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Advanced Fire Modeling 

• Course Objectives 
– Fire modeling for nuclear power plant (NPP) applications 
– Fire modeling uncertainty estimation 

• Approach 
– Evaluate fire scenarios relevant to NPPs  
– Use models evaluated in verification and validation (V&V) study 
– Demonstrate capability and limitations of each model type 
– Quantify uncertainty as part of the fire modeling analysis 
– Identify relevant sensitivity analyses to support use of results  
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Background 

• NFPA issued the first edition of NFPA 805 in 2001 
• NRC amended 10 CFR 50.48(c) in 2004 to employ NFPA 

805 as alternative to existing deterministic requirements 
• NFPA 805 requires that  

– Fire models shall be verified and validated (section 2.4.1.2.3) 
– Only fire models that are acceptable to the authority having 

jurisdiction (AHJ) shall be used in fire modeling calculations 
(section 2.4.1.2.1) 

• NRC/RES and EPRI completed V&V project for five fire 
modeling tools in 2007 
– Results documented in NUREG-1824, EPRI 1011999 
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NUREG 1934 / EPRI 1023259 – NPP FIRE MAG 

• The objective of this document is to describe the process 
of conducting fire modeling analyses for commercial 
nuclear power plant applications 
• The process addresses the following technical elements 

– Selection and definition of fire scenarios 
– Determination and implementation of input values 
– Sensitivity analysis 
– Uncertainty quantification 
– Documentation 

• The document provides generic guidance, recommended 
best practices, and example applications 
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NUREG 1934 / EPRI 1023259 – NPP FIRE MAG 

• Users with following expertise will benefit the most : 
– General knowledge of the behavior of compartment fires 
– General knowledge of basic engineering principles, specifically 

thermodynamics, heat transfer, and fluid mechanics 
– Ability to understanding the basis of mathematical models 

involving algebraic and differential equations 

• Further training resources 
– Academic courses 
– Short courses 
– Written materials 
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Overall fire PRA structure – NUREG 6850 

TASK 1:  Plant Boundary & 
Partitioning 

TASK 2:  Fire PRA Component 
Selection 

 

TASK 3:  Fire PRA Cable 
Selection  

TASK 4:  Qualitative Screening 

TASK 6:  Fire Ignition 
Frequencies 

TASK 5:  Fire-Induced Risk 
Model 

TASK 7A:  Quantitative 
Screening - I 

TASK 8:  Scoping Fire Modeling 

SUPPORT TASK A:  Plant 
Walk Downs 

SUPPORT TASK B:  Fire PRA 
Database 

TASK 7B:  Quantitative 
Screening - II 

TASK 12A:  Post-Fire HRA: 
Screening 

B
 
 
 
  

Fire Analysis Module 

PRA/System Module 

Circuits Module 

  HRA Module 

Fire Analysis and Fire 
Modeling Modules 
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Overall fire PRA structure – NUREG 6850 

Detailed Fire Scenario Analysis 

B 

TASK 11:  Detailed Fire Modeling       

A. Single Compartment 

B. Multi-Compartment  

C. Main Control Room  

TASK 9:  Detailed Circuit Failure 
Analysis 

TASK 10:  Circuit Failure Mode & 
Likelihood Analysis 

TASK 14:  Fire Risk Quantification 

TASK 15:  Uncertainty & 
Sensitivity Analyses 

TASK 16:  Fire PRA 
Documentation 

TASK 12B:  Post fire HRA: 
Detailed & recovery TASK 13:  Seismic-Fire 

Interactions 

Detailed Fire Scenario Analysis 
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TASK 11:  Detailed Fire Modeling       
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C. Main Control Room  

TASK 9:  Detailed Circuit Failure 
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TASK 10:  Circuit Failure Mode & 
Likelihood Analysis 

TASK 14:  Fire Risk Quantification 

TASK 15:  Uncertainty & 
Sensitivity Analyses 

TASK 16:  Fire PRA 
Documentation 

TASK 12B:  Post fire HRA: 
Detailed & recovery TASK 13:  Seismic-Fire 
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Fire Analysis Module 

PRA/System Module 

Circuits Module 

  HRA Module 

Fire Analysis and Fire 
Modeling Modules 
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Fire Modeling Theory 
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Fire Modeling Theory 

• Parameters of interest in fire modeling analyses: 
– Rate of smoke production 
– Rate of smoke filling 

• HGL interface position 
– Properties of the fire plume and ceiling jet 

• Temperatures / velocities 
– Properties of the HGL 

• Temperature / smoke concentration / visibility 
– Target response to incident heat flux  

• Nuclear safety targets (cables, equipment, operators …) 
• Fire protection targets (sprinklers, detectors …) 
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Fire Models In NUREG 1934 / EPRI 1023259  

• Algebraic models (1.4.1) 
– FDTs 
– FIVE-rev1 

 
• Zone models (1.4.2) 

– CFAST 
– MAGIC 

 
• CFD models (1.4.3) 

– FDS 

R

H
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Fire Model V&V 

• Fire models shall only be applied within the limitations of 
the given model and shall be verified and validated. 
• Validation 

– Is the physics right? 
– Are the right equations being solved? 

• Verification 
– Is the math right? 
– Are the selected equations being solved correctly? 

• NUREG-1824, EPRI 1011999 - Verification and Validation 
of Selected Fire Models for Nuclear Power Plant 
Applications 
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NFPA 805 Fire Modeling Applications 

• NFPA 805 requirements associated with fire modeling are 
organized in two sections 
 
– Section 2.4.1.4 describes the requirements associated with the 

fire modeling tools selected for the analysis. 
 

– Section 4.2.4.1 describes requirements for the implementation of 
a performance-based fire modeling analysis.  
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NFPA 805 Fire Modeling Applications 

• NFPA 805 Section 2.4.1.2 describes the requirements for 
the use of fire models, which include: 
– The use of fire models acceptable to the AHJ 
– The application of fire models within their range and limitations 

• Chapter 2 of NUREG 1934, EPRI 1023259 provides 
guidance on 

• Ensuring the model is within the range of limitations 
• Ensuring specific fire model applications are within the scope of 

existing V&V studies 
• What steps should be taken if they are not 
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NFPA 805 Fire Modeling Applications 

• NFPA 805 Section 4.2.4.1 describes the process to follow 
when using fire modeling to address variances from 
deterministic requirements (VFDRs): 
– Identify Targets (NFPA 805 § 4.2.4.1.1) 
– Establish Damage Thresholds (NFPA 805 § 4.2.4.1.2) 
– Determine Limiting Conditions (NFPA 805 § 4.2.4.1.3) 
– Establish Fire Scenarios (NFPA 805 § 4.2.4.1.4) 
– Protection of Required Nuclear Safety Success Paths (NFPA 805 

§ 4.2.4.1.5) 
– Operations Guidance (NFPA 805 § 4.2.4.1.6) 
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Fire Modeling in Support of Fire PRA 

• Fire PRA applies fire modeling in the fire scenario 
development and analysis process 
– A fire scenario in a Fire PRA is often modeled as a progression of 

damage states over time 
– It is initiated by a postulated fire involving an ignition source 
– Each damage state is characterized by a time and a set of targets 

damaged within that time 
– Fire modeling is used to determine the targets affected in each 

damage state and the associated time at which this occurs 
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Fire Modeling in Support of Fire PRA 
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Fire Modeling Process 

• Step 1 
– Define modeling goals 

• Step 2  
– Characterize fire scenarios  

• Step 3 
– Select fire models 

• Step 4 
– Calculate fire conditions 

• Step 5 
– Sensitivity / uncertainty analyses 

• Step 6 
– Document the analysis 
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Step 1 - Define Modeling Goals 

• Establishment of general goals and performance 
objectives specific to the fire modeling application 
• Example of a general goal 

– Demonstrate that targets required for safe shutdown remain free 
from fire damage (deterministic goal) … to a specified level of 
probability (probabilistic goal) 

• Example of a specific performance objective 
– Evaluate if a fire in Fire Area “X” involving Panel “Y” could cause 

the surface temperature of Cable “Z” to exceed 330 °C (625 °F) 
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Step 1 - Define Modeling Goals 

• Maximum acceptable surface temperature for a cable, 
component, secondary combustible, structural element, or 
fire-rated construction 
• Maximum acceptable incident heat flux for a cable, 

component, structural element, or secondary combustible 
• Maximum acceptable exposure temperature for a cable, 

component, structural element, or secondary combustible 
• Maximum acceptable enclosure temperature 
• Maximum smoke concentration or minimum visibility 
• Maximum or minimum concentration of one or more gas 

constituents, such as carbon monoxide, oxygen, 
hydrogen cyanide 
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Step 2 - Characterize Fire Scenarios 

• A fire scenario is defined as a set of elements needed to 
describe a fire incident 
• These elements are typically specified in fire models 
• These elements include the following: 

– Enclosure details 
– Fire location within the enclosure 
– Fire protection features that will be credited 
– Ventilation conditions 
– Target location(s) 
– Secondary combustibles 
– Source fire 
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Step 2 - Characterize Fire Scenarios 

• Enclosure details 
• Enclosure details include 

– The identity of the enclosures included in the fire model analysis 
– The physical dimensions of these enclosures 
– The boundary materials of each enclosure 
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Step 2 - Characterize Fire Scenarios 

• Fire location 
• The location depends on the fire modeling goal, the target 

location, and the fire modeling tool selected 
• Examples: 

– Targets in the fire plume or ceiling jet 
– Targets affected by flame radiation 
– Targets engulfed in flames 
– Targets immersed in the Hot Gas Layer 
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Step 2 - Characterize Fire Scenarios 

• Credited fire protection 
• Fire protection features to be credited in a fire modeling 

analysis usually require a fire protection engineering 
evaluation of the system’s effectiveness 
– Assessment of the system compliance with applicable codes, 

including maintenance and inspection 
– Assessment of the system performance against particular fire 

scenarios being considered. 

• Fire modeling tools within this course may not be able to 
model the impact of some of the fire protection features 
credited in a given scenario.  
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Step 2 - Characterize Fire Scenarios  

• Ventilation conditions 
• Ventilation conditions include: 

– Mechanical ventilation 
• Normal HVAC / purge mode 

– Natural ventilation 
• Door / window / damper / vent positions 

 
• Target location(s) 
• The physical dimensions of the target relative to the 

source fire or the fire model coordinate system. 
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Step 2 - Characterize Fire Scenarios 

• Secondary combustibles 
• Any combustible materials that, if ignited, could affect the 

exposure conditions to the target set considered.  
– Intervening combustibles, which are those combustibles located 

between the source fire and the target, are examples of 
secondary combustibles 

• Secondary combustibles include both fixed and transient 
materials 
• Secondary combustibles take on the characteristics of a 

target prior to their ignition 
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Step 2 - Characterize Fire Scenarios 

• Source fire 
• The source fire is the forcing function for the fire scenario 
• Common fuel packages include electrical panels and 

transformers, cables, transient combustible material, 
lubricant reservoirs, and motors 
• The source fire is typically characterized by a heat release 

rate history  
• Other important aspects include the physical dimensions 

of the burning object, its composition, and its behavior 
when burning 
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Step 3 - Select Fire Models 

• Fire models can be classified into three groups:  
– Algebraic models 
– Zone models 
– CFD models  

• The level of effort required to describe a scenario and the 
computational time consumed by each group increase in 
the order in which they are listed.  
– Combination of all three types of models may be useful for 

analyzing a specific problem. 



