam Width, d 0.417 ft
Beam thickness 0.417 ft
Beam weight, W 175.000 lb
Beam density
water density @ 160F
water kinematic viscosity @ 160F
water density/gate density$212.177 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
$60.994 \mathrm{lb} / \mathrm{cuft}$
4.390E-06 sq ft/secdrop distance in air
drop distance in water
Vo where h is drop distance in air, $V=(2 g h)^{\wedge} 2$0.287
Reynolds no =(Vo * d)/viscosity32.300 ft
37.700
45.587 ft / s
Check L/d using beam length and width 11.399$4.327 E+06$
Check L/D using beam width and thickness 1.000
Drag Coefficient CD 1.160
Ao = width * thickness 0.174
a = (water density * Drag Coeff * Ao)/(2*W)ft2
b = (water density * g)/W 11.212
Terminal Velocity, V2 = SQRT((g*(1-density water/density beam)/a) $25.554 \mathrm{ft} / \mathrm{s}$
$\exp \left(-2^{*} a^{*} x\right)$ where $x=$ drop distance in water 0.071
bAo 1.947
$\exp (2 \mathrm{aL})$ 1.396
2aL 0.333
V2^2 653.027
Vo^2 2078.182
$b A o^{*}[\exp (2 a L) *(1-2 a L)-1] / 2 a^{\wedge} 2$ -55.030
$g^{*}(\exp (2 a L)$ * wtr dens/beam dens -1$) / a$ -548.751
Z2x 757.546
Vs $=(Z x)^{\wedge} 0.5$ $27.524 \mathrm{ft} / \mathrm{s}$
Convert impact area to equivalent diameter 5.642
mass = weight/g
thickness $5.440 \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$ 0.043 in

CALCULATION DETAILS

For Intermediate Beam Drop to Cask Pool Shelf

Intermediate Beam Drop from Max Lift Height to Cask Shelf 93' El
Beam Length L 4.750
Beam Width, d 0.417 ft
Beam thickness 0.417 ft
Beam weight, W 175.000 lb
Beam densitywater density @ 160F
water kinematic viscosity @ 160F
$212.177 \mathrm{lb} / \mathrm{cuft}$$60.994 \mathrm{lb} / \mathrm{cuft}$
4.390E-06 sq ft/s
water density/gate density 0.287
drop distance in air 32.300 ft
drop distance in water14.700 ft
Vo where h is drop distance in air, $V=(2 \mathrm{gh})^{\wedge}{ }^{2}$ $45.587 \mathrm{ft} / \mathrm{s}$Reynolds no $=\left(\right.$ Vo ${ }^{*}$ d)/viscosity
Check L / d using beam length and width 11.399
Check L/D using beam width and thickness 1.000
Drag Coefficient CD 1.160
Ao = width * thickness 0.174ft2
a = (water density * Drag Coeff * Ao)/ (2*W) 0.035
b = (water density * \mathbf{g})/W 11.212
Terminal Velocity, V2 = SQRT((${ }^{*}$ *(1-density water/density beam)/a) 25.554 ft / s
$\exp \left(-2^{*} a^{*} x\right)$ where $\mathrm{x}=$ drop distance in water 0.356
bAo 1.947
$\exp (2 \mathrm{aL})$ 1.396
2 aL 0.333
V2^2 653.027
Vo^2 2078.182
bAo*[exp(2aL)*(1-2aL)-1]/2a^2 -55.030
$\mathrm{g}^{*}(\exp (2 \mathrm{aL})$ * wtr dens/beam dens -1$) / a$ -548.751
Z2x1178.357
$V_{s}=(Z x)^{\wedge} 0.5$ $34.327 \mathrm{ft} / \mathrm{s}$
Convert impact area to equivalent diameter 5.642 in
mass $=$ weight $/ \mathrm{g}$ $5.440 \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness 0.057 in

CALCULATION DETAILS

CALCULATION NO: G13.18.2.7-116
REVISION: 0
PAGE:
85

For Intermediate Beam Drop to Gate Opening

Intermediate Beam Drop from Max Lift Height to Gate Opening 88'

Beam Length L
 4.750 ft

Beam Width, d
0.417 ft

Beam thickness
0.417 ft

Beam weight, W
175.000 lb

Beam density
water density @ 160F
water kinematic viscosity @ 160F
$212.177 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
$60.994 \mathrm{lb} / \mathrm{cuft}$
water density/gate density

$$
4.390 \mathrm{E}-06 \mathrm{sq} \mathrm{ft} / \mathrm{s}
$$

drop distance in air
drop distance in water
Vo where h is drop distance in air, $V=(2 \mathrm{gh})^{\wedge} 2$
0.287

Reynolds no =(Vo * d)/viscosity
32.300 ft

Check L / d using beam length and width
19.700 ft
$45.587 \mathrm{ft} / \mathrm{s}$

Chid using beam width and thickness 1.000
Drag Coefficient CD 1.000
Drag Coefficient CD
Ao = width * thickness
1.160
$a=$ (water density * Drag Coeff * Ao)/(2*W) 0.035
$\begin{array}{ll}b=(\text { water density * g)/W } & 11.212\end{array}$
Terminal Velocity, V2 = SQRT((g*(1-density water/density beam)/a) $25.554 \mathrm{ft} / \mathrm{s}$
$\begin{array}{ll}\exp \left(-2^{*} a^{*} x\right) \text { where } x=\text { drop distance in water } & 0.251\end{array}$
bAo 1.947
$\exp (2 \mathrm{aL}) \quad 1.396$
2aL 0.333
V2^2 653.027
Vo^2 2078.182
bAo*[exp(2aL)*(1-2aL)-1]/2a^2 -55.030
$\mathrm{g}^{*}(\exp (2 \mathrm{aL}) *$ wtr dens/beam dens -1$) / \mathrm{a} \quad-548.751$
Z2x
1022.846
$V s=(Z x)^{\wedge} 0.5$
$31.982 \mathrm{ft} / \mathrm{s}$

| Convert impact area to equivalent diameter | 5.642 in |
| :--- | :--- | :--- |
| mass = weight/g | 5.440 lb-s2/ft |
| thickness | 0.052 in |

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	$\mathbf{8 6}$

The inputs for the maximum lift alternate beam load drop cases are as follows:
$L=$ Length of Alternate Lifting Beam = 12'
(Assumption 8.13)
$\mathrm{d}=$ Width of Alternate Lifting Beam $=0.5 \mathrm{ft}$
(Ref. III.7, pg. 1-26)
$t=$ Thickness of Alternate Lifting Beam $=0.333 \mathrm{ft}$
$\mathrm{W}=$ Weight of Beam and Rigging = 200 lbs
(Ref. III.7, pg. 1-26)
(Section 10.1.2)

Case Description	Air Drop Distance, h ft	Water Drop Distance, H ft	Lft	Strike Velocity Function
Alternate Beam Drop to Cask Pool Floor	40.3^{\prime}	37.7^{\prime}	12^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$
Alternate Beam Drop to Cask Pool Shelf	40.3^{\prime}	14.7^{\prime}	12^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$
Alternate Beam Drop to Gate Opening	40.3^{\prime}	19.7^{\prime}	12^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$

$\gamma_{\mathrm{m}}=$ weight density of missile, $\mathrm{lb} / \mathrm{ft}^{3}=$ weight, $\mathrm{lb} /(\mathrm{L}, \mathrm{ft} * \mathrm{~d}, \mathrm{ft} * \mathrm{t}, \mathrm{ft})$
$\gamma_{\mathrm{m}}=$ weight density of beam, $\mathrm{lb} / \mathrm{ft}^{3}=200 \mathrm{lb} /(12 \mathrm{ft} * 0.333 \mathrm{ft} * 0.5 \mathrm{ft})=100.100 \mathrm{lb} / \mathrm{ft}^{3}$

CALCULATION DETAILS

CALCULATION NO: G13.18.2.7-116
REVISION: 0
PAGE: 87

For Alternate Beam Drop to Cask Pool Floor

Alternate Beam Drop from Max Lift Height to Pool Floor 70'

Beam Length L	12.000	ft
Beam Width, d	0.500	ft
Beam thickness	0.333	ft
Beam weight, W	200.000	lb
Beam density	100.100	$\mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density @ 160F	60.994	$\mathrm{lb} / \mathrm{cuft}$
water kinematic viscosity @ 160F	4.390E-06	$\mathrm{sqft} / \mathrm{sec}$
water density/gate density	0.609	
drop distance in air	40.300	ft
drop distance in water	37.700	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	50.921	ft / s
Reynolds no =($\left.\mathrm{Vo}^{*} \mathrm{~d}\right) /$ viscosity	$5.800 \mathrm{E}+06$	
Check L/d using beam length and width	24.000	
Check L/D using beam width and thickness	1.502	
Drag Coefficient CD	1.160	
Ao $=$ width * thickness	0.167	ft 2
a = (water density * Drag Coeff * Ao)/ (2*W)	0.029	
b = (water density * g / $/ \mathrm{w}$	9.811	
Terminal Velocity, V2 = SQRT(g^{*} (1-density water/density beam)/a)	20.658	ft / s
$\exp \left(-2^{*} \mathrm{a}^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water	0.109	
bAo	1.634	
$\exp (2 \mathrm{aL})$	2.028	
2 aL	0.707	
V2^2	426.738	
Vo^2	2592.902	
$b A o^{*}[\exp (2 a L) *(1-2 a L)-1] / 2 a^{\wedge} 2$	-381.910	
$\mathrm{g}^{*}(\exp (2 \mathrm{aL}) *$ wtr dens/beam dens -1)/a	257.178	
Z2x	694.643	
Vs $=(\mathrm{Zx})^{\wedge} 0.5$	26.356	ft / s
Convert impact area to equivalent diameter	5.525	in
mass $=$ weight/g	6.217	$\mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness	0.045	in

For Alternate Beam Drop to Cask Pool Shelf

Alternate Beam Drop from Max Lift Height to Cask Shelf 93' El

Beam Length L

Beam Width, d
Beam thickness
Beam weight, W
Beam density
water density @ 160F
water kinematic viscosity @ 160F
water density/gate density
drop distance in air
drop distance in water
Vo where h is drop distance in air, $V=(2 g h)^{\wedge} 2$
Reynolds no =(Vo * d)/viscosity
Check L/d using beam length and width
Check L/D using beam width and thickness
Drag Coefficient CD
Ao = width * thickness
a = (water density * Drag Coeff * Ao)/(2*W)
b = (water density * g)/W
Terminal Velocity, V2 = SQRT((g*(1-density water/density beam)/a)
$\exp \left(-2^{*} a^{*} x\right)$ where $x=$ drop distance in water
bAo
$\exp (2 \mathrm{aL})$ 2.028
2aL 0.707
V2^2 426.738
Vo^2 2592.902
bAo*[exp(2aL)*(1-2aL)-1]/2a^2 -381.910
$g^{*}(\exp (2 a L) *$ wtr dens/beam dens -1$) / a$ 257.178
Z2x 1465.074

1465.074
$V s=(Z x)^{\wedge} 0.5$ $38.276 \mathrm{ft} / \mathrm{s}$

$38.276 \mathrm{ft} / \mathrm{s}$
Convert impact area to equivalent diameter 5.525 in
mass = weight/g
thickness
0.421 1.634
12.000 ft
0.500 ft
0.333 ft
200.000 lb
$100.100 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
$60.994 \mathrm{lb} / \mathrm{cuft}$
4.390E-06 sq ft/sec
0.609
40.300 ft
14.700 ft
$50.921 \mathrm{ft} / \mathrm{s}$
$5.800 \mathrm{E}+06$
24.000
1.502
1.160
0.167 ft 2
0.029
9.811
$20.658 \mathrm{ft} / \mathrm{s}$
$6.217 \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
0.074 in

CALCULATION DETAILS

For Alternate Beam Drop to Gate Opening

Alternate Beam Drop from Max Lift Height to to Gate Opening 88'
Beam Length L 12.000 ft
Beam Width, d 0.500 ft
Beam thickness 0.333 ft
Beam weight, W 200.000 lb
Beam density
water density @ 160F
water kinematic viscosity @ 160F
water density/gate density$100.100 \mathrm{lb} / \mathrm{cuft}$
$60.994 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
4.390E-06 sq ft/secdrop distance in air0.609
drop distance in water
Vo where h is drop distance in air, $V=(2 g h)^{\wedge} 2$
40.300 ft
Reynolds no =(Vo * d)/viscosity
19.700 ft
50.921 ft / s
Check L/d using beam length and width 24.0005.800E+06
Check L/D using beam width and thickness 1.502
Drag Coefficient CD 1.160Ao = width * thickness
a = (water density * Drag Coeff * Ao)/ (2*W) 0.0290.167ft2
b = (water density * g)/W 9.811
Terminal Velocity, V2 = SQRT((g*(1-density water/density beam)/a)
$\exp \left(-2^{*} a^{*} x\right)$ where $x=$ drop distance in water 0.313
bAO 1.634
$\exp (2 \mathrm{aL})$ 2.028
2a, 0.707
V2^2 426.738
Vo^2 2592.902
bAo*[exp(2aL)*(1-2aL)-1]/2a^2 -381.910
$\mathrm{g}^{*}(\exp (2 \mathrm{aL})$ * wtr dens/beam dens -1)/a 257.178
Z2x 1200.191
$\mathrm{Vs}=(\mathrm{Zx})^{\wedge} 0.5$ $34.644 \mathrm{ft} / \mathrm{s}$
Convert impact area to equivalent diameter 5.525 in
mass $=$ weight/g
thickness
0.065 in in
REVISION: 0

10.2.2 Load Drop with Gate in Pool

This scenario is during the movement of the gate from its installed location in the spent fuel pool to the gate opening between the spent fuel pool and cask pool, through the gate opening, then into the cask pool. Objects analyzed for this drop are the gate, intermediate lifting beam and alternate lifting beam. Potential points of impact for this drop are:

1) Spent fuel pool or cask pool floor at 70' elevation;
2) Gate opening floor at 88 ' elevation.

Object Lift Elevation

For the initial movement the objects being evaluated had the following elevations:
Elevation of bottom of Gate $=90^{\prime}$
Elevation of bottom of Intermediate Lifting Beam =115'
Elevation of bottom of Alternate Lifting Beam = 123'

Pool Min Level Elevation $=84.6645^{\prime}+23^{\prime}=107.6645^{\prime} \quad$ use 107.7'
Determine Object Air Drop Distance
Air Drop Distance $=$ Lift Elevation - Pool Min Level Elevation

Gate Air Drop Distance $=$ Lift Elevation - Pool Min Level Elevation

Gate Air Drop Distance $=90^{\prime}-107.7^{\prime}=-17.7^{\prime}$
As the gate is mostly submerged, the air drop distance for the gate is 0 '. Correspondingly, the value for V_{0} and R will also be zero. As the Reynolds number is less than 1E3, the drag coefficient, C_{D} will be assumed to be 1.00 .

Intermediate Beam Air Drop Distance $=$ Lift Elevation - Pool Min Level Elevation
Intermediate Beam Air Drop Distance $=115^{\prime}-107.7^{\prime}=7.3^{\prime}$
Alternate Beam Air Drop Distance $=$ Lift Elevation - Pool Min Level Elevation
Alternate Beam Air Drop Distance $=123^{\prime}-107.7^{\prime}=15.3^{\prime}$

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	91

Determine Water Drop Distance

Because the gate is partially submerged, the water drop distance formula is as follows:
Gate Water Drop Distance $=$ Elevation of Gate Bottom - Elevation of Impact Point
For the Pool Floors
Gate Water Drop Distance $=90^{\prime}-70^{\prime}=20^{\prime}$
For the Gate Opening
Gate Water Drop Distance $=90^{\prime}-88^{\prime}=2^{\prime}$
As the beams have an initial elevation above the pool level, the beam water drop distance utilizes the same relationship as that utilized in Section 10.2.1.

Water Drop Distance $=$ Pool Min Level Elevation - Elevation of Impact Point
Pool Floor Water Drop Distance $=107.7-70^{\prime}=37.7^{\prime}$
Gate Opening Water Drop Distance $=107.7^{\prime}-88^{\prime}=19.7^{\prime}$

The following table provides a summary of the air drop distance, water drop distance H , the length of the dropped object, and the selected strike velocity function based upon the criteria above for each Load Drop case.

Case Description	Air Drop Distance, h ft	Water Drop Distance, H ft	L ft	Strike Velocity Function
Gate Drop to Pool Floor	0^{\prime}	20^{\prime}	24.39^{\prime}	$\mathrm{Z}_{1}(\mathrm{x})$
Gate Drop to Gate Opening	0^{\prime}	2^{\prime}	24.39^{\prime}	$\mathrm{Z}_{1}(\mathrm{x})$
Intermediate Beam Drop to Pool Floor	7.3^{\prime}	37.7^{\prime}	4.75^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$
Intermediate Beam Drop to Gate Opening	7.3^{\prime}	19.7^{\prime}	4.75^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$
Alternate Beam Drop to Pool Floor	15.3^{\prime}	37.7^{\prime}	12^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$
Alternate Beam Drop to Gate Opening	15.3^{\prime}	19.7^{\prime}	12^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$

The inputs for the load drop cases are as follows:
All cases:
$\mathrm{g}=$ Acceleration of Gravity $=32.174 \mathrm{ft} / \mathrm{sec}^{2}$
$\gamma=$ Density of water @ 160 deg. $\mathrm{F}=60.994 \mathrm{lb} / \mathrm{ft}^{3}$
$v=$ Kinematic viscosity of water @ 160 deg. $\mathrm{F}=0.439 \mathrm{E}-5 \mathrm{ft}^{2} / \mathrm{s}$
$K=$ constant related to grade of steel =1

The inputs for the gate load drop cases are as follows:
$L=$ Length of Spent Fuel Pool Gate $=24.39 \mathrm{ft}$
$\mathrm{d}=$ Width of Spent Fuel Pool Gate $=4.771 \mathrm{ft}$
$t=$ Thickness of Spent Fuel Pool Gate $=0.3958 \mathrm{ft}$
W = Weight of Spent Fuel Pool Gate and Rigging = 2000 lbs
(Ref. Il.1, pg. 17)
(Ref. III.1, pg. 4);
$\gamma_{\mathrm{m}}=$ weight density of gate, $\mathrm{lb} / \mathrm{ft}^{3}=2000 \mathrm{lb} /(24.39 \mathrm{ft} * 4.771 \mathrm{ft} * 0.3958 \mathrm{ft})=43.424 \mathrm{lb} / \mathrm{ft}^{3}$

The inputs for the intermediate beam load drop cases are as follows:
$\mathrm{L}=$ Length of Intermediate Lifting Beam $=4.75 \mathrm{ft}$
$\mathrm{d}=$ Width of Intermediate Lifting Beam $=0.4167 \mathrm{ft}$
$\mathrm{t}=$ Thickness of Intermediate Lifting Beam $=0.4167 \mathrm{ft}$
$\mathrm{W}=$ Weight of Beam and Rigging = 175 lbs
(Ref. II.2, pg. 6)
(Ref. II.2, pg. 6)
(Ref. II.2, pg. 6)
(Section 10.1.3)
$\gamma_{\mathrm{m}}=$ weight density of beam, $\mathrm{lb} / \mathrm{ft}^{3}=175 \mathrm{lb} /(4.75 \mathrm{ft}$ * $0.4167 \mathrm{ft} * 0.4167 \mathrm{ft})=212.177 \mathrm{lb} / \mathrm{ft}^{3}$

The inputs for the alternate beam load drop cases are as follows:
$\mathrm{L}=$ Length of Alternate Lifting Beam $=12^{\prime}$
(Assumption 8.13)
$\mathrm{d}=$ Width of Alternate Lifting Beam $=0.5 \mathrm{ft}$
$t=$ Thickness of Alternate Lifting Beam $=0.333 \mathrm{ft}$
$\mathrm{W}=$ Weight of Beam and Rigging $=200 \mathrm{lbs}$
(Ref. III.7, pg. 1-26)
(Section 10.1.2)
$\gamma_{\mathrm{m}}=$ weight density of beam, $\mathrm{lb} / \mathrm{ft}^{3}=200 \mathrm{lb} /(12 \mathrm{ft} * 0.333 \mathrm{ft} * 0.5 \mathrm{ft})=100.100 \mathrm{lb} / \mathrm{ft}^{3}$
REVISION: 0

PAGE: 93

The inputs were entered into the Excel spread sheet with the results for each case shown in the following tables.

Gate Drop to Pool Floor

Gate Length L $\quad 24.390 \mathrm{ft}$
Gate Width, d $\quad 4.771 \mathrm{ft}$
Gate thickness $\quad 0.396 \mathrm{ft}$
Gate weight, W 2000.000 lb
Gate density $\quad 43.424 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density @ 160F
water kinematic viscosity @ 160F
$60.994 \mathrm{lb} / \mathrm{cuft}$
water density/gate density
$4.390 \mathrm{E}-06 \mathrm{sqft} / \mathrm{sec}$
drop distance in air $\quad 0.000 \mathrm{ft}$
drop distance in water
20.000 ft

Vo where h is drop distance in air, $V=(2 \mathrm{gh})^{\wedge} 2$
$0.000 \mathrm{ft} / \mathrm{s}$
Reynolds no $=\left(\right.$ Vo ${ }^{*}$ d)/viscosity 0.000E+00

Check L/d using gate length and width
5.112

Check L/D using gate width and thickness 12.054
Drag Coefficient CD 1.000
Ao $=$ width * thickness 1.888
ft2
$a=$ (water density * Drag Coeff * Ao)/ (2*W) 0.029
$\mathrm{b}=\left(\right.$ water density $\left.{ }^{*} \mathrm{~g}\right) / \mathrm{W} \quad 0.981$
$\exp \left(-2^{*} a^{*} x\right)$ where $x=$ drop distance in water $\quad 0.316$
bAo 1.853
2ax 1.152
Vo^2 0.000
g/a 1117.220
bAo*[(1-2ax)]/2a^2 '169.580
$\exp (-2 a x) *\left[\left(V o^{\wedge} 2-(\mathrm{g} / \mathrm{a})-\left(\mathrm{bAo} / 2^{*} \mathrm{a}^{\wedge} 2\right)\right] \quad-706.242\right.$
Z1x 241.398
Vs $=(Z x)^{\wedge} 0.5 \quad 15.537 \mathrm{ft} / \mathrm{s}$

Convert impact area to equivalent diameter
18.606 in
mass $=$ weight $/ \mathrm{g}$
thickness
$62.170 \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
0.031 in
Gate Drop in Gate Opening
Gate Length L 24.390
Gate Width, d 4.771
Gate thickness 0.396 ft
Gate weight, w 2000.000 lb
Gate density
water density @ 160F
water kinematic viscosity @ 160F
$43.424 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density/gate density$60.994 \mathrm{lb} / \mathrm{cuft}$
$4.390 \mathrm{E}-06 \mathrm{sq} \mathrm{ft} / \mathrm{sec}$drop distance in air1.405
0.000 ftVo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$
drop distance in water 2.000 ft
Reynolds no =(Vo * d)/viscosity 0.000$0.000 \mathrm{ft} / \mathrm{s}$
Check L/d using gate length and width 5.112
Check L/D using gate width and thickness 12.054
Drag Coefficient CD 1.000
Ao $=$ width * thickness
a = (water density * Drag Coeff * Ao)/ (2*W) 0.0291.888ft2
b = (water density * g)/w 0.981
$\exp \left(-2^{*} a^{*} x\right)$ where $x=$ drop distance in water
bAo 1.853
$2 a x$ 0.115
Vo^2 0.000
g/a 1117.220
bAo*[(1-2ax)]/2a^2 988.540
$\exp (-2 a x) *\left[\left(V o^{\wedge} 2-(g / a)-\left(b A o / 2^{*} a^{\wedge} 2\right)\right]\right.$ -1991.348
Z1x 114.412
$\mathrm{Vs}=(\mathrm{Zx})^{\wedge} 0.5$ $10.696 \mathrm{ft} / \mathrm{s}$
Convert impact area to equivalent diameter 18.606 in
mass $=$ weight/g $62.170 \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness 0.019 in
Intermediate Beam Drop to Pool Floor
Beam Length L 4.750 ft
Beam Width, d 0.417 ft
Beam thickness 0.417 ft
Beam weight, W175.000 lb
Beam density
water density @ 160F
water kinematic viscosity @ 160F
$212.177 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
$60.994 \mathrm{lb} / \mathrm{cuft}$
water density/gate density 0.287$4.390 \mathrm{E}-06 \mathrm{sq} \mathrm{ft} / \mathrm{sec}$
drop distance in air

drop distance in water

drop distance in water 37.700 37.700 ft7.300 ftVo where h is drop distance in air, $V=(2 \mathrm{gh})^{\wedge} 2$
Reynolds no =(Vo * d)/viscosity$21.672 \mathrm{ft} / \mathrm{s}$
Check L / d using beam length and width 11.399
Check L/D using beam width and thickness 1.000
Drag Coefficient CD 1.160
Ao $=$ width * thickness 0.174 ft2
a = (water density * Drag Coeff * Ao)/ (2*W) 0.035
b = (water density * g)/w 11.212
Terminal Velocity, V2 = SQRT((g*(1-density water/density beam)/a) 25.554
$\exp \left(-2^{*} a^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water 0.071
bAo 1.947
$\exp (2 \mathrm{aL})$ 1.396
2aL 0.333
V2^2 653.027
Vo^2 469.682
bAo*[exp(2aL)*(1-2aL)-1]/2a^2 -55.030
$g^{*}(\exp (2 \mathrm{aL}) *$ wtr dens/beam dens -1$) / a$ -548.751
22x 643.521
Vs $=(Z x)^{\wedge} 0.5$ $25.368 \mathrm{ft} / \mathrm{s}$
Convert impact area to equivalent diameter 5.642 in
mass $=$ weight $/ \mathrm{g}$
thickness $5.440 \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$ 0.038 in

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	96

Intermediate Beam Drop to Gate Opening
Beam Length L 4.750 ft
Beam Width, d 0.417 ft
Beam thickness 0.417 ft
Beam weight, w 175.000 lb
Beam density
water density @ 160F
water kinematic viscosity @ 160F
$212.177 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
$60.994 \mathrm{lb} / \mathrm{cuft}$
$4.390 \mathrm{E}-06$
water density/gate density0.287
drop distance in air 7.300 ft
drop distance in water
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$
19.700 ft
$21.672 \mathrm{ft} / \mathrm{s}$
Reynolds no =(Vo * d)/viscosity 2.057E+06
Check L / d using beam length and width 11.399
Check L/D using beam width and thickness 1.000
Drag Coefficient CD 1.160
Ao = width * thickness 0.174 ft2
$a=($ water density * Drag Coeff * Ao)/ (2*W) 0.035
b = (water density * g)/w 11.212
Terminal Velocity, V2 = SQRT(($\mathrm{g}^{*}(1-$ density water/density beam)/a) 25.554 ft / s
$\exp \left(-2^{*} \mathrm{a}^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water 0.251
bAo 1.947
$\exp (2 \mathrm{aL})$ 1.396
2 aL 0.333
V2^2 653.027
Vo^2 469.682
bAo* $\left.\exp (2 \mathrm{aL})^{*}(1-2 \mathrm{aL})-1\right] / 2 a^{\wedge} 2$ -55.030
$\mathrm{g}^{*}(\exp (2 \mathrm{LL})$ * wtr dens/beam dens -1$) / a$ -548.751
Z2x 619.392
$V_{s}=(Z x)^{\wedge} 0.5$ $24.888 \mathrm{ft} / \mathrm{s}$
Convert impact area to equivalent diameter 5.642 in
mass = weight/g $5.440 \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness 0.037 in

Alternate Beam Drop to Pool Floor

Beam Length L 12.000 ft
Beam Width, d 0.500 ft
Beam thickness 0.333 ft
Beam weight, W 200.000 lb
Beam density
water density @ 160F
water kinematic viscosity @ 160F
$100.100 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
$60.994 \mathrm{lb} / \mathrm{cuft}$
4.390E-06water density/gate density
drop distance in air0.609
drop distance in water
Vo where h is drop distance in air, $V=(2 g h)^{\wedge} 2$
15.300 ft
Reynolds no =(Vo * d)/viscosity
37.700 ft
Check L/d using beam length and width
$31.375 \mathrm{ft} / \mathrm{s}$
Check L/D using beam width and thickness 1.502
Drag Coefficient CD 1.160
Ao = width * thickness 0.167 ft2
a = (water density * Drag Coeff * Ao)/ (2*W) 0.029
b = (water density * \mathbf{g})/W 9.811
Terminal Velocity, V2 = SQRT((g*(1-density water/density beam)/a) 20.658$\exp \left(-2^{*} a^{*} x\right)$ where $x=$ drop distance in water0.109
bAo 1.634
$\exp (2 \mathrm{aL})$ 2.028
2aL 0.707
V2^2 426.738
Vo^2 984.402
bAo*[exp(2aL)*(1-2aL)-1]/2a^2 -381.910
$\mathrm{g}^{*}(\exp (2 \mathrm{aL}) *$ wtr dens/beam dens -1)/a 257.178
Z2x 520.050
$V s=(Z x)^{\wedge} 0.5$ $22.805 \mathrm{ft} / \mathrm{s}$
Convert impact area to equivalent diameter 5.525 in
mass $=$ weight $/ g$
thickness $6.217 \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
0.037 in
Alternate Beam Drop to Gate Opening
Beam Length L 12.000
Beam Width, d 0.500 ft
Beam thickness 0.333 ft
Beam weight, W 200.000 lb
Beam density
water density @ 160F
water kinematic viscosity @ 160F
$100.100 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density/gate density 0.60960.994
4.390E-06 sq ft/sec$\mathrm{lb} / \mathrm{cuft}$
drop distance in air
drop distance in water
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$15.300 ft
Reynolds no =(Vo * d)/viscosity
19.700
31.375 ft / s
Check L / d using beam length and width 24.0003.573E+06
Check L/D using beam width and thickness 1.502
Drag Coefficient CD 1.160
Ao $=$ width * thickness
a = (water density * Drag Coeff * Ao)/(2*W) 0.0290.167 ft2
$\mathrm{b}=\left(\right.$ water density $\left.{ }^{*} \mathrm{~g}\right) / \mathrm{W}$ 9.811
Terminal Velocity, V2 = SQRT(l^{*} (1-density water/density beam)/a)
$\exp \left(-2^{*} \mathrm{a}^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water 0.313
bAo 1.634
$\exp (2 a \mathrm{~L})$ 2.028
2 a L 0.707
V2^2 426.738
Vo^2 984.402
bAo* $\left[\exp (2 a \mathrm{a})^{*}(1-2 \mathrm{aL})-1\right] / 2 a^{\wedge} 2$ -381.910
$g^{*}(\exp (2 \mathrm{aL}) *$ wtr dens/beam dens -1$) / a$ 257.178
Z2x 696.134
Vs $=(Z x)^{\wedge} 0.5$ $26.384 \mathrm{ft} / \mathrm{s}$
Convert impact area to equivalent diameter 5.525 in
mass $=$ weight $/ \mathrm{g}$ $6.217 \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness 0.045 in

CALCULATION DETAILS

CALCULATION NO: G13.18.2.7-116
REVISION: 0

PAGE: 99

Using the calculated steel thickness to just experience perforation calculated in Sections 10.2.1 and 10.2.2, determine the minimum required liner thickness to prevent perforation based upon the following equation:

Thickness required to prevent steel perforation $=T$ * $1.25 \quad$ (Ref. II. 4 pg .2)
Where:
T = steel thickness to just be perforated, in

For the Max Gate Drop to Cask Pool Floor case $\quad T=0.042$ in
Thickness required to prevent steel perforation $=T$ * 1.25
Thickness required to prevent steel perforation $=0.042$ in * $1.25=0.053$ in

This formula was placed in an Excel spread sheet to determine the thickness required to prevent steel perforation for the balance of the liner impact drop cases. The results are shown in the table below.

