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ABSTRACT

The best estimate thermo-hydraulic computer code TRACE V5.0 and RELAP5 MOD3.3
hadbeen assessed using Upper Plenum 11% break experiment at the large-scale test facility
PSB-VVER. The PSB-VVER facility is a 1:300 volume scaled model of VVER 1000 NPP located
in Electrogorsk, Russia. An extensive TRACE and RELAPS input decks of PSB-VVER facility
were developed including all important components of the PSB-VVER facility: reactor, 4
separated loops, pressurizer, break units, main circulation pumps, steam generators, and
important parts of secondary circuit. The TRACE (TRAC/RELAP Advanced Computational
Engine) is the latest in a series of advanced, best-estimate reactor systems codes developed by
the U.S. Nuclear Regulatory Commission in frame of CAMP (Code Application and Maintenance
Program) and the RELAPS5 code is its predecessor. The TRACE and RELAPS5 codes are a
component-oriented reactor systems analysis codes designed to analyze light water reactor
transients up to the point of significant fuel damage. The original validation of both codes was
mainly based on experiments performed on experimental facilities of typical PWR design. There
are some different features of VVER design comparing to PWR. Therefore the validation of the
thermo-hydraulic codes for VVER types of reactors is often required by national regulators. The
purpose of performed analysis is to extend the validation of the TRACE and RELAPS5 code
focused on VVER type of NPPs. The TRACE calculation was performed in the frame of R&D
project co-funded by The Ministry of Industry and Trade of Czech Republic. The RELAP5
calculation was performed to support standardization of the RELAP5 code in TES Company.
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1. INTRODUCTION

The assessment of PWR safety codes is mainly performed on the basis of experimental data
coming from scaled-down integral or separate test facilities. The TRACE and RELAP5 code
validation process was mainly based on the data from experimental facilities or real NPPs of
western PWR type as well. There is a significant number of VVER type of reactors operating all
over the world and many other are under construction or under preparation as well. VVER
reactors are in many aspects similar to western PWRs. Therefore a lot of experimental data
measured on PWRs or PWR based test facilities are valuable also for VVER research. On the
other hand, the VVER design has several specific features such as larger volumes of primary
coolant, horizontal steam generators, different ECCS injection points and so on. Therefore the
validation of the thermo-hydraulic codes for VVER types of reactors is often required by national
regulators. The purpose of performed analyses is to extend the validation of the TRACE and
RELAPS5 code focused on VVER type of NPPs. The best estimate thermo-hydraulic computer
code TRACE V5.0 and RELAP5/MOD3.3. were assessed using Upper Plenum 11% break
experiment at the large-scale test facility PSB-VVER. The PSB-VVER facility is a 1:300 volume
scaled model of VVER 1000 NPP located in Electrogorsk, Russia. In order to perform code
validation an extensive TRACE and RELAPS input decks of PSB-VVER facility were developed.
Both models include all important components of the PSB-VVER facility: reactor, four separated
loops, pressurizer, break unit, main circulation pumps, steam generators, and important parts of
secondary circuit.
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2. FACILITY AND TEST DESCRIPTIONS

Detail information about the PSB-VVER test facility systems and elements is given in Ref 4.
Only a brief description of the PSB-VVER facility is given here. The hardware configuration for
UP-11-07 test is reported below.

2.1 PSB-VVER Facility

PSB-VVER is a large-scale integral test facility which structurally corresponds to primary circuit
of NPP with VVER-1000 (V-320 design). The volumetric and power scale is 1:300, and the main
equipment elevations correspond to those of the prototype reactor.

The facility consists of four loops linked up to the reactor model. Each loop has a circulation
pump, a steam generator, hot and cold legs. One of the loops (loop No.4, "broken") has special
branch pipes for connection to primary leakage simulation system. The test facility also includes
a pressurizer (PRZ) and ECCS, which has, as in actual VVER-1000, three subsystems: a
passive system and two active ones.

The reactor model comprises four elements: an external downcomer, core model, core bypass
and an upper plenum. The PSB-VVER core model consists of 168 full-height indirectly
electrically heated fuel rod simulators with uniform power distribution. The rod simulator pitch
(12.75 mm) and diameter (9.1 mm) are identical to those of the reference reactor. The fuel rod
simulators are arranged on a triangular grid. The rod bundle cross section has the shape of
regular hexagon with "wrench" size of 168 mm. The core model represents the central part of
the reference fuel rod assembly. The PSB rod simulator bundle has 15 spacer grids with
prototypic geometry.

PSB-VVER pressurization system includes a pressurizer, surge lines, spray lines, and a relief
valve. By means of surge and spray lines the pressurizer can be connected to the “broken” loop
(loop #4) or to one of the intact loops (loop #2) of the facility. The PRZ vessel height, the bottom
elevation and location of nominal level correspond to the reference ones. An electric heater with
a power of up to 80 kW is built in the lower part of the pressurizer vessel.

PSB main circulation pumps are used to provide forced circulation in primary circuit. The
circulation pumps are variable-speed ones of vertical centrifugal single-stage type and can
operate under two-phase fluid conditions.

The passive ECCS system consists of four accumulators connected in pairs to an inlet and
outlet chamber of the reactor pressure vessel. The active ECCS system consists of high
pressure injection system (HPIS) and low pressure injection system (LPIS). Cooling water of
active ECCS can be supplied to three loops, both to cold and hot legs as original facility design.

The PSB-VVER SG is a vertical vessel with two vertical headers inside. A bundle of horizontal
spiral heat-exchanging tubes of full size is mounted between the two headers. The PSB-VVER
SG is designed in such way that the reference tube bundle elevations and tube lengths to be
conserved, as well as the flow area. Heat transfer surface and secondary fluid volume to be
matched the scale factor. On the secondary side, the feed water system and the main steam
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lines are simulated. The turbine and the condenser are not modeled.

Primary and secondary circuits of the PSB-VVER facility are operated at nominal pressure of a
reactor prototype.

Figure 1 depicts an isometric projection of the test facility. Main operational characteristics of
the test facility are given in Table 1.

5G1

Bypass of the
core model

Figure 1: General View of PSB-VVER Facility
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Table 1: Main Operational Characteristics of PSB-VVER Comparing to VVER-1000

Parameter Units VVER-1000 PSB-VVER
Coolant - water water
Number of circulation loops - 4 4
Primary circuit
Pressure MPa 15.7 15.7
Coolant temperature (hot/cold leg) deg 290/320 290/320
Coolant flowrate m°/h 82485 < 280
Core power MW 3000 15
Secondary circuit
Steam generator pressure MPa 6.3 6.3
Feed water temperature deg 220 <270
Thermal power of one SG MW 750 2.5

The PSB test facility is equipped with special break systems to facilitate research of thermal
hydraulics during break accidents. There is a special system to simulate accumulator water
supplying pipe rupture which is utilized for 11% upper plenum break experiments (UP-11-07
and PSBV1). The break system consists of a break unit, a discharge pipeline with isolating
valves and catch tank-condenser. Principal scheme of the break unit is given in Figure 2 and
geometric characteristics of the discharge line are represented in Figure 3.