Slide 29 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

Step 3 - Select Fire Models 
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Step 3 - Select Fire Models 
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Step 3 - Select Fire Models 
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Step 3 - Select Fire Models 

• Fire Dynamics Tools (FDTs)  
• FDTs is a set of algebraic models preprogrammed into 

spreadsheets 
• The FDTs library is documented in NUREG-1805 and 

Supplement 1 (2011) 
• The NRC maintains a website where both new and 

updated spreadsheets are posted: 
 
• See NUREG-1934, EPRI 1011999 Table 2-2 for complete 

list of FDTs routines 

www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1805/finalreport/index.html 
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Step 3 - Select Fire Models 

• Fire-Induced Vulnerability Evaluation (FIVE)-Rev1 
• Five-Rev 1 is a set of algebraic models preprogrammed 

into spreadsheets 
• The FIVE-Rev 1 library is documented in EPRI 1002981 
• See NUREG-1934, EPRI 1011999 Table 2-3 for complete 

list of FIVE-Rev 1 routines 
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Step 3 - Select Fire Models 

• Consolidated Fire Growth and Smoke Transport 
(CFAST) 
• CFAST is a multi-room two-zone computer fire model 
• The model subdivides a compartment into two control 

volumes 
– A relatively hot upper layer (i.e., the HGL)  
– A relatively cool lower layer 
– Conditions within each control volume are considered as uniform 

at any time, with no spatial variations within a control volume 

• For some application the two-zone assumption may not 
be appropriate 
– Long hallways / Tall shafts 
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Step 3 - Select Fire Models 

• MAGIC 
• MAGIC is a two-zone computer fire model, developed and 

maintained by EdF specifically for use in NPP analysis 
• MAGIC is fundamentally similar to CFAST and solves the 

same basic set of predictive differential equations 
 



Slide 36 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

Step 3 - Select Fire Models 

• Fire Dynamics Simulator (FDS) 
• FDS is a CFD model of fire-driven fluid flow 
• The model numerically solves a form of the Navier-Stokes 

equations appropriate for low-speed, thermally driven 
flow, with an emphasis on smoke and heat transport from 
fires 
• FDS computes the temperature, density, pressure, 

velocity, and chemical composition within each grid cell at 
each time step 
– There are typically hundreds of thousands to several million grid 

cells, and thousands to hundreds of thousands of time steps in a 
FDS simulation 
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Step 3 - Select Fire Models 

• Fire parameters may fall outside their validation range 
defined in NUREG-1824 , EPRI 1011999  
• The predictive capabilities of the fire models in many 

scenarios can extend beyond the range 
• Analyst is required to address these situations 
• Sensitivity analyses can be used to address these 

scenarios 
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Step 4 - Calculate Fire Conditions 

• This step involves running the model(s) and interpreting 
the results. 
• The process includes 

– Determine the output parameters of interest 
– Prepare the input file 
– Run the computer model 
– Interpret the model results 
– Arrange output data in a form that is suitable for the goal 
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Step 5 - Sensitivity And Uncertainty Analyses 

• A comprehensive treatment of uncertainty and sensitivity 
analyses are an integral part of a fire modeling analysis 
• Model uncertainty 

– Models are developed based on idealizations of the physical 
phenomena and simplifying assumptions 

• Parameter uncertainty 
– Many input parameters are based on available generic data or on 

fire protection engineering judgment 
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Step 6 - Document The Analysis 

• Information needed to document fire scenario selection 
will be gathered from a combination of observations made 
during engineering walkdowns and a review of existing 
plant documents and/or drawings 
– Marked up plant drawings. 
– Design basis documents (DBDs). 
– Sketches. 
– Write-ups and input tables. 
– Software versions, descriptions, and input files. 

• A reviewer should be able to reproduce the results of a 
fire scenario analysis from the information contained 
within the documentation 
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Fire Modeling Elements –  
Heat Release Rate 

• Three questions usually have to be 
answered to adequately assess the 
heat release rate of a fire: 
– How fast does the fire grow? 
– What is the peak intensity of the fire? 
– How long does the fire burn? 

• Other factors: 
– Fire elevation 
– Fire location relative to targets or 

obstructions 
– Soot yield 
– Radiative fraction 
– Yield factors 



Slide 44 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

Fire Modeling Elements –  
Area Configuration 

• Compartment geometry 
• Compartment Boundary materials 

Table 3-1. Material Properties 

Material 
Thermal 

Conductivity 
(W/m/K) 

Density 
(kg/m3) 

Specific Heat 
(kJ/kg/K) Source 

Brick 0.8 2600 0.8 NUREG-1805, Table 2-3 
Concrete 1.6 2400 0.75 NUREG-1805, Table 2-3 
Copper 386 8954 0.38 SFPE Handbook, Table B.6 
Gypsum 0.17 960 1.1 NUREG-1805, Table 2-3 
Plywood 0.12 540 2.5 NUREG-1805, Table 2-3 

PVC 0.192 1380 1.289 NUREG/CR-6850, Appendix R 
Steel 54 7850 0.465 NUREG-1805, Table 2-3 
XLP 0.235 1375 1.390 NUREG/CR-6850, Appendix R 
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Fire Modeling Elements –  
Ventilation Effects 

• Ventilation openings 
– Vertical (doors / windows) 
– Horizontal (ceiling / floor vents) 

• Leakage paths 
• Mechanical ventilation  

– Injection 
– Extraction 
– Recirculation 
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Fire Modeling Elements –  
Targets 

• Targets are objects of interest than can be affected by the 
fire-generated conditions  
• Targets typically consist of  

– Cables in conduits 
– Cables in raceways 
– Plant equipment or 
– Plant personnel 

• Targets are characterized by  
– Location, 
– Orientation (i.e. facing the fire, HGL, floor, etc.)  
– Damage criteria and  
– Thermophysical properties 
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Fire Modeling Elements –  
Secondary Combustibles 

• Intervening combustibles should be described in terms of 
their locations as well as in terms of their relevant 
thermophysical and flammability properties 
• Representing intervening combustibles in fire models 

presents technical challenges that the analyst should 
consider 
– Obtaining the necessary geometric and thermophysical properties 

representing the intervening combustible and  
– The ability of the computer tools to model the fire phenomena 

(e.g., fire propagation). 
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Representative Fire Scenarios 
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Scenario 1 –  
Targets in the Flames or Plume  

• This scenario consists of a 
target (electrical cable in a 
raceway) immediately 
above an ignition source 
(electrical cabinet) 
• Objective: Calculate the 

time to damage for a target 
immediately above a fire 
• Examples B and E 
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Scenario 2 –  
Targets Inside or Outside the Hot Gas Layer 

• This scenario consists of a 
target, ignition source, and 
perhaps a secondary fuel 
source 
• Objective: Calculate the 

time to damage for the 
target if it is inside or 
outside the Hot Gas Layer 
• Examples C and E 
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Scenario 3 –  
Targets Located in Adjacent Rooms  

• This scenario consists of a target in a room adjacent to 
the room of fire origin 
• Objective: Calculate the time to damage for a target in a 

room next to the room of fire origin 
• Example G 
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Scenario 4 –  
Targets in Rooms with Complex Geometries  

• This scenario involves a 
room with an irregular 
ceiling height 
• Objective: Calculate the 

time to damage for a target 
in a room with a complex 
geometry 
• Examples D and H 
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Scenario 5 –  
Main Control Room Abandonment  

• This scenario consists of a 
fire (electrical cabinet fire 
within the main control 
board) that may force 
operators out of the control 
room 
• Objective: Determine when 

control room operators will 
need to abandon the 
control room due to fire-
generated conditions 
• Example A 
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Scenario 6 –  
Smoke Detection and Sprinkler Activation  

• This scenario addresses smoke/heat detector or sprinkler 
activation  
• Objective: Calculate the response time of a smoke or heat 

detector that may be obstructed by ceiling beams, 
ventilation ducts, etc. 
• Examples B and E 
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Scenario 7 –  
Fire Impacting Structural Elements  

• This scenario consists of 
fire impacting exposed 
structural elements 
• Objective: Characterize the 

temperature of structural 
elements exposed to a 
nearby fire source 
• Example F 
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Summary 

• The purpose of this module has been to introduce the 
following concepts relevant to NPP applications: 
– The fire modeling process 
– The fire modeling tools 
– Representative fire modeling scenarios 
– Uncertainty / sensitivity analyses 

• On Day 2 we will review fire modeling concepts 
• On Days 3 and 4, we will consider the 8 example fire 

modeling scenarios in more detail 
• On Friday, you will perform your own analyses 

– Think about scenarios you would like to address 
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Fire Model Verification and Validation 

• ASTM E 1355, Standard Guide for Evaluating the 
Predictive Capability of Deterministic Fire Models 

 
– Verification: the process of determining that the implementation 

of a calculation method accurately represents the developer’s 
conceptual description of the calculation method and the solution 
to the calculation method.  Is the Math right? 
 

– Validation:  the process of determining the degree to which a 
calculation method is an accurate representation of the real world 
from the perspective of the intended uses of the calculation 
method.  Is the Physics right? 
 

– This presentation focuses primarily on validation. 
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Important Measurements/ Parameters 

• Room Temperature  
– Main control room abandonment study 
– Targets in room of fire origin or adjacent compartments 

• Flame height, Plume & Ceiling jet temperature 
– Target heating and target temperature near the ignition source 
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Important Measurements/ Parameters 

• Oxygen & smoke 
concentration  
– Main control room habitability 

• Room pressure 
– Issues related to mechanical 

ventilation and/or smoke 
migration 

• Target/wall heating and 
target/wall temperature 
– Most fire scenarios 

throughout the plant 
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How were the experiments selected? 

• Selection Criteria: High-Quality Experiments 

– Large-scale experiments   

– Availability of data 

– Directly applicable to nuclear power plant applications 

– Accurate measurement of the fire heat release rate  

– Well documented 

– Uncertainty analysis useful 

• Selection Process 

– Extensive review of fire literature 

– Scarcity of high-quality large-compartment fire test data  

– Typical industry tests: proprietary, reduced-scale, not NPP related 
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Turbine hall 

ICFMP BE# 2 

Main Control Room 

FM/SNL 

Pump Room 

ICFMP BE #4, 5 

Misc. 

ICFMP BE# 3 

Multi-compartment 

NBS 
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Fire Dynamics Tools (FDTS)    NRC Spreadsheets 
FIVE-Rev1      EPRI Spreadsheets  
Cons. Fire & Smoke Transport (CFAST)   NIST zone model 
MAGIC       Electricite de France zone  
Fire Dynamics Simulator (FDS)    NIST CFD Model  
 
Spreadsheets                  Zone Models                  Field Models 

DQLf 02.1- 23.0= 5/2

Fire Models Selected 
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Quantitative V&V Results 

 

Measured vs. Predicted Hot Gas Layer Temperature Rise (left) and 
Measured vs. Predicted Heat Flux (right)  
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Results of the V&V  

Parameter Fire Model 

FDTS FIVE-Rev1 CFAST MAGIC FDS 

Hot gas layer temperature (“upper 
layer temperature”) 

Room of 
Origin YELLOW+ YELLOW+ GREEN GREEN GREEN 

Adjacent 
Room N/A N/A YELLOW YELLOW+ GREEN 

Hot gas layer height (“layer 
interface height”) N/A N/A GREEN GREEN GREEN 

Ceiling jet temperature (“target/gas 
temperature”) N/A YELLOW+ YELLOW+ GREEN GREEN 

Plume temperature YELLOW– YELLOW+ N/A GREEN YELLOW 

Flame height GREEN GREEN GREEN GREEN YELLOW 

Oxygen concentration N/A N/A GREEN YELLOW GREEN 

Smoke concentration N/A N/A YELLOW YELLOW YELLOW 

Room pressure N/A N/A GREEN GREEN GREEN 

Target temperature N/A N/A YELLOW YELLOW YELLOW 

Radiant heat flux YELLOW YELLOW YELLOW YELLOW YELLOW 

Total heat flux N/A N/A YELLOW YELLOW YELLOW 

Wall temperature N/A N/A YELLOW YELLOW YELLOW 

Total heat flux to walls N/A N/A YELLOW YELLOW YELLOW 
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What is Uncertainty? 

• Parameter Uncertainty – refers to the contribution of the 
uncertainty in the input parameters to the total uncertainty 
of the simulation 
 
• Model Uncertainty – refers to the effect of the model 

assumptions, simplified physics, numerics, etc. 
 
• Completeness Uncertainty – refers to physics that are left 

out of the model. For most, this is a form of Model 
Uncertainty. 
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Fire Model Validation Study, NUREG-1824 
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Procedure for Calculating Model Uncertainty 

1. Express the predicted value in terms of a rise above ambient. For example, subtract the 
ambient temperature from the predicted temperature. Call this value M. 

2. Find the values of model bias and relative standard deviation from table on previous slide. 
Compute the mean and standard deviation of normal distribution: 
 
 
 
 
 

3. Compute the probability of exceeding the critical value: 
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Sensitivity Analysis to Address  
Parameter Uncertainty 

Example: MQH correlation states that the HGL temperature rise is proportional to the 

HRR to the 2/3 power: 
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Propagating Uncertainty 
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Joint RES/EPRI Fire PRA Workshop 
July and October 2013 
Charlotte, NC 
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Topics 

• Stages / elements of enclosure fires 
• Ignition and heat release 

– CHRISTIFIRE 

• Fire plumes and ceiling jets 
• Heat and smoke detection 
• Structural response / damage 
• Cable response / damage 

– CAROLFIRE 
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Stages of enclosure fires 
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Stages of enclosure fires 

• NUREG 1805 
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Stages of enclosure fires 
Stage 1 - Fire plume / ceiling jet period 

• Buoyant gases rise to ceiling in fire plume 
• Ceiling jet spreads radially until confined 
• Plume entrains surrounding air 
• Temperature decays rapidly with height and radial 

distance 
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Stages of enclosure fires 
Stage 2 - Enclosure smoke filling period 

• Period begins when ceiling jet reaches walls 
• Period ends when smoke flows through vents 
• Smoke layer fills due to entrainment / expansion 
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Stages of enclosure fires 
Stage 3 - Preflashover vented period 

• Quasi-steady mass balance develops 
• Smoke layer equilibrates at balance point 
• Mass balance influenced by sizes, shapes and locations 

of vents and by mechanical ventilation 
• Mass balance influences energy/species balances 
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Stages of enclosure fires 
Stage 4 - Postflashover vented period 

• Period begins when secondary fuels begin to ignite from 
radiant exposure 
• Post-flashover fires frequently become ventilation-limited, 

with flames extending out of vents 
• Underventilation affects smoke production 
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Vent flow stages 
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Elements of enclosure fires 

• Fire source 
• Fire plume 
• Ceiling jet 
• Upper gas layer 
• Lower gas layer 
• Vents / ventilation 
• Boundaries 
• Targets 
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The fire source 

