Proposed Turkey Point Units 6 and 7 Docket Nos. 52-040 and 52-041 L-2014-262 Attachment 2 Page 1 of 211

Attachment 2

COLA Revision 5 Highlighted Pages for Subsection 2.5.1 Figure RAIs

(Total Pages - 211)

Proposed Turkey Point Units 6 and 7 Docket Nos. 52-040 and 52-041 L-2014-262 Attachment 2 Page 2 of 211

Turkey Point Units 6 & 7 COL Application Part 2 — FSAR

Site Region Geologic Map (Sheet 1 of 2)

Figure 2.5.1-201 Site Region Geologic Map (Sheet 2 of 2)

Explanation

------ Fault; dotted where uncertain

Florida Geologic Units Qh Holocene sediments QUATERNARY Qk Key Largo Limestone Qm Miami Limestone Qa Anastasia Formation Qdb Beach Ridge and Dune deposits Qu Undifferentiated sediments LATE TERTIARY/ EARLY QUATERNARY TQsu Shelly sediments (includes Fort Thompson, Bermont, and Caloostahatchee Formations) TQue Reworked Cypresshead sediments TQd Dune deposits TQu Undifferentiated sediments Tc Cypresshead Formation Tt **Tamiami Formation** TERTIARY Hawthorn Group, undivided Th Ts Suwannee Limestone Ocala Limestone То

Other Geologic Units

Note: Geologic information from References 827, 492, and 397

Revision 5

Source: Reference 492

Figure 2.5.1-203 Supercontinents Rodinia and Pangea

(a) The Rodinia supercontinent in the Mesoproterozoic (revised). The revised or "new" Rodinia reconstruction at 750 Ma. Compared to previous reconstructions, the positions of Australia, East Antarctica, and Congo have been revised. North China is tentatively placed north of Bakltica. Continental fragments and magmatic arcs (Avalonian, Cadomian, and Timanian) along the southwestern margin of Rodinia were welded onto West Africa, Amazonia, Baltica and Siberia in the Late Precambrian.

Pangaea 30°1 North China South Palaeotethys China Equator Amazonia Gondwana Congo India Australi East Antarctica Subduction zones

Modified from Reference 759

(b) The Pangea supercontinent in the Late Permian. At the time of its maximum extent, Pangea did not contain North and South China, and new oceanic crust was formed along the eastern margin. Precambrian

terranes or continents often discussed in Rodinia reconstructions (but at different locations) are shown in yellow. Gondwana, in the Southern Hemi-

sphere, was formed ~550 million years ago. In the Northern Hemisphere, the

earlier terranes of Laurentia, Avalonia, and Baltica combined in the Early De-

vonian (418 to 400 million years ago) to form Laurussia. Gondwana and

Laurus later collided to form Pangea.

Figure 2.5.1-204 Alleghanian Oblique Rotational Collision between Laurentia and Gondwana

Notes:

Red lines and symbols indicate feature is active in the time interval shown.

- (A) Initial contact between Gondwana and Laurentia occurred in late Early Carboniferous (late Mississippian), producing initially sinistral faulting in New England followed immediately by dextral motion and pull-apart basins, then shedding of clastic sediments onto the continent, and Lackawanna-phase deformation.
- (B) Southward movement and rotation of Gondwana with respect to Laurentia in early Late Carboniferous (early Pennsylvanian) produced dextral motion throughout orogen, waning of Lackawanna phase deformation, and greater dispersal of sediments onto the Laurentian foreland.
- (C) Continued clockwise rotation of Gondwana with respect to Laurentia during the Late Carboniferous closed the Theic ocean southward, bringing Gondwana into head-on collision with Laurentia, and producing the first movement on the Blue Ridge-Piedmont mega-thrust sheet.
- (D) Early Permian head-on collision of Gondwana with Laurentia produced major transport on Blue Ridge-Piedmont mega-thrust sheet that drove foreland fold-thrust belt deformation (Valley and Ridge and Plateau) ahead of it.

