Table 11.5-1—Radiation Monitor Detector Parameters Sheet 1 of 18 | | Dadiation | Мс | onitor Provisio | ns ¹¹ | Sample Pro | ovisions ^{12, 14} | noble gas
H-3 or N-16 | aerosol | iodine | liquid | | | | | |--|----------------------------------|--|---|--|----------------------|----------------------------|---|---------|---------|---------|---------------------------------------|--|-----------------|-----------------| | Process System and
Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process
continuous | ACF | In-Effluent
continuous | In-Process
sample | In-Effluent
sample | monitor range ^{13, 18} | monitor | monitor | monitor | Figure | Text | safety
grade | check
source | | Gaseous Waste Processing
System (KPL)
Test #099 | R-1 | 1 noble gas
monitor upstream
of the delay beds
KPL40CR001 | none | none | grab sample | none | 3E-7 - 1E-2
μCi/cc
(Kr-85,
Xe-133) | n/a | n/a | n/a | 11.3-1
11.3-2
11.5-1 | 11.5.3.1.1
11.5.4.5
Table 9.3.2-1 | NS-AQ | Built-in | | Test #144
Test #204 | R-2 | none | close the
discharge valve
on high
activity | 1 noble gas
monitor
downstream of the
delay beds
discharged into
NABVS (cell 1)
KPL83CR001 | grab sample | none | 3E-7 - 1E+2
μCi/cc
(Kr-85,
Xe-133) | n/a | n/a | n/a | 11.3-1
11.3-2
11.5-1
9.4.3-2 | 11.5.3.1.1
11.5.4.5
Table 9.3.2-1 | NS-AQ | Built-in | | Vent System for Air
Removal (MAQ), MCES,
TGSS Test #065 Test #155 Test #144 Test #204 | R-3 ⁵ | none | none | 1 noble gas
monitor on the
condenser exhaust
MAQ90CR001 | none | none | 3E-7 - 1E-2
μCi/cc
(Kr-85,
Xe-133) | n/a | n/a | n/a | 11.5-1
10.4.2-2 | 11.5.3.1.2
Table 7.5-1
Table 9.3.2-2
10.4.1.3
10.4.2.2.1
10.4.2.4
10.4.3.3
10.4.6.3
11.5.4.2 | Non-safety | Built-in | ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 2 of 18 | | _ | Мо | nitor Provisio | ns ¹¹ | Sample Pr | ovisions ^{12, 14} | noble gas
H-3 or N-16 | aerosol | iodine | liquid | | | | | |--|----------------------------------|-----------------------|----------------|--|-------------------|---|---|--|---|---------|-----------------------------|---------------------------|---------------------|-----------------| | Process System and Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process continuous | ACF | In-Effluent
continuous | In-Process sample | In-Effluent
sample | monitor
range ^{13, 18} | monitor | monitor | monitor | Figure | Text | safety
grade | check
source | | Sampling Activity Monitoring System (Vent Stack Release Point System (KLK)) Test #144 Test #155 Test #092 | R-4 ⁵ | none | none | 1 noble gas accident monitor, 1 iodine monitor, 1 iodine accident monitor, 1 aerosol monitor and 1 aerosol accident monitor in the vent stack KLK70CR001 ⁵ KLK70CR071 KLK70CR0725 KLK70CR031 KLK70CR031 | none | 1 noble gas, 1
noble gas
accident, 1
iodine, 1 iodine
accident, 1
aerosol, 1
aerosol
accident, and 1
H-3, C-14 grab
sample points in
the vent stack
KLK70CR581
KLK70CR582
KLK70CR571
KLK70CR572
KLK70CR561
KLK70CR561
KLK70CR562
KLK70CR562 | | 1E-9 - 1E+2
μCi/cc ⁷
(Cs-137) | 1E-9 - 1E+2
μCi/cc ⁷
(I-131) | n/a | 11.3-2
11.5-1
9.4.3-3 | 11.5.3.1.3
Table 7.5-1 | Non-safety | built-in | | | R-5 ⁵ | none | none | 2 noble gas
monitors in the
vent stack
KLK90CR001
KLK90CR002 | none | 1 noble gas high range, 1 iodine, 1 iodine high range, 1 aerosol, 1 aerosol high range, and 1 H-3, C-14 grab sample points in the vent stack KLK90CR582 KLK90CR571 KLK90CR572 KLK90CR561 KLK90CR562 KLK90CR551 | μCi/cc
(Kr-85,
Xe-133) | n/a | n/a | n/a | 11.3-2
11.5-1
9.4.3-3 | 11.5.3.1.3
Table 7.5-1 | Non-safety | | | | R-6 ⁵ | none | none | 2 noble gas high
range monitors in
the vent stack
KLK95CR001
KLK95CR002 | none | none | 1E-4 - 1E+4
rad/hr
(Kr-85,
Xe-133) | n/a | n/a | n/a | 11.3-2
11.5-1
9.4.3-3 | 11.5.3.1.3
Table 7.5-1 | NS-AQ ²¹ | built-in | ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 3 of 18 | | Dodietion | Мо | nitor Provisio | ns ¹¹ | Sample Pro | ovisions ^{12, 14} | noble gas
H-3 or N-16 | aerosol | iodine | liquid | | | | | |--|----------------------------------|--|----------------|--|--|---|---|--|-----------------------------------|---------|-------------------|---|---------------------|-----------------| | Process System and Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process
continuous | ACF | In-Effluent
continuous | In-Process sample | In-Effluent
sample | monitor range ^{13, 18} | monitor | monitor | monitor | Figure | Text | safety
grade | check
source | | Containment Building Low
Flow Purge Subsystem
(KLA2) Test #144 Test #076 | R-7 | none | none | 1 noble gas, 1
aerosol, 1 iodine
monitor
KLK10CR001
KLK10CR031
KLK10CR071 | none | 1 aerosol sample
point
KLK10CR561 | 3E-7 - 1E-2
μCi/cc
(Kr-85,
Xe-133) | 3E-10 - 1E-6
μCi/cc
(Cs-137) | 3E-10 - 5E-8
μCi/cc
(I-131) | n/a | 11.5-1
9.4.7-2 | 11.5.3.1.4
Table 12.3-4
9.4.7.2.1
9.4.7.2.3
9.4.7.5
11.5.3.1.4 | Non-safety | built-in | | | R-8 | none | none | 1 H-3 monitor
KLK12CR041 | none | H-3 sample and
analysis | 3E-9 - 3E-4
μCi/cc | n/a | n/a | n/a | 11.5-1
9.4.7-2 | 11.5.3.1.4
Table 12.3-4
9.4.7.2.1
9.4.7.2.3
9.4.7.5 | Non-safety | built-in | | | R-9 | none | none | 2 noble gas
monitors
KLK13CR001
KLK13CR002 | none | none | 1E-5 - 1E0
rad/hr
(Kr-85,
Xe-133) | n/a | n/a | n/a | 11.5-1
9.4.7-2 | 11.5.3.1.4
Table 12.3-4
9.4.7.2.1
9.4.7.2.3 | NS-AQ ²¹ | built-in | | Containment Building Internal Filtration Subsystem (KLA5) Test #143 Test #144 Test #075 | R-10 | 1 noble gas, 1
aerosol ⁶ , 1 iodine
monitor
KLK05CR001
KLK05CR031
KLK05CR071 | none | none | 1 aerosol grab
sample
KLK05CR561 | none | 3E-7 - 1E-2
μCi/cc
(Kr-85,
