ROBINSON NUCLEAR PROJECT

EMERGENCY PREPAREDNESS EXERCISE

MARCH 30, 1994

D

TE3

9404130261 940330 PDR ADDCK 05000261 F PDR

CAROLINA POWER AND LIGHT COMPANY ROBINSON NUCLEAR PROJECT DEPARTMENT

PLAN FOR ROBINSON ANNUAL EMERGENCY PREPAREDNESS EXERCISE

MARCH 30, 1994

 \sim

٠<u>۴</u>

.

CON-94-0222 RNPD-94-03-R0

i

CAROLINA POWER AND LIGHT COMPANY SCENARIO PACKAGE FOR EXERCISE

TABLE OF CONTENTS

SECTION		PAGE
1.0	Introduction	1.0-1
2.0	Objectives	2.0-1
3.0	Scenario	3.0-1
3.1	Messages	3.1-1
3.2	Plant Parameters	3.2-1
3.3	Meteorological Information	3.3-1
3.4	Radiological Information	3.4-1
3.5	Missions	3.5-1
4.0	Controller's Instructions	. 4.0-1
5.0	Evaluator's Instructions	5.0-1
6.0	Supplementary Material	6.0-1

CAROLINA POWER AND LIGHT COMPANY ROBINSON NUCLEAR PROJECT DEPARTMENT

1993 DEFERRED EXERCISE

1.0 INTRODUCTION

CON-94-0222 RNPD-94-03-R0

iii

On March 30, 1994, the annual Exercise will be conducted. This exercise will involve the partial participation of Chesterfield, Darlington and Lee Counties, and partial participation by the State of South Carolina. This participation will include partial activation of offsite Emergency Operations Centers and simulation of the Joint Information Center. The exercise will include the mobilization of personnel and resources, such that the capability to respond adequately to a simulated accident can be verified. Exercise participants will not have prior knowledge of the scenario.

This manual has been prepared to assist the exercise controllers, evaluators, and observers in the conduct and evaluation of the exercise. It contains the information and data necessary to properly conduct the exercise in an efficient and coordinated manner and is organized as follows:

<u>Section 2.0 Objectives</u> - this section defines the exercise objectives.

<u>Section 3.0 Scenario</u> - this section describes the RNPD postulated sequence of events occurring at RNPD which will require the RNPD Emergency Response Organization, some CP&L Corporate Support, and various onsite and offsite organizations to respond. Included in this section are copies of the exercise messages and pertinent data which will be utilized to control the progress of the exercise scenario.

<u>Subsection 3.1 Messages</u> - this subsection contains copies of the exercise messages which will be utilized to control the development of the exercise scenario.

<u>Subsection 3.2 Plant Parameters</u> - this subsection contains time related information concerning the postulated Plant conditions, which corresponds to the development of the exercise scenario.

<u>Subsection 3.3 Meteorological Information</u> - this subsection contains information and data concerning the postulated meteorological conditions to the site area which will be utilized in the development of the exercise scenario.

CON-94-0222 RNPD-94-03-R0

<u>Subsection 3.4 Radiological Information</u> - this subsection contains timerelated information concerning radiological conditions at the various onsite and offsite monitoring locations, which corresponds to the development of the exercise scenario. Also included in this subsection is information concerning primary and secondary systems radiochemistry, containment atmosphere radiochemistry, radiological release rates, inplant radiation levels, and onsite emergency worker exposure and contamination levels.

<u>Section 4.0 Controller's Instructions</u> - this section provides general instructions to the controllers in the conduct of the exercise, as well as any required special maintenance instructions.

<u>Section 5.0 Evaluator's Instructions</u> - this section provides general instructions and evaluation criteria to the exercise controllers for evaluating the responses of the exercise participants and the progress of the exercise.

<u>Section 6.0 Supplementary Material</u> - this section contains supplementary material for use by the exercise controllers during the course of the exercise, including log sheets.

Copies of this manual will be provided to exercise controllers, evaluators, and selected observers prior to the exercise.

CAROLINA POWER AND LIGHT COMPANY PLAN FOR ANNUAL EMERGENCY PREPAREDNESS EXERCISE

MISSION AND PURPOSE OF DRILL

To demonstrate portions of Carolina Power and Light emergency response capabilities and other elements of the CP&L Robinson Nuclear Project Department (RNPD) Radiological Emergency Plan, associated implementing procedures and the CP&L Corporate Emergency Plans in accordance with Nuclear Regulatory Commission (NRC) Regulation 10CFR50.47(b).