[ /_ ’ >7 8

QAR

O 1 ——1-L

1 —UP: 2 —*~hot” leg: 3 — break nozzle: 4 — instrumented spool peace: 5 — drag-screen: 6 —
branch pipe: 7 — discharging channel: 8 — shut-off valve; 9 — X-ray path.

Figure 2: Upper Plenum Break Unit
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Figure 3: Discharge line




2.2 Experiment UP-11-07

The test UP-11-07 ,Upper Plenum Break 11%"“ was performed in the PSB-VVER test facility at
Electrogorsk Research and Engineering Center (EREC) in Russia. The thermal-hydraulic
processes related to upper plenum break 11% were researched.

2.2.1 Facility configuration
The information on the test facility hardware and configuration of the system specific for UP-11-
07 test are given in the Table 2.

Table 2: Test Facility Configuration in UP-11-07 Test

Equipment Status

Pressurizer Connected to the loop #2

Core by-pass 2 throttles with 2 orifices of diameter 7 mm were installed at inlet
and outlet of core by-pass

HPIS One channel was connected to the cold leg of the loop #1

LPIS Two channels connected to the cold and hot legs of the loop #1

ACCs ACCs #1 and 3 were connected to UP. ACC #4 was connected
to downcomer. ACC #2 was switched off (isolated)

SGs All SGs were connected through steam lines

Feed water heater | In use. SG levels under steady-state were maintained by supply
of feed water

Large break unit Break is located in upper plenum.

Leak channel is a throttle of 16 mm, L = 160 mm.

Horizontal blowdown line of 45 mm is located below hot legs
inlet by 200 mm. Coolant discharging is realized from annular
chamber between annular screen and UP wall

2.2.2 Initial Conditions

The main initial conditions of UP-11-07 test are given in the Table 3. UP-11-07 test has been
performed under reduced initial core power corresponding to approximately 15% of nominal
power.

Table 3: Measured initial condition for UP-11-07 test

Parameter Units Value
Primary circuit

Pressure in upper plenum (gauge YC01P16) MPa 15.744

Coolant temperature deg 2746/ 306.6

(DC inlet/UP outlet - gauges C01T02/YC01T04)
Primary loops flow rates (gauges YA01+04F01) kg/s 2.321/2.289/2.343/ 2.357

Core power (gauge YCO01NO1) kW 1496.5

Core by-pass power (gauge YCO1N02) kW 17.1

Coolant level in PRZ (gauge YP01L02) m 6.472
Secondary circuit

Pressure in SGs (gauges RA01+04P01) MPa 6.269/6.300/6.192 /6.285

Level in SGs (gauges YB01+04L01) m 1.694 /1.692/1.835/1.664
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ECCS
Pressure in ACCs (gauges TH01+04P01) MPa 6.015/6.019/5.890/ 5.898
Level in ACCs (gauges TH01+04L01) m 4.800/5.172/4.807 / 4.806

2.2.3 Boundary Conditions (test scenario)
Detail information about the UP-11-07 test boundary conditions is given in Ref 5. The main
events of UP-11-07 test are described in the Table 4.

Table 4: Main Events During UP-11-07 Test

Event Time [s]

IE — Break Opening 0
Pressure in UP (YC01P16) < 13.73 MPa — conditions for SCRAM 2

- Start of MCP coastdown 2

- Start of core power and core bypass power reduction 3

- Stop of feed water flow supply 9

- Stop of steam removal from steam generators 11

HPIS activation 12.0
ACCs activation 110//112/109
LPIS activation 383
ACCs empty 504 /-/499 /489
LPIS termination 3645
HPIS termination 3696

End of test (FRS power switched off) 5593

The experiment is started with opening of an isolation valve XL10S01 in the leak line.

When the UP pressure Pyp = 13.73 MPa PCS automatically cuts the electric power from PRZ
heaters and starts to simulate operation of NPP automatics in accordance with the SCRAM
signal (station blackout takes place simultaneously), which provides for the following actions
to be performed at the test facility:

Power reduction on core simulator and core by-pass is started

o the procedure of MCPs coastdown is started
. stop steam removal from steam generators
o close feed water supply

There was rather nonstandard coastdown of MCPs realized. MCPs rotational speed was
temporarily stabilized at revolution corresponding to 29.5% of nominal value for 200 second,
and then the standard coastdown continued.

After achievement of value of 150 kW, the core model power is fixed and is the same up to
the end of the experiment. At this moment the core by-pass power is also fixed and is the
same up to the end of the experiment.

After achievement of two conditions 1) UP pressure decreases to the value PUP = 10.88
MPa and 2) 10 s later the moment when PUP = 13.73 MPa (interval of time to start operation
of diesel-generator), start of high pressure injection system operation is simulated. Cooling
water from HPIS is supplied to the cold leg of loop #1. HPIS mass flow rate 0.10 kg/s is
provided. Temperature of injected cooling water is 28°C in the beginning of test.
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The accumulators start operate when pressure in upper plenum decreases below 5.89 MPa
(accumulator #2 does not operate in this test). Operation of accumulators is stopped when
level in accumulators falls down to 0.100 m.

When UP pressure decreases to the value PUP = 1.76 MPa, regular starting of low pressure
ECCS pump is simulated. Cooling water of LPIS is supplied to cold and hot legs of loop #1,
mass flow rate is 0.205 kg/s per each line. HPIS and LPIS keep water delivery to primary
circuit till total water supply of HPIS and LPIS achieves a value 1.72 m® (simulation of
emptying of LPIS water tank), when operation of HPIS and LPIS is terminated.

The experiment is stopped when cladding temperature is reaching a value of 1000°C..
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3. THE TRACE AND RELAP5/MOD3.3 CODES

The TRACE (TRAC/RELAP Advanced Computational Engine) is the latest in a series of
advanced, best-estimate reactor systems codes developed by the U.S. Nuclear Regulatory
Commission for analyzing transient and steady-state neutronic-thermal-hydraulic behavior in
light water reactor. The RELAP5S computer code is one of four TRACE’s predecessor.

