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Porosity and Permeability of the Biscayne Aquifer, Florida

R                esearch is needed to determine how seepage-control actions planned by the Comprehensive Everglades Restoration     
 Plan (CERP) will affect recharge, groundwater flow, and discharge within the dual-porosity karstic Biscayne aquifer 

where it extends eastward from the Everglades to Biscayne Bay. A key issue is whether the plan can be accomplished 
without causing urban flooding in adjacent populated areas and diminishing coastal freshwater flow needed in the 
restoration of the ecologic systems. Predictive simulation of groundwater flow is a prudent approach to understanding 
hydrologic change and potential ecologic impacts. A fundamental problem to simulation of karst groundwater flow is how 
best to represent aquifer heterogeneity. Currently, U.S. Geological Survey (USGS) researchers and academic partners are 
applying multiple innovative technologies to characterize the spatial distribution of porosity and permeability within the 
Biscayne aquifer.

Irregular topography on karstic upper surface of the Miami Limestone in Miami-Dade County shows an example of highly macroporous oolitic limestone. 
The macroporosity is related to an Ophiomorpha-dominated ichnofabric. The sample shown in figure 5 was collected at this site. Photograph by Kevin 
Cunningham, USGS. Terms defined in the glossary are shown in boldface type where first used in the text.
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Biscayne Aquifer Pore and Permeability Network
The hydrologic properties of carbonate aquifers are highly 

variable, most notably in their heterogeneous permeability 
(Brahana and others, 1988). The Biscayne aquifer comprises 
karst carbonate rocks having a heterogeneous and anisotropic 
pore network with a range of measured permeability values 
that is at least 13 orders of magnitude (Cunningham and others, 
2004, 2006a,b; 2009). The Biscayne aquifer is considered a 
dual-porosity system (Renken and others, 2008; Cunningham and 
others, 2009), because it consists of (1) matrix porosity (inter-
particle pores and separate vugs), which provides much of the 
groundwater storage; and (2) touching-vug macroporosity, which 
can create stratiform, areally extensive, groundwater flow path-
ways and less commonly observed bedding-plane and cavernous 
vugs, vertical solution pipes, and solution-enlarged fractures.

Groundwater flow in the Biscayne aquifer is particularly 
difficult to characterize because of a broad range in pore size and 
complicated pore connectivity. A diverse permeability network 
represents a significant challenge to the accurate simulation of 
dual-porosity karst groundwater flow. State-of-the-art tech-
nologies, including ichnologic, cyclostratigraphic, borehole 
geophysical, and computational methods, are being utilized by 
USGS scientists and their colleagues to accurately conceptualize 
and simulate groundwater flow through the Biscayne aquifer.

Ichnology
Ichnology is the study of trace fossils, which are structures 

that were produced in sedimentary rock or other substrate by 
the activity or growth of organisms (Bromley, 1996). Examples 
of trace fossils include footprints produced by dinosaurs and 
burrows made by worms.

Ichnology has recently emerged as an important applied 
science in the field of petroleum geology, because bioturbation 
(disturbances in sedimentary rocks generated by organisms) can 
play a significant role in the hydraulic properties of hydrocarbon-
bearing sedimentary units (Pemberton and Gingras, 2005). 
However, the use of ichnology in hydrology has been rare. 
Nevertheless, the USGS has recently been successful in applying 
ichnology to enhance carbonate aquifer characterization and 
map groundwater flow zones when it is integrated with other 
data types and characterization methodologies (Cunningham 
and others, 2006a,b; 2009). In some of the carbonate rocks 
of the Biscayne aquifer, fossilized burrows have a dominant 
presence where concentrated groundwater flow occurs within 
extremely permeable, vuggy passageways of the aquifer. Most 
of these burrows were likely created by callianassid shrimp 
(Shinn, 1968; Curran and Martin, 2003) during and shortly after 
deposition of carbonate sediments in a shallow, tropical marine 
environment. The fossil burrows that have a pelletal lining are 
named Ophiomorpha.