SCOPE AND OBJECTIVES

I. SCOPE

A simulated accident at the H. B. Robinson Nuclear Power plant which will involve planned response actions to include: emergency classification; notification of offsite organizations, notification of Plant personnel; augmentation of personnel (normal work day), activation of emergency facilities; and dispatching of plant teams. The exercise will involve partial participation by the State of South Carolina and surrounding Counties.

II. OBJECTIVES

Objectives for the 1991 H. B. Robinson Exercise are included in Section 2 of this package.

SITUATION AND ASSUMPTIONS

I. EXERCISE DATES

Α.	Player Briefing:	March 29, 1994 – 10:00 a.m. @ Information Center
Β.	Final Controller Meeting:	March 29, 1994 - 2:00 p.m. @ EOF Building
C.	Exercise:	March 30, 1994 – 8:30 a.m. to 1:00 p.m.
D.	Facility Critique with Players:	At conclusion of exercise
E.	Lead Evaluator Meeting:	March 30, 1994 - 7:00 p.m.
F. .	CP&L Critique:	March 31, 1994 - 1:00 p.m. @ TSC/EOF Building Room 132
G.	NRC Exit:	March 31, 1994 - Following CP&L Critique, in Room 132

CON-94-0222 RNPD-94-03-R0

II. DRILL/EXERCISE LOCATIONS/FACILITIES

Α.

- H. B. Robinson Steam Electric Plant, Hartsville, South Carolina
 - 1. <u>Simulator Control Room</u> The function of the Simulator Control Room is to provide plant control and initial direction of all plant related emergency operations.
 - 2. <u>Operations Support Center (OSC)</u> The OSC will be located in the Maintenance Shop. The function of the OSC is to provide an area for assembly and briefing of support personnel and "off shift" personnel called to the site.
 - 3. <u>Technical Support Center (TSC)</u> The location of the TSC is in the TSC/EOF/Training Building. The function of the TSC is to provide an assembly location for personnel who provide engineering and management support of plant activities following an accident, display of status of plant parameters; and provide an emergency reference collection of selected engineering and plant documents. The TSC is activated and emergency functions are performed in accordance with the provisions of the Plant Radiological Emergency Response Plan and Implementing Procedures.

The TSC will perform the EOF functions until the EOF is operational. In addition to the normal plant communications system, redundant emergency communications facilities in the TSC provide telephone contact with required agencies and other response centers, by use of the Corporate Emergency Communications System.

- 4. <u>Joint Information Center (JIC)</u> The JIC is located at the Florence District Office on Highway 52. The Center will be simulated during this exercise.
- 5. <u>Emergency Operations Facility (EOF)</u> The EOF is located in the plant TSC/EOF Training Building. When activated, the EOF is managed by the Emergency Response Manager. He will have a staff to provide support in: Technical Analysis, Administrative and Logistics, and Emergency Communications. The Radiological Control Manager and his staff, will participate in this exercise. Direction and coordination of field and mobile radiological Monitoring Teams and onsite/offsite Dose projection are emergency functions performed out of the EOF.

CON-94-0222 RNPD-94-03-R0

- 6. <u>Meteorology Tower</u> Located north of the TSC on the plant site. Measures wind at 10.0 meters (33 feet) and 62.8 meters (206 feet) above the ground.
- B. <u>Corporate Communications Department (CCD)</u>, Raleigh. The CCD is located in the Center Plaza Building, Raleigh, NC.
- C. <u>Miscellaneous Facilities</u>
 - 1. <u>Hartsville Airport</u>, 365 foot elevation, 3300 foot runway is located approximately 4 miles east of the RNPD Plant.
 - 2. <u>Motels</u>

Landmark Motel, U.S. 15 Bypass and S.C. 151 Hartsville, South Carolina (803/332-2611)

Days Inn, Business Route 15 North, Hartsville, South Carolina (803/383-0110)

CONCEPTS AND CONDUCT OF THE EXERCISE

I. <u>Exercise Scenario</u>

The exercise will simulate an off-normal incident at the RNPD Plant that will require: accident recognition and classification; assessment of onsite and offsite radiological consequences; alerting, notification, and mobilization of CP&L emergency response personnel; activation and use of emergency facilities and equipment; effective use of communications; preparation of reports, messages, and records; and dispatching of plant teams.