Xe-133) | 3E-10 - 1E-6
μCi/cc
(Te-129,
Ru-106/
Rh-106) ¹⁶ | 3E-10 - 5E-8
μCi/cc
(I-131) | n/a | 11.5-1
9.4.7-3 | 11.5.3.1.5
11.5.4.8
Table 12.3-4
9.4.7.2.1
9.4.7.2.3 | NS-AQ | built-in | ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 4 of 18 | | Dadiation | Mo | onitor Provision | S ¹¹ | Sample Pro | visions ^{12, 14} | noble gas
H-3 or N-16 | aerosol | iodine | liquid | | | | | |---|----------------------------------|--|---|------------------------|---|---------------------------|---|------------------------------------|-----------------------------------|---------|-------------------|---|---------------------|-----------------| | Process System and Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process
continuous | ACF | In-Effluent continuous | In-Process sample | In-Effluent
sample | monitor range ^{13, 18} | monitor | monitor | monitor | Figure | Text | safety
grade | check
source | | Nuclear Auxiliary Building
Ventilation System (KLE)
Test #144
Test #079 | R-11 | 1 noble gas, 1 iodine, and 1 aerosol monitors on NABVS (cell 1) ventilation exhaust KLK30CR001 KLK30CR071 KLK30CR031 | NABVS (cell 1)
diverts exhaust
to iodine
filtration on
high activity ¹ | none | 1 aerosol grab
sample point
in the
ventilation
exhaust
KLK30CR561 | none | 3E-7 - 1E-2
μCi/cc
(Kr-85,
Xe-133) | 3E-10 - 1E-6
μCi/cc
(Cs-137) | 3E-10 - 5E-8
μCi/cc
(I-131) | n/a | 11.5-1
9.4.3-3 | 11.5.3.1.6
9.4.3.2.1
Table 12.3-4 | NS-AQ ²¹ | Built-in | | | R-12 | 1 noble gas, 1 iodine, and 1 aerosol monitors on NABVS (cell 2)
ventilation exhaust KLK31CR001 KLK31CR071 KLK31CR031 | NABVS (cell 2)
diverts exhaust
to iodine
filtration on
high activity ¹ | none | 1 aerosol grab
sample point
in the NABVS
(cell 2)
ventilation
exhaust
KLK31CR561 | none | 3E-7 - 1E-2
μCi/cc
(Kr-85,
Xe-133) | 3E-10 - 1E-6
μCi/cc
(Cs-137) | 3E-10 - 5E-8
μCi/cc
(I-131) | n/a | 9.4.3-3
11.5-1 | 11.5.3.1.6
9.4.3.2.1
Table 12.3-4 | NS-AQ ²¹ | Built-in | | | R-13 | 1 noble gas, 1
iodine, and 1
aerosol monitors
on NABVS (cell
3) ventilation
exhaust
KLK32CR001
KLK32CR071
KLK32CR031 | NABVS (cell 3)
diverts exhaust
to iodine
filtration on
high activity ¹ | none | 1 aerosol grab
sample point
in the
ventilation
exhaust
KLK32CR561 | none | 3E-7 - 1E-2
μCi/cc
(Kr-85,
Xe-133) | 3E-10 - 1E-6
μCi/cc
(Cs-137) | 3E-10 - 5E-8
μCi/cc
(I-131) | n/a | 9.4.3-3
11.5-1 | 11.5.3.1.6
9.4.3.2.1
Table 12.3-4 | NS-AQ ²¹ | Built-in | | | R-14 | 1 aerosol monitor
on ventilation
exhaust in the hot
workshop
KLK33CR031 | none | none | 1 aerosol grab
sample point
in the
ventilation
exhaust in the
hot workshop
KLK33CR561 | none | n/a | 3E-10 - 1E-6
μCi/cc
(Cs-137) | n/a | n/a | 9.4.3-2
11.5-1 | 11.5.3.1.6 | Non-safety | Built-in | ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 5 of 18 | | - | Мо | onitor Provisio | ns ¹¹ | Sample Pro | visions ^{12, 14} | noble gas
H-3 or N-16 | aerosol | iodine | liquid | | | | | |---|----------------------------------|---|-----------------|---------------------------|---|---------------------------|---------------------------------|------------------------------------|------------------------------------|---------|-------------------|------------|-----------------|-----------------| | Process System and Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process continuous | ACF | In-Effluent
continuous | In-Process sample | In-Effluent
sample | monitor range ^{13, 18} | monitor | monitor
range ^{13, 18} | monitor | Figure | Text | safety
grade | check
source | | Nuclear Auxiliary Building
Ventilation System (KLE)
(continued) | R-15 | 1 aerosol monitor
on ventilation
exhaust in
laboratory room
upstream of
NABVS iodine
filtration train
KLK41CR031 | none | none | 1 aerosol grab
sample point
in the
ventilation
exhaust
KLK41CR561 | none | n/a | 3E-10 - 1E-6
μCi/cc
(Cs-137) | n/a | n/a | 9.4.3-2
11.5-1 | 11.5.3.1.6 | Non-safety | Built-in | | | R-16 ⁹ | none | none | none | 1 iodine and 1
aerosol sample
points in the
ventilation
exhaust
KLK42CR571
KLK42CR561 | none | n/a | n/a | n/a | n/a | 9.4.3-5 | 11.5.3.1.6 | Non-safety | n/a | ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 6 of 18 | | . | Mo | onitor Provision | ıs ¹¹ | Sample Pro | visions ^{12, 14} | noble gas
H-3 or N-16 | aerosol | iodine | liquid | | | | | |---|----------------------------------|---|--|---------------------------|---|---------------------------|---|------------------------------------|-----------------------------------|---------|-------------------|--|---------------------|-----------------| | Process System and Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process continuous | ACF | In-Effluent
continuous | In-Process sample | In-Effluent
sample | monitor
range ^{13, 18} | monitor | monitor | monitor | Figure | Text | safety
grade | check
source | | Fuel Building Ventilation
System (KLL) Test #144 Test #081 | R-17 | 1 noble gas, 1
aerosol, and 1
iodine monitors
on FBVS (cell 4)
ventilation
exhaust
KLK34CR001
KLK34CR031
KLK34CR071 | FBVS (cell 4) exhaust feeds into NABVS which diverts exhaust to iodine filtration on high activity ^{1,3} | none | 1 aerosol grab
sample point
in the
ventilation
exhaust
KLK34CR561 | none | 3E-7 - 1E-2
μCi/cc
(Kr-85,
Xe-133) | 3E-10 - 1E-6
μCi/cc
(Cs-137) | 3E-10 - 5E-8
μCi/cc
(I-131) | n/a | 9.4.3-3
11.5-1 | 11.5.3.1.7
Table 12.3-4
9.3.4.2.3.5
9.4.2.1
9.4.2.2.1
9.4.2.2.3
9.4.2.5
9.4.3.2.1
11.5.3.1.6 | NS-AQ ²¹ | Built-in | | | R-18 | 1 noble gas, 1
aerosol, and 1
iodine monitors
on FBVS (cell 5)
ventilation
exhaust
KLK35CR001
KLK35CR031
