
Project 88-131 March 1989

CanonieEnvironmental

As-Built Report

Evaporation Pond System

Churchrock Site Gallup, New Mexico

Prepared for:

United Nuclear Corporation Gallup, New Mexico

CanonieEnvironmental

Canonie Environmental Services Corp. 94 Inverness Terrace East – Suite 100 Englewood. Colorado 80112

Phone: 303-790-1747

88-131

March 17, 1989

Mr. Charles G. Johnson United Nuclear Corporation State Road 560 P.O. Drawer QQ Gallup, NM 87301

<u>Transmittal</u> <u>As-Built Construction Report</u> <u>Evaporation Pond System</u> <u>United Nuclear Church Rock Site</u> <u>Gallup, New Mexico</u>

Dear Chuck:

Enclosed are three copies of the As-Built Construction Report for the evaporation pond system which Canonie Environmental Services Corp. constructed for United Nuclear Corporation at the Church Rock tailings disposal facility near Gallup, New Mexico.

Please call if you have any questions regarding this report.

Very truly yours,

Wully

Oliver P. Wesley Project Manager

OPW/dis

Enclosures

cc: Michael J. Brennan, Esq., Holland & Hart Mr. Juan R. Velasquez, United Nuclear **As-Built Report**

Evaporation Pond System

TABLE OF CONTENTS

	<u>PAGE</u>
LIST OF TABLES	i
LIST OF FIGURES	ii
LIST OF APPENDICES	iii
1.0 INTRODUCTION	1
2.0 DESIGN CONSIDERATIONS	3
2.1 Slope Stability	3
2.2 Settlement	4
3.0 EARTHWORK CONSTRUCTION	7
3.1 Compaction Criteria	7
3.1.1 Relative Density (Coarse-Grained Tailings)	7
3.1.2 Standard Proctor Density (Fine-Grained Materials)	8
3.2 Field Moisture-Density Testing	9
3.3 Sub-drain	10
3.4 Drainage Swale	10
4.0 LINER INSTALLATION	11
5.0 CLOSING REMARKS	13
REFERENCES	
TABLES	
FIGURES	

APPENDICES

LIST OF TABLES

1

TABLE <u>NUMBER</u>	TITLE
1	Standpipe Piezometer Ground Water Elevations Evaporation Pond Construction, United Nuclear Church Rock Site
2	Earthwork Equipment
3	Summary of In-place Density Tests
4	Field Seam Strength Evaporation Pond Impervious Liner, United Nuclear Church Rock Site

LIST OF FIGURES

FIGURE <u>NUMBER</u>	DRAWING <u>NUMBER</u>	TITLE
1	88-131-E11	Title Sheet
2	88-131-E13	Plan View Evaporation Pond
3	88-131-E18	Hypalon Panel Layout
4	88-131-E14	Detail Sheet

LIST OF APPENDICES

APPENDIX	TITLE
А	Boring Logs
В	Embankment Stability Assessment and Laboratory Test Results
С	Settlement Plots
D	Moisture-Density Relationships Laboratory Results
E	Field Seam Strength Tests Laboratory Results

AS-BUILT CONSTRUCTION REPORT EVAPORATION POND SYSTEM UNITED NUCLEAR CORPORATION CHURCH ROCK FACILITY GALLUP, NEW MEXICO

1.0 INTRODUCTION

This report describes the construction of two synthetically-lined evaporation ponds at United Nuclear Corporation's (United Nuclear) Church Rock uranium mill and tailings disposal facility located northeast of Gallup, New Mexico. The location of the site is shown on Sheet 1. Construction was performed by Canonie Environmental Services Corp. (Canonie) on a design/construct basis primarily during the period from October 25, 1988 to January 10, 1989.

The pond system was constructed as part of scheduled 1988 reclamation activities for this Comprehensive Environmental Response, Compensation, and Liability Act site in accordance with previously prepared technical specifications and construction drawings (Canonie 1988). Sheets 1 through 4 provide as-built construction drawings of the pond system.

The pond system will be used for intermediate storage and eventual evaporation of ground water pumped from beneath the tailings disposal site. Each pond has a bottom surface area of five acres and a total storage capacity of approximately ten million gallons. Each pond has a total depth of 6 feet and interior side slopes of 4:1 (horizontal:vertical). Under normal maximum operating conditions, the ponds will be filled to a depth of 4 feet. The maximum amount of water which will be stored in each pond under these conditions is approximately 6.4 million gallons, leaving adequate freeboard to provide additional storm water capacity for as much as 3.6 million gallons per pond. This additional freeboard is adequate to store the Probable Maximum Precipitation (PMP) event of approximately 8.46 inches of rainfall or approximately 6.7 million gallons of water. As-built area/ capacity curves for each pond are provided on Sheet 4.

The following sections of this report describe the pond system design considerations, earthwork construction, quality control procedures which were employed, and operations and maintenance procedures for future use of the pond system.

2.0 DESIGN CONSIDERATIONS

The evaporation pond system was constructed within the existing approximate 100-acre tailings disposal area at the request of United Nuclear so that no contaminated water would be stored outside of the source area. The south cell of the tailings disposal area was selected for the pond system location due to the available surface area and the large depression which exists in the south end of the cell. This depression provides secondary containment in the event of unexpected spills from the pond system. Physical constraints, including the available surface area and the existing spray evaporation system located in the central tailings cell, precluded the use of other locations within the tailings disposal area for evaporation pond construction.

Ten test borings were drilled at the proposed evaporation pond system site at the locations shown on Sheet 2. Logs of the borings are provided in Appendix A. Drilling confirmed that very soft tailings were present in the proposed location of the pond system to depths of up to approximately 15 feet. Embankment foundation conditions were of concern with respect to embankment stability and large anticipated settlements of the embankments caused by consolidation of the underlying soft tailings. These design considerations were addressed as described in the following sections.

2.1 Slope Stability

As part of the quality control procedures implemented by Canonie during construction, and to further verify geotechnical analyses performed during previous evaporation pond system design activities, Canonie performed additional laboratory strength testing and slope stability analyses of the embankments on the soft, underlying foundation materials.

Laboratory test results, including triaxial shear strength testing and index properties of the softest fine-grained tailings encountered are provided in Appendix B. The fine-grained tailings were classified as clays with trace amounts of sand, having the Unified Soil Classification System symbol CH. Results of strength tests performed on three composite

3

samples of tailings obtained from Boring T-7 from a depth of O to 3 feet indicate that the tested fine-grained tailings have low strength characteristics as follows:

<u>Total Strength</u>	<u>Parameters</u>	Effective Streng	<u>th Parameters</u>
Cohesion _a (c) (psf) ^a	Friction Angle (Ø) _(deg)	Cohesion (c) (psf)	Friction Angle (Ø) (deg)
250 - 350	0 - 7.5	350	0
250 - 350	0 - 7.5	350	0
300 - 390	0 - 7	170 - 250	9 - 11

^apounds per square feet ^bdegrees

These low strengths for embankment foundation materials warranted the use of the relatively flat interior and exterior pond embankment side slopes shown on the as-built construction drawings (Sheet 2).

The theoretical stability of the pond embankment side slopes was reconfirmed during construction on the basis of these additional laboratory test results. Both sliding block and circular failure plane analyses were performed for both the south and central evaporation pond system embankments. Results of the analyses indicated that the embankment slopes will be stable for the anticipated minimum strength characteristics of the tailings under full static loading conditions.

2.2 Settlement

Theoretical consolidation analyses indicated that as much as 4 feet of settlement of the central and southern embankments could occur, depending on the actual consolidation properties of the fine-grained tailings, their thicknesses below the embankments, and the amount of embankment fill placed

over the tailings. The large predicted settlements warranted the installation of five settlement monuments in each embankment as shown on Sheet 2.

Settlement monitoring during and after construction was planned for a number of reasons. First, installation of the monuments allowed determination of settlement for final grading purposes to ensure that the design capacity of each pond was attained.

The monuments were also installed to identify when primary consolidation of the tailings, due to the weight of the embankments, was at least 90 percent complete prior to filling of the ponds. Consolidation of the underlying tailings can cause a build up in pore water pressure within the wet tailings and can adversely affect slope stability if not allowed to dissipate. By allowing the majority of consolidation (ie, 90 percent) to occur prior to filling of the ponds, the stability of the retention embankments would be increased.

Finally, it was acknowledged that large settlements could cause localized cracking of the embankments. Potential cracking was the second reason (besides slope stability) for employing relatively flat embankment slopes to maximize the base width of each embankment. If deep cracks were observed, repairs could be made prior to evaporation pond filling. Cracks would be repaired only after primary consolidation was observed to have been complete as indicated by settlement monitoring, so that no additional significant cracking would occur.

Results of the settlement monitoring indicate a maximum observed primary settlement of over 3.25 feet in the vicinity of settlement monument PSM-2, which has occurred over a period of more than 15 weeks after embankment construction completion. Plots of the observed settlement of each monument versus time are provided in Appendix C.

A surfical crack in the embankment was identified approximately 63 feet southeast of settlement monument PSM-2, prior to completion of primary settlement in this area. The crack was investigated by Canonie personnel on March 9 and 10, 1989, at the request of United Nuclear. The crack was

5

found to be only 4-inches deep and was determined to be caused by shrinkage of the fine-grained soils at the top of the embankment, due to drying. During the investigation, soil in the embankment in the area of the crack was excavated to a depth of approximately 6 feet to verify that the crack did not extend deeper into the embankment. The excavated soils were replaced in 3- to 4-inch lifts and compacted with hand-operated power compactors. Since the crack was confirmed to have been only surfical, it was concluded that no adverse impact to the embankment integrity occurred.

As part of the actual settlement and slope stability evaluation during construction, three open standpipes were driven into the tailings at the locations shown on Sheet 2. The standpipes were used to monitor for a sudden build up of pore water pressures in the tailings during their consolidation. Table 1 provides the observed elevations of the free liquid surface in the standpipes during construction. No water surface, and thus no significant build up in pore water pressure was observed in Standpipe No. 1; however, a gradual and expected increase in pore water pressure was observed in Standpipe Nos. 2 and 3 during embankment construction. This increase in pore water pressure has stabilized and slowly begun to dissipate as primary consolidation of the tailings has been completed.

6

3.0 EARTHWORK CONSTRUCTION

The evaporation ponds were constructed on an approximate balanced cut/fill basis on the tailings surface. Coarse and fine-grained tailings and alluvial soils were excavated primarily from the north and west ends of each pond and used as fill for each pond's southern embankment. A listing of the types of construction equipment used to perform the earthmoving is presented in Table 2 and included low ground pressure dozers, a smooth steel-wheeled vibratory drum roller, a sheepsfoot compactor, scrapers, and a grader.

3.1 Compaction Criteria

Since it was anticipated that the embankments and other fill areas would be constructed with coarse-grained (ie, sand) tailings, the original specifications required that each lift be compacted to at least 80 percent relative density which is appropriate for a minimum applied compactive effort for granular soils. However, a much larger percentage of alluvial soils were encountered than expected for use as compacted fill. Accordingly, relationships were immediately developed and correlated to ensure that a similar compactive effort would be applied to the finer-grained alluvial soils. Alluvial soils and fine-grained tailings mixtures used as fill were compacted to at least 95 percent of the minimum dry density obtainable by the Standard Proctor method of compaction [American Society for Testing and Materials (ASTM) D 698].

The following sections describe the laboratory tests defining these minimum densities and the field quality control tests employed to confirm that compaction of the fill had met these minimum requirements.

3.1.1 Relative Density (Coarse-Grained Tailings)

Prior to commencement of earthmoving operations, a relative density relationship (ASTM D-4253 and D 4254) was determined in the laboratory for a sample of coarse tailings. This test provided the minimum and maximum attainable density of granular soils, such as coarse-grained tailings.

Results of the relative density test indicated that a coarse-grained sample of tailings had a maximum density of 108.5 pounds per cubic foot (pcf) and a minimum density of 93.2 pcf. The minimum acceptable density of the compacted coarse-grained tailings to meet the minimum 80 percent relative density specification was determined to be 105 pcf. This value was used as the minimum acceptable density for clean, coarse-grained tailings compacted as fill and was also used as a comparative value to the minimum acceptable density determined by the Standard Proctor method of compaction, described in the following section of this report.

3.1.2 Standard Proctor Density (Fine-Grained Materials)

As earthwork initiated, more extensive deposits of both fine-grained tailings and alluvial soils were encountered than originally anticipated. Thus, determination of the acceptable field density on the basis of relative density, applicable only to coarse-grained tailings and granular soils, would have been inappropriate. Accordingly, moisture/density relationships of representative soil mixtures were determined in accordance with the Standard Proctor method of compaction (ASTM D 698). This test method identifies the maximum attainable dry density of a soil under a specified level of compactive effort, as well as the optimal soil moisture content at which that density is attained.

Results of these compaction tests are provided in Appendix D and indicate that representative samples of tailings and/or soils had a maximum dry density ranging from 112.5 pcf to 115.2 pcf with optimum moisture contents ranging from 13.0 to 14.5 percent. In accordance with standard industry practice as well as the general specifications for the entire reclamation plan, a minimum dry density of at least 95 percent of this maximum value, or values ranging from 106.9 pcf to 109.4 pcf, were selected as the minimum acceptable value for earthwork embankment construction. This range of density values compared well with a density of 110 pcf used in slope stability analysis for the pond embankments. Coincidentally, this value also compared with the value of 105 pcf as determined by the relative density method for coarse-grained tailings as previously described. Prior to any fill placement, the foundation materials were rolled to a minimum density of at least 90 percent of the maximum dry density attainable by the Standard Proctor method of compaction, or approximately 101 pcf. In extremely soft wet areas, the foundation materials were rolled until the maximum attainable in-place density was achieved.

3.2 Field Moisture-Density Testing

As part of Canonie's field quality control, a total of 89 field density tests were obtained, or approximately one test for every 843 cubic yards of fill material placed. A minimum of one test per lift of fill was performed.

Results of the field density tests are presented in Table 3. Fill which initially did not meet the required minimum density as shown on the table was either removed and replaced or reworked until it attained the minimum density requirements. Density testing was performed until the fill was confirmed to have met the minimum density standards.

Density and in-place moisture testing was performed by both nuclear densimeter (ASTM D 2922) and sand cone (ASTM D 1556) methods for correlation purposes. Additionally, in-place soil samples were collected at the location of the nuclear densimeter tests and oven dried for moisture content correlation. This procedure was necessary due to varying amounts of coal fragments encountered in the alluvial fill material. Bituminous materials, such as coal in the soil, cause erroneously high moisture content readings that consequently lead to erroneously low dry density determinations with the nuclear densimeter. Nuclear densimeter moisture contents were thus confirmed or adjusted on the basis of oven drying representative soil samples.

All fill tested met the minimum compaction criteria described previously.

3.3 Sub-drain

Excavation activities in the west side of the South Pond uncovered saturated tailings which temporarily prevented further excavation in this area. A backhoe was mobilized to dig a ditch to drain particularly wet tailings in this area. This trench was later backfilled but a second trench was excavated in the same location in which 4-inch diameter perforated polyvinyl chloride pipe wrapped in a geotextile filter fabric was installed on the trench bottom as a permanent sub-drain. The pipe was installed between 2 and 4 feet below finish grade of the pond bottom in order to direct subsurface water to the area south of the South Pond. Drainage of water in this area improved the stability of the pond bottom in the area and allowed continued excavation in this area. The location of the sub-drain is shown on Sheet 2.

3.4 Drainage Swale

At the request of United Nuclear, Canonie excavated a drainage swale around the pond system. This swale will provide positive drainage of runoff waters from around the ponds, thus substantially reducing the pond storage required to contain water from the design PMP storm event.

4.0 LINER INSTALLATION

Geotextile and synthetic liner installation was performed subsequent to final grading of the ponds and excavation of the anchor trenches by The Snow Company of Albuquerque, New Mexico under subcontract to Canonie. The geotextile used was non-woven, synthetic Polyfelt TS-550 and TS-600. The synthetic liner used was a 36 mil reinforced Hypalon which was factory seamed into segments approximately 90 to 95 feet wide by 263 feet long. A panel layout diagram is presented on Sheet 3. The liner material panels were placed first in the North Pond and then in the South Pond to allow a greater period of time for consolidation of the softest foundation materials under the south embankment to occur.

Geotextile was placed across the width of the ponds approximately 270 feet ahead of the liner in preparation for the overlying liner. The geotextile was overlapped 12 inches and heat tack welded along the seams. The synthetic liner panels were then unfolded along their length and oriented in the pond as shown on Sheet 3. The liner pieces were overlapped a minimum of 6 inches and seamed.

Two seaming processes were used on the synthetic liner. The majority of the seams were made with a heat seaming machine along the edges of each panel which created a 4-inch wide liner-to-liner bond. Patch work, portions of seams along the width of each panel, and seams inaccessible to the heat seaming machine were solvent welded with a minimum 2-inch wide linerto-liner contact.

All seams were visually inspected and tested for hidden defects and false seams by means of an air-lance. All synthetic liner surfaces showing damage were patched. All defects were repaired and retested. Air-lance testing was performed with approximately 60 pounds per square inch air pressure. All seams and patches were tested in the presence of the on-site Canonie engineer.

As part of Canonie's independent quality control procedures to verify required seam strength, six representative samples of field seams were

fabricated during seaming and laboratory tested for peel adhesion and bonded seam strengths. Strength tests were performed on representative seam samples by Precision Laboratories of Garden Grove, California. Sample field seams were made using excess liner material at random locations in the pond. The test seams were made at the same time and location, under the same conditions, and with the same equipment as the pond liner seam at that location. All seams tested indicate that the liner material failed before the stronger field seam demonstrating seam adequacy. Results of the testing are summarized in Table 4 and presented in Appendix E. All field seams test results met project specifications.

To accommodate the potential for some areas of the pond to settle under the weight of water, all slack in the synthetic liner was pulled into the pond bottom and distributed throughout the pond as wrinkles. These wrinkles were present during the coldest part of the year when the liner is the tightest and should allow the liner to conform itself to the pond bottom under the weight of the water without excessive stress and potential failure of the liner.

After excess slack was pulled into the ponds, the perimeter of the geotextile and synthetic liner was buried in an anchor trench as shown on Sheet 4. The trench was excavated a minimum of 12-inches deep by 12-inches wide with a backhoe. Fill material was backfilled within the trench over the geotextile and synthetic liner and compacted.

Throughout the pond bottom sandbags made of Hypalon liner material were placed on 50-foot centers on top of the liner to prevent uplift of the liner due to wind. Each liner contained approximately 50 pounds of tailings sand.

12

5.0 CLOSING REMARKS

The North Pond was certified complete and available for water January 3, 1989 in compliance with United Nuclear's Reclamation Plan. Settlement continues in the area of PSM-2 on the south embankment, but this settlement is at an ever-decreasing rate. Continued settlement should not have any deleterious effects on the South Pond and that cell may also be used for water storage. During operations, it is appropriate to maintain at least 6 inches of water in the bottom of each pond to minimize potential damage to the liner due to wind. Inspection of the pond system should be performed on a regular weekly basis to identify any potential problems with the liner system, excessive embankment settlement cracking or other abnormal conditions so that an evaluation of those conditions can be made by a qualified engineer and repairs initiated, if required.

The design/construct approach allowed for quick, effective solutions to unanticipated changes in tailings conditions and engineering properties at no additional cost to United Nuclear.

Canonie appreciated this opportunity to provide engineering and construction services. Please call if you have any questions or comments regarding this report.

Respectfully submitted,

Wully

Oliver P. Wesley / Project Manger / New Mexico Professional Engineer License No. 8029

OPW/dis

ĺ

REFERENCES

REFERENCES

Canonie Environmental Services Corp., July 1988, "Ground Water Remediation System, Technical Specifications," Church Rock Mill and Tailings Disposal Area, Gallup, New Mexico. Prepared for UNC Mining and Milling.