• First item 
– Ignition 
– Growth rate 
– Peak HRR 
– Burning duration 

• Secondary items 
– Time to ignition 
– Burning histories 
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The fire plume 

• Issues 
– Entrainment (m as f(Q, z)) 
– Temperature (Tpl as f(Q, r, z)) 
– Wall / corner effects 
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R

H
L

H

W

The ceiling jet 

• Types 
– Unconfined 
– Confined 
– Other (sloped, obstructed …) 
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R

H

The ceiling jet 

• Features 
– Relatively thin layer beneath ceiling (~0.1H) 
– Temperature, velocity decay as f(r) 

• Analysis issues 
– Patterns 
– Target damage 
– Fire detector operation 
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plm
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Hot gas layer 

• Issues 
– Descent (filling) rate as f(t) 
– Temperature and smoke concentrations 
– Equilibrium position 
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Po Pi
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Vents / ventilation systems 

• Types 
– Natural ventilation 

• Wall openings 
• Floor / ceiling openings 

– Mechanical ventilation 
• Injection 
• Extraction 
• Balanced 

• Issues 
– Impact on temperature and 

smoke conditions 
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Vents / ventilation systems 

• Types of mechanical ventilation systems 
• Injection 
• Extraction 
• Balanced 
• Recirculation 
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Boundaries 

• Types 
– Walls / ceiling / floor 
– Columns / beams 

• Issues 
– Heat transfer 

• Thermal inertia 
– Ignition / damage 
– Stability 
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Targets 

• Types 
– People (moving targets) 
– Fire protection devices 
– Equipment / structure 

• Issues 
– Injury 
– Activation / damage 
– Operability 
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DESIGN 
ELEMENT

EXAMPLE 
TYPES

PHYSICAL 
ATTRIBUTES

GEOMETRIC 
ATTRIBUTES

FUELS FINISHES
FURNISHINGS

MATERIALS
QUANTITIES
RELEASE RATES

LOCATIONS
DIMENSIONS

BOUNDARIES WALLS
CEILINGS
FLOORS

MATERIALS LOCATIONS
DIMENSIONS

TARGETS PEOPLE
EQUIPMENT
PRODUCTS

DAMAGE 
CRITERIA

LOCATIONS
DIMENSIONS

NATURAL 
VENTILATION

DOORS
WINDOWS

STATUS
ACT. PARAMETER

LOCATIONS
DIMENSIONS

MECHANICAL 
VENTILATION

INJECTION
EXTRACTION
BALANCED

FLOW RATES
STATUS
ACT. PARAMETER

LOCATIONS
DIMENSIONS

Elements of enclosure fires 
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Elements of enclosure fires 



Slide 22 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

Fire scenario description 

• Hazard development time scale 
• Fire mitigation time scale 
• Objective:  tmit < tcrit 

With 
suppression 

Without 
suppression 
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Summary – elements of enclosure fires 

• Analysis of enclosure fire dynamics requires consideration 
of thermal sciences 
– Heat transfer – ignition / boundary heat losses ... 
– Fluid mechanics – plumes / vent flows ... 
– Thermodynamics – Smoke layer / lower layer ... 

 

• These features are embedded in computer-based fire 
models 
– Should understand the basics before using models (i.e., don’t 

treat computer models as black boxes) 
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Ignition and heat release 

• Ignition of liquids 
– Thin films / pools / sprays / cascades 

• Ignition of solids 
– Thermally thin materials 
– Thermally thick materials 

• Heat release rates 
– Heat release rate characterizations 
– Experimental measurements / methods 
– Data resources 
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Ignition of liquids 

• Ignition of liquids is actually the 
ignition of vapors rising from the 
fuel surface 
• Liquid vapor pressures are 

typically expressed in terms of the 
Clausius-Clapeyron equation 
 
 
• Ignition occurs when there is a 

flammable mixture of fuel vapor 
and air at the location of a 
competent ignition source 

C
H
RTP

vap

+
∆

=)ln(
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Ignition of liquids 

• Combustible liquids are classified by flashpoint (FP) 
– Flashpoint is the lowest temperature at which a flammable vapor / 

air mixture exists at the fuel surface 

• Flashpoints are measured in a number of different 
standard test methods 
– Open cup vs. closed cup 

• DOT classifications are commonly used to distinguish the 
volatility of liquid fuels 
– Flammable liquids have FP < 100 F 
– Combustible liquids have FP > 100 F 
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Ignition of liquids 

• Thin films 
– Thin films of liquids are typical in spill scenarios where a small 

quantity of liquid spreads on floor 
– At temperatures above the flashpoint of the liquid, a thin film can 

be readily ignited 
– At temperatures below the flashpoint of the liquid, the liquid 

temperature must be raised to its flashpoint 
• On heavy substrates, such as concrete floors, this can require 

considerable energy input 
• On porous substrates, such as carpet, wicking occurs 
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Ignition of liquids 

• Pools 
– At temperatures above the flashpoint of the liquid, a pool can be 

readily ignited 
• Above the fire point, liquid will continue to burn 
• Fire point typically a few degrees higher than FP 

– At temperatures below flashpoint of the liquid, the liquid 
temperature must be raised to its flashpoint 
• Circulation patterns in pool can dissipate considerable heat from 

localized ignition source 
• A wick traps liquid, permitting localized ignition 

– e.g., Hurricane lamp / porous lagging on pipes 
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Ignition of liquids 

• Sprays 
– Pressurized leaks can cause the discharge of atomized sprays 
– Such sprays are relatively easy to ignite, even if the liquid is 

above its flashpoint 
• This is due to high surface area / volume ratio of small droplets 
• e.g., Oil burner 

• Cascades 
– Cascading liquids can have characteristics of thin films and 

sprays,  
• Difficult to generalize about ignition characteristics 
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Ignition of solids 

• Solid fuels pyrolyze or vaporize 
under incident heat flux 
– Combustible vapors released from the 

fuel surface 

• Ignition occurs when fuel vapors 
form flammable mixture with air in 
presence of ignition source near 
fuel surface 
• Concept of effective ignition 

temperature is still widely used 
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Ignition of solids 

• Thermally thin solid 
– A material that develops a uniform temperature through its cross-

section under heating 
• A material with a low Biot number 

• Thermally thick solid 
– A material that develops significant temperature gradients at the 

fuel surface under heating 
• A material that can be treated as a semi-infinite solid during the time 

period of interest (i.e., ignition time) 



Slide 32 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

Ignition of solids 

• Thermally thin solids – example 
• Solution – Case 1 
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Ignition of solids 

• Thermally thick solids 
– For a constant net heat flux at fuel surface, the time to ignition can 

be calculated as: 
 
 

– The net heat flux does not typically stay constant, even for a 
constant radiative heat flux 
• As the surface heats up, reradiation and convection from the surface 

become increasingly important 
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Ignition of solids 

• Thermally thick solids 
– Critical heat flux is the minimum heat flux that will cause ignition 

within a prescribed exposure period 
• 20 minutes is commonly used, but is arbitrary 

– Time to ignition is then calculated as 
 
 
 

– TRP is “thermal response parameter” defined by Tewarson 
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Ignition of solids 

• Thermally thick solids – representative properties 
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Ignition of solids 

• Thermally thick solids – representative properties 
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Ignition of solids 

•Thermally thick solids – example 
– A rigid polyurethane foam insulation board has a thermal 

inertia of 9.5x10-4 (kW/m2.K)2s and an effective ignition 
temperature of 400°C.   

– A wooden panel has a thermal inertial of 0.14 (kW/m2.K)2s 
and an effective ignition temperature of 300°C.   

– Both materials have thermal absorptivities of 0.90.   
– Each material is subjected to a constant net heat flux at the 

surface of 30 kW/m2 
– Estimate the time to ignition of each material 
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Ignition of solids 

• Thermally thick solids – example 
• Solution 

– PU foam 
 
 
 

– PW panel 
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Ignition of solids 

• Thermally thick solids 
– Governing material property for ignition is 

• Low density materials heat up faster and ignite sooner than higher 
density materials 

– Need to select material properties from the literature with caution, 
particularly for use in computer-based models such as FDS 
• Effective material properties derived based on different assumptions 

from those used in FDS 
• Evaluation of authoritative material properties is an area of active 

research currently sponsored by NIST 

ckρ
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Fire source issues 

• First item 
– Ignition 
– Growth rate 
– Peak HRR 
– Burning duration 

• Secondary items 
– Time to ignition 
– Burning histories 
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Design fire 

• HRR as f(t) is termed the design fire 
• Approaches to determining design fire: 

– Knowledge of amount/type of combustibles 
• Object assumed to ignite and burn at known rate 
• Rate based on experimental data 

– Knowledge of occupancy 
• Little detailed data regarding specific fuels 
• Design fire based on statistics / eng. judgment 
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Design fire issues 

• Target damage 
– Target vulnerability vs exposure conditions 

• Structural stability 
– Fully developed post-flashover fire 
– Relatively long time frame (~1/2 -3 hours) 

• Occupant escape / firefighting response 
– Developing fire 
– Relatively short time frame (<~1/2 hour) 

• No exact methodology or procedure 
– Requires engineering judgment 
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Factors controlling HRRs  

• Ignition scenarios 
– Ignition source magnitude 
– Ignition source duration 

• Fuel characteristics 
– Type 
– Quantity 
– Orientation 

• Enclosure effects 
– Radiation enhancement 
– Oxygen vitiation 
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• LIQUIDS AT BOILING POINT 

q”  Net heat flux to fuel surface 
L  Heat of gasification 

• HEAT OF GASIFICATION, L 
– LIQUIDS: 

• (0.3 - 1.5 kJ/g typical) 
– SOLIDS: EFFECTIVE PROPERTY  

• (1 -  5 kJ/g typical) 

)sm/g(
L
qm 2′′

=′′




)( obliqvap TTChL −+∆=

Mass burning rate 

m ′′

q ′′
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  Mass loss rate per unit area 
A  Area of fuel that is burning 
∆Hc Fuel heat of combustion 

 
APPROX.HEATS OF COMBUSTION 
   FUEL   ∆Hc (kJ/g) 

   WOOD   15.0 
   POLYURETHANE 30.0 
  HEPTANE  44.5 

cHAmQ Δ′′= 

Heat release rate 

m ′′

q ′′
m ′′
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Combustibility ratio (or HRP) 

 
 
 
• Representative values of 

 

m ′′

q ′′

( )LHcΔ







′′=′′=

L
HAqHAmQ c

c
ΔΔ 

Fuel Combustibility ratio 
gc HH ∆∆ /  

Red oak (solid) 2.96 
PVC (granular) 6.66 
Nylon (granular) 13.10 
PMMA (granular) 15.46 
Methanol (liquid) 16.50 
Polypropylene (granular) 21.37 
Polystyrene (granular) 23.04 
Polyethylene (granular) 24.84 
Styrene (liquid) 63.30 
Heptane (liquid) 92.83 
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Phases of fire development 

• Incipient 
• Growth 
• Fully developed 
• Decay / burnout 

TIME 

R
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E 1 2 3 4 

to tbo 

maxQ

Q 
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Burning duration 

 
• Heat released by fire 

 
• Burnout approximation 

∫=
t

o
dt)t(QQ 

max
obob Q

Qttt ≈−=
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Fire growth characterization 

• Power law 
 
 
 
• Exponential 
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t2 characterization 

Growth rate tg (s) α (kW/s2)
Slow 600 0.003

Medium 300 0.012
Fast 150 0.047

Ultrafast 75 0.188
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Fire growth characterization 

• Example 
• In the FMSNL fire test series, many of the tests were 

conducted using a gas burner programmed to grow as a t-
squared fire to reach a HRR of 500 kW in 4 minutes, then 
to maintain a constant HRR of 500 kW for another 6 
minutes 
– What does this HRR curve look like? 
– How much energy is released during the growth phase? 
– How much energy is released during the entire test? 
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Fire growth characterization 

• Example FMSNL HRR example
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HRR example – cabinet fire 

HRR taken from Appendix G, NUREG/CR 6850 (EPRI 1011989) 
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HRR example – cabinet fire 

HRR taken from Appendix G, NUREG/CR 6850 (EPRI 1011989) 
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Secondary item ignition 

• Factors 
– Heat flux from primary fire 
– Ease of ignition of target 

• Point source estimate 

)θcos(Rπ
Qχ

q fr
r 24


 =′′
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Secondary item ignition 

• Ignition time estimates (constant heat flux) 
– Thermally thick materials 

 
 
 
 

– Thermally thin materials 
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Summary 

• Engineers need to specify design fires 
– Judgment required 
– Some data available - relatively sparse 

• Design fire specified in terms of HRR(t) 
– Simple case - incipient/growth/steady/decay 
– Complex case - multiple stages pieced together 

• Design fire drives consequence analysis 
– Single most important / uncertain factor  



Slide 58 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

Kevin McGrattan, Andrew Lock, Nathan Marsh, Marc Nyden 
National Institute of Standards and Technology 

Gaithersburg, Maryland, USA 
 

David Stroup and Jason Dreisbach 
U.S. Nuclear Regulatory Commission 

Washington, D.C., USA 

Cable Heat Release, Ignition, and Spread 
in Tray Installations during Fire 

(CHRISTIFIRE) Phase I 
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What’s the Problem? 
Answer: Very little useful information on cables for fire modeling 

Vertical Spread Rate? 