Case Description	Calculated Perforation Thickness, T, in	Thickness Required to Prevent Perforation, in	Actual Liner Thickness, in
Max Gate Drop to Cask Pool Floor	0.042	0.053	0.188
Max Gate Drop to Cask Pool Shelf	0.048	0.060	0.188
Max Gate Drop to Gate Opening	0.038	0.048	0.188
Max Intermediate Beam Drop to Cask Pool Floor	0.043	0.054	0.188
Max Intermediate Beam Drop to Cask Pool Shelf	0.057	0.071	0.188
Max Intermediate Beam Drop to Gate Opening	0.052	0.065	0.188
Max Alternate Beam Drop to Cask Pool Floor	0.045	0.056	0.188
Max Alternate Beam Drop to Cask Pool Shelf	0.074	0.093	0.188
Max Alternate Beam Drop to Gate Opening	0.065	0.081	0.188
Gate in Water Gate Drop to Pool Floor	0.031	0.039	0.188
Gate in Water Gate Drop to Gate Opening	0.019	0.024	0.188
Gate in Water Intermediate Beam Drop to Pool Floor	0.038	0.048	0.188
Gate in Water Intermediate Beam Drop to Gate Opening	0.037	0.046	0.188
Gate In Water Alternate Beam Drop to Pool Floor	0.037	0.046	0.188
Gate in Water Alternate Beam Drop to Gate Opening	0.045	0.056	0.188

In all analyzed cases, the actual pool liner thickness exceeds the thickness required to prevent steel perforation resulting from impact of the dropped load. As the steel liner will not be perforated as a result of the analyzed load drops, no liner leakage will occur as a result of the impact. Given that no leakage will occur due to impact of the dropped load, no water makeup to accommodate leakage is required.

CALCULATION NO: G13.18.2.7-116
REVISION: 0

PAGE: 100

10.2.3 Load Drop Spent Fuel Storage Rack Strike Velocity

This section is to determine the strike velocity of the objects during the movement of the gate from its installed location in the spent fuel pool to the gate opening when the potential exists for these objects to impact the fuel storage racks. Objects analyzed for this drop are the gate, intermediate lifting beam and alternate lifting beam. The point of impact for this scenario is the top of the racks.

Elevation of Top of Fuel Racks $=177^{\prime \prime}+70^{\prime} 1-5 / 16^{\prime \prime}=84.86^{\prime}$

Object Lift Elevation

For the initial movement the objects being evaluated had the following elevations:

Elevation of bottom of Gate $=90^{\prime}$
Elevation of bottom of Intermediate Lifting Beam = 115'
Elevation of bottom of Alternate Lifting Beam = 123'

Pool Min Level Elevation $=84.6645^{\prime}+23^{\prime}=107.6645^{\prime}$
(Ref. II.2, pg. 8)
(Ref. II.2, pg. 8)
(Ref. II.2, pg. 12)
use 107.7'

Determine Object Air Drop Distance

As the initial drop elevations are identical to that in Section 10.2.2, the air drop distance is unchanged from that determined in Section 10.2.2.

Determine Water Drop Distance to Top of Racks
Because the gate is partially submerged, the water drop distance formula is as follows:
Gate Water Drop Distance $=$ Elevation of Gate Bottom - Elevation of Impact Point
Gate Water Drop Distance $=90^{\prime}-84.86^{\prime}=5.14^{\prime}$
As the beams have an initial elevation above the pool level, the beam water drop distance utilizes the same relationship as that utilized in Section 10.2.1.

Water Drop Distance $=$ Pool Min Level Elevation - Elevation of Impact Point
Rack Water Drop Distance $=107.7-84.86^{\prime \prime}=22.84^{\prime}$
PAGE: 101

The following table provides a summary of the air drop distance, water drop distance H , the length of the dropped object, and the selected strike velocity function based upon the criteria above for each Load Drop case.

Case Description	Air Drop Distance, h ft	Water Drop Distance, H ft	Lft	Strike Velocity Function
Gate Drop to Racks	0^{\prime}	5.14^{\prime}	24.39^{\prime}	$\mathrm{Z}_{1}(\mathrm{x})$
Intermediate Beam Drop to Racks	7.3^{\prime}	22.84^{\prime}	4.75^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$
Alternate Beam Drop to Racks	15.3^{\prime}	22.84^{\prime}	12^{\prime}	$\mathrm{Z}_{2}(\mathrm{x})$

The other inputs for the load drop cases are the same as Section 10.2.2.
The inputs were entered into the Excel spread sheet with the results for each case shown in the following tables.

CALCULATION DETAILS

Gate Drop to Racks
Gate Length L 24.390 ft
Gate Width, d 4.771 ft
Gate thickness 0.396 ft
Gate weight, W 2000.000 lb
Gate density$43.424 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density @ 160F$60.994 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water kinematic viscosity @ 160F
water density/gate density
drop distance in air
drop distance in water
4.390E-06 sq ft/sec
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$
Reynolds no =(Vo* d)/viscosity
1.405
Check L/d using gate length and width0.000 ftCheck L/D using gate width and thickness5.140 ft
$0.000 \mathrm{ft} / \mathrm{s}$
0.000Drag Coefficient CD12.054Ao = width * thickness1.000
$a=$ (water density * Drag Coeff * Ao $/ /(2 * W)$ 0.0291.888ft 2
$b=($ water density * $g) / W$
$\exp \left(-2^{*} a^{*} x\right)$ where $x=$ drop distance in water 0.744
bAo 1.853
2ax 0.296
Vo^2 0.000
g/a 1117.220
bAo*[(1-2ax)]/2a^2 786.512
$\exp (-2 a x) *\left[\left(V o^{\wedge} 2-(g / a)-\left(b A o / 2^{*} a^{\wedge} 2\right)\right]\right.$ -1661.933
Z1x 241.800
$V s=(Z x)^{\wedge} 0.5$$15.550 \mathrm{ft} / \mathrm{s}$
REVISION: 0
PAGE: 103
Intermediate Beam Drop to Racks
Beam Length L 4.750 ft
Beam Width, d0.417 ft
Beam thickness
Beam weight, W
Beam density
water density @ 160F
water kinematic viscosity @ 160F
water density/beam density
0.417 ft
175.000 lb
$212.177 \mathrm{lb} / \mathrm{cuft}$
$60.994 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
4.390E-06 sq ft/sec0.287
drop distance in air $7.300 f$
drop distance in water
Vo where h is drop distance in air, $V=(2 g h)^{\wedge} 2$22.841 ft
Reynolds no =(Vo * d)/viscosity 2.057E+06
$21.672 \mathrm{ft} / \mathrm{s}$
Check L/d using beam length and width 11.399
Check L/D using beam width and thickness 1.000
Drag Coefficient CD 1.160
Ao $=$ width * thickness 0.174 ft2
a = (water density * Drag Coeff * Ao)/ (2*W) 0.035
b = (water density * g)/W 11.212
Terminal Velocity, V2 = SQRT((g*(1-density water/density beam)/a) 25.554 ft / s
$\exp \left(-2^{*} a^{*} x\right)$ where $x=$ drop distance in water 0.201
bAo 1.947
$\exp (2 \mathrm{aL})$ 1.396
2aL 0.333
V2^2 653.027
Von^{2} 469.682
$b A o^{*}[\exp (2 a L) *(1-2 a L)-1] / 2 a^{\wedge} 2$ -55.030
$g^{*}(\exp (2 a L) *$ wtr dens/beam dens -1)/a -548.751
Z2x 626.048
$V s=(Z x)^{\wedge} 0.5$ $25.021 \mathrm{ft} / \mathrm{s}$

CALCULATION DETAILS

CALCULATION NO: G13.18.2.7-116
REVISION: 0
PAGE: 104
Alternate Beam Drop to Racks
Beam Length L 12.000 ft
Beam Width, d 0.500 ft
Beam thickness 0.333 ft
Beam weight, W 200.000 lb
Beam density
water density @ 160F
water kinematic viscosity @ 160F$100.100 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
$60.994 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
4.390E-06 sq ft/sec
water density/beam density0.609
drop distance in air 15.300 ft
drop distance in water22.840 ft
Vo where h is drop distance in air, $V=(2 \mathrm{gh})^{\wedge} 2$ 31.375 ft / s
Reynolds no =(Vo * d)/viscosity 3.573E+06
Check L/d using beam length and width 24.000
Check L/D using beam width and thickness 1.502
Drag Coefficient CD 1.160
Ao $=$ width * thickness 0.167ft 2
a = (water density * Drag Coeff * Ao)/(2*W) 0.029
b = (water density * g)/W 9.811
Terminal Velocity, V2 = SQRT((g*(1-density water/density beam)/a) 20.658 ft / s
$\exp \left(-2^{*} a^{*} x\right)$ where $x=$ drop distance in water 0.260
bAo 1.634
$\exp (2 \mathrm{aL})$ 2.028
2aL 0.707
V2^2 426.738
$\mathrm{Vo}^{\wedge} 2$ 984.402
bAo*[exp(2aL)*(1-2aL)-1]/2a^2 -381.910
$\mathrm{g}^{*}(\exp (2 \mathrm{aL})$ * wtr dens/beam dens -1$) / a$ 257.178
Z2x 650.645
$V s=(Z x)^{\wedge} 0.5$ $25.508 \mathrm{ft} / \mathrm{s}$

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	105

Results summary

The strike velocity of each object on the spent fuel pool storage racks is as follows:

$$
\text { Gate } \quad 15.550 \mathrm{ft} / \mathrm{s}
$$

Intermediate Beam $\quad 25.021 \mathrm{ft} / \mathrm{s}$
Alternate Beam $\quad 25.508 \mathrm{ft} / \mathrm{s}$
REVISION: 0
PAGE: 106

10.3 Damage to Fuel Rack Assembly

Damage to the Spent Fuel Pool Rack will be analyzed within two impact cases. Case 1 will analyze the damage to the fuel rack by objects (gate, intermediate lifting beam, alternate lifting beam) that impact the centerline of empty fuel cells. This bounding case would analyze the minimum amount of structural material resisting the energy of each object dropped, which would maximize the length of damage.

The fuel racks are rated for an impact energy of 3800 ft lb . Case 2 will analyze the impact velocities of the dropped objects to determine if these impact energies are bounded. Each impact case will evaluate all previously analyzed objects (gate, intermediate lifting beam, alternate lifting beam).

Case 1

The poison material within the fuel pool racks is 16.22 inches below the top of the rack. It is necessary to demonstrate that the accidental drop of an object will not violate the criticality requirements. The following equation can be used to determine the length of damage.

$$
\begin{array}{rl}
L=E_{i} & I(U)\left(A_{i}\right) \\
L & =\text { Length of Damage (in) } \\
E_{i} & =\text { Total Impact Energy of Falling Object (in-lb) } \\
U & =\text { Strain Energy for Unit Volume (in-lb/in }
\end{array}
$$

In order to solve for length of damage, the area of impact contact must first be calculated. The following equation can be used to determine the area of impact contact.

$$
\begin{aligned}
& A_{i}=(N)(I)(t) \\
& A_{i}=\text { Area of Impact Contact }\left(\text { in }^{2}\right) \\
& N=\text { Number of Plates in Impact Zone } \\
& I=\text { Contact Length per Plate }(\text { in }) \\
& t=\text { Plate Thickness }(\mathrm{in})
\end{aligned}
$$

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	107

Part A (Spent Fuel Pool Gate)

The number of plates within the impact zone is determined by dividing the width of the gate by the bundle spacing.
$(4.771 \mathrm{ft}) /(0.5208 \mathrm{ft})=9.16$ bundles are impacted
Therefore, the gate has the potential to impact a minimum of 9 plates. Using the minimum number of plates for calculation is conservative because this minimizes the area of support that resists the energy of the drop.
$A_{i}=(N)(I)(t)$
$A_{i}=(9)(4.75 \mathrm{in}).(0.075 \mathrm{in}$.
$\mathrm{A}_{\mathrm{i}}=3.206 \mathrm{in}^{2}$
It is conservatively assumed that the entire potential energy of the drop is transferred into the rack in one impact.
$L=E_{i} /(U)\left(A_{i}\right)$
$E_{i}=P E=12000 \mathrm{ft}-\mathrm{lb}=144000 \mathrm{in}-\mathrm{lb}$
(Section 10.1.1, pg. 27)
$\mathrm{L}=(144000 \mathrm{in}-\mathrm{lb}) /\left(19740 \mathrm{in}-\mathrm{lb} / \mathrm{in}^{3}\right)\left(3.206 \mathrm{in}^{2}\right)$
$\mathrm{L}=2.275$ in < 16.22 in to poison material

Part B (Alternate Lifting Beam)

The number of plates within the impact zone is determined by dividing the width and depth of the beam by the bundle spacing.
$(0.333 \mathrm{ft}) /(0.5208 \mathrm{ft})=0.6394$ bundles are impacted
$(0.5 \mathrm{ft}) /(0.5208 \mathrm{ft})=0.9601$ bundles are impacted
Therefore, the beam has the potential to impact a minimum of 1 plate. Using the minimum number of plates for calculation is conservative because this minimizes the area of support that resists the energy of the drop.

CALCULATION DETAILS

CALCULATION NO: G13.18.2.7-116
REVISION: 0
PAGE: 108

Note: A W6x12 beam will be used for the Alternate Lifting Beam. 4 " $\times 6^{\prime \prime} \times 1 / 2 "$ plates will be welded to each end of the beam. These plates will increase the surface area of the ends of the beam, reducing the damage to the fuel rack, if dropped. Four inches is used for the length of impact because this will be the smallest dimension of the plate that is attached to the beam.
$A_{i}=(N)(I)(t)$
$A_{i}=(1)(4 \mathrm{in}).(0.075 \mathrm{in}$.
$A_{i}=0.3 \mathrm{in}^{2}$
It is conservatively assumed that the entire potential energy of the drop is transferred into the rack in one impact.
$L=E_{i} /(U)\left(A_{i}\right)$
$E_{i}=P E=7800 \mathrm{ft}-\mathrm{lb}=93600 \mathrm{in}-\mathrm{lb}$
(Section 10.1.2, pg. 37)
$\mathrm{L}=(93600 \mathrm{in}-\mathrm{lb}) /\left(19740 \mathrm{in}-\mathrm{lb} / \mathrm{in}^{3}\right)\left(0.3 \mathrm{in}^{2}\right)$
$L=15.81$ in <16.22 in to poison material

Part C (Intermediate Lifting Beam)

The number of plates within the impact zone is determined by dividing the width and depth of the beam by the bundle spacing.
$(0.4167 \mathrm{ft}) /(0.5208 \mathrm{ft})=0.8001$ bundles are impacted
$(0.4167 \mathrm{ft}) /(0.5208 \mathrm{ft})=0.8001$ bundles are impacted
Therefore, the beam has the potential to impact a minimum of 1 plate. Using the minimum number of plates for calculation is conservative because this minimizes the area of support that resists the energy of the drop.

Note: A TS5x5x1/2 beam will be used for the Intermediate Lifting Beam. Plates will be welded to each end of the beam, per Ref II-2, pg. 6. These plates will increase the surface area of the ends of the beam, reducing the damage to the fuel rack, if dropped. Five inches is used for the length of impact because this will be the smallest dimension of the plate that is attached to the beam.
$A_{i}=(N)(I)(t)$
$A_{i}=(1)(5 \mathrm{in}).(0.075 \mathrm{in}$.
$A_{i}=0.375 \mathrm{in}^{2}$
It is conservatively assumed that the entire potential energy of the drop is transferred into the rack in one impact.
$L=E_{i} /(U)\left(A_{i}\right)$
$E_{i}=P E=5425 \mathrm{ft}-\mathrm{lb}=65100 \mathrm{in}-\mathrm{lb}$
(Section 10.1.3, pg. 45)
$\mathrm{L}=(65100 \mathrm{in}-\mathrm{lb}) /\left(19740 \mathrm{in}-\mathrm{lb} / \mathrm{in}^{3}\right)\left(0.375 \mathrm{in}^{2}\right)$
$L=8.794$ in <16.22 in to poison material

Case 2

The fuel racks are rated for an impact energy of $3800 \mathrm{ft}-\mathrm{lb}$. Case 2 will analyze the impact velocities of the dropped objects to determine if these impact energies are bounded per (Ref. II-10).

The rack strike velocity for each object determined in Section 10.2.3 are as follows:
Gate $15.550 \mathrm{ft} / \mathrm{s}$
Intermediate Beam $25.021 \mathrm{ft} / \mathrm{s}$
Alternate Beam $25.508 \mathrm{ft} / \mathrm{s}$

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	110

Part A (Spent Fuel Pool Gate)

$K=1 / 2(M)\left(V^{2}\right)$
(Ref. II-9, pg. 4)
Where:
K = Kinetic Energy
$\mathrm{M}=$ Mass
$\mathrm{V}=$ Velocity
$K=1 / 2(2000 \mathrm{lbs})(15.550 \mathrm{ft} / \mathrm{s})^{2}\left(1 / 32.174 \mathrm{ft} / \mathrm{s}^{2}\right)$
Note: The ($1 / 32.174 \mathrm{ft} / \mathrm{s}^{2}$) term in the equation above is needed to convert to the correct units.
$\mathrm{K}=7515.463 \mathrm{ft}-\mathrm{lb}$
Since the Spent Fuel Pool Gate has the minimum potential to impact 5 fuel bundles (conservatively assuming that the fuel rack is 50% full), we must divide this impact energy by 5.
$\mathrm{K}=(7515.463) /(5)=1503.093 \mathrm{ft}-\mathrm{lb}<3800 \mathrm{ft} \mathrm{lb}$ Therefore, OK.

Part B (Alternate Lifting Beam)

$K=1 / 2(M)\left(V^{2}\right)$
(Ref. II-9, pg. 4)
Where:
K = Kinetic Energy
$\mathrm{M}=$ Mass
$\mathrm{V}=$ Velocity
$K=1 / 2(200 \mathrm{lbs})(25.508 \mathrm{ft} / \mathrm{s})^{2}\left(1 / 32.174 \mathrm{ft} / \mathrm{s}^{2}\right)$
Note: The ($1 / 32.174 \mathrm{ft} / \mathrm{s}^{2}$) term in the equation above is needed to convert to the correct units.
$\mathrm{K}=2022.31 \mathrm{ft}-\mathrm{lb}<3800 \mathrm{ft}-\mathrm{lb}$ Therefore, OK.

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	111

Part C (Intermediate Lifting Beam)

$$
K=1 / 2(M)\left(V^{2}\right)
$$

(Ref. II-9, pg. 4)

Where:
$\mathrm{K}=$ Kinetic Energy
M = Mass
$\mathrm{V}=$ Velocity
$K=1 / 2(175 \mathrm{lbs})(25.021 \mathrm{ft} / \mathrm{s})^{2}\left(1 / 32.174 \mathrm{ft} / \mathrm{s}^{2}\right)$
Note: The ($1 / 32.174 \mathrm{ft} / \mathrm{s}^{2}$) term in the equation above is needed to convert to the correct units.
$\mathrm{K}=1702.599 \mathrm{ft}-\mathrm{lb}<3800 \mathrm{ft}-\mathrm{lb}$ Therefore, OK.

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	112

10.4 Impact of Gate Drop on Fuel Pool Cooling Piping

The only safe shutdown equipment with the potential to be affected by a Spent Fuel Pool Gate Movement load drop are the suction and return lines for the Spent Fuel Pool Cooling portion of the Fuel Pool Cooling and Cleanup System (SFC).

The Spent Fuel Cooling suction piping consists of two (2) 12" diameter lines located on the south wall of the Spent Fuel Pool. Each line penetrates horizontally into the pool at elevation 110 ' for approximately 16 inches then turns 90 degrees downward extending to nominal elevation 83' 6 " where the lines transition into a nominal 6 " diameter horizontal suction header located at elévation 83 '. (Ref. II.16, 18, 19, 20, 21, 22)

The Spent Fuel Cooling discharge piping consists of two (2) 12" diameter lines located on the north wall of the Spent Fuel Pool. Each line penetrates horizontally into the pool at elevation 110 ' for approximately 16 inches then turns 90 degrees downward extending to nominal elevation $72^{\prime} 0$ " where the lines transition into a nominal 6 " diameter horizontal distribution sparger located at elevation 71'6". (Ref. II.16, 18, 19, 20, 21, 22)

A general diagram of the piping layout is shown below. (Ref. II.11, 13, 16, 18, 19, 20, 21, 22)

Plan Elevation 113' Spent Fuel Pool Area

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	113

The pool gates have adequate length that they could potentially strike the cooling piping following an initial impact on the spent fuel storage racks, i.e. in the transition to Position 2 or 3 as described in Section 10.1.1. The piping could be struck as the top of the gate moves downward toward the storage racks. The highest potential location for the impact of each line is determined by:

1. Calculating the horizontal distance between the following locations using the formula $\mathrm{a}^{2}+$ $b^{2}=c^{2}$. Refer to the previous general diagram for the locations of Points A and B.

- Point A and line SFC-012-001-3.
- Point A and line SFC-012-014-3.
- Point B and line SFC-012-006-3.

2. Using the $a^{2}+b^{2}=c^{2}$ formula with the previously calculated horizontal distance and the 24.39' gate length, the vertical distance where the subject pipe will be struck by the top of the gate is determined. The vertical distance is added to the top elevation of the spent fuel storage racks of 84.86 ' to determine the elevation where the gate strikes the applicable line.
3. The elevation of the gate strike is compared to the minimum water level elevation. As long as any damage, such as distortion (denting), a crack or other opening, is below the elevation of the minimum water level, the cooling function can continue to be maintained as the flowpath via the line will still be intact.

Horizontal Distance

The triangles shown on the diagram below represent determination of the distance between Point A and line SFC-012-001-3 and the determination of the distance between Point B and line SFC-012-006-3. Determination of the distance for the remaining two lines is similar.

Distance Fuel Pool Cooling Piping Extends into Pool
SFC-012-001-3 = 1.302'
(Ref. II.18)
SFC-012-014-3 = 1.302'
SFC-012-006-3 = 1.5'
SFC-012-007-3 = 1.33'
(Ref. II.19)
(Ref. II.20)
(Ref. II.21)

Point A and line SFC-012-001-3. SFC-012-001-3 extends 1.302' into the pool. (Ref. II.18)
Distance from southeast pool corner to SFC-012-001-3 = 4.943'
North-South distance from Point A to line SFC-012-001-3 = 10.99' - 1.302'
Distance from Point A to SFC-012-001-3 $=\left[\left(4.943^{\prime}\right)^{2}+\left(10.99^{\prime}-1.302^{\prime}\right)^{2}\right]^{0.5}=10.88^{\prime}$
Point A and line SFC-012-014-3. SFC-012-014-3 extends 1.302' into the pool. (Ref. II.19)
Distance from southeast pool corner to SFC-012-014-3 $=9.693$ '
North-South distance from Point A to line SFC-012-001-3 = 10.99' - 1.302'
Distance from Point A to SFC-012-014-3 $=\left[\left(9.693^{\prime}\right)^{2}+\left(10.99^{\prime}-1.302^{\prime}\right)^{2}\right]^{0.5}=13.70^{\prime}$
Point B and line SFC-012-006-3. SFC-012-006-3 extends 1.5' into the pool. (Ref. II.20)
Distance from northeast pool corner to SFC-012-006-3 = 4.943'
North-South distance from Point B to line SFC-012-006-3 = 17.99' -1.5^{\prime}
Distance from Point B to SFC-012-006-3 $=\left[\left(4.943^{\prime}\right)^{2}+\left(17.99^{\prime}-1.5^{\prime}\right)^{2}\right]^{0.5}=\underline{17.21}$

Point B and line SFC-012-007-3. SFC-012-007-3 extends 1.33 ' into the pool. (Ref. II.21)
Distance from northeast pool corner to SFC-012-007-3 $=9.693^{\prime}$
North-South distance from Point B to line SFC-012-007-3 = 17.99' -1.33^{\prime}
Distance from Point B to SFC-012-007-3 $=\left[\left(9.693^{\prime}\right)^{2}+\left(17.99^{\prime}-1.33^{\prime}\right)^{2}\right]^{0.5}=\underline{19.27}$

Vertical Distance and Gate Strike Elevation

The diagram below represents the determination of the vertical height above the gate bottom elevation where the top of the gate will impact the subject pipe.

Horizontal distance between point A or B and subject pipe.

SFC-012-001-3
Horizontal distance $=10.88^{\prime}$
Gate length = 24.39'
Vertical distance $=\left[\left(24.39^{\prime}\right)^{2}-\left(10.88^{\prime}\right)^{2}\right]^{0.5}=21.83^{\prime}$
Gate strike elevation = Top of rack elevation + vertical distance
Gate strike elevation $=84.86+21.83=106.69$ ' elevation

SFC-012-014-3
Horizontal distance $=13.70^{\prime}$
Gate length $=24.39^{\prime}$
Vertical distance $=\left[\left(24.39^{\prime}\right)^{2}-\left(13.70^{\prime}\right)^{2}\right]^{0.5}=20.18^{\prime}$
Gate strike elevation = Top of rack elevation + vertical distance
Gate strike elevation $=84.86+20.18=105.04$ ' elevation

SFC-012-006-3
Horizontal distance $=17.21^{\prime}$
Gate length $=24.39$ '
Vertical distance $=\left[\left(24.39^{\prime}\right)^{2}-\left(17.21^{\prime}\right)^{2}\right]^{0.5}=17.28^{\prime}$
Gate strike elevation $=$ Top of rack elevation + vertical distance
Gate strike elevation $=84.86+17.28=102.14$ ' elevation

SFC-012-007-3
Horizontal distance $=19.27^{\prime}$
Gate length $=24.39^{\prime}$
Vertical distance $=\left[\left(24.39^{\prime}\right)^{2}-\left(19.27^{\prime}\right)^{2}\right]^{0.5}=14.95^{\prime}$
Gate strike elevation $=$ Top of rack elevation + vertical distance
Gate strike elevation $=84.86+14.95=99.81$ ' elevation
Minimum spent fuel pool water level elevation = 107.7' (previously determined in Section 10.2.1)

Results Summary

Line Number	Gate Strike Elevation	Minimum Pool Level Elevation
SFC-012-001-3	106.69^{\prime}	107.7^{\prime}
SFC-012-014-3	105.04^{\prime}	107.7^{\prime}
SFC-012-006-3	102.14^{\prime}	107.7^{\prime}
SFC-012-007-3	99.81^{\prime}	107.7^{\prime}

To assess the structural response of the piping due to the impact of the gate, the strike velocity is estimated using the methodology in Section 10.2.3. Because the gate has already struck the racks/fuel after dropping vertically, and is moving to Position 2 or 3 as indicated in Section 10.1.1, the dimensions representing length, width, and thickness with respect to the velocity equation have changed, as the area moving approximately perpendicular to the piping is the dimension of 24.390' and either the dimension of 4.771' (transition to Position 2) or the dimension of 0.396 ' (transition to Position 3). For the purposes of the velocity determination the gate width will be established as the 24.390' dimension and the gate dimension of 0.396' as the thickness.