STANDPIPE PIEZOMETER GROUND WATER ELEVATIONS EVAPORATION POND CONSTRUCTION UNITED NUCLEAR CHURCH ROCK SITE

Piezometer Number and Location	# 1 South Embankment 3+60W, -1+05N In factors at the	# 2 South Embankment 5+50W, -0+42N South Enclosed auer t	# 3 Central Embankment 3+60W, 3+74N
Date		Ground Water Elevation	·
11/14/88	Dry		Dry
11/17/88	Dry	6,944.64	6,950.77
11/18/88	Dry	6,946.12	
11/19/88	Dry	6,945.44	6,949.42
11/21/88	Dry	6,945.44	6,949.52
11/22/88	Dry	6,945.65	6,949.72
11/23/88	Dry	6,948.31	6,950.37
11/28/88	Dry	6,950.87	6,950.15
11/29/88	Dry	6,950.69	6,950.60
11/30/88	Dry	6,951.41	6,950.94
12/01/88	Dry	6,951.50	6,950.90
12/02/88	Dry	6,951.60	6,950.79
12/05/88	Dry	6,948.44	Plugged
12/06/88	Dry	6,948.52	Plugged
12/07/88	Dry	6,949.48	Plugged
12/08/88	Dry	6,948.55	Plugged
12/12/88	Dry	6,948.54	Plugged
12/14/88	Dry	6,948.50	Plugged
12/15/88	Dry	6,948.53	Plugged
12/17/88	Dry	6,948.48	Plugged
12/19/88	Dry	6,948.60	Plugged
12/22/88	Dry	6,948.44	Plugged
12/31/88	Dry	6,948.62	Plugged
01/03/89	Dry	6,948.51	Plugged
01/06/89	Dry	6,948.86	Plugged
01/09/89	Dry	6,948.58	Plugged

CanonieEnvironmental

EARTHWORK EQUIPMENT

Chevrolet Pickup Ford Pickup Catepillar D-7-H Dozer Catepillar 140 G Grader Catepillar Water Trucks 2 Catepillar 637 Scrapers Catepillar 553 Vibratory Roller Catepillar D-7-H Low Ground Pressure (LGP) Dozer Case 580 Backhoe Case 480 Backhoe Catepillar 416 Backhoe Catepillar D-4-H LGP Dozer "Jumping Jack" Hand Compactor

SUMMARY OF IN-PLACE DENSITY TESTS

Project Name: United Nuclear Evaporation Pond Construction

Project No.: 88-131

Period: 11/6/88 to 11/12/88 (Week 2)

				Field	Test	Labora	atory		
Test No.	Date	Location	Elevation	Dry Density (PCF)	Moisture Content (%)	Max. Dry Density (PCF)	Optimum Moisture (%)	Compaction (%)	Comments
11-7-88-25	11/7/88	-0+35N, 4+60W	6,942.0	97.3	14.1	112.5	14.5	86.5	Low Density (Retest Required)
11-8-88-1	11/8/88	-0+72N, 4+85W	6,944.0	101.6	16.6	114.8	14.9	88.5	Low Density (Material Removed)
11-8-88-25	11/8/88	-0+72N, 4+85W	6,944.0	98.8	16.6	114.8	14.9	86.1	Low Density (Material Removed)
11-8-88-3	11/8/88	-0+72N, 4+75W	6,944.0	103.1	16.6	112.5	14.5	91.6	Low Density (Material Removed)
11-8-88-4	11/8/88	1+30N, 5+00W	6,945.0	99.9	14.5	Relative	Density	46.0	Low Density (Material Removed)
11-8-88-5	11/8/88	1+20N, 4+10W	6,946.0	106.1	9.8	112.5	14.5	94.3	Acceptable (Subgrade)
11-8-88-6	11/8/88	1+30N, 4+10W	6,943.0	107.3	19.3	112.5	14.5	95.4	Acceptable
11-9-88-1	11/9/88	-0+60N, 1+30W	6,950.0	106.4	17.0	112.5	14.5	94.6	Acceptable
11-9-88-2	11/9/88	-0+60N, 2+70W	6,947.0	107.4	17.0	112.5	14.5	95.5	Acceptable
11-9-88-3	11/9/88	-0+60N, 4+20W	6,947.0	105.5	17.0	112.5	14.5	93.8	Low Density (Retest Required)
11-9-88-45	11/9/88	-0+60N, 4+20W	6,947.0	114.2	17.0	112.5	14.5	101.5	Acceptable
11-9-88-5	11/9/88	-0+60N, 4+20W	6,945.0	100.0	16.0	112.5	14.5	88.9	Low Density (Material Removed)
11-9-88-6	11/9/88	0+20N, 5+30W	6,949.0	94.5	28.1	Relative	Density	NA	Low Density (Retest Required)
11-9-88-7	11/9/88	0+20N, 4+55W	6,944.0	106.5	17.0	112.5	14.5	94.7	Acceptable
11-9-88-8	11/9/88	0+50N, 7+20W	6,948.0	80.7	21.4	Relative	Density	 NA	Low Density (Retest Required)
11-9-88-9	11/9/88	0+50N, 6+75W	6,948.0	82.5	27.9	Relative	Density	••••	Low Density (Retest Required)
11-9-88-10	11/9/88	0+10N, 7+18W	6,948.0	98.1	7.5	Relative	Density	34.0	Low Density (Retest Required)
11-9-88-11	11/9/88	4+04N, 7+00W	6,948.0	100.4	13.9	112.5	14.5	89.3	Low Density (Retest Required)

2

TABLE 3

SUMMARY OF IN-PLACE DENSITY TESTS (Continued)

Project Name: United Nuclear Evaporation Pond Construction

Project No.: 88-131

Period: 11/6/88 to 11/12/88 (Week 2)

				field	Test	Labora	atory		
Test No.	Date	Location	Elevation	Dry Density (PCF)	Moisture Content (%)	Max. Dry Density (PCF)	Optimum Moisture (%)	Compaction (%)	Comments
11-9-88-12	11/9/88	4+20N, 7+00W	6,949.0	118.4	6.5	112.5	14.5	105.2	Acceptable
11-9-88-13	11/9/88	6+80N, 1+00W	6,957.0	100.5	7.7	112.5	14.5	89.3	Low Density (Retest Required)
11-9-88-14	11/9/88	0+10N, 7+00W	6,948.0	62.0	56.6	Relativo	Density	NA	Low Density (Retest Required)
11-9-88-15	11/9/88	1+90N, 4+00W	6,948.0	103.2	16.0	112.5	14.5	91.7	Low Density (Retest Required)
11-9-88-16	11/9/88	2+30N, 4+00W	6,948.0	100.4	17.0	112.5	14.5	89.3	Low Density (Retest Required)
11-10-88-1	11/10/88	-0+70N, 4+00W	6,944.0	103.8	15.1	112.5	14.5	92.3	Acceptable (Subgrade)
11-10-88-2	11/10/88	-0+60N, 3+00W	6,944.0	102.3	20.7	112.5	14.5	90.7	Acceptable (Subgrade)
11-10-88-3	11/10/88	-0+50N, 3+00W	6,944.5	115.3	11.9	115.2	13.0	100.4	Acceptable
11-10-88-4S	11/10/88	-0+50N, 3+00W	6,944.5	112.6	15.6	115.2	13.0	97.8	Acceptable
11-10-88-5	11/10/88	3+40N, 2+20W	6,950.0	110.6	12.8	115.2	13.0	96.0	Acceptable
11-10-88-6S	11/10/88	-0+60N, 2+00W	6,945.0	113.7	12.2	114.8	14.9	99.0	Acceptable
	11/10/88	-0+60N, 2+50W	6,944.0	108.1	13.2	112.5	14.5	96.1	Acceptable
11-10-88-8	11/10/88	-0+60N, 2+50W	6,944.0	106.9	16.4	112.5	14.5	95.0	Acceptable
11-11-88-1	11/11/88	3+60N, 3+20W	6,952.0	106.2	15.6	112.5	14.5	94.5	Acceptable
11-11-88-2	11/11/88	3+20N, 2+90W	6,952.0	102.8	18.0	112.5	14.5	91.4	Low Density (Retest Required)
11-11-88-3	11/11/88	3+45N, 4+20W	6,952.0	106.3	13.5	112.5	14.5	94.5	Acceptable
11-11-88-4	11/11/88	3+65N, 5+70W	6,953.0	106.7	12.4	112.5	14.5	94.8	Acceptable
11-12-88-1	11/12/88	3+50N, 2+20W	6,956.0	107.9	8.8	112.5	14.5	95.9	Acceptable

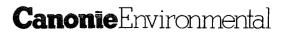
SUMMARY OF IN-PLACE DENSITY TESTS (Continued)

Project Name: United Nuclear Evaporation Pond Construction

Project No.: 88-131

Period: 11/6/88 to 11/12/88 (Week 2)

Test No. Date Location	1		Field	Test	Labor	atory				
	Location	Location	Location	Location	Elevation	Dry Density (PCF)	Moisture Content (%)	Max. Dry Density (PCF)	Optimum Moisture (%)	Compaction (%)
11-12-88-2	11/12/88	3+50N, 3+00W	6,958.0	106.1	9.2	112.5	14.5	94.3	Low Density (Retest Required)	
11-12-88-3	11/12/88	3+50N, 3+80W	6,958.0	110.0	8.3	112.5	14.5	97.8	Acceptable	
11-12-88-4	11/12/88	3+40N, 5+30W	6,957.0	108.2	13.0	112.5	14.5	96.2	Acceptable	
11-12-88-5	11/12/88	3+50N, 6+60W	6,960.0	105.9	14.7	112.5	14.5	94.2	Low Density (Retest Required)	
11-12-88-6	11/12/88	3+20N, 3+30W	6,958.0	113.9	10.3	112.5	14.5	101.2	Acceptable	
11-12-88-7	11/12/88	3+50N, 0+30W	6,960.0	107.0	16.3	112.5	14.5	95.1	Acceptable	
11-12-88-8	11/12/88	2+20N, 2+40W	6,958.0	108.2	10.5	112.5	14.5	96.2	Acceptable	
11-12-88-9	11/12/88	6+20N, -0+50W	6,960.0	107.6	15.8	112.5	14.5	93.6	Acceptable (Subgrade)	
11-12-88-10	11/12/88	4+04N, 0+00W	6,960.0	109.1	17.0	112.5	14.5	97.0	Acceptable	
11-12-88-11	11/12/88	3+50N, 7+22W	6,960.0	103.8	17.0	112.5	14.5	92.2	Acceptable (Subgrade)	
11-12-88-12	11/12/88	5+04N, 7+30W	6,966.0	109.1	12.0	112.5	14.5	97.0	Acceptable	
11-12-88-13	11/12/88	3+50N, 6+90W	6,961.0	103.3	14.5	112.5	14.5	91.8	Acceptable (Subgrade)	
11-12-88-14	11/12/88	3+50N, 6+90W	6,961.0	102.3	14.6	112.5	14.5	91.0	Low Density (Retest Required)	
	-	-	-							
	-		-							
	-	-								
	-		-							
	-		-							


SUMMARY OF IN-PLACE DENSITY TESTS

Project Name: United Nuclear Evaporation Pond Construction

Project No.: 88-131

Period: 10/30/88 to 11/5/88 (Week 1)

			Field	Test	Labora	atory		
Date	Location	Elevation	Dry Density (PCF)	Moisture Content (%)	Max. Dry Density (PCF)	Optimum Moisture (%)	Compaction (%)	Comments
11/3/88	1+50N, 4+50W	6,946.0	99.6	13.2	112.5	14.5	88.5	Low Density (Retest Required)
11/3/88	-0+64N, 2+00W	6,945.0	87.2	13.1	112.5	14.5	77.5	Low Density (Retest Required)
11/3/88	0+35N, 3+00W	6,944.5	103.9	17.9	112.5	14.5	92.4	Low Density (Retest Required)
11/3/88	-1+15N, 3+00W	6,943.0	95.3	18.0	112.5	14.5	84.7	Low Density (Retest Required)
11/3/88	0+30N, 4+00W	6,943.5	106.0	12.8	112.5	14.5	94.2	Acceptable (Subgrade)
11/4/88	-0+55N, 4+70W	6,944.0	109.2	14.7	112.5	14.5	97.1	Acceptable
11/4/88	-0+55N, 4+70W	6,944.0	108.8	13.8	112.5	14.5	96.7	Acceptable
	_							• • • • • • • • • • • • • • • • • • •
-		_	·					
-	-							
-	-	-						
-		-						
-		-			·			
-	-							
-		-						
		-						
_		-						
	11/3/88 11/3/88 11/3/88 11/3/88 11/3/88 11/3/88 11/3/88 11/3/88 11/3/88 11/3/88	11/3/88 1+50N, 4+50W 11/3/88 -0+64N, 2+00W 11/3/88 0+35N, 3+00W 11/3/88 0+35N, 3+00W 11/3/88 -1+15N, 3+00W 11/3/88 0+30N, 4+00W 11/4/88 -0+55N, 4+70W	11/3/88 1+50N, 4+50W 6,946.0 11/3/88 -0+64N, 2+00W 6,945.0 11/3/88 0+35N, 3+00W 6,944.5 11/3/88 -1+15N, 3+00W 6,943.0 11/3/88 0+30N, 4+00W 6,943.5 11/3/88 0+30N, 4+00W 6,943.5 11/4/88 -0+55N, 4+70W 6,944.0	Date Location Elevation Dry Density (PCF) 11/3/88 1+50N, 4+50W 6,946.0 99.6 11/3/88 -0+64N, 2+00W 6,945.0 87.2 11/3/88 0+35N, 3+00W 6,944.5 103.9 11/3/88 -1+15N, 3+00W 6,943.0 95.3 11/3/88 0+30N, 4+00W 6,943.5 106.0 11/4/88 -0+55N, 4+70W 6,944.0 109.2	Date Location Elevation Dry Density (PCF) Content (X) 11/3/88 1+50N, 4+50W 6,946.0 99.6 13.2 11/3/88 -0+64N, 2+00W 6,945.0 87.2 13.1 11/3/88 0+35N, 3+00W 6,944.5 103.9 17.9 11/3/88 -1+15N, 3+00W 6,943.0 95.3 18.0 11/3/88 0+30N, 4+00W 6,943.5 106.0 12.8 11/4/88 -0+55N, 4+70W 6,944.0 109.2 14.7	Date Location Elevation Dry Density (PCF) Moisture Content (X) Max. Dry Density (PCF) 11/3/88 1+50N, 4+50W 6,946.0 99.6 13.2 112.5 11/3/88 -0+64N, 2+00W 6,945.0 87.2 13.1 112.5 11/3/88 0+35N, 3+00W 6,944.5 103.9 17.9 112.5 11/3/88 -1+15N, 3+00W 6,943.0 95.3 18.0 112.5 11/3/88 -1+15N, 3+00W 6,943.5 106.0 12.8 112.5 11/3/88 0+30N, 4+00W 6,943.0 95.3 18.0 112.5 11/3/88 0+30N, 4+00W 6,943.5 106.0 12.8 112.5 11/4/88 -0+55N, 4+70W 6,944.0 109.2 14.7 112.5	Date Location Elevation Dry Density (PCF) Moisture Content (X) Max. Dry Density (PCF) Optimum Moisture (X) 11/3/88 1+50N, 4+50W 6,946.0 99.6 13.2 112.5 14.5 11/3/88 -0+64N, 2+00W 6,945.0 87.2 13.1 112.5 14.5 11/3/88 0+35N, 3+00W 6,944.5 103.9 17.9 112.5 14.5 11/3/88 0+35N, 3+00W 6,943.0 95.3 18.0 112.5 14.5 11/3/88 -1+15N, 3+00W 6,943.5 106.0 12.8 112.5 14.5 11/3/88 0+30N, 4+00W 6,943.5 106.0 12.8 112.5 14.5 11/4/88 -0+55N, 4+70W 6,944.0 109.2 14.7 112.5 14.5	Date Location Elevation Dry Density (PCF) Moisture Content (X) Max. Dry Density (PCF) Optimum Moisture (X) Compaction (X) 11/3/88 1+50N, 4+50W 6,946.0 99.6 13.2 112.5 14.5 88.5 11/3/88 -0+64N, 2+00W 6,945.0 87.2 13.1 112.5 14.5 77.5 11/3/88 0+35N, 3+00W 6,944.5 103.9 17.9 112.5 14.5 92.4 11/3/88 -1+15N, 3+00W 6,943.0 95.3 18.0 112.5 14.5 84.7 11/3/88 0+30N, 4+00W 6,943.5 106.0 12.8 112.5 14.5 94.2 11/4/88 -0+55N, 4+70W 6,944.0 109.2 14.7 112.5 14.5 97.1

SUMMARY OF IN-PLACE DENSITY TESTS

Project Name: United Nuclear Evaporation Pond Construction

Project No.: 88-131

Period: 11/13/88 to 11/19/88 (Week 3)

				Field	Test	Labora	atory		
Test No.	Date	Location	Elevation	Dry Density (PCF)	Moisture Content (%)	Max. Dry Density (PCF)	Optimum Moisture (%)	Compaction (%)	Comments
11-14-88-1	11/14/88	-0+60N, 1+00W	6,947.0	106.7	12.6	112.5	14.5	94.8	Acceptable
11-14-88-2	11/14/88	-0+50N, 2+00W	6,948.0	94.3	20.1	112.5	14.5	88.2	Low Density (Retest Required)
11-14-88-3	11/14/88	-0+40N, 7+00W	6,947.0	112.5	11.6	112.5	14.5	100.1	Acceptable
11-14-88-4	11/14/88	-0+60N, 1+00W	6,947.0	112.2	12.5	112.5	14.5	99.7	Acceptable
11-14-88-5	11/14/88	-0+50N, 2+00W	6,948.0	112.1	6.5	112.5	14.5	99.7	Acceptable
11-14-88-6	11/14/88	-0+20N, 2+90W	6,950.0	103.1	10.7	112.5	14.5	91.6	Low Density (Retest Required)
11-12-88-2A	11/15/88	3+50N, 3+00W	6,958.0	110.5	10.4	112.5	14.5	98.2	Acceptable (Retest of 11-12-88-2)
11-15-88-1	11/15/88	3+50N, 2+20W	6,958.0	109.5	10.4	112.5	14.5	97.3	Acceptable
11-15-88-2	11/15/88	3+40N, 5+30W	6,957.0	107.7	11.8	112.5	14.5	95.7	Acceptable
11-15-88-3	11/15/88	-0+50N, 2+10W	6,950.0	106.4	15.9	112.5	14.5	94.6	Acceptable
11-15-88-4	11/15/88	-0+50N, 3+00W	6,950.0	105.0	15.3	112.5	14.5	93.4	Low Density (Retest Required)
11-12-88-5A	11/15/88	3+50N, 6+60W	6,960.0	109.0	14.0	112.5	14.5	96.9	Acceptable (Retest of 11-12-88-5)
11-15-88-5	11/15/88	3+50N, 7+22W	6,960.0	105.7	14.7	112.5	14.5	93.9	Low Density (Retest Required)
11-12-88-14A	11/15/88	3+50N, 6+90W	6,961.0	104.0	11.9	112.5	14.5	92.4	Low Density (Retest Required)
11-15-88-6	11/15/88	3+50N, 0+30W	6,960.0	102.8	16.4	112.5	14.5	91.4	Low Density (Retest Required)
11-14-88-6A	11/15/88	-0+20N, 2+90W	6,950.0	101.0	14.6	112.5	14.5	89.8	Low Density (Retest Required)
11-14-88-6C	11/15/88	-0+20N, 2+90W	6,950.0	101.6	15.8	112.5	14.5	90.3	Low Density (Retest Required)
11-12-88-10A	11/15/88	0+00N, 4+04W	6,959.0	111.4	11.0	112.5	14.5	99.1	Acceptable (Retest of 11-12-88-10)

SUMMARY OF IN-PLACE DENSITY TESTS (Continued)

Project Name: United Nuclear Evaporation Pond Construction

Project No.: 88-131

Period: 11/13/88 to 11/19/88 (Week 3)

				Field	Test	Labora	atory		
Test No.	Date	Location	Elevation	Dry Density (PCF)	Moisture Content (%)	Max. Dry Density (PCF)	Optimum Moisture (%)	Compaction (%)	Comments
11-12-88-148	11/15/88	3+50N, 6+90W	6,961.0	107.7	14.9	112.5	14.5	95.8	Acceptable (Retest of 11-12-88-14A)
11-15-88-6A	11/15/88	3+50N, 0+30W	6,961.0	108.9	11.5	112.5	14.5	96.8	Acceptable (Retest of 11-15-88-6)
11-3-88-2A	11/16/88	-0+64N, 2+00W	6,945.0	106.6	10.7	112.5	14.5	94.8	Acceptable (Retest of 11-3-88-2)
11-3-88-4C	11/16/88	-1+15N, 3+00W	6,943.0	94.8	7.2	112.5	14.5	85.0	Low Density (Retest Required)
11-3-88-3A	11/16/88	0+35N, 3+00W	6,944.5	104.4	12.5	112.5	14.5	92.8	Low Density (Retest Required)
11-8-88-1A	11/16/88	-0+72N, 4+80W	6,944.0	109.4	12.2	112.5	14.5	97.2	Acceptable (Retest of 11-8-88-1)
11-12-88-3A	11/16/88	3+25N, 2+00W	6,960.0	108.3	13.9	112.5	14.5	96.2	Acceptable (Retest of 11-12-88-3)
11-16-88-1	11/16/88	3+70N, 3+60W	6,958.0	98.8	15.8	112.5	14.5	87.8	Low Density (Retest Required)
11-9-88-6A	11/16/88	0+20N, 5+20W	6,949.0	107.5	13.1	112.5	14.5	95.6	Acceptable (Retest of 11-9-88-6)
11-16-88-2	11/16/88	-0+35N, 2+40W	6,950.0	108.4	11.9	112.5	14.5	96.3	Acceptable
11-12-88-14A	11/16/88	3+70N, -0+80W	6,961.0	104.5	15.2	112.5	14.5	92.8	Low Density (Retest Required)
11-16-88-3	11/16/88	3+40N, 2+00W	6,961.0	105.2	15.2	112.5	14.5	93.5	Low Density (Retest Required)
11-16-88-4	11/16/88	3+40N, 6+10W	6,961.0	104.0	12.0	112.5	14.5	93.5	Low Density (Retest Required)
11-16-88-5	11/16/88	-0+50N, 4+00W	6,953.0	107.2	14.0	112.5	14.5	95.2	Acceptable
11-3-88-3B	11/17/88	0+35N, 3+00W	6,944.0	106.3	13.0	112.5	14.5	94.5	Acceptable (Retest of 11-3-88-3A)
11-3-88-1A	11/17/88	1+50N, 4+50W	6,946.0	104.7	12.3	112.5	14.5	93.1	Low Density (Retest Required)
11-12-88-14B	11/17/88	3+70N, -0+80W	6,961.0	110.3	11.8	112.5	14.5	98.0	Acceptable (Retest of 11-12-88-14A)
11-16-88-5A	11/17/88	-0+50N, 4+00W	6,953.0	112.6	11.1	112.5	14.5	100.0	Acceptable (Retest of 11-16-88-5)

SUMMARY OF IN-PLACE DENSITY TESTS (Continued)

Project Name: United Nuclear Evaporation Pond Construction

Project No.: 88-131

Period: 11/13/88 to 11/19/88 (Week 3)

				Field	Test	Laboratory			
Test No.	Date	Location	Elevation	Dry Density (PCF)	Moisture Content (%)	Max. Dry Density (PCF)	Optimum Moisture (%)	Compaction (%)	Comments
11-15-88-4A	11/17/88	-0+50N, 3+00W	6,950.0	105.7	16.2	112.5	14.5	94.0	Low Density (Retest Required)
							·		
	-						· [
	•								
	•						·]		
	· [
	·]								
	·]								
]							
							<u></u>		
									······
						<u></u>			
·									

SUMMARY OF IN-PLACE DENSITY TESTS

Project Name: United Nuclear Evaporation Pond Construction

Project No.: 88-131

Period: 11/20/88 to 11/26/88 (Week 4)