Both codes have been widely used by U.S. Nuclear Regulatory Commission (NRC) and other
organizations for rulemaking, licensing audit calculations, evaluation of operator guidelines, and
as a basis for a nuclear plant analyzer. Specific applications of their capability have included
simulations of transients in LWR systems, such as loss of coolant, anticipated transients without
scram (ATWS), and operational transients such as loss of feedwater, loss of offsite power,
station blackout, and turbine trip. The TRACE and RELAPS5 are a highly generic code that, in
addition to calculating the behavior of a reactor coolant system during a transient, can be used
for simulation of a wide variety of hydraulic and thermal transients in both nuclear and
nonnuclear systems involving mixtures of steam, water, noncondensable gases, and solute.

The TRACE code is a component-oriented reactor systems analysis code designed to analyze
light water reactor transients up to the point of significant fuel damage. The TRACE code solves
a finite-volume two-phase multidimensional compressible flow with one, two and three
dimensional flow geometry. The TRACE code can model heat structures and control systems
that interact with component models and the fluid solution. The TRACE code has capability to
use build-in point reactor kinetics or 3D reactor kinetics through coupling with Purdue Advanced
Reactor Core Simulator (PARCS). In addition the TRACE code can be coupled with another
TRACE jobs or other codes (CFD, CONTAIN ...) through its exterior communications interface
(ECI). TRACE uses what is commonly known as a 6-equation model for two-phase flow (mass
equation, equation of motion and energy equation for each phase). Additional equations can be
solved for noncondensable gas, dissolved boron, control systems and reactor power. There are
five additional closure relationships for field equations: equations of state, wall drag, interfacial
drag, wall heat transfer and interfacial heat transfer. These constitutive models are semi
empirical equations. There are two numerical methods available in TRACE: semi-implicit
method and the stability enhancing two-step (SETS) method.

RELAP5/MOD3.3 uses a one-dimensional, two fluids, nonequilibrium, six equation
hydrodynamic model with a simplified capability to treat multi-dimensional flows. This model
provides continuity, momentum, and energy equations for both the liquid and the vapor phases
within a control volume. The energy equation contains source terms which couple the
hydrodynamic model to the heat structure conduction model by a convective heat transfer
formulation. The code contains special process models for critical flow, abrupt area changes,
branching, crossflow junctions, pumps, accumulators, valves, core neutronics, and control
systems. A countercurrent flow limitation model can also be applied at vertical junctions
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3.1 The TRACE and RELAP5/MOD3.3 code assessment

Confidence in the computational tools (codes) and establishment of their validity for a given
application depends on proper assessment. TRACE and RELAPS, like other two-fluid codes, is
composed of numerous models and correlations. When applied to full scale nuclear power plant
conditions, many of these models and correlations can be applied outside of their original
scope. By assessing the code against thermal-hydraulic tests, it is possible to show that the
code and its constituent model packages can be extended to conditions beyond those for which
many of the individual correlations were originally intended (Ref 16). The assessment process
however, can also indicate potential deficiencies in the code. There are following four sources of
data for code assessment (Ref 17):

“Fundamental” experiments
Separate effect test facilities (SETF)
Integral test facilities (ITF)

Real plant data

3.2 VVER typical features related to TRACE and RELAP5/MOD3.3 code assessment

The TRACE and RELAPS code validation process is mainly based on the data from
experimental facilities or real NPPs of Western PWR type. VVER reactors are in many aspects
similar to Western PWRs. Therefore a lot of experimental data measured on PWRs or PWR test
facilities is valuable also for VVER research. On the other hand, the VVER design has several
specific features. From the hardware point of view the main differences between VVER-1000
and PWR are the following (Ref 19):

Horizontal steam generators with 2 headers

Lower plenum internal structures

Fuel assemblies with hexagonal fuel rod arrangements

ECCS injection points

Secondary side water volume of the steam generators is larger

Operational conditions and set points of actuation of ECCS

Working conditions of secondary side of steam generators and set points for the
operation of feedwater and steam line

There are approximately 50 operating units of VVER type (Ref 18). It is a meaningful number in
comparison to approximately 216 operating units of PWR reactors (Ref 18). Therefore
corresponding attention should be given to code validation for VVER type of reactors.
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4. INPUT DECK DESCRIPTION

An extensive TRACE and RELAPS5 input deck of PSB-VVER facility was developed including all
important components of the PSB-VVER facility: reactor, 4 separated loops, pressurizer, break
units, main circulation pumps, steam generators, break sections and important parts of
secondary circuit. Both input decks were designed on the basis of PSB-VVER facility
documentation (Ref 4, 20).

4.1 The TRACE input deck

Nodalization diagrams of the TRACE Input Deck are presented in Figure A-1 (reactor + primary
circuit) and Figure A-2 (secondary circuit) in the Appendix A. The TRACE model of the reactor
pressure vessel (RPV) with internal structures is divided into 3 parts. The first part represents
Downcomer (DC) + Lower Plenum (LP), the second part represent Fuel Rod Simulator (FRS) +
Upper Plenum (UP) and the third part represents core by-pass from DC to UP. The RPV model
employs VESSEL component for DC + LP (includes 26 axial layers, 1 azimuthal theta sector
and 2 radial rings), 3 PIPE components for core by-pass and the next VESSEL component for
FRS + UP (includes 32 axial layers, 4 azimuthal theta sector and 6 radial rings). The model also
includes by-pass piping between DC to UP and UP heating pipe between cold leg of loop #1.

Each of the four coolant loops comprises of: a hot leg, steam generator, pump suction loop seal
piping, main coolant pump, and a cold leg including control valve between MCP discharge and
DC.

The pump performance is based on single-phase head and torque characteristic of the pump
TsNIS 1620 from Ref. 20. No two-phase degradation was modeled because of no appropriate
data.

The pressurizer is modeled using component PIPE equipped with heaters and with surge lines
connected to the hot legs of loop #2 and loop #4. Pressurizer can be optionally connected to
loop #2 or loop #4 (as original facility design).

Active ECCS are modeled using simple boundary condition - FILL component, accumulators are
modeled using PIPE and VALVE components. High pressure injection system (HPIS) optionally
provides flow to the hot leg of loop #1 and #4. Low pressure injection system (LPIS) optionally
provides flow to the hot and cold leg of loop #1 and #3 (test UP-11-07) and loop#3. Four
accumulators provide flow to the downcomer and upper plenum (two to each location), and any
of them can be switch off. Cooling water delivery from ECCS depends on hardware
configuration of a particular test.

Steam generator is modeled using multi-tube approach. The primary side of SG Input Deck
consists of 5 axial layers of heat exchanging tubes and two headers (the original facility SGs
consists of 34 tubes). Each axial layer is divided into 15 segments. The SG secondary part is
modeled as original three-channel complex with 10 axial layers (5 of them in the area of
exchanging tubes). The feedwater system, the steam lines connected to all SGs and the
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common steam header are also modeled. The BREAK component simulates the release of
secondary steam from steam header.

