
Quality Requirements for Software-dependent Safety-critical Systems
History, current status, and future needs

Sushil Birla
Office of Nuclear Regulatory Research

United States Nuclear Regulatory Commission
Phone: +1 301 2517660, Email: Sushil.Birla@nrc.gov

Mika Johansson

Electrical and Automation Systems, Nuclear Reactor Regulation
Säteilyturvakeskus (STUK) - Radiation and Nuclear Safety Authority Finland

Email: Mika.Johansson@stuk.fi

Abstract

Whereas current engineering practice focuses on functional requirements, considerations other
than the function (e.g., safety; security; maintainability) are relegated into a category (unfortunately)
called “non-functional requirements.” Although ISO/IEC/ IEEE 24765 §3.1900 defines this term as
“a software requirement that describes not what the software will do but how the software will do it,”
the authoritative family of ISO/IEC software engineering standards for software product quality
requirements and evaluation (ISO/IEC 25000 series) uses the term, “quality requirements” instead
of “non-functional requirements.” ISO/IEC/ IEEE 24765 §3.1900 notes: “Nonfunctional
requirements are sometimes difficult to test, so they are usually evaluated subjectively.” In contrast,
the ISO/IEC 25000 family of standards suggests an objective evaluation with the help of a quality
model, through which an abstract quality attribute is decomposed into measurable characteristics.
The authors trace the historic evolution of these ideas, present the current state of the standards,
and identify needs for future research and development of a quality model, focused on the domain
of digital safety systems for nuclear power plants.

1. Introduction

Many software-dependent critical systems have failed to meet their customers’ needs, even after

the system was verified to provide all the needed functions, all constituents of the system met their
respective requirement specifications and none, by itself, “failed.” These mishaps indicate gaps
between the customers’ needs and the “documented requirements” against which the system and

its constituents are verified. Our investigation focuses on a subset of these gaps that leads to
unintended behaviour, including mishaps.

Current common practice focuses on functional requirements. High-performance organizations

engineer systems relatively well in providing the nominal functions that their customers expect, i.e.,
in identifying and satisfying functional requirements, defined as follows, in [1] §3.1229:

Functional requirement: (1) A statement that identifies what a product or process must
accomplish to produce required behaviour and/or results. (2) A requirement that specifies a
function that a system or system component must be able to perform.

Other considerations (e.g.: safety; security; verifiability; comprehensibility) are relegated to the

category of “non-functional requirements,” defined as follows, in [1] §3.1900:

Nonfunctional requirement: (1) A software requirement that describes not what the
software will do but how the software will do it. Synonym: design constraints, non-
functional requirement… Nonfunctional requirements are sometimes difficult to test, so
they are usually evaluated subjectively.

Examples given in this definition include “software quality attributes” – a term that is discussed in

Section 2.

We contend that the need for engineering to prevent unintended behaviour is lost in the fuzziness

with which quality attributes are treated. The term, “non-functional” clouds the need to engineer for
quality attributes. The Oxford Dictionary defines “nonfunctional;” as follows:

1. Not having any particular purpose or function. Example: in some dolphins and small
whales, teeth have become virtually non-functional.
1.1. Not operating or in working order. Example: the cooker was non-functional except for

the hotplate’

One wonders, “If a requirement is non-functional, why bother?”

In the rest of this paper, we review the historical background of the relevant international standards

that contributed to this condition, analyze the current state of relevant standards, and conclude with

thoughts on a direction for the future.

2. Historical background of relevant international standards

Tracing back from the definition of the term, “non-functional requirement” cited above from [1] to
find its history, we did not find any authoritative source. The term was mentioned in ISO 9126 [3],

reviewed next.

2.1 ISO 9126 – Historical background

This background is intended for understanding the context of the following suggestion in [2]:

“A product quality model and quality requirements, such as found in ISO/IEC 9126-1 …
may be useful for aiding this activity (formulation of stakeholder requirements).”

Since ISO/IEC 9126-1:2001 was cancelled and replaced by ISO/IEC 25010:2011, the following

contents of this section are intended for understanding the evolution history, leading up to the
ISO/IEC 25000 series. Although these standards were created for software, most of the concepts

may be applied to the system level also, as indicated in [2].

ISO/IEC 9126:2001 was a 4-part standard for “Software engineering – product quality’ where the
four parts provided a quality model, external metrics, internal metrics, and quality-in-use metrics,
respectively.