	Date	Location	Elevation	Field Test		Laboratory			
Test No.				Dry Density (PCF)	Moisture Content (%)	Max. Dry Density (PCF)	Optimum Moisture (%)	Compection (%)	Comments
11-7-88-2A	11/21/88	-0+35N, 4+60W	6,948.0	106.3	16.0	112.5	14.5	94.5	Acceptable (Retest of 11-7-88-2)
11-16-88-1A	11/21/88	3+70N, 3+60W	6,958.0	107.5	14.0	112.5	14.5	95.5	Acceptable (Retest of 11-16-88-1)
11-21-88-1	11/21/88	3+10N, 4+70W	6,952.0	98.9	17.0	112.5	14.5	88.0	Low Density (Retest Required)
11-21-88-2	11/21/88	3+50N, 3+60W	6,952.0	109.5	9.9	112.5	14.5	97.3	Acceptable
11-9-88-5A	11/21/88	-0+60N, 4+20W	6,948.0	108.3	15.5	112.5	14.5	96.3	Acceptable (Retest of 11-9-88-5)
11-15-88-5A	11/21/88	-0+20N, 2+90W	6,950.0	106.7	14.4	112.5	14.5	94.9	Acceptable (Retest of 11-15-88-5)
11-16-88-3A	11/21/88	3+40N, 2+00W	6,961.0	107.7	11.8	112.5	14.5	95.7	Acceptable (Retest of 11-16-88-3)
11-21-88-3	11/21/88	3+50N, 0+50W	6,962.0	105.9	8.3	Relative	Density	80.0	Acceptable
11-21-88-4	11/21/88	3+70N, 6+00W	6,962.0	105.7	6.4	Relative	Density	83.0	Acceptable
11-22-88-1	11/22/88	-0+55N, 5+90W	6,945.0	110.8	13.5	112.5	14.5	98.4	Acceptable
11-22-88-2	11/22/88	6+04N, -0+35W	6,963.0	105.0	12.1	112.5	14.5	93.3	Low Density (Retest Required)
11-22-88-3	11/22/88	3+60N, 2+50W	6,961.0	107.2	12.9	112.5	14.5	95.3	Acceptable
11-22-88-4	11/22/88	-0+55N, 5+90W	6,948.0	107.6	8.6	112.5	14.5	95.6	Acceptable
11-22-88-5	11/22/88	3+80N, 7+30W	6,962.0	104.8	8.2	112.5	14.5	93.2	Low Density (Retest Required)
11-22-88-6	11/22/88	-0+35N, 1+90W	6,952.0	111.1	17.3	112.5	14.5	98.8	Acceptable
11-22-88-7	11/22/88	-0+35N, 5+80W	6,952.0	114.1	4.1	 Relative	Density	100.0	Acceptable
1-9-88-8A	11/22/88	0+50N, 7+20W	6,948.0	82.6	30.7	Relative	Density	NA	Low Density (Retest Required)
11-22-88-8	11/22/88	-0+50N, 5+80W	6,949.0	109.4	9.1	114.8	14.9	95.2	Acceptable

SUMMARY OF IN-PLACE DENSITY TESTS (Continued)

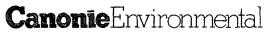
Project Name: United Nuclear Evaporation Pond Construction

Project No.: 88-131

١

Period: 11/20/88 to 11/26/88 (Week 4)

		Location	Elevation	Field Test		Laboratory			
Test No.	Date			Dry Density (PCF)	Moisture Content (%)	Max. Dry Density (PCF)	Optimum Moisture (%)	Compaction (%)	Comments
11-22-88-9	11/22/88	-0+35N, 5+80W	6,950.0	118.5	5.6	114.8	14.9	103.3	Acceptable
11-9-88-13A	11/22/88	6+80N, 1+00W	6,957.0	119.0	11.3	117.8	14.9	103.7	Acceptable (Retest of 11-9-88-13)
11-9-88-15A	11/23/88	1+90N, 4+00W	6,948.0	111.7	11.7	112.5	14.5	99.3	Acceptable (Retest of 11-9-88-15)
11-9-88-16A	11/23/88	2+30N, 3+20W	6,948.0	108.3	11.3	112.5	14.5	96.2	Acceptable
11-11-88-2A	11/23/88	3+20N, 2+90W	6,952.0	109.6	14.9	112.5	14.5	97.4	Acceptable
11-8-88-4A	11/23/88	1+30N, 5+00W	6,945.0	111.2	11.8	114.8	14.9	96.8	Acceptable
11-23-88-1	11/23/88	0+60N, 4+10W	6,958.0	111.8	11.7	112.5	14.5	99.4	Acceptable
	-	-						·	
	-	-							│,,,,,,
<u></u>	-	-	-		<u></u>				
		-	-						
								.	
		-							
		-	-						
								·	
<u> </u>					<u></u>			·	· · · · · · · · · · · · · · · · · · ·
	-	~						· [
		_	_			1	l		[


SUMMARY OF IN-PLACE DENSITY TESTS

Project Name: United Nuclear Evaporation Pond Construction

Project No.: 88-131

Period: 11/27/88 to 12/3/88 (Week 5)

				Field	Test	Labor	atory		
Test No.	Date	Location	Elevation	Dry Density (PCF)	Moisture Content (%)	Max. Dry Density (PCF)	Optimum Moisture (%)	Compaction (%)	Comments
11-16-88-4A	11/29/88	3+40N, 6+10W	6,961.0	111.8	8.5	114.8	14.9	97.3	Acceptable (Retest of 11-16-88-4)
11-15-88-3A	11/29/88	3+50N, 7+22W	6,960.0	116.3	10.4	114.8	14.9	101.3	Acceptable (Retest of 11-15-88-3)
11-16-88-2A	11/29/88	-0+35N, 2+40W	6,950.0	112.7	13.6	114.8	14.9	98.3	Acceptable (Retest of 11-16-882)
11-3-88-48	11/29/88	-1+15N, 3+00W	6,943.0	96.1	13.6	112.5	14.5	85.4	Low Density (Retest Required)
11-21-88-1B	11/29/88	3+10N, 4+70W	6,952.0	105.0	12.9	112.5	14.5	93.4	Low Density (Retest Required)
11-29-88-1	11/29/88	3+50N, 7+22W	6,960.0	110.4	10.4	114.8	14.9	96.2	Acceptable
11-30-88-1	11/30/88	4+10N, 2+60W	6,957.0	111.3	10.9	112.5	14.5	98.9	Acceptable
11-14-88-2A	11/30/88	-0+50N, 2+00W	6,948.0	107.3	12.7	112.5	14.5	95.4	Acceptable (Retest of 11-14-88-2)
11-14-88-6D	11/30/88	-0+20N, 2+90W	6,950.0	110.3	14.7	112.5	14.5	98.0	Acceptable (Retest of 11-14-88-6C)
11-9-88-88	11/30/88	0+50N, 7+20W	6,948.0	109.8	10.2	Relative	Density	101.0	Acceptable (Retest of 11-9-88-8A)
11-9-88-9A	11/30/88	0+50N, 6+75W	6,948.0	110.9	13.8	Relative	Density	102.0	Acceptable (Retest of 11-9-88-9)
11-22-88-2A	12/01/88	6+04N, -0+35N	6,963.0	109.0	12.6	112.5	14.5	96.8	Acceptable (Retest of 11-22-88-2)
	12/01/88	0+10N, 7+18W	6,948.0	111.3	10.0	112.5	14.5	98.9	Acceptable (Retest of 11-9-88-10)
11-9-88-14A	12/01/88	0+10N, 7+00W	6,948.0	114.8	11.9	112.5	14.5	102.1	Acceptable (Retest of 11-9-88-14)
11-9-88-68	12/01/88	0+20N, 5+30W	6,949.0	109.4	13.0	112.5	14.5	97.2	Acceptable (Retest of 11-9-88-6A)
1-9-88-16B	12/01/88	2+30N, 4+00W	6,948.0	103.2	13.8	112.5	14.5	91.7	Low Density (Retest Required)
1-22-88-5A	12/01/88	3+80N, 7+30W	6,962.0	110.4	15.6	112.5	14.5	98.1	Acceptable (Retest of 11-22-88-5)
1-9-88-11A	12/01/88	4+04N, 7+00W	6,957.0	97.5	20.0	112.5	14.5	86.7	Low Density (Retest Required)

SUMMARY OF IN-PLACE DENSITY TESTS (Continued)

Project Name: United Nuclear Evaporation Pond Construction

Project No.: 88-131

Period: 11/27/88 to 12/3/88 (Week 5)

				Field	Test	Labor	story			
Test No.	Date	Location	Elevation	Dry Density (PCF)	Moisture Content (%)	Max. Dry Density (PCF)	Optimum Moisture (%)	Compaction (%)	Comments	
11-3-88-10	12/01/88	1+50N, 4+50W	6,946.0	102.9	13.4	112.5	14.5	91.5	Low Density (Retest Required)	
		-								
·										
······									·····	
	-									
·····	-	• 								
	-									
	-									
	-									
······································									·	
<u> </u>	-						<u></u>			
										
	.	I					l	l		

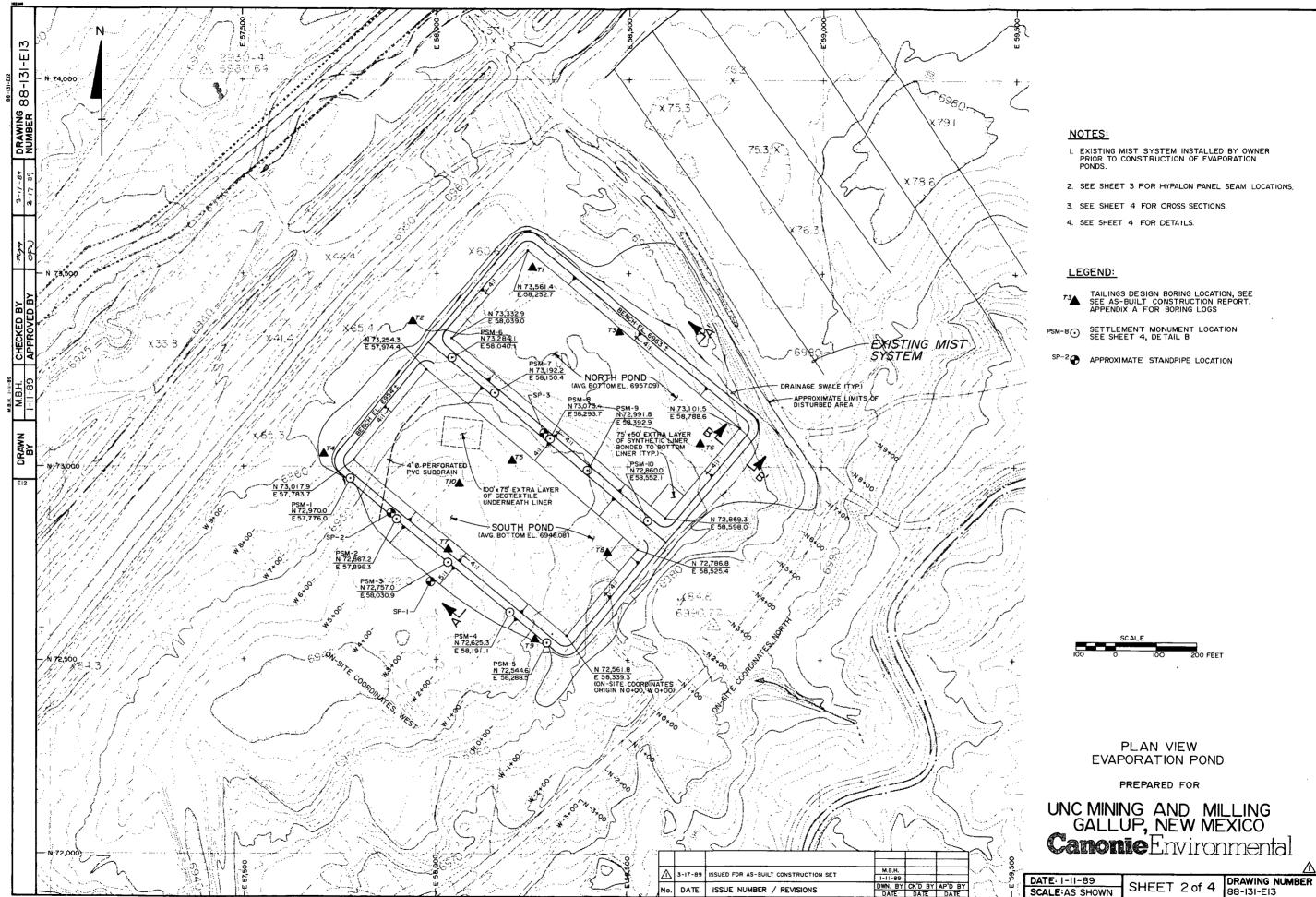
TABLE 4

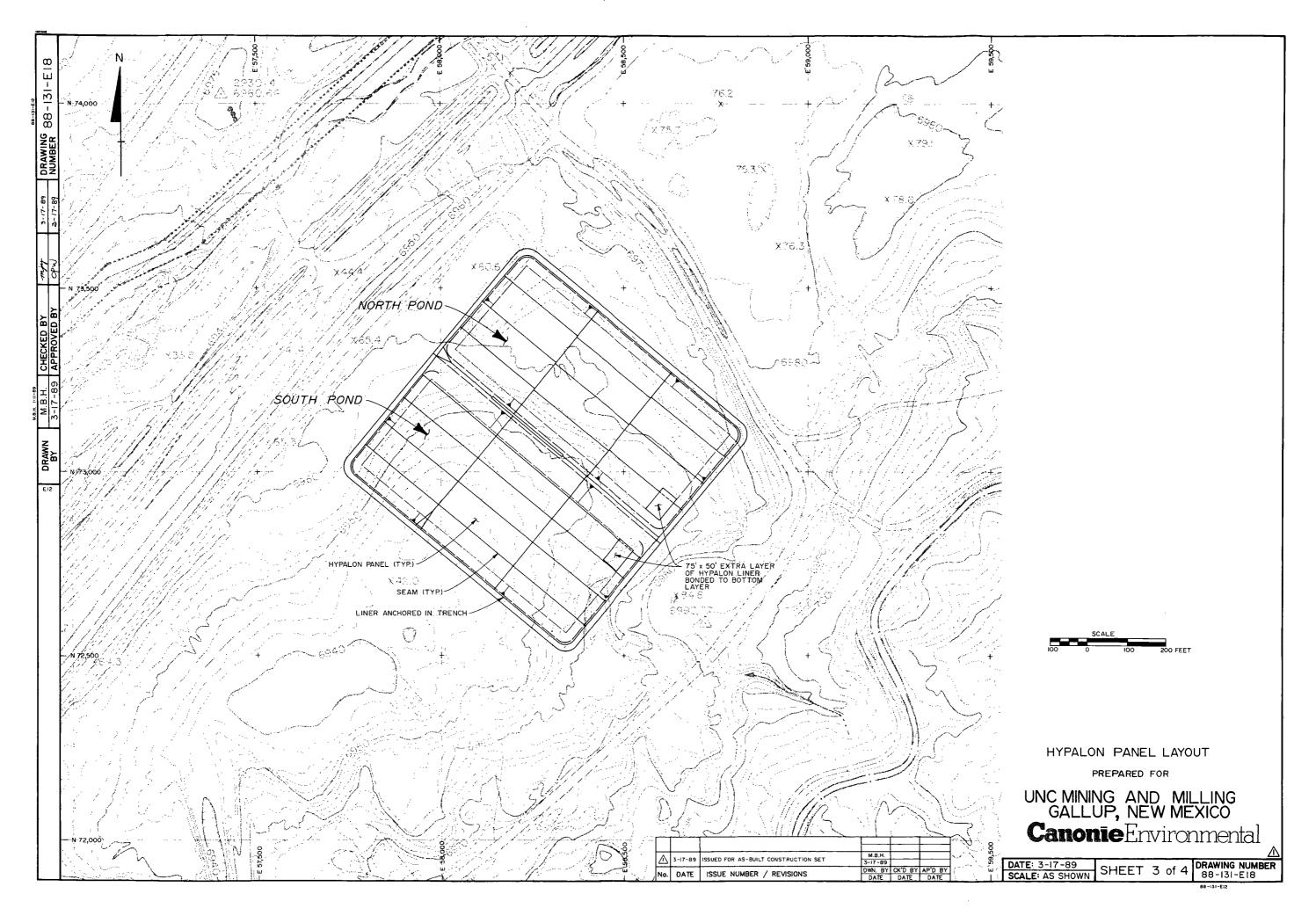
FIELD SEAM STRENGTH EVAPORATION POND IMPERVIOUS LINER UNITED NUCLEAR CHURCH ROCK SITE

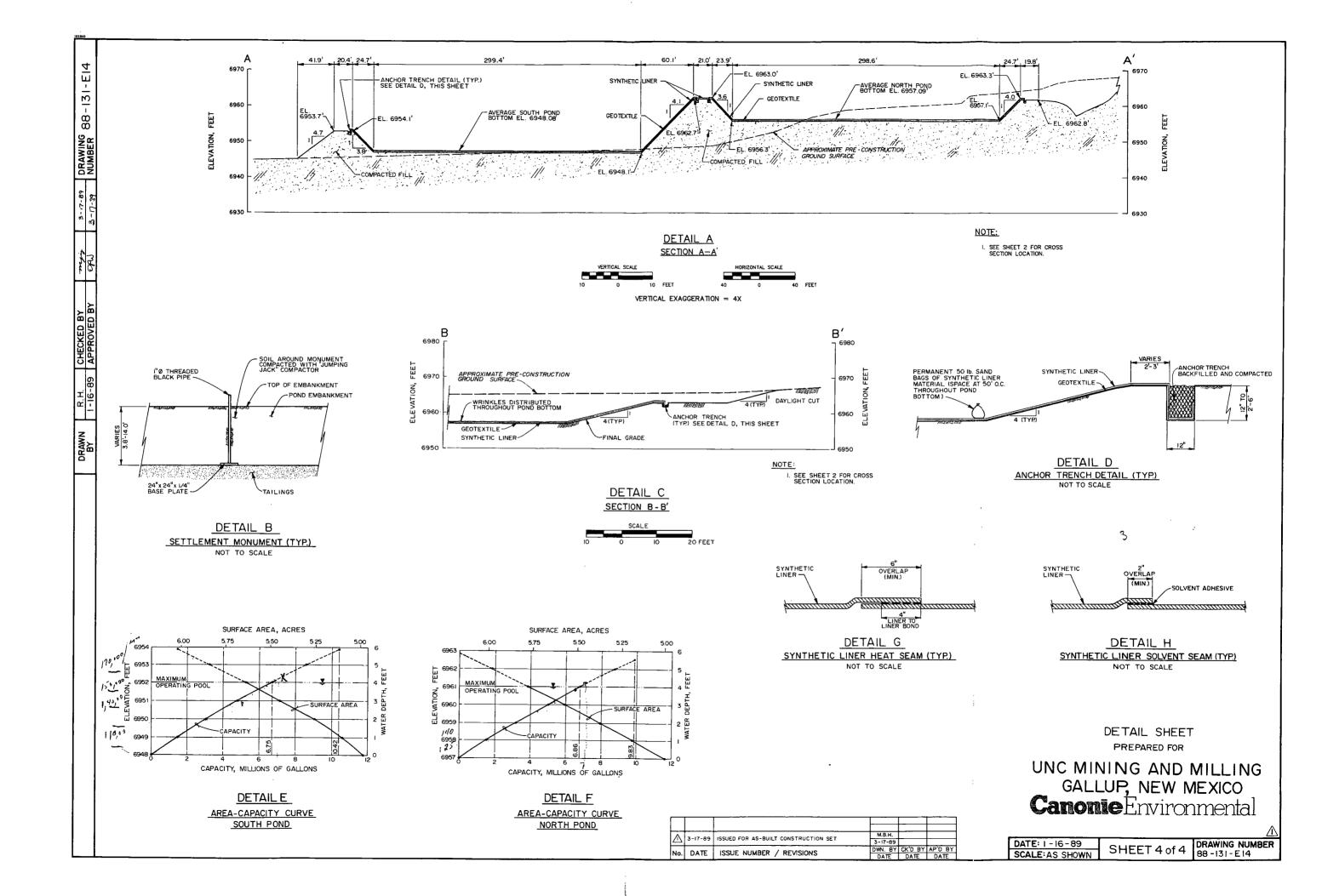
Sample Location	Seam Peel Adhesion Strength (a) (Pounds)	Specified Peel Adhesion Strength (Pounds)	Bonded Seam Strength (b) (Pounds)	Specified Bonded Seam Strength (Pounds)	Comments
6+93N, 2+00W	21.2	8	300	160	Heat welded, liner material failed before seam.
6+93N, 2+00W	21.9	8	274	 160 	Heat welded, liner material failed before seam.
6+93N, 7+30W	20.0	8	192	160	Solvent welded, liner material failed before seam.
6+93N, 7+30W	23.7	8	222	160	 Solvent welded, liner material failed before seam.
2+70N, 6+00W	32.0	8	315	160	Heat welded, liner material failed before seam.
Middle Berm	27.1	8	с	160	Solvent welded, liner material failed before seam.

(a) Performed in accordance with ASTM D-413


(b) Performed in accordance with ASTM D-751


(c) Not tested due to insufficient material


FIGURES


FIGURES

88-I3I-EI2

APPENDIX A

.

۰.