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	117

The Top of Gate drop distance is determined as follows:
Top of Gate drop distance $=($ Gate length + top of rack elevation $)-$ Gate strike elevation
As the center of gravity of the gate is located at the halfway point of the gate length, the water drop distance of the center of gravity is determined as follows:

Water drop distance $=$ Top of gate drop distance $/ 2$
The piping is treated as a simply supported steel beam as indicated in Ref. II. 4 page 4-5 description 2. This is based upon the upper end of the pipe being fixed in position via the attachment to the liner embedment above the strike elevation and supported by a pipe support below the strike elevation as shown on Ref. II.18, 19, 20, $21,22$.

Determine Top of Gate Drop Distance:

Top of gate drop distance $=($ Gate length + top of rack elevation $)-$ Gate strike elevation
Gate length $=24.39^{\prime}$
Top of rack elevation $=84.86^{\prime}$
SFC-012-001-3 Gate Strike Elevation $=106.69^{\prime}$
SFC-012-001-3 Top of gate drop distance $=\left(24.39^{\prime}+84.86^{\prime}\right)-106.69^{\prime}=2.56^{\prime}$

Determine Water Drop Distance

As the center of gravity of the gate is located at the halfway point of the gate length, the water drop distance of the center of gravity is determined as follows:

Water drop distance $=$ Top of gate drop distance $/ 2$
SFC-012-001-3 Water drop distance $=2.56^{\prime} / 2=1.28^{\prime}$
The water drop distance for the balance of the lines is shown in the table below.

Line Number	Gate Strike Elevation	Water Drop Distance
SFC-012-001-3	106.69^{\prime}	1.28^{\prime}
SFC-012-014-3	105.04^{\prime}	2.105^{\prime}
SFC-012-006-3	102.14^{\prime}	3.555^{\prime}
SFC-012-007-3	99.81^{\prime}	4.72^{\prime}

CALCULATION DETAILS

REVISION: 0
PAGE: 118

The strike velocity is calculated using the methodology from Section 10.2.3. The Excel spread sheet for each line is shown on the following pages.
Gate Tip Onto Piping SFC-012-001-3
Gate Length L 4.771 ft
Gate Width, d 24.390 ft
Gate thickness 0.396 ft
Gate weight, W 2000.000 lb
Gate density
water density @ 160F$43.402 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water kinematic viscosity @ 160F $4.390 \mathrm{E}-06 \mathrm{sq} \mathrm{ft} / \mathrm{sec}$$60.994 \mathrm{lb} / \mathrm{cuft}$
water density/gate density 1.405
drop distance in air 0.000 ft
drop distance in water
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$1.280 ft
Reynolds no $=\left(\right.$ Vo ${ }^{*}$ d)/viscosity 0.000$0.000 \mathrm{ft} / \mathrm{s}$
Check L/d using gate length and width 0.196
Check L/D using gate width and thickness 61.591
Drag Coefficient CD
Ao = width * thickness 9.658
a = (water density * Drag Coeff * Ao)/ (2*W) 0.147
b = (water density * g)/ w 0.981
$\exp \left(-2^{*} \mathrm{a}^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water 0.686
bAo 9.476
2ax 0.377
Vo^2 0.000
g/a 218.432
bAo*[(1-2ax)]/2a^2 136.077
$\exp (-2 a x) *\left[\left(V o^{\wedge} 2-(g / a)-\left(b A o / 2^{*} a^{\wedge} 2\right)\right]\right.$ -299.644
Z1x 54.865
$\mathrm{Vs}=(\mathrm{Zx})^{\wedge} 0.5$ $7.407 \mathrm{ft} / \mathrm{s}$
Convert impact area to equivalent diameter1.596 in
mass $=$ weight/g$62.170 \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness0.133 inft2ftt

bft2

Gate Tip Onto Piping SFC-012-014-3
Gate Length L 4.771 ft
Gate Width, d 24.390 ft
Gate thickness 0.396 ft
Gate weight, W 2000.000 lb
Gate density
water density @ 160F
water kinematic viscosity @ 160F
water density/gate density43.402lb
$\mathrm{lb} / \mathrm{cu} \mathrm{ft}$
$60.994 \mathrm{lb} / \mathrm{cuft}$
drop distance in air$4.390 \mathrm{E}-06 \mathrm{sq} \mathrm{ft} / \mathrm{sec}$1.405
drop distance in water0.000 ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$2.105 ft
Reynolds no $=\left(\right.$ Vo $\left.{ }^{*} \mathrm{~d}\right) /$ viscosity 0.000
Check L/d using gate length and width 0.196
Check L/D using gate width and thickness 61.591
Drag Coefficient CD 1.000
Ao = width * thickness 9.658ft2
$a=($ water density * Drag Coeff * Ao)/ (2*W) 0.147
b = (water density * g)/W 0.981
$\exp \left(-2^{*} \mathrm{a}^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water 0.538
bAo 9.476
$2 a x$ 0.620
Vo^2 0.000
g/a 218.432
bAo*[(1-2ax)]/2a^2 82.997
$\exp (-2 a x) *\left[\left(V o^{\wedge} 2-(g / a)-\left(b A o / 2^{*} a^{\wedge} 2\right)\right]\right.$ -235.001
Z1x 66.428
$\mathrm{Vs}=(\mathrm{Zx})^{\wedge} 0.5$ $8.150 \mathrm{ft} / \mathrm{s}$
Convert impact area to equivalent diameter 1.596 in
mass = weight/g $62.170 \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness0.151 in
Gate Tip Onto Piping SFC-012-006-3
Gate Length L 4.771 ft
Gate Width, d 24.390 ft
Gate thickness 0.396 ft
Gate weight, W 2000.000 lb
Gate density
water density @ 160F
water kinematic viscosity @ 160F
water density/gate density$43.402 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$
60.994 $\mathrm{lb} / \mathrm{cuft}$
4.390E-06
drop distance in air1.4050.000
drop distance in water 3.555ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$ $0.000 \mathrm{ft} / \mathrm{s}$
Reynolds no =(Vo * d)/viscosity 0.000
Check L/d using gate length and width 0.196
Check L/D using gate width and thickness 61.591
Drag Coefficient CD 1.000
Ao = width * thickness9.658 ft 2
$\mathrm{a}=($ water density * Drag Coeff * Ao)/(2*W) 0.147
$\mathrm{b}=\left(\right.$ water density $\left.{ }^{*} \mathrm{~g}\right) / \mathrm{W}$ 0.981
$\exp \left(-2^{*} \mathrm{a}^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water 0.351
bAo 9.476
$2 a x$ 1.047
Vo^2 0.000
g/a 218.432
bAo*[(1-2ax)]/2a^2 -10.296
$\exp (-2 a x){ }^{*}[($ Vo^2-(g/a)-(bAo/2*a^2)] -153.314
Z1x 54.822
$V s=(Z x)^{\wedge} 0.5$ 7.404
ft / s
Convert impact area to equivalent diameter1.596 in
mass $=$ weight/g $62.170 \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$thickness0.133 in
Gate Tip Onto Piping SFC-012-007-3
Gate Length L 4.771 ft
Gate Width, d 24.390 ft
Gate thickness 0.396 ft
Gate weight, W 2000.000 lb
Gate density
water density @ 160F
water kinematic viscosity @ 160F
water density/gate density$43.402 \mathrm{lb} / \mathrm{cuft}$
$60.994 \mathrm{lb} / \mathrm{cuft}$
drop distance in air$4.390 \mathrm{E}-06 \mathrm{sq} \mathrm{ft} / \mathrm{sec}$1.405
drop distance in water0.000 ftVo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$Reynolds no $=\left(\right.$ Vo ${ }^{*}$ d)/viscosity$0.000 \mathrm{ft} / \mathrm{s}$
0.000
Check L/d using gate length and width Check L/d using gate length and width 0.196
Check L/D using gate width and thickness 61.591
Drag Coefficient CD 1.000
Ao = width * thickness 9.658 ft2
a = (water density * Drag Coeff * Ao)/ (2*W) 0.147
b = (water density * g)/W 0.981
$\exp \left(-2^{*} a^{*} x\right)$ where $x=$ drop distance in water 0.249
bAo 9.476
$2 a x$ 1.390
Vo^2 0.000
g/a 218.432
bAo*[(1-2ax)]/2a^2 -85.252
$\exp (-2 a x) *\left[\left(V o^{\wedge} 2-(g / a)-\left(b A o / 2^{*} a^{\wedge} 2\right)\right]\right.$ -108.780
Z1x 24.399
$V_{s}=(Z x)^{\wedge} 0.5$ $4.940 \mathrm{ft} / \mathrm{s}$
Convert impact area to equivalent diameter 1.596 in
mass $=$ weight $/ \mathrm{g}$ $62.170 \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness 0.078 in

CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	122

For the structural evaluation of the piping, the piping is treated as a simply supported steel beam as indicated in Ref. II. 4 page 4-5 description 2. This is based upon the upper end of the pipe being fixed in position via the attachment to the liner embedment above the strike elevation and supported by a pipe support below the strike elevation as shown on References II.16, 18, 19, 20, 21, and 22

Because the pipe has a round surface subject to impact rather than a flat surface subject to impact as in the case of the beam configuration, the contact length between the pipe and the gate is assumed to be $2^{\prime \prime}$ (Refer to Assumption 8.15).

Elevation of Fuel Pool Cooling Piping Connection to Liner Embed

SFC-012-001-3 $=110^{\prime} 0^{\prime \prime}$
SFC-012-014-3 = 110' $0^{\prime \prime}$
SFC-012-006-3 = 110' $0^{\prime \prime}$
SFC-012-007-3 = 110' $0^{\prime \prime}$
(Ref. II.18)
(Ref. II.19)
(Ref. II.20, II.22)
(Ref. II.21)
Elevation of First Support below Liner Embed Connection
SFC-012-001-3 = 86' $0^{\prime \prime}$
SFC-012-014-3 = 86' $0^{\prime \prime}$
SFC-012-006-3 = 92' $0^{\prime \prime}$
SFC-012-007-3 = 92' $0^{\prime \prime}$
Distance between supports:
SFC-012-001-3 $\quad 110^{\prime} 0^{\prime \prime}-86^{\prime} 0^{\prime \prime}=24^{\prime}$
SFC-012-014-3 $110^{\prime} 0^{\prime \prime}-86^{\prime} 0^{\prime \prime}=24^{\prime}$
SFC-012-006-3 $110^{\prime} 0^{\prime \prime}-92^{\prime} 0^{\prime \prime}=18^{\prime}$
SFC-012-007-3 $110^{\prime} 0^{\prime \prime}-92^{\prime} 0^{\prime \prime}=18^{\prime}$
(Ref. II.18)
(Ref. II.19)
(Ref. II.20, II.22)
(Ref. II.21)
(Ref. II. 18
(Ref. II.19)
(Ref. II.20, II.22)
(Ref. II.21)
REVISION: 0
PAGE: 123

Note: The following sections are performed for line SFC-012-001-3. These formulas have been included in an Excel spread sheet and the cases for the balance of the lines will be shown in the spread sheet format.

Determine Target Effective Mass

$M_{e}=\left(D_{x}+2 d\right){ }^{*} M_{x}$
Ref. II. 4 pg. 3-6
Where:
$\mathrm{M}_{\mathrm{e}}=$ Average effective mass of target during impact, lb
$M_{x}=$ Mass per unit length of steel beam
$D_{x}=$ Maximum missile contact dimension in the x direction, inches $d=$ depth of steel beam, inches

Pipe weight per unit length $=49.56 \mathrm{lb} / \mathrm{ft}$ of length
$d=$ Pipe Outer Diameter $=12.75^{\prime \prime}$
$D_{x}=2^{\prime \prime}$
$M_{e}=\left(D_{x}+2 d\right) * M_{x}$
$\mathrm{M}_{\mathrm{e}}=\left(2^{\prime \prime} / 12 \mathrm{in} / \mathrm{ft}+(2 * 12.75) / 12 \mathrm{in} / \mathrm{ft}\right) * 49.56 \mathrm{lb} / \mathrm{ft} / 32.174=3.53 \mathrm{lb}$

Determine the Strain Energy resulting from the impact
$E_{s}=\left(M_{m}^{2}{ }^{*} V_{s}^{2}\right) /\left[2^{*}\left(M_{m}+M_{e}\right)\right]$
Ref. II. 4 pg. 3-5
Where:
$E_{s}=$ strain energy, in-lb
$\mathrm{M}_{\mathrm{m}}=$ Mass of the missile, lb
$M_{e}=$ Effective mass of target during impact, lb
$V_{s}=$ Missile striking velocity, in/s
$\mathrm{M}_{\mathrm{m}}=$ Mass of the gate $=2000 \mathrm{lb} / 32.174=62.162 \mathrm{lb}$
$\mathrm{M}_{\mathrm{e}}=3.53 \mathrm{lb}$
$\mathrm{V}=7.407 \mathrm{ft} / \mathrm{s} * 12 \mathrm{in} / \mathrm{ft}=88.884 \mathrm{in} / \mathrm{s}$
$E_{s}=\left(M_{m}{ }^{2}{ }^{*} V_{s}^{2}\right) /\left[2^{*}\left(M_{m}+M_{e}\right)\right]$
$E_{s}=\left(62.162^{2} * 88.884^{2}\right) /\left[2^{*}(62.162+3.530)\right]=232,356.411 \mathrm{in}-\mathrm{lb}$

Determine the Plastic Resisting Force

$R_{m}=\left(\left.8^{*}\right|^{\star} f_{d y}\right) /\left(L^{*} d\right)$
Ref. II. 4 pg. E-3
Where:
$\mathrm{R}_{\mathrm{m}}=$ plastic resisting force, lb
I = moment of inertia, in ${ }^{4}$
$f_{d y}=$ allowable dynamic strength value $=($ DIF $) * f_{\text {stat }}$
DIF = dynamic increase factor = 1
$\mathrm{F}_{\text {stat }}=$ static strength (yield strength), psi
$L=$ Length of beam, inches
d = depth of steel beam, inches
$I=$ moment of inertia, $\mathrm{in}^{4}=279.3 \mathrm{in}^{4}$
(Ref. III.9, pg. B-17)
$F_{\text {stat }}=30 \mathrm{ksi}$
(Ref. III.13, pg. 76, 77)
$\mathrm{L}=24$ (convert to inches)
$\mathrm{d}=12.75^{\prime \prime}$
(Ref. III.9, pg. B-17)
$R_{m}=\left(\left.8^{*}\right|^{\star} f_{d y}\right) /\left(L^{*} d\right)$
$R_{m}=\left(8^{*} 279.3 \mathrm{in}^{4}\right.$ * $\left.30,000 \mathrm{psi}\right) /(24 \mathrm{ft} * 12 \mathrm{in} / \mathrm{ft} * 12.75 \mathrm{in})=18,254.902 \mathrm{lb}$

Determine the Yield Displacement

$x_{e}=R_{m} L^{3} / 48 E I$
Ref. II. 4 pg. 4-5
Where:
$x_{e}=$ yield displacement, in
$\mathrm{R}_{\mathrm{m}}=$ plastic resisting force, lb
$\mathrm{L}=$ Length of beam, inches
$\mathrm{E}=$ modulus of elasticity, $\mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{I}=$ moment of inertia, in ${ }^{4}$
Modulus of Elasticity, E, at 200 deg F for TP $304 \mathrm{SS}=27.7 \mathrm{E} 6 \mathrm{lb} / \mathrm{in}^{2} \quad$ (Ref. III.12, pg. 6-92)
$X_{e}=R_{m} L^{3} / 48 E I$
$x_{\mathrm{e}}=\left(18,254.902{ }^{*}\left(24^{\prime} * 12 \mathrm{in} / \mathrm{ft}\right)^{3}\right) /\left(48\right.$ *27.7 E6 lb/in $\left.{ }^{2} 279.3 \mathrm{in}^{4}\right)=1.174 \mathrm{in}$

Determine the Ductility Ratio
$\mu_{r}=\left[\left(E_{s} /\left(x_{e} * R_{m}\right)\right]+0.5\right.$
Ref. II. 4 pg. 3-8
Where:
$\mu_{\mathrm{r}}=$ required ductility ratio
$\mathrm{E}_{\mathrm{s}}=$ strain energy, in-lb
$\mathrm{R}_{\mathrm{m}}=$ plastic resisting force, lb
$X_{e}=$ yield displacement, in
$E_{s}=232,356.411 \mathrm{in}-\mathrm{lb}$
$\mathrm{R}_{\mathrm{m}}=18,254.902 \mathrm{lb}$
$\mathrm{x}_{\mathrm{e}}=1.174 \mathrm{in}$
$\mu_{\mathrm{r}}=\left[\left(\mathrm{E}_{\mathrm{s}} /\left(\mathrm{x}_{\mathrm{e}}{ }^{*} \mathrm{R}_{\mathrm{m}}\right)\right]+0.5\right.$
$\mu_{\mathrm{r}}=[(232,356.411 \mathrm{in}-\mathrm{lb} /(1.174 \mathrm{in} * 18,254.902 \mathrm{lb})]+0.5=11.342$
An Excel spread sheet has been developed reflecting these formulas and is shown below. As previously discussed, minor differences between the spread sheet values and those shown in the above hand calculation may occur. The spread sheet method is utilized for the balance of the lines.

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	126

Line SFC-012-001			
g	32.174	$\mathrm{ft} / \mathrm{s} 2$	
mass per length	49.560	$\mathrm{lb} / \mathrm{ft}$ length	
Dx $=2$ in	0.167	ft	
$\mathrm{d}=12.75$ in	1.063	ft	
($\mathrm{Dx}+2 \mathrm{~d}$)	2.292	ft	
$\mathrm{Me}=(\mathrm{Dx}+2 \mathrm{~d}) * \mathrm{Mx}$	3.530	lb	
Mm $=2000 / \mathrm{g}$	62.162	1 b	
Impact velocity	7.407	ft / s	
Vs	88.884	in / s	
$\mathrm{Es}=\mathrm{Mm}^{2}{ }^{*} \mathrm{Vs} 2 / 2(\mathrm{Mm}+\mathrm{Me})$	232356.302		
1	279.300	in4	
E	$2.770 \mathrm{E}+07$	$\mathrm{lb} / \mathrm{in} 2$	
fdy	30000.000	$\mathrm{lb} / \mathrm{in} 2$	
length, ft	24.000	ft	
L	288.000	in	
$\mathrm{Rm}=8^{*} \\|^{*} \mathrm{fdy} /\left(\mathrm{L}^{*} \mathrm{~d}\right)$	18254.902	lb	
$x e=R m L \wedge 3 / 48 \mathrm{El}$	1.174	in	
mu	11.340		

Line SFC-012-014
g $32.174 \mathrm{ft} / \mathrm{s} 2$
mass per length49.560 lb/ft length
$D x=2$ in0.167 ft$d=12.75$ in1.063 ft
(Dx+2d) 2.292 ft
$\mathrm{Me}=(\mathrm{Dx}+2 \mathrm{~d})^{*} \mathrm{Mx}$ 3.530 lb
$\mathrm{Mm}=2000 / \mathrm{g}$ 62.162 lb
Impact velocity $8.150 \mathrm{ft} / \mathrm{s}Vs97.800 \mathrm{in} / \mathrm{s}$
$\mathrm{Es}=\mathrm{Mm} 2^{*} \mathrm{~V}_{\mathrm{s}} 2 / 2(\mathrm{Mm}+\mathrm{Me})$ 281309.879
I 279.300 in4
Efdy
$2.770 \mathrm{E}+07 \mathrm{lb} / \mathrm{in} 2$
$30000.000 \mathrm{lb} / \mathrm{in} 2$length, ft24.000 ft
L 288.000 in
$R m=8^{*} \|^{*} f d y /\left(L^{*} d\right)$ 18254.902
$x e=\operatorname{RmL}$ ^3/48EI 1.174
mu 13.623
Line SFC-012-006
g 32.174 $\mathrm{ft} / \mathrm{s} 2$
mass per length$49.560 \mathrm{lb} / \mathrm{ft}$ length
$D x=2$ in 0.167 ft
$\mathrm{d}=12.75 \mathrm{in}$ 1.063 ft
($D x+2 d$) 2.292 ft
$M e=(D x+2 d)^{*} M x$ 3.530 lb
$\mathrm{Mm}=2000 / \mathrm{g}$ 62.162 lb
Impact velocity $7.404 \mathrm{ft} / \mathrm{s}$
Vs
$\mathrm{Es}=\mathrm{Mm} 2^{*} \mathrm{Vs} 2 / 2(\mathrm{Mm}+\mathrm{Me})$
$88.848 \mathrm{in} / \mathrm{s}$
232168.121
1
E
fdy
.300 in4
2.770E+07 lb/in2
length, ft
L
$R m=8^{*} I^{*} f d y /\left(L^{*} d\right)$
18.000 in
216.000 in
24339.869
$x e=\operatorname{RmL}$ ^3/48EI0.661
mu 14.941

Line SFC-012-007		
g	32.174	$\mathrm{ft} / \mathrm{s} 2$
mass per length	49.560	$\mathrm{lb} / \mathrm{ft}$ length
Dx $=2$ in	0.167	ft
$\mathrm{d}=12.75$ in	1.063	ft
($\mathrm{Dx}+2 \mathrm{~d}$)	2.292	ft
$\mathrm{Me}=(\mathrm{Dx}+2 \mathrm{~d})^{*} \mathrm{Mx}$	3.530	lb
Mm $=2000 / \mathrm{g}$	62.162	lb
Impact velocity	4.940	ft / s
Vs	59.280	in / s
Es $=\mathbf{M m 2}{ }^{*} \mathrm{Vs} 2 / 2(\mathrm{Mm}+\mathrm{Me})$	103353.137	
1	279.300	in4
E	$2.770 \mathrm{E}+07$	$\mathrm{lb} / \mathrm{in} 2$
fdy	30000.000	$\mathrm{lb} / \mathrm{in} 2$
length, ft	18.000	ft
L	216.000	in
$\mathrm{Rm}=8^{*}{ }^{*} \mathrm{fdy} /\left(\mathrm{L}^{*} \mathrm{~d}\right)$	24339.869	
$x e=R m L \wedge 3 / 48 \mathrm{EI}$	0.661	
mu	6.929	

Results Summary

Line Number	Yield Displacement	Ductility Ratio
SFC-012-001-3	$1.174^{\prime \prime}$	11.340
SFC-012-014-3	$1.174^{\prime \prime}$	13.623
SFC-012-006-3	$0.661^{\prime \prime}$	14.941
SFC-012-007-3	$0.661^{\prime \prime}$	6.929

The calculated ductility ratio is less than the maximum recommended ductility ratio of 20. Based on the above yield displacements and ductility ratio values, it is expected that the pipe will experience deformation, most likely in the form of a dent at the point of impact. A steel thickness determination was performed in conjunction with the determination of the strike velocity using an impact area of 2 square inches. The maximum calculated perforation thickness was $0.151^{\prime \prime}$. The thickness required to prevent perforation would then be $0.151^{\prime \prime}$ *1.25 $=0.189$ ". The pipe wall thickness is 0.375 ". On the basis of the above assessment, the Fuel Pool Cooling piping has adequate ductility to accommodate the impact of a fuel pool gate

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	130

transitioning from an initial drop onto the spent fuel or racks and will not be perforated as a result of the impact.

This information, in conjunction with the level of impact being below the minimum water level in the pool such that any damage to the piping will not affect the ability of the pool water to be transferred to or from the Spent Fuel Pool Cooling system. As a result, a load drop of the gates will not affect the safe shutdown function to maintain spent fuel pool cooling.

ATTACHMENT A RADTRAD Nuclide Input File RBS_fhaRev1a266.nif

```
Nuclide Inventory Name: RBS EHARev1.NIF
River Bend Fuel Handling Accident with AST
    Power Level:
        0.1000E+01
        Nuclides:
            6 0
    Nuclide 001:
    Co-58
        7
        0.6117120000E+07
        0.5800E+02
        0.0000E+00
    none 0.0000E+00
    none 0.0000E+00
    none 0.0000E+00
    Nuclide 002:
    Co-60
        7
            0.1663401096E+09
        0.6000E+02
        0.0000E+00
    none 0.0000E+00
    none 0.0000E+00
    none 0.0000E+00
    Nuclide 003:
    Kr-85
        1
        0.3382974720E+09
        0.8500E+02
        0.4217E+00
    none 0.0000E+00
    none 0.0000E+00
    none 0.0000E+00
    Nuclide 004:
    Kr-85m
        1
        0.1612800000E+05
        0.8500E+02
        0.4044E+01
    Kr-85 0.2100E+00
    none 0.0000E+00
    none 0.0000E+00
```

```
Nuclide 005:
Kr-87
    1
    0.4578000000E+04
    0.8700E+02
    0.7777E+01
Rb-87 0.1000E+01
none 0.0000E+00
none 0.0000E+00
Nuclide 006:
Kr-88
    l
    0.1022400000E+05
    0.8800E+02
    0.1089E+02
Rb-88 0.1000E+01
none 0.0000E+00
none 0.0000E+00
Nuclide 007:
Rb-86
    3
    0.1612224000E+07
    0.8600E+02
    0.0000E+00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 008:
Sr-89
    5
    0.4363200000E+07
    0.8900E+02
    0.0000E+00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 009:
Sr-90
    5
    0.9189573120E+09
    0.9000E+02
    0.0000E+00
Y-90 0.1000E+01
none 0.0000E+00
none 0.0000E+00
```


CALCULATION DETAILS

```
Nuclide 010:
Sr-91
    5
    0.3420000000E+05
    0.9100E+02
    0.0000E+00
Y-91m 0.5800E+00
Y-91 0.4200E+00
none 0.0000E+00
Nuclide 011:
Sr-92
    5
    0.9756000000E+04
    0.9200E+02
    0.0000E+00
Y-92 0.1000E+01
none 0.0000E+00
none 0.0000E+00
Nuclide 012:
Y-90
    9
    0.2304000000E+06
    0.9000E+02
    0.0000E+00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 013:
Y-91
    9
    0.5055264000E+07
    0.9100E+02
    0.0000E+00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 014:
Y-92
            9
        0.1274400000E+05
        0.9200E+02
        0.0000E+00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
```

REVISION: 0

```
Nuclide 015:
Y-93
    9
    0.3636000000E+05
    0.9300E+02
    0.0000E+00
Zr-93 0.1000E+01
none 0.0000E+00
none 0.0000E+00
Nuclide 016:
Zr-95
    9
    0.5527872000E+07
    0.9500E+02
    0.0000E+00
Nb-95m 0.7000E-02
Nb-95 0.9900E+00
none 0.0000E+00
Nuclide 017:
Zr-97
    9
    0.6084000000E+05
    0.9700E+02
    0.0000E+00
Nb-97m 0.9500E+00
Nb-97 0.5300E-01
none 0.0000E+00
Nuclide 018:
Nb-95
    9
    0.3036960000E+07
    0.9500E+02
    0.0000E+00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 019:
Mo-99
    7
    0.2376000000E+06
    0.9900E+02
    0.0000E+00
Tc-99m 0.8800E+00
Tc-99 0.1200E+00
none 0.0000E+00
```

```
Nuclide 020:
Tc-99m
    7
    0.2167200000E+05
    0.9900E+02
    0.0000E+00
TC-99 0.1000E+01
none 0.0000E+00
none 0.0000E+00
Nuclide 021:
Ru-103
        7
        0.3393792000E+07
        0.1030E+03
        0.0000E+00
Rh-103m 0.1000E+01
none 0.0000E+00
none 0.0000E+00
Nuclide 022:
Ru-105
    7
    0.1598400000E+05
    0.1050E+03
    0.0000E+00
Rh-105 0.1000E+01
none 0.0000E+00
none 0.0000E+00
Nuclide 023:
Ru-106
    7
    0.3181248000E+08
    0.1060E+03
    0.0000E+00
Rh-106 0.1000E+01
none 0.0000E+00
none 0.0000E+00
Nuclide 024:
Rh-105
    7
    0.1272960000E+06
    0.1050E+03
    0.0000E+00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
```