In the introduction of ISO/IEC 9126-1, it states:

“The software product quality characteristics defined in this part of ISO/IEC 9126 can be
used to specify both functional and non-functional customer and user requirements.”

This is the only occurrence of the term “non-functional requirement” in [3]. However, note that
ISO/IEC/IEEE 29148:2011(E) [2] does not use this term.

ISO 9126 defined six quality characteristics and described a software product evaluation process

model.

2.1.1 History of characterizing quality

The following excerpts from Annex C of ISO 9126-1 [3] summarize the history of evolving the
concept of quality up to the year 2001:

1. To evaluate the quality of a product through some quantitative means, a set of quality
characteristics that describe the product and form the basis for the evaluation is required. This
part of ISO/IEC 9126 defines these quality characteristics for software products.

2. The state of the art in software technology does not yet present a well-established and widely
accepted description scheme for assessing the quality of software products.

3. Much work has been done since about 1976 by a number of individuals to define a software
quality framework. Models by McCall, Boehm, the US Air Force, and others have been adopted
and enhanced over the years.

4. … the need for one standard model came about … It is for this reason that the ISO/IEC JTC1
began to develop the required consensus and encourage standardization world-wide. … First
considerations originated in 1978, and in 1985 the development of ISO/IEC 9126 was started.
… it was decided that the best chance for establishing an International Standard was to
stipulate a set of characteristics based on a definition of quality that was subsequently used in
ISO 84021. This definition is accepted for all kinds of products and services. It starts with the
user's needs.

Various scholars have traced the history of prior work in formulating software quality models; for
example, see [4][5][6].

2.1.2 Characterization of attributes in ISO 9126-1

Section 7 of [3] organizes attributes of “quality in use” into the following four characteristics:

1. Effectiveness
2. Productivity
3. Safety
4. Satisfaction

Section 6 of [3] categorizes attributes of “external and internal quality” into the following six
characteristics:

1. Functionality
2. Reliability
3. Usability
4. Efficiency
5. Maintainability
6. Portability

Furthermore, it lists Security, Suitability, and Interoperability as sub-characteristics of Functionality.

Section 6.4 of [3] states:

“Clauses 6 and 7 define a hierarchical quality model (although other ways of categorizing
quality may be more appropriate in particular circumstances).”

We agree that “other ways of categorizing quality may be more appropriate in particular

circumstances,” e.g., for NPP digital safety systems, as discussed next.

2.1.3 Some observations and conclusions about information from ISO 9126

The following observations and conclusions focus on the information from ISO 9126 that is used to
evolve the ISO 25000 series of standards:

1. Different placement of Safety and Security does not support their integrated evaluation well.
In an NPP safety system, a security breach could become a safety hazard. The model
should reflect the contribution path.

2. In ISO 9126, “Analyzability” and “Testability” are sub-characteristics of “Maintainability.”
However, these characteristics are important in their own right (i.e., needed for an NPP
safety system, even if the system was not required to be maintainable) and should not be
buried under Maintainability.

1 “Quality management and quality assurance - vocabulary”’ withdrawn in 1994; superseded by ISO 9000.

3. The definition of analyzability in ISO 9126 (The capability of the software product to be
diagnosed for deficiencies or causes of failures in the software, or for the parts to be
modified to be identified) is not suitable for use in the safety analysis context, where the
meaning of analysis is much broader. It covers analysis during system development. For
example, the scope of the term includes preliminary hazard analysis and analysis to support
verification and validation.

4. “Testabilility” is too limited in scope. “Verifiability” is the more comprehensive and more
suitable term, including analysis of intermediate work products during system development,
performed well before any testable work product is available.

5. From these observations, we conclude that the ISO 9126 quality model is not suitable for the
domain of NPP safety systems. A domain-specific model should be devised, using similar
foundational concepts.

5.1. For NPP digital safety systems, where the safety function is the primary function,
SAFETY should be a top-level attribute (also known as intrinsic property or
characteristic) associated with the function, as well as, with the safety system.

5.2. Appropriate structure of sub-characteristics should be developed.
5.3. From those sub-characteristics, system-specific conditions and constraints should be

derived, such that the leaf-node level constraint is measurable [7].

3. Current state of knowledge about quality requirements

In this section, we review two international standardization efforts, ISO 29148 [2] and the ISO
25000 family [8][9][10] and three streams of research and development activities [11][12][13]0[16].