,

APPENDIX A BORING LOGS

Soil Boring Log

A-1

PROJECT	No.	86-060-04
BORING	No.	88-RP-T1
LOGGED	BY	M. Yovich

					UNC		-								0000 70	
			CATIO Hebe			1,516		58,24	8		: STA	от	5	URFACE ELEV. 5/18/88 FINIS	<u> </u>	
		SAM					1	REC	USCS SOIL	wc	qu	L A	D E P		ICRIPTION	
т Н	No.	TYPE	INTE FROM	RVAL TO	0" 6"	6" 12"	12" 18"	(in)	TYPE	(%)	(TSF)	E R	- 1	AND RE	EMARKS	
	1	SS	0.0	1.5	5	7	9	18		ſ					· · · · · · · · · · · · · · · · · · ·	
	2 3	SS SS	1.5 3.0	3.0 4.5	5 5	6	6 5	18 14	SM/ML					ALLUV Medium dense, brown and fine sandy SILT, tr	, silty fine SAND	ŀ
5	4	SS	4.5	6.0	3	4	5	18				-		coal. (Fill)		F
	5 6	SS SS	6.0 7.5	7.5 9.0	5	6 7	8 5	18 18	SP			7.	<u> </u>	TAIL Medium dense, off-wh	INGS ite, fine to medium	
<u>10</u>	7	SS	9.0	10.5	6	6	5	18						SAND. Moist		F
	8 9	SS SS	10.5 12.0	12.0 13.5	2	1 2	2	18 8						Same. Very Loose.		╞
<u>15</u>	10	SS	13.5	15.0	2	2	1	18	SP/ML					Loose, off-white, fine s clay. Wet.	andy SILT, trace	
<u>20</u>	11	SS	17.5	19.0	3	5	5	18	SP					Loose, off-white, fine to some silt. Wet.	o medium SAND,	
	12	SS	21.5	23.0	1	2	2	18								
<u>25</u>	13	SS	25.0	26.5	2	2	1	18	SM			26	.5	Loose, off-white, silty f	ine SAND. Wet.	
	14	SS	27.0	29.5	7	10	12	18	ML					Medium dense, dark b	JVIUM Irown, clayey SILT,	
<u>30</u>														trace fine sand. Wet.		
<u>35</u>														Notes: 1. Bottom of boring at		
<u>40</u>														2. Boring backfilled wi 3. CME 55 rig.	in cuttings,	
-							-	1								F

,

PROJECT No.	86-060-04
BORING No.	88-RP-T1A
LOGGED BY	M. Yovich

							5.50	049		<u> </u>				SURFACE ELEV. 6966.70	
			CATIO Hebe					3,248 ation			: STA	9Т	č	SURFACE ELEV. 6966.70 5/22/88 FINISH 5/22/88	
D				1 1411-11								L			Т
E P		SAM	PLE			BLOW		REC	USCS SOIL	wc	qu	A Y		SOIL DESCRIPTION	
Т	No.	TYPE		RVAL	0"	6"	12"	(in)	TYPE	(%)	(TSF)	E	Т	AND REMARKS	ł
Н			FROM	<u> </u>	6"	12"	18"			<u> </u>	<u> </u>	R	н		ļ
															ł
												ļ			F
5					<u> </u>						ŀ				ł
-											ļ	l			
						<u> </u>									ł
								1							
<u>10</u>	<u> </u>					<u> </u>								For description, see boring log for Boring 88-RP-T1.	
						<u> </u>				1					
							┣—	-							
<u>15</u>															
							[Į	l				
						<u> </u>		1							
~~															
<u>20</u>															
															i
					-										
<u>25</u>															
								-						TAILINGS	
									SP			ł		Off-white, fine SAND, some silt. Saturated.	
<u>30</u>	1	CR	25.0	30.0	<u> </u>	<u> </u>		60						(pH=3.0)	
<u>30</u>			23.0	30.0		<u> </u>						31	.0		
			[C					ALLUVIUM	
						┼──			CL	1				Blue-gray silty CLAY (ph = 7.0) grading to brown, fine sandy SILT, some clay (pH = 4.5) after 33 ft.	
35	2	CR	30.0	35.0		ļ		60	ML					Moist.	
										1				Sluff in sample at 35 feet. (No pH reading.) pH ≈ 6.5 at 37.5 feet.	
															1
<u>40</u>	3	CR	35.0	40.0	ļ	<u> </u>	 	60						pH <i>=</i> 7.0 at 40.0 feet.	
<u></u>	Ľ		00.0	40.0						1		1	1	pri= //o at 40/0 /001.	
	6-88					[<u> </u>	L	L			

PROJECT	No.	86-060-04
BORING	No.	88-RP-T1A
LOGGED	BY	M. Yovich

PR	OJE	CT NA	AME		UNC	;									
BO	ORING LOCATION N 73,510 E 58,248							3,248					Ś	SURFACE ELEV. 69	966.70
DR	LLE	R	Hebe	leber Mining and Exploration					DATE	: STA	RT		5/22/88 FINISH 5/22/	88	
D E P		SAM	PLE			BLOW		REC	USCS SOIL	wc	qu	L A Y	D E P	SOIL DESCRIPTION	е – ш
Т	No.	TYPE		RVAL	0"	6"	12"	(in)	TYPE	(%)	(TSF)	E	T	AND REMARKS	Z
Н			FROM	<u> </u>	6"	12"	18"					LR_	н		0
									ML					Same. pH=7.0 at 42.5 feet.	
45	4	CR	40.0	45.0				60						pH=7.0 at 45.0 feet.	
									SM					Brown, silty fine SAND.	
														pH=7.0 at 47.5 feet.	
<u>50</u>	5	CR	45.0	50.0				60						pH=7.5 at 50.0 feet.	┝╌┤
														Notes: 1. Bottom of boring at 50.0 feet.	
<u>55</u>			┣───				<u> </u>							 Samples taken with 2-1/2" I.D. soils barrel lined with clear plastic tubes. 	core
								1		1				3. Boring backfilled with bentonite gro	out.
]						4. CME 55 rig.	
<u>60</u>															
								1							
0.5							<u> </u>								
<u>65</u>						<u> </u>	├								لــــــــــــــــــــــــــــــــــــ
							<u> </u>								
								1	}		}	1			
70										{		}	ļ		
			ļ	<u> </u>	ļ										
			┣──	 			<u> </u>								
				<u> </u>	┼───			1							
75		<u> </u>	<u> </u>	<u> </u>	†		<u> </u>	1				1			
								j							
1													i		
				┣			 					1			\square
80			<u> </u>		┝		├						İ		
							├───								
		L	<u> </u>	L	L	L	L	نىيىك		<u> </u>	4	1	_	I	

Page 2 of 2

PROJECT	No.	86-060-04
BORING	No.	88-RP-T2
LOGGED	BY	M. Yovich

BORING LO DRILLER D E SAN P T No. TYPE H	CATIOI Hebei IPLE			,374	E 57	,940						SURFACE ELEV. 6959.70	
D E SAN P T No. TYPE		r Minir	ng an	M EV									
E SAN P T No. TYPE	IPLE			IU EX	plora	tion		DATE	: STA	_		5/19/88 FINISH 5/19/88	<u></u>
						REC	USCS SOIL	wc	qu		D E P	SOIL DESCRIPTION	P I E
	INTE FROM	_	0" 6"	6" 12"	12" 18"	(in)	TYPE	(%)	(TSF)	ER	т н	AND REMARKS	z o
1 SS	0.0	1.5	1	2	2	18						TAILINGS	
							00					Very loose, off-white, fine to medium SAND. Dry.	
2 SS 3 SS	1.5 3.0	3.0 4.5	1	1	1 4	18 18	SP						
5	0.0	4.5	—	- `	-							-	_
4 SS	4.5	6.0	3	4	3	18				ĺ			
5 SS	6.0	7.5	2	4	5	18						Very loose, off-white, fine to medium SAND	
6 SS			4	5	5	10		ł		}		grading to fine to medium SAND, some silt.	
6 SS 10 7 SS	7.5 9.0	9.0 10.5	4	- 5 - 4	5	18 18	SP	[Damp.	
	- 0.0						0.						
8 SS	10.5	12.0	3	3	4	8						Loose, off-white, fine to medium SAND, some silt.	
9 SS	12.0	13.5	1	2	2	2		ľ				Moist.	
15 10 SS	13.5	15.0	2	2	3	18]		-		Same. Loose.	
<u>15 10 SS</u>	13.5	15.0	~~~	4	3	-10						Same. Loose.	
11 <u>SS</u>	17.5	19.0	1	2	2	16							
20 12 SS	20.0	21.5	2	2	4	18	SM	f				Loose, off-white, fine silty SAND. Saturated.	
	20.0	21.5					0.01						
								ļ	ļ	23	3.2		
13 SS	22.5	24.0	3	1	1	18				-	_	ALLUVIUM	_
25							SM	1				Loose, brown fine silty SAND. Wet. pH=3.0.	_
14 SS	24.0	25.5	2	1	2	-18-						Same, trace clay.	
30]]			l t	
15 SS	29.0	30.5	5	7	5	-16-	_	ļ				Same, some clay. (pH=7.0)	
				$\left - \right $			SM	l				ļ	
 	+			┟──┤									
35	+			<u> </u>									-
16 SS	34.0	35.5	4	4	6	-18-		ļ	<u> </u>	ļ			_
						_							_
		L										Notes:	
	+		 	$\left - \right $								1. Bottom of boring at 35.5 feet.	
40	╉╍╍╼┥		 	┣───┥					1	ł		 Boring backfilled with cuttings. CME 55 rig. 	
├ ─- ├ ──	+			<u> </u>									

Rev. 6-88

Α-	5
----	---

PROJECT	No.	86-060-04
BORING	No.	88-RP-T2A
LOGGED	BY	M. Yovich

		CT N/			UNC		••									
		G LOC				3,374		57,94	5				S		6959.70	
_	ILLE	R	Hebe	r Mini	ng ar	nd Ex	plora	ation		DATE	: STA			5/19/88 FINISH	5/19/88	
D E P		SAM	PLE			BLOW		REC	USCS SOIL	wc	qu	L A Y	E P	SOIL DESCRIPTIO	N	P I E
T	No.	TYPE		RVAL	0"	6"	12"	(in)	TYPE	(%)	(TSF)	Е	т	AND REMARKS		Z
			FROM		6"	12"	18"			<u> </u>		н	н			0
								1								
5					┨───											Η
ľ								1								Η
								1								
					<u> </u>	<u> </u>				1				-		
10	\vdash					 '				1				For description, see boring log 88-RP-T2.	for Boring	Н
																Η
										ļ		ļ				
					 											
15	\vdash				┼──			-				1				Η
1	\square															H
		L		<u> </u>	<u> </u>											
20	\square				<u> </u>	-										Η
20	\square				<u> </u>											H
								1		1						
	$\left \frac{1}{1} \right $	CR	00.0	25.0	┣				SP	ļ		ļ				H
25	┝╧		20.0	25.0	┣			40	55		ļ			TAILINGS		
								1						Off-white, fine SAND, some silt	and medium	
														sand. Saturated. pH=3.0.		Н
30	2	CR	25.0	30.0				60	SM			7 <u>28</u>	<u></u>	ALLUVIUM		Ή
										ļ			1	Brown, silty fine SAND, trace cla	ay.	H
														pH=4.5 at 30.0 ft.		\square
	\vdash										1			pH=6.5 at 32.5 ft.		Η
35	3	CR	30.0	35.0				60		1	1			pH=7.0 at 35.0 ft.		Η
									ML					Dark brown, clayey SILT.		
	$\left - \right $	<u> </u>		<u> </u>				$\{ \mid$		l				pH=7.0 at 37.5 ft.		Η
								1								H
40	4	CR	35.0	40.0				60			ł	1		pH≈7.5 at 40.0 ft.		
	┝─┤					<u>}</u>										Η
	. 6-88	<u> </u>	L	L	L	I	L	L	L	L	L	L		l		أسلم

Canonie Environmental

ļ

PROJECT No	. 86-060-04
BORING No	. 88-RP-T2A
LOGGED BY	M. Yovich

		CT NA	•		UNC									
					_	3,374		57,94	15	DATE			SURFACE ELEV. 6959.70	_
	ILLE	:R	Hebe	r Mini	ng ar I		piora	llion			: STA		5/19/88 FINISH 5/19/88	F
E P		SAM		_		BLOW	T	REC	SOIL	wc	qu	A E Y P	SOIL DESCRIPTION	Ε
Ť H	No.	TYPE	INTE FROM	RVAL TO	0" 6"	6" 12"	12" 18"	(in)	TYPE	(%)	(TSF)	E T R H	AND REMARKS	
	5	SS	40.0	41.5	4	5	7						Medium dense, fine sandy SILT, some clay.	┠
<u>45</u>													Notes: 1. Bottom of boring at 41.5 feet. 2. Boring backfilled with bentonite grout. 3. Samples taken with 2-1/2" I.D. soil core barrel	
<u>50</u>													lined with clear plastic tubes. 4. CME 55 rig.	
<u>55</u>														
<u>60</u>														
<u>65</u>														
<u>70</u>														
7 <u>5</u>												:		
<u>80</u>														

PROJECT	No.	86-060-04
BORING	No.	88-RP-T3
LOGGED	BY	M. Yovich

PR	DJE	CT N/	AME		UNC)								
BO	RING	g loo	CATIO	N	N 73	3,352	E 58	3,474				•	SURFACE ELEV. 6961.50	_
	RILLER Heber Mining and Exploration										: STA	_	5/18/88 FINISH 5/18/88	
D E P		SAM	PLE			BLOW REC COUNT			USCS SOIL	wc	qu	L D A E Y P	SOIL DESCRIPTION	Р Е
т н	No.	TYPE	INTE FROM	RVAL TO	0" 6"	6" 12"	12" 18"	(in)	TYPE	(%)	(TSF)		AND REMARKS	z o
	1	SS	0.0	1.5	2	3	4	18					TAILINGS	
					<u> </u>				SP/SM				Loose, off-white, fine SAND, trace silt, grading to	_
	2 3	SS SS	1.5 3.0	3.0 4.5	3	2	2	12				3.5	loose, off-white,silty fine SAND.	\dashv
5	_				<u> </u>				SP/SM				Tailings SAND interbedded with medium dense,	
	4	SS	4.5	6.0	5	7	9	18			Ì	6.0	reddish-brown, silty fine alluvium SAND.	
	5	SS	6.0	7.5	4	4	6	8	SP/SM				Loose, off-white, fine SAND, some silt and loose,	_
	6	ss	7.5	9.0	3	3	4	18					off-white, silty fine SAND. Moist.	-1
10	7	SS	9.0	10.5	2	2	1	18						
								 						4
	8	SS	10.5	12.0	2	3	3	18						
	9	SS	12.0	13.5	2	2	2	18			{			4
15	_							[ļ	
<u> </u>				<u> </u>								ļ		
	10	SS	15.0	16.5	2	1	2	-18-					Very loose, off-white, clayey SILT, some sand.	
								<u> </u>	ML				Moist.	
	11	SS	17.5	19.0	2	3	_4	18						\dashv
20					<u> </u>							20.5	Wet.	\neg
	12	SS	20.0	21.5	4	5	5	-18-				120.0	ALLUVIUM	┥
					<u> </u>	Ť	_ -	- <u></u> -	ML				Medium dense, orange and brown, fine sandy	┥
1	13	SS	22.5	24.0	5	9	14	18				1	SILT, some clay, grading to medium dense,	1
<u>25</u>													brown, clayey SILT after 22.0 feet.	
					 									_
			<u> </u>		<u> </u>		<u> </u>	1				1	Notes:	-1
			<u> </u>		<u> </u>			1					1. Bottom of boring at 24.0 feet.	┥
<u>30</u>								1					2. Boring backfilled with cuttings.	
]					3. CME 55 rig.	
			┣───		<u> </u>		L							
					╂───	 	<u> </u>	ł		l		1	ļ	4
<u>35</u>								1		[\neg
			<u> </u>		<u>├</u> ──	[ł		Į		l	ļ ŀ	┥
								1						
]						
			<u> </u>		 	<u> </u>		1				1		\neg
40								ł						
					<u> </u>			1						-
Rev.	6-88		·	·	•	ŧ	L	L	<u>L</u>		L	.		

PROJECT N	lo	86-060-04
BORING N	10.	88-RP-T4
LOGGED I	ΒΥ	M. Yovich

		CT N/			UNC								
			CATIO			3,034		57,7	11			-	SURFACE ELEV 6959.00
	LLE	R	Hebe	r Mini	ng ar	nd Ex	plora	tion		DATE	: STA	_	5/19/88 FINISH 5/19/88
D E P		SAM	PLE			BLOW		REC	USCS SOIL	wc	qu	L D A E Y P	SOIL DESCRIPTION
т н	No.	TYPE	INTE FROM	RVAL TO	0" 6"	6" 12"	12" 18"	(in)	TYPE	(%)	(TSF)	E T R H	AND REMARKS
	1	SS	0.0	1.5	1	1	2	18					TAILINGS
	_				<u> </u>	<u> </u>	-		SP	ļ	1	1	Loose, off-white, fine SAND. Almost Dry.
	2 3	SS SS	1.5 3.0	3.0 4.5	1 3	1	1	18 18	35	[Same. Moist.
5	Ť		0.0	1.0	Ť	Ť							
	4	SS	4.5	6.0	2	2	2	18					Same, trace to some medium sand.
	5	SS	6.0	7.5	2	1	2	18	Ĩ	1			
		ss	7.5	9.0	2	1		10					Somo como cilt
10	6 7	SS	9.0	10.5	2	2	2	18 18				l	Same, some silt.
								<u> </u>					
	8	SS	10.5	12.0	2	3	3	18					
	9	SS	12.0	13.5	2	3	4	18					
15	10	SS	13.5	15.0	3	4	3	18					Same, wet after 14.0 feet.
					Ť			<u> </u>			1		
										ļ			
			175	10.0	<u> </u>			10					
20	11	SS	17.5	19.0	2	2	1	18	SP		1		Very loose, off-white, silty fine SAND and fine
	12	SS	20.0	21.5	2	2	2	18		1		ļ	
					[
	12	86	00.5	04.0	<u> </u>			10		ļ		l	Come Caturated
25	13	SS	22.5	24.0	1	1	1	18					Same. Saturated.
	14	SS	25.0	26.5	2	3	3	18				Į	Very loose, off-white, fine SAND, trace silt.
1 1]		Saturated.
					Ļ				SP			1	
<u>30</u>	15	SS	27.5	29.0	1	1/ 12		18					
 ∞	16	ŝS	30.0	31.5	1	1	2	18					
									1				
35	17	SS	32.5	34.0	2	1	3	18				l	
3	18	SS	35.0	36.5	2	2	1	18				ļ	
								ļ				1	
								┠──┤					
	19	SS	37.5	39.0	3	3	4	18					Same, loose.
40												1	-
			t		├──	<u> </u>							

Rev. 6-88

А	-	9
---	---	---

PROJECT No.	86-060-04
BORING No.	88-RP-T4
LOGGED BY	M. Yovich

				<u></u>				57,7					_		
	ILLE		CATIO Hebe	n r Mini		3,034	<u> </u>	DATE	: STA	BT	3	SURFACE ELEV. 6959.00 5/19/88 FINISH 5/19/88			
D															Ρ
E P	ļ	SAM	PLE			BLOW		REC	USCS SOIL	wc	qu	A Y	E P		I E
T	No.	TYPE	INTE	RVAL	0"	6"	12"	(in)	TYPE	(%)	(TSF)	E			Z
н			FROM	то	6"	12"	18"					R	н		0
			<u> </u>												
															H
			40.5	15.0	-				SP						
45	20	SS	43.5	45.0	10	7	6	18*		1				Loose, off-white, fine SAND, trace silt. Saturated.	
														* Sampler overpacked, standard penetration test (SPT) not valid.	
50	21	SS	48.5	50.0	9	11	13	18*							
					┢───]
									ĺ					Notes:	
			ļ							ļ				1. Bottom of boring at 50.0 feet. Hole	
<u>55</u>	\vdash				┼───									abandoned due to loose sands flowing into auger and locking augers up.	
			[2. Boring backfilled with cuttings.	
				<u> </u>	──									3. CME 55 rig.	
<u>60</u>			<u> </u>												
			[
<u>65</u>	\vdash		<u> </u>												
										ĺ					
			[
70	┝─┤										{				
			<u> </u>												H
	\square														
	┝		 	 	<u> </u>		<u> </u>				l				
75	\vdash									l	l	ļ			H
–															
	\square		ļ						l	l	[ļ		
	┝──┤			<u> </u>									ļ		
80	┝╼┨				<u> </u>								ľ		
								1]			

Rev. 6-88

Soil Boring Log

PROJECT	No.	86-060-04
BORING	No.	88-RP-T5
LOGGED	BY	M. Yovich

		CT NA			UNC									
			CATIO			,015						•	SURFACE ELEV 6946.70	
		<u>R</u>	Hebe	r Mini	ng ar	ld Ex	plora	tion		DATE	: STA		5/18/88 FINISH 5/18/88	
D E P		SAM	PLE					REC	USCS SOIL	wc	qu	L D A E Y P	SOIL DESCRIPTION	P I E
Т	No.	TYPE	INTE FROM	RVAL	0" 6"	6" 12"	12" 18"	(in)	TYPE	(%)	(TSF)	ETRH	AND REMARKS	z
	1	SS	0.0	1.5	1	1	1	14	ML				TAILINGS	
		00							!				Very loose, off-white, clayey SILT, trace fine san	۹∏
	2	SS SS	1.5 3.0	3.0 4.5	1 2	2	3	6 18					and fine sandy silt.	\vdash
5	۴I		0.0	4.0	-		~							H
	4	SS	4.5	6.0	2	4	4	18	SM				Loose, off-white, silty fine SAND. Moist.	
	5	SS	6.0	7.5	1	3	4	12				7.0	ALLUVIUM	
	6	SS	7.5	9.0	2	3	7	18	SM				Loose to medium dense, brown, silty fine SANE	Н
10	7	SS	9.0	10.5	3	5	7	18					with interspersed black coal particles. Moist.	
				<u> </u>										
													Notes:	H
													1. Bottom of boring at 10.5 feet.	H
15											Ì]	2. Boring backfilled with cuttings.	\square
				<u> </u>						İ			3. CME 55 rig.	
														\square
				<u> </u>										H
20														H
				L										
												ł		
25			· · · ·											Н
														H
												1		
											1			
30											1			
														\vdash
	\vdash		<u> </u>	<u>├</u> ──			<u> </u>			Ì				H
<u>35</u>										1	1			
			<u> </u>	ļ										
			<u> </u>	<u> </u>	<u> </u>	L	<u> </u>				ł	l		H
	\vdash	_		<u> </u>	<u> </u>			{			[H
40				<u> </u>								1		H
<u> </u>						<u> </u>	<u></u>				l			H