Effectiveness of Wraps? 

Ignition? 

Tray to Tray Spread? 

Horizontal 
Spread Rate? 
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Current Guidance for Modeling Cables 

Problems going from 
“bench” to full-scale 

Which HRR to Use? 
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Current Guidance on Flame Spread 

Based on only one experiment 

Vague or ill-defined parameters 
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Cables used in CHRISTIFIRE 
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Thermoplastic cables 
tend to melt and drip; 

Electrical failure ~200 °C 
 
 
 

Thermoset cables tend 
to char and smolder; 

Electrical failure ~400 °C 
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Multiple Tray Test 8
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Multiple Tray Test 12
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Comparison of Thermoset and Thermoplastic Cable HRR
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External Heat Flux (kW/m2)
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Modeling 
 

The Hard Way 
The Easy Way 
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FLASH-CAT 
Flame Spread over 

Horizontal Cable 
Trays 

Required Data 
    Cable mass/length 

    Non-metal mass fraction 
Ignition 

    5-4-3-2-1 minute rule 
Upward Spread 

    35° spread angle 
Burning Rate 

    250 kW/m² thermoplastics 
    150 kW/m² thermosets 

Lateral Spread 
     3.2 m/h thermoplastics 

     1.1 m/h thermosets 
Heat of Combustion 
    16 MJ/kg for all 
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Fire Dynamics 
Simulator (FDS) 
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Vertical cable fire spread 
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Hallway Tests 
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The spread rate of a fire can be estimated from: 

If the cables are located within the Hot Gas Layer (HGL), 

the spread rate could increase by a factor of 10. 
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FLASH-CAT 

 

Flame Spread over 

Horizontal Cable 

Trays 

 

Results of Hallway 

Experiments 
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FLASH-CAT 

 

Vertical Tray Results 
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Results of CHRISTIFIRE Phase 2 

 

Average heat release rates for thermoplastic and 
thermoset cables are consistent with Phase 1 experiments 

and FLASH-CAT modeling. 

 

Fire spread rates are roughly a factor of 10 greater for 
multiple vertical trays or horizontal trays close to ceilings 

(or within the hot gas layer). 
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CHRISTIFIRE Report, NUREG/CR-7010  
 

kevin.mcgrattan@nist.gov 
david.stroup@nrc.gov 
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Fire plumes and ceiling jets 

• Describe fire plume and ceiling jet phenomena 
• Discuss the theory behind fire plume correlations 
• Appreciate the role of plume entrainment on fire 

conditions within an enclosure 
• Calculate fire plume and ceiling jet conditions, including 

temperatures and velocities, for different correlations 
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References – fire plumes 

• Enclosure Fire Dynamics 
– Chapter 4 - Fire plumes and flame heights 

• SFPE Handbook 
– Chapter on Flame Height 
– Chapter on Fire Plumes 
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Fire plume issues 

• Transports combustion products 
/ entrained air vertically to 
ceiling 
• Causes formation and descent 

of smoke layer 
• Elevated temperatures and 

velocities expose targets located 
in plume 
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Fire plume topics 

• Types of plumes 
• Flame heights 
• Flame/plume temperatures 
• Entrainment in fire plumes 
• Gas velocities in fire plumes 
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Types of fire plumes 

• Axisymmetric plumes 
• Line plumes 
• Window plumes 
• Balcony spill plumes 
• Other …  
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Axisymmetric fire plumes 

• Correlations 
– Morton-Taylor-Turner (ideal) 
– Zukoski 
– Heskestad 
– McCaffrey 
– Alpert 
– Alpert & Ward 
– Thomas 
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D

Zf

D.Q.Z /
f 021230 52 −= 

Flame height correlation 

• Heskestad correlation 

02.1*7.3 5/2 −= Q
D
Z f
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• McCaffrey correlation 
 

– Continuous flame 
 
 
 

– Intermittent flame 
CONTINUOUS
REGION

INTERMITTENT
REGION

5/208.0 QZ fc
=

5/220.0 QZ fi
=

Flame height correlation 
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The Heskestad plume 

• Plume width 
 
 

 

• Plume centerline velocity 
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• Gaussian temperature / velocity profiles 
– Temperature 

 
 

 
 

– Velocity 
TT b.σ ΔΔ 21=

uu b.σ 21=

The Heskestad plume 

( )2)/(exp uo Ruu σ−=

( )2)/(exp To RTT ∆−∆=∆ σ
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The Heskestad plume 

• Plume entrainment 
– Effective flame height 

 
 

– Flame region (z < zL) 
 
 

– Plume region (z > zL) 
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The Heskestad plume 

• Plume centerline temperature 
 

– Continuous flame region  
 

– Plume region 
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The McCaffrey plume 

• Plume entrainment 
– Continuous flame region 

 
 

– Intermittent flame region 
 
 

– Plume region 
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The McCaffrey plume 

• Plume temperature 
 
 

– Continuous flame region 
 
 

– Intermittent flame region 
 
 

– Plume region 
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The Alpert plume 

• Plume velocity / temperature 
 
 
 

 
– Based on total theoretical HRR 
– Used in DETACT model 
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Fire location factors 

• Multiply HRR by fire location factor 
– Fires in the open:  klf = 1 
– Fires along walls: klf = 2 
– Fires in corners: klf = 4 
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Fire plume - example 

• In the FMSNL fire test series, the room height was 6.1 m 
and the burner was 0.1 m above the floor 
• For many tests, the fire HRR was 500 kW and the burner 

diameter was 0.9 m 
• What would be the plume centerline temperature rise and 

velocity at the ceiling based on the Heskestad plume 
correlation? 
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Fire plume - example 

• Solution – plume temperature 
– First calculate the virtual origin elevation 

 
 
 
 

– Then calculate the plume centerline temp rise 
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Fire plume - example 

• Solution – plume velocity 
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Enclosure smoke filling 

• The ASET model 
 
 
 
• Analytical solutions 

– Expansion negligible  
– Leak at ceiling only 
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Smoke management (purge) 

• Extraction method 
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Smoke management (purge) 

• Smoke layer temperature 
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Summary – fire plumes 

• Plume important for number of reasons 
– Temperatures/velocities/heat fluxes at targets 
– Smoke layer filling / exhaust rates 
– Smoke concentrations  

• Correlations available for some scenarios 
– Axisymmetric / line plumes 
– Windows / balconies (limited theory / data) 
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Summary – fire plumes 

• Limited/no correlations for other scenarios 
– 3D fuel sources (e.g., racks, sprays …) 
– Obstructions in plume / flow field 
– Sloped / stepped ceilings 
– Wind / mechanical ventilation 

• Field models can address scenarios where correlations 
are inappropriate 
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Ceiling jet topics 

• Unconfined ceiling jets 
• Confined ceiling jets 
• Ceiling jet correlations 

– Temperature 
– Velocity 
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References – ceiling jets 

• SFPE Handbook 
– Chapter on Ceiling Jet Flows 

• “Fire Plumes and Ceiling Jets” 
– C. Beyler 
– Fire Safety Journal 
– Vol. 11, 1986 
– pp. 53-75 
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H

Unconfined ceiling jets 
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• Temperature correlations  
– Alpert 

 
 

 
– Alpert and Ward 

( ) 3/2/
32.0
HRT

T

pl

cj =
∆

∆

Unconfined ceiling jet 

3/5

3/2

9.16
H
QTpl


=∆

( ) 3/2/
31.0
HRT

T

pl

cj =
∆

∆
3/5

3/2

0.22
H
QT c

pl


=∆



Slide 111 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

• Temperature correlations  
– Heskestad and Delichatsios 

 
 

 
– Cooper 
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Temperature correlations 

Unconfined ceiling jet
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Temperature correlations 

Unconfined ceiling jet
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• Temperature correlation  
– Delichatsios 
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Ceiling jet temperatures 

Confined ceiling jet
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• Velocity correlations 
– Alpert 

 
 
 

– Heskestad and Delichatsios 
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• Velocity correlation 
– Delichatsios 

 
 
 

– Note that according to this correlation the velocity does not 
change as the flow moves down the corridor 
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Ceiling jet velocities 

Ceiling jet velocity correlations
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Ceiling jet - example 

• In the FMSNL enclosure, what would be the ceiling jet 
temperature and velocity at a radial distance of 3.0 m (10 
ft) from the plume centerline for a HRR of 500 kW? 
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Ceiling jet - example 

• Solution 
– R/H = 3.0 / 6.0 = 0.5 
– Temperature rise 

 
 
 

– Velocity 
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Summary – ceiling jets 

• Ceiling jets form when buoyant plume gases are trapped 
beneath ceiling 
• Temperature / velocity correlations exist for some 

conditions 
– Unconfined, horizontal, smooth ceiling 
– Confined, horizontal, smooth ceiling 

• For other conditions, field model needed 
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Fire plume / ceiling jet summary 

• Fire plumes and ceiling jets are important aspects of 
enclosure fire dynamics 
• Temperature, velocity and entrainment correlations exist 

for a few idealized geometries 
– These correlations are used for hand calculations and in zone 

models 

• Fire plume / ceiling jet flows are calculated directly in field 
models such as FDS 
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Heat and smoke detection 

• Understand terminology used to describe the activation of 
fire detection devices 
• Appreciate the role of different variables in estimating fire 

detector activation and structural damage times 
• Calculate the response of fire detectors to fire plume and 

ceiling jet conditions 
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References - detection 

• Enclosure Fire Dynamics 
– Chapter 4 - Fire plumes and ceiling jets 

• SFPE Handbook 
– Chapter on Fire plumes 
– Chapter on Ceiling jet flows 
– Chapter on Design of detection systems 
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Overview of methods to predict  
heat / smoke detector activation 

• Idealized geometry – smooth flat ceiling 
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Overview of methods to predict  
heat / smoke detector activation 

• Realistic geometry – obstructed ceiling 
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Overview of methods to predict  
heat / smoke detector activation 

• Step 1. Specify heat/smoke release rates 

Smoke/ 
heat 

source 

Step 1 
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Overview of methods to predict  
heat / smoke detector activation 

• Step 2. Calculate temperature / smoke concentration 
outside detector 

Smoke 
transport / 

dilution 

Smoke/ 
heat 

source 

Step 1 

Step 2 

Temperature / smoke 
concentration / velocity 

outside detector 
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Overview of methods to predict  
heat / smoke detector activation 

• Step 3. Calculate detector response to local 
environmental conditions 

Smoke 
transport / 

dilution 

Temperature / smoke 
concentration / velocity 

outside detector 

Detector temperature / 
smoke concentration 

Detection activation 
criteria (e.g., 

temperature, %/m) 

Smoke/ 
heat 

source 

Step 1 

Step 3 

Step 2 
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Tg, 
ug 

M, 
cp, 
As 

The DETACT model 

• A first order response model for predicting fire detector 
activation based on convective heating and a lumped 
capacity analysis 
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Bases 

 
• Heat balance at detector 

 
• Convective heating only 

 
• Lumped capacity analysis 

 
• Negligible losses (basic model) 
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Solution 

• Predictive equation for temperature rise 
 
 
 
• Definition of detector time constant 

 
 

 
– Time constant not really constant because it depends on heat 

transfer coefficient, which depends on gas velocity 
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Response Time Index 

 
• For cylinders in cross flow 

 
• Implications 

 
• Definition of RTI 

 
• Predictive equation 
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RTI determination (1) 

• Plunge test 
– Tg = constant 
– ug = constant 
– Tact = known 

 

• Analytical solution 
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Plunge test 
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DETACT formulation 

• Euler equation for Td 
 
 
• Substitute equation for dTd/dt 

 
 

 

 
• Evaluation requires RTI, Tg(t) and ug(t) 
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Detector activation 

 
• Fixed temperature devices 

 
• Rate-of-rise devices 

 
– Typical value of dTact/dt: 8.3ºC (15 ºF) /min 
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Sprinkler activation 

• Generic sprinkler temperature ratings 
– From NUREG 1805 



Slide 139 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

Sprinkler activation 

• Generic sprinkler RTIs 
– From NUREG 1805 
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Heat detector activation 

• Generic heat detector RTIs 
– From NFPA 72 
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Gas parameters - Tg, ug 

• Alpert correlation used in DETACT model (unconfined 
ceiling jet) 
– Temperature   Velocity 
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Sprinkler activation example 

•Assume sprinklers are installed on a 3m x 3m (10 ft 
x 10 ft) spacing in the FMSNL test room 
•The FMSNL test room is 18 m (60 ft) long x 12 m 
(40 ft) wide x 6 m (20 ft) high 
•For a quasi-steady fire with a HRR of 500 kW, 
estimate the activation time for a sprinkler with  
– Tact = 74 C  
– RTI = 130 (m-s)1/2 
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Sprinkler activation example 

• Solution 
– Step 1 – determine radial position of sprinkler 

 
 
 

– Step 2 – calculate gas temperature / velocity at sprinkler 
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Sprinkler activation example 