KLK35CR071 | FBVS (cell 5) exhaust feeds into NABVS which diverts exhaust to iodine filtration on high activity ^{1,3} | none | 1 aerosol grab
sample point
in the FB
ventilation
exhaust
KLK35CR561 | none | 3E-7 - 1E-2
μCi/cc
(Kr-85,
Xe-133) | 3E-10 - 1E-6
μCi/cc
(Cs-137) | 3E-10 - 5E-8
μCi/cc
(I-131) | n/a | 9.4.3-3
11.5-1 | 11.5.3.1.7
Table 12.3-4
9.4.2.2.3
9.4.2.5 | NS-AQ ²¹ | Built-in | | | R-19 | 2 noble gas
monitors on
ventilation
exhaust of the
fuel handling area
KLK38CR001
KLK38CR002 | isolate fuel handling area ventilation (cell 5) on high exhaust activity, divert exhaust to SBVS iodine filtration, 2 noble gas monitors supply the signal | none | none | none | 1E-5 - 1E+0
rad/hr
(Kr-85,
Xe-133) | n/a | n/a | n/a | 9.4.2-1
11.5-1 | 9.4.2.2.3
11.5.3.1.7
Table 12.3-4
9.4.2.5
12.3.4.2.1 | NS-AQ ²¹ | Built-in | ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 7 of 18 | | 5 " " | Мс | nitor Provisior | าร ¹¹ | Sample Pro | ovisions ^{12, 14} | noble gas
H-3 or N-16 | aerosol | iodine | liquid | | | | | |---|----------------------------------|---|--|---------------------------|---|---|------------------------------------|------------------------------------|-----------------------------------|---------|-------------------|---|---------------------|-----------------| | Process System and
Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process
continuous | ACF | In-Effluent
continuous | In-Process
sample | In-Effluent
sample | monitor
range ^{13, 18} | monitor | monitor | monitor | Figure | Text | safety
grade | check
source | | Radioactive Waste Processing Building Ventilation System (KLF) Test #144 Test #080 | R-20 | 1 iodine and 1 aerosol monitors upstream of ventilation filters in Cell 2 KLK50CR071 KLK50CR031 | Close KLF room exhaust air normal carbon bypass isolation dampers Opens KLF carbon filtration unit isolation dampers and the air is directed through the carbon filter and exhausts this air through the plant vent stack | none | 1 aerosol
sample point
upstream of
the
ventilation
filters
KLK50CR561 | none | none | 3E-10 - 1E-6
μCi/cc
(Cs-137) | 3E-10 - 5E-8
μCi/cc
(I-131) | n/a | 9.4.8-2
11.5-1 | 11.5.3.1.8
Table 12.3-4
9.4.8.2.1
9.4.8.2.3
9.4.8.5 | NS-AQ ²¹ | Built-in | | | R-21 ⁹ | none | none | none | none | 1 aerosol and 1 iodine sample points in the RWB ventilation exhaust KLK51CR561 KLK51CR571 | none | none | none | n/a | 9.4.8-2 | 11.5.3.1.8
9.4.8.2.1
9.4.8.2.3
9.4.8.5 | non-safety | n/a | ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 8 of 18 | | Dadiation | Мс | onitor Provision | s ¹¹ | Sample Pro | visions ^{12, 14} | noble gas
H-3 or N-16 | aerosol | iodine | liquid | | | | | |--|----------------------------------|--|--|------------------------
--|---------------------------|---------------------------------|------------------------------------|-----------------------------------|---------|-------------------|--|---------------------|-----------------| | Process System and
Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process
continuous | ACF | In-Effluent continuous | In-Process sample | In-Effluent
sample | monitor range ^{13, 18} | monitor | monitor | monitor | Figure | Text | safety
grade | check
source | | Radioactive Waste Processing Building Ventilation System (KLF) (continued) | R-22 | 1 iodine and 1 aerosol monitors upstream of ventilation filters in Cell 1 KLK52CR071 KLK52CR031 | Close KLF room exhaust air normal carbon bypass isolation dampers Opens KLF carbon filtration unit isolation dampers and the air is directed through the carbon filter and exhausts this air through the plant vent stack | none | l aerosol
sample point
upstream of
the
ventilation
filters
KLK52CR561 | none | none | 3E-10 - 1E-6
μCi/cc
(Cs-137) | 3E-10 - 5E-8
μCi/cc
(I-131) | n/a | 9.4.8-2
11.5-1 | 11.5.3.1.8
Table 12.3-4
9.4.8.2.1
9.4.8.5 | NS-AQ ²¹ | Built-in | | | R-23 | 1 aerosol monitor
upstream of
ventilation filters
in
decontamination
room
KLK53CR031 | none | none | 1 aerosol
sample point
upstream of
the
ventilation
filters
KLK53CR561 | none | none | 3E-10 - 1E-6
μCi/cc
(Cs-137) | n/a | n/a | 9.4.8-1
11.5-1 | 11.5.3.1.8
Table 12.3-4
9.4.8.2.1
9.4.8.5 | non-safety | Built-in | | | R-24 | 1 aerosol monitor
upstream of
ventilation filters
in workshop
KLK54CR031 | none | none | 1 aerosol
sample point
upstream of
the
ventilation
filters
KLK54CR561 | none | none | 3E-10 - 1E-6
μCi/cc
(Cs-137) | n/a | n/a | 9.4.8-1
11.5-1 | 11.5.3.1.8
Table 12.3-4
9.4.8.2.1
9.4.8.5 | non-safety | Built-in | | Turbine Gland Sealing
Condenser Vent System
(MAW) | n/a | | em upstream of ra
the main condens | idiological measur | ing point R-3. The contract The Tile in i | herefore, R-3 | n/a ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 9 of 18 | | | M | onitor Provision | าร ¹¹ | Sample Pro | ovisions ^{12, 14} | noble gas
H-3 or N-16 | aerosol | iodine | liquid | | | | | |--|----------------------------------|------------------------------------|--|--|--|-------------------------------|--------------------------|---------|------------------------------------|---------|--------|------|-----------------|-----------------| | Process System and
Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process continuous | ACF | In-Effluent
continuous | In-Process sample | In-Effluent
sample | monitor | monitor | monitor
range ^{13, 18} | monitor | Figure | Text | safety
grade | check
source | | Main Condenser Evacuation
System (MAJ) | n/a | evacuation sys | tem upstream of r
the main conden | vent joins the exhau
radiological measuri
ser evacuation syste