II. <u>Robinson Exercise Organization Activities</u>

The exercise organization will consist of players, the Exercise Director, the Lead Exercise Controller, Controllers, Evaluators, and Observers as follows:

1. <u>The CP&L Players</u> include plant personnel assigned to perform functions and the emergency positions as described in the Plant Radiological Emergency Response Plan. The success of the exercise is largely dependent upon player reaction, player knowledge of the Radiological Emergency Response Plan and Implementing Procedures, and an understanding of the Exercise Plan and Exercise Objectives. Some situations affecting player action or reaction may exist at the time play begins.

CON-94-0222 RNPD-94-03-R0

However, most situations will be introduced through the vehicle of simulator response, Controller Exercise Message Cards, Exercise SPDS Data Sheets, and messages generated by players. Therefore, players are responsible for initiating actions and/or messages during the exercise according to their procedures, responsibilities, and tasks outlined for their particular function in the Plant Radiological Emergency Response Plan and Procedures.

- 2. <u>The Exercise Director and Lead Exercise Evaluator</u> will be responsible for overall exercise preparation; to oversee conduct of the exercise; to arrange preparation at the conclusion of the exercise of a consolidated evaluation and critique report; and to prepare and follow-up on an itemized list of corrective actions recommended as a result of evaluation and critique.
- 3. <u>The Lead Scenario Controller</u> will coordinate controller input as necessary to initiate player response and keep the action moving according to the scenario and objectives.
- 4. <u>The Controllers</u> will deliver "Exercise Message Cards" to designated players at various times and places during the exercise; inject or deliver additional messages, as may be required to keep the action moving according to the scenario and objectives; observe the exercise at their assigned locations; maintain controller log sheet notes; and submit recorded observations to Lead Evaluators prior to the scheduled critique. Controllers will be identified as such.
- 5. Lead Evaluators and Evaluators are CP&L and contractor personnel who are assigned to observe and judge the effectiveness of selected organizations, personnel, functions and/or activities of the Plant Radiological Emergency Response Plan and Implementing Procedures. Selection of evaluators is based on their expertise in, or their qualifications to evaluate the activity or area assigned. In most cases, persons designated as Controllers for a given function will also be assigned as evaluators of that function. Evaluators may record their observations using the Controller Log Sheet, and if possible, provide recommendations on corrective actions to the Lead Evaluator prior to the scheduled critique. They will take steps whenever possible to collect data on the time and motion aspects of the activity observed for post exercise use in designing system improvements. Evaluators will also be identified as such.
- 6. <u>Observers</u> from various CP&L components and from other organizations may be authorized on a limited basis to participate in the exercise solely for the purpose of observing exercise activity. Observers will be identified as such.

CON-94-0222 RNPD-94-03-R0

III. <u>Evaluation and Critique</u>

The exercise will be evaluated by Evaluators who will be assigned to key locations and response activities where they will record their observations using checklists provided as guidelines. Following the exercise, Evaluators will present their findings at the critiques as scheduled in this plan.

A. Evaluation of the exercise will include activities:

The following activities will be evaluated:

- 1. Simulator Control Room (C.R.)
- 2. Operational Support Center (OSC)
- 3. Technical Support Center (TSC)
- 4. Emergency Operations Facility (EOF)
- 5. Accident recognition, classification, and assessment, including a classification of General Emergency.
- 6. Assessment of onsite and offsite radiological consequences
- 7. Alerting, notification, and mobilization activities
- 8. In plant corrective actions (simulated)
- 9. Use of emergency facilities and equipment
- 10. Use of communications equipment and procedures
- 11. Preparation of reports, messages, and records
- 12. Protective actions for site personnel (Evacuation assembly, and accountability will be simulated)
- 13. Joint Information Center (JIC)
- B. Exercise performance will be evaluated on the basis of standards or requirements contained in the Plant Radiological Emergency Response Plan and Implementing Procedures.
- C. Any deficiency in the Plant Radiological Emergency Response Plan and implementing procedures, training, etc., that is identified through the critique process shall be documented by the Lead Exercise Evaluator and corrected by the organizations and individuals who have responsibility for the areas identified. Management controls shall be established to ensure that corrective actions are taken as necessary.