The USGS is applying the science of ichnology to hydrologic 
questions related to the CERP L-31N (L-30) Seepage Management 
Pilot Project (fig. 1) and to other Biscayne aquifer studies. The 
CERP project, designed to resolve critical uncertainties associated 
with seasonally managing seepage flows, is located within one of 
the most transmissive parts of the Biscayne aquifer (U.S. Army 
Corps of Engineers, 2010). Borehole geophysical data acquired 
by the USGS demonstrate that the very high transmissivities are 
related to bedded macroporous zones of intensely burrowed lime-
stone (figs. 1-3). Delineating the continuity and lateral extent of 
these borrowed flow units is important to the conceptualization of 
groundwater flow at the site, and could be very useful in design and 
interpretation of aquifer performance tests and tracer tests (Renken 
and others, 2005, 2008; Cunningham and others, 2006a).

Cyclostratigraphy
Sequence stratigraphy is a newer conceptual advance in the 

expansive field of sedimentary geology (Miall, 1995), and has trans-
formed the methodology of stratigraphic analysis. High-frequency 
cycles (HFCs) are the fundamental building blocks of sequence stra-
tigraphy and often occur as discernable, repetitive vertical changes 
in lithostratigraphy. The delineation and use of HFCs for correlation 
is cyclostratigraphy. A cyclostratigraphy comprised of four types 
of ideal cycles has been described for the Miami Limestone and 
Fort Thompson Formation, which compose most of the Biscayne 
aquifer (Cunningham and others, 2009). In the context of these ideal 
cycles, stratiform zones of densely packed Ophiomorpha have a 
predictable pattern in their vertical arrangement. 

Concentration of Ophiomorpha in macroporous, extremely 
permeable zones in lower to middle parts of HFCs is common 
in upward-shallowing subtidal and upward-shallowing paralic 
cycles (figs. 2 and 3)—the dominant ideal cycle types of the 
Fort Thompson Formation (Cunningham and others, 2009). 
Specific physical characteristics of the tops and bottoms of 
the cycles, and the vertical and lateral arrangement of their 
lithostratigraphy and paleoenvironments provide a means for 
correlation and mapping of the macroporous and highly perme-
abable parts of the cycles. Thus, cyclostratigraphy can provide a 
realistic framework for hydrogeologic conceptual models when 
it is used as input for groundwater-flow simulations.

Figure 1. Generalized location of (A) pilot seepage feature 
(yellow bar) to be constructed for the L-31N (L-30) Seepage 
Management Pilot Project, (B) cross-section A–A’ shown in 
figure 3, and (C) map area in (B) and extent of Biscayne aquifer.
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Borehole Geophysics
Rock-core recovery using traditional coring procedures 

generally is problematic in more delicate macroporous, vuggy, 
groundwater flow zones. For these reasons, the USGS uses 
groundwater wells as a subsurface laboratory. Innovative logging 
tools provide reliable data on the physical properties of the rocks, 
water quality, and fluid flow within the subsurface borehole 
environment (Wacker and Cunningham, 2008). The USGS digital 
optical borehole imaging tool is markedly useful, because it offers 
a high-resolution image of the borehole wall and cross-sectional 
photo map of the macropore network (figs. 2 and 3). Cunningham 
and others, (2006a, b) have shown that the combination of 
digital image logs, caliper logs, water-quality logs (conductivity 
and temperature), and flowmeter measurements are effective in 
evaluating concentrated groundwater flow (figs. 2 and 3). 

Borehole flowmeters measure vertical flow within a single 
well, and the data used to identify areas of inflow into or outflow 
from the borehole. Differences in hydraulic head produce vertical 
flow within the borehole, which is measured by the flowmeter. 
Interpreted results from flowmeter data combined with other log 
data from the coreholes shown in figure 3 indicate that vertically 
stacked, multistoried layers of macroporous Ophiomorpha-
dominated zones form an extremely transmissive aquifer 
(especially in the lower part of the HFCs) over a lateral distance 
of at least 8.4 kilometers (fig. 3). The broad continuity of the 
permeable zones depicted in figure 3 corroborates the conclu-
sions, reported by Renken and others (2005), Cunningham and 
others (2006a,b; 2009), Renken and others (2008), and Shapiro 
and others (2008), that highly permeable zones of touching-vug 
macroporosity related to burrowing can form principal passage-
ways for concentrated groundwater flow in the Biscayne aquifer. 