nt system. See R-3 | ing point R-3. Tem and the turbi | herefore, R-3 | n/a | Evaporator Vent Systems | n/a | cell in which it is is monitored a | located in the Nu
as shown above in
Radwaste Buildin | he coolant treatmer
iclear Auxiliary Buil
i the Auxiliary Buil
g is monitored by th
ch is described abov | lding. The exhading ventilation ne Radwaste Buil | ust from the cell system. The | n/a | Liquid Waste Processing
System (Pretreatment
Liquid Radwaste Tank Vent
Gas Systems (KPF)) | n/a | All liquid radw | | e monitored by the light is described above | | ng ventilation | n/a | Steam Generator Blowdown
System (Flash Tank and
Steam Generator Blowdown
Vent Systems (LCQ)) | · | generator blowdo | wn flash tank is v | n the steam generate
ented to the feedwa
edwater and is conv | ter tank where t | he vented vapor | n/a | Pressurizer & Boron
Recovery Vent Systems (KT) | n/a | gaseous radioa | ective wastes to the
m which contain | iclear Island Drains
ne gaseous waste pro
ns the boron recover
waste processing sy | ocessing system.
ry sub-system is | The coolant | n/a | Solid Waste Management
System (Waste compactors,
shredders, etc. (as
permanently installed or
mobile systems (KPE) | n/a | | | ıld generate airborn
ventilation which is | | | n/a ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 10 of 18 | | Dadieties | Mo | onitor Provisio | ns ¹¹ | Sample Pro | ovisions ^{12, 14} | noble gas
H-3 or N-16 | aerosol | iodine | liquid | | | | | |---|----------------------------------|---|---|---|--|---|---|------------------------------------|-----------------------------------|------------------------------------|-------------------|---|--|-----------------| | Process System and Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process
continuous | ACF | In-Effluent
continuous | In-Process sample | In-Effluent
sample | monitor
range ^{13, 18} | monitor | monitor | monitor
range ^{13, 18} | Figure | Text | safety
grade | check
source | | Safeguard Building Controlled Area Ventilation System (KLC) Test #144 Test #083 Test #155 (R-26) | R-25 | 1 noble gas, 1
aerosol and 1
iodine monitors
on NABVS cell 6
ventilation
exhaust
KLK36CR001
KLK36CR031
KLK36CR071 | SBVS (cell 6)
exhaust feeds
into NABVS
which diverts
exhaust to the
NABVS iodine
filtration on
high activity ^{1, 3} | none | 1 aerosol
sample points
in the NABVS
ventilation
exhaust
KLK36CR561 | none | 3E-7 - 1E-2
μCi/cc
(Kr-85,
Xe-133) | 3E-10 - 1E-6
μCi/cc
(Cs-137) | 3E-10 - 5E-8
μCi/cc
(I-131) | n/a | 9.4.3-3
11.5-1 | 11.5.3.1.9
Table 12.3-4
6.5.1.3
9.4.3.2.1
9.4.5.1
9.4.5.3
9.4.5.5
11.5.3.1.6 | NS-AQ ²¹ | Built-in | | | R-26 ⁵ | none | none | 2 noble gas accident monitors on SBVS controlled area accident exhaust train ² KLK37CR001 KLK37CR002 | none | 1 iodine and 1
aerosol sample
points in the
SBVS
controlled area
accident
exhaust train
KLK37CR571
KLK37CR561 | 1E-4 - 1E+4
rad/hr
(Kr-85,
Xe-133) | n/a | n/a | n/a | 9.4.5-2
11.5-1 | Table 7.5-1
Table 12.3-4
11.5.3.1.9 | Monitors
are NS-AQ;
samplers are
non-safety | Built-in | | Annulus Ventilation System (KLB) Test #144 Test #155 Test #077 | R-27 ⁵ | none | none | 2 noble gas
accident monitors
in the ventilation
exhaust
KLK21CR001
KLK21CR002 | none | none | 1E-4 - 1E+4
rad/hr
(Kr-85,
Xe-133) | n/a | n/a | n/a | 6.2.3-2
11.5-1 |
6.2.3.2.2.2
11.5.3.1.10
Table 7.5-1
Table 12.3-4 | NS-AQ | built-in | | | R-28 ⁹ | none | none | none | none | 1 aerosol and 1 iodine accident sample points in the ventilation exhaust KLK20CR561 KLK20CR571 | n/a | n/a | n/a | n/a | 6.2.3-2 | 6.2.3.2.2.2
11.5.3.1.10 | Non-safety | n/a | ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 11 of 18 | | 5 | Me | onitor Provisior | ıs ¹¹ | Sample Pro | visions ^{12, 14} | noble gas
H-3 or N-16 | aerosol | iodine | liquid | | | | | |--|----------------------------------|---|---|---------------------------|-------------------|---------------------------|---|---------|---------|---------|-------------------|--|-----------------|-----------------| | Process System and Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process continuous | ACF | In-Effluent
continuous | In-Process sample | In-Effluent
sample | monitor | monitor | monitor | monitor | Figure | Text | safety
grade | check
source | | Main Control Room Air Conditioning System (SAB) Test #143 Test #144 Test #155 Test #082 | R-29 ¹⁹ | 2 radiation
monitors
KLK65CR001
KLK65CR002 | Opens CREF iodine filtration unit isolation dampers Closes the CREF iodine filtration unit bypass dampers Initiates CREF fans and the inlet air is directed through the carbon filters to the CRE | none | none | none | 1E-5 - 1E+1
rad/hr
(Kr-85,
Xe-133) | n/a | n/a | n/a | 9.4.1-1
11.5-1 | 9.4.1.1
11.5.3.1.11
Table 12.3-4
6.4.2.2
6.4.6
6.5.1.3
9.4.1.2.1
12.3.4.2.1 | Safety | built-in | | | R-30 ¹⁹ | 2 radiation
monitors
KLK66CR001
KLK66CR002 | Opens CREF iodine filtration unit isolation dampers Closes the CREF iodine filtration unit bypass dampers Initiates CREF fans and the inlet air is directed through the carbon filters to the CRE | none | none | none | 1E-5 - 1E+1
rad/hr
(Kr-85,
Xe-133) | n/a | n/a | n/a | 9.4.1-1
11.5-1 | 9.4.1.1
11.5.3.1.11
Table 12.3-4
6.4.2.2
6.4.6
6.5.1.3
9.4.1.2.1
12.3.4.2.1 | Safety | built-in | ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 12 of 18 | | Dadieties | Me | onitor Provision | าร ¹¹ | Sample Pro | visions ^{12, 14} | noble gas
H-3 or N-16 | aerosol | iodine | liquid | | | | | |--|----------------------------------|--|---|---|--|------------------------------------|--------------------------|---------|---------|-----------------------------------|---------------------------|--|---------------------|-----------------| | Process System and
Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process continuous | ACF | In-Effluent
continuous | In-Process sample | In-Effluent
sample | monitor | monitor | monitor | monitor | Figure | Text | safety
grade | check
source | | Access Building Ventilation
System (KLD)
Test #224 | R-31 ⁹ | none | none | none | 1 aerosol and
1 iodine in the
ventilation
exhaust
KLK40CR561
KLK40CR571 | none | n/a | n/a | n/a | n/a | 9.4.14-2 | 11.5.3.1.12
9.4.14.6 | Non-safety | n/a | | Liquid Radwaste (Batch) Effluent System (KPF) Test #144 Test #095 | R-32 | none | close the
discharge valve
on high
activity | 2 redundant
monitors on the
liquid radwaste
release line
KPK29CR001
KPK29CR002 | none | H-3 grab
sample and
analysis | n/a | n/a | n/a | 5E-6 - 1E-3
μCi/ml
(Cs-137) | 11.2-1
11.5-1 | 11.2.1.2.3
11.5.3.2
11.2.2.1.6
11.2.2.4.1
11.2.2.6
11.2.3
12.3.6.5.2
12.3.6.5.4 | NS-AQ ²¹ | Built-in | | Liquid Radwaste
(Continuous) Effluent
System (KPF) | n/a | The US EPR TM u | | radwaste effluent d
described above. | ischarge which | is monitored as | n/a | Circulating Water System (PA) | n/a | For the US EPR TM | t, the CWS has no | contact with the T | urbine Building | Plant Drainage. | n/a | Component Cooling Water
System (KA)
Test #046 | R-35 | 1 radiation
monitor on each
loop
KAA10CR001 | isolate the
CCWS train on
high activity | none | grab sample
and analysis,
H-3 analysis | none | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.2-1
Sh.1
11.5-1 | 11.5.4.4
Table 9.3.2-2
9.2.2.3.1
9.2.2.6.1.5 | NS-AQ | Built-in | | Test #144
Test #204 | R-36 | 1 radiation
monitor on each
loop
KAA20CR001 | isolate the
CCWS train on
high activity | none | grab sample
and analysis,
H-3 analysis | none | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.2-1
Sh.1
11.5-1 | 11.5.4.4
Table 9.3.2-2
9.2.2.6.1.5 | NS-AQ | Built-in | | | R-37 | 1 radiation
monitor on each
loop
KAA30CR001 | isolate the
CCWS train on
high activity | none | grab sample
and analysis,
H-3 analysis | none | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.2-1
Sh.1
11.5-1 | 11.5.4.4
Table 9.3.2-2
9.2.2.6.1.5 | NS-AQ | Built-in | | | R-38 | 1 radiation
monitor on each
loop
KAA40CR001 | isolate the
CCWS train on
high activity | none | grab sample
and analysis,
H-3 analysis | none | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.2-1
Sh.1
11.5-1 | 11.5.4.4
9.2.2.2.1
Table 9.3.2-2
9.2.2.3.1
9.2.2.6.1.5 | NS-AQ | Built-in | ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 13 of 18 | | 5 | Мо | nitor Provisio | าร ¹¹ | Sample Pro | visions ^{12, 14} | noble gas
H-3 or N-16 | aerosol | iodine | liquid | | | | | |---|----------------------------------|--------------------------------------|-------------------------------|--|--|---------------------------|---|---------|---------|---------|---------------------------|---|-----------------|-----------------| | Process System and Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process continuous | ACF | In-Effluent
continuous | In-Process sample | In-Effluent
sample | monitor | monitor | monitor | monitor | Figure | Text | safety
grade | check
source | | Fuel Pool Cooling and Fuel
Pool Purification System
(FAK, FAL) Test #144 Test #204 Test #001 | R-39 ⁹ | none | none | none | grab sample
and analysis,
H-3 analysis | none | none | n/a | n/a | n/a | none | 11.5.4.10
Table 9.3.2-1
Table 9.3.2-2 | Non-safety | n/a | | Nuclear Island Drain and
Vent Systems (KT) Test #098 Test #204 Test #099 | R-40 ⁹ | none | none | none | grab sample
and analysis,
H-3 analysis | none | n/a | n/a | n/a | n/a | none | 11.5.4.11
Table 9.3.2-1 | Non-safety | n/a | | Phase Separator Decant &
Holding Basin Systems
(KPE) | n/a | For the | e US EPR TM , this | is handled by the so | olid radwaste sys | tem. | n/a | Chemical & Regeneration
Solution Waste Systems
(KT) | n/a | | | eam are collected by
outed to the liquid r | | | n/a | Pool Liner Leakage
Monitoring System | n/a | | | reams are collected b
outed to the liquid r | | | n/a | Nuclear Sampling System (KU) Test #144 Test #204 Test #100 | R-41 ²⁰ | 1 noble gas
monitor
KUA66CR001 | none | none | grab sample
and analysis,
H-3 analysis | none | 3E-7 - 3E+3
μCi/cc
(Kr-85,
Xe-133) | n/a | n/a | n/a | 9.3.2-1
Sh.2
11.5-1 | 11.5.4.6
Table 9.3.2-1 | NS-AQ | Built-in | ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 14 of 18 | | | Mo | nitor Provisio | ns ¹¹ | Sample Pro | visions ^{12, 14} | noble gas
H-3 or N-16 | | iodine | liquid | | | | | |--|----------------------------------|--|--------------------|---|---|---------------------------|------------------------------------|---------|------------------------------------|---|------------------|-------------------------------------|-----------------|-----------------| | Process System and Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process continuous | ACF | In-Effluent
continuous | In-Process sample | In-Effluent
sample | monitor
range ^{13, 18} | monitor | monitor
range ^{13, 18} | monitor range ^{13, 18} | Figure | Text | safety
grade | check
source | | Solid Waste Management System (KPE) Test #144 Test #204 Test #094 | R-43 | Process Monitor seven (7) dose rate detectors and one (1) gamma spectroscopy system on the drum drying station KPC90CR501 KPC90CR502 KPC90CR503 KPC90CR505 KPC90CR506 KPC90CR507 gamma spectroscopy KPC90CR508 |
none | none | grab sample | none | n/a | n//a | n/a | Dose Rate