3.1 Review of ISO 29148

The introduction in ISO 29148 “Systems and software engineering – Lifecycle processes -

Requirements engineering” [2] states that:

“This International Standard provides a unified treatment of the processes and products
involved in engineering requirements throughout the life cycle of systems and software.
This International Standard is the result of harmonization of the following sources (later we
examine the claims of “unified treatment” and “harmonization”):

• ISO/IEC 12207:2008 (IEEE Std 12207-2008), Systems and software engineering —
Software life cycle processes

• ISO/IEC 15288:2008 (IEEE Std 15288-2008), Systems and software engineering —
System life cycle processes

• ISO/IEC/IEEE 15289:2011, Systems and software engineering — Content of life-cycle
information products (documentation)

• ISO/IEC TR 19759, Software Engineering — Guide to the Software Engineering Body of
Knowledge (SWEBOK)

• IEEE Std 830, IEEE Recommended Practice for Software Requirements Specifications

• IEEE Std 1233, IEEE Guide for Developing System Requirements Specifications

• IEEE Std 1362, IEEE Guide for Information Technology — System Definition — Concept
of Operations (ConOps) Document

• ISO/IEC TR 24748-1, Systems and software engineering — Life cycle management —
Part 1: Guide for life cycle management

• ISO/IEC/IEEE 24765, Systems and software engineering — Vocabulary”

ISO 29148 provides guidance for the execution of the ISO/IEC 15288 [18] and ISO/IEC 12207 [19]

processes that deal with requirements engineering (§2.1 in [2]).

The scope includes the following task relevant to the context of an NPP safety system, “Elicit

stakeholder requirements from the identified stakeholders” (§6.2.3.1 in [2]). A note therein provides
the following explanation:

Stakeholder requirements describe the needs, wants, desires, expectations and perceived
constraints of identified stakeholders. They are expressed in terms of a model that may be
textual or formal, that concentrates on system purpose and behaviour, and that is
described in the context of the operational environment and conditions. A product quality
model and quality requirements, such as found in ISO/IEC 9126-1 [3] and ISO/IEC 25030
[10], may be useful for aiding this activity. Stakeholder requirements include the needs and
requirements imposed by society, the constraints imposed by an acquiring organization
and the capabilities and operational characteristics of users and operator staff. …

For a critical system, requirements and constraints should also be influenced through hazard
analysis. For example, for an NPP safety system, both functional and quality requirements should
flow from hazard analysis. However, this connection is not recognized in [2], except for general

statements such as “There may also be safety or other regulatory constraints that drive system
requirements.”

The scope of [2] includes the following related task, “Define technical and quality in use measures

that enable the assessment of technical achievement” (§6.2.3.4 in [2]). A note therein provides the
following explanation:

This includes defining critical performance parameters associated with each effectiveness
measure identified in the stakeholder requirements. The critical performance measures are
analyzed and reviewed to ensure stakeholder requirements are met …. The ISO/IEC 9126
series of standards provides relevant quality measures.

This review leads to the conclusion that ISO 29148 does not provide a model for establishing
quality requirements, but refers to ISO 9126. Since [2] refers to [10], recognizing the existence of

the ISO 25000 family, we shift focus from ISO 9126 to the successor ISO 25000 family next.

3.2 Review of ISO 25000 family of standards

This review introduces the ISO 25000 series of standards through excerpts from [8][9][10],
identifying differences from ISO 9126, and deriving observations and conclusions about a quality
model suitable for NPP safety systems.

The “software quality requirements and evaluation” (SQuaRE) series of International Standards

consists of the following divisions:

• Quality Management Division (ISO/IEC 2500n),
• Quality Model Division (ISO/IEC 2501n),

• Quality Measurement Division (ISO/IEC 2502n),
• Quality Requirements Division (ISO/IEC 2503n),

• Quality Evaluation Division (ISO/IEC 2504n),

• SQuaRE Extension Division (ISO/IEC 25050 – ISO/IEC 25099).

This International Standard revises ISO/IEC 9126-1:2001, and incorporates the same software
quality characteristics with some amendments, e.g.:

• The scope of the quality models has been extended to include computer systems, and
quality in use from a system perspective.

• When appropriate, generic definitions have been adopted, rather than using software-
specific definitions.

• Context coverage has been added as a quality in use characteristic, with sub-characteristics
context completeness and flexibility.

• Security has been added as a characteristic, rather than a sub-characteristic of functionality,
with sub-characteristics confidentiality, integrity, non-repudiation, accountability and
authenticity.