Computational Methods
The permeability of touching-vug macroporosity networks 

in carbonate rocks is exceedingly difficult to measure with 
traditional permeameter methodology. This is due to flow-rate 
limitations of the apparatus and issues related to imposing and 
maintaining the extremely small gradients needed to sustain 
Darcian flow regimes during operation of the instrumentation. 
Unfortunately, the upper range of accurate measurements of 
whole-core permeability using the permeameter method does 
not exceed about 10 to 30 Darcies, or about 0.0001 to 0.0003 
meter per second (Cunningham and others, 2009). The inability 
to obtain large permeability values from permeameter measure-
ments of macroporous limestone samples impedes core-scale 
hydrologic characterization. Frequently used for computational 
modeling of small-scale fluid flow, Lattice Boltzmann methods 
(LBM; Sukop and Thorne, 2006) are ideally suited for accurate 
core-scale calculation of the exceptionally high permeabilities 
of the Biscayne aquifer, which can be much larger values than a 
permeameter can measure. Figure 4 shows that permeability of 
Biscayne aquifer Ophiomorpha-related macropore networks can 
be 3 to 6 orders of magnitude larger than permeameter-based 
measurements. LBM simulations closely conform to analytical 
solutions for pipe flow, providing the impetus and justification 
for its application to carbonate macropore systems.

Figure 2.  Interpreted flow zones from digital optical 
borehole images and flowmeter, temperature, and conductivity 
measurements acquired in corehole G-3871 at the L-31N (L-30) 
Seepage Management Pilot Project (figs. 1 and 3).
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Figure 3. Hydrogeologic cross-section in the area of the L-31N (L-30) Seepage Management Pilot 
Project (fig. 1). (A) Hydrologic units, geologic units, marine isotope stages, high-frequency cycles, 
ideal cycles, and correlation of zones of matrix porosity and zones of macroporosity related to either 
bedding-plane vugs or Ophiomorpha-dominated ichnofabric, and where preferential flow within the 
vuggy zones is confirmed by flowmeter measurements (red and yellow arrows).  
(B) Touching-vug macropority related to an Ophiomorpha-dominated ichnofabric. 
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Computation of intrinsic permeability of core-scale 
macroporous limestone samples from the Biscayne aquifer 
requires virtual renderings, essential for reconstruction of the 
vuggy flow network observed in rock samples. High-resolution 
X-ray computed tomographic (CT) scans of rock samples 
provide a digital sample that is the basis for calculating intrinsic 
permeability (figs. 5 and 6). The rock matrix is assumed to 
be a nonporous medium, and permeability is only measured 
within the network of macropores. Intrinsic permeabilities 
derived from LBM range from 1.5 x 104 to 2.7 x 107 Darcies for 
Ophiomorpha-related macroporosity (fig. 4). LBM measure-
ments in figure 4 should approximate the range in perme-
abilities of the flow zones identified in figure 3 using digital 
optical images and flowmeter measurements.  Research is in 
progress to investigate the validity of the conceptual assumption 
that core-scale LBM calculated intrinsic permeability values 
are representative of field-scale pore networks. LBM also is 
being used to determine whether ambient flow is laminar or 
turbulent. Non-Darcian effects are of considerable interest if 
they occur under field-scale conditions (Shoemaker and others, 
2008). Sukop and others (2008) concluded that non-Darcian 
behavior due to inertial flow under field-scale gradients could 
effectively reduce the apparent hydraulic conductivity within 
well-connected macroporosity by nearly 50 percent. Future 
LBM groundwater flow simulations will examine the impact of 
non-Darcian flow on field-scale hydraulic conductivity. 