Source: Reference 795

Figure 2.5.1-205 Interpreted Basement Map of Florida

Modified from: References 206, 337, and 338.

Figure 2.5.1-206 Tectonic Plate Reconstructions of Gulf of Mexico and Caribbean Region

Note: Red circle is the approximate location of the 200-mile radius site region Modified from Reference 696

Notes:

(a) Reconstruction of the Caribbean region at 118 Ma

(b) Reconstruction of the Caribbean region at 83 Ma

MSM = Mohave-Sonora megashear, TMVB = Trans-Mexican volcanic belt, EAFZ = eastern Andean fault zone

Modified from Reference 782

Figure 2.5.1-208 Interpretation of Seismic Line across Bahama Platform and Blake-Bahamas Basin

Note: See Figure 2.5.1-243 for the location and log of the Great Isaac Well 1.

Figure 2.5.1-210 Physiographic Features of Northern Caribbean-North America Plate Boundary (Sheet 1 of 2)

Figure 2.5.1-210 Physiographic Features of Northern Caribbean-North America Plate Boundary (Sheet 2 of 2)

Figure 2.5.1-211 Deep Sea Drilling Locations

Source of DSDP location coordinates: Reference 802 Source of ODP location coordinates: Reference 803

Figure 2.5.1-212 Climate Change Parameters - Past 600 My

Proposed Turkey Point Units 6 and 7 Docket Nos. 52-040 and 52-041 L-2014-262 Attachment 2 Page 17 of 211

Turkey Point Units 6 & 7 COL Application Part 2 — FSAR

Figure 2.5.1-213 Caribbean Currents Driven by the Great Ocean Conveyor Belt

Note: The Antilles Current flows northeast around the Bahama Bank. The Caribbean Current enters the Caribbean through a series of narrow passages and continues into the Gulf of Mexico as the Loop Current, finally exiting through the Florida Straits as the Florida Current. The Florida Current rejoins the Antilles Current and together form the Gulf Stream. The Gulf Stream then moves warm, salty water north along the U.S. East Coast and then toward Europe, before it transitions into the North Atlantic Current and heads north. As this water reaches higher latitudes, it releases heat to the atmosphere, tempering winters in the North Atlantic region and leaving behind saltier, cooler, and denser waters. These transformed waters sink to the depths and form the Deep Western Boundary Current, which flows southward along the East Coast-beneath the northward-flowing Gulf Stream-and into the South Atlantic.

Source: Reference 821

Figure 2.5.1-214 Bathymetry of the Florida Coast

Notes:

- (a) Proto-Caribbean oceanic crust formed by seafloor spreading in Late Jurassic-Early Cretaceous time in the eastern Pacific.
- (b) Widespread and rapid eruption of basaltic flows in concert with extension and thinning of the 'old' plate. The plate was thickened by at least two stages of basalt flows. The large divergent volcanic wedge observed along the rough-smooth B" boundary, is coincident with the abrupt shoaling of Moho, and appear to be bounded by a large northwest-dipping fault system.
- (c) Minor extensional deformation across the Venezuelan Basin continued after magmatic thickening of crust as indicated by faulted and rotated basalt flows. The location of major extensional deformation migrated through time from the Venezuelan Basin to the western flank of the Beata Ridge. The extensional unloading of the footwall caused uplift and rotation of the Beata Ridge and collapse of the hanging wall (i.e., Hess Escarpment).

Note: Shows interpretation of major horizons of the Venezuelan Basin in multichannel seismic line 1293 in two-way time (top) and converted thicknesses (bottom) using averaged sonobuoy velocities.