1E-4 - 1E+0
rad/hr
Spectrum
5 keV - 10
MeV | 11.4-1
11.5-1 | 11.5.4.13
11.4.2.3.2
11.4.2.2 | Non-safety | Built-in | | Rainwater Collection and
Drainage System (Storm &
Underdrain Water System) | n/a | such as rainwa | ter collection and | active are segregated
d drainage systems,
ross systems. Monit | to minimize the | migration of | n/a | Nuclear Island Drain and
Vent System (KT)
Test #098
Test #204
Test #099 | R-44 ⁹ | none | none | none | grab sample
and analysis,
H-3 analysis | none | n/a | n/a | n/a | n/a | none | 11.5.4.11
Table 9.3.2-1 | Non-safety | n/a | | Reactor Boron and Water
Makeup System (KBC)
Test #007
Test #204 | R-45 ⁹ | none | none | none | grab sample at
the discharge
of each Boric
Acid Pump
(R-45 A/B) | none | n/a | n/a | n/a | n/a | 9.3.4-4 | 11.5.4.14
Table 9.3.2-1 | Non-safety | n/a | ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 15 of 18 | | 5 | Мо | onitor Provision | าร ¹¹ | Sample Pro | ovisions ^{12, 14} | noble gas
H-3 or N-16 | aerosol | iodine | liquid | | | | | |--|----------------------------------|--|--|---|--|--|--------------------------|---------|------------------------------------|-----------------------------------|--------|--|-----------------|-----------------| | Process System and
Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process continuous | ACF | In-Effluent
continuous | In-Process
sample | In-Effluent
sample | monitor | monitor | monitor
range ^{13, 18} | monitor | Figure | Text | safety
grade | check
source | | Steam Generator Blowdown System (LCQ) Test #067 Test #144 Test #204 Test #071 | R-46 | 1 radiation
monitor on each
steam generator
blowdown line
QUC11CR001 | High activity coupled with a partial cooldown signal automatically isolates the SGBS | none | grab sample
and analysis,
H-3 analysis | none | n/a | n/a | n/a | 3E-6 -1E-2
μCi/ml
(Cs-137) | 11.5-1 | Table 9.3.2-2
Table 12.3-4
9.3.2.2.1.2
10.4.6.3
10.4.8.6
11.5.4.3 | Non-safety | Built-in | | | R-47 | 1 radiation
monitor on each
steam generator
blowdown line
QUC12CR001 | High activity coupled with a partial cooldown signal automatically isolates the SGBS | none | grab sample
and analysis,
H-3 analysis | none | n/a | n/a | n/a | 3E-6 -1E-2
μCi/ml
(Cs-137) | 11.5-1 | Table 9.3.2-2
Table 12.3-4
9.3.2.2.1.2
10.4.6.3
10.4.8.6
11.5.4.3 | Non-safety | Built-in | | | R-48 | 1 radiation
monitor on each
steam generator
blowdown line
QUC13CR001 | High activity coupled with a partial cooldown signal automatically isolates the SGBS | none | grab sample
and analysis,
H-3 analysis | none | n/a | n/a | n/a | 3E-6 -1E-2
μCi/ml
(Cs-137) | 11.5-1 | Table 9.3.2-2
Table 12.3-4
9.3.2.2.1.2
10.4.6.3
10.4.8.6
11.5.4.3 | Non-safety | Built-in | | | R-49 | 1 radiation
monitor on each
steam generator
blowdown line
QUC14CR001 | High activity coupled with a partial cooldown signal automatically isolates the SGBS | none | grab sample
and analysis,
H-3 analysis | none | n/a | n/a | n/a | 3E-6 -1E-2
μCi/ml
(Cs-137) | 11.5-1 | Table 9.3.2-2
Table 12.3-4
9.3.2.2.1.2
10.4.6.3
10.4.8.6
11.5.4.3 | Non-safety | Built-in | | Turbine Building Drain
System (GM)
Test #204
Test #144 | R-50 | none | none | 1 radiation
monitor on the
common release
line | none | grab sample and
analysis, H-3
analysis | n/a | n/a | n/a | 3E-6 - 1E-2
μCi/ml
(Cs-137) | 11.5-1 | 11.5.4.15
Table 9.3.2-2 | Non-safety | Built-in | ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 16 of 18 | | | Monitor Provisions ¹¹ | | | Sample Provisions ^{12, 14} | | noble gas
H-3 or N-16 | | iodine | liquid | | | | | |---|----------------------------------|--|---|---------------------------|-------------------------------------|--|--------------------------|---------|---------|-----------------------------------|----------------------------|--|-----------------|-----------------| | Process System and
Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process continuous | ACF | In-Effluent
continuous | In-Process sample | In-Effluent
sample | monitor | monitor | monitor | monitor | Figure | Text | safety
grade | check
source | | Turbine Building Clean Drain System (LCM) ⁴ Test #204 Test #065 | R-65 ⁹ | none | none | none | none | grab sample and
analysis, H-3
analysis | n/a | n/a | n/a | n/a | n/a | 11.5.4.16
Table 9.3.2-2 | Non-safety | n/a | | Chemical and Volume
Control System (High
Pressure Coolers)
Detection on CCWS
Common Loop (KBA, KBD) | R-51 | 1 radiation
monitor on the
component
cooling inlet of
each cooler
KAB60CR001 | isolate the
CCWS train on
high activity | none | none | none | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.2-2
Sh. 2
11.5-1 | 9.2.2.3.1
11.5.4.17
Table 9.3.2-1
9.2.2.6.1.5
12.3.6.5.3 | NS-AQ | built-in | | Test #046 Test #144 Test #153 Test #204 | R-52 | 1 radiation
monitor on the
component
cooling outlet of
each cooler
KAB60CR002 | isolate the
CCWS train on
high activity | none | none | none | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.2-2
Sh. 2
11.5-1 | 9.2.2.3.1
11.5.4.17
Table 9.3.2-1
12.3.6.5.3 | NS-AQ | built-in | | | R-53 | 1 radiation
monitor on the
component
cooling inlet of
each cooler
KAB70CR001 | isolate the
CCWS train on
high activity | none | none | none | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.2-3
Sh. 2
11.5-1 | 9.2.2.3.1
11.5.4.17
Table 9.3.2-1
12.3.6.5.3 | NS-AQ | built-in | | | R-54 | 1 radiation
monitor on the
component
cooling outlet of
each cooler
KAB70CR002 | isolate the
CCWS train on
high activity | none | none | none | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.2-3
Sh. 2
11.5-1 | 9.2.2.3.1