The heat loss from the primary and secondary is represented in the TRACE model by entering
the thickness of the insulation on the outside of all the pipes and other system components.
Appropriate material properties are input for the insulation. A constant boundary temperature
and heat transfer coefficient of outer air is applied.

The model contains 1756 volumes, 3433 junctions, and 1285 heat structures with 4814 mesh
points. Standard modeling guidelines were followed in developing the nodalization of the
system.

Components Statistic for TRACE model — see the next Table 5.

Table 5: TRACE Components Statistic

TRACE Component Notes

VESSEL 2 DC+LP; FRS+UP

PIPE 67+66 -

HSTR 157+1" -

POWER 141" FRS simulator + By-pass heating

VALVE 25 -

PUMP 4 MCPs

BREAK 4 Upper plenum and Large Break unit + release
of secondary steam

FILL 8 HPIS, LPIS, Feedwater

Whole No of Components 336 -

*1 the second number is the number of spawned component
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Table 6: List of the main systems and components of PSB-VVER TRACE input deck

PSB system Input deck | Used TRACE components
Rector (YC)
Downcomer + VESSEL + HTSTR
Lower plenum + VESSEL + PIPE + HTSTR
Core + VESSEL + HTSTR + POWER + CONTROL BLOCK
Upper plenum + VESSEL + HTSTR
Core bypass + PIPE + HTSTR + POWER + CONTROL BLOCK
DC to UP bypass + VALVE + HTSTR
UP heating + VALVE + HTSTR
LOOP (YA)
Hot leg + PIPE + HTSTRT
Loop seal + PIPE + HTSTRT
Cold leg + VALVE + HTSTRT
Main cooling pump (YD) PUMP + HTSTR + CONTROL BLOCK
Pressurizer (YP)
Vessel + PIPE + HTSTR
heaters + HTSTR + CONTROL BLOCK
Surge line + VALVE + HTSTR
Relief valve -
ECCS (TJ, TH)
HPIS (+) FILL + CONTROL BLOCK
LPIS (+) FILL + CONTROL BLOCK
Accumulators + PIPE + VALVES + HTSTRT
Steam generators (YB)
Vessel + PIPE + HTSTR
Heat exchange tubes + PIPE + HTSTR
Primary headers + PIPE + HTSTR
Steam lines + VALVE + HTSTR
Feedwater (+) FILL + CONTROL BLOCK
Relief valve -

Steam headers (RA)

+

VALVE + HTSTR + BREAK

Key: + a fine model

(+) a simplified model

- not modeled
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4.2 The RELAPS input deck

Nodalization diagrams of the RELAP5 Input Deck are presented in Figure A-3 (reactor + primary
circuit) and Figure A-4 (secondary circuit) in the Appendix A. The RELAP5 model of the reactor
pressure vessel (RPV) with internal structures is divided into 3 parts. The first part represents
Downcomer (DC) + Lower Plenum (LP), the second part represent Fuel Rod Simulator (FRS) +
Upper Plenum (UP) and the third part represents core by-pass from DC to UP. All parts of RPV
employ PIPE, BRANCH and SNGLJUN components. The model also includes by-pass piping
between DC to UP.

Each of the four coolant loops comprises of: a hot leg, steam generator, pump suction loop seal
piping, main coolant pump, and a cold leg including control valve between MCP discharge and
DC.

The pump performance is based on single-phase head and torque characteristic of the pump
TsNIS 1620 from Ref. 20. No two-phase degradation was modeled because no appropriate data
were available.

The pressurizer is modeled using component PIPE equipped with heaters and with surge lines
connected to the hot legs of loop #2 and loop #4. Pressurizer can be optionally connected to
loop #2 or loop #4 (as original facility design). Relief valves are included on the pressurizer.

Active ECCS are modeled using simple boundary condition - TMDPJUN + TMDPVOL
components, accumulators are modeled using ACCUM, PIPE and VALVE components. High
pressure injection system (HPIS) optionally provides flow to the hot leg of loop #1 and #4. Low
pressure injection system (LPIS) optionally provides flow to the hot and cold leg of loop #1 and
#3 (test UP-11-07) and loop #3. Four accumulators provide flow to the downcomer and upper
plenum (two to each location), and any of them can be switch off. Cooling water delivery from
ECCS depends on hardware configuration of a particular test

The steam generator secondary side is modeled with a single stack of volumes in the tube
bundle region. There is no physical barrier between the tube bundle and the outer shell of the
steam generator. The secondary side of the steam generators included main and auxiliary
feedwater, individual steam lines and the common steam header, and all of the steam lines is
equipped with relief valve.

The heat loss from the primary and secondary is represented in the RELAP5/MOD3.3 model by
entering the thickness of the insulation on the outside of all the pipes and other system
components. Appropriate material properties were input for the insulation. A constant boundary
temperature and heat transfer coefficient of outer air is applied.

Choking was turned off at most of the junctions, as recommended in the code user guidelines.
Exceptions were the break, at valves, at the pressurizer connection to the surge line and the
surge line connections to the hot leg, and at the core outlet. The break piping was attached to
the upper plenum one volume below the hot leg connections. The break was modeled as an
abrupt area change with user-input loss coefficients.

The RELAP5/MOD3.3 countercurrent flow limitation (CCFL) model was applied at five locations
in the model: in the downcomer below the accumulator injection nozzles, at the core outlet, in
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the upper plenum below the accumulator injection nozzles, at the plate between the upper
plenum and the upper head, and at the outlet of the riser section on the secondary side of the
steam generators. These junctions were selected because they were vertically oriented,
represented places where the flow area changed, and modeled regions of the facility where
CCFL might be expected to occur.

The model contains 536 volumes, 559 junctions, and 521 heat structures with 5549 mesh
points. Standard modeling guidelines were followed in developing the nodalization of the
system.

Table 7: RELAP5 Components Statistic

TRACE Component Notes
PIPE 61 -
BRANCH 37 -
SNGLVOL 4 -
ANNULUS 2 -
PUMP 4 MCPs
ACCUM 4 Accumulators
VALVE 23 -
SNGLJUN 6 -
MTPLJUN 8 -
Upper plenum and Large Break unit, release
TMDPVOL of secondary steam, HPIS, LPIS, relief valves
19 BC
TMDPJUN 10 HPIS, LPIS, Feedwater
HSTR 132 -
Whole No of Components 310 -
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Table 8: List of the main systems and components of PSB-VVER RELAP input deck