Proposed Turkey Point Units 6 and 7 Docket Nos. 52-040 and 52-041 L-2014-262 Attachment 2 Page 21 of 211

Turkey Point Units 6 & 7 COL Application Part 2 — FSAR

Figure 2.5.1-217 Physiography of Florida

Modified from References 265 and 266

Figure 2.5.1-218 Suwannee Channel System

Source: Reference 266

Figure 2.5.1-220 Terraces and Shorelines of Florida

Figure 2.5.1-221 Karstification Process

Figure 2.5.1-222 Sinkhole Type, Development, and Distribution

Data source: Reference 264

Figure 2.5.1-223 The Caribbean Carbonate Crash and Initiation of the Modern Global Thermohaline Ocean Circulation

Note: Peninsular Arch forms the backbone of peninsular Florida. About 4 kilometers (2.5 miles) of shallow water carbonates underlie portions of the site area. This figure shows that the west Florida shelf is a low-gradient carbonate ramp.

Source: Reference 764

Figure 2.5.1-225 Facies Distribution across the West-Central Florida Inner Shelf

Note: Deposits along the coast are predominantly comprise quartz-rich sediments but contain a skeletal carbonate component. Just offshore, the skeletal components increase so that the inner shelf lies within the mixed quartz and carbonate zone. Further to the west out onto the shelf and upper slope, the carbonate content increases and belts of different carbonate constituents, including mollusks, algae, ooids and foraminifera, appear with broad transitions between the belts.

Source: Reference 764

Fear Slide from the south, assuming a vantage point near the Blake Ridge Diapir and looking along the strike of the normal fault (black line with tick marks). The solid black lines show the locations of interpreted cross sections bb', cc', and dd' (Figures II, III, and IV, respectively). Although Figures II through IV correspond to different parts of the fault, they also serve as a proxy for the impact of salt migration along the normal fault over time: The northernmost profile (dd') captures the most advanced stage of salt intrusion, and the southernmost profile captures the least (bb'). (II) Cross section coincident with Cape Fear Slide line 59, where the normal fault is observed. This likely represents the configuration of slumps (green), salt (hatched), and the normal fault at the Cape Fear Slide before sliding initiated. (III) As normal faulting progressed, salt began to evacuate the subsurface, resulting in slope steepening along the downdropped portion of the fault and some slid-

(IV) Continued salt extrusion resulted in even further steepening, perpetuating mass wasting at the site and eventually leading to breaching of the salt structure.

Notes:

Source: Reference 302 (a)

(b) Modified from: Reference 323

2.5.1-409

Revision 5

Figure 2.5.1-227 Physiography of Cuba

Figure 2.5.1-228 Paleozoic to Mesozoic Stratigraphy of Florida

ERA	SYSTEM	SERIES	STRATIGRAPHIC UNIT		LITHOLOGY	APPROXIMATE THICKNESS (ft)
		UPPER	Pine Key Formation		chaik, is, doi	3000
			p es	Corkscrew Swamp Fm		450
			Bay	Rookery Bay Fm	Is with anhyd & dol	500
				Panther Camp Fm		350
		LOWER	Big Cypress Group	Dollar Bay Fm	ls w. dol & anhyd	450-620
	6			Gordon Pass Fm	anhyd w. Is & dol	475
	l ñ			Marco Junction Fm	ls w. dol & anhyd	350
	ETACEC		Ocean Reef Group	Rattlesnake Hammock Fm	anhyd w. is & dol	600
O				Lake Trafford Fm	Is with anhyd, dol	150
ō	L R			Sunniland Fm	Is with dol & anhyd	200-300
SOZ			Glades Group	Punta Gorda Anhydrite	salt with anhyd & dol	800
Σ				Lehigh Acres Formation	anhyd, Is, dol	210
					ls, dol, brown dol zone	300
					sh	200
			Pumpkin Bay Formation		anhyd with Is	1200
			Bone Island Formation		Is with anhyd & dol	1300-2000
	JURASSIC	UPPER	Woo	d River Formation	dol, anhyd, sait, ss	1700-2100
		MIDDLE	basame	ant volcanic province	felsic rocks: rhyolite porphyry	
		LOWER	Dasement voicanic province		mafic volcanics: basalt & diabase	
ALEOZOIC			0 0	Paleozoic sedimentary Suite	quartzitic sandstone & black shale	
			ane	St. Lucie Meta-	pan-African	
			en	Osceola Granite	granite	
			Su	Osceola volcanic	granite	
bala:				complex	felsic meta-igneous	
OTAL THI	CKNESS					12,750-14,30