• Solution 
– Step 3 – Calculate sprinkler response 
– The next step would normally be to calculate the activation time of 

the sprinkler 
– But note that the gas temperature at the sprinkler is only 53 C 

(20+33) for this example, while the sprinkler activation 
temperature is 74 C 

– So the 500 kW fire would not activate the sprinkler until the hot 
gas layer forms and the ceiling jet temperature exceeds the 
activation temperature 
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• Not significant for spot heat detectors, but may be 
significant for sprinklers 
• Heat balance with losses to sprinkler pipe 

 
 
– Last term accounts for heat losses 

• Conductance factor, C, defined as 

( ) ( )oeegc
e

p TTCTTAh
dt

dTmc −′−−=

Conduction effects 

)/( pmcRTICC ⋅′≡



Slide 146 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

• Predictive equations 
 
 
 
 
 

 

– Values of C typically range from ~0 to 2 (m/s)1/2  
– Note that basic predictive equation obtained when C = 0 
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Transport lag time 

• Basic DETACT model is quasi-steady 
– Changes in conditions transmit instantly throughout the domain 

• Can consider plume / ceiling jet transport lag times when 
they are significant 
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Smoke detector activation 

• Heat detector analogy 
– Treat smoke detector as low RTI device 

• Cannot use zero - Divide by zero error 
• Hand calculations - use Td = Tg  

– Assume ∆Tact ~ 15ºC (or less) 
– Questions regarding validity 

• Relies on optical density analogy 
• Smoke detectors don’t always respond to optical density 
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Smoke detector activation 

• Overview 

Smoke 
transport / 

dilution 

Smoke concentration 
outside detector 

Smoke concentration 
within detector 

Detection threshold 
criteria (e.g. %/m) 

Smoke/ 
heat 

source 

Step 1 

Step 3 

Steo 2 
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Smoke detector activation 

•Smoke concentration in detector chamber, Yc 
– Cleary’s four-parameter model 

 
 
 

– Heskestad’s one-parameter model 
 
 

 
• u is the local gas velocity outside the detector 
• L is the characteristic entry length of the detector 
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Smoke detector activation 

•Smoke concentration in detector chamber, Yc 

Smoke detector response models
Step function example
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•Relationship between smoke concentration and 
smoke obscuration 
– Smoke concentration expressed as soot mass fraction, Ys 

– Extinction coefficient, k, expressed in terms of Ys 

 
 

– Transmission (%/m) expressed in terms of k 
 
 

– Obscuration (%/m) expressed in terms of transmission 

Smoke detector activation 

))1(exp(100)/(100)/(% mkIImtrans o −==

)))1(exp(1(100)/(%100)/(% mkmtransmobs −−=−=

sm Ykk ρ= kgmkm /8700 2≅
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Structural steel damage 

• Same concept as DETACT for steel 
 
 
 
• Steel properties 
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Structural damage 

• Steel critical temperature, Tc ≈ 550ºC 
• Evaluation of heat fluxes 

– Flame radiant heat flux 
• Applies in flame only 

 
– Plume convective heat flux 

• Applies in flame and plume 
 

– Radiant flux outside flame 
• Point source estimate 

 
– Based on Alpert & Ward FSJ article 

230
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Module 5 
Advanced Fire Modeling 
Development of a Cable Response 
Model and Fire Model Verification and 
Validation 
Kevin McGrattan 
National Institute of Standards and Technology 
 
Joint RES/EPRI Fire PRA Workshop 
July and October 2013 
Charlotte, NC 
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CAROLFIRE  
(Cable Response to Live Fire) 

• Penlight heats target cables via 
grey-body radiation from a 
heated shroud 
 

• Well controlled, well 
instrumented tests 
 

• Allows for many experiments in a 
short time 
 

• Thermal response and failure for 
single cables and small cable 
bundles (up to six cables) 
 

• Cable trays, air drops, conduits 
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Typical Penlight setup 
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Intermediate-Scale Tests 

Courtesy Steve Nowlen and Frank Wyant, 

Sandia National Labs 

• Less controlled, but a more realistic scale 

• Hood is roughly the size of a typical  
  ASTM E 603 type room fire test facility  

• Propene (Propylene) burner fire (200 kW to 350 kW) 

• Cables in trays, conduits and air drop 
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Simple Response Models in Fire 

Solve for link temperature using velocity u and gas 
temperature from Fire Model.  The RTI (Response Time 

Index) is unique to each sprinkler. 

Source: Gunnar Heskestad, Factory Mutual  

Solve for smoke chamber concentration 

using external smoke concentration and  

velocity u from Fire Model.  L is a length 

scale unique to each detector. 
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Cable Failure Model 

1-D heat conduction into homogenous 

cylinder.  Thermal conductivity (k) and  

specific heat (c) assumed constant for all  

cables.  Density (ρ) obtained from cable  

diameter and mass per unit length. Failure 

temperature obtained experimentally. 

 

The Fire Model provides the convective and 

radiative heat flux at the cable surface. 

 

Source: Andersson and Van Hees, SP Fire, 

Sweden. 
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Single Cable  
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Cable in a Conduit 

Penlight Test 7
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Measured or Inferred Failure Time (s)
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Intermediate-Scale Experiments 
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Summary 

• Methods to calculate fire detector response and structural 
/ cable damage have been discussed 
– First-order response characteristics 
– Lumped capacity analysis (Low Biot No.) 

• Methods require estimates for: 
– Heat flux or gas temperature at target 
– Thermal response properties of target 

• Basic models use fire plume/ceiling jet correlations 
– Same predictive equations used in computer fire models, but 

temperatures / velocities calculated by models 
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Module 5 
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Day 2 - PM Session 
Fire Modeling Tools 

Joint RES/EPRI Fire PRA Workshop 
July and October 2013 
Charlotte, NC 
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Enclosure fire topics 

• Conservation equations and the hot gas layer 
• Enclosure smoke filling 
• Pressure profiles and vent flows 
• Mechanical ventilation effects 
• Hot gas layer temperature correlations/calculations 
• Smoke concentrations and visibility 
• Overview of FDS 
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References – enclosure fires 

• SFPE Handbook 
– Chapter on “Compartment Fire Modeling”  
– Chapter on “Estimating Temperatures ...” 
– Chapter on “Enclosure Smoke Filling ...” 

• Enclosure Fire Dynamics book 
– Chapter 8 - Conservation equations …  
– Chapter 6 - Gas temperatures ... 
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in 

out cv 

cs 
acc. 

Conservation equations 

• Mass conservation 
• Species conservation 
• Energy conservation 
• Momentum conservation 



Slide 5 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

{mass accumulated} = {mass in} - {mass out} 

oi mm
dt
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Mass conservation 
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{energy accumulated} = {energy in} - {energy out} +  
    {energy generated} 
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{species accumulated} = {species in} - {species out} +  
   {species generated} 
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Momentum conservation 

• Bernoulli’s equation 
 
 
 
– Applied at vents only in zone models 
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Summary – control volumes 

• Enclosure fire models are based on application of 
conservation equations to control volumes 
– Zone models - typically two control volumes 

• Upper (hot gas / smoke) layer / lower layer  
• Momentum considered only at vents 

– Field models – thousands or millions of cells 
• Conservation equations applied to each cell 

– Computationally intensive 
• Momentum considered for each cell 
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Thermodynamic properties 

• Internal energy 
 

 
• Enthalpy (specific) 

 

 
• Specific heats 

 

 
• Ideal gas law 
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• Leaky compartment analysis 
– Mass balance (assume no mass inflow) 

 
 
 

– Quasi-steady energy balance 
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Temperature effects 
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• Leaky compartment analysis 
– Ideal gas (constant pressure) 

 
 
 

 
– Substitute and integrate 
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• Leaky compartment analysis 
– Solution for average temperature rise 
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Temperature effects 

• Leaky compartment analysis 
– Example - average temperature rise 

• A fire with a constant HRR of 500 kW burns for 10 minutes in an 
enclosure with a heat loss fraction of 0.7 and dimensions of 18.3 m x 
12.2 m x 6.1 m.  What is average temperature rise after 10 minutes? 
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Oxygen limitations 

• Caution must be exercised in calculating temperatures 
with the previous equation because oxygen depletion will 
eventually cause the fire to diminish in a closed room 
 
• “Puffing” fires can occur in closed rooms because as the 

fire diminishes due to oxygen depletion, fresh air will be 
drawn into the room, which will allow the fire to 
reinvigorate 
 
• The details of oxygen depletion are not presented here, 

but analysts should always be aware of the potential 
effects of oxygen depletion and limited ventilation 
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Enclosure smoke filling 
Case 1. Small leak at floor 

• Mass balance on lower layer 

 
 

• Volume balance on lower layer 

 
 

• Volume balance on upper layer 
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Enclosure smoke filling 
Case 1. Small leak at floor 

• Volumetric plume flow rate (Zukoski) 

 
 

• Volumetric expansion rate 

 
 

• Upper layer descent rate (for flat ceiling) 
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Enclosure smoke filling 
Case 2. Small leak at ceiling 

• Mass balance on lower layer 

 
 

• Volume balance on lower layer 

 
 

• Volume balance on upper layer 
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Enclosure smoke filling 
Case 2. Small leak at ceiling 

• Volumetric plume flow rate (Zukoski) 

 
 

• Upper layer descent rate (for flat ceiling) 
 
 

• Solution for smoke layer position 
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Enclosure smoke filling 
Case 2. Small leak at ceiling 

• Solution for smoke layer position for power law fire -  
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Enclosure smoke filling 
Case 1. Small leak at floor 

•Smoke layer temperature 
 
 
 

 

•Smoke layer oxygen concentration 
 
 
 
– These equations generally require numerical integration 
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Enclosure smoke filling 
Case 2. Small leak at ceiling 
•Smoke layer temperature 
 
 
 

 

•Smoke layer oxygen concentration 
 
 
 

 
– These equations generally require numerical integration 
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Summary – smoke filling 

• Fire in enclosed spaces have been addressed in terms of: 
– Global (one-zone) analysis 
– Smoke layer descent (two-zone) analysis 

• Bases of the ASET addressed 
– ASET does not address oxygen limitations 
– Unrealistic temperatures can be calculated 

• Next step is to consider the effects of vent flows and 
mechanical ventilation 
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Vent flow topics 

• Orifice flow equation 
– Application of Bernoulli’s equation 

• Hydrostatic pressure profiles in room fires 
• Roof /floor vents 
• Wall vents 

– Ventilation limit 

• Multiple vents 
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•Mass flow rate 
 
 
•Velocity 
 
 
 

 
– Need pressure distribution to evaluate mass flow rate 

AvCm D ρ=

ρ
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Orifice flow 
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Pressure distribution 

• Pressure differences arise from hydrostatic pressure 
differences 
 
 
• Pressure profiles go through series of stages 

g
T
Tg

dz
dP ooρρ −=−=



Slide 28 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

Po Pi

PHASE 1 

Pressure profile 
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PHASE 2 

Po Pi

Pressure profile 
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PHASE 3 

Po Pi

Ho
N
D

Pressure profile 
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PHASE 4 

Pressure profile 

Po Pi 

H o 

N 

D 
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Vent flow cases 

•Roof / floor vents 
 

•Wall vents 
 

•Combined / multiple 

•One-zone 
– Stack effect 

•Two-zone 
– Buoyancy 

•Combined 
– Stack + buoyancy 
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Roof / floor vents 

• One zone (Stack effect only) 
– Ti > To (Normal) 
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Roof / floor vents 

• One zone (Stack effect only) 
– Ti < To (Reverse) 
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Roof / floor vents 

• Normal stack effect case 
• Evaluate pressure profiles 

– For uniform temperatures, uniform densities and linear pressure 
profiles 

g
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Roof / floor vents 

• Evaluate pressure difference at roof vent 
• Pressures are equal at neutral plane, N 

)()()( NHgNPHP iii −−=− ρ

)()()( NHgNPHP ooo −−=− ρ

)()()()( NHgHPHP iooi −−=− ρρ

)()()( NHgHP ioio −−=∆ ρρ
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Roof / floor vents 

• Evaluate pressure difference at floor vent 
• Pressures are equal at neutral plane, N 

)0()0()( −−=− NgPNP iii ρ

)0()0()( −−=− NgPNP ooo ρ

gNPP ioio )()0()0( ρρ −=−

gNP iooi )()0( ρρ −=∆
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Roof / floor vents 

• Evaluate vent flow rates 
 
 

– Roof vent 
 
 

– Floor vent 

ρ
ρ PACm D

∆
=

2


ρρ ∆−= iooo NHgACm )(2

ρρ ∆= oiii gNACm 2

)( io ρρρ −=∆
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Roof / floor vents 

• Equate mass flow rates 
 
 
 
• Solve for neutral plane height 

io mm  =

ρρρρ ∆=∆− oiiioo gNACNHgAC 2)(2

2

1

1

















+

=

oo

ii

i

o

AC
ACH

N

ρ
ρ



Slide 40 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

Roof / floor vents 

• Substitute into mass flow equations 
– Mass inflow equation 

 
 
 
 

– Mass outflow equation 
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Roof / floor vents 

• Effect of inlet vent restriction 
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Roof / floor vents 