• The internal and external quality models have been combined as the product quality model.

For an NPP safety system, SAFETY is a primary property, but the model in the SQuaRE series
does not provide a primary status to SAFETY.

ISO/IEC 25010 [9] cancels and replaces ISO/IEC 9126-1:2001, which has been technically revised.
This International Standard is derived from ISO/IEC 9126:1991, Software engineering — Product

quality. ISO/IEC 9126:1991 was replaced by two related multipart standards: ISO/IEC 9126,

Software engineering — Product quality and ISO/IEC 14598, Software engineering — Product
evaluation.

The following excerpt shows the relevance of a quality model in the context of safety:

“Realization of goals and objectives for human safety relies on high-quality software and
systems.”

ISO/IEC 25010 states:

“Prior to software development or acquisition, quality requirements should be defined from
the perspective of stakeholders. Analysis of the in use requirements will result in derived
functional and quality requirements needed for a product to achieve the in use
requirements.”

Note that the standard uses the term, “quality requirements” – not non-functional requirements! The
terms “nonfunctional” and “non-functional” do not appear anywhere in the ISO 25000 series of
standards. Users of standards should follow suit, stop using the term “non-functional requirement”

and use terms such as “quality requirement” or “requirements for quality properties.”

3.2.1 Intended uses of ISO/IEC 25010

This International Standard is intended to be used in conjunction with the other parts of the
SQuaRE series of International Standards (ISO/IEC 25000 to ISO/IEC 25099).

The quality models in this International Standard can be used in conjunction with ISO/IEC 12207

[19] and ISO/IEC 15288 [18], particularly the processes associated with requirements definition,
verification and validation with a specific focus on the specification and evaluation of quality
requirements. ISO/IEC 25030 [10] describes how the quality models can be used for software

quality requirements, and ISO/IEC 25040 [20] describes how the quality models can be used for
the software quality evaluation process. ISO/IEC 25041:2012 [21] is an evaluation guide.

ISO/IEC 25010 states:

This International Standard can also be used in conjunction with ISO/IEC 15504 (which is
concerned with software process assessment) to provide:

• a framework for software product quality definition in the customer-supplier process;

• support for review, verification & validation,

• support for a framework for quantitative quality evaluation, in the support process;

• support for setting organizational quality goals in the management process.

Further, ISO/IEC 25010 states:

Activities during product development that can benefit from the use of the quality models include:

• identifying software and system requirements;

• validating the comprehensiveness of a requirements definition;

• identifying software and system design objectives;

• identifying software and system testing objectives;

• identifying quality control criteria as part of quality assurance;

• identifying acceptance criteria for a software product and/or software-intensive computer
system;

• establishing measures of quality characteristics in support of these activities.

3.2.2 Some foundational definitions in ISO/IEC 25010

Basic concepts of the quality model in [9] are introduced through definitions of foundational terms,
given below. Where a definition includes the word “software” as a qualifier, the definition may be
generalized to a system level by dropping the qualifier “software.”

Then, for example, “quality” is defined as “degree to which a software product satisfies stated and
implied needs when used under specified conditions.” Note that this definition differs from the

meaning in common usage ““degree to which a software product satisfies its requirements.”

A “quality model” is a “defined set of characteristics, and of relationships between them, which
provides a framework for specifying quality requirements and evaluating quality” where “quality
characteristic” is defined as “category of quality attributes that bears on quality”; quality

characteristics can be refined into multiple levels of sub-characteristics and finally into software
quality attributes. An “attribute” is defined as an “inherent property or characteristic of an entity that
can be distinguished quantitatively or qualitatively by human or automated means” where a

“property” is a “measurable component of quality.” Note that an “inherent property” is a permanent
characteristic, in contrast with an assigned characteristic. An inherent property may be:

1. Functional property: It determines what the software is able to do.

2. Quality property: It determines how well the software performs.

Then, a “quality requirement” is a “requirement that a software quality attribute be present in
software.”

The gap between needs and requirements (especially for the SAFETY property) is significant in the

evaluation of a safety critical system. The ISO 25000 family of standards addresses this gap
through the concept “quality in use” defined as “the degree to which a product or system can be
used by specific users to meet their needs to achieve specific goals with effectiveness, efficiency,

freedom from risk and satisfaction in specific contexts of use.”