IV. <u>Exercise Exempt Personnel</u>

Some plant personnel must be exempt from exercise participation in order to maintain vital plant functions such as security, normal operations, chemistry, etc.

CON-94-0222 RNPD-94-03-R0

V. <u>General Guidance for the Conduct of the Exercise</u>

A. <u>Simulating Emergency Actions</u>

Since exercises are intended to demonstrate actual capabilities as realistically as possible, participants should act as they would during a real emergency. Wherever possible, actions should be carried out.

B. Avoiding Violation of Law

Intentional violation of laws is not justifiable during any exercise. To implement this guideline, the following actions must be taken:

- 1. All evaluators and potential participants must avoid intentional violation of all federal, state and local laws, regulations, ordinances, statutes, and other legal restrictions.
- 2. Participants will not direct illegal actions being taken by other participants or members of the general public.
- Participants will not intentionally take illegal actions when being called out to participate in an exercise. Specifically, local traffic laws such as speed laws will be observed.

C. Actions to Minimize Public Inconvenience

It is not the intent, nor is it desirable or feasible, to effectively train or test the public response during the conduct of radiological emergency exercise. Public inconvenience is to be minimized. The actions of federal, state, and county agencies and nuclear power plant operators receive continuous public notice and scrutiny; therefore, the conduct of an exercise could arouse public concern that an actual emergency is occurring. It is important that conversations that can be monitored by the public (radio, loudspeakers, etc.) be prefaced and conclude with the words. "THIS IS A DRILL/EXERCISE MESSAGE; THIS IS Α DRILL/EXERCISE MESSAGE."

CON-94-0222 RNPD-94-03-R0

D. <u>Maintaining Emergency Response Readiness</u>

During the performance of the exercise, the ability to recognize a real emergency, terminate the exercise, and respond to the new situation must be maintained. Therefore, the scenario and actions of participants will not include any actions which seriously degrade the condition of systems, equipment or supplies, or affect the detection, assessment, or response capability to radiological or other emergencies.

Actions taken by the participants will also avoid actually reducing plant or public safety. The potential for creating real radiological or other emergencies will be specifically avoided.

If a real emergency occurs during the exercise, requiring the actions of Company personnel, then the exercise will be terminated by the Lead Scenario Controller in consultation with appropriate plant management. All messages about the real events will be clearly identified as such. For example, precede a real message with: "THIS IS NOT, REPEAT NOT A DRILL/EXERCISE MESSAGE."

COMMAND, CONTROL, AND COMMUNICATIONS

I. <u>Site Emergency Coordinator (SEC)</u>

The SEC has immediate and unilateral authority to act on behalf of the Company to manage and direct all onsite emergency operations involving the facility. During the exercise, he will have responsibility also for the simulated emergency operations.

II. <u>Communications</u>

Communication equipment and procedures are described in Plant Emergency Procedure and others. The plant public address (P.A) system will be the primary means of communication.

III. <u>Records</u>

Robinson Plant Emergency Procedures, require that plant personnel responsible for maintaining records during an emergency shall provide a copy of those records to the Emergency Preparedness Staff following an emergency or emergency exercise.

IV. <u>Exercise Message/Drill Card</u>

The Exercise Message Cards are prepared by the exercise planners/controllers prior to the exercise to satisfy the requirements of the scenario. The purpose of the message is to initiate a player response and to keep the exercise moving according to the scenario and objectives. The messages that are delivered to players during the play of the exercise will allow "free play". Time

v.

- A. All CP&L in-plant exercise participants will report time of incidents, messages, etc., in accordance with time based on the Control Room clocks.
- B. Local 24-hour clock time will be used to reference time in all reports and communications. Eastern Standard Time (EST) will be specified as appropriate.

VI. <u>Message Preamble and Close</u>

The words "THIS IS A DRILL/EXERCISE MESSAGE" should be used at the beginning and end of each message.

CON-94-0222[.] RNPD-94-03-R0

EXERCISE BASICS

The following is a definition of terms found in the tables in the following pages:

I. <u>Participants</u>

1. Extent of Participation:

Not Involved - These groups will not play. They may or may not be simulated by controllers as necessary.

Limited - Play is limited to less than full participation. Evaluations by controllers will not penalize players on items caused by the limited participation.

Full Play - A full staff is expected to play in the facilities involved.

Controllers - (where checked) Controllers will be used to simulate organizations not participating.