• Two-zone analysis (Buoyancy only) 
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Roof / floor vents 

• Two-zone analysis (Buoyancy only) 
� ∆P at roof same as for one-zone case 

 
 
 

� ∆P at floor different from one-zone case 

)()()( NHgHP io −−=∆ ρρ

)()()0( DNgP io −−=∆ ρρ
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Roof / floor vents 

• Two-zone analysis (Buoyancy only) 
– Mass outflow term 

 
 
 

– Mass inflow term 

ρρ ∆−= iooo NHgACm )(2

ρρ ∆−= oiii DNgACm )(2
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Roof / floor vents 

• Equate mass flow rates 
 
 
 
• Solve for relative neutral plane height 

io mm  =

ρρρρ ∆−=∆− oiiioo DNgACNHgAC )(2)(2

2

)(
)(

















=

−
−

ii

oo

o

i

AC
AC

NH
DN

ρ
ρ



Slide 46 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

Roof / floor vents 

• Interested in distance (H-D), not (N-D), but note that (N-D) 
= (H-D)-(H-N): 
 
 

 
 
 
 
 
 

– Smoke layer depth in terms of neutral plane depth.  
Substitute into mass outflow equation. 
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Roof / floor vents 

• Mass outflow equation 
 
 
 
 
 
 
 

– This is same as one-zone case, but with overall height, H, 
replaced by smoke layer depth, (H-D). 
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Roof / floor vents 

• Ideal gas manipulations 
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Roof / floor vents 

• Effect of inlet vent restriction (for To/Ti=0.75) 
– When Ai = Ao, vent only about 75% efficient 
– When Ai = 2 Ao, vent is about 92% efficient 
– When Ai = 3 Ao, vent is about 96% efficient 
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Roof / floor vents 

• Evaluation of temperature factor 21
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Wall vents 

• Bidirectional flow through same vent 
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Wall vents 

• One-zone analysis (Stack only - Ti > To) 
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• Pressure differential as f(z) 
 

 
• Velocity as f(z) 

 
– Outflow 

• z > N 
 
 

– Inflow 
• z < N 
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• Mass outflow rate as f(z) 
 
 
 
 

Wall vents 
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• Mass inflow rate as f(z) 
 
 
 
 

Wall vents 
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• Equate mass flow terms 
 
 

 

 
• Solve for neutral plane height 

 

Wall vents 
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• Substitute into mass outflow equation 
 
 
 
 
• This is the ventilation limited flow through a single 

rectangular wall vent 
• Flow is function of ventilation factor and temperature ratio 
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• Plot                          for Cd = 0.7, ambient air 
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• Rooms with single rectangular wall openings 

oomax HA.m 50≈

Ho Ao

r
HmQ c

maxmax
Δ

 =

oomax HAQ 1500≈

The ventilation limit 
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• Calculate maximum air flow rate and heat release rate in 
standard room fire test enclosure with single doorway 
opening 0.76 m wide by 2.03 m high 

 
– VENTILATION FACTOR AoHo

1/2 = 2.2 m5/2 

– MAX. MASS FLOW RATE =  1.1 kg/s 
– ~229 air changes per hour 

– MAX. HEAT RELEASE RATE = 3300 kW 

Example 
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Wall vents 

• Two-zone analysis 
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Wall vents 

• Two-zone analysis 
– Upper layer analysis same as for one-zone 

 
 
 
 

– Before onset of ventilation limited conditions, D and N 
approximately coincident 
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Wall vents 

• Two-zone analysis 
– Elevation of D (and N) based on balance between plume 

entrainment and vent flow 
– Analysis similar to roof vent analysis 
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Wall vents 

• Plume / wall vent flow balance 
 
– Wall vent flow 

 
 
 

– Plume flow 
• zp < zl 

 
 

• zp > zl 
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Multiple vents 

•Neutral plane occurs where  
– mass inflow = outflow 

•Solution technique 
– Guess Zn 
– Calculate mo, mi 
– Compare mo, mi 
– If mo ≠ mi, adjust Zn 

Zn 

Pi Po 
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Other factors 

• Unsteady conditions 
• Wind effects 
• Mechanical ventilation 
• Multiple rooms 

 
• These are the factors that make computer models 

particularly useful! 
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Mechanical ventilation 

• Injection 
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Mechanical ventilation 

• Extraction 

extm

extoi mmm  +=
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Multiple rooms 

1P2P

Room 1 Room 2 
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Summary – ventilation effects 

• Vent flows are important aspect of enclosure fires, 
affecting mass / species / energy balances 
• Issues related to roof vents and wall vents addressed 

– Flow rates and smoke layer heights 
– Constricted flow for roof vents 
– Ventilation limit for wall vents 

• Other issues introduced 
– Wind / mechanical ventilation / multiple rooms 
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Preflashover vented period 
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Preflashover vented period 

• Mass / species / energy balances 
• Mechanical ventilation 
• Vent flows 
• Temperatures 
• Gas / smoke concentrations 
• Flashover estimates 
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Energy balance 

•Upper layer balance 
 
•Heat loss term 
 
•Convective term 
 
•Solve for ∆T: 
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The MQH correlation 

• Dimensionless variables 
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The MQH correlation 

• Statistical correlation of the form: 
 
 
 
 
• Over 100 sets of room fire data 

– Fuels: Gas, wood, plastics 
– Range of room sizes, thermal properties 
– Bias towards low fires in center of room 
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The MQH correlation 

• Values for C, N and M from regression: 
 
 
 
 
• For conventional values, this reduces to: 
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Heat transfer coefficient 

• Early stage - transient semi-infinite solid 
 
 
 
• Late stage - steady one-dimensional slab 

 
 
• Effective heat transfer coefficient 
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Representative thermal properties 

 
MATERIAL k p cp a kpc

[kW/m.K] [kg/m3] [kJ/kg.K] [m2/s]
Aluminum (pure) 2.06E-01 2710 0.895 8.49E-05 5.00E+02
Concrete 1.60E-03 2400 0.75 8.89E-07 2.88E+00
Aerated concrete 2.60E-04 500 0.96 5.42E-07 1.25E-01
Brick 8.00E-04 2600 0.8 3.85E-07 1.66E+00
Concrete block 7.30E-04 1900 0.84 4.57E-07 1.17E+00
Cement-asbestos board 1.40E-04 658 1.06 2.01E-07 9.76E-02
Calcium silicate board 1.25E-04 700 1.12 1.59E-07 9.80E-02
Alumina silicate block 1.40E-04 260 1 5.38E-07 3.64E-02
Gypsum board 1.70E-04 960 1.1 1.61E-07 1.80E-01
Plaster board 1.60E-04 950 0.84 2.01E-07 1.28E-01
Plywood 1.20E-04 540 2.5 8.89E-08 1.62E-01
Chipboard 1.50E-04 800 1.25 1.50E-07 1.50E-01
Fiber insulation board 5.30E-05 240 1.25 1.77E-07 1.59E-02
Glass fiber insulation 3.70E-05 60 0.8 7.71E-07 1.78E-03
Expanded polystyrene 3.40E-05 20 1.5 1.13E-06 1.02E-03
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MQH correlation example 

• Calculate the quasi-steady smoke layer temperature rise 
in the FMSNL enclosure based on the following 
assumptions: 
– Lining material is 2.54 cm thick gypsum wallboard 
– Fire burns at a steady HRR of 500 kW 
– There is a single 0.8 m wide by 2.0 m high door in one of the walls 
– There is no mechanical ventilation 
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MQH correlation example 

• Solution: 
– Lining material is 2.54 cm thick gypsum wallboard 

• Want quasi-steady solution, so need k and d 
• k = 1.7 x 10-4 kW/m.K and d = 0.0254 m 
• hk = k/d = 6.7 x 10-3 kW/m2.K 

– Heat transfer surface area 
 
 
 

– Ventilation factor 
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MQH correlation example 

• Solution: 
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MQH correlation example 

• Repeat the previous example calculation, but assume the 
fire only burns for 10 minutes 
– For this case, need to calculate the transient hk: 
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Fires along walls and in corners 

• Concept of reflection  
– Reduced entrainment rate 
– Higher temperatures 
– Longer entrainment height 

•Mowrer and Williamson adjustment 
factors to MQH correlation 
– Fires along walls 

 
– Fires in corners 

MQHT.T Δ31Δ ×=

MQHT.T Δ71Δ ×=
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Flashover estimates 

• Babrauskas 
 
 
• MQH 

 
 
• Thomas 

 
• Plot of  
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Flashover estimates 

Flashover estimates
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Flashover estimates 

•Example: Determine the HRR to cause flashover in 
the standard fire test room 
– Dimensions: 2.4 m W x 3.6 m L x 2.4 m H 

 
 

– Doorway: 0.8 m W x 2.0 m H 
 

 
– Babrauskas: 

 
– Thomas: 
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Mechanically ventilated spaces 
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Mechanically ventilated spaces 

• Foote-Pagni-Alvares correlation 
– Analogous to MQH correlation 
– Based on limited data in single enclosure 
– Quasi-steady temperature rise 
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Mechanically ventilated spaces 

• Foote-Pagni-Alvares correlation example 
– Calculate the temperature rise in the FMSNL enclosure for a HRR 

of 500 kW and an mechanical ventilation rate of 10 ach 
– Solution 

• To = 293 K (remember to use absolute temperature) 
• hk and As as in the MQH example 
• Mass flow rate calculated as 

skgsmmkgVm /6.4)/8.3)(/2.1( 33 ===  ρ
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Mechanically ventilated spaces 

• Foote-Pagni-Alvares correlation example 
– Solution 
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Summary –  
mechanical ventilation 

• Mechanical ventilation provides additional pathways for 
air and smoke flow 
– Influences mass, species and energy equations 

• Injection tends to pressurize a fire room, pushing smoke 
out through leakage paths 
• Extraction tends to depressurize a fire room, pulling fresh 

air in through leakage paths 
• Locations of leakage paths (e.g., ceiling or floor) and 

location of smoke layer interface influence the effects of 
mechanical ventilation 
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Summary – preflashover fires 

• Average upper layer temperature based on energy and 
mass balances 
• Correlations developed for  

– closed-form estimates of preflashover temperatures 
• MQH correlation for naturally ventilated enclosures 
• FPA correlation for mechanically ventilated enclosures 

– flashover estimates 
• Babrauskas 
• MQH 
• Thomas 
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Smoke and visibility 

• Light attenuation and visibility through smoke can be 
estimated based on the soot mass concentration within 
the smoke layer  
• The light extinction coefficient, K, is directly proportional to 

the soot mass concentration as:  
 
 
 

– where Km is the specific extinction coefficient and Ys is the soot 
mass fraction in the smoke 

sootm YKK ρ=
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Smoke and visibility 

• Seader and Einhorn suggested values for Km of  
– Km = 7,600 m2/kg for flaming combustion and  
– Km = 4,400 m2/kg for pyrolysis smoke.   
– These values have been widely used for light attenuation and 

visibility calculations 
 
• Mulholand and Croarkin have suggested a value of Km = 

8,700 m2/kg for flaming combustion of wood and plastic 
fuels 
– This value is now more widely used (e.g., in FDS) 
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Smoke and visibility 

• Light attenuation is calculated in accordance with 
Bougher’s Law for monochromatic light: 

 
 

 
• Visibility through smoke varies inversely with the light 

extinction coefficient:  
 

 
– where S is the visibility distance (m) and C is a constant related to 

the object being viewed 

KL
o eII −=/

KCS /=



Slide 96 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

Smoke and visibility 

• Mulholand gives the following values for C: 
 

– C = 8 for light-emitting signs 
 

– C = 3 for light-reflecting signs 
 

• These values should be used with caution because they 
will depend on the ambient light levels  
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Smoke and visibility 

• To calculate smoke obscuration and visibility, the soot 
mass fraction, Ys, is calculated 
• First, the soot generation rate is calculated 

 
 
 

– where fs is the soot yield of the fuel 
– Soot yields are tabulated in the SFPE Handbook (Tewarson 

chapter) for a large number of fuels 
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Smoke and visibility 

• Representative soot yields 
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Smoke and visibility 

• Soot mass concentration 
– Unventilated rooms: 

 
 

 
– Ventilated rooms: 
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Smoke and visibility 

• Unventilated room example 
– Estimate the average mass concentration of soot and the visibility 

distance within the 18.3 m by 12.2 m by 6.1 m FMSNL enclosure 
at 240 s and 600 s after ignition 
• Assume the enclosure is unventilated 
• Assume propylene (C3H6) is the fuel  
• Assume the fire grows as a t-squared fire to a HRR of 500 kW in 240 

s, then burns at a constant HRR of 500 kW for another 360 s.  
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Smoke and visibility 

• Unventilated room example 
– For propylene (C3H6)  

 
 

 
 

– Fire heat release  
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Smoke and visibility 

• Unventilated room example 
– Heat release per unit volume 

 
 

 
 

– Soot mass concentration  
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Smoke and visibility 

• Unventilated room example 
– Extinction coefficient 

 
 

 
 

– Visibility of light-reflecting sign through smoke 
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Smoke and visibility 