The standard enwraps the concept “SAFETY” in “freedom from risk” rather than “the expectation
that a system does not, under defined conditions, lead to a state in which human life, health,

property, or the environment is endangered” (3.2622 in [1]). The standard does not treat
SECURITY in a manner comparable to SAFETY. It characterizes security as information security.
The standard also inherits the issues with ISO 9126-1 identified in Section 2.1.3. Thus, from these

observations, again we conclude that the ISO 25010 quality model is not suitable for the domain of
NPP safety systems. A domain-specific model should be devised, using similar foundational
concepts.

4. Ongoing research and development activities

In this concluding section, we report known ongoing R&D efforts to characterize quality of a

software-dependent system or its elements.

4.1 Related R&D at the University of Southern California

Barry Boehm through the Systems Engineering Research Center [11] is extending his prior work

(which various scholars have reported in their surveys, e.g., in [4][5][6]). The current direction of
research links a large range of quality attributes into a trade-off space to assist in design decisions.

4.2 Related R&D at the Software Research Institute (SEI)

The Software Engineering Institute (SEI) has a long-standing ongoing effort in quality attributes [12]
and using these to derive architectural constraints [13]. Recent work [14][15] shows a framework
(Figure 1) aligned with the ISO 25000 series of standards [8][9][10], explained as follows:

Figure 1: An approach to specify and evaluate quality characteristics

1. A quality model defines the meaning of the quality of a system. The same model is applied to
the constituent elements of the system at every level of integration, as identified in the
architecture.

2. A quality model is defined in terms of a set of quality characteristics (see Figure 1).Error!
Reference source not found.

3. A quality characteristic is defined in terms of a set of quality attributes.

4. An attribute may be defined in terms of other attributes (i.e., it may be a composite or
elemental).

5. A finest-grained (or elemental) attribute is measured along a measurement scale, using a
quality measurement method.

6. The method is defined in the context of the scale.

7. For each quality requirement, a set of system-specific quality criteria are defined in terms of
the respective quality attributes and corresponding thresholds.

8. Different thresholds may be established for the same attribute under different conditions or
upon the occurrence of different events. (This may also be viewed as state-dependent
thresholds, if the system behavior is modeled in a finite state machine paradigm).

4.3 A direction of research at the NRC

One direction of R&D being explored at the NRC [11] addresses the question, “What would be the

most streamlined quality model to support the safety evaluation of a digital safety system (the
automation portion in the context of its environment) for an NPP?” In other words, it explores the

decomposition of the SAFETY property and to derive constraints on the system.

Figure 2 shows quality requirements associated with functional requirements. Examples of top-
level quality requirements include Safety and Security.

For a safety system, as shown in Figure 3, the “Assurability” property distinguishes it from systems

that do not require similar assurance. Figure 3 also shows other quality attributes that contribute to

or support “Assurability.” The corresponding quality requirements may also be viewed as
constraints to be satisfied by the digital safety system, that is, constraints on the solution space

(also known as design space), such that system concepts that do not satisfy these constraints are
eliminated from further consideration (i.e., the hazard space is reduced). Table 1 shows the logical
derivation of further constraints (from those shown in Figure 3) to support the “Assurability”

property. Following is an informal expression of the reasoning; the symbols are hyperlinked to
entries in Table 1:

1. To be able to assure that a system is safe, one must be able to verify [H-S-1] that it meets all
its safety requirements.

2. For a system to be verifiable, it must not be possible for one element of the system to interfere
with another. [16]

3. If the conceived system is too complex, adequate verification is infeasible. [H-S-1.1]

Quality requirements Quality requirements

Figure 2: Quality requirements should be explicit

Requirements & Constraints

Quality requirements

Safety Security

 Functional requirements

Other

4. If one cannot even understand it, how can one assure that it is safe? [H-S-2]

5. Verifiability is a required system property, flowing down from the system to its elements
(constituents) progressing to the finest-grained element; it implies corresponding verifiable
specifications. Verification also includes analysis at various phases in the development
lifecycle, well before an artifact is available for physical testing. Examples of conditions for
verifiability:
5.1. Ability to create a test (or verification) case to verify the requirement.
5.2. Observability
5.3. Ability to constrain the environment of the object of verification.

6. For “analyzability” the system must have predictable and deterministic behavior (i.e., it must
yield deterministic results). [H-S-1.2].