Rev. 6-88

PROJECT	No.	86-060-04
BORING	No.	88-RP-T6
LOGGED	BY	M. Yovich

PR	OJE	CT NA	ME .	_	UNC	;								
			OITA	•		,060		3,685				•	SURFACE ELEV. 6963.20	
_	LLE	<u>R</u>	Hebe	<u>r Mini</u> i	ng ar	nd Mil	lling				: STA	and the owner where the party is not the	5/20/88 FINISH 5/20/88	_
D E P		SAMI	PLE					REC	USCS SOIL	wc	qu		SOIL DESCRIPTION	P I E
T H	No.	TYPE	INTE FROM		0" 6"	6" 12"	12" 18"	(in)	TYPE	(%)	(TSF)	E T R H		Z O
	1	SS	0.0	1.5	6	6	7	18	SM				ALLUVIUM	_
		SS	1 5	3.0	13	13	18	14					Medium dense, brown, silty fine SAND, roots.	
	2	SS	1.5 3.0	4.5	7	7	8	16					Layers of medium dense black COAL and yellow	
5													SANDSTONE (lightly cemented) to 13.0 feet.	_
	4	SS	4.5	6.0	3	4	4	18						
	5	SS	6.0	7.5	3	5	5	18					-	_
	6	SS	7.5	9.0	5	5	7	14		l	l			
10	7	SS	9.0	10.5	4	5	7	12						
	8	SS	10.5	12.0	5	5	8	6		ļ			Medium dense, light brown, clayey SILT and black	-
	9	SS	12.0	13.5	8	8	13	18		1	ĺ		COAL.	-
<u>15</u>	10	SS	13.5	15.0	28	14	14	8	ML			15.0	Medium dense, light brown SOAP STONE.	_
	11	SS	15.0	16.5	10	10	8	18	SP	ļ	ļ		TAILINGS	
									:				Medium dense, off-white, fine to medium SAND.	-
	12	SS	17.5	19.0	3	3	4	18					Loose, off-white, clayey SILT, some fine sand.	—
20				13.0				10	ML			20.0	ALLUVIUM	
	13	SS	20.0	21.5	17	13	11	18		ľ	ľ		Medium dense, brown SAND, some silt. Streak	
											ļ		of yellow and orange sand.	
									SP					
0 E	14	SS	22.5	24.0	5	5	4	16						
<u>25</u>	15	SS	25.0	26.5	4	6	4	18					-	
				20.0	<u> </u>	Ť	· ·							
								<u> </u>						
~													Notes:	
<u>30</u>	$ \rightarrow $									}			 Bottom of boring at 26.5 feet. Boring backfilled with cuttings. 	
													3. CME 55 rig.	
														_
<u>35</u>						<u> </u>								
											ļ		-	
				· · ·										
40		_												
													۲ ۲	_

l

Soil Boring Log

2

PROJECT	No.	86-060-04
BORING	No.	88-RP-T7
LOGGED	BY	D. Kurz, M. Yovich

CanonieEnvironmental

PR	OJE	CT N/	ME		UNC)											
во	RIN	g loo	CATIO			2,782						-	SL	JRFACE ELEV		6941.10	
	ILLE	R	Hebe	r Minii	ng ar	nd Ex	plora	tion			: STA			5/17/88	FINISH	5/17/88	-
D E P		SAM	PLE		1	BLOW		REC	USCS SOIL	wc	qu		:	S	OIL DESCRIP	TION	
т Н	No.	TYPE	INTE FROM	RVAL TO	0" 6"	6" 12"	12" 18"	(in)	TYPE	(%)	(TSF)	E RI	「 4		AND REMAR	KS	
	1	SS	0.0	1.5	1	1	2	18	SM				Τ		TAILINGS		Τ
														-	•	ne SAND and clayey	Ļ
	2	SS SS	1.5 3.0	3.0 4.5	1	1	2	18 18	ML					SILT, some fin	e sand. Wet a	after 1.0 ft.	┝
5	3	- 00	3.0	4.5	'		3	_'°									ł
7	4	SS	4.5	6.0	1	1	3	18		ļ	l	6.5		Very loose, off	-white, fine sa	indy SILT.	ł
	5	SS	6.0	7.5	1	5	7	8					+				-[
								\vdash							ALLUVIUN		
40	6	SS	7.5	9.0	2	2	4	18	SM						e, brown, silty	fine SAND, trace clay.	ł
<u>10</u>	7	SS	9.0	10.5	7	10	10	18						Moist.			ł
	8	ss	10.5	12.0	2	5	7	18									ł
	9	SS	12.0	13.5	4	8	8	18	SM					Same. Trace	of soft coal pa	rticles and a 1-inch	t
												1		piece of yellow		t 13.5 ft.	Į
<u>15</u>	10	SS	13.5	15.0	3	3	3	18]	1		Wet after 14.0	ft.		
	11	SS	15.0	16.5	2	2	3	18									┟
	12	ss	16.5	18.0	3	2	2	18			ļ			Same.			ł
			10.0		<u> </u>	<u> </u>	-					19.	5	Medium dens	e, orange and	brown	ŀ
<u>20</u>	13	SS	18.5	20.0	2	4	13	18	SP			/20.0				red and weathered.	┦
																	T
i			<u> </u>		_			.									Ļ
	14	ss	22.5	24.0	2	4	6	18	SP					Medium dens	e light brown	SAND, some silt.	┡
<u>25</u>			22.5	24.0	<u> </u>	<u> -</u>	- - -	10	JF					Moist.	e, iigin biowii	SAND, SOME SIL	ŀ
	15	SS	25.0	26.5	4	4	7	18						Same, some s	silt.		ŀ
								\vdash									Į
												1			.	• • • • • • • • • • • • • • • • • • •	
20	16	SS	27.5	29.0	3	5	6	18						Loose, light br	rown, silty fine	SAND. Wet.	┝
<u>30</u>	17	SS	30.0	31.5	1	2	4	18	SM								╞
					<u>⊢ </u>		<u> </u>			ļ	Į	l					ł
																	ł
																	l
<u>35</u>												35.	- 1				ſ
	18	SS	35.0	36.5	2	6	5	18	CL			/36.0	冸			LAY, some fine sand.	1
									SM	ľ				Loose, light bi	rown, silty tine	SANU. WEL	\mathbf{F}
																	ł
40																	ł
											1						

Rev. 6-88

Soil Boring Log

PROJECT	No.	86-060-04
BORING	No.	88-RP-T7
LOGGED	BY	D. Kurz, M. Yovich

			ATIO		N 72							-	5	SURFACE ELEV. 6941.10)
_	LLE	<u>R</u>	Hebe	<mark>r Mi</mark> nii	ng ar	nd Ex	plora	tion		DATE	: STA	_		5/17/88 FINISH 5/17/88	
C												L			
E P		SAM	PLE			BLOW		REC	USCS SOIL	wc	qu	A Y	E	SOIL DESCRIPTION	
Г	No.	TYPE	INTE	RVAL	0"	6"	12"	(in)	TYPE	(%)	(TSF)	E		AND REMARKS	
4			FROM		6"	12"	18"					R			
	19	SS	40.0	41.5	3	3	3	18	SM					Same. Saturated at 41.0 ft.	
1						[
						<u> </u>				Į	l				
5											[Notes:	
-						1					ĺ			1. Bottom of boring at 42.0 ft.	
														2. Boring backfilled with bentonite grout.	
]			3. CME 55 rig.	
Q				—	<u> </u>	<u> </u>				ŀ					
					<u> </u>							[
						<u> </u>									
5							-								
_											1	1			
												1			
					<u> </u>										
0						 									
										Į		[
						<u> </u>									
5					····					ľ					
											ľ.	[
0										ļ		[
					 										
	_				L	 									
							ļ								
5						}					Ì	1			
¥															
	\rightarrow				- • • •										
						†				1					
						1	— —								
₀∣							<u> </u>								
											l				
						I				1	1	1		Canonie Environmen	

PROJECT	No.	86-060-04
BORING	No.	88-RP-T8
LOGGED	BY	M. Yovich

PR	OJE	CT NA	ME .		UNC	;								
BO	RIN	g loc	CATIO	N	N 72	,775	Ê 78	8,445					SURFACE ELEV. 6955.40	
	LLE	R	Hebe	r Mini	ng ar	nd Ex	plora	tion		DATE	: STA	RT	5/18/88 FINISH 5/18/88	
D												LD		Р
E		SAM	PLE			BLOW		REC		wc	qu	AE	SOIL DESCRIPTION	11
P T	No.	TYPE		RVAL	0"	6"	12"	(in)	SOIL TYPE	(%)	(TSF)	Y P E T	AND REMARKS	EZ
H	140.		FROM		6"	12"	18"	("")	TIFE	(%)	(135)	RH		0
<u> </u>	1	SS	0.0	1.5	2	3	4	18	SM			1.0	TAILINGS	Ť
1													Loose, off-white, silty fine SAND, trace clay.	
	2	SS	1.5	3.0	5	7	7	18					ALLUVIUM	ĿЦ
	3	SS	3.0	4,5	8	9	9	18					Medium dense, brown and yellow, fine SAND with	╹┝─┥
5	4	SS	4.5	6.0	5	6	7	18					yellow sandstone particles.	
	5	SS	6.0	7.5	4	6	13	18					Same, some silt.	Η
	6	SS	7.5	9.0	4	7	8	14	=					╧╋╌┥
10			┣───	<u> </u>										+
			┣───	<u> </u>			_						Notes:	
	\vdash		<u> </u>	<u> </u>	<u> </u>								1. Bottom of boring at 9.0 ft.	\vdash
													2. Boring backfilled with alluvium cuttings.	
15													3. CME 55 rig.	
1			L		Ļ									
						<u> </u>	<u> </u>							
			┣	 										
20	\square		<u> </u>	┣───										
	—													Η
								1						
<u>25</u>						-								
					 						ľ	ļ		
			ļ		ļ		ļ			{				
	—		<u> </u>		<u> </u>					[H
30	<u> </u>			<u> </u>	<u> </u>	 	 							
1			<u> </u>		<u> </u>	<u> </u>		1				ļ		H
1						<u> </u>		1						
				1		<u> </u>	<u> </u>	1						
1]		l	l			
<u>35</u>											ļ			
			ļ											
				 	<u> </u>	<u> </u>						ļ		
1	\vdash		┣──	ļ	<u> </u>	L								
40	┝─┤		<u> </u>	├	<u> </u>	<u> </u>	┣	{			l	l	1	
40				┣			<u> </u>	{						
	 		 	<u> </u>		<u> </u>								
Rev	6-88		L	I	<u>1</u>	L	L	L		1	L	L	L	

PROJECT	No.	86-060-04
BORING	No.	88-RP-T9
LOGGED	BY	M. Yovich

O	RIN	G LOC	CATIO	N	N 72	,552	E 58	3,257				. (SURFACE ELEV. 6951.40	
	LLE	R	Hebe	r Mini	ng ar	nd Ex	plora	ition		DATE	: STA	RT	5/18/88 FINISH 5/18/88	
		SAM	PLE			BLOW		REC	USCS SOIL	wc	qu	L D A E Y P	SOIL DESCRIPTION	
	No.	TYPE	INTE FROM	RVAL TO	0" 6"	6" 12"	12" 18"	(in)	TYPE	(%)	(TSF)	ETRH	AND REMARKS	
7	1	SS	0.0	1.5	2	2	1	18	SP	<u> </u>			ALLUVIUM	t
												2.0	Loose, yellow, fine SAND, trace silt and clay.	1
	2	SS	1.5	3.0	2	9	9	18					Medium dense, red SAND with hard particles of	
	3	SS	3.0	4.5	50/3			0					yellow sandstone to 3.0 ft. Yellow SANDSTONE.	
2										 		<u> </u>		╡
			·											
													Notes:	
												ļ	1. Bottom of boring at 5.0 ft.	
<u>o</u>									1		ļ	{	2. Boring backfilled with alluvium cuttings.	
					<u> </u>		ļ						3. CME 55 rig.	
											Ì			
					 									
		ļ					ļ					}		
5					<u> </u>									
					 									
			<u> </u>											
0										1		ļ		
2					<u> </u>					ļ	Į	Į		
											1	Ì		
					+									
						<u> </u>								
5						<u> </u>		1]			
-					† –		 							
								1			1			
					1					{				
٥]						
												Į		ĺ
												1		
]				
					ļ									ļ
5			L							1	}			
		L												
							ļ							
				L	┣			1		1				
			L		 		ļ							
õ		L			 		ļ		1					ļ
			L		<u> </u>	ļ								
		1		L	1					1	1	1		ł

Page 1 of 1

PROJECT	No.	86-060-04
BORING	No.	88-RP-T10
LOGGED	BY	M. Yovich

		CT NA			UNC										
			CATIO			2,965	_						SURFACE ELEV	6942.20	
	LLE	<u>R</u>	Hebe	r Minii	ng ar	nd Ex	plora	tion	_	DATE	: STA	· · · · · · · · · · · · · · · · · · ·	5/19/88 FINISH	5/19/88	
D E P		SAM	PLE			BLOW		REC	USCS SOIL	wc	qu	L D A E Y P	SOIL DESCRIP	TION	F
т н	No.	TYPE	INTE FROM	RVAL TO	0" 6"	6" 12"	12" 18"	(in)	TYPE	(%)	(TSF)	1		KS	
	1	SS	0.0	1.5	1	1	1	0	SP				TAILINGS		Ĩ
	<u> </u>						<u> </u>						Very loose, off-white, fine SA		L
	2	SS SS	1.5 3.0	3.0 4.5	1 2	1	2	8 13	ML	1			Very soft, off-white, clayey S	SIL1, trace fine sand.	\vdash
5															F
	4	SS	4.5	6.0	3	3	3	15					Same or silty CLAY.		
	5	SS	6.0	7.5	4	5	6	14	ML/CL			7.3			╞
	6	SS	7.5	9.0	9	11	10	14	ML				ALLUVIUN		\mathbf{F}
<u>10</u>	7	SS	9.0	10.5	9	11	10	14					Medium dense, dark brown,		F
								\vdash					clay.		L
					 	<u> </u>									F
	8	SS	12.5	14.0	4	5	5	14	SM		1		Medium dense, brown, silty	fine SAND, some	\vdash
<u>15</u>									-	ļ			clay. Moist.		1
	9	SS	15.0	16.5	2	2	3	18					Same. Wet.		E
															L
	10	SS	17.5	19.0	3	3	2	18							\vdash
<u>20</u>					-										F
	11	SS	20.0	21.5	3	6	7	18	SM				Same. Fragments of coal ai	nd yellow sandstone.	F
															Ľ
	10														L
25	12	SS	22.5	24.0	6	8	9	18							┝
	13	SS	25.0	26.5	6	9	9	18							┢
									<u>.</u>						F
															L
<u>30</u>													Notes:	(a.a.)	┝
													 Bottom of boring at 26.5 Boring backfilled with ber 		┝
													3. CME 55 rig.	nonno grout.	\vdash
															F
															Γ
<u>35</u>									:						Ĺ
															L
															┡
															┝
<u>40</u>	~†														\vdash
															╞╴

Page 1 of 1

.

E

I

_

_

ł

· ·

. .

APPENDIX B

APPENDIX B

EMBANKMENT STABILITY ASSESSMENT AND LABORATORY TEST RESULTS

.

November 16, 1988

Canonie Environmental 94 Inverness Terrace East, Suite 100 Englewood, Colorado 80112

Attention: Mr. Douglass H. Graves, P.E. Project Supervisor

Subject: Laboratory Test Results of Samples Delivered on Novmeber 4, 1988 Our Project No. 18,082

Gentlemen:

As requested by Mr. Douglass H. Graves, P.E., of Canonie Environmental, Aguirre Engineers, Inc. has performed the following laboratory tests on samples delivered to our laboratory on November 4, 1988. The samples delivered to our laboratory consisted of:

- 1) 2 Tubes of 2.5" Lucite Liner.
- 2) 6 Jars, containing Standard Split Spoon Samples.

We were requested to obtain the Dry Density ad Moisture Content of soil in the Lucite Liners, and recompact the Standard Spoon samples to appropriate density and perform Consolidated Undrained (CU) Triaxial Testss, with Pore-water pressure measurements. We also were requested to perform Gradation and Atterberg Limits on the material used in Triaxial testing.

The results of the Triaxial tests is shown in Plates 1 through 3. The Gradation and Atterberg Limits Test results are included in Plate 4 and summarized in Table 1, attached.

If you have any questions on the contents of this report, or require additional information, please get in touch with us.

Very truly yours,

AGUIRRE ENGINEERS, INC.

Behzad/Mirzayi, Project Enginee

BM:pet

Enc: Plates 1 through 4 Table 1

cc: 2 sent

TRI-AXIAL TEST DATA

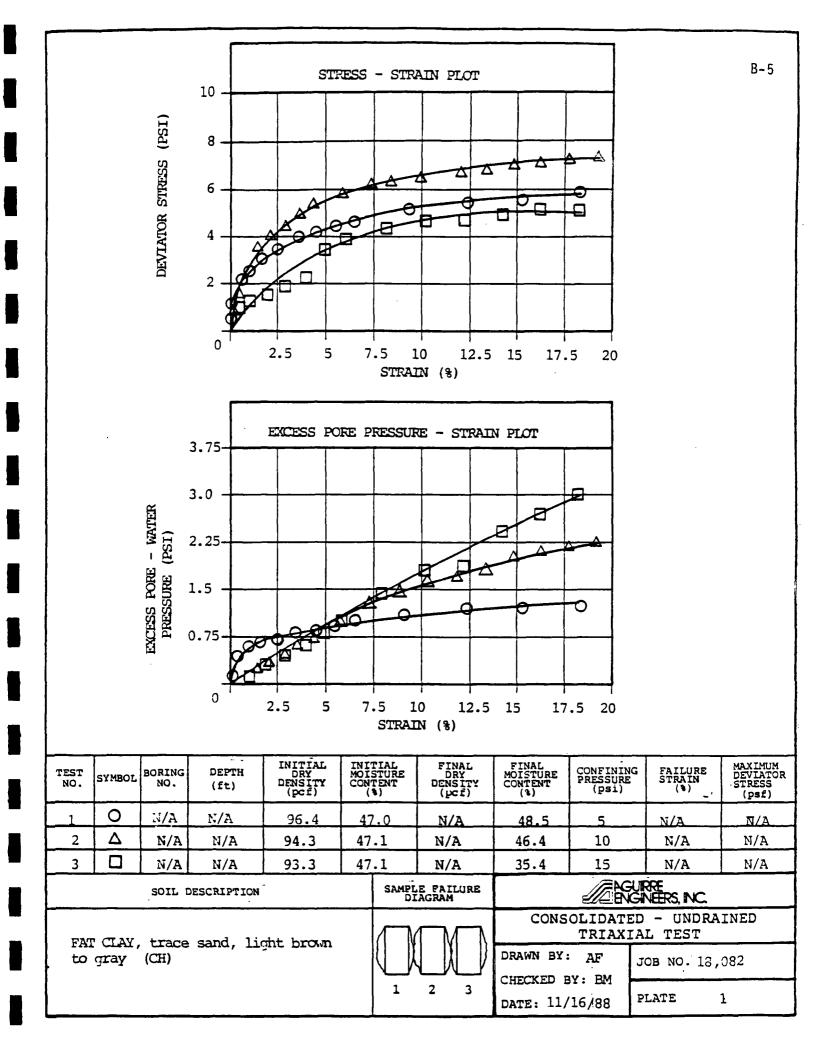
PROJECT N PROJECT N SAMPLE NO	0. : . :	18,082 JAR SAM			ATE : 11 EPTH : N/						
TESTED BY						122222222222					
********	2448282322232	123252333	TEST NO.						1222242833		
AVE. DIAM		1.9320				96.4 PCF					
AVE. LENG	HT	3,9983			DNTENT DF SAT.						
AREA Cell presi		2,9318 10				70 4 5 PSI					
	INING PRESSUR										
	JEVIATOR		EXCESS PORE		TOTAL			********	EFFECTI		
			WATER								
	LOAD	STRESS		SIGMAL		p (mai)	q (ani)		SIGNA3	P (and)	q (ani)
(IN/IN)	(LB)	(PSI)	PSI	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi
.00E+00	0	0,0000	0.0000	5.00	5.00	5.00	0.00	5.00	5.00	5.00	0.
7.35E-05	1.50166	0.5122	0.0364	5.51	5.00	5.26	0.25	5.48	4.96		0.
2.46E)4	1.50166	0.5121	0.0910	5.51	5.00	5.26	0.25	5.42	4.91	5.42	0.1
4.925-04	3.00333	1.0239	0.1274	6.02	5.00	5.51	0.51	5.90	4.97	5.90	0.
7.398-04	3.75416	1,2796	0.1456	6.28	5.00	5.64	0.64	6.13	4.85	6.13	0.0
7.952-04		1.5863	0.1920	6.59	5.00	5.79	0.79	6.40	4.32	6.40	0.
L.23E-03	4.80533	1.5370	0.2184	6.64	5.00	5.92	0.92	6.42	4.78		0.5
	4.95550	1.6878	0.2548	6.69	5.00	5.94	0.94	6.43	4.75	6.43	0.3
.97E-03	5.10566	1.7391	0.2912	6.74	5.00	5.87	0.87	6.45	4.71	6.45	0.8
1.468-03	5.25583	1.7883	0.3276	6.79	5.00	5.97	0.89	6.46	4.57	6.46	0.8
.95E-03		1.3895	0.3822	6.89	5.00	5.94	0.94	6.51	4.62	6.51	0.9
.458-03	5.70633	1.9397	0.4186	6.94	5.00	5.97	0.97	6.52	4.58	6.52	0.9
.94E-03	6.00666	2.0407	0.4550	7.04	5.00	6.02	1.02	6.59	4.55		1.0
43E-03	6.30700	2.1417	0.4914	7.14	5.00	6.07	1.07		4.51		
.92E-03		2.2425	0.5096	7.24	5.00	6.12	1.12	6.73	4.49		1.1
.66E-03	6.70756	2.3428	0.5460	7.34	5.00	6.17			4,45		1.1
.06E-02 .25E-02	7.50833 8.25916	2.5339 2.7817	0.2006 0.3188	7.53 7.78	5.00 5.00	6.27	1.27	6.93	4.40	6.73	1.2
.55E-02	9.01000	3.0255	0.6370	8.03	5.00	5.39	1.37	7.15	4.38	7.15	1.3
.54E-02	10.5115	3.49 45	0.8370	8.49 8.49	5.00	6.51	1.51 1.75	7.39 7.77	4.35	7.39	1.5 1.7
.52E-02	12.0133	3.9534	0.8008	8.95	5.00	6.75 6.99	1.75	8.15	4.27 4.20	7.77 8.15	1.9
.50E-02	12.7641	4.1576	0.8554	9.16	5.00	7.08	2.08	8.10	4.14	8.30	2.0
.49E-02	13.5150	4.3568	0.9100	9.36	5.00	7.08	2.08	8.30	4.09	8.45	2.1
.47E-02	14.2658	4.5509	1.0010	9.55	5.00	7.18	2.18	8.55	4.07	8.55	2.3
.43E-02	14.2030	5.1030	1.1102	10.10	5.00	7.55	2.55	8.99	3.89	8.99	2.3
.24E-01	19.0200	5.3954	1.2012	10.39	5.00	7.55	2.55	9.19	3.37	9.18	2.5
	19.5216	5.6374	1.2012	10.37	5.00	7.82	2.87	7.13 9.44	3.30	7.18 9.44	2.9
.33E-01	21.0233	5.8593	1.2376	10.84	5.00	7.93	2.82	7.44	3.80	9.52	2.3
.335-01			1.23/5								