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	136

```
Nuclide 025:
Sb-127
    4
    0.3326400000E+06
    0.1270E+03
    0.0000E+00
Te-127m 0.1800E+00
Te-127 0.8200E+00
none 0.000'0E+00
Nuclide 026:
Sb-129
    4
    0.1555200000E+05
    0.1290E+03
    0.0000E+00
Te-129m 0.2200E+00
Te-129 0.7700E+00
none 0.0000E+00
Nuclide 027:
Te-127
    4
    0.3366000000E+05
    0.1270E+03
    0.0000E+00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 028:
Te-127m
    4
    0.9417600000E+07
    0.1270E+03
    0.0000E+00
Te-127 0.9800E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 029:
Te-129
    4
    0.4176000000E+04
    0.1290E+03
    0.0000E+00
I-129 0.1000E+01
none 0.0000E+00
none 0.0000E+00
```

```
Nuclide 030:
Te-129m
    4
    0.2903040000E+07
    0.1290E+03
    0.0000E+00
Te-129 0.6500E+00
I-129 0.3500E+00
none 0.0000E+00
Nuclide 031:
Te-131m
    4
    0.1080000000E+06
    0.1310E+03
    0.0000E+00
Te-131 0.2200E+00
I-131 0.7800E+00
none 0.0000E+00
Nuclide 032:
Te-132
    4
    0.2815200000E+06
    0.1320E+03
    0.0000E+00
I-132 0.1000E+01
none 0.0000E+00
none 0.0000E+00
Nuclide 033:
I-131
    2
    0.6946560000E+06
    0.1310E+03
    0.1244E-00
Xe-131m 0.1100E-01
none 0.0000E+00
none 0.0000E+00
Nuclide 034:
I-132
    2
    0.8280000000E+04
    0.1320E+03
    0.1129E-00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
```


CALCULATION DETAILS

```
Nuclide 035:
I-133
    2
    0.7488000000E+05
    0.1330E+03
    0.1590E-00
Xe-133m 0.2900E-01
Xe-133 0.9700E+00
none 0.0000E+00
Nuclide 036:
I-134
    2
    0.3156000000E+04
    0.1340E+03
    0.1745E-00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 037:
I-135
    2
    0.2379600000E+05
    0.1350E+03
    0.1489E-00
Xe-135m 0.1500E+00
Xe-135 0.8500E+00
none 0.0000E+00
Nuclide 038:
Xe-133
    1
    0.4531680000E+06
    0.1330E+03
    0.3030E+02
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 039:
Xe-135
    1
    0.3272400000E+05
    0.1350E+03
    0.1146E+02
Cs-135 0.1000E+01
none 0.0000E+00
none 0.0000E+00
```

```
Nuclide 040:
Cs-134
    3
    0.6507177120E+08
    0.1340E+03
    0.0000E+00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 041:
Cs-136
    3
    0.1131840000E+07
    0.1360E+03
    0.0000E+00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 042:
Cs-137
    3
    0.9467280000E+09
    0.1370E+03
    0.0000E+00
Ba-137m 0.9500E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 043:
Ba-139
    6
    0.4962000000E+04
    0.1390E+03
    0.0000E+00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 044:
Ba-140
    6
    0.1100736000E+07
    0.1400E+03
    0.0000E+00
La-140 0.1000E+01
none 0.0000E+00
none 0.0000E+00
```

```
Nuclide 045:
La-140
    9
    0.1449792000E+06
    0.1400E+03
    0.0000E+00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 046:
La-141
    9
    0.1414800000E+05
    0.1410E+03
    0.0000E+00
Ce-141 0.1000E+01
none 0.0000E+00
none 0.0000E+00
Nuclide 047:
La-142
    9
        0.5550000000E+04
        0.1420E+03
        0.0000E+00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 048:
Ce-141
    8
    0.2808086400E+07
    0.1410E+03
    0.0000E+00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 049:
Ce-143
    8
    0.1188000000E+06
    0.143.0E+03
    0.0000E+00
Pr-143 0.1000E+01
none 0.0000E+00
none 0.0000E+00
```

```
Nuclide 050:
Ce-144
    8
    0.2456352000E+08
    0.1440E+03
    0.0000E+00
Pr-144m 0.1800E-01
Pr-144 0.9800E+00
none 0.0000E+00
Nuclide 051:
Pr-143
    9
    0.1171584000E+07
    0.1430E+03
    0.0000E+00
none 0.0000E+00
none 0.0000E+00
none 0.0000E+00
Nuclide 052:
Nd-147
    9
    0.9486720000E+06
    0.1470E+03
    0.0000E+00
Pm-147 0.1000E+01
none 0.0000E+00
none 0.0000E+00
Nuclide 053:
Np-239
    8
    0.2034720000E+06
    0.2390E+03
    0.0000E+00
Pu-239 0.1000E+01
none 0.0000E+00
none 0.0000E+00
Nuclide 054:
Pu-238
    8
    0.2768863824E+10
    0.2380E+03
    0.0000E+00
U-234 0.1000E+01
none 0.0000E+00
none 0.0000E+00
```

```
Nuclide 055:
Pu-239
    8
    0.7594336440E+12
    0.2390E+03
    0.0000E+00
U-235 0.1000E+01
none 0.0000E+00
none 0.0000E+00
Nuclide 056:
Pu-240
    8
    0.2062920312E+12
    0.2400E+03
    0.0000E+00
U-236 0.1000E+01
none 0.0000E+00
none 0.0000E+00
Nuclide 057:
Pu-241
    8
    0.4544294400E+09
    0.2410E+03
    0.0000E+00
U-237 0.2400E-04
Am-241 0.1000E+01
none 0.0000E+00
Nuclide 058:
Am-241
    9
    0.1363919472E+11
    0.2410E+03
    0.0000E+00
Np-237 0.1000E+01
none 0.0000E+00
none 0.0000E+00
Nuclide 059:
Cm-242
    9
        0.1406592000E+08
        0.2420E+03
        0.0000E+00
Pu-238 0.1000E+01
none 0.0000E+00
none 0.0000E+00
```

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	143

```
Nuclide 060:
Cm-244
    9
    0.5715081360E+09
    0.2440E+03
    0.0000E+00
Pu-240 0.1000E+01
none 0.0000E+00
none 0.0000E+00
End of Nuclear Inventory File
```


ATTACHMENT B - RADTRAD Results File

```
#######################################################################
    RADTRAD Version 3.02 run on 8/11/2014 at 15:33:00
#######################################################################
#######################################################################
    File information
#######################################################################
Plant file name = C:\FHAMelissa266wd.psf
Inventory file name = C:\radtrad files\Radtrad files\FHA\Rbs_fhaRev1a266.nif
Scenario file name = C:\FHAMelissa266wd.psf
Release file name = c:\radtrad files\radtrad files\fha\rbs_fharev1.rft
Dose conversion file name = c:\program files\u s nuclear regulatory
commission\radtrad\defaults\fgr11&12.inp
```

\#\#\#\#\#	\#\#\#\#	\#\#\#\#\#	\#	\#		\#	\#\#\#\#\#	\#	\#	\#\#\#\#\#
\# \#	\#	\#	\#	\#\#		\#	\#	\#	\#	\#
\# \#	\#	\#	\#	\#	\#	\#	\# \#	\#	\#	\#
\#\#\#\#\#	\#\#\#\#	\#\#\#\#	\#	\#	\#	\#	\#\#\#\#\#	\#	\#	\#
\#	\#	\#	\#	\#	\#	\#	\#	\#	\#	\#
\#	*	\#	\#	\#		\#\#	\#	\#	\#	\#
\#	\#\#\#\#	\#	\#	\#		\#	\#			\#

Radtrad 3.02 1/5/2000
Eirst Time Through
Nuclide Inventory File:
$C: \backslash r a d t r a d$ files \backslash Radtrad files $\backslash F H A \backslash R b s _f h a R e v 1 a 266 . n i f$
Plant Power Level:
$3.1000 \mathrm{E}+03$
Compartments:
3
Compartment 1:
RBS Fuel Building
3
$7.4200 \mathrm{E}+05$
0
0
0
0
0

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	145

```
Compartment 2:
RBS Environment
    2
    0.0000E+00
        0
        0
        0
        0
        0
Compartment 3:
RBS Control Room
    I
    1.8800E+05
    0
    0
    1
    0
    0
Pathways:
    5
Pathway 1:
RBS Fuel Building to RBS Environment
    1
    2
    2
Pathway 2:
RBS Environment to RBS Control Room
    2
    3
    2
Pathway 3:
RBS Environment to RBS Control Room
    2
    3
    2
Pathway 4:
RBS Environment to RBS Control Room
    2
    3
    2
Pathway 5:
RBS Control Room to RBS Environment
    3
    2
    2
End of Plant Model File
```

```
Scenario Description Name:
Plant Model Filename:
Source Term:
    1
    1 1.0000E+00
c:\program files\u s nuclear regulatory commission\radtrad\defaults\fgr11&12.inp
c:\radtrad files\radtrad files\fha\rbs_fharev1.rft
    3.3600E+02
    1
    0.0000E+00 5.7000E-01 4.3000E-01 1.0000E+00
Overlying Pool:
    O
    0.0000E+00
    0
    0
    0
    0
Compartments:
    3
Compartment 1:
    1
    1
    0
    0
    0
    0
    0
    0
    0
Compartment 2:
    1
    1
    0
    0
    0
    0
    0
    0
    0
Compartment 3:
    1
    1
    0
    0
    0
    0
    1
    2.0000E+03
3
3.3600E+02 1.0000E+02 0.0000E+00 0.0000E+00
3.3602E+02 1.0000E+02 0.0000E+00 0.0000E+00
```


CALCULATION DETAILS

CALCULATION NO:	G13.18.2.7-116
REVISION:	0
PAGE:	147

```
    1.0560E+03
            0.0000E+00
                0.0000E+00
                                    0.0000E+00
    0
    0
Pathways:
    5
Pathway 1:
    0
    0
    0
    0
    0
    1
    2
    3.3600E+02 7.4200E+09
            1.0000E+02
            0.0000E+00
            0.0000E+00
    1.0560E+0
            0.0000E+00
                    0.0000E+00
                        0.0000E+00
                        0.0000E+00
    0
    0
    0
    0
    0
    0
Pathway 2:
    0
    0
    0
    0
    0
    I
    3
    3.3600E+02 1.7000E+03
    3.3602E+02 0.0000E+00
    1.0000E+02 1.0000E+02 1.0000E+02
    1.0560E+03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E +00
    0
    0
    0
    0
    0
    0
Pathway 3:
    0
    0
    0
    0
    0
    1
    3
    3.3600\textrm{E}+02
    1.0560E+03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E +00
    0
    0
    0
    0
```


CALCULATION DETAILS

CALCULATION NO: G13.18.2.7-116
REVISION: 0
PAGE: 148

```
    0
    0
Pathway 4:
    0
    0
    0
    0
    0
    1
    2
    3.3600E+02 3.0000E+02 1.0000E+02 0.0000E+00 0.0000E+00
    1.0560E+03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
    0
    0
    0
    0
    0
    0
Pathway 5:
    0
    0
    0
    0
    0
    1
    2
    3.3600E+02 2.0000E+03 1.0000E+02 0.0000E+00 0.0000E+00
    1.0560E+03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
    0
    0
    0
    0
    0
    0
Dose Locations:
    3
Location 1:
EAB
    2
    1
    2
    3.3600E+02 8.5800E-04
    1.0560E+03 0.0000E+00
    1
    4
    3.3600E+02 3.5000E-04
    3.4400E+02 1.8000E-04
    3.6000E+02 2.3000E-04
    1.0560E+03 0.0000E+00
    0
Location 2:
LPZ
    2
```

CALCULATION NO: G13.18.2.7-116
REVISION: 0
PAGE: 149

1
5
$3.3600 \mathrm{E}+021.1300 \mathrm{E}-04$
$3.4400 \mathrm{E}+02 \quad 7.8900 \mathrm{E}-05$
$3.6000 \mathrm{E}+02 \quad 3.6500 \mathrm{E}-05$
$4.3200 \mathrm{E}+02 \quad 1.2100 \mathrm{E}-05$
$1.0560 \mathrm{E}+03 \quad 0.0000 \mathrm{E}+00$
1
4
$3.3600 \mathrm{E}+02 \quad 3.5000 \mathrm{E}-04$
$3.4400 \mathrm{E}+02 \quad 1.8000 \mathrm{E}-04$
$3.6000 \mathrm{E}+02 \quad 2.3000 \mathrm{E}-04$
$1.0560 \mathrm{E}+03 \quad 0.0000 \mathrm{E}+00$
0
Location 3:
Control Room
3
0
1
2
$3.3600 \mathrm{E}+02 \quad 3.5000 \mathrm{E}-04$
$1.0560 \mathrm{E}+03 \quad 0.0000 \mathrm{E}+00$
1
4
$3.3600 \mathrm{E}+02 \quad 1.0000 \mathrm{E}+00$
$3.6000 \mathrm{E}+02 \quad 1.0000 \mathrm{E}+00$
$4.3200 \mathrm{E}+02 \quad 1.0000 \mathrm{E}+00$
$1.0560 \mathrm{E}+03 \quad 0.0000 \mathrm{E}+00$
Effective Volume Location:
1
6
$3.3600 \mathrm{E}+02 \quad 1.6200 \mathrm{E}-03$
$3.3633 \mathrm{E}+02 \quad 4.0500 \mathrm{E}-04$
$3.4400 \mathrm{E}+02 \quad 3.0000 \mathrm{E}-04$
$3.6000 \mathrm{E}+02 \quad 1.0100 \mathrm{E}-04$
$4.3200 \mathrm{E}+02 \quad 6.2000 \mathrm{E}-05$
$1.0560 \mathrm{E}+03 \quad 0.0000 \mathrm{E}+00$
Simulation Parameters:
1
$3.3600 \mathrm{E}+02 \quad 0.0000 \mathrm{E}+00$
Output Filename:
C: \FHAMelissa266wd.o0
1
1
1
1
1
End of Scenario File
\# RADTRAD Version 3.02 run on 8/11/2014 at 15:33:00
\#
\# Plant Description
\#

Number of Nuclides $=60$

Inventory Power $=1.0000 \mathrm{E}+00$ MWth
Plant Power Level $=3.1000 \mathrm{E}+03$ MWth
Number of compartments $=3$
Compartment information
Compartment number 1 (Source term fraction $=1.0000 \mathrm{E}+00$
)
Name: RBS Fuel Building
Compartment volume $=7.4200 \mathrm{E}+05$ (Cubic feet)
Pathways into and out of compartment 1
Pathway to compartment number 2: RBS Fuel Building to RBS Environment
Compartment number 2
Name: RBS Environment
Pathways into and out of compartment 2
Pathway to compartment number 3: RBS Environment to RBS Control Room Pathway to compartment number 3: RBS Environment to RBS Control Room Pathway to compartment number 3: RBS Environment to RBS Control Room Pathway from compartment number 1: RBS Fuel Building to RBS Environment Pathway from compartment number 3: RBS Control Room to RBS Environment

Compartment number 3
Name: RBS Control Room
Compartment volume $=1.8800 \mathrm{E}+05$ (Cubic feet)
Removal devices within compartment:
Filter(s)
Pathways into and out of compartment 3
Pathway to compartment number 2: RBS Control Room to RBS Environment Pathway from compartment number 2: RBS Environment to RBS Control Room Pathway from compartment number 2: RBS Environment to RBS Control Room Pathway from compartment number 2: RBS Environment to RBS Control Room

Total number of pathways $=5$

```
#######################################################################
    RADTRAD Version 3.02 run on 8/11/2014 at 15:33:00
#######################################################################
#######################################################################
    Scenario Description
#######################################################################
```

Time between shutdown and first release $=3.3600 \mathrm{E}+02$ (Hours)
Radioactive Decay is enabled
Calculation of Daughters is enabled
RELEASE_NAME $=$ BWR, NUREG-1465, Tables $3.11 \& 3.13$, Jun
Release Fractions and Timings
GAP EARLY IN-VESSEL
$2.0000 \mathrm{hrs} \quad 1.5000 \mathrm{hrs}$

NOBLES	$1.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
IODINE	$1.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
CESIUM	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
TELLURIUM	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
STRONTIUM	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
BARIUM	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
RUTHENIUM	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
CERIUM	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
LANTHANUM	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

Iodine fractions
Aerosol $=0.0000 \mathrm{E}+00$
Elemental $=5.7000 \mathrm{E}-01$
Organic $=4.3000 \mathrm{E}-01$
COMPARTMENT DATA

Compartment number 1: RBS Fuel Building
Compartment number 2: RBS Environment
Compartment number 3: RBS Control Room
Compartment Filter Data

Time (hr)	Flow Rate (cfm)	Filter Efficiencies (\%)		
$3.3600 \mathrm{E}+02$	$2.0000 \mathrm{E}+03$	$1.0000 \mathrm{E}+02$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$3.3602 \mathrm{E}+02$	$2.0000 \mathrm{E}+03$	$1.0000 \mathrm{E}+02$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$1.0560 \mathrm{E}+03$	$2.0000 \mathrm{E}+03$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

PATHWAY DATA
Pathway number 1: RBS Fuel Building to RBS Environment

REVISION: 0
PAGE: 152

Pathway Filter: Removal Data

Time (hr)	Flow Rate	Filter Efficiencies (\%)		
	(cfm)	Aerosol	Elemental	Organic
$3.3600 \mathrm{E}+02$	$7.4200 \mathrm{E}+09$	$1.0000 \mathrm{E}+02$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$1.0560 \mathrm{E}+03$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

Pathway number 2: RBS Environment to RBS Control Room
Pathway Filter: Removal Data

Time (hr)	Flow Rate	Filter Efficiencies (\%)		
	(cfm)	Aerosol	Elemental	Organic
$3.3600 \mathrm{E}+02$	$1.7000 \mathrm{E}+03$	$1.0000 \mathrm{E}+02$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$3.3602 \mathrm{E}+02$	$0.0000 \mathrm{E}+00$	$1.0000 \mathrm{E}+02$	$1.0000 \mathrm{E}+02$	$1.0000 \mathrm{E}+02$
$1.0560 \mathrm{E}+03$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

Pathway number 3: RBS Environment to RBS Control Room
Pathway Filter: Removal Data

Time (hr)	Flow Rate	Filter Efficiencies (\%)		
	(cfm)	Aerosol	Elemental	Organic
$3.3600 \mathrm{E}+02$	$0.0000 \mathrm{E}+00$	$1.0000 \mathrm{E}+02$	$1.0000 \mathrm{E}+02$	$1.0000 \mathrm{E}+02$
$3.3602 \mathrm{E}+02$	$1.7000 \mathrm{E}+03$	$1.0000 \mathrm{E}+02$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$1.0560 \mathrm{E}+03$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

Pathway number 4: RBS Environment to RBS Control Room
Pathway Filter: Removal Data

Time (hr)	Flow Rate	Filter Efficiencies (\%)		
	(cfm)	Aerosol	Elemental	Organic
$3.3600 \mathrm{E}+02$	$3.0000 \mathrm{E}+02$	$1.0000 \mathrm{E}+02$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$1.0560 \mathrm{E}+03$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

Pathway number 5: RBS Control Room to RBS Environment
Pathway Filter: Removal Data

'Time (hr)	Flow Rate (cfm)		$\begin{gathered} \text { Fil } \\ \text { sol } \end{gathered}$	Efficienc Elemental	(\%) Organic
$3.3600 \mathrm{E}+02$	$2.0000 \mathrm{E}+03$	1.000	+02	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$1.0560 \mathrm{E}+03$	$0.0000 \mathrm{E}+00$	0.000	+00	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
LOCATION DATA					
Location EAB	is in compartment		2		
Location X / Q					
Time (hr)	X/Q (s	$\left.m^{\wedge}-3\right)$			
$3.3600 \mathrm{E}+02$	8.58	E-04			
$1.0560 \mathrm{E}+03$	0.00	+00			

```
    Location Breathing Rate Data
    Time (hr) Breathing Rate (m^3 * sec^-1)
        3.3600E+02 3.5000E-04
        3.4400E+02 1.8000E-04
        3.6000E+02 2.3000E-04
        1.0560E+03 0.0000E+00
    Location LPZ is in compartment 2
    Location X/Q Data
    Time (hr) X/Q (s * m^-3)
        3.3600E+02 1.1300E-04
        3.4400E+02 7.8900E-05
        3.6000E+02 3.6500E-05
        4.3200E+02 1.2100E-05
        1.0560E+03 0.0000E+00
    Location Breathing Rate Data
        Time (hr) Breathing Rate (m^3 * sec^-1)
        3.3600E+02 3.5000E-04
        3.4400E+02 1.8000E-04
        3.6000E+02 2.3000E-04
        1.0560E+03 0.0000E+00
    Location Control Room is in compartment 3
    Location X/Q Data
        Time (hr) X/Q (s * m^-3)
        3.3600E+02 1.6200E-03
        3.3633E+02 4.0500E-04
        3.4400E+02 3.0000E-04
        3.6000E+02 1.0100E-04
        4.3200E+02 6.2000E-05
        1.0560E+03 0.0000E+00
    Location Breathing Rate Data
    Time (hr) Breathing Rate (m^3 * sec^-1)
        3.3600E+02 3.5000E-04
        1.0560E+03 0.0000E+00
    Location Occupancy Factor Data
    Time (hr) Occupancy Factor
        3.3600E+02 . 1.0000E+00
        3.6000E+02 1.0000E+00
        4.3200E+02 1.0000E+00
        1.0560E+03 0.0000E+00
USER
    SPECIFIED TIME STEP DATA - SUPPLEMENTAL TIME STEPS
    Time Time step
    0.0000E+00 . 0.0000E+00
```

	\#\#\#\#	\#	\#	\#\#\#\#\#	\#\#\#\#\#	\#	\#	\#\#\#\#\#
\#	\#	\#	\#	\#	\# \#	\#	\#	\#
\#	\#	\#	\#	\#	\# \#	\#	\#	\#
\#	\#	\#	\#	\#	\#\#\#\#\#	\#	\#	\#
\#	\#	\#	\#	\#	\#	\#	\#	\#
\#	\#	\#	\#	\#	\#	\#	\#	\#
	\#\#\#\#			\#	\#			\#

\# Dose, Detailed model and Detailed Inventory Output
 \#

Detailed model information at time (H) $=336.0200$
EAB Doses:

Time $(\mathrm{h})=336.0200$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$8.0357 \mathrm{E}-04$	$3.7421 \mathrm{E}-01$	$1.2196 \mathrm{E}-02$
Accumulated dose (rem)	$8.0357 \mathrm{E}-04$	$3.7421 \mathrm{E}-01$	$1.2196 \mathrm{E}-02$

LPZ Doses:

Time $(\mathrm{h})=336.0200$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$1.0583 \mathrm{E}-04$	$4.9284 \mathrm{E}-02$	$1.6063 \mathrm{E}-03$
Accumulated dose (rem)	$1.0583 \mathrm{E}-04$	$4.9284 \mathrm{E}-02$	$1.6063 \mathrm{E}-03$

Control Room Doses:

Time $(\mathrm{h})=336.0200$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$4.9747 \mathrm{E}-07$	$4.4823 \mathrm{E}-03$	$1.3696 \mathrm{E}-04$
Accumulated dose (rem)	$4.9747 \mathrm{E}-07$	$4.4823 \mathrm{E}-03$	$1.3696 \mathrm{E}-04$

RBS Fuel Building Compartment Nuclide Inventory:

Time $(\mathrm{h})=336.0200$	Ci	kg	Atoms	Bq
$\mathrm{Kr}-85$	$1.0868 \mathrm{E}-03$	$2.7701 \mathrm{E}-09$	$1.9626 \mathrm{E}+16$	$4.0212 \mathrm{E}+07$
$\mathrm{I}-131$	$9.6114 \mathrm{E}-05$	$7.7527 \mathrm{E}-13$	$3.5640 \mathrm{E}+12$	$3.5562 \mathrm{E}+06$
$\mathrm{I}-133$		$5.6298 \mathrm{E}-09$	$4.9698 \mathrm{E}-18$	$2.2503 \mathrm{E}+07$
$\mathrm{Xe}-133$		$1.2317 \mathrm{E}-02$	$6.5802 \mathrm{E}-11$	$2.9795 \mathrm{E}+14$
		$4.5572 \mathrm{E}+02$		

RBS Fuel Building Transport Group Inventory:

			Overlying
Time (h) $=336.0200$	Atmosphere	Sump	Pool
Noble gases (atoms)	$1.9924 \mathrm{E}+16$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$2.0316 \mathrm{E}+12$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$1.5326 \mathrm{E}+12$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
		Deposition Recirculating	
Time (h) $=336.0200$	Surfaces	Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Elemental I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Organic I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	

RBS Fuel Building to RBS Environment Transport Group Inventory:

	Pathway
Time (h) $=336.0200$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment Integral Nuclide Release:

Time $(\mathrm{h})=336.0200$	Ci	kg	Atoms	Bq	
$\mathrm{Kr}-85$		$1.3041 \mathrm{E}+01$	$3.3239 \mathrm{E}-05$	$2.3549 \mathrm{E}+20$	$4.8250 \mathrm{E}+11$
$\mathrm{I}-131$		$1.1533 \mathrm{E}+00$	$9.3026 \mathrm{E}-09$	$4.2765 \mathrm{E}+16$	$4.2672 \mathrm{E}+10$
$\mathrm{I}-133$		$6.7555 \mathrm{E}-05$	$5.9635 \mathrm{E}-14$	$2.7002 \mathrm{E}+11$	$2.4996 \mathrm{E}+06$
$\mathrm{Xe}-133$		$1.4779 \mathrm{E}+02$	$7.8957 \mathrm{E}-07$	$3.5751 \mathrm{E}+18$	$5.4683 \mathrm{E}+12$
$\mathrm{Xe}-135$		$2.7249 \mathrm{E}-09$	$1.0670 \mathrm{E}-18$	$4.7598 \mathrm{E}+06$	$1.0082 \mathrm{E}+02$

RBS Environment Transport Group Inventory:

Time $(\mathrm{h})=336.0200$	Release	Rate $/ \mathrm{s}$	Release
Noble gases (atoms)	$2.3907 \mathrm{E}+20$	$3.3204 \mathrm{E}+18$	$2.3244 \mathrm{E}+20$
Elemental I (atoms)	$2.4378 \mathrm{E}+16$	$3.3858 \mathrm{E}+14$	$2.3702 \mathrm{E}+16$
Organic I (atoms)	$1.8390 \mathrm{E}+16$	$2.5542 \mathrm{E}+14$	$1.7881 \mathrm{E}+16$
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

RBS Fuel Building to RBS Environment Transport Group Inventory:

Pathway

Time $(h)=336.0200$.
Filter
Noble gases (atoms) $0.0000 \mathrm{E}+00$
Elemental I (atoms) $0.0000 \mathrm{E}+00$
Organic I (atoms) $0.0000 \mathrm{E}+00$
Aerosols (kg) 0.0000E+00

CALCULATION DETAILS

CALCULATION NO: G13.18.2.7-116

REVISION: 0
PAGE: 156

RBS Environment to RBS Control Room Transport Group Inventory:

	Pathway
Time $(\mathrm{h})=336.0200$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

Time $(\mathrm{h})=336.0200$	Pathway
Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:
$\left.\begin{array}{lc}\text { Time (h) }=336.0200 & \text { Pathway } \\ \text { Filter }\end{array}\right\}$

RBS Control Room to RBS Environment Transport Group Inventory:

Time $(\mathrm{h})=336.0200$	Pathway
Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Control Room Compartment Nuclide Inventory:

Time (h) $=336.0200$	Ci	kg	Atoms	Bq
$\mathrm{Kr}-85$	$1.9814 \mathrm{E}-02$	5.0502E-08	$3.5780 \mathrm{E}+17$	$7.3311 \mathrm{E}+08$
I-131	$1.7523 \mathrm{E}-03$	$1.4134 \mathrm{E}-11$	$6.4976 \mathrm{E}+13$	$6.4835 \mathrm{E}+07$
I-133	$1.0264 \mathrm{E}-07$	$9.0606 \mathrm{E}-17$	$4.1026 \mathrm{E}+08$	$3.7977 \mathrm{E}+03$
Xe-133	2.2455E-01	$1.1997 \mathrm{E}-09$	$5.4319 \mathrm{E}+15$	$8.3085 \mathrm{E}+09$

RBS Control Room Transport Group Inventory:
Time (h) = 336.0200
Noble gases (atoms)
Elemental I (atoms)
Organic I (atoms)
Aerosols (kg)

Atmosphere	Sump	Overlying Pool
$3.6324 \mathrm{E}+17$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$3.7039 \mathrm{E}+13$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$2.7942 \mathrm{E}+13$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

Time (h) $=336.0200$	Deposition Recirculating	
Surfaces	Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

Time $(\mathrm{h})=336.0200$	Pathway
Filter	

RBS Environment to RBS Control Room Transport Group Inventory:

Time $(\mathrm{h})=336.0200$	Pathway
Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

Time (h) $=336.0200$	Pathway Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Control Room to RBS Environment Transport Group Inventory:

Time $(\mathrm{h})=336.0200$
Noble gases (atoms) $0.0000 \mathrm{E}+00$
Elemental I (atoms) $0.0000 \mathrm{E}+00$
Organic I (atoms) $0.0000 \mathrm{E}+00$
Aerosols (kg) $0.0000 \mathrm{E}+00$

CALCULATION DETAILS

```
Detailed model information at time (H) = 338.0000
```

EAB Doses:

Time (h) $=338.0000$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$7.9181 \mathrm{E}-02$	$3.6934 \mathrm{E}+01$	$1.2036 \mathrm{E}+00$
Accumulated dose (rem)	$7.9985 \mathrm{E}-02$	$3.7308 \mathrm{E}+01$	$1.2158 \mathrm{E}+00$

LPZ Doses:

| Time $(\mathrm{h})=338.0000$ | Whole Body | Thyroid | TEDE |
| :--- | :---: | :--- | :---: | :---: |
| Delta dose (rem) | $1.0428 \mathrm{E}-02$ | $4.8643 \mathrm{E}+00$ | $1.5852 \mathrm{E}-01$ |

Control Room Doses:

Time $(h)=338.0000$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$1.6832 \mathrm{E}-03$	$1.5193 \mathrm{E}+01$	$4.6425 \mathrm{E}-01$
Accumulated dose (rem)	$1.6837 \mathrm{E}-03$	$1.5198 \mathrm{E}+01$	$4.6438 \mathrm{E}-01$

RBS Fuel Building Compartment Nuclide Inventory:

Time $(\mathrm{h})=338.0000$	Ci	kg	Atoms	Bq
$\mathrm{Kr}-85$	$1.0868 \mathrm{E}-03$	$2.7700 \mathrm{E}-09$	$1.9625 \mathrm{E}+16$	$4.0211 \mathrm{E}+07$
$\mathrm{I}-131$	$9.5433 \mathrm{E}-05$	$7.6978 \mathrm{E}-13$	$3.5387 \mathrm{E}+12$	$3.5310 \mathrm{E}+06$
$\mathrm{I}-133$		$5.2704 \mathrm{E}-09$	$4.6525 \mathrm{E}-18$	$2.1066 \mathrm{E}+07$
$\mathrm{Xe}-133$		$1.2183 \mathrm{E}-02$	$6.5088 \mathrm{E}-11$	$2.9471 \mathrm{E}+14$
		$4.5078 \mathrm{E}+02$		

RBS Fuel Building Transport Group Inventory:

Time (h) = 338.0000	Atmosphere
Noble gases (atoms)	$1.9920 \mathrm{E}+16$
Elemental I (atoms)	$2.0177 \mathrm{E}+12$
Organic I (atoms)	$1.5221 \mathrm{E}+12$
Aerosols (kg)	$0.0000 \mathrm{E}+00$
Time (h) $=338.0000$	Deposition
Noble gases (atoms)	$0.0000 \mathrm{E}+00^{\circ}$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$
RBS Fuel Building to RBS Environme	
Time (h) $=338.0000$	Pathway
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

PAGE: 159

RBS Environment Integral Nuclide Release:

Time $(\mathrm{h})=338.0000$	Ci	kg	Atoms	Bq
$\mathrm{Kr}-85$	$1.3046 \mathrm{E}+03$	$3.3252 \mathrm{E}-03$	$2.3558 \mathrm{E}+22$	$4.8269 \mathrm{E}+13$
$\mathrm{I}-131$	$1.1495 \mathrm{E}+02$	$9.2720 \mathrm{E}-07$	$4.2624 \mathrm{E}+18$	$4.2531 \mathrm{E}+12$
$\mathrm{I}-133$		$6.5314 \mathrm{E}-03$	$5.7656 \mathrm{E}-12$	$2.6106 \mathrm{E}+13$
$\mathrm{Xe}-133$		$1.4702 \mathrm{E}+04$	$7.8542 \mathrm{E}-05$	$3.5563 \mathrm{E}+20$
$\mathrm{Xe}-135$	$2.5224 \mathrm{E}-07$	$9.8775 \mathrm{E}-17$	$4.4062 \mathrm{E}+08$	$9.3330 \mathrm{E}+14$

RBS Environment Transport Group Inventory:

	Present	Release	Total
Time $(\mathrm{h})=338.0000$	Release	Rate $/ \mathrm{s}$	Release
Noble gases (atoms)	$2.3914 \mathrm{E}+22$	$3.3214 \mathrm{E}+18$	$2.3908 \mathrm{E}+22$
Elemental I (atoms)	$2.4304 \mathrm{E}+18$	$3.3756 \mathrm{E}+14$	$2.4298 \mathrm{E}+18$
Organic I (atoms)	$1.8335 \mathrm{E}+18$	$2.5465 \mathrm{E}+14$	$1.8330 \mathrm{E}+18$
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

RBS Fuel Building to RBS Environment Transport Group Inventory:

	Pathway
Time (h) $=338.0000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:
\(\left.\begin{array}{lc}Time(\mathrm{h})=338.0000 \& Pathway

Filter\end{array}\right]\)| Noble gases (atoms) | $0.0000 \mathrm{E}+00$ |
| :--- | :--- |
| Elemental I (atoms) | $0.0000 \mathrm{E}+00$ |
| Organic I (atoms) | $0.0000 \mathrm{E}+00$ |
| Aerosols (kg) | $0.0000 \mathrm{E}+00$ |

RBS Environment to RBS Control Room Transport Group Inventory:

Time (h) $=338.0000$
Noble gases (atoms)
Pathway
Filter
$0.0000 \mathrm{E}+00$
Elemental I (atoms) 0.0000E+00
Organic I (atoms) $0.0000 \mathrm{E}+00$
Aerosols (kg) 0.0000E+00

RBS Environment to RBS Control Room Transport Group Inventory:

	Pathway
Time (h) $=338.0000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Control Room to RBS Environment Transport Group Inventory:

Time (h) $=338.0000$	Pathway
Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Control Room Compartment Nuclide Inventory:

Time $(\mathrm{h})=338.0000$	Ci	kg	Atoms	Bq
$\mathrm{Kr}-85$	$3.8219 \mathrm{E}-01$	$9.7413 \mathrm{E}-07$	$6.9016 \mathrm{E}+18$	$1.4141 \mathrm{E}+10$
$\mathrm{I}-131$	$3.3561 \mathrm{E}-02$	$2.7071 \mathrm{E}-10$	$1.2444 \mathrm{E}+15$	$1.2417 \mathrm{E}+09$
$\mathrm{I}-133$		$1.8534 \mathrm{E}-06$	$1.6361 \mathrm{E}-15$	$7.4082 \mathrm{E}+09$
$\mathrm{Xe}-133$	$4.2845 \mathrm{E}+00$	$2.2889 \mathrm{E}-08$	$1.0364 \mathrm{E}+17$	$1.5853 \mathrm{E}+04$
$\mathrm{Xe}-135$	$6.8663 \mathrm{E}-11$	$2.6887 \mathrm{E}-20$	$1.1994 \mathrm{E}+05$	$2.5405 \mathrm{E}+00$

RBS Control Room Transport Group Inventory:

Time (h) $=338.0000$	Atmosphere	Sump	Overlying Pool
Noble gases (atoms)	$7.0059 \mathrm{E}+18$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$7.1216 \mathrm{E}+14$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$5.3724 \mathrm{E}+14$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Time (h) $=338.0000$	Deposition Surfaces	Recirculating Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Elemental I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Organic I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	

RBS Environment to RBS Control Room Transport Group Inventory:

Time (h) $=338.0000$
Noble gases (atoms) Elemental I (atoms) Organic I (atoms) Aerosols (kg)

RBS Environment to RBS Control Room Transport Group Inventory:

Time $(\mathrm{h})=338.0000$	Pathway
Filter	
Noble gases (atoms.)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

Time $(\mathrm{h})=338.0000$	Pathway
Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Control Room to RBS Environment Transport Group Inventory:

Time (h) $=338.0000$	Pathway
Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

Detailed model information at time $(H)=339.5000$
EAB Doses:

Time $(\mathrm{h})=339.5000$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$1.4381 \mathrm{E}-05$	$6.7268 \mathrm{E}-03$	$2.1918 \mathrm{E}-04$
Accumulated dose (rem)	$7.9999 \mathrm{E}-02$	$3.7315 \mathrm{E}+01$	$1.2161 \mathrm{E}+00$

LPZ Doses:

Time $(\mathrm{h})=339.5000$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$1.8940 \mathrm{E}-06$	$8.8593 \mathrm{E}-04$	$2.8866 \mathrm{E}-05$
Accumulated dose (rem)	$1.0536 \mathrm{E}-02$	$4.9144 \mathrm{E}+00$	$1.6016 \mathrm{E}-01$

Control Room Doses:

Time $(\mathrm{h})=339.5000$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$9.1384 \mathrm{E}-04$	$8.2707 \mathrm{E}+00$	$2.5272 \mathrm{E}-01$
Accumulated dose (rem)	$2.5975 \mathrm{E}-03$	$2.3468 \mathrm{E}+01$	$7.1710 \mathrm{E}-01$

RBS Fuel Building Compartment Nuclide Inventory:
Time (h) = 339.5000 \quad Ci \quad kg \quad Atoms

RBS Fuel Building Transport Group Inventory:

			Overlying Pool
Noble gases (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
	Deposition	Recirculat	
Time (h) $=339.5000$	Surfaces	Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Elemental I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Organic I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	

RBS Fuel Building to RBS Environment Transport Group Inventory:

Time $(\mathrm{h})=339.5000$	Pathway
Filter	

RBS Environment Integral Nuclide Release:

Time $(\mathrm{h})=339.5000$	Ci	kg	Atoms	Bq
$\mathrm{Kr}-85$	$1.3048 \mathrm{E}+03$	$3.3258 \mathrm{E}-03$	$2.3563 \mathrm{E}+22$	$4.8278 \mathrm{E}+13$
$\mathrm{I}-131$	$1.1497 \mathrm{E}+02$	$9.2737 \mathrm{E}-07$	$4.2632 \mathrm{E}+18$	$4.2539 \mathrm{E}+12$
$\mathrm{I}-133$		$6.5325 \mathrm{E}-03$	$5.7666 \mathrm{E}-12$	$2.6111 \mathrm{E}+13$
$\mathrm{Xe}-133$		$1.4704 \mathrm{E}+04$	$7.8556 \mathrm{E}-05$	$3.5570 \mathrm{E}+20$
$\mathrm{Xe}-135$	$2.5228 \mathrm{E}-07$	$9.8790 \mathrm{E}-17$	$4.4069 \mathrm{E}+08$	$9.3345 \mathrm{E}+08$

RBS Environment Transport Group Inventory:

Time (h) $=339.5000$
Noble gases (atoms)
Elemental I (atoms)
Organic I (atoms)
Aerosols (kg)

Present
Release
$2.3919 \mathrm{E}+221.8983 \mathrm{E}+18$
$2.4309 \mathrm{E}+18 \quad 1.9293 \mathrm{E}+14$
$1.8338 \mathrm{E}+18 \quad 1.4554 \mathrm{E}+14$
$0.0000 \mathrm{E}+00 \quad 0.0000 \mathrm{E}+00$

Total
Release
$2.3912 \mathrm{E}+22$
$2.4302 \mathrm{E}+18$
$1.8333 \mathrm{E}+18$
$0.0000 \mathrm{E}+00$

RBS Fuel Building to RBS Environment Transport Group Inventory:
Pathway
Time (h) = 339.5000 Filter
Noble gases (atoms) $0.0000 \mathrm{E}+00$
Elemental I (atoms) $0.0000 \mathrm{E}+00$
Organic I (atoms) $0.0000 \mathrm{E}+00$
Aerosols (kg) $0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

Time (h) $=339.5000$	Pathway Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

	Pathway
Time (h) $=339.5000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

	Pathway
Time (h) $=339.5000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Control Room to RBS Environment Transport Group Inventory:

	Pathway
Time (h) $=339.5000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Control Room Compartment Nuclide Inventory:

Time $(\mathrm{h})=339.5000$	Ci	kg	Atoms	Bq
$\mathrm{Kr}-85$	$1.4676 \mathrm{E}-01$	$3.7407 \mathrm{E}-07$	$2.6503 \mathrm{E}+18$	$5.4302 \mathrm{E}+09$
$\mathrm{I}-131$		$1.2818 \mathrm{E}-02$	$1.0340 \mathrm{E}-10$	$4.7532 \mathrm{E}+14$
$\mathrm{I}-133$		$6.7703 \mathrm{E}-07$	$5.9766 \mathrm{E}-16$	$2.7061 \mathrm{E}+09$
$\mathrm{Xe}-133$		$1.6318 \mathrm{E}+00$	$8.7175 \mathrm{E}-09$	$3.9472 \mathrm{E}+16$

RBS Control Room Transport Group Inventory:

Time (h) $=339.5000$
Noble gases (atoms) Elemental I (atoms) Organic I (atoms) Aerosols (kg)

Atmosphere
$2.6904 \mathrm{E}+18$
$2.7348 \mathrm{E}+14$
$2.0631 \mathrm{E}+14$
$0.0000 \mathrm{E}+00$

Overlying
Pool
$0.0000 \mathrm{E}+00$
$0.0000 \mathrm{E}+00$
$0.0000 \mathrm{E}+00$
$0.0000 \mathrm{E}+00$
$0.0000 \mathrm{E}+00$
$0.0000 E+00$
$0.0000 \mathrm{E}+00$

CALCULATION DETAILS

\(\left.\begin{array}{lcc}Time (\mathrm{h})=339.5000 \& \begin{array}{c}Deposition Recirculating

Surfaces\end{array} \& Filter\end{array}\right]\)| Noble gases (atoms) |
| :--- |
| Elemental I (atoms) |
| Organic I (atoms) |
| Aerosols (kg) |
| RBS Environment to RBS Control Room Transport Group Inventory: |

	Pathway
Time (h) $=339.5000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

Time $(\mathrm{h})=339.5000$	Pathway
Filter	

RBS Environment to RBS Control Room Transport Group Inventory:

Time $(\mathrm{h})=339.5000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Control Room to RBS Environment Transport Group Inventory:

Time $(\mathrm{h})=339.5000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

REVISION: 0
PAGE: 165

Detailed model information at time $(H)=344.0000$
EAB Doses:

Time $(\mathrm{h})=344.0000$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$8.3225 \mathrm{E}-06$	$3.9074 \mathrm{E}-03$	$1.2728 \mathrm{E}-04$
Accumulated dose (rem)	$8.0008 \mathrm{E}-02$	$3.7319 \mathrm{E}+01$	$1.2162 \mathrm{E}+00$

LPZ Doses:

Time $(\mathrm{h})=344.0000$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$1.0961 \mathrm{E}-06$	$5.1461 \mathrm{E}-04$	$1.6763 \mathrm{E}-05$
Accumulated dose (rem)	$1.0537 \mathrm{E}-02$	$4.9150 \mathrm{E}+00$	$1.6017 \mathrm{E}-01$

Control Room Doses:

Time $(\mathrm{h})=344.0000$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$5.3130 \mathrm{E}-04$	$4.8264 \mathrm{E}+00$	$1.4747 \mathrm{E}-01$
Accumulated dose (rem)	$3.1288 \mathrm{E}-03$	$2.8295 \mathrm{E}+01$	$8.6457 \mathrm{E}-01$

RBS Fuel Building Compartment Nuclide Inventory:
Time (h) $=344.0000 \mathrm{Ci} \quad$ Atoms $\quad \mathrm{kq}$

RBS Fuel Building Transport Group Inventory:

CALCULATION DETAILS

RBS Environment Integral Nuclide Release:

Time $(\mathrm{h})=344.0000$	Ci	kg	Atoms	Bq	
$\mathrm{Kr}-85$	$1.3050 \mathrm{E}+03$	$3.3261 \mathrm{E}-03$	$2.3565 \mathrm{E}+22$	$4.8283 \mathrm{E}+13$	
$\mathrm{I}-131$		$1.1498 \mathrm{E}+02$	$9.2747 \mathrm{E}-07$	$4.2636 \mathrm{E}+18$	$4.2543 \mathrm{E}+12$
$\mathrm{I}-133$		$6.5331 \mathrm{E}-03$	$5.7672 \mathrm{E}-12$	$2.6113 \mathrm{E}+13$	$2.4173 \mathrm{E}+08$
$\mathrm{Xe}-133$		$1.4706 \mathrm{E}+04$	$7.8564 \mathrm{E}-05$	$3.5573 \mathrm{E}+20$	$5.4412 \mathrm{E}+14$
$\mathrm{Xe}-135$		$2.5230 \mathrm{E}-07$	$9.8798 \mathrm{E}-17$	$4.4072 \mathrm{E}+08$	$9.3352 \mathrm{E}+03$

RBS Environment Transport Group Inventory:

	Present	Release	Total
Time $(\mathrm{h})=344.0000$	Release	Rate $/ \mathrm{s}$	Release
Noble gases (atoms)	$2.3921 \mathrm{E}+22$	$8.3059 \mathrm{E}+17$	$2.3914 \mathrm{E}+22$
Elemental I (atoms)	$2.4311 \mathrm{E}+18$	$8.4415 \mathrm{E}+13$	$2.4305 \mathrm{E}+18$
Organic I (atoms)	$1.8340 \mathrm{E}+18$	$6.3681 \mathrm{E}+13$	$1.8335 \mathrm{E}+18$
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

RBS Fuel Building to RBS Environment Transport Group Inventory:
Pathway
Time (h) $=344.0000 \quad$ Filter
Noble gases (atoms) 0.0000E+00
Elemental I (atoms) $0.0000 \mathrm{E}+00$
Organic I (atoms) 0.0000E+00
Aerosols (kg) 0.0000E+00

RBS Environment to RBS Control Room Transport Group Inventory:

Time $(\mathrm{h})=344.0000$	Pathway
Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

Time $(\mathrm{h})=344.0000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

Time (h) $=344.0000$	Pathway Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Control Room to RBS Environment Transport Group Inventory:

Time $(\mathrm{h})=344.0000$	Pathway
Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Control Room Compartment Nuclide Inventory:

Time $(\mathrm{h})=344.0000$	Ci	kg	Atoms	Bq
$\mathrm{Kr}-85$	$8.3107 \mathrm{E}-03$	$2.1183 \mathrm{E}-08$	$1.5008 \mathrm{E}+17$	$3.0749 \mathrm{E}+08$
$\mathrm{I}-131$	$7.1425 \mathrm{E}-04$	$5.7613 \mathrm{E}-12$	$2.6485 \mathrm{E}+13$	$2.6427 \mathrm{E}+07$
$\mathrm{I}-133$		$3.3000 \mathrm{E}-08$	$2.9131 \mathrm{E}-17$	$1.3190 \mathrm{E}+08$
$\mathrm{Xe}-133$		$9.0143 \mathrm{E}-02$	$4.8158 \mathrm{E}-10$	$2.1805 \mathrm{E}+15$

RBS Control Room Transport Group Inventory:

		Overlying	
Time (h) $=344.0000$	Atmosphere	Sump	Pool
Noble gases (atoms)	$1.5235 \mathrm{E}+17$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$1.5487 \mathrm{E}+13$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$1.1683 \mathrm{E}+13$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
		Deposition Recirculating	
Time (h) = 344.0000	Surfaces	Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Elemental I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Organic I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	

Time (h) $=344.0000$	Pathway
Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

CALCULATION DETAILS

RBS Environment to RBS Control Room Transport Group Inventory:

	Pathway
Time (h$)=344.0000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$
RBS Environment to RBS Control Room Transport Group Inventory:	
Time (h) $=344.0000$	Pathway
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$
RBS Control Room to RBS Environment Transport Group Inventory:	
Time (h) $=344.0000$	Pathway
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$
Detailed model information at time (H) = 360.0000	
EAB Doses:	

Time $(\mathrm{h})=360.0000$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$4.8707 \mathrm{E}-07$	$1.1857 \mathrm{E}-04$	$4.0970 \mathrm{E}-06$
Accumulated dose (rem)	$8.0008 \mathrm{E}-02$	$3.7319 \mathrm{E}+01$	$1.2162 \mathrm{E}+00$

LPZ Doses:

Time $(\mathrm{h})=360.0000$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$4.4790 \mathrm{E}-08$	$1.0903 \mathrm{E}-05$	$3.7675 \mathrm{E}-07$
Accumulated dose (rem)	$1.0537 \mathrm{E}-02$	$4.9150 \mathrm{E}+00$	$1.6017 \mathrm{E}-01$

Control Room Doses:

Time $(\mathrm{h})=360.0000$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$3.1138 \mathrm{E}-05$	$2.8518 \mathrm{E}-01$	$8.7135 \mathrm{E}-03$
Accumulated dose (rem)	$3.1599 \mathrm{E}-03$	$2.8580 \mathrm{E}+01$	$8.7328 \mathrm{E}-01$

RBS Fuel Building Compartment Nuclide Inventory:
Time (h) $=360.0000 \mathrm{Ci} \quad$ Atoms $\quad \mathrm{Bq}$

RBS Fuel Building Transport Group Inventory:

			Overlying
Time (h) $=360.0000$	Atmosphere	Sump	Pool
Noble gases (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
		Deposition Recirculating	
Time (h) = 360.0000	Surfaces	Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Elemental I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Organic I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	

RBS Fuel Building to RBS Environment Transport Group Inventory:

Time $(\mathrm{h})=360.0000$	Pathway
Filter	

RBS Environment Integral Nuclide Release:

Time $(\mathrm{h})=360.0000$	Ci	kg	Atoms	Bq
$\mathrm{Kr}-85$	$1.3050 \mathrm{E}+03$	$3.3261 \mathrm{E}-03$	$2.3565 \mathrm{E}+22$	$4.8284 \mathrm{E}+13$
$\mathrm{I}-131$	$1.1498 \mathrm{E}+02$	$9.2747 \mathrm{E}-07$	$4.2636 \mathrm{E}+18$	$4.2544 \mathrm{E}+12$
$\mathrm{I}-133$		$6.5331 \mathrm{E}-03$	$5.7672 \mathrm{E}-12$	$2.6113 \mathrm{E}+13$
$\mathrm{Xe}-133$		$1.4706 \mathrm{E}+04$	$7.8565 \mathrm{E}-05$	$3.5574 \mathrm{E}+20$
$\mathrm{Xe}-135$	$2.5230 \mathrm{E}-07$	$9.8799 \mathrm{E}-17$	$4.4072 \mathrm{E}+08$	$9.3353 \mathrm{E}+14$

RBS Environment Transport Group Inventory:
Time $(\mathrm{h})=360.0000$
Noble gases (atoms)
Elemental I (atoms)
Organic I (atoms)
Aerosols (kg)

Present	Release	Total
Release	Rate/s	Release
$2.3921 \mathrm{E}+22$	$2.7687 \mathrm{E}+17$	$2.3915 \mathrm{E}+22$
$2.4312 \mathrm{E}+18$	$2.8138 \mathrm{E}+13$	$2.4305 \mathrm{E}+18$
$1.8340 \mathrm{E}+18$	$2.1227 \mathrm{E}+13$	$1.8335 \mathrm{E}+18$
$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

RBS Fuel. Building to RBS Environment Transport Group Inventory:

Time $(\mathrm{h})=360.0000$	Pathway
Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

	Pathway
Time (h) $=360.0000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

	Pathway
Time (h) $=360.0000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$
RBS Environment to RBS Control Room Transport Group Inventory:	

	Pathway
Time (h) $=360.0000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Control Room to RBS Environment Transport Group Inventory:

Pathway

Time $(\mathrm{h})=360.0000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Control Room Compartment Nuclide Inventory:

Time $(\mathrm{h})=360.0000$	Ci	kg	Atoms	Bq
$\mathrm{Kr}-85$	$3.0584 \mathrm{E}-07$	$7.7954 \mathrm{E}-13$	$5.5229 \mathrm{E}+12$	$1.1316 \mathrm{E}+04$
$\mathrm{I}-131$	$2.4820 \mathrm{E}-08$	$2.0020 \mathrm{E}-16$	$9.2033 \mathrm{E}+08$	$9.1833 \mathrm{E}+02$
$\mathrm{Xe}-133$		$3.0379 \mathrm{E}-06$	$1.6230 \mathrm{E}-14$	$7.3487 \mathrm{E}+10$

RBS Control Room Transport Group Inventory:
Time $(\mathrm{h})=360.0000$
Noble gases (atoms)
Elemental I (atoms)
Organic I (atoms)
Aerosols (kg)

Atmosphere	Sump	Overlying Pool
$5.6073 \mathrm{E}+12$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$5.6999 \mathrm{E}+08$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$4.2999 \mathrm{E}+08$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

| Time (h) $=360.0000$ | Deposition Recirculating |
| :--- | :---: | :---: |
| Surfaces | Filter |

RBS Environment to RBS Control Room Transport Group Inventory:

Time (h) $=360.0000$	Pathway Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

Time $(\mathrm{h})=360.0000$	Pathway Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

Time (h) $=360.0000$	Pathway
Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Control Room to RBS Environment Transport Group Inventory:

	Pathway
Time (h) $=360.0000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

```
Detailed model information at time (H)=432.0000
```

EAB Doses:

Time $(h)=432.0000$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$1.6498 \mathrm{E}-11$	$5.2711 \mathrm{E}-09$	$1.7698 \mathrm{E}-10$
Accumulated dose (rem)	$8.0008 \mathrm{E}-02$	$3.7319 \mathrm{E}+01$	$1.2162 \mathrm{E}+00$

LPZ Doses:

| Time $(\mathrm{h})=432.0000$ | Whole Body | Thyroid | TEDE |
| :--- | :---: | :--- | :--- | :--- |
| Delta dose (rem) | $7.0186 \mathrm{E}-13$ | $2.2424 \mathrm{E}-10$ | $7.5288 \mathrm{E}-12$ |

Accumulated dose (rem) 1.0537E-02 4.9150E+00 1.6017E-01

Control Room Doses:

Time $(\mathrm{h})=432.0000$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$1.0884 \mathrm{E}-09$	$1.0238 \mathrm{E}-05$	$3.1280 \mathrm{E}-07$
Accumulated dose (rem)	$3.1599 \mathrm{E}-03$	$2.8580 \mathrm{E}+01$	$8.7328 \mathrm{E}-01$

RBS Fuel Building Compartment Nuclide Inventory:
Time (h) $=432.0000 \mathrm{Ci}$ Ag Bq

RBS Fuel Building Transport Group Inventory:

2.0000	mospher	Sump	Overlying Pool
Noble gases (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Deposition Recirculating			
Noble gases (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Elemental I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Organic I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
RBS Euel Building to RBS Environment Transport Group Inventory:			
Pathway			
Time (h) $=432.0000$	Eilter		
Noble gases (atoms)	$0.0000 \mathrm{E}+00$		
Elemental I (atoms)	$0.0000 \mathrm{E}+00$		
Organic I (atoms)	$0.0000 \mathrm{E}+00$		
Aerosols (kg)	$0.0000 \mathrm{E}+00$		

CALCULATION DETAILS

CALCULATION NO: G13.18.2.7-116
REVISION: 0
PAGE: 173

RBS Environment Integral Nuclide Release:

Time (h) $=432.0000$	Ci	kg	Atoms	Bq
Kr-85	$1.3050 \mathrm{E}+03$	$3.3261 \mathrm{E}-03$	$2.3565 \mathrm{E}+22$	$4.8284 \mathrm{E}+13$
I-131	$1.1498 \mathrm{E}+02$	$9.2747 \mathrm{E}-07$	$4.2636 \mathrm{E}+18$	$4.2544 \mathrm{E}+12$
I-133	$6.5331 \mathrm{E}-03$	$5.7672 \mathrm{E}-12$	$2.6113 \mathrm{E}+13$	$2.4173 \mathrm{E}+08$
Xe-133	$1.4706 \mathrm{E}+04$	$7.8565 \mathrm{E}-05$	$3.5574 \mathrm{E}+20$	$5.4412 \mathrm{E}+14$
Xe-135	2.5230E-07	9.8799E-17	4.4072E+08	9.3353E+03

RBS Environment Transport Group Inventory:

	Present	Release	Total
Time (h$)=432.0000$	Release	Rate $/ \mathrm{s}$	Release
Noble gases (atoms)	$2.3921 \mathrm{E}+22$	$6.9217 \mathrm{E}+16$	$2.3915 \mathrm{E}+22$
Elemental I (atoms)	$2.4312 \mathrm{E}+18$	$7.0346 \mathrm{E}+12$	$2.4305 \mathrm{E}+18$
Organic I (atoms)	$1.8340 \mathrm{E}+18$	$5.3068 \mathrm{E}+12$	$1.8335 \mathrm{E}+18$
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

RBS Fuel Building to RBS Environment Transport Group Inventory:

Time (h) $=432.0000$	Pathway
Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

Time (h) $=432.0000$	Pathway
Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

Time (h) $=432.0000$
Noble gases (atoms)
Pathway
Filter
$0.0000 \mathrm{E}+00$
Elemental I (atoms) $0.0000 \mathrm{E}+00$
Organic I (atoms) $0.0000 \mathrm{E}+00$
Aerosols (kg) 0.0000E+00
PAGE: 174

```
RBS Environment to RBS Control Room Transport Group Inventory:
    Pathway
Time (h) = 432.0000 Filter
Noble gases (atoms) 0.0000E+00
Elemental I (atoms) 0.0000E+00
Organic I (atoms) 0.0000E+00
Aerosols (kg) 0.0000E+00
```

RBS Control Room to RBS Environment Transport Group Inventory:

Pathway

Filter
Time $(\mathrm{h})=432.0000$
$\begin{array}{ll}\text { Noble gases (atoms) } & 0.0000 \mathrm{E}+00 \\ \text { Elemental I (atoms) } & 0.0000 \mathrm{E}+00\end{array}$
Organic I (atoms) $0.0000 \mathrm{E}+00$
Aerosols (kg) 0.0000E+00
RBS Control Room Compartment Nuclide Inventory:
Time (h) $=432.0000 \mathrm{Ci} \quad$ kg \quad Atoms $\quad \mathrm{Bq}$
RBS Control Room Transport Group Inventory:

			Overlying
Time (h) $=432.0000$	Atmosphere	Sump	Pool
Noble gases (atoms)	$6.1886 \mathrm{E}-08$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$6.2907 \mathrm{E}-12$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$4.7456 \mathrm{E}-12$	$0.000 .0 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
		Deposition Recirculating	
Time (h) $=432.0000$	Surfaces	Filter	
Noble.gases (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Elemental I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Organic I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	

RBS Environment to RBS Control Room Transport Group Inventory:

Time (h) $=432.0000$	Pathway
Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

PAGE: 175

```
RBS Environment to RBS Control Room Transport Group Inventory:
```

\(\left.\begin{array}{lc}Time (h)=432.0000 \& Pathway

Filter\end{array}\right]\)| Noble gases (atoms) | $0.0000 \mathrm{E}+00$ |
| :--- | :--- |
| Elemental I (atoms) | $0.0000 \mathrm{E}+00$ |
| Organic I (atoms) | $0.0000 \mathrm{E}+00$ |
| Aerosols (kg) | $0.0000 \mathrm{E}+00$ |

RBS Environment to RBS Control Room Transport Group Inventory:

Time $(\mathrm{h})=432.0000$	Pathway Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Control Room to RBS Environment Transport Group Inventory:
Pathway
Time (h) $=432.0000 \quad$ Filter
Noble gases (atoms) 0.0000E+00
Elemental I (atoms) $0.0000 \mathrm{E}+00$
Organic I (atoms) 0.0000E+00
Aerosols (kg) 0.0000E+00
Detailed model information at time $(H)=1056.0000$
EAB Doses:

Time (h) $=1056.0000$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$1.2447 \mathrm{E}-31$	$4.4915 \mathrm{E}-29$	$1.4919 \mathrm{E}-30$
Accumulated dose (rem)	$8.0008 \mathrm{E}-02$	$3.7319 \mathrm{E}+01$	$1.2162 \mathrm{E}+00$

LPZ Doses:
Time (h) $=1056.0000$ Whole Body Thyroid TEDE
Delta dose (rem) $1.7553 \mathrm{E}-33 \quad 6.3342 \mathrm{E}-31 \quad 2.1040 \mathrm{E}-32$

Accumulated dose (rem) $1.0537 \mathrm{E}-024.9150 \mathrm{E}+001.6017 \mathrm{E}-01$
Control Room Doses:

Time (h) $=1056.0000$	Whole Body	Thyroid	TEDE
Delta dose (rem)	$8.2110 \mathrm{E}-30$	$8.7242 \mathrm{E}-26$	$2.6643 \mathrm{E}-27$
Accumulated dose (rem)	$3.1599 \mathrm{E}-03$	$2.8580 \mathrm{E}+01$	$8.7328 \mathrm{E}-01$

RBS Fuel Building Compartment Nuclide Inventory:
Time (h) $=1056.0000 \mathrm{Ci}$ Atoms Bq

RBS Fuel Building Transport Group Inventory:

Time (h) =1056.0000	Atmosphere	Sump	Overlying Pool
Noble gases (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Deposition Recirculating			
Time (h) =1056.0000	Surfaces	Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Elemental I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Organic I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	
RBS Fuel Building to RBS Environment Transport Group Inventory:			
Pathway			
Time (h) =1056.0000	Filter		
Noble gases (atoms)	$0.0000 \mathrm{E}+00$		
Elemental I (atoms)	$0.0000 \mathrm{E}+00$		
Organic I (atoms)	$0.0000 \mathrm{E}+00$		
Aerosols (kg)	$0.0000 \mathrm{E}+00$		

RBS Environment Integral Nuclide Release:
Time (h) $=1056.0000$

Ci	kg
$1.3050 \mathrm{E}+03$	$3.3261 \mathrm{E}-03$
$1.1498 \mathrm{E}+02$	$9.2747 \mathrm{E}-07$
$6.5331 \mathrm{E}-03$	$5.7672 \mathrm{E}-12$
$1.4706 \mathrm{E}+04$	$7.8565 \mathrm{E}-05$
$2.5230 \mathrm{E}-07$	$9.8799 \mathrm{E}-17$

Atoms	Bq
$2.3565 \mathrm{E}+22$	$4.8284 \mathrm{E}+13$
$4.2636 \mathrm{E}+18$	$4.2544 \mathrm{E}+12$
$2.6113 \mathrm{E}+13$	$2.4173 \mathrm{E}+08$
$3.5574 \mathrm{E}+20$	$5.4412 \mathrm{E}+14$
$4.4072 \mathrm{E}+08$	$9.3353 \mathrm{E}+03$

RBS Environment Transport Group Inventory:

Time (h) $=1056.0000$
Noble gases (atoms) Elemental I (atoms) Organic I (atoms)
Aerosols (kg)

Present
Release
$2.3921 \mathrm{E}+22$
$2.4312 \mathrm{E}+18$
$1.8340 \mathrm{E}+18$
$0.0000 \mathrm{E}+00 \quad 0.0000 \mathrm{E}+00$

Total
Release
2. $3915 \mathrm{E}+22$
$2.4305 \mathrm{E}+18$
$1.8335 \mathrm{E}+18$
$0.0000 \mathrm{E}+00$

RBS Fuel Building to RBS Environment Transport Group Inventory:

Time (h) =1056.0000
Noble gases (atoms)
Pathway
Filter
$0.0000 \mathrm{E}+00$
$0.0000 \mathrm{E}+00$
$0.0000 \mathrm{E}+00$
$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

	Pathway
Time (h) =1056.0000	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

Time (h) $=1056.0000$	Pathway Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

	Pathway
Time (h) $=1056.0000$	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Control Room to RBS Environment Transport Group Inventory:
\(\left.\begin{array}{lc}Time (h)=1056.0000 \& Pathway

Filter\end{array}\right]\)| Noble gases (atoms) | $0.0000 \mathrm{E}+00$ |
| :--- | :--- |
| Elemental I (atoms) | $0.0000 \mathrm{E}+00$ |
| Organic I (atoms) | $0.0000 \mathrm{E}+00$ |
| Aerosols (kg) | $0.0000 \mathrm{E}+00$ |

RBS Control Room Compartment Nuclide Inventory:
Time (h) $=1056.0000$
Ci $\quad \mathrm{kg}$
Atoms
Bq
RBS Control Room Transport Group Inventory:

Time (h) $=1056.0000$
Noble gases (atoms)
Elemental I (atoms) Organic I (atoms) Aerosols (kg)

Atmosphere	Sump	Overlying POOI
$6.6550-181$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$6.7648-185$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$5.1033-185$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

PAGE: 178

Time (h) $=1056.0000$	Deposition Recirculating	
Surfaces	Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

	Pathway
Time (h) =1056.0000	Filter
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

RBS Environment to RBS Control Room Transport Group Inventory:

Time (h) $=1056.0000$	Pathway
Filter	

RBS Environment to RBS Control Room Transport Group Inventory:

Time (h) =1056.0000	Pathway
Filter	

RBS Control Room to RBS Environment Transport Group Inventory:

Time $(\mathrm{h})=1056.0000$	Pathway
Filter	
Noble gases (atoms)	$0.0000 \mathrm{E}+00$
Elemental I (atoms)	$0.0000 \mathrm{E}+00$
Organic I (atoms)	$0.0000 \mathrm{E}+00$
Aerosols (kg)	$0.0000 \mathrm{E}+00$

CALCULATION DETAILS

CALCULATION NO: G13.18.2.7-116
REVISION: 0
PAGE:
179

\# I-131 Summary
 \#

Time (hr) 336.001 336.020
336.420
336.720
337.020
337.320
337.620
337.920
338.000
338.300
338.600
338.900
339.200
339.500
339.800
340.100
340.400
340.700
341.000
341.300
341.600
341.900
342.200
342.500
342.800
343.100
343.400
343.700
344.000
344.300
344.600
344.900
345.200
345.500
345.800
346.100
346.400
360.000
432.000
1056.000

RBS Fuel Building
I-131 (Curies)
9.6121E-05
$9.6114 \mathrm{E}-05$
9.5976E-05
9.5873E-05
$9.5770 \mathrm{E}-05$
$9.5667 \mathrm{E}-05$
9.5563E-05
9.5461E-05
9.5433E-05
$0.0000 \mathrm{E}+00$

RBS Environment
I-131 (Curies)
$3.1944 \mathrm{E}-02$
$1.1533 \mathrm{E}+00$
$2.4205 \mathrm{E}+01$
$4.1474 \mathrm{E}+01$
$5.8725 \mathrm{E}+01$
$7.5958 \mathrm{E}+01$
$9.3172 \mathrm{E}+01$
1.1037E+02
$1.1495 \mathrm{E}+02$
$1.1496 \mathrm{E}+02$
$1.1496 \mathrm{E}+02$
$1.1496 \mathrm{E}+02$
$1.1497 \mathrm{E}+02$
$1.1497 \mathrm{E}+02$
$1.1497 \mathrm{E}+02$
$1.1497 \mathrm{E}+02$
$1.1498 \mathrm{E}+02$

RBS Control Room
I-131 (Curies)
4.8838E-05
$1.7523 \mathrm{E}-03$
$3.2447 \mathrm{E}-02$
3.2769E-02
3.3029E-02
3.3237E-02
3.3402E-02
3.3531E-02
3.3561E-02
$2.7684 \mathrm{E}-02$
$2.2837 \mathrm{E}-02$
$1.8838 \mathrm{E}-02$
$1.5539 \mathrm{E}-02$

1. $2818 \mathrm{E}-02$
$1.0574 \mathrm{E}-02$
$8.7224 \mathrm{E}-03$
7.1951E-03
5.9353E-03
4.8960E-03
4.0387E-03
3.3315E-03
2.7482E-03
$2.2670 \mathrm{E}-03$
$1.8700 \mathrm{E}-03$
$1.5426 \mathrm{E}-03$
$1.2725 \mathrm{E}-03$
$1.0497 \mathrm{E}-03$
2. $6586 \mathrm{E}-04$
7.1425E-04
5.8917E-04
$4.8600 \mathrm{E}-04$
4.0089E-04
3.3069E-04
2.7278E-04
2.2501E-04
$1.8561 \mathrm{E}-04$
$1.5311 \mathrm{E}-04$
2.4820E-08
$2.1150 \mathrm{E}-28$
2.4176-202
REVISION: 0
PAGE: 180

\#
 Cumulative Dose Summary
 \#

	EAB		LPZ		Contr	
336.001	$1.0364 \mathrm{E}-02$	3.3780E-04	1.3650E-03	4.4489E-05	$3.4690 \mathrm{E}-06$	1.0600E-07
336.020	$3.7421 \mathrm{E}-01$	$1.2196 \mathrm{E}-02$	4.9284E-02	1.6063E-03	4.4823E-03	04
336.420	$7.8558 \mathrm{E}+00$	$2.5604 \mathrm{E}-01$	$1.0346 \mathrm{E}+00$	3.3720E-02	$1.8171 \mathrm{E}+00$	5.5525E-02
6.720	$1.3461 \mathrm{E}+01$	$4.3871 \mathrm{E}-01$	$1.7728 \mathrm{E}+00$	$5.7779 \mathrm{E}-02$	4.3195E+00	199E-01
020	$1.9060 \mathrm{E}+01$	$6.2118 \mathrm{E}-01$	$2.5102 \mathrm{E}+00$	8.1811E-02	$6.8441 \mathrm{E}+00$	913E-01
320	$2.4653 \mathrm{E}+01$	$8.0345 \mathrm{E}-01$	$3.2468 \mathrm{E}+00$	$1.0582 \mathrm{E}-01$	$9.3866 \mathrm{E}+00$	682E-01
337.620	$3.0240 \mathrm{E}+01$	$9.8552 \mathrm{E}-01$	$3.9827 \mathrm{E}+00$	$1.2979 \mathrm{E}-01$	$1.1943 \mathrm{E}+0$	1
337.920	$3.5821 \mathrm{E}+01$	$1.1674 \mathrm{E}+00$	4.7177E+00	$1.5375 \mathrm{E}-01$	$1.4511 \mathrm{E}+01$	1
338.000	$3.7308 \mathrm{E}+01$	$1.2158 \mathrm{E}+00$	4.9136E+00	1.6013E-01	$1.5198 \mathrm{E}+0$	6438E-01
38.	$3.7310 \mathrm{E}+01$	2159 E	4.9138E+00	1.6014E-01	$1.7541 \mathrm{E}+0$	$5.3598 \mathrm{E}-01$
0	3.7312 E	2160 E	4.9140E+00	1.6014E-01	9474E+01	5.9
00	3.7313 E	$1.2160 \mathrm{E}+00$	4.9142E+00	$1.6015 \mathrm{E}-01$	$2.1068 \mathrm{E}+01$	6.
33.200	$3.7314 \mathrm{E}+01$	$1.2160 \mathrm{E}+00$	4.9143E+00	$1.6015 \mathrm{E}-01$	$2.2383 \mathrm{E}+01$	6.8395E-01
00	3.7315 E	61	4.	016E-01	$2.3468 \mathrm{E}+01$	
339.800	3.	$1.2161 \mathrm{E}+00$	4	01	$2.4363 E+01$	
340.100	3.	$1.2161 \mathrm{E}+00$	4	1.6016E-01	$2.5102 \mathrm{E}+01$	$7.6700 \mathrm{E}-01$
340.400	3.	$1.2161 \mathrm{E}+00$	4.9147E+00	$1.6017 \mathrm{E}-01$	$2.5711 \mathrm{E}+01$	7.8561E-01
340.700	$3.7317 \mathrm{E}+01$	$1.2161 \mathrm{E}+00$	$4.9147 \mathrm{E}+00$	1.6017E-01	$2.6213 \mathrm{E}+01$	8.0096E-01
341.000	3.7318 E	$1.2161 \mathrm{E}+00$	$4.9148 \mathrm{E}+00$	$1.6017 \mathrm{E}-01$	$2.6627 \mathrm{E}+01$	8.1362E-01
341.300	3.	$1.2162 \mathrm{E}+00$	4.	$1.6017 \mathrm{E}-01$	$2.6969 \mathrm{E}+01$	$8.2407 \mathrm{E}-01$
00	3.7318 E	. 2	$4.9148 \mathrm{E}+00$	6017	51E	$8.3268 \mathrm{E}-01$
00	$3.7318 \mathrm{E}+01$	1.2162E	$4.9149 \mathrm{E}+00$	1.6017E-01	$84 \mathrm{E}+01$	8.3979E-01
00	$3.7318 \mathrm{E}+01$.2162E+00	$4.9149 \mathrm{E}+00$	1.6017E-01	$676 \mathrm{E}+01$	$8.4565 \mathrm{E}-01$
342.500	$3.7319 \mathrm{E}+01$.2162E+00	$4.9149 \mathrm{E}+00$	1.6017E-01	$2.7834 \mathrm{E}+01$.5049E-01
00	$3.7319 \mathrm{E}+01$	$1.2162 \mathrm{E}+00$	$4.9149 \mathrm{E}+00$	1.6017E-01	$2.7965 \mathrm{E}+01$.5448E-01
00	$3.7319 \mathrm{E}+01$	$1.2162 \mathrm{E}+00$	$4.9149 \mathrm{E}+00$	1.6017E-01	2.8072E+01	5777E-01
00	$3.7319 \mathrm{E}+01$	$1.2162 \mathrm{E}+00$	$4.9149 \mathrm{E}+00$	1.6017E-01	$2.8161 \mathrm{E}+01$.6048E-01
00	$3.7319 \mathrm{E}+01$	$1.2162 \mathrm{E}+00$	$4.9150 \mathrm{E}+00$	1.6017E-01	$2.8234 \mathrm{E}+01$.6272E-01
. 000	$3.7319 \mathrm{E}+01$	$1.2162 \mathrm{E}+00$	4.9150E+00	$1.6017 \mathrm{E}-01$	$2.8295 \mathrm{E}+01$	8.6457E-01
4.300	$3.7319 \mathrm{E}+01$	$1.2162 \mathrm{E}+00$	4.9150E+00	1.6017E-01	$2.8345 \mathrm{E}+01$	8.6609E-01
4.600	3.7319E+01	$2162 \mathrm{E}+00$	4.9150E+00	1.6017E-01	$2.8386 \mathrm{E}+01$	8.6735E-01
4.900	$3.7319 \mathrm{E}+01$	$2162 \mathrm{E}+00$	$4.9150 \mathrm{E}+00$	1.6017e-01	$2.8420 \mathrm{E}+01$	
5.200	$3.7319 \mathrm{E}+01$	$2162 \mathrm{E}+00$	$4.9150 \mathrm{E}+00^{\circ}$	1.6017E-01	$2.8448 \mathrm{E}+01$	
5.500	$3.7319 \mathrm{E}+01$	2162	$4.9150 \mathrm{E}+00$	1.6017E-01	$2.8471 \mathrm{E}+01$	
00	$3.7319 \mathrm{E}+01$		$4.9150 \mathrm{E}+00$	1.6017E-01	-01	
	$3.7319 \mathrm{E}+01$	1.2162	4.9150E+00	1.6017E-01	$2.8506 \mathrm{E}+01$	
	$3.7319 \mathrm{E}+01$	1.2162	4.9150E+00	1.6017E-01	1	
3	$3.7319 \mathrm{E}+01$.2162E+00	4.9150E+00	1.6017E-01	.8580E+01	
432.000	$3.7319 \mathrm{E}+01$	$1.2162 \mathrm{E}+00$		1.6017E-01		

CALCULATION DETAILS	CALCULATION NO:	G13.18.2.7-116
	REVISION:	0
	PAGE:	181

\#Worst Two-Hour DosesNote: All of the dose locations are shown below but theworst two-hour dose is only meaningful for the EABdose location. Please disregard the two-hour worstdoses for the other dose locations
\#
EAB

Time	Whole Body	Thyroid	TEDE
(hr)	(rem)	(rem)	(rem)
336.0	$7.9963 \mathrm{E}-02$	$3.7298 \mathrm{E}+01$	$1.2155 \mathrm{E}+00$

LPZTime Whole BodThyroidTEDE
(hr) (rem) (rem) (rem)336.0 1.0531E-024.9122E+00
$1.6008 \mathrm{E}-01$
Control Room
Time Whole Body(hr) (rem)Thyroid(rem)TEDE(rem)
336.4 1.8224E-03
$1.6459 \mathrm{E}+01$
5.0291E-01
PAGE: 182

ATTACHMENT C - Water Dynamic and Kinematic Viscosity

Water - Dynamic and Kinematic Viscosity

Viscosity of water at temperatures between $0-100^{\circ} \mathrm{C}\left(32-212^{\circ} \mathrm{F}\right)$ - in Imperial and SI Units Sppomsored Links

Dynamic (Absolute) and Kinematic Viscosity of Water in Imaxial Units (BGinis):

Temperatur	ILarator Vix 3int	Kimentic Sisquig
-1-.	- $\boldsymbol{\mu}$ -	
(f)	(thy 93	$\theta f^{2}\left\{s \times \pi 0^{5}\right.$
32	3.732	1.924
40	3.228	1,664
50	2.730	1,4 47
60°	2344	1.210
0	2.034.	1.05*
80	1.791	0.926
99	1.589	0.813
100	1.423	0.738
0	1.164	0.6197
170)	0.974	0.511
109	0.832	0.439
189	0.721	0.383
209	0.634	0.339
212	0.589	0.317

Temperaure	Degraxisisectiti	Kinciraichismeity
-1/	$\cdot \mu$ -	
(C$)$	(Pas. V $\operatorname{sinc}^{2} / \mathrm{x} / 0^{\prime}$	$m^{7} / 3 \mathrm{x} \times 1 m^{6}$
0	1,78\%	1.787
5	1.519	1.539
12	1.307	1.30?
D	1002	1.0895
W	0.308	0.808
4)	0.653	0.658
59	0.547	0.353
60	0.467	0.475
31	4,414	6.113
80	0.315	0.355
(4)	0.313	0.308
109	0.2x	0.24

CALCULATION DETAILS

ATTACHMENT D - Excel Spread Sheet Formula Views, Sections 10.2 through 10.4

Load Drop Max Lift

Gate Drop from Max Lift Height to Pool Floor 70'

Gate Length L	24.39	ft
Gate Width, d	4.771	ft
Gate thickness (reduced to obtain density greater than water)	0.275	ft
Gate weight, W	2000	lb
Gate density	= $\mathrm{B5} /\left(\mathrm{B2} 2 * \mathrm{B3}{ }^{\text {* }} \mathrm{B} 4\right)$	$\mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	sqft/s
water density/gate density	=87/B6	
drop distance in air	7.3	ft
drop distance in water	37.7	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	=SQRT(2*32.17*B10)	ft / s
Reynolds no =(Vo * d)/viscosity	$=(\mathrm{B} 12 * \mathrm{~B} 3) / \mathrm{B8}$	
Check L/d using gate length and width	= $\mathrm{B} 2 / \mathrm{B} 3$	
Check L/D using gate width and thickness	=83/B4	
Drag Coefficient CD	1.2	
Ao $=$ width * thickness	= B * B 4	ft2
$\mathrm{a}=($ water density * Drag Coeff * AO)/ (2*W)	$=(87 * B 16 * B 17) /(2 * B 5)$	
$\mathrm{b}=$ (water density ${ }^{\text {* }} \mathrm{g}$)/ w	$=(B 7 * 32.17) / B 5$	
Terminal Velocity, V2 = SQRT (g^{*} (1-density water/density gate)/a)	$=\left((32.17 / \mathrm{B} 18)^{*}(1-\mathrm{B} 9)\right)^{\wedge} 0.5$	ft / s
$\exp \left(-2^{*} a^{*} x\right)$ where $\mathrm{x}=$ drop distance in water	$=\operatorname{EXP}(-2 * 818 * B 11)$	
bAo	=B19*B17	
$\exp (2 \mathrm{aL})$	$=\operatorname{EXP}\left(2^{*} \mathrm{~B} 18 * \mathrm{~B} 2\right)$	
2 aL	=2*B18*B2	
V2^2	= $\mathrm{B} 20 \wedge^{\text {2 }}$	
Vo^2	=B12^2	
bAo*[exp(2aL)*(1-2aL)-1]/2a^2	= 22 $^{*}\left(\mathrm{~B} 23^{*}(1-\mathrm{B} 24)-1\right) /\left(2^{*}\left(\mathrm{~B} 18^{\wedge} 2\right)\right)$	
$\mathrm{g}^{*}(\exp (2 \mathrm{aL}) *$ wtr dens/gate dens -1)/a	=32.17*(B23*B9-1)/B18	
22x	= $\mathrm{B} 25+(\mathrm{B} 21 *(\mathrm{~B} 27+\mathrm{B} 26+\mathrm{B} 28)$)	
$V_{s}=(Z x)^{\wedge} 0.5$	$=S Q R T(B 29)$	ft / s
Convert impact area to equivalent diameter	$\left.=2^{*}\left(\left(\text { B17 }{ }^{*} 144\right) / 3.142\right)^{\wedge} 0.5\right)$	in
mass $=$ weight/g	= $\mathrm{B}_{5} / 32.17$	$\mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness	$=(($ B34*B31^2/2)^(2/3))/(672*B33)	in

REVISION: 0
PAGE: 184

Gate Drop from Max Lift Height to Cask Shelf $9 \mathbf{3 '}^{\prime}$ El

Gate length L	24.39	ft
Gate Width, d	4.771	ft
Gate thickness	0.3958	ft
Gate weight, W	2000	lb
Gate density	=842/(B39*B40*B41)	$\mathrm{lb} / \mathrm{cuft}$
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	sq ft/s
water density/gate density	= $\mathrm{B44} / \mathrm{B43}$	
drop distance in air	7.3	ft
drop distance in water	14.7	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	$=\operatorname{SQRT}(2 * 32.17 *$ B47)	ft / s
Reynolds no $=($ Vo * d$) / \mathrm{viscosity}$	=(B49*B40)/B45	
Check L/d using gate length and width	= $839 / \mathrm{B40}$	
Check L/D using gate width and thickness	=B40/B41	
Drag Coefficient CD	1.2	
Ao = width * thickness	=B40*B41	ft2
$\mathrm{a}=($ water density * Drag Coeff * AO)/ (2*W)	$=(\mathrm{B44*B53*B54)/(2*B42)}$	
$\mathrm{b}=($ water density * g$) / \mathrm{w}$	=(B44*32.17)/B42	
$\exp \left(-2^{*} a^{*} x\right)$ where $x=$ drop distance in water	= EXP(-2*B55*B48)	
bAo	=856*B54	
2 ax	=2*B55*B48	
Vo^2	= B49^2	
g/a	=32.17/B55	
bAo*[(1-2ax)]/2a^2		
$\exp (-2 a x) *\left[\left(V 0^{\wedge} 2-(g / a)-\left(b A o / 2 * a^{\wedge} 2\right)\right]\right.$		
Z1x	= $\mathrm{B61}+\mathrm{B} 62+\mathrm{B63}$	
V s $=(\mathrm{Zx})^{\wedge} 0.5$	$=S Q R T(B 64)$	ft/s
Convert impact area to equivalent diameter	$\left.=2^{*}((\text { B } 54 * 144) / 3.142)^{\wedge} 0.5\right)$	in
mass $=$ weight/g	=B42/32.17	lb-s2/ft
thickness	$=\left((B 69 * B 66 \wedge 2 / 2)^{\wedge}(2 / 3)\right) /(672 * B 68)$	in

REVISION: 0
PAGE: 185

Gate Drop from Max Lift Height to Gate Opening

Gate Length L	24.39	ft
Gate Width, d	4.771	ft
Gate thickness	0.3958	ft
Gate weight, W	2000	1 b
Gate density	=B77/(B74*B75*B76)	$\mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density @ 160F	60.994	$\mathrm{lb} / \mathrm{cu}$
water kinematic viscosity @ 160F	0.00000439	sq ft/s
water density/gate density	= B79/878	
drop distance in air	7.3	ft
drop distance in water	19.7	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	$=$ SQRT (2*32.17*B82)	ft / s
Reynolds no =(Vo * d)/viscosity	$=(\mathrm{B84*}$ B75)/B80	
Check L/d using gate length and width	= $\mathrm{B74} / \mathrm{B75}$	
Check L/D using gate width and thickness	= B75/B76	
Drag Coefficient CD	1.2	
Ao = width * thickness	= ${ }^{\text {7 }}$ * ${ }^{\text {* }}$ 76	ft 2
a = (water density * Drag Coeff * Ao)/ (2*W)	=(B79*B88*B89)/(2*B77)	
b = (water density * \mathbf{g} / $/ \mathbf{w}$	=(B79*32.17)/B77	
$\exp \left(-2^{*}{ }^{*} x\right)$ where $\mathrm{x}=$ drop distance in water	$=\operatorname{EXP}(-2 * B 90 * B 83)$	
bAo	= B91*B89	
2 ax	=2*B90*B83	
Vo^2	= $\mathrm{B84}{ }^{\wedge} 2$	
g/a	=32.17/B90	
bAo*[(1-2ax)]/2a^2	= $\mathrm{B93}{ }^{*}(1-\mathrm{B94}) /\left(2^{*}\right.$ (B90^2) $)$	
$\exp (-2 a x) *\left[\left(V 0^{\wedge} 2-(g / a)-\left(b A o / 2 * a^{\wedge} 2\right)\right]\right.$	= B92*(B84^2-B96-(B93/(2*B90^2)))	
21x	= $\mathrm{B} 96+\mathrm{B97}+\mathrm{B98}$	
V s $=(\mathrm{Zx})^{\wedge} 0.5$	=SQRT(B99)	ft / s
Convert impact area to equivalent diameter	$\left.=2^{*}((\text { (B89* } 144) / 3.142)^{\wedge} 0.5\right)$	in
mass $=$ weight $/ \mathrm{g}$	= $877 / 32.17$	$\mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness	$=(($ B104*B101^2/2)^(2/3))/(672*B103)	in

Intermediate Beam Drop from Max Lift Height to Pool Floor 70'