PSB system Input deck | Used RELAP components
Rector (YC)
Downcomer + PIPE + BRANCH + HTSTR
Lower plenum + PIPE + BRANCH + SNGLJUN + HTSTR
Core + PIPE + HTSTR + CONTRL BLOCK
Upper plenum + PIPE + BRANCH + SNGLJUN + HTSTR
Core bypass + PIPE + SNGLJUN
DC to UP bypass + PIPE + VALVE + BRANCH + HTSTR
UP heating -
LOOP (YA)
Hot leg + PIPE + HTSTR
Loop seal + PIPE + HTSTR
Cold leg + PIPE + SNGLVOL + HTSTR
Main cooling pump (YD) PUMP + HTSTR + CONTRL BLOCK
Presurizer (YP)
Vessel + PIPE + HTSTR
heaters + HTSTR + CONTROL BLOCK
Surge line + PIPE + BRANCH + VALVE + HTSTR
Relief valve (+) VALVE + TMDPVOL
ECCS (TJ, TH)
HPIS (+) TMDPJUN + TMDPVOL + CONTROL BLOCK
LPIS (+) TMDPJUN + TMDPVOL + CONTROL BLOCK
Accumulators + ACCUMULATOR + PIPE + HTSTR
Steam generators (YB)
Vessel + PIPE/ANNULUS + HTSTRT
Heat exchange tubes + PIPE + HTSTR
Primary headers + PIPE + BRANCH + MTPLJUN + HTSTRT
Steam lines + BRANCH + VALVE
Feedwater (+) TMDPJUN + TMDPVOL + CONTROL BLOCK
Relief valve TMDPJUN + TMDPVOL

Steam headers (RA)

PIPE + SNGLJUN + TMDPVOL

Key: + a fine model

(+) a simplified model

- not modeled
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5. RESULTS

5.1 TRACE Steady-state calculation

In order to achieve stable initial conditions of the UP-11-07 test, the steady state was calculated
for 300 s. The following controllers were used for the first 300 s:

. Pressurizer pressure controller

. Steam generators level controllers

The other controlled parameters (fuel rod simulator power, core bypass power, feedwater
temperature, main steam header pressure) were entered as boundary conditions. The steam
generator pressures is lower than the measured values, because the steam header pressure
was adjusted to get the desired reactor vessel inlet temperature (average cold legs
temperature) in steady state calculation. A real PSB controller that kept the liquid level in all
SGs within a desired band was replaced by a Pl-controller for 200 s of steady-state calculation,
for the rest of steady state calculation and for transient calculation was feed water flow to SGs
entered as a boundary condition. Steady state calculation took approximately 30 min. Main
calculated and measured parameters are compared in the Table 9.

5.2 RELAPS5 Steady-state calculation

In order to achieve stable initial conditions of the UP-11-07 test, the steady state was calculated
for 1600 s. The following controllers were used for the first 1600 s:

. Pressurizer pressure controller

. Pressurizer level controller

. Main steam header pressure controller

. Steam generators level controllers

. Main circulation pumps velocity controllers

The same boundary conditions like in the TRACE calculation were used in the RELAP5S
calculation. Because of longer steady state calculation, feedwater steady state Pl-controller was
in operation for 1500 s and for the rest of steady state calculation and for transient calculation
SG feedwater flow was entered as a boundary condition in the same way like in TRACE
calculation. Steady state calculation took approximately 6 min. Main calculated and measured
parameters are compared in the Table 9.

Table 9: Initial Conditions (TRACE and RELAPS5 calculation vs. experiment comparison)

Parameters Units | accuracy| UP-11-072 REEAP TRACE
Upper plenum pressure (YC01P16) MPa | +£0.16 | 15.774 £0.021 | 15.765 | 15.718
Pressure drop at FRS (YC01DP07-DP10) | kPa | +4.60" -28.63 -28.94 | -28.32
Hot Leg outlet Coolant Temp. (TAO1T03) °C +3 3054 + 0.3 3057 | 305.8
Hot Leg outlet Coolant Temp. (TA02T03) °C +3 305.2 + 0.3 306.7 305.8
Hot Leg outlet Coolant Temp. (TAO3TO03) °C +3 304.3+04 3066 | 305.8
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RELAP

Parameters Units | accuracy | UP-11-0772 5 TRACE
Hot Leg outlet Coolant Temp. (TA04T03) °C +3 304.7 + 0.3 306.7 305.8
Cold Leg outlet Coolant Temp. (YA01T02) | °C +3 276.0 + 0.3 276.3 275.2
Cold Leg outlet Coolant Temp. (YA02T02) | °C +3 275.7 + 0.3 276.2 275.1
Cold Leg outlet Coolant Temp. (YA03T02) | °C +3 2747 + 0.3 276.1 275.3
Cold Leg outlet Coolant Temp. (YA04T02) | °C +3 2745+ 0.3 276.2 275.2
Loop-1 flow rate (YAO1F01) kg/s | £0,05 | 2.321+0.017 | 2.299 2.318
Loop-2 flow rate (YAO02F01) kg/s | £0,05 | 2.289+0.010 | 2.316 2.286
Loop-3 flow rate (YAO3F01) kg/s | £0,05 | 2.343+0.020 | 2.322 2.340
Loop-4 flow rate (YAO04F01) kg/s | £0,05 | 2.357£0.018 | 2.323 2.354
FRS power (YCO1NO1) kW +15 1496.5+11.3 | 1500.0 | 1500.0
Core by-pass power (YC01N02) kW 0,4 171 +£0.2 17.0 17.0
Collapsed level in PRZ (YP01L02) m +0.3 6.472 £ 0.051 6.431 6.473
Pressure in SG-1 (YBO1P01) MPa | £0.05 6.269 + 0.04 6.136 6.057
Pressure in SG-2 (YB02P01) MPa | £0.05 6.300 + 0.035 | 6.149 6.073
Pressure in SG-3 (YBO3P01) MPa | £0.05 | 6192+0.066 | 6.135 6.071
Pressure in SG-4 (YB04P01) MPa | £0.05 6.285 + 0.031 6.134 6.054
Collapsed level in SG-1 (YB0O1L01) m +0.07 1.694 + 0.047 1.624 1.689
Collapsed level in SG-2 (YB02L01) m +0.07 1692 +0.037 | 1.709 1.714
Collapsed level in SG-3 (YB0O3L01) m +0.07 1.835+ 0.124 1.864 1.871
Collapsed level in SG-4 (YB04L01) m +0.07 1664 +0.023 | 1.620 1.683
ACCU-1 pressure (THO1PO1) MPa | £0.03 | 4.800+0.002 | 4.800 4.800
ACCU-2 pressure (TH02P01) switched off | MPa | +0.03 5172 +0.002 | 5.172 5172
ACCU-3 pressure (THO3PO01) MPa | £0.03 | 4.807 + 0.001 4.807 4.807
ACCU-4 pressure (TH04P01) MPa | £0.03 | 4.806 + 0.001 4.806 4.806
ACCU-1 collapsed level (THO1PO01) m +0.07 | 6.015+0.004 | 6.016 6.015
ACCU-2 collapsed level (THO2PO1) m +0.07 | 8.019+0.005 | 6.020 6.019
ACCU-3 collapsed level (THO3PO01) m +0.07 | 5890+ 0.005 | 5.889 5.890
ACCU-4 collapsed level (TH04PO1) m +0.07 | 5898 +0.004 | 5.898 5.898

*1 sum of accuracy of pressure drop YC01DP07-DP10 (accuracy of YC01DP07,08,10 =+ 1.2
kPa, YCO01DPO9 = + 1.0 kPa)

*2 - Average value tstandard deviation of measured parameters at initial steady state condition
of the test facility

5.3 TRACE transient calculation

The post-test calculation of UP-11-07 experimental test at PSB-VVER facility started at the time
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0 s with an initiating event — upper plenum break 11 % (to simulate accumulator water supplying
pipe rupture). A comparison of calculated and experimental times of the occurrence of main
events is presented in the Table 10. Time courses of all important parameters and their
comparison with experimental data are presented in Appendix C.