Table 1: Constraints derived from quality attributes: Scenario-based examples
Contributory hazard Conditions that reduce the hazard space
ID
H-S-

Generalized Scenario ID
H-S-

Description

1 The system is not sufficiently verifiable and
understandable, but this deficiency is
discovered too late. Appropriate considerations
and criteria are not formulated at the beginning
of the development lifecycle; therefore,
corresponding architectural constraints are not
formalized and checked. When work products
are available for testing, it is discovered that
adequate testing is not feasible (e.g., the
duration, effort, and cost are beyond the project
limitations).

1G1 Verifiability is a required system
property, flowing down from the
system to its constituents progressing
to the finest-grained element.
 [H-S-1.1G1↓]

1G1.1
Verifiability of a work product is
checked at every phase of the
development lifecycle, at every level
of integration, before proceeding
further in the development. Examples
of conditions for verifiability: Ability
to create a test (or verification) case to
verify the requirement;

Observability; Ability to constrain the
environment of the object of
verification.

1.1 System is not verifiable (e.g., it is not
analyzable or very difficult to analyze).

1.1G1 Avoidance of unnecessary
complexity.

1.1G1.1 The behaviour is unambiguously

Safety

Assurability

Verifiability

Analyzability Freedom from interference

Determinism Predictability

Comprehensibility

Complexity

Simplicity

Figure 3: Quality characteristics to support safety

Contributory hazard Conditions that reduce the hazard space
ID
H-S-

Generalized Scenario ID
H-S-

Description

specified for every combination of
inputs (including unexpected inputs)
at every level of integration in the
system.

1.1G1.2 The flow-down ensures that
1. Allocated behaviors satisfy the

behavior specified at the next
higher level of integration;

2. Unspecified behavior does not
occur.

1.1G1.3 The behaviour of the system is a
composition of the behaviours of its
elements, such that when all the
elements are verified individually,
their compositions may also be
considered verified. This property is
satisfied at each level of integration,
flowing down to the finest-grained
element in the system.

1.1G1.4 Development follows a refinement
process.

1.1.1 There are unanalyzed or un-analyzable conditions.
For example, all system states, including unwanted
ones such as fault states, are not known and not
explicit.
To that extent, verification and validation (V&V) of
the system is infeasible. [H-S-1.1↑]

1.1.1G1 Static analyzability: System is
statically analyzable.
1. All states, including fault

conditions, are known.
2. All fault states, leading to failure

modes, are known.
3. Safe state space of the system is

known.
1.1.2 There is inadequate evidence of verifiability.

[H-S-1.1↑]
1.1.2G1 Verification plan shows the coverage

needed for safety assurance.
1.2 System behaviour is not deterministic (does not

yield deterministic results). [H-S-1.1.1↑]
1.2G1 System has a defined initial state.

1.2G2 System is always in a known

configuration.
1.2G3 System is in a known state at all times

(e.g., through positive monitoring and
indication):
1. Initiation of function
2. Completion of function
3. Intermediate state, where needed to

maintain safe state in case of
malfunction.

1.3 System behaviour is not predictable. [H-S-
1.1.1↑]

1.3G1 Each transition from a current state
(including initial state) to some next
state is specified and known,
including transitions corresponding to
unexpected combination of inputs and
transition conditions.

1.3G2 A hazardous condition can be
detected in time to maintain the
system in a safe state.

2 Comprehensibility: System behaviour is not
understood completely and correctly by its
community of users (e.g., reviewers, architects,
designers, and implementers), that is, the people

2G1 Behaviour is completely and
explicitly specified.

2G2 Behaviour is completely
understandable.

Contributory hazard Conditions that reduce the hazard space
ID
H-S-

Generalized Scenario ID
H-S-

Description

and the tools they use.
[H-S-1↑]

2G3 Behaviour is understood completely,
correctly, consistently, and
unambiguously by different users
interacting with the system

2G4 The allocation of requirements to
some function and that function to
some element of the system is bi-
directionally traceable.

2G5 The behaviour specification avoids
mode confusion, esp. when
functionality is nested.

2G6 The architecture is specified in a
manner (e.g., language; structure) that
is unambiguously comprehensible to
the community of its users (e.g.,
reviewers, architects, designers,
implementers), that is, the people and
the tools they use.

Considering that the state of practice is especially weak in the derivation of verifiable constraints
from quality requirements, a careful review is needed. The architecture should satisfy these
constraints, starting from the system concept phase and continuing at every successive phase of

development, refinement and decomposition, including all phases of the software development
lifecycle. An approach to organize information about the uncertainties in such an evaluation is

discussed next.