Beam Length L	4.75	ft
Beam Width, d	0.4167	ft
Beam thickness	0.4167	ft
Beam weight, W	175	lb
Beam density	=B112/(B109*B110*B111)	$\mathrm{lb} / \mathrm{cuft}$
water density @160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	sq ft/sec
water density/gate density	=B114/B113	
drop distance in air	32.3	ft
drop distance in water	37.7	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	$=S Q R T(2 * 32.17 * B 117)$	ft / s
Reynolds no =(Vo * d)/viscosity	$=(\mathrm{B119*B110}) / \mathrm{B} 115$	
Check L/d using beam length and width	=8109/B110	
Check L/D using beam width and thickness	1	
Drag Coefficient CD	1.16	
Ao = width * thickness	=B110*B111	ft2
$a=($ water density * Drag Coeff * Ao)/ (2*W)	$=(\mathrm{B} 114 * \mathrm{~B} 123 * B 124) /(2 * B 112)$	
$b=\left(\right.$ water density ${ }^{*} \mathrm{~g}$)/W	$=(\mathrm{B114*32.17)/B112}$	
Terminal Velocity, V2 = SQRT(g^{*} (1-density water/density beam)/a)	$=\left((32.17 / \mathrm{B} 125)^{*}(1-\mathrm{B} 116)\right)^{\wedge} 0.5$	ft / s
$\exp (-2 * a * x)$ where $x=$ drop distance in water	$=\operatorname{EXP}(-2 * B 125 * B 118)$	
bAo	=B126*B124	
$\exp (2 \mathrm{aL})$	$=\operatorname{EXP}(2 * B 125 * B 109)$	
2aL	=2*B125*B109	
V2^2	= $\mathrm{B127}{ }^{\text {^2 }}$	
Von 2	= $\mathrm{B} 119^{\wedge} 2$	
$\mathrm{bAo}^{*}\left[\exp (2 \mathrm{aL})^{*}(1-2 \mathrm{aL})-1\right] / 2 \mathrm{a}^{\wedge} 2$	$\begin{aligned} & =B 129^{*}\left(B 130^{*}(1-B 131)-\right. \\ & 1) /\left(2^{*}(\text { B125^2) })\right. \end{aligned}$	
$\mathrm{g}^{*}(\exp (2 \mathrm{aL}) *$ wtr dens/beam dens -1)/a	=32.17* ${ }^{\text {(B130*B116-1)/B125 }}$	
Z2x	$=\mathrm{B} 132+(\mathrm{B128} *(\mathrm{~B} 134+\mathrm{B} 133+\mathrm{B} 135))$	
$V \mathrm{~S}=(\mathrm{Zx})^{\wedge} 0.5$	$=S Q R T(B 136)$	ft / s
Convert impact area to equivalent diameter	$=2^{*}(($ B124*144)/3.142)^ 0.5$)$	in
mass $=$ weight $/ \mathrm{g}$ thickness	$\begin{aligned} & =8112 / 32.17 \\ & =\left(\left(B 141^{*} \mathrm{~B} 138^{\wedge} 2 / 2\right)^{\wedge}(2 / 3)\right) /\left(672^{*} \mathrm{~B} 140\right) \end{aligned}$	$\begin{aligned} & \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft} \\ & \text { in } \end{aligned}$

PAGE: 187

Intermediate Beam Drop from Max Lift Height to to Cask Shelf 93' El

Beam Length L	4.75	ft
Beam Width, d	0.4167	ft
Beam thickness	0.4167	ft
Beam weight, W	175	lb
Beam density	=B149/(B146*B147*B148)	$\mathrm{lb} / \mathrm{cuft}$
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	sq ft/s
water density/gate density	=B151/B150	
drop distance in air	32.3	ft
drop distance in water	14.7	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	=SQRT($\mathbf{2 *}^{*} 32.17 *$ B154)	ft / s
Reynolds no $=($ Vo * d $/$ /viscosity	=(B156*B147)/B152	
Check L/d using beam length and width	=B146/B147	
Check L/D using beam width and thickness	1	
Drag Coefficient CD	1.16	
Ao = width * thickness	=B147*B148	ft2
$\mathrm{a}=\left(\right.$ water density * Drag Coeff * Ao)/ (2^{*} W)	$=(\mathrm{B} 151 * \mathrm{~B} 160 * \mathrm{~B} 161) /\left(2^{* B 149)}\right.$	
$\mathrm{b}=$ (water density * g$) / \mathrm{W}$	=(B151*32.17)/B149	
Terminal Velocity, V2 = SQRT (g^{*} (1-density water/density beam)/a)	$=\left((32.17 / \mathrm{B} 162)^{*}(1-\mathrm{B} 153)\right)^{\wedge} 0.5$	ft/s
$\exp \left(-2 *{ }^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water	= EXP(-2*B162*B155)	
bAo	=B163*B161	
$\exp (2 \mathrm{aL})$	= EXP(2*B162*B146)	
2 aL	=2*B162*B146	
V2^2	=B164^2	
Von2	=B156^2	
bAo*[exp(2aL)* (1-2aL)-1]/2a^2	$\begin{aligned} & =\mathrm{B} 166^{*}\left(\mathrm{~B} 167^{*}(1-\mathrm{B} 168)-\right. \\ & 1) /\left(2^{*}\left(\mathrm{~B} 162^{\wedge} 2\right)\right) \end{aligned}$	
$\mathrm{g}^{*}(\exp (2 \mathrm{aL}) *$ wtr dens/beam dens -1$) / \mathrm{a}$	=32.17*(B167*B153-1)/B162	
22x	= $\mathrm{B169}+$ (B165** ${ }^{\text {(B171+B170+B172) }}$)	
$V_{s}=(Z x)^{\wedge} 0.5$	$=S Q R T(B 173)$	ft / s
Convert impact area to equivalent diameter	$\left.=2^{*}((\text { (B161* } 144) / 3.142)^{\wedge} 0.5\right)$	in
mass $=$ weight $/ \mathrm{g}$	=B149/32.17	$\mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness	$=\left((B 178 * B 175 \wedge 2 / 2)^{\wedge}(2 / 3) / /(672 * B 177)\right.$	in

PAGE: 188

Intermediate Beam Drop from Max Lift Height to to Gate Opening 88'

Beam Length L	4.75	f
Beam Width, d	0.4167	ft
Beam thickness	0.4167	$f t$
Beam weight, W	175	lb
Beam density	=B186/(B183*B184*B185)	$\mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	$s q \mathrm{ft} / \mathrm{s}$
water density/gate density	=B188/B187	
drop distance in air	32.3	ft
drop distance in water	19.7	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	=SQRT(2*32.17*B191)	ft/s
Reynolds no =(Vo * d)/viscosity	=(B193*B184)/B189	
Check L/d using beam length and width	=B183/B184	
Check L/D using beam width and thickness	=B184/B185	
Drag Coefficient CD	1.16	
Ao $=$ width * thickness	=B184*B185	ft2
$a=($ water density * Drag Coeff * Ao)/ (2*W)	$=(\mathrm{B} 188 *$ B197*B198)/(2*B186)	
b = (water density * g)/ W	=(B188*32.17)/B186	
Terminal Velocity, V2 = SQRT(${ }^{*}$ *(1-density water/density beam)/a)	$=\left((32.17 / \mathrm{B} 199)^{*}(1-\mathrm{B} 190)\right)^{\wedge} 0.5$	ft/s
$\exp \left(-2^{*}{ }^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water	= EXP(-2*B199*B192)	
bAo	=B200*B198	
$\exp (2 \mathrm{aL}$)	= EXP(2*B199*B183)	
2 aL	=2*B199*B183	
V2^2	= $\mathrm{B201}{ }^{1} 2$	
Vo^2	=8193^2	
$\mathrm{bAO}^{*}\left[\exp (2 \mathrm{LL})^{*}(1-2 \mathrm{aL})-1\right] / 2 \mathrm{a}^{\wedge} 2$	$\begin{aligned} & =\mathrm{B} 203^{*}\left(\mathrm{~B} 204^{*}(1-\mathrm{B} 205)-\right. \\ & \text { 1) } /\left(2^{*}\left(\mathrm{~B} 199^{\wedge} 2\right)\right) \end{aligned}$	
$\mathrm{g}^{*}(\exp (2 \mathrm{LL}) *$ wtr dens/beam dens -1)/a	=32.17*(B204*B190-1)/B199	
Z2x	=B206+(B202*(B208+B207+B209))	
Vs $=(Z x)^{\wedge} 0.5$	$=S Q R T(B 210)$	ft / s
Convert impact area to equivalent diameter	$=2^{*}(($ (B198*144)/3.142)^0.5)	in
mass $=$ weight/g	= $8186 / 32.17$	$\mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness	$=\left(\left(\text { B215 }{ }^{*} \mathbf{B 2 1 2 \wedge}{ }^{\text {/ }}\right)^{\wedge}(2 / 3) / /(672 * B 214)\right.$	in

Alternate Beam Drop from Max Lift Height to Pool Floor 70'

Beam Length L	12	ft
Beam Width, d	0.5	ft
Beam thickness	0.333	ft
Beam weight, W	200	lb
Beam density	=B223/(B220*B221*B222)	$\mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density @ 160F	60.994	$\mathrm{lb} / \mathrm{cu}$
water kinematic viscosity @ 160F	0.00000439	sq $\mathrm{ft} / \mathrm{sec}$
water density/gate density	=B225/B224	
drop distance in air	40.3	ft
drop distance in water	37.7	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	=SQRT(2*32.17*B228)	ft/s
Reynolds no =(Vo * d)/viscosity	$=(\mathrm{B} 230 *$ B221)/B226	
Check L/d using beam length and width	= B220/B221	
Check L/D using beam width and thickness	=B221/B222	
Drag Coefficient CD	1.16	
Ao = width * thickness	=B221*B222	ft2
$\mathrm{a}=($ water density * Drag Coeff * Ao)/ (2*W)	$=(\mathrm{B} 225 * \mathrm{~B} 234 * \mathrm{~B} 235) /(2 * B 223)$	
b = (water density * g //W	$=(\mathrm{B} 225 * 32.17) / \mathrm{B} 223$	
Terminal Velocity, V2 = SQRT(g^{*} (1-density water/density beam)/a)	$=((32.17 / \mathrm{B} 236) *(1-\mathrm{B} 227))^{\wedge} 0.5$	ft / s
$\exp \left(-2^{*} a^{*} x\right)$ where $x=$ drop distance in water	= EXP(-2*B236*B229)	
bAo	=B237*B235	
$\exp (2 \mathrm{aL})$	=EXP(2*B236*B220)	
2aL	=2*B236*B220	
V2^2		
Vo^2	= $\mathrm{B}^{3} 30^{\wedge} 2$	
$b A o^{*}[\exp (2 a L) *(1-2 a L)-1] / 2 a^{\wedge} 2$	$\begin{aligned} & =\mathrm{B} 240^{*}\left(\mathrm{~B} 241^{*}(1-\mathrm{B} 242)-\right. \\ & 1) /\left(2^{*}\left(\mathrm{~B} 236^{\wedge} 2\right)\right) \end{aligned}$	
$\mathrm{g}^{*}(\exp (2 \mathrm{aL}) *$ wtr dens/beam dens -1)/a	=32.17* (B241*B227-1)/B236	
Z2x	= B243+(B239* (B245+B244+B246))	
$V s=(Z x)^{\wedge} 0.5$	=SQRT(B247)	ft / s
Convert impact area to equivalent diameter	$=2^{*}(($ B235*144)/3.142)^0.5)	in
mass $=$ weight $/ \mathrm{g}$ thickness	$=B 223 / 32.17$ $=\left((B 252 * B 249 \wedge 2 / 2)^{\wedge}(2 / 3)\right) /(672 * B 251)$	$\begin{aligned} & \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft} \\ & \text { in } \end{aligned}$

Alternate Beam Drop from Max Lift Height to to Cask Shelf 93' El

Beam Length L	12	ft
Beam Width, d	0.5	ft
Beam thickness	0.333	ft
Beam weight, W	200	lb
Beam density	= $\mathrm{B260}$ (B257*B258*B259)	$\mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	$\begin{aligned} & \mathrm{sq} \\ & \mathrm{ft} / \mathrm{sec} \end{aligned}$
water density/gate density	=B262/B261	
drop distance in air	40.3	ft
drop distance in water	14.7	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	$=S Q R T(2 * 32.17 * B 265)$	ft / s
Reynolds no =(Vo $\left.{ }^{\text {* }} \mathrm{d}\right) /$ viscosity	=(8267*B258)/B263	
Check L/d using beam length and width	= $8257 / \mathrm{B258}$	
Check L/D using beam width and thickness	=B258/B259	
Drag Coefficient CD	1.16	
Ao $=$ width * thickness	=B258*B259	ft2
a = (water density * Drag Coeff * Ao)/ (2*W)	=(B262*B271*B272)/(2*B260)	
$\mathrm{b}=($ water density $* \mathrm{~g}) / \mathrm{W}$	=(B262*32.17)/B260	
Terminal Velocity, V2 = SQRT(g^{*} (1-density water/density beam)/a)	$=\left((32.17 / \mathrm{B} 273)^{*}(1-\mathrm{B} 264)\right)^{\wedge} 0.5$	ft / s
$\exp \left(-2^{*}{ }^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water	$=\operatorname{EXP}(-2 * B 273 * B 266)$	
bAo	=8274*B272	
$\exp (2 \mathrm{aL})$	= EXP(2*B273*B257)	
2aL	=2*B273*B257	
V2^2	= $\mathrm{B275}^{\text {^2 }}$	
Vo^2	= B267^2	
$\mathrm{bAo}^{*}\left[\exp (2 \mathrm{aL})^{*}(1-2 \mathrm{aL})-1\right] / 2 \mathrm{a}^{\wedge} 2$	$\begin{aligned} & =\mathrm{B} 277^{*}\left(\mathrm{~B} 278^{*}(1-\mathrm{B} 279)-\right. \\ & 1) /\left(2^{*}\left(\mathrm{~B} 273^{\wedge} 2\right)\right) \end{aligned}$	
g*(exp(2aL) * wtr dens/beam dens -1)/a	=32.17*(B278*B264-1)/B273	
22x	= $2^{280}+$ (B276*(B282+B281+B283))	
V s $=(\mathrm{Z} \times)^{\wedge} 0.5$	=SQRT(B284)	ft / s
Convert impact area to equivalent diameter	$\left.=2^{*}((\text { (B272* } 144) / 3.142)^{\wedge} 0.5\right)$	in
mass $=$ weight/g	=B260/32.17	$\mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness	$=\left(\left(\mathrm{B289}\right.\right.$ * ${\left.\mathrm{B} 286 \wedge 2 / 2)^{\wedge}(2 / 3)\right) /(672 * B 288)}^{(1)}$	in

Alternate Beam Drop from Max Lift Height to to Gate Opening 88'

Beam Length L	12	ft
Beam Width, d	0.5	ft
Beam thickness	0.333	ft
Beam weight, W	200	lb
Beam density	=B297/(B294*B295*B296)	$\mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density @ 160F	60.994	$\mathrm{lb} / \mathrm{cu}$ ft
water kinematic viscosity @ 160F	0.00000439	$\begin{aligned} & \mathrm{sq} \\ & \mathrm{ft} / \mathrm{sec} \end{aligned}$
water density/gate density	=B299/B298	
drop distance in air	40.3	ft
drop distance in water	19.7	$f t$
Vo where h is drop distance in air, $V=(2 \mathrm{gh})^{\wedge} 2$	$=\operatorname{SQRT}(2 * 32.17 *$ B302 $)$	ft / s
Reynolds no $=(\mathrm{Vo}$ * d$) /$ viscosity	$=(\mathrm{B304*B295}) / \mathrm{B} 300$	
Check L/d using beam length and width	=B294/B295	
Check L/D using beam width and thickness	=B295/B296	
Drag Coefficient CD	1.16	
Ao = width * thickness	=B295*B296	ft2
a $=$ (water density * Drag Coeff * Ao)/ (2*W)	=(B299*B308*B309)/(2*B297)	
$\mathrm{b}=($ water density * g$) / \mathrm{W}$	=(B299*32.17)/B297	
Terminal Velocity, V2 = SQRT(g^{*} (1-density water/density beam)/a)	$=\left((32.17 / \mathrm{B} 310)^{*}(1-\mathrm{B} 301)\right)^{\wedge} 0.5$	ft/s
$\exp \left(-2 *{ }^{*}{ }^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water	$=\operatorname{EXP}(-2 * B 310 * B 303)$	
bAo	¢ ${ }_{\text {B311* }}$ B309	
$\exp (2 \mathrm{aL})$	= EXP(2*B310*B294)	
2aL	=2*B310*B294	
V2^2		
Vo^2	=B304^2	
$\mathrm{bAo}^{*}\left[\exp (2 \mathrm{aL})^{*}(1-2 \mathrm{aL})-1\right] / 2 a^{\wedge} 2$	$\begin{aligned} & =B 314^{*}\left(B 315^{*}(1-8316)-\right. \\ & 1) /\left(2^{*}\left(B 310^{\wedge} 2\right)\right) \end{aligned}$	
$\mathrm{g}^{*}(\exp (2 \mathrm{aL}) *$ wtr dens/beam dens -1)/a	=32.17*(B315*B301-1)/B310	
22x	= B317+(B313* ${ }^{\text {(B319 }}$ + $318+$ B320) $)$	
$V s=(Z x)^{\wedge} 0.5$	=SQRT(B321)	ft / s
Convert impact area to equivalent diameter	$\left.=2^{*}((\text { (B309* } 144) / 3.142)^{\wedge} 0.5\right)$	in
mass $=$ weight $/ \mathrm{g}$	=B297/32.17	$\mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness	$=\left((B 326 * B 323 \wedge 2 / 2)^{\wedge}(2 / 3)\right) /(672 * B 325)$	in

PAGE: 192

Load Drop in Pool

Gate Drop to Pool Floor		
Gate Length L	24.39	ft
Gate Width, d	4.771	ft
Gate thickness	0.3958	ft
Gate weight, W	2000	lb
Gate density	= B5/(B2*B3*B4)	$\mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	$\begin{aligned} & \mathrm{sq} \\ & \mathrm{ft} / \mathrm{sec} \end{aligned}$
water density/gate density	= $\mathrm{B7} / \mathrm{B6}$	
drop distance in air	0	ft
drop distance in water	20	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	=SQRT(2*32.17*B10)	ft/s
Reynolds no $=\left(\mathrm{Vo}^{*} \mathrm{~d}\right) /$ viscosity	$=(\mathrm{B} 12 * \mathrm{~B} 3) / \mathrm{B8}$	
Check L/d using gate length and width	=B2/B3	
Check L/D using gate width and thickness	= B3/B4	
Drag Coefficient CD	1	
Ao = width * thickness	=83*B4	ft2
a = (water density * Drag Coeff * Ao)/ (2*W)	=(B7*B16*B17)/(2*B5)	
$\mathrm{b}=($ water density * g$) / \mathrm{W}$	$=(\mathrm{B7} * 32.17) / \mathrm{B5}$	
$\exp \left(-2^{*}{ }^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water	= EXP(-2*B18*B11)	
bAo	=B19*B17	
2ax	=2*B18*B11	
Vo^2	= $\mathrm{Bl2}^{\wedge} 2$	
g/a	=32.17/B18	
bAo*[(1-2ax)]/2a^2	= $221^{*}(1-\mathrm{B} 22) /\left(2^{*}\left(\mathrm{~B} 18^{\wedge} 2\right)\right)$	
$\exp (-2 a x) *\left[\left(V 0^{\wedge} 2-(g / a)-\left(b A o / 2 * a^{\wedge} 2\right)\right]\right.$	$=\mathrm{B20}{ }^{*}\left(\mathrm{~B} 12^{\wedge} 2-\mathrm{B} 24-\left(\mathrm{B} 21 /\left(2^{*} \mathrm{~B}^{\text {1 }}{ }^{\wedge} 2\right)\right)\right.$)	
21x	= $\mathrm{B} 24+\mathrm{B} 25+\mathrm{B} 26$	
$V s=(Z x)^{\wedge} 0.5$	$=S Q R T(B 27)$	ft / s
Convert impact area to equivalent diameter mass $=$ weight $/ \mathrm{g}$ thickness	$\begin{aligned} & \left.=2^{*}((\text { (B17* } 144) / 3.142)^{\wedge} 0.5\right) \\ & =\mathrm{B} 5 / 32.17 \\ & =\left(\left(\mathrm{B} 32^{*} \mathrm{~B} 29^{\wedge} 2 / 2\right)^{\wedge}(2 / 3)\right) /\left(672^{* B} 31\right) \end{aligned}$	$\begin{aligned} & \text { in } \\ & \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft} \\ & \text { in } \end{aligned}$

CALCULATION DETAILS

Gate Drop in Gate Opening
Gate Length L 24.39 ft
Gate Width, d 4.771

4.771

ft
Gate thickness
Gate weight, WGate density
water density @ 160F
water kinematic viscosity @ 160F
water density/gate density
drop distance in air
drop distance in water
Vo where h is drop distance in air, $V=(2 \mathrm{gh})^{\wedge} 2$
Reynolds no =(Vo *d)/viscosity
Check L/d using gate length and width
Check L/D using gate width and thickness
Drag Coefficient CD
Ao = width * thickness
$a=$ (water density * Drag Coeff * Ao)/ (2*W)
$b=($ water density * g$) / \mathrm{W}$
$\exp \left(-2^{*} a^{*} x\right)$ where $x=$ drop distance in waterbAo
2ax
Vo^2
g/a
bAo*[(1-2ax)]/2a^2
$\exp (-2 a x) *\left[\left(V 0^{\wedge} 2-(g / a)-\left(b A o / 2^{*} a^{\wedge} 2\right)\right]\right.$
Z1x
$V_{s}=(Z x)^{\wedge} 0.5$
Convert impact area to equivalent diameter
mass = weight/g
thickness
0.3958

2000
=839/(B36*B37*B38)
60.994
0.00000439
=B41/B40
0
2
$=\operatorname{SQRT}\left(2^{*} 32.17^{*}\right.$ B44)
=(B46*B37)/B42
=B36/B37
=B37/B38
1
= B 37 *B38
$=($ B41*B50*B51)/(2*B39)
$=($ B41*32.17)/B39
$=\operatorname{EXP}\left(-2 * B 52^{*} \mathrm{~B} 45\right)$
= $\mathrm{B} 53^{*}$ B51
=2*B52*B45
=B46^2
=32.17/B52
$=\mathrm{B5} 5^{*}(1-\mathrm{B} 56) /\left(2^{*}\left(\mathrm{~B} 52^{\wedge} 2\right)\right)$
=B54*(B46^2-B58-(B55/(2*B52^2)))
$=\mathrm{B} 58+\mathrm{B} 59+\mathrm{B} 60$
$=$ SQRT(B61)
$=2^{*}(($ (B51*144)/3.142)^0.5) in
=B39/32.17
$=\left(\left(\mathrm{B} 66^{*} \mathrm{~B} 63^{\wedge} 2 / 2\right)^{\wedge}(2 / 3)\right) /\left(672^{*} \mathrm{~B} 65\right)$ft
ft / s
ft
lb
$\mathrm{lb} / \mathrm{cu} f$
lb/ cu
ft
sq
$\mathrm{ft} / \mathrm{sec}$
ft
ft
ft/s
ft2
in
$\mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
in
PAGE: 194

Intermediate Beam Drop to Pool Floor		
Beam Length L	4.75	ft
Beam Width, d	0.4167	ft
Beam thickness	0.4167	ft
Beam weight, W	175	lb
Beam density	=B74/(B71*B72*B73)	$\mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	sq $\mathrm{ft} / \mathrm{sec}$
water density/gate density	= $876 / 875$	
drop distance in air	7.3	ft
drop distance in water	37.7	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	=SQRT (2*32.17*B79)	ft / s
Reynolds no $=\left(\right.$ Vo $\left.{ }^{\text {* }} \mathrm{d}\right) /$ viscosity	$=(\mathrm{B81}$ * $\mathrm{B72}) / \mathrm{B77}$	
Check L/d using beam length and width	=B71/B72	
Check L/D using beam width and thickness	= $\mathrm{B72} / \mathrm{B73}$	
Drag Coefficient CD	1.16	
A $0=$ width * thickness	=872*B73	ft2
a = (water density * Drag Coeff * Ao)/ (2*W)	=(B76*B85*B86)/(2*B74)	
b = (water density * g // W	=(B76*32.17)/B74	
Terminal Velocity, V2 = SQRT(g^{*} (1-density water/density beam)/a)	$=S Q R T((32.17 *((1-B 78) / B 87))$)	
$\exp \left(-2 * a^{*} x\right)$ where $\mathrm{x}=$ drop distance in water	$=\operatorname{EXP}(-2 * B 87 * B 80)$	
bAo	= $888 *$ B86	
$\exp (2 \mathrm{aL})$		
2aL	=2*B87*B71	
V2^2	=B89^2	
Vo^2	= B81^2	
$\mathrm{bAo}^{*}\left[\exp (2 \mathrm{aL})^{*}(1-2 \mathrm{aL})-1\right] / 2 a^{\wedge} 2$	$=$ B91* $\left.{ }^{(B 92}{ }^{*}(1-\mathrm{B93})-1\right) /\left(2^{*}(\mathrm{B87} \mathrm{\wedge} 2)\right)$	
$\mathrm{g}^{*}(\exp (2 \mathrm{aL}) *$ wtr dens/beam dens -1)/a	=32.17* ${ }^{\text {(B92*B78-1)/B87 }}$	
22x	= $\mathrm{B94+}$ (B90*(B96+B95+B98))	
$V_{s}=(Z x)^{\wedge} 0.5$	=SQRT(B99)	ft / s
Convert impact area to equivalent diameter	$=2^{*}\left(\left(\right.\right.$ (B86**144)/3.142)^$\left.{ }^{\wedge} 0.5\right)$	
mass $=$ weight/g	= $\mathrm{B74} / 32.17$	$\mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness	$=((B 104 * B 101 \wedge 2 / 2) \wedge(2 / 3)) /(672 * B 103)$	in

Intermediate Beam Drop to Gate Opening		
Beam Length L	4.75	ft
Beam Width, d	0.4167	ft
Beam thickness	0.4167	ft
Beam weight, W	175	lb
Beam density	=B112/(B109*B110*B111)	lb/cu ft
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	$\begin{aligned} & \mathrm{sq} \\ & \mathrm{ft} / \mathrm{sec} \end{aligned}$
water density/gate density	=B114/B113	
drop distance in air	7.3	ft
drop distance in water	19.7	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	=SQRT(2*32.17*B117)	ft/s
Reynolds no =(Vo $\left.{ }^{\text {* }} \mathrm{d}\right) /$ viscosity	=(B119*B110)/B115	
Check L/d using beam length and width	=B109/B110	
Check L/D using beam width and thickness	=B110/B111	
Drag Coefficient CD	1.16	
Ao = width * thickness	= ${ }^{1} 110 *$ B111	ft2
a = (water density * Drag Coeff * Ao)/ (2*W)	=(B114*B123*B124)/(2*B112)	
$\mathrm{b}=($ water density * g$) / \mathrm{W}$	=(B114*32.17)/B112	
Terminal Velocity, V2 = SQRT (g^{*} (1-density water/density beam)/a)	$=\operatorname{SQRT}\left(\left(32.17^{*}(1-\mathrm{B116}) / \mathrm{B} 125\right)\right)$)	ft/s
$\exp \left(-2^{*}{ }^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water	= EXP (-2*B125*B118)	
bAo	=B126*B124	
$\exp (2 \mathrm{aL})$	= EXP(2*B125*B109)	
2aL	=2*B125*B109	
V2^2	=B127^2	
Vo^2	= B119^2	
$\mathrm{bAO}^{*}\left[\exp (2 \mathrm{aL})^{*}(1-2 \mathrm{aL})-1\right] / 2 \mathrm{a}^{\wedge} 2$	$\begin{aligned} & =B 129^{*}\left(B 130^{*}(1-\mathrm{B} 131)-\right. \\ & 1) /\left(2^{*}\left(B 125^{\wedge} 2\right)\right) \end{aligned}$	
$\mathrm{g}^{*}(\exp (2 \mathrm{aL}) *$ wtr dens/beam dens -1)/a	$=32.17^{*}($ B130*B116-1)/B125	
Z2x	= B132+(B128*(B134+B133+B135))	
$V_{s}=(Z x)^{\wedge} 0.5$	$=$ SQRT(B136)	ft / s
Convert impact area to equivalent diameter	$=2^{*}\left(\left(\right.\right.$ B124*144)/3.142) $\left.{ }^{\wedge} 0.5\right)$	in
mass $=$ weight/g	= B112/32.17	$\mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness	$=((B 141 * B 138 \wedge 2 / 2) \wedge(2 / 3)) /(672 * B 140)$	in