A brief overview of the behavior observed in the experiment is provided here, then the
comparisons between the measured data and calculations will be presented and discussed.

Following the break opening, the system pressure decreased rapidly. Measured and calculated
pressures in the upper plenum are presented in Figure C-1. At the time 2 s upper plenum
pressure decreased bellow 13.73 MPa and SCRAM signal was triggered simulated. The
SCRAM initiated core and by-pass power reduction along to the specified function, that
represents simulation of core decay heat after the SCRAM and MCP coastdown, with temporary
stabilization at 24 % of nominal speed. The depressurization slowed near 40 s, as liquid began
to boil in the entire core. As the pressure continued to decrease, ECCS injection begun: HPIS
injection at 18 s was followed by accumulators injection approximately at 108 s and finally by
LPIS injection at 383 s. As the system pressure decreased the total ECC injection could
compensate decreasing break flow. Collapsed level in vessel achieved minimal value
approximately at +600 s, see pressure differences in Figure C-18 and C-19, collapsed level in
vessel slowly increased after this time until ECC injection was terminated at +3697 s. After ECC
injection was terminated drainage of the reactor vessel begun again and top portion of the core
started heat up at 5323 s, see Figure C-3. When cladding temperature in the top portion of the
core exceeded 1000°C, electric power supply to core was switched off and experiment was
terminated.

During first seconds of calculation calculated primary system depressurization rate was higher than
measured one despite the fact that calculated break flow was slightly higher than measured one,
see Figure C-2 and C-21. But overall agreement between both parameters (primary system
pressure and break flow) during the whole transient course was very good (according to Ref. 4 -
error of measured break flow can be up to 20 — 30 %).

After break was opened pressurizer heaters automatically tried to prevent the system pressure from
decreasing and increased heating to maximum value. But at +1.0 s the system pressure decreased
below heaters setpoint 13.73 MPa and heaters were switched off.

At 1.0 s the system pressure decreased below 13.73 MPa, thus SCRAM signal was simulated and
MCP coast down begun. SCRAM signal was followed by the core and by-pass power reduction at
+2.5 s. Time courses of power reduction of core and by-pass and MCP coast down were specified
as boundary conditions based on experiment data see Figure C-9, C-10, and C-6.

In the beginning of the experiment the high break flow was not compensated and the primary
system was emptying. Calculated emptying rate of pressurizer was nearly the same like measured.
The part of pressurizer above heaters (gauges YP01L02) was emptied at +15 s in calculation
whereas in experiment at 16 s (see Figure C-4).

The pressure in steam generators is presented in Figure C-11. The measured and calculated
pressure increased rapidly to a peak 6.86 MPa in experiment and 6.81 in calculation when isolation
valve at common part steam header RA06S01 was closed. The secondary system pressure did not
achieve a value of BRU-A activation neither in experiment nor in calculation. Calculated absolute
value of the secondary pressure peak agree with experiment very well. Calculated pressure change
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from steady state level pressure to pressure peak was 20% higher, because of lower calculated
steady state level pressure before pressure peak (approximately 0.15 MPa lower than measured
one). It was probably due to the used heat structure correlation that is not capable to perfectly
model the coil tube bundle in the steam generator. During the rest of calculation secondary
pressure decreased more quickly than in experiment. It was probably caused by overshooting of
heat losses of SG vessels and steam lines (primary loops were emptied and there were no heat
exchange between primary and secondary side of SG).

When the primary system pressure dropped below the secondary system pressure (between 80
and 90 s in the experiment and approximately at 60 s in the calculation), steam generator did not
remove primary heat any more. As the primary pressure continued to decrease below 10.88 MPa
and HPI injection begun at 18 s in the experiment and in 16 s in calculation, mass flow 0.105 kg/s
was injected to the hot leg loop #1, see Figure C-5.

Primary system pressure was continuously decreasing, so the primary system pressure dropped
below accumulators pressure at +108 s in the experiment and at +121 s in the calculation..
Condensation of some of the steam in the system by the cold ECC liquid caused the
depressurization rate to increase. When levels in accumulators fell down to 0.1 m they were cut off
at +489-500 s in experiment and at +579-632 s in calculation. The accumulators injection was
followed by LPl injection at + 383 s in experiment and at + 347 s in calculation, so the mass flow 0.2
kg/s was provided to the hot and cold leg of loop #1. As the system pressure decreased, the total
ECC injection could compensate decreasing break flow. Collapsed level in the reactor vessel
achieved minimal value approximately 600 s (see Figure C-22) after this time slowly increased until
ECC injection was terminated at +3697 s in experiment and at +3730 s in calculation. HPIl and LPI
injection were terminated when total water delivery achieved 1.72 m? (simulation of emptying ECC
tanks). After ECC injection was terminated drainage of the reactor vessel begun again, see
pressure differences in core portion of vessel (YC01DP0O7 — DP10) in Figure C-18 and C-19.

Deviation of calculated cladding temperature from experiment data was up to 5 °C approximately
until +2600 s — see Figure C-3. During following time course deviation increased up to 18 °C
(accuracy of measured cladding temperature channel YC01T10 was +10.8°C ). Increasing
deviation of calculated cladding temperature from the experiment was caused by lower calculated
average void fraction in the core region of vessel — it means that TRACE calculated less liquid in
core than was measured in experiment, see pressure differences in core portion of vessel
(YCO1DPO7 — DP10) Figure C-18 and C-19. Possible reason of undershooting of core liquid
inventory are that CCFL at the core exit is preventing liquid from falling back into the core region in
the calculation

In the calculation, the heat-up of top portion of the core started at +4950 s, it was about
approximately 350 s earlier than in test, see Figure C-3. Calculated earlier start of heat-up was
caused by less calculated water inventory in the core than in the test - possible reasons are
mentioned in a previous paragraph. Calculated heat-up rate was higher than those in the test, see
Figure C-3. Similar behavior was observed in other post-test calculations of an upper plenum small
break performed in the code RELAP5/MOD3.2. (Ref. 7, 8) and also in the code CATHARE (Ref.
11).