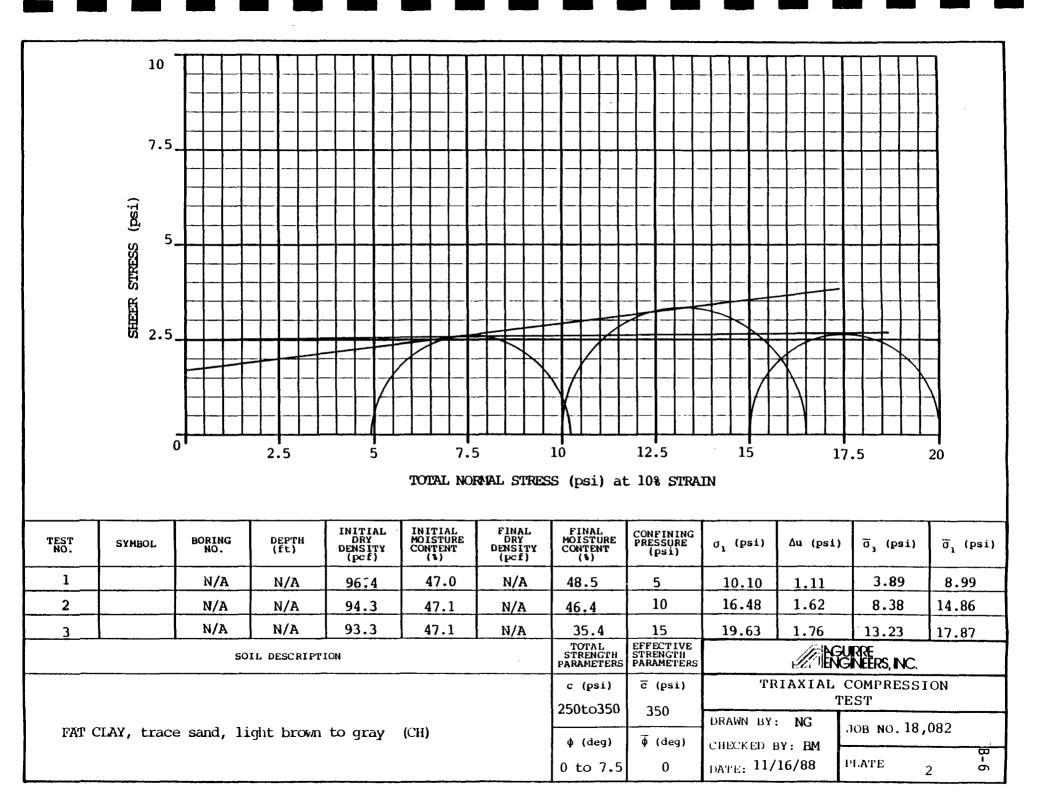
B-2

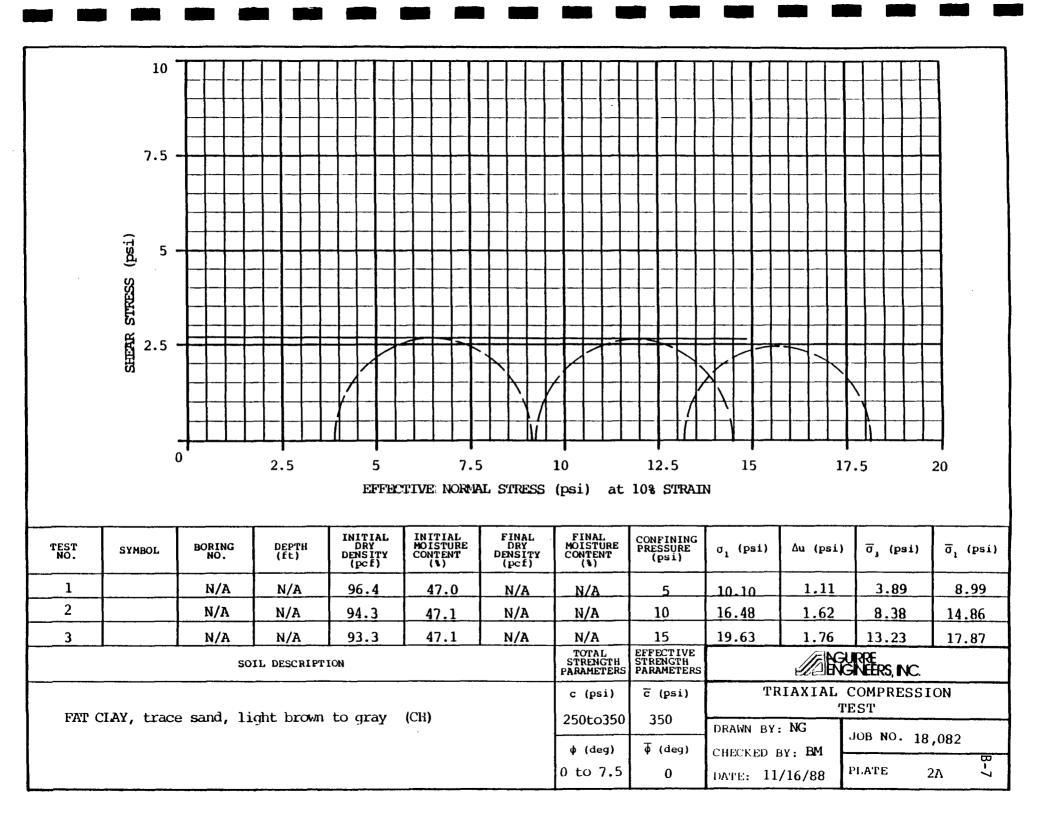
.

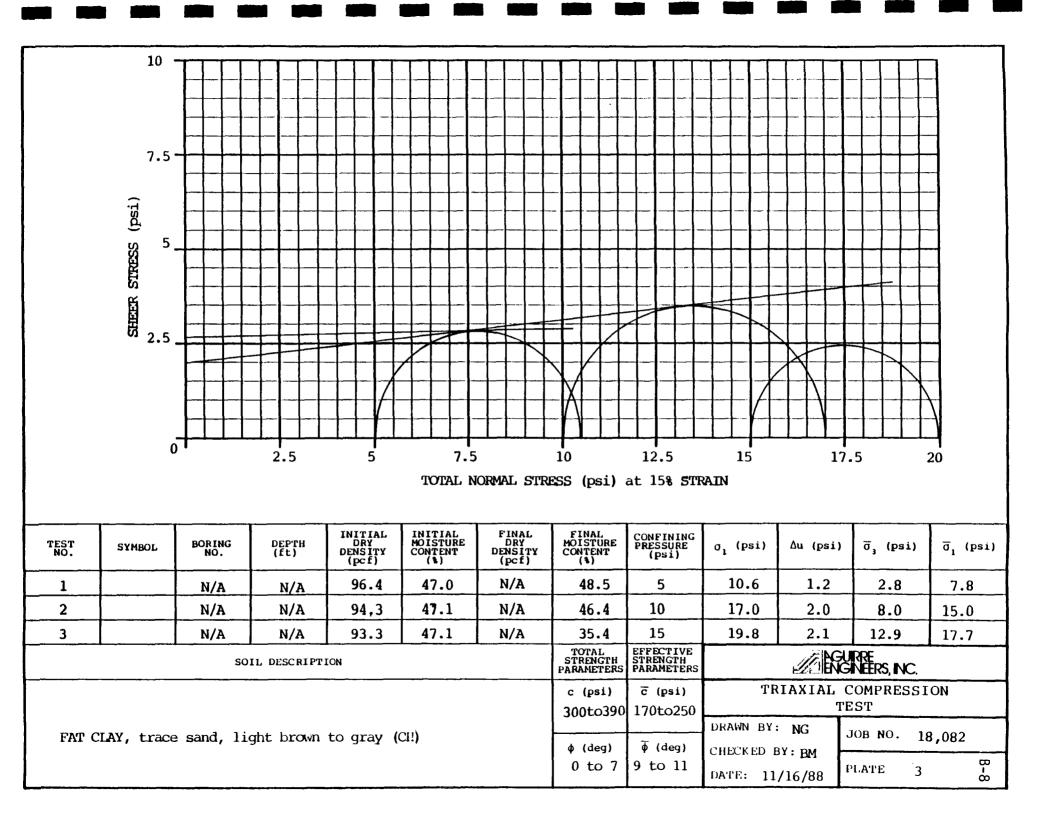
TEST NO. 2

AVE.	DIAMETER	1.9250	IN	DRY DENSITY	94.3 PCF
AVE.	LENGHT	3,9987	IN	WATER CONTENT	47.1 %
AREA		2.9106	IN^2	DEEREE OF SAT.	94 X
CELL	PRESSURE	20	PSI	BACK PRESSURE	10 PSI
EFF.	CONFINING PRESSURE	10	PSI		

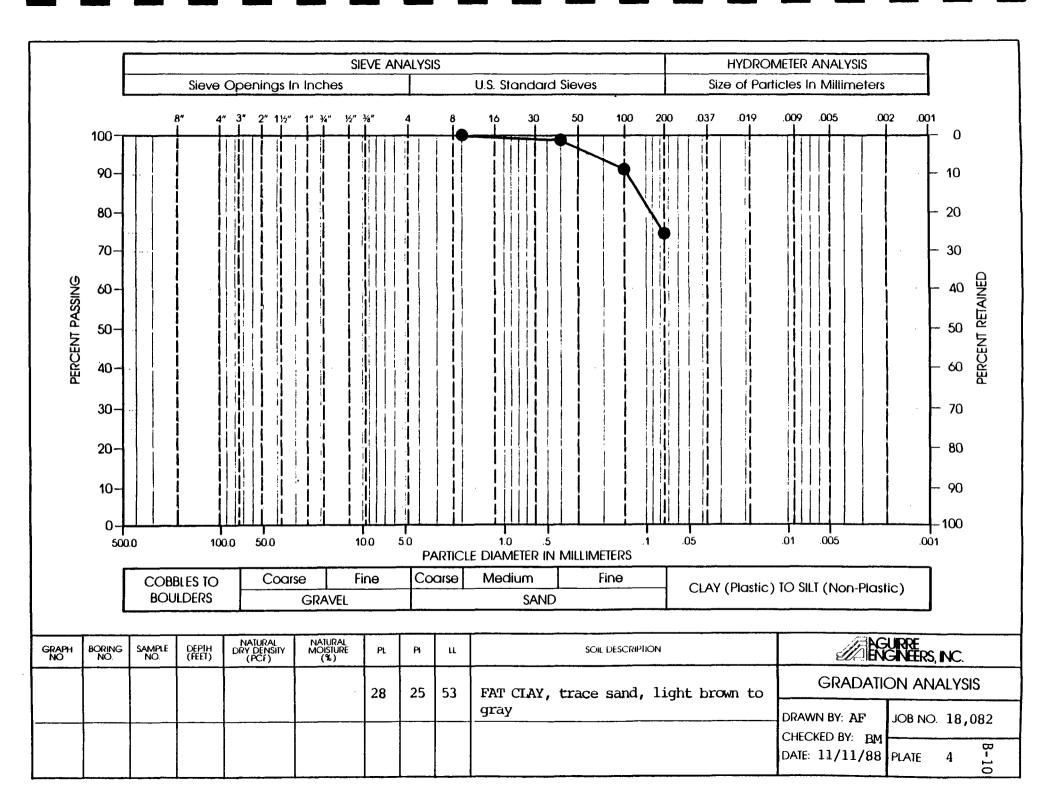

	DEVIATO)R	EXCESS PORE TOTAL					EFFECTIVE						
STRAIN (IN/IN)	LCAD	STRESS (PSI)	PRESSURE	SIGMAL (psi)	SIGMA3 (psi)	ę (psi)	q (psi)	SIGHAL (psi)	SISMAJ (psi)	P (psi)	4			
.00E+00		0.0000	0.0000	10.00	10.00	10.00	0.00	10,00	10.00	10.00	0.00			
.75E-03	3.00333	1.0298	0.0364	11.03	10.00	10.51	0.51	10.99	9.96	10.99	0.51			
.39E-1)3	4.50500	1.5354	0.0728	11.54	10.00	10.77	0.77	11.46	9.93	11.46	0.77			
48E-02	10.5116	3.5582	0.2002	13.56	10.00	11.78	1.78	13.36	9.80	13.36	1.70			
.22E-02	12.0133	4.0360	0.3276	14.04	10.00	12.02	2.02	13.71	9.67	13.71	2.02			
.95E-02	13.5150	4.5062	0.4550	14.51	10.00	12.25	2.25	14.05	9.55	14.05	2.2			
.598-02	15.0166	4.9688	0.5924	14.97	10.00	12.48	2.48	14.39	9.42	14.39	2.4			
.438-02	16.5193	5.4233	0.7290	15.42	10.00	12.71	2.71	14.70	9.27	14.70	2.7			
.91E-02	18.0200	5.8254	1.0192	15.93	10.00	12.91	2.91	14.81	8.98	14.31	2.9			
.39E-02	19.5216	6.2119	1.2558	16.21	10.00	13.11	3.11	14.96	8.74	14.76	3.1			
.96E-02	20.2725	6.3479	1.4560	16.35	10.00	13.17	3.17	14.39	8.54	14.39	3.1			
.03E-01	21.0233	6.4763	1.5198	15.48	10.00	13.24	3.24	14.96	8.38	14.36	3.2			
.19E-01	21.7741	6.5971	1.7290	16.60	10.00	13.30	3.30	14.87	8.27	14.87	3.3			
.332-01	22.5250	5.7103	1.9200	16.71	10.00	13.36	3.36	14.89	8.19	14.39	3.3			
.48E-01	24.0256	7.0357	2.0020	17.04	10.00	13.52	3.52	15.03	8.00	15.03	3.5			
.52E-01	24.7775	7.1298	2.1294	17.13	10.00	13.56	3.56	15.00	7.97	15.00	3.5			
.77E-01	25.5283	7.2163	2.2022	17.22	10.00	13.61	3.61	15.01	7.90	15.01	3.5			
.92E-01	26.2791	7.2952	2.2568	17.30	10.00	13.65	3.55	15.04	7.74	15.04	3.6			
.)7E-01	27.0300	7.3665	2.2750	17.37	10.00	13.68	3.68	15.07	7.73	15.09	3.5			

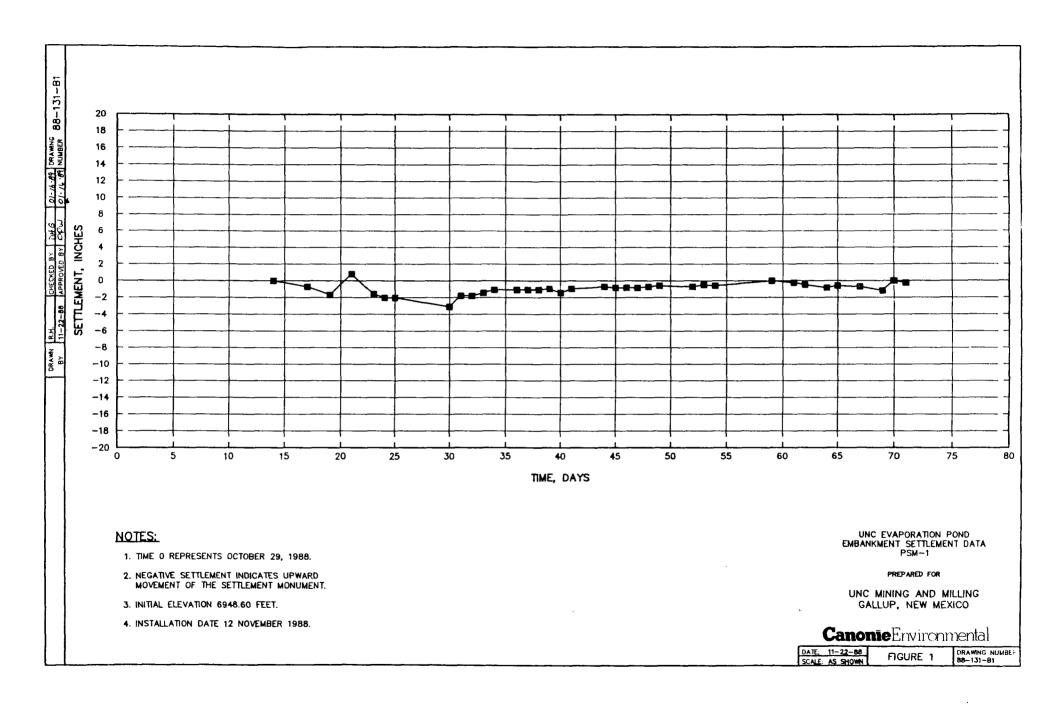

TEST	YO.	5
------	-----	---

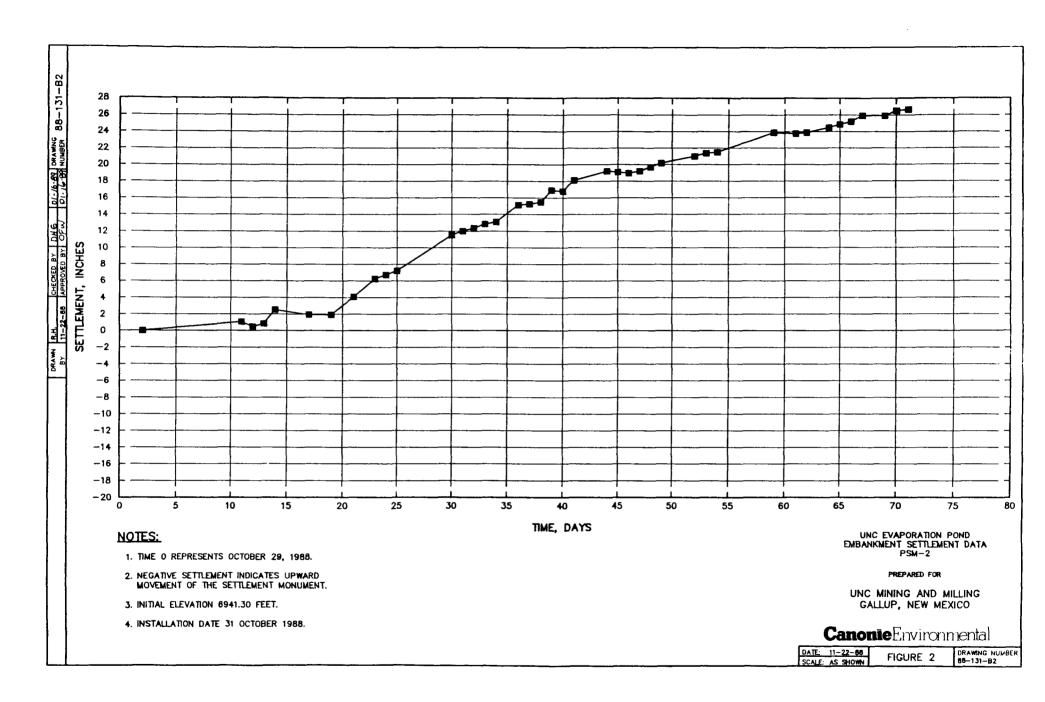

AVE. DIAMETER	1.9260 IN	DRY DENSITY	93.3 PCF
AVE. LENGHT	3.3990 IN	WATER CONTENT	47.1 %
AREA	2.9136 IN^2	DEGREE OF SAT.	95 %
CELL PRESSURE	30 PSI	BACK PRESSURE	15 PSI
EFF. CONFINING PRESSURE	15 PSI		