11.5.4.17
Table 9.3.2-2
9.2.2.6.1.5
12.3.6.5.3 | NS-AQ | built-in | | Component Cooling Water
System (KAA) Test #046 Test #144 Test #153 | R-64 | 1 radiation
monitor on the
dedicated CCWS
loop
KAA50CR001 | none | none | none | sample and
analysis,
H-3 analysis | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.2-4
11.5-1 | 9.2.2.3.1
11.5.4.17
Table 9.3.2-2
9.2.8.4 | Non-safety | built-in | ## Table 11.5-1—Radiation Monitor Detector Parameters Sheet 17 of 18 | | | Мо | nitor Provisio | าร ¹¹ | Sample Pro | visions ^{12, 14} | noble gas
H-3 or N-16 | aerosol | iodine | liquid | | | | | |--|----------------------------------|---|-------------------|---------------------------|-------------------|---------------------------|---|---------|---------|-----------------------------------|----------------------------|--|-----------------|-----------------| | Process System and Initial Test Program ¹⁰ | Radiation
Monitoring
Point | In-Process continuous | ACF | In-Effluent
continuous | In-Process sample | In-Effluent
sample | monitor | monitor | monitor | monitor | Figure | Text | safety
grade | check
source | | Main Steam lines (LB) Test #061 Test #143 Test #144 Test #155 Test #204 | R-55 ^{15, 5} | 4 N-16 monitors
on each main
steam line
LBA10CR811
LBA10CR821
LBA10CR831
LBA10CR841 | none ⁸ | none | none | none | 1E-8 - 1E-2
μCi/cc
(N-16) ¹⁷ | n/a | n/a | n/a | 10.3-1
Sh. 1
11.5-1 | 11.5.4.1
Table 7.5-1
Table 9.3.2-2 | Safety | built-in | | | R-56 ^{15, 5} | 4 N-16 monitors
on each main
steam line
LBA20CR811
LBA20CR821
LBA20CR831
LBA20CR841 | none ⁸ | none | none | none | 1E-8 - 1E-2
μCi/cc
(N-16) ¹⁷ | n/a | n/a | n/a | 10.3-1
Sh. 1
11.5-1 | 11.5.4.1
Table 7.5-1
Table 9.3.2-2 | Safety | built-in | | | R-57 ^{15, 5} | 4 N-16 monitors
on each main
steam line
LBA30CR811
LBA30CR821
LBA30CR831
LBA30CR841 | none ⁸ | none | none | none | 1E-8 - 1E-2
μCi/cc
(N-16) ¹⁷ | n/a | n/a | n/a | 10.3-1
Sh. 1
11.5-1 | 11.5.4.1
Table 7.5-1
Table 9.3.2-2 | Safety | built-in | | | R-58 ^{15, 5} | 4 N-16 monitors
on each main
steam line
LBA40CR811
LBA40CR821
LBA40CR831
LBA40CR841 | none ⁸ | none | none | none | 1E-8 - 1E-2
μCi/cc
(N-16) ¹⁷ | n/a | n/a | n/a | 10.3-1
Sh. 1
11.5-1 | 11.5.4.1
Table 7.5-1
Table 9.3.2-2 | Safety | built-in | | Safety Chilled Water System
(QKA) Test #052 Test #144 Test #204 | R-59 | 1 radiation
monitor on train
1 downstream of
the LHSI pump
seal water
HX QKC10CR001 | none | none | none | none | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.8-1
Sh. 3
11.5-1 |
9.2.8.4
11.5.4.18
Table 9.3.2-2 | Non-safety | Built-in | | | R-60 | 1 radiation
monitor on train
4 downstream of
the LHSI pump
seal water
HX QKC40CR001 | none | none | none | none | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.8-1
Sh. 3
11.5-1 | 9.2.8.4
11.5.4.18
Table 9.3.2-2 | Non-safety | Built-in | #### Table 11.5-1—Radiation Monitor Detector Parameters Sheet 18 of 18 | Process System and
Initial Test Program ¹⁰ | Radiation
Monitoring
Point | Мо | Monitor Provisions ¹¹ | | | visions ^{12, 14} | noble gas
H-3 or N-16 aerosol | | iodine | liquid | | | | | |---|----------------------------------|--|----------------------------------|------------------------|---|---------------------------|-----------------------------------|---------|------------------------------------|-----------------------------------|----------------------------|--------------------------------------|-----------------|-----------------| | | | In-Process continuous | ACF | In-Effluent continuous | In-Process sample | In-Effluent
sample | monitor range ^{13, 18} r | monitor | monitor
range ^{13, 18} | monitor | Figure | Text | safety
grade | check
source | | Chilled Water for Gaseous
Waste (QNA, QNB)
Test #204
Test #144 | R-61 ⁹ | none | none | none | sample and
analysis, H-3
analysis | none | n/a | n/a | n/a | n/a | none | 11.5.4.7
Table 9.3.2-2 | Non-safety | n/a | | Essential Service Water System – Train Monitoring (PE) Test #048 Test #204 Test #144 | R-66 | 1 radiation
monitor on Train
1 CCWS HX
Outlet
PEB10CR001 | none | none | sample and
analysis, H-3
analysis | none | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.1-1,
Sh.2
11.5-1 | 9.2.1.2
Table 9.3.2-2
11.5.4.9 | Non-safety | Built-in | | | R-67 | 1 radiation
monitor on Train
2 CCWS HX
Outlet
PEP20CR001 | none | none | sample and
analysis, H-3
analysis | none | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.1-1,
Sh.2
11.5-1 | 9.2.1.2
Table 9.3.2-2
11.5.4.9 | Non-safety | Built-in | | | R-68 | 1 radiation
monitor on Train
3 CCWS HX
Outlet
PEP30CR001 | none | none | sample and
analysis, H-3
analysis | none | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.1-1,
Sh.2
11.5-1 | 9.2.1.2
Table 9.3.2-2
11.5.4.9 | Non-safety | Built-in | | | R-69 | 1 radiation
monitor on Train
4 CCWS HX
Outlet
PEP40CR001 | none | none | sample and
analysis, H-3
analysis | none | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.1-1,
Sh.2
11.5-1 | 9.2.1.2
Table 9.3.2-2
11.5.4.9 | Non-safety | Built-in | | Essential Service Water System – Dedicated Train Test #204 Test #144 Test #048 | R-70 | 1 radiation
monitor on
Dedicated Train
CCWS HX Outlet
PEB80CR001 | none | none | sample and
analysis, H-3
analysis | none | n/a | n/a | n/a | 1E-6 - 1E-3
μCi/ml
(Cs-137) | 9.2.1-1,
Sh.4
11.5-1 | 9.2.1.2
Table 9.3.2-2