At +5593 s power supply to core and by-pass was switched off and experiment was terminated.
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5.4 RELAPS5 transient calculation

The post-test calculation of UP-11-07 experimental test at PSB-VVER facility started at the time
0 s with initiating event — upper plenum break 11 % (to simulate accumulator water supplying
pipe rupture). A comparison of calculated and experimental times of the occurrence of main
events is presented in the Table 10. Time courses of all important parameters and their
comparison with experimental data are presented in Appendix D.

The comparisons between the measured data and calculations will be presented and discussed
here.

Calculation started at Os by opening the valve on leakage line from upper plenum.

The calculated break flow was little more higher than was measured immediately after the break
was opened so the system pressure decreased a little more rapidly, see Figure D-2 and D-21.
But overall agreement both parameters during the whole transient course with measured data
were very good (Ref. 5 - error of measured break flow can be up to 20 — 30 %).

After the break was opened pressurizer heaters automatically tried to prevent the system
pressure from decreasing and increased heating to maximum value. But at +3.5 s the system
pressure decreased below heaters setpoint 13.73 MPa so heaters were switched off.

At 3.5 s the system pressure decreased bellow 13.73 MPa and SCRAM signal was simulated.
SCRAM signal was followed by the core and by-pass power reduction and MCP coast down.
Time course of power reduction of the core and by-pass and MCP coast down were specified as
boundary conditions based on experimental data, see Figure D-9, D-10, and D-6.

In the beginning of the experiment the high break flow was not compensated so the primary
system was emptying. Calculated higher primary system depressurization rate caused quicker
emptying of pressurizer. The pressurizer portion above heaters (gauges YP01L02) was emptied
at +13 s in the calculation whereas in experiment at 16 s.

The pressure in steam generators is presented in Figure D-11. The measured and calculated
pressure increased rapidly to a peak 6.86 MPa in experiment whereas to 7.10 MPa in the
calculation after isolation valve at common part steam header RA06S01 was closed. The
secondary system pressure did not achieve a value of BRU-A activation neither in experiment
nor in calculation. Calculated secondary pressure decrease was slightly higher than in the
experiment. It was probably due to the used heat structure correlation that is not capable to
perfectly model the coil tube bundle in the steam generator.

When the primary system pressure dropped below the secondary system pressure (between 80
and 90 s in the experiment and approximately at 55 s in the calculation), steam generator did
not remove primary heat any more. The end of removing primary heat to secondary system was
followed by temporary decreasing primary system depressurization rate and decreasing primary
system cooldown rate see Figure D-1.

As the primary pressure continued to decrease below 10.88 MPa and HPI injection begun (at 18

s in the experiment and in 13 s in calculation), mass flow 0.105 kg/s was injected to hot leg loop
#1, see Figure D-5.

5-5



Primary system pressure was continuously decreasing so the primary system pressure dropped
below accumulators pressure at +108 s in the experiment and at +100 s in the calculation..
Condensation of some of the steam in the system by the cold ECC liquid caused the
depressurization rate to increase. When level in accumulators fell down to 0.1 m accumulators
were cut off at +489-500 s in experiment and at +528-535 s in calculation. The accumulators
injection was followed by LPI injection at + 383 s in experiment and at + 405 s in calculation,
mass flow 0.2 kg/s was provided to hot and cold leg loop #1. As the system pressure
decreased, the total ECC injection could compensate decreasing break flow. Collapsed level in
vessel achieved minimal value approximately 600 s (see Figure D-22) after this time slowly
increased until ECC injection was terminated at +3697 s in experiment and at +3770 s in
calculation. HPI and LPI injections were terminated when total water delivery achieved 1.72 m*
— simulation of emptying ECC tanks. After ECC injection was terminated drainage of vessel
begun again, see pressure differences in core portion of vessel (YCO01DP0O7 — DP10) in Figure
D-18 and D-19.

Deviation of calculated cladding temperature from experiment data was up to 5 °C
approximately until +2600 s. During following time course deviation increased up to 20 °C.
Increasing deviation of calculated cladding temperature from the experiment was caused by
lower calculated average void fraction in the core region of vessel — it means that RELAP5
calculated less liquid in the core than was measured in experiment, see pressure differences in
the core portion of the reactor vessel (YC01DP0O7 — DP10) Figure D-18 and D-19. Possible
reason of under prediction of core liquid inventory were that CCFL at the core exit was
preventing liquid from falling back into the core region in the calculation, that inter-phase drag
was over predicted at the core exit, again preventing liquid from separating from vapor flow and
draining the lower portion of the reactor vessel.

In the calculation, the heat-up of top portion of core started at +4640 s, it was approximately 700
s earlier than in the UP-11-07 test, see Figure D-3. Calculated earlier start of heat-up was
caused by less calculated water inventory in the core than in the test - possible reasons are
mentioned in a previous paragraph. Calculated heat-up rate was higher than those in the test,
see Figure D-3. Similar behavior was observed in other post-test calculations of an upper
plenum small break performed in the code version RELAP5/MOD3.2. (Ref. 7, 8) and also in the
code CATHARE (Ref. 11).

At +5593 s power supply to core and by-pass was switched off and experiment was terminated.

Table 10: Chronology of main events (TRACE and RELAPS5 calc. vs. comparison)

Event Time [s]
UP-11-07 | RELAP5 | TRACE

Initiating Event — break opens 0 0 0
Pressure in UP (YC01P16) < 13.73 MPa — SCRAM signal 2 3.4 1
Start of MCP coastdown 2 3.5 1
Start of core and core by-pass power reduction 3 3.9 2.5
Stop of feedwater flow supply 9 11 10
Stop of steam removal from steam generators 11 11 10
Pressure in UP (YC01P16) < 10.88 MPa 11 10 8
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Event Time [s]

UP-11-07 | RELAP5 | TRACE
Start of HPIS injection into Loop #1 18 13 17
PRZ empty (according to YP01L02) 16 13 15
UP pressure < SG pressure 84 55 60
Pressure in UP/DC < pressure in ACCUs 108 + 110 | 100+ 110 | 121 + 129
Start of ACCU-1 injection 110 100 121
Start of ACCU-2 injection (switched off) - - -
Start of ACCU-3 injection 108 109 129
Start of ACCU-4 injection 108 110 127
Start of LPIS injection into Loop #1 383 405 347
End of accumulators injection (TH01-04L01 < 0.1 m) 489 + 500 | 528 + 535 | 579 + 632
End of injection of LPIS injection into hot leg of loop #1 3648 3770 3730
End of injection of LPIS and HPIS injection into hot leg of 3697 3770 3730
loop #1
Heat up of top portion of core (YC01T10) 5323 4640 4950
End of the experiment 5593 5593 5593

5.5 Quantitative Assessment of the Calculations

To quantify agreement of presented TRACE and RELAPS5 calculations the figure of merit (FOM)
was evaluated using software ACAP (Automated Code Assessment Program), which is a part of
the software package SNAP. Settings of ACAP was based on Ref 25 including choice of

particular metrics and their weighting factors - and see the Table 11.