• Ventilated room example 
– Estimate the average mass concentration of soot and the visibility 

distance within the 18.3 m by 12.2 m by 6.1 m FMSNL enclosure 
under quasi-steady conditions assuming the enclosure is 
mechanically ventilated at 10 ach 
• Assume propylene (C3H6) is the fuel burned in the FMSNL fire tests  
• Assume the fire burns at a constant HRR of 500 kW for another 360 s.  
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Smoke and visibility 

• Ventilated room example 
– Volumetric flow rate 

 
 
 

– HRR/Volumetric flow rate 
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Smoke and visibility 

• Ventilated room example 
– Soot mass concentration 

 
 
 
 

– Extinction coefficient 
 
 

– Visibility of light-reflecting sign through smoke 
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Summary – enclosure fires  

• This presentation has introduced a number of important 
factors in enclosure fires 
– Two-layer zone modeling control volumes 
– Pressure effects in enclosure fires 
– Vent flows and mechanical ventilation 
– Smoke concentrations and visibility 

• Computer-based fire models incorporate these effects in 
different ways 
– Should understand how models treat phenomena 
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Overview of FDS 

• Basic Assumptions of FDS 
– Low Mach Number Approximation 
– Large Eddy Simulation 
– Fire and Combustion Approaches 

• Plume Simulations 
• Verification and Validation 
• Fire Modeling for FPE Design 
• Fire Modeling for Fire Forensics and Reconstructions 
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Aerodynamics 

Air flow over proposed jet aircraft design, Courtesy 

Numerical Aerospace Simulation Facility, NASA Ames 

Research Center  
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Weather Prediction 

Development of a Cyclone in 
the Sea of Japan, Courtesy 

National Center for 
Atmospheric Research 

(NCAR) 

Regional Weather  Prediction, 
US Midwest and Mountain 

States, 

Courtesy NCAR 
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Fire/Combustion 

Turbulence 

Large Eddy Simulation 

Low Mach Number 

Approximation 
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Large Eddy Simulation 
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Sandia 1 m CH4, Test 17, Measured Puffing Frequency = 1.65 Hz 

S. R. Tieszen, T. J. O’Hern, R. W. Schefer, E. J. Weckman, and T. K. Blanchat, Experimental 
study of the flow field in and around a one meter diameter methane fire, Comb. Flame, 
129:378-391, 2002. 

𝑓 ≅ 1.5
𝐷
 Hz 
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Combustion 

Simulation of a 

burner flame, 

courtesy Convergent 

Technologies 
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“Lumped Species” Approach 

Generalization of the Mixture Fraction concept – instead of tracking a single 

variable, track at least two, the fuel and its products. This then allows for a local 

extinction model. 
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McCaffrey’s Plume Measurements 



Slide 117 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

Heskestad Flame Height Correlation 
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Grid Resolution 
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15 m diesel fuel fire, Little Sand Island, Mobile Bay. Courtesy Doug Walton, NIST 
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Case Study: 

 

In situ burning 

of spilled crude oil 

 

Sponsors: 

 

US Minerals Management Service 

Alaska Department of  

      Environmental Conservation 

US Coast Guard 
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Alaska Clean Seas Oil Burn Experiment, Prudhoe Bay, 1994 

NIST ALOFT Model – 

A Large Outdoor Fire plume 

Trajectory 
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Map showing flight 

path of aircraft  

performing Lidar 

measurements of 

the smoke plume, 

courtesy SRI,  

International 
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Smoke Trajectory from hypothetical burn, Valdez, Alaska 

Terrain data courtesy US Geological Survey, Digital Elevation Maps 
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In Situ Burning Guidelines 

for Alaska 
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NFPRF Sprinkler/Vent/Draft Curtain Study 
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Introduction    
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Automatic Vent Diagram 
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Heptane Spray Burner Layout (Series 1) 
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Sample Results 
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Heptane Series II Layout 



Slide 133 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Fire PRA Workshop 2013, Charlotte, NC 
 Module 5: Advanced Fire Modeling 

Commodity Layouts 
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Burning Boxes 
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Fire Growth 
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Fire Growth Validation 
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Suppression 
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Suppression 
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Commodity Layout 
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No Draft Curtains 
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Draft Curtains 
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PyroSim, courtesy Thunderhead 

Engineering Consultants, Manhattan, Kansas 

2006 Olympic Ice Hockey Stadium,  

Turin, Italy, courtesy Arup 

Parking Garage, courtesy VTT, Finland 

NASA Vehicle Assembly Building 

Kennedy Space Center 

courtesy Rolf Jensen 

Tank Fire Analysis, courtesy  

Combustion Science and Engineering 

Courtesy, Schirmer Engineering 
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Fire Reconstructions 

World Trade Center Investigation  
The Station Nightclub Fire 
Dan Madrzykowski and Steve 

Kerber  
 

Cook County Administration Building Fire 
69 West Washington, Chicago, Illinois, October 

17, 2003 
Doug Walton and Dan Madrzykowski 
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Fire Analysis 

NIST 

Program: Fire Dynamics Simulator 

Thermal Analysis 

NIST 

Program: ANSYS 

1

MN

MX

X Y

Z

                                  

SEP 27 2004
09:20:54

NODAL SOLUTION

STEP=11
SUB =8
TIME=6000
UZ       (AVG)
RSYS=0
DMX =22.529
SMN =-22.431
SMX =3.108

Structural Analysis 

Simpson Gumhertz & Heger 

Program: ANSYS 

Aircraft Impact Analysis 

Applied Research Associates 

Program: LS-DYNA 
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Model 2: Fire 
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Photos courtesy of the Port Authority 
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Video courtesy of Alex Maranghides,  

Anthony Hamins, NIST 
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Multi-Floor WTC Geometry 
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Upper Layer Gas Temperatures 
WTC 1 - Floor 97 

Graphics courtesy of Glenn Forney, NIST 
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METHODOLOGY 
 

Module 5 
Advanced Fire Modeling 
Day 3 - AM Session 
Example A: Control Room Fire 
Example B: Switchgear Room Cabinet Fire
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Step 1. Define Fire Modeling Goals 

• Determine the length of time that the Main Control Room 
(MCR) remains habitable after the start of a fire within a 
low-voltage control cabinet.  
• Follow guidance provided in Chapter 11 of NUREG/CR-

6850 (EPRI 1011989), Volume 2, “Detailed Fire Modeling 
(Task 11).”  
• Note that MCR fire scenarios are treated differently than 

fires within other compartments, mainly because it is 
necessary to consider and evaluate forced abandonment 
in addition to equipment damage. 
 



Fire PRA Workshop, 2013, Charlotte, NC 
Module 5: Advanced Fire Modeling 

Slide 3 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Step 2. Characterize Fire Scenarios 

• General Description 
• Geometry 
• Materials 
• Fire Protection Systems 
• Ventilation 
• Fire 
• Habitability and Human Factors 





Typical “open grate” ceiling 





Typical Control Room Cabinet 
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Material Properties 

• For non-burning materials, the most important properties 
are thermal conductivity, k, density, ρ, and specific heat, c 
• For specified burning rates, you need:  

– Heat Release Rate (HRR) or HRR Per Unit Area (HRRPUA) 
– Heat of Combustion – energy released per unit mass consumed 

• For predicting the burning rate, you need: 
– Heat of Vaporization (liquids) 
– Heat of Gasification (solids) 
– Kinetic constants for reaction rates 
– (typically not used for NPP applications) 



Typical material properties for common construction and cable materials 
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Ventilation 

• 25 Air Changes Per Hour (ACH) for purge mode 
• Two scenarios – purge mode or ventilation inoperative 
• Leakage – often the “leakage area” is the area of the 

crack under the door 
• Exact supply and exhaust location only important for CFD 
• Zone models usually only consider height of mechanical 

ventilation injection and extraction grilles 
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Fire 

HRR taken from Appendix G, NUREG/CR 6850 (EPRI 1011989) 
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Fire 

What is burning? 

Cables made of polyethylene (C2H4) and neoprene (C4H5Cl) 

Assume effective fuel: C3H4.5Cl0.5 
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Habitability 

Criteria for habitability (NUREG/CR-6850, Vol 2, Chap 11) 
• Gas Temperature 2 m off the floor is 95 °C 
• Heat Flux exceeds 1 kW/m2 
• Optical Density exceeds 3 m-1 

 
What is Optical Density? 
 
    

Smoke Concentration (kg/m3) 

Mass Extinction Coefficient (8700 m2/kg) 
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Step 3. Select Fire Models 

• Algebraic Models: FPA algorithm in FIVE and FDTs 
provides estimate of HGL temperature within a closed, 
ventilated compartment.  
– FDTs do not allow for time-dependent HRR 

• Zone Models: CFAST includes smoke obscuration. 
MAGIC does not. 
• CFD: Provides more detailed information at exact location 

of operators 
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Applicability of Validation 
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Applicability of Validation 

• For the scenario with no ventilation, the classic definition 
of the Equivalence Ratio does not apply because there is 
no supply of oxygen in the room.   
• However, it can be shown that there is sufficient oxygen in 

the room to sustain the specified fire. 
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Step 4. Calculate Fire-Generated Conditions 



Fire PRA Workshop, 2013, Charlotte, NC 
Module 5: Advanced Fire Modeling 

Slide 18 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Step 4. Calculate Fire-Generated Conditions 

• Temperature in smoke purge scenario 
– Use FPA correlation in FIVE-rev1 or FDTs 

• Need equivalent length / width of non-rectangular rooms 
 
• Other input parameters 
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Step 4. Calculate Fire-Generated Conditions 
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CFAST – geometry and material selection 
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CFAST – fire specification 
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CFAST – mechanical ventilation 
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CFAST – Smokeview rendering of MCR fire  
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FDS – Smokeview rendering of MCR fire 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 5. Sensitivity and Uncertainty Analysis 

• Uncertainty Analysis quantifies the model uncertainty 
– List the predicted quantities and the critical values of these quantities 

• Sensitivity Analysis can be used to assess parameter uncertainty  
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 6. Document the Analysis 

• Follow the steps; clearly explain the entire process 
• Answer the original question 
• Report model predictions with uncertainty and sensitivity 

included 
• Include all references 
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Step 6. Document the Analysis 



Fire PRA Workshop, 2013, Charlotte, NC 
Module 5: Advanced Fire Modeling 

Slide 39 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Step 6. Document the Analysis 
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EPRI/NRC-RES FIRE PRA 
METHODOLOGY 
 
 

Module 5 
Advanced Fire Modeling 
Day 3 – AM Session 
Example B: Switchgear Room Cabinet Fire
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Step 1. Define Fire Modeling Goals 

• Estimate the effects of fire in a cabinet in a Switchgear 
Room on nearby cable and cabinet targets.  
• Switchgear Room contains safety-related equipment for 

both Train A and Train B that are not separated as 
required by Appendix R.  
• The purpose of the calculation is to analyze this condition 

and determine whether these targets fail, and, if so, at 
what time failure occurs. 
• Follow guidance provided in Chapter 11 of NUREG/CR-

6850 (EPRI 1011989), Volume 2, “Detailed Fire Modeling 
(Task 11).”  
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Step 2. Characterize Fire Scenarios 

• General Description 
• Geometry 
• Materials 
• Ventilation 
• Fire 
• Fire Protection Systems 

– None credited for this scenario 
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Material Properties 
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Ventilation 

• Design flowrate specified for each of three supply and 
return registers. 
• Normal operation continues during the fire. 
• Leakage – often the “leakage area” is the area of the 

crack under the door. 
• Exact supply and exhaust location only important for CFD. 
• Zone models usually only consider height of ducts off floor 

and orientation of the vent. 
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Fire 

HRR taken from Appendix G, NUREG/CR 6850 (EPRI 1011989) 
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Fire 

• Original fire source is specified atop the 
central cabinet. 

• FLASH-CAT model (NUREG/CR-7010, 
Volume 1) is used to determine the ignition, 
flame spread and extinction of the cables 
above the original fire source. 
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Fire 

What is burning? 

Cables made of polyethylene (C2H4) and polyvinylchloride (C2H3Cl).  