11.5.4.9 | Non-safety | Built-in | #### Notes: - 1. This is a non-safety Automatic Control Feature which diverts flow to the KLE iodine filtration train. - 2. Note that a containment isolation signal or high radiation from the in-containment high range monitors (i.e., an accident has occurred) will automatically divert SBVS and FBVS exhaust flow to the KLC accident exhaust filtration trains (Refer to Figure 9.4.5-2 for the SBVS and Figure 9.4.2-1 and Figure 9.4.5-2 for the FBVS). This is a separate iodine filtration train from the KLE iodine filtration train which is shown on Figure 9.4.3-4. Tier 2 Revision 7 Page 11.5-46 - 3. The Fuel Building exhaust (cells 4 and 5) and the Safeguard Building exhaust (cell 6) feed into the NABVS as shown on Figure 9.4.3-3. The radiation detector is very close to the boundary between the FBVS and NABVS and the boundary between the SBVS and NABVS. While the exhaust comes from the FBVS and SBVS, the radiation detectors and the automatic control features are within the NABVS; hence, the diversion of exhaust to the NABVS iodine filtration train on high activity. - 4. The secondary clean drains are collected and routed to the main condenser hotwell. - 5. These monitoring and/or sampling points conform to the requirements in 10CFR50.34(f)(2)(xvii)E for accident monitoring and sampling instrumentation (II.F.I). - 6. This monitor is used for RCS leakage detection to satisfy TS 16.3.4.14. Section 11.5.4.8 describes the monitoring leak detection. - 7. The ranges provided are for the high range (accident) monitors. The ranges for normal operations are $1E-10-1E-06 \mu Ci/cc$ for the aerosol and $5E-11-3E-07 \mu Ci/cc$ for the iodine monitors. - 8. The main steam activity does not alone constitute a signal for an automatic control feature. The electronic logic is that a partial cooldown signal AND either a main steam high activity OR a steam generator high level will generate a signal to automatically isolate the affected steam generator. - 9. This is a sample point that has no monitoring functionality - 10. Primary Initial Test Program (ITP) test applicable to radiation monitoring point is listed, and highlighted in **bold**. Other relevant ITPs are also listed, as appropriate, for information and consistency. - 11. Radiation monitor designations are as follows: - CR001/CR002: Noble Gas or liquid γ or β activity monitors. - CR031/CR032: Normal operations/post-accident aerosol/particulate monitors. - CR041: H-3 monitor. - CR051: Frisker. - CR071/CR072: Normal operations/post-accident iodine monitors. - CR50n: Process monitors on solid waste management system where "n" designation is from 1 to 8. - CR8n1: Four N-16 Monitors on each steam line where "n" designation is from 1 to 4. - 12. Sampler designations are as follows: - CR551: H-3 and C-14 air sampler evaluated in laboratory. - CR561/CR562: Aerosol sampler with particle filter (normal operations/post-accident) evaluated in laboratory. - CR571/CR572: Iodine sampler with common filter bed (normal operations/post-accident) evaluated in laboratory. - · CR581/CR582: Grab samples designated low and high pressure bottles (normal operations/post-accident). - 13. A COL applicant that references the U.S. EPR design certification is responsible for deriving PERMSS subsystem's lower limits of detection or detection sensitivities, and set-points (alarms and process termination/diversion) for liquid and gaseous process radiation monitoring equipment not covered by the ODCM based on plant and site specific conditions and operating characteristics of each installed radiation monitoring subsystem (COL 11.5-3). Tier 2 Revision 7 Page 11.5-47 - 14. A COL applicant that references the U.S. EPR design certification is responsible for developing a plant-specific process and effluent radiological sampling and analysis plan for systems not covered by the ODCM, including provisions describing sampling and analytical frequencies, and radiological analyses for the expected types of liquid and gaseous samples and waste media generated by the LWMS, GWMS, and SWMS (COL 11.5-4). - 15. This monitor is used for primary to secondary leak detection to satisfy TS 16.3.4.12 and industry guidance in NEI-97-06. - 16. Radionuclide concentrations for the RCS leakage monitor test shall be selected to be consistent with the design basis description in the Section 11.5.4.8. - 17. Radionuclide concentrations for the primary to secondary leakage monitor test shall be selected to be consistent with the design basis description in Section 11.5.4.1 - 18. The radionuclide concentrations or radioactive sources for testing monitors shall be selected to be a fraction of the monitoring range. The effluent monitors indicating dose rate provide in-plant radiological conditions during abnormal operating conditions and accidents and support emergency planning. - 19. Monitor conforms to the requirements of 10CFR50.34(f)(2)(xxviii) (III.D.3.4). Table 12.3-4 provides supporting technical details on operating characteristics. Radionuclide concentrations for testing this monitor shall be selected to be above three times the nominal background at full power (See Table 15.0-8). These detectors are not used for monitoring of gaseous process streams and airborne effluent releases to the environment. - 20. This sampling point conforms to the requirements in 10CFR50.34(f)(2)(viii) (II.B.3) for post-accident sampling capability. - 21. These components are classified NS-AQ applying the QA/QC requirements in Regulatory Guides 1.21 and 4.15 so that the ACF perform as designed for compliance with the requirements of 10CFR20 on effluent release limits and 10 CFR 20.1406 by minimizing the contamination of plant systems and prevent unintended releases of radioactivity.