ls = limestone dol = dolomite

ss = sandstone anhyd = anhydrite

sh = shale Fm = formation

Sources: References 352, 339, 338, 354, 366, 467, and 470

Revision 5

Sources: References 822, 482, 823, 457, 212, and 421

ERA	SYS	тем	SERIES	STRATIGRAPHIC UNIT		LITHOLOGY	APPROXIMATE THICKNESS (ft)
CENOZOIC	QUATERNARY		OCENE	Miami Limestone / Key Largo Limestone/ Anastasia Formation		sandy, oolitic, coralline, shelly limestone	10-180
			PLEIST	Caloosahatchee Formation/ Fort Thompson Formation		poor/well indurated sandy, fossiliferous limestone	50-100
			PLIOCENE	Tamiami Formation/ Cypresshead Formation (Long Key Formation)		fossiliferous sand & silt with limestone	25-220
	TERTIARY	NEOGENE	MIOCENE	n Group	Peace River Formation	sands, clays, & phosphatic carbonates	100-650
				Hawthor	Arcadia Formation	fine crystalline limestone with sand/clay, phosphatic fossiliferous limestone, & dolomite	100-700
		PALEOGENE	OLIGOCENE	Suwannee Limestone		poor/well indurated fossiliferous vuggy to moldic limestone	200-600
					Ocala Limestone	poor/well indurated fossiliferous limestone	200-400
			GENE EOCENE	Avon Park Formation		poor/well indurated fossiliferous limestone & vuggy dolostone	400-1200
			PALEC	Oldsmar Formation		vuggy limestone & dolomite	500-1500
			PALEOCENE	Ce	edar Keys Formation	dolomite, gypsum, & anhydrite	500-2000
OTA		CKNE	SS	P. Stands I			5000-6000

Figure 2.5.1-231 Cenozoic Stratigraphy of Southern Florida

Sources: References 357, 373, 375, 376, 394, 397, 398, 399, 403, and 406

Figure 2.5.1-234 East-West Geologic Cross Section of Upper Cenozoic Age Rocks in Southern Florida

Modified from: Reference 373 Note: Primary siliclastic source - Appalachians

Revision 5

Source: Reference 393 Note: primary siliciclastics source – Appalachians

Note: Explanation in Figure 2.5.1-242 Source: Reference 839 9 ______ 100 200 300 400 500 Kilometers 9 ______ 190 200 Xilometers HORIZONTAL SCALE 12,500,000

Figure 2.5.1-240 Gulf of Mexico Cross Section A–A'

Note: Explanation in Figure 2.5.1-242 Source: Reference 839 0 100 200 300 400 500 Kiometers 0 100 200 200 300 Miles HORIZCH/TAL SCALE 12,500,000 Proposed Turkey Point Units 6 and 7 Docket Nos. 52-040 and 52-041 L-2014-262 Attachment 2 Page 45 of 211

Turkey Point Units 6 & 7 COL Application Part 2 — FSAR

Figure 2.5.1-241 Gulf of Mexico Cross Section C–C'

Note: Explanation in Figure 2.5.1-242 Source: Reference 839

Figure 2.5.1-242 Explanation for Gulf of Mexico Cross Sections A–A', B–B', and C–C'