Figure 4: Structure to reason about the satisfaction of a constraint

Figure 4 depicts a structure for reasoning (adapted from [22]) to organize and reason about
uncertainties encountered during the evaluation of the satisfaction of a constraint. Suppose that the

evaluation team is considering an assertion that the result of their work (e.g., constraint on the
object being analyzed) is satisfied. Then, the team clarifies its reasoning through discussion,

evoking challenges to the assertion and rebuttals to the challenges. The discussion may also

reveal inconsistencies in the reasoning. In this manner, the team identifies factors affecting the
validity of their assertion. Qualifiers are associated with the assertion; for example:

1. Condition(s) under which the assertion is supported.
1.1. Uncertainties may be stated as assumptions, for which the truth has to be validated.
1.2. Changes needed may be stated as constraints to be satisfied.

2. Degree or strength of the assertion: {Strong …. Weak}

The results are recorded, showing how the assertion is supported by the evidence, identifying the
inference rule to assert the evidence-assertion link, and the technical basis for the rule such as a

causal model.

5. Future directions to support independent safety evaluation

To support effective and efficient independent safety evaluation of a digital safety system for an

NPP, it is attractive to align practices in the nuclear industry with mainstream standards for systems

and software engineering, such as the ISO 25000 series. However, their quality model is too
general (entailing much more work than necessary; diluting the focus on safety) and not well-
aligned for a streamlined safety evaluation of a nuclear safety system. It is attractive to explore an

NPP domain-specific quality model as discussed in Section 4.3. The supporting characteristics

should be further decomposed to the granularity needed for verifiability, such as those introduced
in Table 1. Appropriate measurement scales and methods should be explored [7]. An approach to

organize information about uncertainty and reason about it should be developed such as one
depicted in Figure 4.

6. References
[1] ISO/IEC/IEEE 24765 Systems and software engineering – vocabulary, 2010

[2] ISO/IEC/IEEE 29148:2011(E), Systems and software engineering – Lifecycle processes -
Requirements engineering

[3] ISO/IEC 9126-1:2001), Software engineering — Product quality — Part 1: Quality model

[4] URL: http://airccse.org/journal/ijsea/papers/4113ijsea01.pdf

[5] URL:
http://www.bth.se/com/besq.nsf/(WebFiles)/BFEFBED4E650D690C125706900324572/$FI
LE/chapter_4.pdf

[6] URL: http://smitaiddal87.wordpress.com/2013/01/27/9/

[7] Roberts, F. Measurement Theory with Applications to Decision Making, Utility, and the
Social Sciences, Addison-Wesley, 1979

[8] ISO/IEC 25000: 2005(E) Software engineering – Software product Quality Requirements
and Evaluation (SQuaRE) – Guide to SQuaRE.

[9] ISO/IEC 25010:2011 Systems and software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) – System and software quality models.

[10] ISO/IEC 25030:2007, Software engineering — Software product Quality Requirements and
Evaluation (SQuaRE) — Quality requirements

[11] URL: http://www.sercuarc.org/app/webroot/uploads/files/7_Tradespace_Boehm.pdf
[12] URL: http://www.sei.cmu.edu/reports/95tr021.pdf

[13] URL: http://resources.sei.cmu.edu/asset_files/TechnicalReport/1994_005_001_16301.pdf

[14] Donald G. Firesmith, Engineering Safety- and Security-Related Requirements for Complex
Systems, at the Kärnteknik-2011 (Nuclear Technology 2011) Nordic Symposium on 8 December
2011.

[15] URL: http://www.amazon.com/Method-Framework-Engineering-System-
Architectures/dp/1420085751

[16] U.S. Nuclear Regulatory Commission, “Research Information Letter 1101: Technical basis
to review hazard analysis of digital safety systems, URL: http://cps-vo.org/node/8758.

[17] ISO/IEC 15939:2007(E) Systems and software engineering – Measurement process

[18] ISO/IEC 15288:2008 (IEEE Std 15288-2008), Systems and software engineering —
System life cycle processes

[19] ISO/IEC 12207:2008(E) (IEEE Std 12207-2008), System and software engineering –
Software life cycle processes

[20] ISO/IEC 25040:2011, Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — Evaluation process

[21] ISO/IEC 25041:2012, Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — Evaluation guide for developers, acquirers and
independent evaluators

[22] Toulmin, Stephen. The Uses of Argument. Cambridge: University Press, 1958