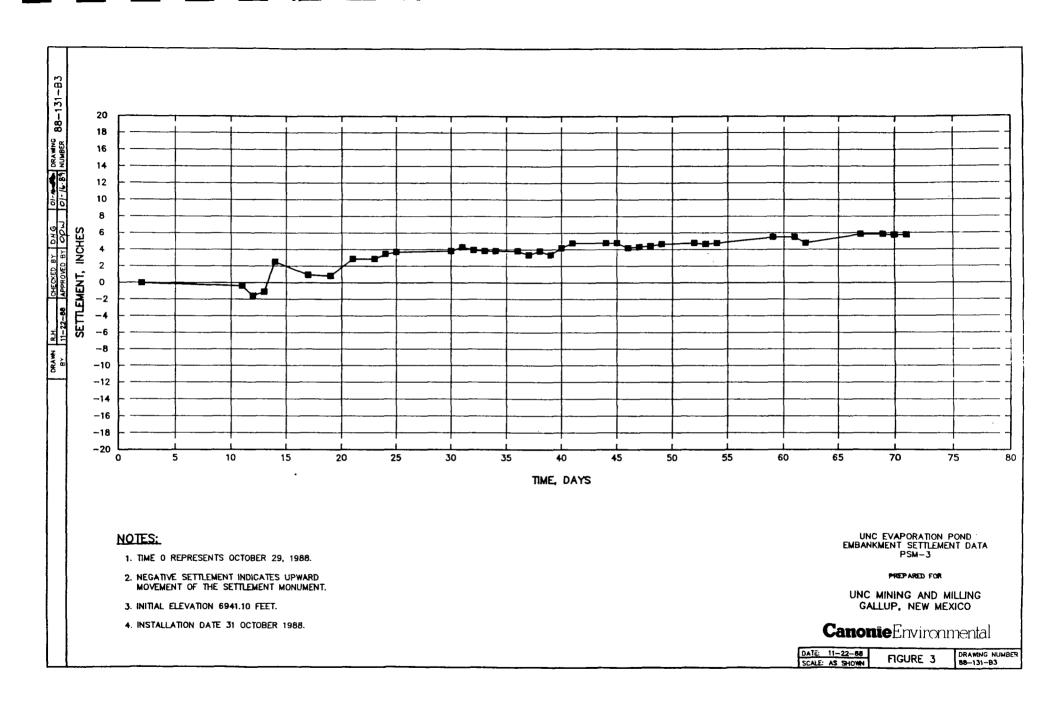

	DEVIAT	DR	EXCESS PORE		TOTAL			EFFECTIVE				
•	LGAD (LB)	STRESS	PRESSURE	SIGMA1		p (psi)		SIGMA1	SIGMA3 (psi)		4 (psi)	
								(har)				
0.00E+00	0	0.0000	0.0000	15.00	15.00	15.00	0.00	15.00	15.00	15.00	0.00	
4.05E-03	3.00333	1.0266	0.0546	16.03	15.00	15.31	0.51	15.97	14.95	15.97	0.51	
1.01E-02	3.75416	1.2754	0.1274	16.28	15.00	15.64	0.64	16.15	14.97	16.15	0.64	
2.03E-02	4.50500	1.5149	0.2730	16.51	15.00	15.76	0.76	16.24	14.73	16.24	0.76	
.04E-02	5.25583	1.7490	0.4550	16.75	15.00	15.97	0.37	16.29	14.55	15.29	0.97	
4.05E-02	6.00666	1.9790	0.6006	16.98	15.00	15.99	0.99	15.38	14.40	16.38	0.99	
5.07E-02	10.5116	3.4250	0.8008	18.42	15.00	16.71	1.71	17.62	14.20	17.52	1.71	
5.08E-02	12.0133	3.8725	1.0192	19.87	15.00	16.94	1.94	17.85	13.78	17.85	1.94	
∃.11E)2	13.5159	4.2625	1.4196	19.26	15.00	17.13	2.13	17.84	13.58	17.84	2.13	
1.01E-01	15.0166	4.6317	1.7654	19.63	15.00	17.32	2.32	17.87	13.23	17.97	2.32	
1.22E-01	15.7675	4.7535	2.0930	19.75	15.00	17.38	2.38	17.66	12.91	17.56	2.39	
L.42E-01	16.5183	4.9650	2.3842	17.86	15.00	17.43	2.43	17.40	12.62	17.48	2.43	
.52E-01	19.0200	5.1819	2.7300	20.18	15.00	17.59	2.59	17.45	12.27	17.45	2.59	
1.32E-01	18.4705	5,1330	3.0030	20.18	15.00	17.59	2.59	17.18	12.00	17.18	2.59	
2.03E-01	18.9210	5,1778	3.1850	20.18	15.00	17.59	2.59	16.99	11.92	16.99	2.59	
2.23E-01	19,5216	5,2063	3.3124	20.21	15.00	17.60	2.50	16.99	11.67	15.39	2.50	
2.43E-01	21.0233	5,4606	3.4216	20.46	15.00	17.73	2.73	17.04	11.59	17.04	2.73	
2.53E-91	21.6240	5.4662	3.5125	20.47	15.00	17.73	2.73	16.75	11.49	16.75	2.73	
2.946-91	22.2246	5,4634	3.6946	20.46	15.00	17.73	2.73	16.77	11.31	16.77	2.73	
.04E-01	22.5250	5.3805	3.8220	20.38	15.00	17.59	2.69	16.56	11.19	16.56	2.59	

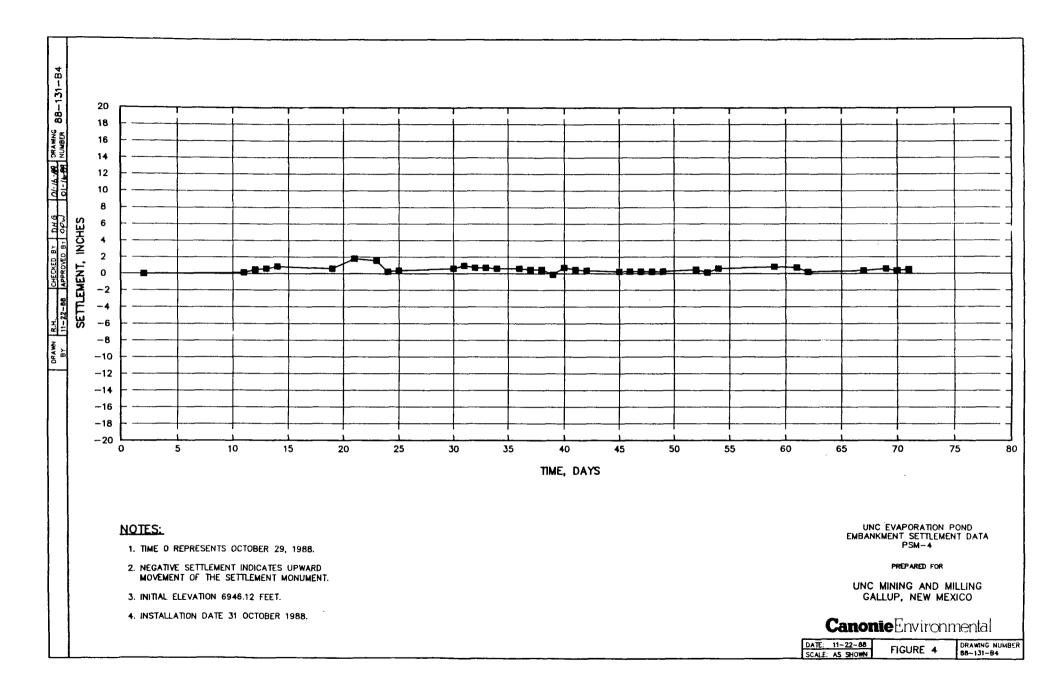
B-4

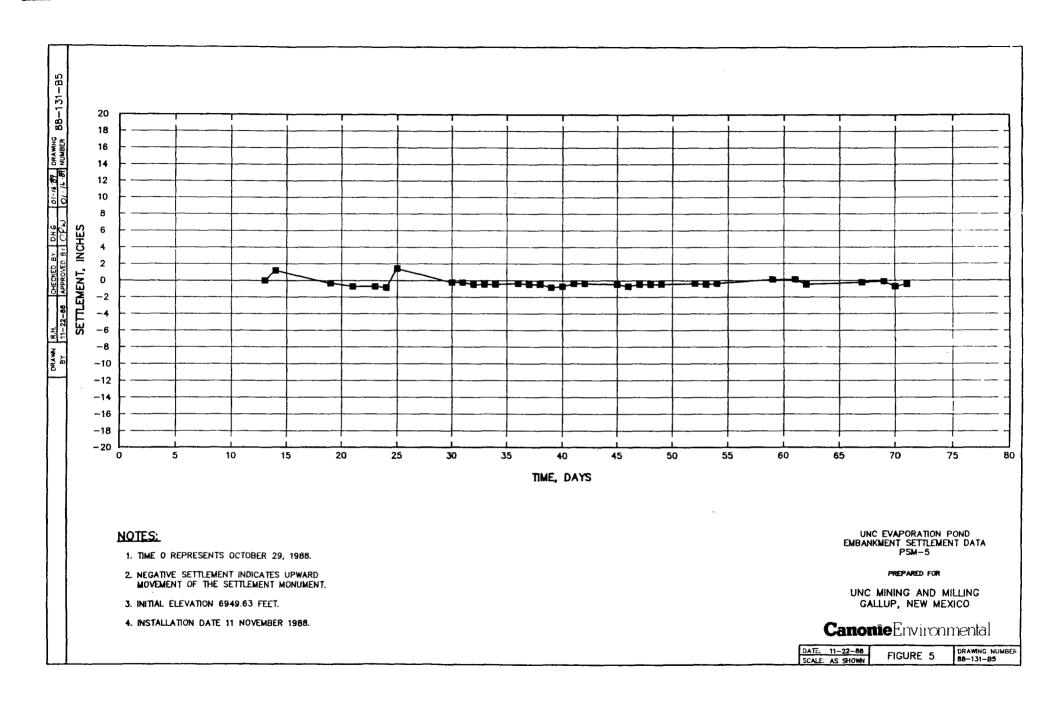


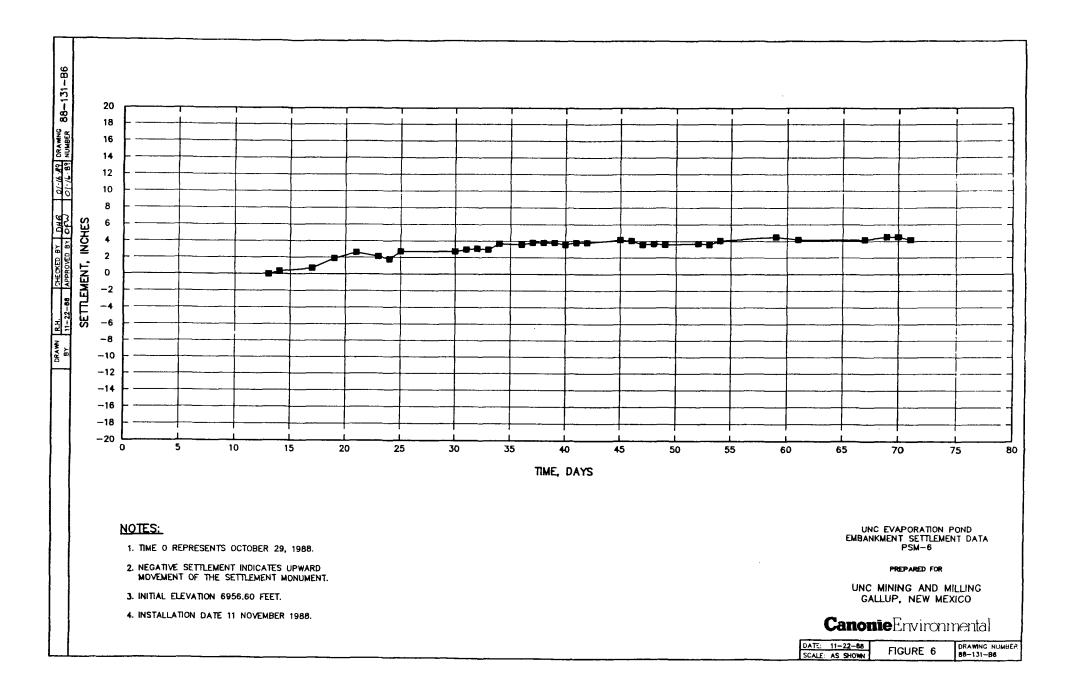

BORING NO.	SAMPLE NO.	DEPTH (FEET)	SAMPLE TYPE (SEE NOTE 1)	NATURAL DRY DENSITY (pcf)	NATURAL MOISTURE (%)	ES (%)		ierbei Limits		UNCONFINED COMPRESSIVE STRENGTH (psf)	Swell Index (%)	WATER SOLUBLE SULFATES (%)	ADDITIONAL TEST RESULTS ATTACHED (SEE NOTE 2)		UNIFIED SOIL CLASSIFICATION
<u></u>	AS .	D <u>H</u>	SAN (SE	DEA	MON	FINES	PL	PI	u	NO EX	S.	SUL	A R R	SOIL DESCRIPTION	รี่งี่รับ
	1 Tube 1	N/A	ST	102.6	17.5									FAT CLAY, trace sand, light brown to gray	Сн
	1 Tube 2	N/A	ST	104.3	15.6	1								FAT CLAY, trace sand, light brown to gray	Сн
	1 Jar 1-6	N/A	SS		47.1	74.	5 28	25	53				TT GA	FAT CLAY, trace sand, light brown to gray	СН
	1 Jar 1-6	N/A	SS				22	32	54				TT	FAT CLAY, trace sand, light brown to gray	СН
NOTE	- 1 - SAM	ple type	 N	Note 2 - Al		VAL TE	ST RES	ults A	ΑΠΑC	HED			Г		
AD - Air Dried C1 - Unconfined Compression AS - Auger Sample C2 - Miniature Vane Shear Generation						C. ants									
CA -	Bag Sam Californi Hand Dri	a Sample	· (∠3 - Pocke C4 - Pocke CT - Consc	t Vane									SUMMARY OF LABORATORY TE	EST RESULTS
SS - 9	Standard		Ģ	GA - Grad PT - Procto	ation A									PROJECT NO. 18,082	B-1
RM -	Remolde	ed Sample		W - Swell- T - Triaxial		lidatic	on Test							TABLE 1 PAGE 1	OF 1 PAGES

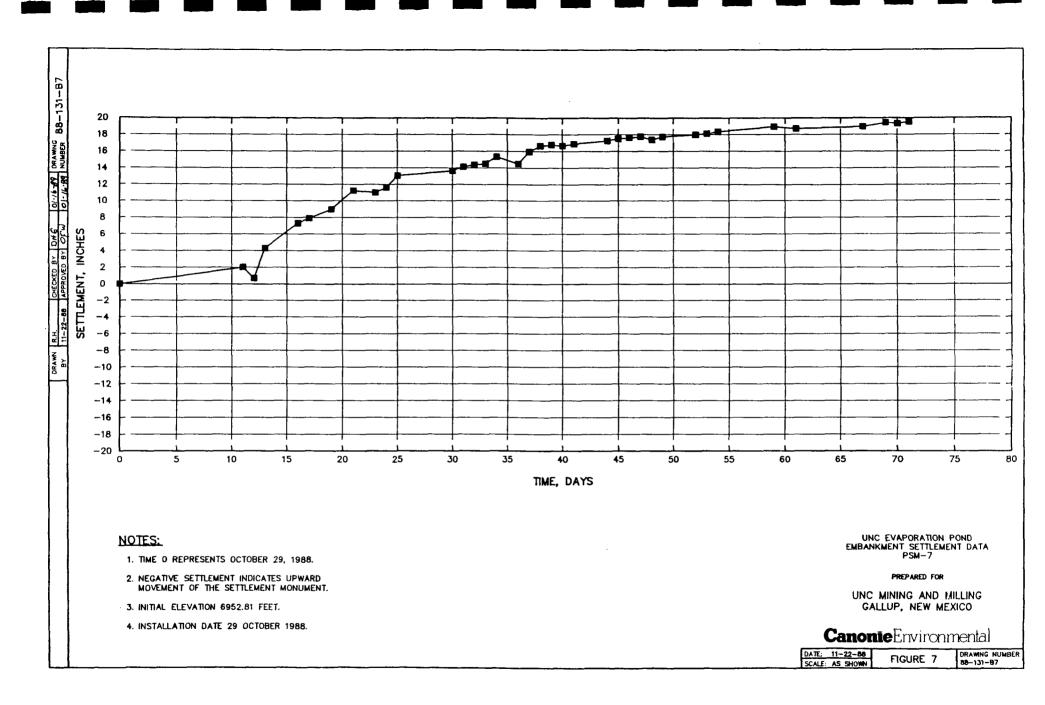

ا دیرو داری ورز

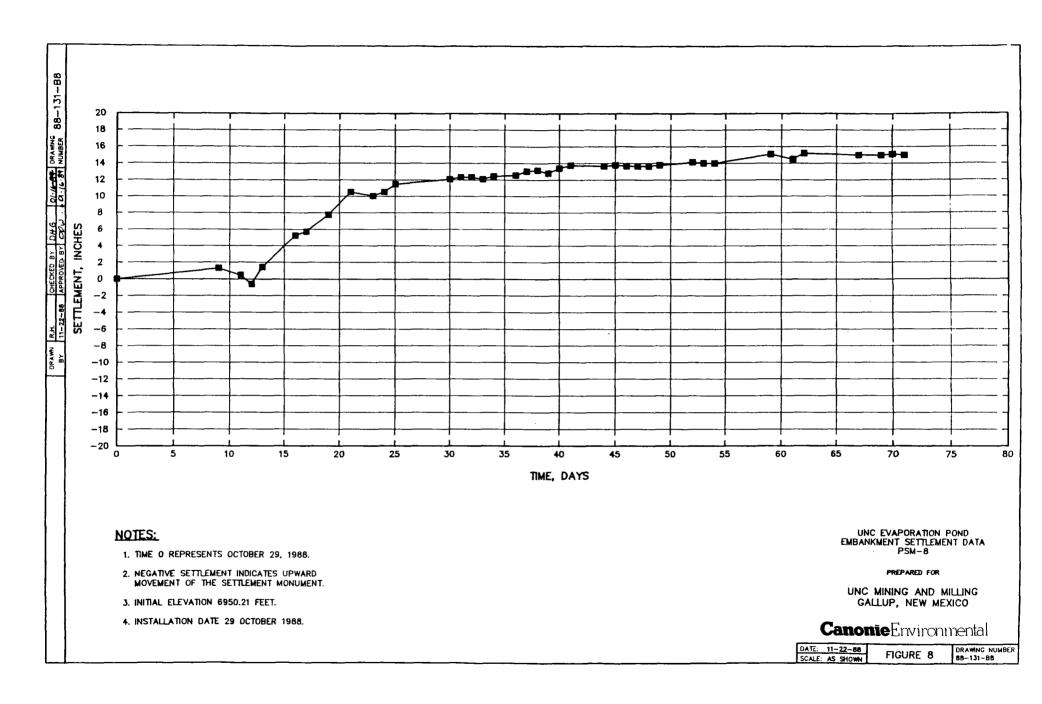

 APPENDIX C

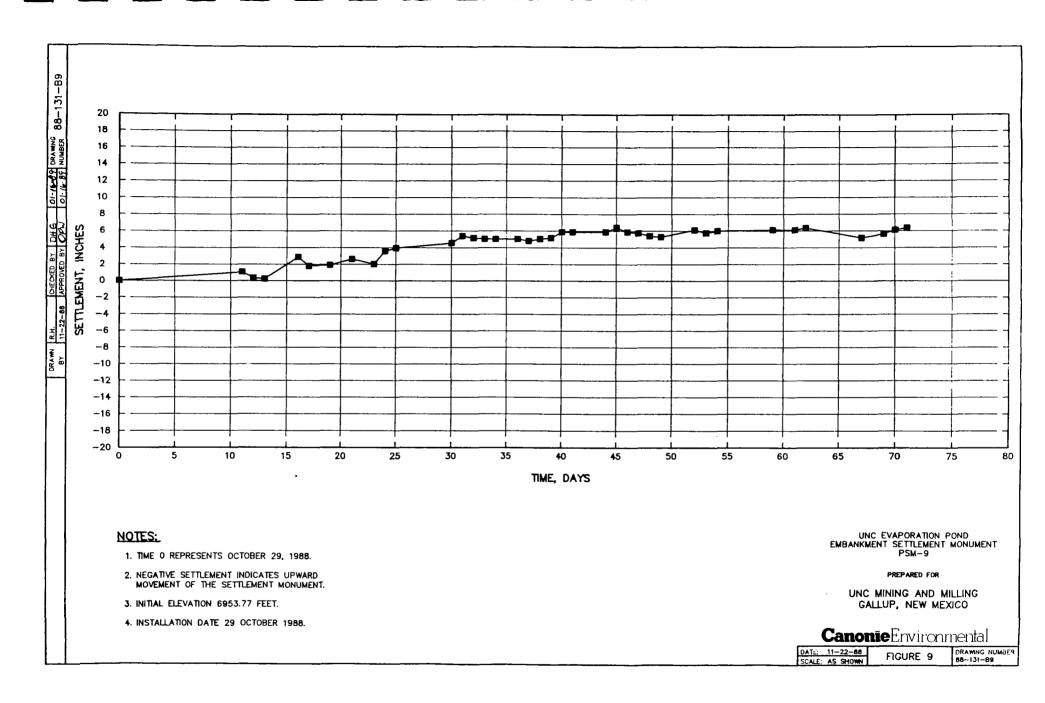

.

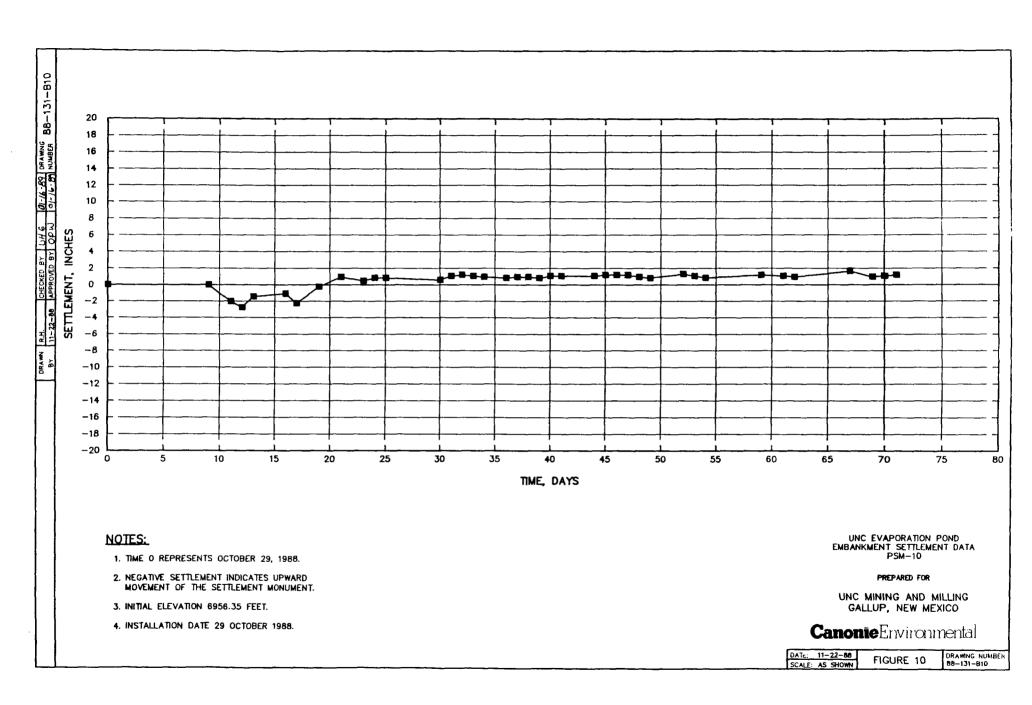

APPENDIX C SETTLEMENT PLOTS











APPENDIX D APPENDIX D

MOISTURE-DENSITY RELATIONSHIPS LABORATORY RESULTS

FOX & ASSOCIATES OF NEW MEXICO, INC.