Q	Quaternary	
Tn	Tertiary-Neogene (Mio = Miocene; Plio = Plioc	cene)
Тр	Tertiary-Paleogene (Pal = Paleocene; Eoc = Eo	ocene; Olig = Oligocene)
Ku	Upper Cretaceous	
KI	Lower Cretaceous	
Ju	Upper Jurassic	
JS	Middle Jurassic salt	
₽-J	Upper Triassic-Lower Jurassic "red beds" and (includes Lower Jurassic marine rocks and Mid "red beds" and marine rocks in Mexico.)	volcanics dle Jurassic
	Permian-Triassic intrusive granitic rocks	
Р	Permian	
M-P	Upper Mississippian-Pennsylvanian (Platform)	
M-P	Upper Mississippian-Pennsylvanian (Flysch)	
€-M	Cambrian-Lower Mississippian (Platform)	
€:M	Cambrian-Lower Mississippian (Off-shelf)	
PP	Upper Proterozoic-Lower Paleozoic metamorph	nic rocks
	Precambrian crystalline rocks	

Source: Reference 839

Modified from: Reference 307

2.5.1-426

Revision 5

Notes:

Top: Cross section displaying two buried banks (Andros, Bimini) and two completely infilled troughs (Straits of Andros, Bimini embayment). A-E = depositional megasequences. Correlation is given by two horizons (E, B). Note difference in size and age of two troughs.

Bottom: Cross section along WESTERN documenting lateral progradation of Birnini western margin and complex filling of Straits of Andros. Compare volume of prograded part with oroducina platform.

Figure 2	2.5.1-246	Lithostratigrap	nic Column	for the	Bahama	Islands
----------	-----------	-----------------	------------	---------	--------	---------

ERA	SYSTEM	SERIES	FORMATION		
	2	CENE	Rice Bay Formation	Hana Bay Member	
		НОГОС		North Point Member	
ZOIC	QUATERNARY	PLEISTOCENE	Grotto Beach Formation	Cockburn Town Member	
CENC				French Bay Member	
			Owl's Hole Formation		

Not drawn to scale Modified from: Reference 438 Proposed Turkey Point Units 6 and 7 Docket Nos. 52-040 and 52-041 L-2014-262 Attachment 2 Page 51 of 211

Turkey Point Units 6 & 7 **COL** Application Part 2 — FSAR

Figure 2.5.1-247 Tectonic Map of Cuba

Multiple sources were used to compile this map, including References 443, 448, 439, 770, 492, and 494

Source: Reference 497

- (a) Focal mechanisms of northwestern offshore Puerto Rico earthquakes. Dates are in mm/dd/yy format. Striped mechanisms are from forward modeling, and are less well constrained.
- (b) Historic and recent earthquakes of the Virgin Islands Region
- (c) Slip vectors of earthquakes occurring in Greater Antilles crust (open symbols) and along plate interface (closed symbols). Focal mechanism for 1939 normal faulting outer rise event shown at top."

Proposed Turkey Point Units 6 and 7 Docket Nos. 52-040 and 52-041 L-2014-262 Attachment 2 Page 54 of 211

Turkey Point Units 6 & 7 COL Application Part 2 — FSAR

Modified from: Reference 697

D. Middle Eocene-Middle Miocene: Quiescence, Subsidence

The Matanzas fault shown here is the same structure as the Hicacos fault shown on Figure 2.5.1-247. Modified from: Reference 769

Note: Structural cross section of the Cuban fold-and-thrust belt. This cross section illustrates the deep detachment surface and the amalgamated thrust nappes between the Bahamas platform and the allochthonous Caribbean plate (serpentinite mélange, ophiolites, and Cretaceous volcanic arc suites). The foredeep basin deposits crown the Mesozoic stratigraphic sections, and represent the seal of the petroleum systems.

Modified from: References 212 and 458

Note: Gravity includes Bouguer over land and free-air over water. Source of Bouguer gravity information: References 452 and 453 Source of physiographic features: Reference 409

Figure 2.5.1-255 Gravity Profile A–A' and B–B'

Notes:

· Gravity includes Bouguer over land and free-air over water

Physiographic features adapted from Reference 307

Figure 2.5.1-256 Magnetic Field for the Site Region

Source of basement complex and Bahama faults: Reference 212

Source of magnetic information: References 452 and 453 Source of basement complex and Bahama faults: Reference 212