Evaluators - Evaluators will evaluate the exercise.

Observers - Outside Organizations have requested to send observers to the areas checked.

Simulated - Where controllers are not used to simulate an organization that is not participating, the entire interface with the non-participating organization is simulated.

2. Notify:

Actual - Actual notification methods and procedures are used to notify the participating organization.

Simulated - The organization is not actually notified by procedure. The notification may be made to an artificial number with a controller staged to receive the information, or it may be simulated.

Start/Finish - Some organizations want notifications only at the start and finish of an exercise and not continual updates.

CON-94-0222 RNPD-94-03-R0

3. Activation:

Actual - Actual activation may involve notifying the emergency organization members at their work place and home, and set up of the facility is performed by the participants.

Prestaged - The affected personnel may be in place or in a nearby place on standby when the initial notification to begin activation is received.

II. <u>Facilities</u>

1. Manning:

Not Activated - No one reports to the facility.

Single Shift - Each position is expected to be manned by a primary or alternate designee. No shift turnover is expected or required, but individual turnovers are acceptable if unavoidable schedule conflicts occur.

Multiple Shift - A shift turnover is required to meet exercise objectives. \Im

Augmentation - An augmentation drill progressing from the available shift complement to an activated emergency response facility is performed.

2. Setup:

Simulated - Setup of the facility is simulated.

Actual - Participants are expected to set up their facilities from everyday use to emergency use.

Prestaged - Setup of the facility is already prestaged in the emergency mode.

Alternate - Where available, an alternate facility will be used.

III. <u>CP&L and Non-CP&L Activities</u>

1. Extent:

Not Tested - This activity is not within the scope and objectives.

Simulated - This activity is not within the scope and objectives, but it must be simulated by the players and/or controllers to assure a complete and logical exercise.

Partial - This activity is expected to be performed to the extent that plant completion can permit. Evaluators will not penalize players for non-performance of activities where they must be simulated due to circumstances beyond their control; for example, lab analyses may involve players in the lab using props instead of actual equipment.

Full - This activity is expected to be performed in full without simulation. For example, full use of SCBAs and protective clothing means donning the clothing and equipment and using the breathing air. Evaluators will look for any problems when evaluating a fully played activity.

2. Frequency:

One Time - This activity can be demonstrated one time to the evaluators in order to fulfill exercise objectives.

Every Time - This activity must be performed every time as required by the players in response to the scenario. The evaluators, when available, will observe each time the activity is performed.

Specific Time - Where an activity is prestaged or constrained by the scenario, such as for offsite fire participation, a specific time will be built into the scenario for the activity.

3. Time:

Real Time - The activity is performed as given by the players and the scenario for as long as it takes.

Compressed Time - Some activities take so long, such as analysis of filed collected samples in the mobile laboratory, that time must be compressed to complete that activity within the exercise schedule.

4. Source:

Players - The driving force behind the activity will be player response to the scenario. No messages will be handed out to players to initiate the action.

Scenario - Driving force for initiating the activity will be a message handed to the player from the controller.

CON-94-0222 RNPD-94-03-R0

<u>Exercise Basics</u>												
Date: <u>March 30, 1994</u> Begin Time: <u>0830</u> End Time: <u>1300</u>												
Location(s): <u>Rob</u>	insor	1	•								,	
X Announced Full Scale Max. EAL Site Emergency												
Unannounced X Small Scale X General Emergency											су	
Extent of Participation Notify Activate												
		Exte	nt of	Part	icipa	tion			Notif	<u>y</u>	Act	ivate
Participants	Not Involved	Limited	Full Play	Controllers	Evaluators	Observers	Simulated	Actual	Simulated	Start/Finish	Actual	Pre-staged
CP&L Site			x	x	x	x		x		x	X	
CP&L Offsite (NPS HP/Chem)			х	x	х			1	x	x		*
CP&L Corporate (CCD)			X	X	x			x				
Counties		X						X				x
State		x						x				x
NRC Resident						X						
NRC Operations Center	X		**					x				
NRC Site Response Team	х											
FEMA	x											
Fire Dept.	x											·
Ambulance	x											
Hospital	x											
Agreement Physician	x											
Media	X					_	<u>x</u>		x			

* These personnel will be in Hartsville area, and will be delayed such that their arrival will follow EOF activation.