Predicting where concentrated groundwater flow occurs 
is important, especially in areas that have not yet been inves-
tigated by coring and logging methodologies. Therefore, 
experimentation with spatial prediction is being conducted 
through the use of variograms, a quantitative descriptive 
statistical tool that can be used graphically to characterize 
spatial continuity. Digital images of borehole walls (fig. 7A) are 
used to create approximately 0.2-meter-wide 3-D renderings 

Figure 6. Computer rendering created from sample SHR-1 
(fig. 5) collected at an outcrop of the Miami Limestone (cover 
photo). The limestone macroporosity is related to a Ophiomorpha-
dominated ichnofabric. Light-blue areas represent rock matrix 
and darker areas macroporosity. LBM-calculated permeability of 
the macroporosity (78 percent) is 2.7x107 Darcies (fig. 4). CT-scan 
acquired at the High-Resolution X-Ray CT Facility at the University 
of Texas. 

Figure 4. Lattice Boltzmann methods and air-permeameter  
values derived from limestone samples with macropore networks 
related to abundant Ophiomorpha. 

of carbonate macroporosity. A thresholding process is used 
to partition the digital imagery into macropores and non-
permeable rock matrix (fig. 7B). Three-dimensional coordinate 
information is extracted that defines the presence or absence 
of rock matrix at individual image pixels of the borehole wall. 
Variograms for the 3-D data are computed, and a 3-D simula-
tion is created of a volume comprised of only two components: 
macroporosity and rock matrix (fig. 7C). 

Experimentation with this methodology (Sukop and others, 
2008) may extend the use of variograms to predict flow-zone 
continuity between wells. A major goal of this work is to use 
LBM to simulate field-scale groundwater flow, providing an 
alternative to continuum models based on equivalent porous 
media flow.

Figure 5. Sample of highly porous oolitic Miami Limestone 
that displays visible limestone macroporosity related to an 
Ophiomorpha-dominated ichnofabric. Photograph by Richard 
Wescott, USGS. 
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Conclusions
A major challenge to evaluating groundwater flow in the 

Biscayne aquifer is characterizing and simulating the complex 
geometry of its porosity and permeability networks. The USGS 
has expanded its integrated use of ichnology, cyclostratigraphy, 
borehole geophysics, and computational methods to charac-
terize the Biscayne aquifer between the Florida Everglades 
and Biscayne Bay. The motivation of this research is to better 
understand the hydraulic properties of the Biscayne aquifer 
and to upscale core- and borehole-scale hydrogeologic char-
acterizations to a field-scale conceptualization. An example 
of application of this research strategy is at the L-31N (L-30) 
Seepage Management Pilot Project site, underlain by one 
of the most transmissive parts of the Biscayne aquifer. The 
exceptionally large transmissivity in this area is attributed to a 
limestone sequence of multistoried Ophiomorpha-dominated 
groundwater flow zones comprised of vuggy macroporosity 
that are compartmentalized within high-frequency cycles. This 
conceptualization of Biscayne aquifer macroporosity is a shift 
from earlier conceptualizations of the aquifer as an equiva-
lent porous medium. Maps showing the spatial continuity of 
highly permeable flow zones are being developed to improve 
modeled conceptualization of groundwater flow. Ultimately, 
this information will be used to aid sustainable use, protection, 

Figure 7.  (A) Borehole wall image from the G-3849 well (figs. 1 
and 3). Darker areas are carbonate macroporosity related to 
an Ophiomorpha-dominated ichnofabric. (B) 3-D threshold data 
of image in (A) where blue areas are macroporosity and white 
areas are matrix porosity. (C) Enhanced simulation of 3-D volume 
rendering in (B) based on borehole-image variogram.

Large cave that formed in the Miami Limestone where it is dominated by a stratiform Ophiomorpha ichnofabric (fig. 4; from Cunningham and 
others, 2008).  Photograph by Alan Cressler, USGS.
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and restoration of the Everglades and other ecosystems within 
the region. Lattice Boltzman methods and new geostatistical 
approaches are offering practical approaches to the delineation of 
karst carbonate heterogeneity and the understanding of concen-
trated groundwater flow within the Biscayne aquifer.

By Kevin J. Cunningham and Michael C. Sukop 
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Glossary

Cyclostratigraphy—The study of stratified rock in relation to cyclic formation and destruction.
Ichnofabric—All aspects of the texture and internal structure of a substrate that result from bioturbation and bioerosion on all scales 
(Ekdale and Bromley, 1983; Bromley and Ekdale, 1986).
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