Alternate Beam Drop to Pool Floor
Beam Length L 12

ft
Beam Width, d 0.5
Beam thicknessBeam weight, WBeam densitywater density @ 160Fwater kinematic viscosity @ 160Fwater density/gate density
drop distance in air
drop distance in water
Vo where h is drop distance in air, $V=(2 \mathrm{gh})^{\wedge} 2$
Reynolds no $=\left(\right.$ Vo $\left.{ }^{*} d\right) /$ viscosity
Check L / d using beam length and width
Check L/D using beam width and thickness
Drag Coefficient CD
AO $=$ width * thickness$a=($ water density * Drag Coeff * AO)/ (2*W)b = (water density * g$) / \mathrm{w}$Terminal Velocity, V2 = SQRT((g*(1-density water/density beam)/a)
$\exp \left(-2^{*} a * x\right)$ where $x=$ drop distance in water
bAo
$\exp (2 a \mathrm{~L})$
2aL
V2^2
Vo^2
bAo* $[\exp (2 a L) *(1-2 a L)-1] / 2 a^{\wedge} 2$
$\mathrm{g}^{*}(\exp (2 \mathrm{aL}) *$ wtr dens/beam dens -1$) / a$
22x
$\mathrm{V} s=(\mathrm{Zx})^{\wedge} 0.5$
Convert impact area to equivalent diameter mass $=$ weight $/ \mathrm{g}$ thickness
0.333
-ft
200
=B149/(B146*B147*B148)
60.994
0.00000439
=B151/B150
15.3
37.7
$=\operatorname{SQRT}\left(2^{* 32.17 * B 154)}\right.$
$\mathrm{lb} / \mathrm{cuft}$
$\mathrm{lb} / \mathrm{cu}$
ft
sq
$\mathrm{ft} / \mathrm{sec}$
ft
ft
ft / s
$=($ B156*B147)/B152
=B146/B147
=B147/B148
1.16
=B147*B148
$=($ B151*B160*B161)/(2*B149)
=(B151*32.17)/B149
$=$ SQRT ((32.17*((1-B153)/B162)))
$=\operatorname{EXP}\left(-2^{*} B 162^{*}\right.$ B155)
=B163*B161
$=\operatorname{EXP}(2 * B 162 * B 146)$
=2*B162*B146
=B164^2
$=B 156^{\wedge} 2$
=B166*(B167*(1-B168)-
1)/(2*(B162^2))
=32.17*(B167*B153-1)/B162
=B169+(B165*(B171+B170+B172))
$=$ SQRT(B173)
$=2^{*}\left(\left(\left(B 161^{*} 144\right) / 3.142\right)^{\wedge} 0.5\right) \quad$ in
$=8149 / 32.17 \quad \mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
$=\left(\left(B 178^{*} B 175^{\wedge} 2 / 2\right)^{\wedge}(2 / 3)\right) /\left(672^{* B 177)}\right.$ in

CALCULATION DETAILS

Alternate Beam Drop to Gate Opening		
Beam Length L	12	ft
Beam Width, d	0.5	ft
Beam thickness	0.333	ft
Beam weight, W	200	lb
Beam density	=B186/(B183*B184*B185)	$\mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	$\begin{aligned} & \mathrm{sq} \\ & \mathrm{ft} / \mathrm{sec} \end{aligned}$
water density/gate density	=8188/B187	
drop distance in air	15.3	ft
drop distance in water	19.7	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	=SQRT(2*32.17*B191)	ft / s
Reynolds no $=\left(\right.$ Vo $\left.{ }^{\text {* }} \mathrm{d}\right) /$ viscosity	=(B193*B184)/B189	
Check L/d using beam length and width	=B183/B184	
Check L/D using beam width and thickness	=B184/B185	
Drag Coefficient CD	1.16	
Ao = width * thickness	=B184*B185	ft 2
a = (water density * Drag Coeff * Ao)/ (2*W)	=(B188*B197*B198)/(2*B186)	
$\mathrm{b}=$ (water density * g)/ W	=(B188*32.17)/B186	
Terminal Velocity, V2 = SQRT(s^{*} (1-density water/density beam)/a)	$=$ SQRT($\left.32.17^{*}(1-\mathrm{B190}) / \mathrm{B199}\right)$)	ft / s
$\exp \left(-2^{*} \mathrm{a}^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water	= EXP(-2*B199*B192)	.
bAo	=B200*B198	
$\exp (2 \mathrm{aL})$	= EXP(2*B199*B183)	
2aL	=2*B199*B183	
V2^2	= B201^2	
Vo^2	= $\mathrm{B1}^{\text {a }}{ }^{\wedge} 2$	
$b A o^{*}\left[\exp (2 \mathrm{aL})^{*}(1-2 \mathrm{aL})-1\right] / 2 a^{\wedge} 2$	=B203*(B204*(1-B205)-	
	1)/(2*(B199^2))	
$\mathrm{g}^{*}(\exp (2 \mathrm{aL}) *$ wtr dens/beam dens -1)/a	=32.17* (B204*B190-1)/B199	
22x	=B206+(B202* (B208+B207+B209))	
Vs $=(Z x)^{\wedge} 0.5$	=SQRT(B210)	ft / s
Convert impact area to equivalent diameter	$=2^{*}(($ B198*144)/3.142)^0.5)	in
mass $=$ weight/g	=B186/32.17	$\mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness	$=\left((B 215 * B 212 \wedge 2 / 2)^{\wedge}(2 / 3)\right) /(672 * B 214)$	in

Load Drop to Racks

Gate Drop to Racks		
Gate Length L	24.39	ft
Gate Width, d	4.771	ft
Gate thickness	0.3958	ft
Gate weight, W	2000	1 b
Gate density	= $\mathrm{B} /$ /(B2*B3*B4)	$\mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	sq $\mathrm{ft} / \mathrm{sec}$
water density/gate density	= $\mathrm{B7} / \mathrm{B6}$	
drop distance in air	0	ft
drop distance in water	5.14	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	$=S Q R T(2 * 32.17 * B 10)$	ft / s
Reynolds no =(Vo*d)/viscosity	=($\left.\mathrm{B} 12^{*} \mathrm{~B} 3\right) / \mathrm{B8}$	
Check L/d using gate length and width	= $\mathrm{B} 2 / \mathrm{B} 3$	
Check L/D using gate width and thickness	= B3/B4	
Drag Coefficient CD	1	
Ao = width * thickness	= $\mathrm{B3}^{*} \mathrm{~B} 4$	ft2
a = (water density * Drag Coeff * Ao)/ (2*W)	=(B7*B16*B17)/(2*B5)	
b = (water density * g)/W	$=(\mathrm{B7} * 32.17) / \mathrm{B5}$	
$\exp \left(-2^{*} \mathrm{a}^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water	$=\operatorname{EXP}(-2 * B 18 * B 11)$	
bAo	=B19*B17	
2ax	=2*B18*B11	
Vo^2	= B12^2 $^{\text {2 }}$	
g/a	=32.17/B18	
bAo*[(1-2ax)]/2a^2	$=\mathrm{B21}$ * $(1-\mathrm{B22}) /\left(2^{*}\left(\mathrm{~B} 18^{\wedge} 2\right)\right)$	
$\exp (-2 a x) *\left[\left(V o^{\wedge} 2-(g / a)-\left(b A o / 2 * a^{\wedge} 2\right)\right]\right.$	$\begin{aligned} & =\mathrm{B} 20^{*}\left(\mathrm{~B} 12^{\wedge} 2-\mathrm{B} 24-\right. \\ & \left(\mathrm{B} 21 /\left(2^{*} \mathrm{~B} 18^{\wedge} 2\right)\right) \end{aligned}$	
Z1x	$=B 24+B 25+B 26$	
$V \mathrm{~s}=(\mathrm{Zx})^{\wedge} 0.5$	=SQRT(B27)	ft / s

REVISION: 0
PAGE:
199

Intermediate Beam Drop to Racks

Beam Length L	4.75	ft
Beam Width, d	0.4167	$f t$
Beam thickness	0.4167	$f t$
Beam weight, W	175	lb
Beam density	=835/(B32*B33*B34)	$\mathrm{lb} / \mathrm{cu} \mathrm{ft}$
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	$\begin{aligned} & \mathrm{sq} \\ & \mathrm{ft} / \mathrm{sec} \end{aligned}$
water density/beam density	=837/B36	
drop distance in air	7.3	ft
drop distance in water	22.841	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	$=\operatorname{SQRT}(2 * 32.17 *$ B40)	ft / s
Reynolds no =(Vo * d)/viscosity	=(B42*B33)/B38	
Check L / d using beam length and width	=832/B33	
Check L/D using beam width and thickness	=833/B34	
Drag Coefficient CD	1.16	
Ao = width * thickness	= $833 *$ B34	ft2
a = (water density * Drag Coeff * AO)/ (2*W)	=(B37*B46*B47)/(2*B35)	
b = (water density * g //W	=(B37*32.17)/835	
Terminal Velocity, V2 = SQRT(g^{*} (1-density water/density beam)/a)	=SQRT((32.17*(1-B39)/B48))	ft / s
$\exp (-2 * a * x)$ where $\mathrm{x}=$ drop distance in water	= EXP(-2*B48*B41)	
bAo	=849*B47	
$\exp (2 \mathrm{aL}$)	$=\operatorname{EXP}(2 * B 48 * B 32)$	
2aL	=2*B48*B32	
V2^2	= $\mathrm{BFO}^{\text {^2 }}$	
Vo^2	= $\mathrm{B4}^{\wedge}{ }^{\text {2 }}$	
bAo* $\exp (2 \mathrm{aL})^{*}(1-2 \mathrm{~L}$)-1]/2a^2	$=\mathrm{B5} 2^{*}\left(\mathrm{B5} 3^{*}(1-\mathrm{B} 54)-1\right) /\left(2^{*}\left(\mathrm{B48} 8^{\wedge} 2\right)\right)$	
$\mathrm{g}^{*}(\exp (2 \mathrm{aL}) *$ wtr dens/beam dens -1)/a	=32.17*(B53*B39-1)/B48	
Z2x	= $\mathrm{B} 55+$ (B51* (B57+B56+B58) $)$	
$V s=(Z x)^{\wedge} 0.5$	=SQRT(B59)	ft / s

Alternate Beam Drop to Racks		
Beam Length L	12	ft
Beam Width, d	0.5	ft
Beam thickness	0.333	ft
Beam weight, W	200	lb
Beam density	=B68/(B65*B66*B67)	$\mathrm{lb} / \mathrm{cuft}$
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	$\begin{aligned} & \mathrm{sq} \\ & \mathrm{ft} / \mathrm{sec} \end{aligned}$
water density/beam density	=870/869	
drop distance in air	15.3	ft
drop distance in water	22.84	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	=SQRT(2*32.17*B73)	ft / s
Reynolds no =(Vo * d)/viscosity	=(B75*B66)/B71	
Check L/d using beam length and width	=B65/B66	
Check L/D using beam width and thickness	=B66/B67	
Drag Coefficient CD	1.16	
Ao = width * thickness	=B66*B67	ft2
a = (water density * Drag Coeff * Ao)/ (2*W)	=(B70*B79*B80)/(2*B68)	
$\mathrm{b}=($ water density * g$) / \mathrm{W}$	$=($ B70*32.17)/B68	
Terminal Velocity, V2 = SQRT($\mathrm{g}^{*}(1-$ density water/density beam)/a)	=SQRT((32.17*(1-B72)/B81))	ft / s
$\exp \left(-2^{*}{ }^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water	= EXP(-2*B81*B74)	
bAo	=B82*B80	
$\exp (2 \mathrm{aL})$	= EXP($2 * B 81 * B 65)$	
2 aL	=2*B81*B65	
V2^2	= $883{ }^{\wedge} 2$	
Vo^2	= $875 \wedge 2$	
bAo* $\left.\exp (2 \mathrm{aL})^{*}(1-2 \mathrm{aL})-1\right] / 2 a^{\wedge} 2$	$=\mathrm{B85}{ }^{*}\left(\mathrm{B86}{ }^{*}(1-\mathrm{B87})-1\right) /\left(2^{*}\right.$ (B81^2) $)$	
$\mathrm{g}^{*}(\exp (2 \mathrm{LL}) *$ wtr dens/beam dens -1)/a	=32.17*(B86*B72-1)/B81	
22x	= B88+(B84* (B90+B89+B91))	
Vs $=(\mathrm{Zx})^{\wedge} 0.5$	=SQRT(B92)	ft/s

Gate Tip On Piping Velocity Cases

Gate Tip Onto Piping SFC-012-001-3		
Gate Length L	4.771	ft
Gate Width, d	24.39	ft
Gate thickness	0.396	ft
Gate weight, W	2000	lb
Gate density	= $\mathrm{B} 5 /(\mathrm{B2} 2 * \mathrm{~B} 3 * \mathrm{~B} 4$)	$\mathrm{lb} / \mathrm{cuft}$
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	sq $\mathrm{ft} / \mathrm{sec}$
water density/gate density	=B7/B6	
drop distance in air	0	ft
drop distance in water	1.28	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	$=$ SQRT ${ }^{(2 * 32.17 * B 10) ~}$	ft / s
Reynolds no = (Vo * d)/viscosity	=(B12*B3)/B8	
Check L/d using gate length and width	= $\mathrm{B} 2 / \mathrm{B} 3$	
Check L/D using gate width and thickness	= $\mathrm{B} 3 / \mathrm{B4}$	
Drag Coefficient CD	1	
Ao = width * thickness	= $\mathrm{B} 3 * \mathrm{~B} 4$	ft2
a = (water density * Drag Coeff * Ao)/ (2*W)	=(B7*B16*B17)/(2*B5)	
$\mathrm{b}=($ water density * g$) / \mathrm{W}$	$=(B 7 * 32.17) / B 5$,	
$\exp \left(-2^{*}{ }^{*} x\right)$ where $x=$ drop distance in water	$=\operatorname{EXP}(-2 * B 18 * B 11)$	
bAo	=B19*B17	
$2 a x$	=2*B18*B11	
Vo^2	= $812^{\wedge} 2$	
g/a	=32.17/B18	
bAo*[(1-2ax)]/2a^2	=B21* (1-B22)/(2*(B18^2))	
$\exp (-2 a x) *\left[\left(V o^{\wedge} 2-(g / a)-(b A o / 2 * a \wedge 2)\right]\right.$	$=\mathrm{B} 20^{*}\left(\mathrm{~B} 12^{\wedge} 2-\mathrm{B} 24-\left(\mathrm{B} 21 /\left(2^{*} \mathrm{~B} 18^{\wedge} 2\right)\right)\right.$)	
Z1x	= $224+\mathrm{B} 25+\mathrm{B} 26$	
$V_{5}=(Z x)^{\wedge} 0.5$	=SQRT(B27)	ft / s
Convert impact area to equivalent diameter	1.596	in
mass $=$ weight/g	= B5/32.17	$\mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness	$=\left((\mathrm{B} 32 * B 29 \wedge 2 / 2)^{\wedge}(2 / 3)\right) /(672 * B 31)$	in

Gate Tip On Piping SFC-012-014-3		
Gate Length L	4.771	ft
Gate Width, d	24.39	ft
Gate thickness	0.396	ft
Gate weight, W	2000	16
Gate density	= B39/(B36*B37*B38)	$\mathrm{lb} / \mathrm{cuft}$
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	$\begin{aligned} & \mathrm{sq} \\ & \mathrm{ft} / \mathrm{sec} \end{aligned}$
water density/gate density	= $\mathrm{B4} 1 / \mathrm{B40}$	
drop distance in air	0	ft
drop distance in water	2.105	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	=SQRT(2*32.17*B44)	ft / s
Reynolds $n \mathrm{ol}=\left(\mathrm{Vo}{ }^{*} \mathrm{~d}\right) /$ viscosity	=(B46*B37)/B42	
Check L/d using gate length and width	= $\mathrm{B} 36 / \mathrm{B} 37$	
Check L/D using gate width and thickness	=837/838	
Drag Coefficient CD	1	
Ao = width * thickness	=B37*B38	ft2
$a=($ water density * Drag Coeff * Ao)/ (2*W)	$=($ B41*B50*B51)/(2*B39)	
$\mathrm{b}=($ water density * g$) / \mathrm{W}$	=(B41*32.17)/B39	
$\exp \left(-2^{*}{ }^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water	$=\operatorname{EXP}(-2 * B 52 * B 45)$	
bAo	= ${ }^{\text {5 }}$ * ${ }^{\text {B }}$ 51	
2 ax	=2*B52*B45	
Vo^2	= $\mathrm{B}_{6} \mathrm{C}^{2} 2$	
g / a	=32.17/B52	
bAo*[(1-2ax)]/2a^2	= B55* ${ }^{\text {(1-B56)/(2*(B52^2) }}$)	
$\exp (-2 a x) *\left[\left(V o^{\wedge} 2-(g / a)-(b A o / 2 * a \wedge 2)\right]\right.$	= B54*(B46^2-B58-(B55/(2*B52^2)))	
21x	= $\mathrm{B} 58+\mathrm{B59}+\mathrm{B60}$	
$V_{s}=(Z x)^{\wedge} 0.5$	$=$ SQRT(B61)	ft / s
Convert impact area to equivalent diameter	1.596	
mass $=$ weight/g	= $339 / 32.17$	lb -s2/ft
thickness	$=\left(\left(B 66 * B 63^{\wedge} 2 / 2\right)^{\wedge}(2 / 3)\right) /\left(672^{*} \mathrm{B65}\right)$	in

Gate Tip On Piping SFC-012-006-3		
Gate Length L	4.771	ft
Gate Width, d	24.39	ft
Gate thickness	0.396	ft
Gate weight, W	2000	lb
Gate density	=B74/(B71*B72*B73)	$\mathrm{lb} / \mathrm{cuft}$
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	$\begin{aligned} & \mathrm{sq} \\ & \mathrm{ft} / \mathrm{sec} \end{aligned}$
water density/gate density	= $876 / 875$	
drop distance in air	0	ft
drop distance in water	3.555	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	=SQRT(2*32.17*B79)	ft/s
Reynolds no =(Vo * d)/viscosity	=(B81*B72)/B77	
Check L/d using gate length and width	=B71/B72	
Check L/D using gate width and thickness	=B72/B73	
Drag Coefficient CD	1	
Ao = width * thickness	= ${ }^{\text {72* }}$ B73	ft2
$a=$ (water density * Drag Coeff * Ao)/ (2*W)	$=(\mathrm{B76*B85*B86)/(2*B74)}$	
$b=\left(\right.$ water density $\left.{ }^{*} \mathrm{~g}\right) / \mathrm{W}$	=(B76*32.17)/B74	
$\exp \left(-2^{*} \mathrm{a}^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water	=EXP(-2*B87*B80)	
bAo	=B88*B86	
2 ax	=2*B87*B80	
Vo^2	= $\mathrm{B81} \mathrm{\wedge}$ 2	
g/a	=32.17/B87	
bAo*[(1-2ax)]/2a^2	= $\mathrm{B90}{ }^{*}(1-\mathrm{B91}) /\left(2^{*}\left(\mathrm{B87} 7^{\wedge} 2\right)\right)$	
$\exp (-2 a x) *\left[\left(V 0^{\wedge} 2-(\mathrm{g} / \mathrm{a})-\left(\mathrm{bAo} / 2 * \mathrm{a}^{\wedge} 2\right)\right]\right.$		
Z1x	= $893+\mathrm{B94}+\mathrm{B95}$	
$V_{s}=(Z x)^{\wedge} 0.5$	=SQRT(B96)	ft / s
Convert impact area to equivalent diameter	1.596	
mass $=$ weight/g	= ${ }^{\text {1 }}$ 74/32.17	$\mathrm{lb}-\mathrm{s} 2 / \mathrm{ft}$
thickness	$=\left(\left(\mathrm{B} 101{ }^{*} \mathrm{~B} 98^{\wedge} 2 / 2\right)^{\wedge}(2 / 3)\right) /\left(672^{*} \mathrm{~B} 100\right)$	in

Gate Tip On Piping SFC-012-007-3		
Gate Length L	4.771	ft
Gate Width, d	24.39	ft
Gate thickness	0.396	ft
Gate weight, W	2000	lb
Gate density	=B109/(B106*B107*B108)	$\mathrm{lb} / \mathrm{cuft}$
water density @ 160F	60.994	$\begin{aligned} & \mathrm{lb} / \mathrm{cu} \\ & \mathrm{ft} \end{aligned}$
water kinematic viscosity @ 160F	0.00000439	$\begin{aligned} & \mathrm{sq} \\ & \mathrm{ft} / \mathrm{sec} \end{aligned}$
water density/gate density	=B111/B110	
drop distance in air	0	ft
drop distance in water	4.72	ft
Vo where h is drop distance in air, $\mathrm{V}=(2 \mathrm{gh})^{\wedge} 2$	=SQRT(2*32.17*B114)	ft/s
Reynolds no =(Vo * d)/viscosity	=(B116*B107)/B112	
Check L/d using gate length and width	=B106/B107	
Check L/D using gate width and thickness	= $8107 / \mathrm{B108}$	
Drag Coefficient CD	1	
Ao = width * thickness	=B107*B108	ft2
a = (water density * Drag Coeff * Ao)/ (2*W)	$=(\mathrm{B111} * \mathrm{~B} 120 * \mathrm{~B} 121) /\left(2^{*} \mathrm{~B} 109\right)$	
$\mathrm{b}=\left(\right.$ water density ${ }^{\text {* }} \mathrm{g}$ //W	=(B111*32.17)/B109	
exp($\left.-2^{*}{ }^{*} \mathrm{x}\right)$ where $\mathrm{x}=$ drop distance in water	= EXP(-2*B122*B115)	
bAo	=B123*B121	
2 ax	=2*B122*B115	
Vo^2	= $\mathrm{B116}{ }^{\wedge} 2$	
g/a	=32.17/B122	
bAo*[(1-2ax)]/2a^2	= B125* $^{*}(1-\mathrm{B126}) /\left(2^{*}(\mathrm{B122}\right.$ ^2) $)$	
$\exp (-2 a x) *\left[\left(V 0^{\wedge} 2-(g / a)-(b A o / 2 * a \wedge 2)\right]\right.$	$\begin{aligned} & =B 124^{*}\left(B 116^{\wedge} 2-\mathrm{B} 128-\right. \\ & \left.\left(\mathrm{B} 125 /\left(2^{*} \mathrm{~B} 122^{\wedge} 2\right)\right)\right) \end{aligned}$	
21x	$=\mathrm{B} 128+\mathrm{B} 129+\mathrm{B} 130$	
$\mathrm{V} s=(\mathrm{Zx})^{\wedge} 0.5$	=SQRT(B131)	ft/s
Convert impact area to equivalent diameter	1.596	in
mass $=$ weight/g	=B109/32.17	lb-s2/ft
thickness	$=\left(\left(\mathrm{B136} \text { * } \mathrm{B} 133^{\wedge} 2 / 2\right)^{\wedge}(2 / 3)\right) /(672 * B 135)$	in

CALCULATION DETAILS

Piping Yield and Ductility Ratio

Line SFC-012-001		
g	32.174	$\mathrm{ft} / \mathrm{s} 2$
mass per length	49.56	$\mathrm{lb} / \mathrm{ft}$
		length
Dx $=2$ in	=2/12	ft
$\mathrm{d}=12.75$ in	$=12.75 / 12$	ft
($\mathrm{Dx}+2 \mathrm{~d}$)	$=84+\left(2^{*} \mathrm{~B} 5\right)$	ft
$\mathrm{Me}=(\mathrm{Dx}+2 \mathrm{~d})^{*} \mathrm{Mx}^{\text {a }}$	$=(\mathrm{B6} * \mathrm{~B} 3) / \mathrm{B} 2$	lb
Mm = 2000/g	=2000/B2	lb
Impact velocity	7.407	ft / s
Vs	= $810 * 12$	in / s
Es $=$	$=\left(89 \wedge 2^{*} 811^{\wedge} 2\right) /\left(2^{*}(89+B 7)\right)$	
Mm2*Vs2/2(Mm+Me)		
1	279.3	in4
E	27700000	lb/in2
fdy	30000	lb/in2
length, ft	24	ft
L	=817*12	in
$\mathrm{Rm}=8^{*} \mathbf{1}^{*} \mathrm{fdy} /\left(L^{*} \mathrm{~d}\right)$	$=\left(8^{*} \mathrm{~B} 14 * \mathrm{~B} 16\right) /\left(\mathrm{B} 18^{*} 12.75\right)$	lb
$x e=R m L \wedge 3 / 48 \mathrm{El}$	$=\left(\mathrm{B} 19 * \mathrm{~B} 18^{\wedge} 3\right) /\left(48^{*} \mathrm{~B} 15 *\right.$ B14 $)$	in
mu	$=\mathrm{B} 12 /(\mathrm{B21*B19})+0.5$	

Line SFC-012-014		
g	32.174	ft/s2
mass per length	49.56	$\mathrm{lb} / \mathrm{ft}$ length
$D \mathrm{C}=2$ in	$=2 / 12$	ft
$\mathrm{d}=12.75$ in	$=12.75 / 12$	ft
($\mathrm{Dx}+2 \mathrm{~d}$)	= $\mathrm{B} 30+(2 * \mathrm{~B} 31$)	ft
$\mathrm{Me}=(\mathrm{Dx}+2 \mathrm{~d})^{*} \mathrm{Mx}$	$=($ B32*B29)/B28	lb
Mm $=2000 / \mathrm{g}$	=2000/B28	lb
Impact velocity	8.15	ft / s
Vs	=B36*12	in/s
Es =		
Mm2*Vs2/2(Mm+Me)	I)	
1	279.3	in4
E	27700000	$\mathrm{lb} / \mathrm{in} 2$
fdy	30000	lb/in2
length, ft	24	ft
L	= $\mathrm{B4}^{*}{ }^{*} 12$	in
$\mathrm{Rm}=8^{*} \mathrm{l}^{*} \mathrm{fdy} /\left(L^{*} \mathrm{~d}\right)$	$=(8 * B 40 * B 42) /(844 * 12.75)$	
$x e=R m L \wedge 3 / 48 \mathrm{EI}$	$=\left(\mathrm{B45}{ }^{*} \mathrm{~B} 44 \wedge 3\right) /\left(48^{* B 41 * B 40)}\right.$	
mu	= $838 /(\mathrm{B47*}$ B45) +0.5	

Line SFC-012-006		
g	32.174	ft/s2
mass per length	49.56	$\mathrm{lb} / \mathrm{ft}$ length
$D \mathrm{x}=2$ in	=2/12	$f t$
$\mathrm{d}=12.75$ in	= 12.75/12	ft
($\mathrm{Dx}+2 \mathrm{~d}$)	= $\mathrm{B} 56+(2 * B 57)$	ft
$\mathrm{Me}=(\mathrm{Dx}+2 \mathrm{~d})^{*} \mathrm{Mx}$	=(B58*B55)/B54	lb
Mm $=2000 / \mathrm{g}$	=2000/B54	lb
Impact velocity	7.404	ft / s
Vs	=B62*12	in / s
Es $=$	$=\left(\mathrm{B61} 2^{*} \mathrm{~B} 63^{\wedge} 2\right) /\left(2^{*}(\mathrm{~B} 61+\mathrm{B59}\right.$	
Mm2*Vs2/2(Mm+Me)	I)	
1	279.3	in4
E	27700000	lb/in2
fdy	30000	lb/in2
length, ft	18	ft
L	=B69*12	in
$\mathrm{Rm}=8^{*} \mathrm{I}^{*} \mathrm{fdy} /\left(L^{*} \mathrm{~d}\right)$	= $\mathbf{8 *}^{*} \mathrm{B66*} \mathbf{B 6 8) / (B 7 0 * 1 2 . 7 5) ~}$	
$x e=\operatorname{RmL}$ ^3/48EI	$=(B 71 * B 70 \wedge 3) /(48 * B 67 * B 66)$	
mu	$=\mathrm{B64/(B73*B71)+0.5}$	

REVISION: 0

PAGE: 208

Line SFC-012-007		
g	32.174	ft/s2
mass per length	49.56	$\mathrm{lb} / \mathrm{ft}$
$\mathrm{Dx}=2$ in	=2/12	
$\mathrm{d}=12.75$ in	$=12.75 / 12$	ft
($\mathrm{Dx}+2 \mathrm{~d}$)	= $\mathrm{B} 82+(2 * B 83)$	ft
$M e=(D x+2 d) * M x$	$=\left(\mathrm{B84*}{ }^{*} 81\right) / \mathrm{B80}$	lb
Mm $=2000 / \mathrm{g}$	=2000/B80	lb
Impact velocity	4.94	ft / s
Vs	= $888 * 12$	in / s
Es $=$		
Mm2*Vs2/2(Mm+Me)	I)	
1	279.3	in4
E	27700000	lb/in2
fdy	30000	lb/in2
length, ft	18	ft
\llcorner	= $895 * 12$	in
$\mathrm{Rm}=\mathbf{8}^{*} \mathrm{I}^{*} \mathrm{fdy} /\left(\mathrm{L}^{*} \mathrm{~d}\right)$	= (8*B92*B94)/(B96*12.75)	
$x e=R m L \wedge 3 / 48 \mathrm{El}$	$=\left(\mathrm{B97*}{ }^{\text {B99^3 }}\right.$)/(48*B93*B92)	
mu	= $890 /(\mathrm{B99}$ *B97) +0.5	

Attachment 3
 RBG-47505

Licensee Commitment
(1 page)

This table identifies actions discussed in this letter for which Entergy commits to perform. Any other actions discussed in this submittal are described for the NRC's information and are not commitments.

COMMITMENT	TYPE (Check one)		SCHEDULED COMPLETION DATE (If Required)
	$\begin{aligned} & \text { ONE- } \\ & \text { TIME } \\ & \text { ACTION } \end{aligned}$	CONTINUING COMPLIANCE	
During movement of pool gates, no fuel in the affected pools will have been part of a critical core within the preceding 14 days.		X	implementation of this amendment