Assume effective fuel: C2H3.5Cl0.5 
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Step 3. Select Fire Models 

• Algebraic Models: FPA algorithm in FIVE provides 
estimate of HGL temperature within a closed, ventilated 
compartment. FDTs do not allow for time-dependent 
HRR. Both FIVE and FDTs can estimate heat flux from a 
fire to a target. 
• Zone Models: Both CFAST and MAGIC  include 

algorithms to estimate the heat flux to and temperature of 
cable targets. 
• CFD: Typical application of FDS. The primary advantage 

of a CFD model for this fire scenario is that the CFD 
model can predict local conditions at the specific location 
of the target cables and adjacent cabinet. 
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Applicability of Validation 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 



Fire PRA Workshop, 2013, Charlotte, NC 
Module 5: Advanced Fire Modeling 

Slide 53 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Step 4. Calculate Fire-Generated Conditions 

Should be 6.1 m 
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Step 4. Calculate Fire-Generated Conditions 
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CFAST – Geometry and material selection 
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CFAST – Fire specification 



Fire PRA Workshop, 2013, Charlotte, NC 
Module 5: Advanced Fire Modeling 

Slide 57 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

CFAST – Mechanical ventilation 
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CFAST – Cabinet and cable targets 
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CFAST – Smokeview rendering of SWGR fire 
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FDS – Smokeview rendering of SWGR fire 
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FDS – Smokeview rendering of SWGR fire 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 6. Document the Analysis 

• Follow the steps; clearly explain the entire process 
• Answer the original question 
• Report model predictions with uncertainty and sensitivity 

included 
• Include all references 
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Step 6. Document the Analysis 
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Joint RES/EPRI Fire PRA Workshop 
July and October 2013 
Charlotte, NC 

EPRI/NRC-RES FIRE PRA 
METHODOLOGY 
 

Module 5 
Advanced Fire Modeling 
Day 3 - PM Session 
Example C: Lubricating Oil Fire in Pump 
Compartment 
Example D: MCC Fire in Switchgear Room 
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Step 1. Define Fire Modeling Goals 

• Determine whether important safe-shutdown equipment 
within a pump room will fail, and at what time failure 
occurs 
• Cables in pump room are protected by an Electrical 

Raceway Fire Barrier System (ERFBS), but there is 
concern that existing ERFBS will not provide required 
protection 
• Impact of opening door to pump room during fire is also 

investigated 
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Step 2. Characterize Fire Scenarios 

• General Description 
• Geometry 
• Materials 
• Fire Protection Systems 

– Detection / suppression not credited for analyzed scenario 

• Ventilation 
• Fire 
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ERFBS and cable insulation data 
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Fire 
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Ventilation 

• One supply and one return, each 0.5 m2 

• Flow rate is 0.25 m3/s 
• One closed door, 1.1 m by 2.1 m 
• Leakage – 1.3 cm (1/2 in) gap under door 

• Door opens after 10 min 
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Step 3. Select Fire Models 

• Algebraic Models: Nothing to estimate HGL temperature 
in a flashed over compartment. Hand calculation used to 
evaluate oxygen availability in closed ventilated room 
• Zone Models: In flashover situation, zone models 

transition from 2 zones to 1.  
• CFD: Challenging scenario because of under-ventilated 

conditions 









Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 6. Document the Analysis 

• Follow the steps; clearly explain the entire process 
• Answer the original question 
• Report model predictions with uncertainty and sensitivity 

included 
• Include all references 
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Step 6. Document the Analysis 
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Step 6. Document the Analysis 
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EPRI/NRC-RES FIRE PRA 
METHODOLOGY 
 
 

Module 5 
Advanced Fire Modeling 
Day 3 - PM Session 
Example D: MCC Fire in Switchgear Room 

Joint RES/EPRI Fire PRA Workshop 
July and October 2013 
Charlotte, NC 
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Step 1. Define Fire Modeling Goals 

• Determine if a fire in the Motor Control Center damages 
nearby cables and cabinets in a switchgear room 
• Define damage to both cables and cabinets as a surface 

temperature of 400 ºC 
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Step 2. Characterize Fire Scenarios 

• General Description 
• Geometry 
• Materials 
• Fire Protection Systems 
• Ventilation 
• Fire 
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Typical “open grate” ceiling 
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Material Properties 
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Material Properties 
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Ventilation 

• 3 Air Changes Per Hour (ACH)  
• Doors closed 
• Compartment volume is 882 m3  

• Volume flow rate is 0.735 m3/s 
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Fire 

HRR taken from Appendix G, NUREG/CR 6850 (EPRI 1011989) 
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Fire 

What is burning? 

Cables made of polyethylene (C2H4) and neoprene (C4H5Cl) 

Assume effective fuel: C3H4.5Cl0.5 
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Step 3. Select Fire Models 

• Algebraic Models: FDTs can be used for the heat flux 
calculation. Non-uniform ceiling height a problem for HGL 
calculations in both FDTs and FIVE-rev1. 
• Zone Models: Non-uniform ceiling is a problem. However, 

CFAST can model the ceiling in terms of a non-uniform 
cross-section or as adjacent compartments 
• CFD: No particular issues for FDS. Two level ceiling is not 

a problem. May want to use multiple grids. 
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Applicability of Validation 
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Step 4. Calculate Fire-Generated Conditions 
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CFAST – Geometry and materials 



Fire PRA Workshop, 2013, Charlotte, NC 
Module 5: Advanced Fire Modeling 

Slide 43 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

CFAST – Fire specification 
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CFAST – Target specification 
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CFAST – Mechanical ventilation 
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CFAST – Smokeview rendering of SWGR fire 
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FDS – Smokeview rendering of SWGR fire 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 6. Document the Analysis 

• Follow the steps; clearly explain the entire process 
• Answer the original question 
• Report model predictions with uncertainty and sensitivity 

included 
• Include all references 
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Step 6. Document the Analysis 
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EPRI/NRC-RES FIRE PRA 
METHODOLOGY 
 

Module 5 
Advanced Fire Modeling 
Day 4 - AM Session 
Example E:  Transient Fire in Cable 
Spreading Room 
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Step 1. Define Fire Modeling Goals 

• Estimate the impact on safe-shutdown cables due to a fire 
in a trash bin inside a Cable Spreading Room.  
• Transient combustibles have been identified as a possible 

source of fire that may impact the cables. The purpose of 
the calculation is to analyze this condition and determine 
whether the cable targets will fail, and, if so, at what time 
failure occurs. 
– Bottom cable tray has a solid steel bottom 

• Follow guidance provided in Chapter 11 of NUREG/CR-
6850 (EPRI 1011989), Volume 2, “Detailed Fire Modeling 
(Task 11).”  
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Step 2. Characterize Fire Scenarios 

• General Description 
• Geometry 
• Materials 
• Fire Protection Systems 
• Ventilation 
• Fire 
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Ventilation 

• The CSR has two doors on the east wall that are normally 
closed.  
• Standard procedure calls for an operator to investigate 

the fire within 600 s (10 min) of an alarm condition. 
• Two supply vents and two return vents. 1.4 m3/s for each. 
• Leakage – often the “leakage area” is the area of the 

crack under the door. 
• Exact supply and exhaust location only important for CFD. 
• Zone models usually only consider height of ducts off floor 

and orientation of the vent. 
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Fire 

HRR taken from Appendix G, NUREG/CR 6850 (EPRI 1011989) 



What is burning? 

A trash fire ignites within a cylindrical steel waste bin 0.8 m (2.6 ft) high and 0.6 
m (2.0 ft) in diameter, containing 5 kg of trash. 
 

Duration of Fire 

Total energy released is 5 kg x 30,400 kJ/kg = 152,000 kJ 

 

Solving for tf yields a total burning time of 800 s. 
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Step 3. Select Fire Models 

• Algebraic Models: FPA algorithm in FIVE provides 
estimate of HGL temperature within a closed, ventilated 
compartment. FDTs do not allow for time-dependent 
HRR. Both FIVE and FDTs can estimate smoke detector 
activation time. 
• Zone Models: Both CFAST and MAGIC include 

algorithms to estimate the temperature of cable targets. 
• CFD: Typical application of FDS. The primary advantage 

of a CFD model for this fire scenario is that the CFD 
model can predict local conditions at the specific location 
of the target cables and includes more complete radiation 
calculations from the fire to the cable targets. 
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Applicability of Validation 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 

FDS simulation, elevation view. 
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Step 4. Calculate Fire-Generated Conditions 



Fire PRA Workshop, 2013, Charlotte, NC 
Module 5: Advanced Fire Modeling 

Slide 17 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 



Fire PRA Workshop, 2013, Charlotte, NC 
Module 5: Advanced Fire Modeling 

Slide 21 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Step 5. Sensitivity and Uncertainty Analysis 
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Alternative Analysis – Parameter Propagation 
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Step 6. Document the Analysis 

• Follow the steps; clearly explain the entire process 
• Answer the original question 
• Report model predictions with uncertainty and sensitivity 

included 
• Include all references 
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Step 6. Document the Analysis 
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EPRI/NRC-RES FIRE PRA 
METHODOLOGY 
 

Module 5 
Advanced Fire Modeling 
Day 4 - AM Session 
Example F:  Lube Oil Fire in Turbine 
Building 
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Step 1. Define Fire Modeling Goals 

• Determine the heat flux to and temperature of structural 
steel columns in a turbine hall due to a lube oil fire.  
• Evaluate structural steel response for two potential curb 

locations. 
• This type of analysis may arise when addressing 

ASME/ANS RA-Sa-2009 supporting requirement FSS-F1 
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Step 2. Characterize Fire Scenarios 

• General Description 
• Geometry 
• Materials 
• Fire Protection Systems 
• Ventilation 
• Fire 
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Material Properties 
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Ventilation 

• Large, open area 
• Forced ventilation intentionally shut down at start of fire 
• 18 exhaust vents to the outside around the perimeter 
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Fire 
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Step 3. Select Fire Models 

• Algebraic Models: Fire resistance calculations typically 
use a pre-defined time-temperature curve, like ASTM E 
119, but such an exposure history is not appropriate here. 
However, heat flux calculations are valid and are used to 
evaluate structural steel response. 
• Zone Models: Challenging case – too many assumptions 

violated, in particular the ratio of flame height to ceiling 
height. Zone models not used. 
• CFD: Near-field or engulfing fire heat flux is a challenge 

for any model, but FDS used for comparison with 
algebraic models. 
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Applicability of Validation 
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Step 4. Calculate Fire-Generated Conditions 
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Flame extension beneath turbine deck 

Unobstructed 
flame height (Lf) 

Flame extension 
beneath ceiling 

~(Lf – H) 
H 



Fire PRA Workshop, 2013, Charlotte, NC 
Module 5: Advanced Fire Modeling 

Slide 39 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

Flame extension beneath turbine deck 
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Column heating – hand calculation 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 6. Document the Analysis 

• Follow the steps; clearly explain the entire process 
• Answer the original question 
• Report model predictions with uncertainty and sensitivity 

included 
• Include all references 
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Step 6. Document the Analysis 
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Step 1. Define Fire Modeling Goals 

• Determine if important safe-shutdown equipment will fail 
due to a fire involving a stack of pallets in a hallway 
• Also determine time to smoke detector activation 
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Step 2. Characterize Fire Scenarios 

• General Description 
• Geometry 
• Materials 
• Fire Protection Systems 
• Ventilation 
• Fire 
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Ventilation and Detection 

• 1.67 m3/s air flow 
• All doors closed 
• 9 smoke detectors with a sensitivity of 4.9 %/m 
• No suppression system 
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Fire 
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Step 3. Select Fire Models 

• Algebraic Models: Not designed for multiple compartment 
scenarios, but can be used to assess room of origin or in 
this case, the corridor containing the pallets 
• Zone Models: Scenario consistent with physical 

assumptions 
• CFD: No need in this case. All questions answered 

satisfactorily with simpler models. 
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Applicability of Validation 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 4. Calculate Fire-Generated Conditions 
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Step 5. Sensitivity and Uncertainty Analysis 
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Step 5. Sensitivity and Uncertainty Analysis 

What happens if the room height is reduced? 
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Step 6. Document the Analysis 

• Follow the steps; clearly explain the entire process 
• Answer the original question 
• Report model predictions with uncertainty and sensitivity 

included 
• Include all references 
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Step 1. Define Fire Modeling Goals 

• Determine potential for damage to redundant safe-
shutdown cables due to a fire in an adjacent tray in 
annulus region of the containment building. 
• Follow guidance provided in Chapter 11 and Appendix R 

(Cable Fires) of NUREG/CR-6850 (EPRI 1011989), 
Volume 2. 
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Fire 

HRR taken from Appendix R, NUREG/CR 6850 (EPRI 1011989) 
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What is burning? 

Cables made of polyethylene (C2H4) and polyvinylchloride (C2H3Cl).  

Assume effective fuel: C2H3.5Cl0.5 
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Material Properties 
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NUREG/CR-7010 
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Step 3. Select Fire Models 

• Algebraic Models: Point source heat flux 
• Zone Models: Typically not used outside of a 

compartment.  
• CFD: FDS assumes rectangular geometry, but it can 

approximate the curved wall using a series of “stair steps” 
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Applicability of Validation 

• Diameter of the fire is not well-defined 

• Compartment parameters not appropriate 



Fire PRA Workshop, 2013, Charlotte, NC 
Module 5: Advanced Fire Modeling 

Slide 29 A Collaboration of U.S. NRC Office of Nuclear Regulatory 
Research (RES) & Electric Power Research Institute (EPRI) 

CHRISTIFIRE 2, Vertical Tests 

 

Two trays of PVC Instrument Cable 

separated by 6 inches 

 

October 2011, NIST Large Fire Lab 
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Step 4. Calculate Fire-Generated Conditions 

Two forms of the point source radiation model 
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FDS simulation. 
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Step 5. Sensitivity and Uncertainty Analysis 
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Sensitivity Analysis – how do changes in the input parameters affect the outcome? 

(Relative Change in Output) = Power x (Relative Change in Input) 

Relative Change in Plume Temperature= 2/3 x Relative Change in HRR 
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Step 6. Document the Analysis 

• Follow the steps; clearly explain the entire process 
• Answer the original question 
• Report model predictions with uncertainty and sensitivity 

included 
• Include all references 
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