** If NRC is not playing, then CP&L will provide a simulated NRC contact.

		Man	ning			Se	tup	
Facilities	Not Activated	Single Shift	Multiple Shift	Augmentation	Simulated	Actual	Pre-staged	Alternate
Control Room		x					x	
osc		х				X		
TSC		X				x		
EOF		x				x		
Joint Information Center		x				x		
CCD		x				X		
State Mobile Lab	x							
Hospital	x							
SERT/FEOC	x							
SEOC		x		_		X		
Simulator		x					X	

4

		Ext	ent		Fre	que	ncy	T	ime	Sour	ce
CP&L Activities	Not Tested	Simulated	Partial	Full	One Time	Every Time		Real Time	Compressed	Players	Scenario
Accident Assessment				x		x		x		x	
EAL Classification				x		x		x		x	
Notification	l			x		x		x		X	
Accountability		x									
Evacuation		x									
Prot. Area Access Control				x		x		x		X	
Use of Dosimetry				x		x		x		x	
Use of KI		x									
Use of Protective Clothing				x		x		x			
Use of SCBA			X			X		x		x	
Use of Respirators			x			x		x		X	
Source Term Determination				x		x		x		x	
Dose Assessment				x		x		x		x	
Offsite Protective Action Recommendation				x		x		x		x	
Fire Brigade						x		x		X	
First Aid Team	x										
Decontamination	x										
Security			x			x		x		x	
PASS Sample			x		x			x		X	
Other Samples		x			x			x		x	
Lab Analysis		x			x			x		x	
Onsite Surveys				x		x		x		x	
Offsite Surveys		<u> </u>		x		x		x		x	
Press Conference		X				x		x		x	
Media Calls		x				x		x		x	
News Release		x				x		x		x	
Rumor Control		X				x		x		x	
Recovery	x										

.

CON-94-0222 RNPD-94-03-R0

.

CAROLINA POWER AND LIGHT COMPANY ROBINSON NUCLEAR PROJECT DEPARTMENT

1993 DEFERRED EXERCISE

2.0 OBJECTIVES

. .

CON-94-0222 RNPD-94-03-R0

..

ROBINSON 1993 EXERCISE OBJECTIVES PERFORMED ON MARCH 30, 1994

- 1. Demonstrate the ability of the Control Room to detect accident conditions, assess and project radiological consequences, and formulate near term mitigating actions.
- 2. Demonstrate the adequacy of the Technical Support Center in providing accident assessment and mitigation, and communication/notification activities.
- 2A. Demonstrate the adequacy of the Emergency Operation Facility in providing dose assessment and communication/notification activities.
- 3. Demonstrate the ability to identify and properly classify the emergency in accordance with the Emergency Plan and Implementing Procedures.
- 4. Demonstrate the adequacy of alerting, notifying, and mobilizing Emergency Response Organization Personnel.
- 5. Demonstrate the timeliness of initial and follow-up notifications to responsible state and local government agencies.
- 6. Demonstrate the adequacy of the information provided to responsible state and local government agencies.
- 7. Demonstrate the capability to make timely and accurate notification to the Nuclear Regulatory Commission. (Actual participation of the NRC Operations may be simulated.)
- 8. Demonstrate the ability to communicate with plant emergency teams and company environmental monitoring teams.
- 9. Demonstrate the ability to communicate between emergency response facilities.
- 10. Demonstrate the ability to support the radiological assessment process while maintaining personnel radiation exposure as low as reasonably achievable (ALARA).
- 11. Demonstrate the capability to perform radiological monitoring activities and assessment.
- 12. Demonstrate the ability to provide adequate radiation protection services such as dosimetry and personnel monitoring.

- 13. Demonstrate the ability to adequately control the spread of contamination and the radiological exposure of on-site and off-site emergency workers.
- 14. Demonstrate the ability to formulate appropriate protective action recommendations to off-site government authorities.
- 16. Demonstrate the ability to augment the on-shift emergency organization within the time limits specified within the Emergency Plan and its implementing procedures (normal working hours).
- 17. Demonstrate that the Technical Support Center, Operational Support Center, and Emergency Operations Facility can be activated in accordance with the Emergency Plan and its implementing procedures.
- 32. Demonstrate the activation, operation, and reporting of field monitoring teams.
- 33. Demonstrate the assessment of radiological consequences of the accident and of any release of radioactive material to the environment.
- 36. Demonstrate the ability to reassess plant conditions and evaluate recovery considerations as defined by the plant emergency plan.
- 38. Demonstrate that previously identified NRC Open Items resulting from the previous year's exercise can be closed.