CONSULTING ENGINEERS AND GEOLOGISTS

ALBUQUERQUE OFFICE 3412 BAYN MAWA DRIVE, NE ALBUQUERQUE, NEW MEXICO 87107 (505) 884-0900

November 9, 1988

Canonie Environmental P.O. Box 2139 Gallup, NM 87305 Job No: 3-4574-6571-00

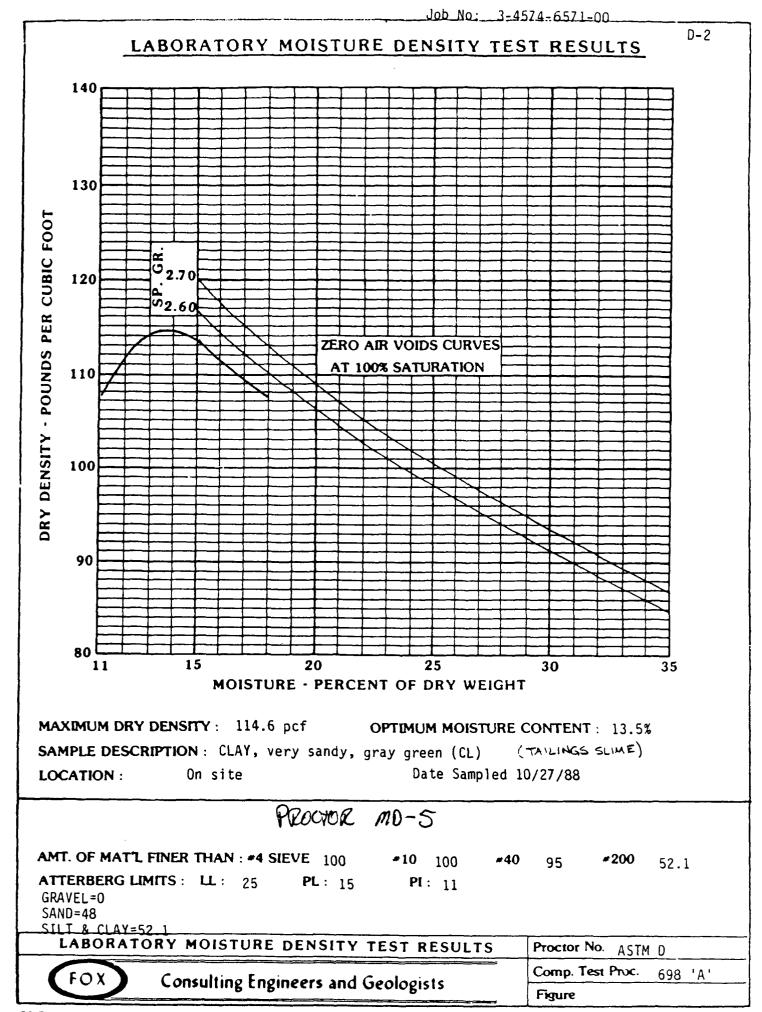
Attn: Matt Yovich

Subject: Laboratory Determinations Moisture-Density Relations of Soils Atterberg Limits Test & Sieve Analysis UNC Pond Construction #88-131

Gentlemen:

Transmitted herein is the detailed test data for the subject

project.


FOX & ASSOCIATES OF NEW MEXICO, INC.

lade Ann K. Slade

Laboratory Supervisor

Copies: Addressee (2)

Attached: Data Sheet

FOX & ASSOCIATES OF NEW MEXICO, INC.

CONSULTING ENGINEERS AND GEOLOGISTS

ALBUQUERQUE OFFICE 3412 BRYN MAWR DRIVE, NE ALBUQUERQUE, NEW MEXICO 87107 (505) 884-0900

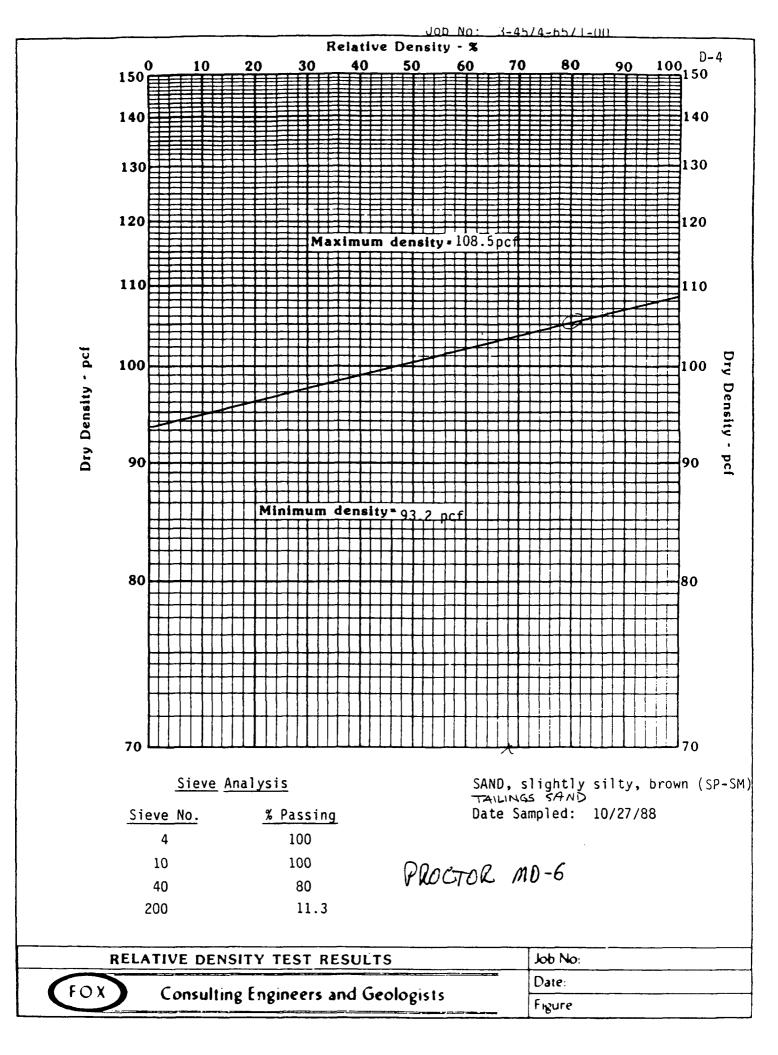
November 9, 1988

Canonie Environmental P.O. Box 2139 Gallup, NM 87305 Job No: 3-4574-6571-00

Attn: Matt Yovich

Subject: Laboratory Determinations Relative-Density Relations of Soils Sieve Analysis UNC Pond Construction #88-131

Gentlemen:


Transmitted herein is the detailed test data for the subject project.

FOX & ASSOCIATES OF NEW MEXICO, INC.

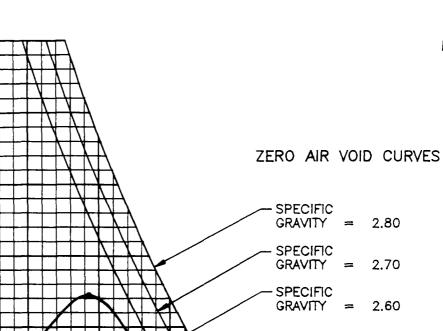
Ann K. Slade Laboratory Supervisor

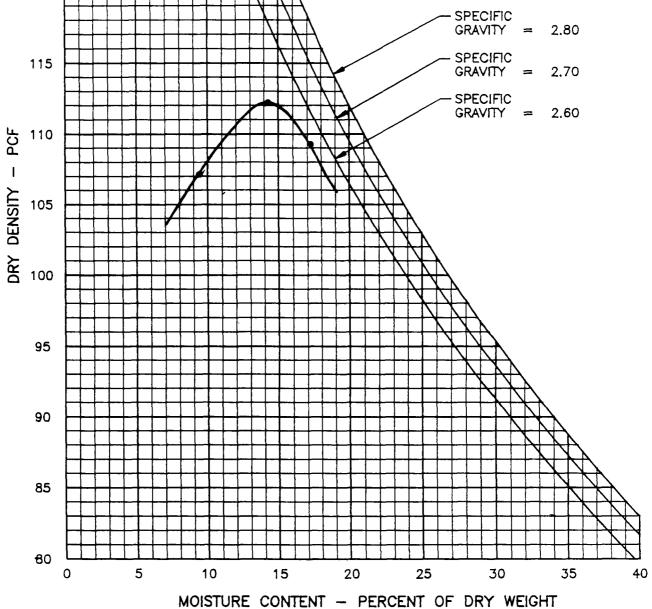
Copies: Addressee (2)

Attached: Data Sheet

PROJECT: UNC E	EVAP. PONDS	MAX. DRY DENSITY:	114.8 PCF
PROJECT NO:	88-131-03	OPTIMUM MOISTURE CO	NTENT: 14.9%
LOCATION:	MD-1	PROCEDURE:	ASTM-D698
PLASTICITY INDEX:	6%	GRAVEL:	0%
LIQUID LIMIT:	22%	SAND:	53 %
SOIL DESCRIPTION:	SC-SM	SAND & CLAY (-200):	47%

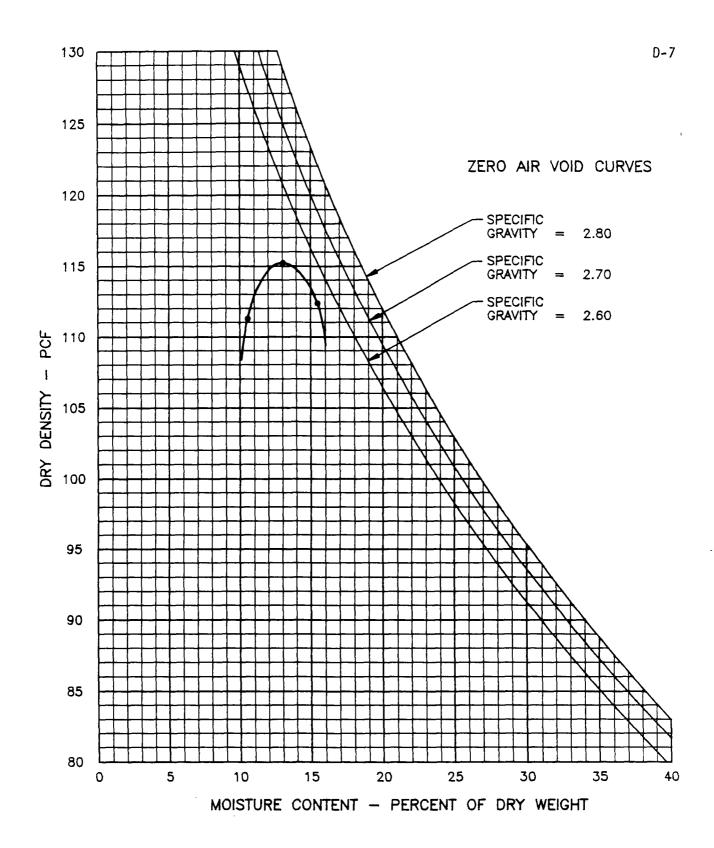
86-060-A203


MOISTURE – DENSITY RELATIONSHIPS

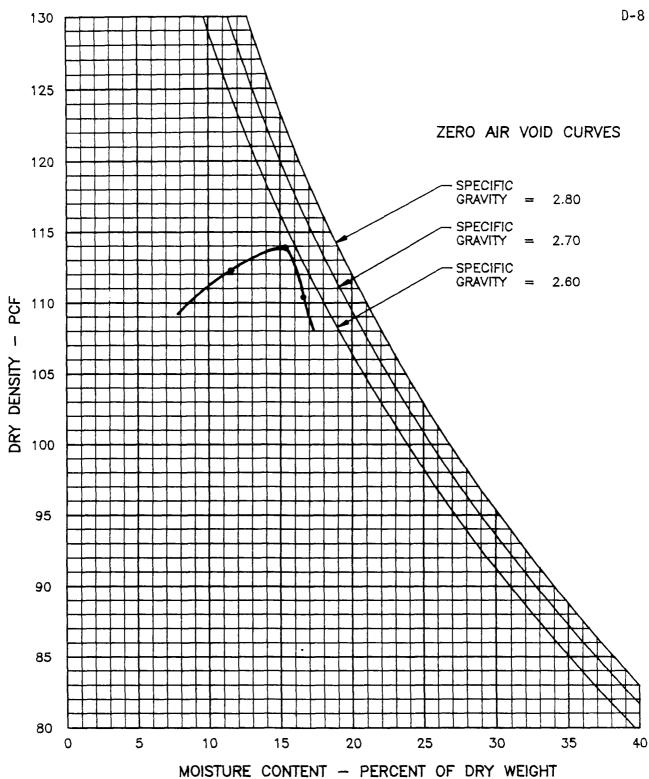


130

125


120

PROJECT: UNC	EVAP. PONDS	MAX. DRY DENSITY:	112.5 PCF
PROJECT NO:	88-131-03	OPTIMUM MOISTURE C	ONTENT: 14.5%
LOCATION:	MD-2	PROCEDURE:	ASTM-D698
PLASTICITY INDEX:	7%	GRAVEL:	0%
LIQUID LIMIT:	22%	SAND:	56%
SOIL DESCRIPTION:	SC-SM	SAND & CLAY (-200)	: 44%


MOISTURE - DENSITY RELATIONSHIPS

PROJECT: UNC E	VAP. PONDS	MAX. DRY DENSITY:	115.2
PROJECT NO:	88-131-03	OPTIMUM MOISTURE CO	NTENT: 13.0%
LOCATION:	MD-3	PROCEDURE:	ASTM-D698
PLASTICITY INDEX:	NP	GRAVEL:	0%
LIQUID LIMIT:	_	SAND:	66%
SOIL DESCRIPTION:	SM	SAND & CLAY (-200):	34%

86-060-A205

MOISTURE - DENSITY RELATIONSHIPS

PROJECT: UNC E	VAP. PONDS	MAX. DRY DENSITY:	114.0
PROJECT NO:	88-131-03	OPTIMUM MOISTURE CO	NTENT: 15.1%
LOCATION:	MD-4	PROCEDURE:	ASTM-D698
PLASTICITY INDEX:	10%	GRAVEL:	0%
	24%	SAND:	52%
SOIL DESCRIPTION:	SC	SAND & CLAY (-200):	48%

86-060-A206

MOISTURE - DENSITY RELATIONSHIPS

ļ

APPENDIX E

.

APPENDIX E

FIELD SEAM STRENGTH TESTS LABORATORY RESULTS

11834 Western Avenue, P.O. Box 915, Garden Grove, California 92642-0915 (714) 891-7832

December 8, 1988

Mr. Matt Yovich Canonie Environmental, Inc. 94 Inverness Terrace East #100 Englewood, CO 80112

Dear Mr. Yovich:

Thank you for consulting Precision Laboratories for your material testing needs.

Enclosed please find the laboratory report for the testing of the four Hypalon seams we received December 8, 1988.

Be advised that the samples were too small for complete testing. A sample with approximately 30 inches of seam is needed to test 5 specimens for shear and 5 for peel.

If you have any questions or if I may be of further service, please do not hesitate to call.

Sincerely,

PRECISION LABORATORIES

lees mie

Lance S. Reed Assistant Laboratory Manager

Enclosure

11834 Western Avenue, P.O. Box 915, Garden Grove, California 92642-0915 (714) 891-7832

December 8, 1988

VERIFICATION OF MATERIAL PROPERTIES

Fiber Reinforced Hypalon Seams For: Canonie Environmental, Inc. (Canonie Job No: 88-131-04 - Precision Reference: 881037)

INTRODUCTION

Precision Laboratories conducted physical testing on four (4) fiber reinforced Hypalon seam samples for Canonie Environmental, Inc. of Englewood, Colorado. The samples, identified as #2 HEAT, #4 HEAT #3 GLUE, and #5 GLUE, were delivered to the laboratory on December 8, 1988 by Federal Express.

TEST PROCEDURES

Each of the seam samples were tested for seam peel adhesion and bonded seam strength. Seam peel adhesion was tested in accordance with ASTM D413 using a one (1) inch wide specimen with a separation rate of 2 inches per minute. Bonded seam strength was tested in accordance with ASTM D751 as modified by the National Sanitation Foundation (NSF) standard 54 using a four (4) inch wide specimen, an initial gage of 6 inches plus the width of the seam and a strain rate of 12 inches per minute.

TEST RESULTS

ł

The results of the testing are reported on Tables 1 and 2, attached. The units in which the data are reported are included on the tables. All break types were film tearing bond (FTB).

PRECISION LABORATORIES

ance S. See

Lance S. Reed Assistant Laboratory Manager

TABLE 1. MATERIAL PROPERTIESFiber Reinforced Hypalon Seam SamplesFor: Canonie Environmental, Inc.(Canonie Job No: 88-131-04 - Precision Reference: 881037)

<u>#2 HEAT</u>

	BONDED SEAM STRENGTH (lbs/inch)	BREAK Type	SEAM PEEL ADHESION (lbs/inch)	BREAK Type
	300 301 *	FTB FTB	19.2 23.6 22.5 19.4	FTB FTB FTB FTB
Avg SD:	: 300 1		21.2 2.2	

<u>#4 HEAT</u>

SE	BONDED EAM STRENGTH (lbs/inch)	BREAK Type	SEAM PEEL ADHESION (lbs/inch)	BREAK Type
	268 280	FTB FTB	21.5 18.9 21.0 26.2	FTB FTB FTB FTB
Avg: SD:	* 274 8		* 21.9 3.1	

* Not tested due to insufficient material

ł

E-3

TABLE 2. MATERIAL PROPERTIESFiber Reinforced Hypalon Seam SamplesFor: Canonie Environmental, Inc.(Canonie Job No: 88-131-04 - Precision Reference: 881037)

SAMPLE #3 GLUE

	BONDED SEAM STRENGTH (lbs/inch)	BREAK Type	SEAM PEEL ADHESION (lbs/inch)	BREAK TYPE
	208 175 * *	FTB FTB	18.7 18.5 17.5 25.1	FTB FTB FTB FTB
Avg SD:			20.0 3.5	

SAMPLE #5 GLUE

S	BONDED SEAM STRENGTH (lbs/inch)	BREAK Type	SEAM PEEL ADHESION (lbs/inch)	BREAK Type
	215 229 •	FTB FTB	21.3 25.1 27.5 21.0	FTB FTB FTB FTB
Avg: SD:	222 10		23.7 3.1	

* Not tested due to insufficient material

ł

E-4

11834 Western Avenue, P.O. Box 915, Garden Grove, California 92642-0915 (714) 891-7832

January 18, 1989

Mr. Matt Yovich Canonie Environmental, Inc. 94 Inverness Terrace East #100 Englewood, CO 80112

Dear Mr. Yovich:

Thank you for consulting Precision Laboratories for your material testing needs.

Enclosed please find the laboratory report for the testing of the two Hypalon seams we received January 17, 1989.

Be advised that the samples were again too small for complete testing. A sample with a minimum of 30 inches of seam is needed to test 5 specimens for shear and 5 for peel. In addition, the sample marked GLUE did not have any liner overlap. In situations like this we use a pair of needle-nose pliers to peel up enough of the liner to fit into our machines. In so doing, however, two of the five specimens were damaged and had to be excluded from the test.

If you have any questions or if I may be of further service, please do not hesitate to call.

Sincerely,

PRECISION LABORATORIES

and ,

Lance S. Reed Assistant Laboratory Manager

Enclosure

11834 Western Avenue, P.O. Box 915, Garden Grove, California 92642-0915 (714) 891-7832

January 18, 1989

VERIFICATION OF MATERIAL PROPERTIES

Fiber Reinforced Hypalon Seams For: Canonie Environmental, Inc. (Canonie Job No: 88-131-04 - Precision Reference: 890006)

INTRODUCTION

Precision Laboratories conducted physical testing on two (2) fiber reinforced Hypalon seam samples for Canonie Environmental, Inc. of Englewood, Colorado. The samples, identified as *HEAT 12-31-88*, and *GLUE 1-10-89*, were delivered to the laboratory on January 17, 1989 by Federal Express.

TEST PROCEDURES

Seam peel adhesion was tested in accordance with ASTM D413 using a one (1) inch wide specimen with a separation rate of 6 inches per minute. Bonded seam strength was tested in accordance with ASTM D751 as modified by the National Sanitation Foundation (NSF) standard 54 using a four (4) inch wide specimen, an initial gage of 6 inches plus the width of the seam and a strain rate of 12 inches per minute.

TEST RESULTS

The results of the testing are reported on Table 1, attached. The units in which the data are reported are included on the tables. All break types were film tearing bond (FTB).

PRECISION LABORATORIES

and S. Read

Lance S. Reed Assistant Laboratory Manager

TABLE 1. MATERIAL PROPERTIESFiber Reinforced Hypalon Seam SamplesFor: Canonie Environmental, Inc.(Canonie Job No: 88-131-04 - Precision Reference: 890006)

HEAT 12-31-88

SEA	BONDED M STRENGTH (lbs/inch)	BREAK Type	SEAM PEEL ADHESION (lbs/inch)	BREAK Type
	284	FTB	29.9	FTB
	328	FTB	28.6	FTB
	334	FTB	34.6	FTB
	*		35.5	FTB
	*		31.5	FTB
Avg:	315		32.0	
SD:	27		3.0	

GLUE 1-10-89

BONDED SEAM STRENGTH (lbs/inch)	BREAK Type	SEAM PEEL ADHESION (lbs/inch)	BREAK Type
* * * *		27.8 33.3 20.3 **	FTB FTB FTB
Avg: SD:		27.1 6.5	

^{*} Not tested due to insufficient material

^{**} Specimens were damaged during preparation. Excluded from test

11834 Western Avenue, P.O. Box 915, Garden Grove, California 92642-0915 (714) 891-7832

LABORATORY MATERIAL REQUIREMENTS

UNSUPPORTED SEAMS (PVC, HDPE, etc.)

A minimum of 1 foot of seam with 6 inches of liner material on each side of the seam. There should also be a minimum of 2 inches of overlap between top and bottom sheets for HDPE samples. There should be a minimum of 6 inches of overlap for PVC samples.

SUPPORTED SEAMS (Hypalon, Dynaloy, etc.)

A minimum of 2 1/2 feet of seam with 6 inches of liner material on each side of the seam. There should also be a minimum of 6 inches overlap between top and bottom sheets for all supported materials.

SPECIMEN SIZE

SHEAR TEST-UNSUPPORTED MATERIAL: one inch wide strips.

SHEAR TEST-SUPPORTED MATERIAL: four inch wide strips

PEEL TEST-ALL MATERIAL: one inch wide strips