Table 11: ACAP metrics settings

Metric name Abbreviation Weighting factor
D'Auria Fast Fourier Transformation FFT 0.35
Mean Error Magnitude MEM 0.35
Size-Independent (Pred - Perf) Norm SI-PMPN 0.15
Degree of Randomness DOR 0.15

To assess the value of FOM, acceptability criterions were established on the basis of Ref 26,
where the FFTB method (Fast Fourier Transform Based Method) is described. FOM
acceptability criterions were based on AA (total average amplitude). Value of AA is
transformed to FOM using the equation of D'Auria FFT metric:

1
FOMpayria = ( 7 )

P

Where k is weighted frequency importance factor and value k = 0 was applied, which means
that pure magnitude error is evaluated using D'Auria FFT metric. The next Table 12 contains
values of acceptability criterions range and their meaning.

Table 12: Acceptability criterions
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AA range FOM range Abbreviation Color indication
AA: £0.30 FOM = 0.77 Very good code predictions |green

0.30 < AA:<0.50 | 0.67<FOM<0.77 |Good code predictions blue

0.50 < AAt<0.70 | 0.59 <FOM < 0.67 |Poor code predictions orange
AAwi > 0.70 FOM < 0.59 Very poor code predictions |red

To assess TRACE and RELAPS calculation, the representative set of 65 parameters were
chosen including:
e Primary pressure
Fuel cladding temperature
Pressurizer water level
Break flow
RPV Pressure drops
LOOPs pressure drops and mass flow rates
e Accumulator water levels and pressures
To evaluate overall FOM uniform weighting factors were used for each of parameters.

The UP-11-07 experiment was a long lasting transient where many different TH phenomena
were expected. In order to carefully assess both TRACE and RELAP5 calculations the whole
time course isdivided into three time windows of interest as follows:
e W1: 0+ 100 s — an early stage of the test when only HPIS flow was provided
e W2: 100 + 3800 s — a middle stage of the test when HPIS, LPIS and accumulators flow
was provided
¢ W3: 3800 + 5600 s — the final stage of the test when no ECCS flow was provided

To assess the whole time course of the test FOM calculations with no time segmentation was
performed as well. The following table contains all evaluated FOMs for all time windows of
interest. To make results more readable color indication mentioned in the Table 12 was applied.
FOM = 1 means the best agreement and FOM = 0 the worst agreement. Location of PSB-VVER
measurements is depicted in Appendix B for evaluated parameters.
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6. RUN STATISTICS

The transients were calculated on calculation server with Intel Xeon 5440 processor 2.83 GHz
under GNU/Linux Debian 5.0 Lenny x64. The run statistics is shown in the following Table 14.
The TRACE calculation run substantially slower than real time due to the application of 3-D
vessel components.

Table 14: Run statistics

RELAP5 TRACE
Number of components 310 336
Number of time steps 280 092 381 186
Transient time 5600 s 5600 s
CPU time 2818s 114 806s
CPU time / Transient time 0.503 20.5
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7. CONCLUSIONS

The main goal of these analyses was to assess the TRACE TH code and its predecessor the
RELAP5/MOD3.3 using the 11% upper plenum break UP-11-07 in the large scale test facility
PSB-VVER. The second reason of using two TH codes, RELAPS and TRACE, is to compare
overall capability of the new code to its predecessor to catch all important phenomena that take
place/occur during investigated transients. A part of these analyses is quantitative assessment
of agreement of the calculations against the experiment data that can help identify pros and
cons of an applied way of modeling integral test facility in an environment of assessed codes.

Comparisons of both post-test TRACE and RELAPS calculations with experiment data proved
that both TRACE and RELAPS5 codes are capable to model PSB-VVER integral system effects
reasonably. The calculated time courses of the main facility parameters was similar to that of
the test, indicating that all of the significant events that occurred in the test were present in the
calculation.

To quantify errors/deviation of presented TRACE and RELAPS5 calculations the figure of merit
(FOM) was evaluated using software ACAP. FOMs of 65 main measured and calculated
parameters were evaluated analogously for TRACE and RELAPS calculations. The following
table shows the final average FOM evaluated for both calculations at pre-defined time windows
of interest.

FOM avg
WO W1 W2 W3
Time 0 -5596 0-100 100 - 3800 3800-5596
RELAP5 0.85 . 0'62. .
very good prediction poor prediction
TRACE 0.78 - 0.84 - 0.64. ‘
very good prediction | very good prediction poor prediction

Presented overall final FOMs (time window WO) prove that the both codes predicted behavior of
test facility during the whole transient acceptable, although TRACE prediction seems “slightly”
better. It is clearly visible that better agreements were reached during the early stage of the
transient whereas the worst agreements were identified in the end transient. These results
corresponds to the duration of the UP-11-07 test (5600 s), that was longer than “common”
LOCA tests with duration of tenths of seconds. The accumulation of minor deviations (e.g. void
distribution in the primary circuit in the UP-11-07 test) might lead to gradual increasing of
deviations of main calculated parameters.

However the quantitative assessment gave mainly good or very good predictions of the selected
main parameters (both for TRACE and RELAPS), following particular discrepancies were
identified. Both codes predicted different liquid distribution over reactor vessel during the ECC
injection part of experiments comparing to the measured data. TRACE and RELAP5 calculated
less liquid in the core region of the vessel and more uniform core axial void profile than was
measured. Possible reason of under prediction of core liquid inventory might be following: CCFL
at the core exit was preventing liquid from falling back into the core region in the calculation,
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that inter-phase drag was over predicted at the core exit, again preventing liquid from separating
from vapor flow and draining the lower portion of the reactor vessel. The different liquid
inventory in the core caused faster heat-up of top portion of the core comparing to the measured
data.

The calculation cost of the TRACE calculation was much higher than RELAPS5 calculation.
Worse time efficiency of the TRACE calculation was caused by using a very fine discretized
VESSEL component representing FRS and UP. VESSEL component consists of 768 cells
whereas the full RELAP input deck consists of 536 cells. If number of cells of VESSEL
component is reduced to 40% it will increase calculation speed approximately 4 times, based on
our experience.
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APPENDIX A INPUT DECK NODALISATION SCHEMES
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