Numbered objectives represent their order in the data base and are not intended to be sequential.

CON-94-0222 RNPD-94-03-R0

CAROLINA POWER AND LIGHT COMPANY ROBINSON NUCLEAR PROJECT DEPARTMENT

1994 DEFERRED EXERCISE

3.0 <u>SCENARIO</u>

CON-94-0222 RNPD-94-03-R0

۰.

Robinson 1993 Deferred Annual Exercise

Note: This Exercise will be run with the simulator in interactive mode, all times given are approximate

At 0830 EST on March 30, 1994 Robinson Unit 2 is at 100% power, late in core life, and the RCS activity is normal. At 0846, a small fire in the Charging Pump room occurs at the "A" Charging Pump and cabling area. Fire alarms will be received in the Simulator Control Room and a Fire Brigade response initiated. At 0855 the dedicated shutdown power supply (a power supply in addition to the Emergency Busses) will be de-energized as a result of the fire, removing the use of loads supplied from the DS bus ("A" Charging Pump, "A" CCW Pump, etc.).

An **Alert** should be declared around 0900 based on a fire with the potential to affect safety related equipment. The fire may be successfully extinguished by the plant Fire Brigade after 15 minutes of in-room fire fighting effort. No offsite assistance will be required to extinguish the fire.

At 0915 a 100 gpm primary to secondary leak is ramped in to the "A" Steam Generator. The leak causes alarms in the blowdown radiation monitor for the associated Steam Generator and the Condenser Air Ejector discharge monitor. Plant shutdown may begin around 0930. At 0926, the fan belts break on the HVS-1 supply fan interrupting supply air to the Auxiliary Building. The loss of supply air disrupts the flow balance within the Auxiliary Building, but negative pressure is maintained.

During the plant shutdown, a spurious Turbine Trip occurs with no associated Reactor trip (ATWS). A manual trip from the control board will be required to reduce reactor power. This represents a second **Alert**. The Steam Dump System (designed to relive steam flow from the Steam Generators to the Condenser after a Turbine Trip) fails to operate. All Steam line Power Operated Relief Valves (PORVs) open to prevent overpressurization. When the plant stabilizes the "A" Steam Line PORV will remain stuck open.

A Site Area Emergency should be declared around 1017 based upon a 100 gpm leak in the Reactor Coolant System and the stuck open PORV which provides a direct uncontrolled path to the atmosphere. However the release is minor as no fuel failure has occurred at this time.

At 1116, a Loose Parts Monitoring System (LPMS) alarm occurs which indicates loose parts transported in the Reactor Coolant System. The loose parts result in mechanical damage to a number of fuel assemblies in the core. Approximately 9% of the fission product activity normally trapped in the space between the fuel and the cladding (gap activity) is released into the RCS. Reactor coolant related radiation monitors begin to alarm. Since there is also a leak of coolant into the "A" Steam Generator, this activity is released out the open PORV.

A General Emergency should be declared at around 1130 based upon the fuel damage in addition to the direct pathway via the Steam Generator leak and open PORV for release into the environment.

From 1130 until approximately 1300, the release continues while the Control Room cools down and depressurizes the Reactor Coolant System to mitigate the release. At 1210, the chain drive on the Turbine turning gear breaks, causing the turbine to stop rolling. Damage Control teams may want to repair the chain to prevent damage to the turbine.

Deferred 1993 RNPD Exercise Time line

Note: This Exercise will be run with the simulator in interactive mode, all times given are approximate

- T0 0830 Initial conditions: Reactor is at 100% power steady state, RCS boron concentration is 22 ppm, late in core life, normal RCS activity. "A" Charging and "A" CCW pumps are running.
- T+16" 0846 Fire alarm in Charging Pump Room (one train), Fire Tech. will be dispatched to investigate.
- T+18" 0848 Second train fire alarm actuated in Charging Pump Room, Fire alarm will be sounded and fire brigade will respond.
- T+21" 0851 Approximate time for status report from Charging Pump Room. Status will be room has heavy smoke near the overhead and flames appear to be coming from the "A" Charging Pump fire. Sparks have been thrown from "A" pump onto "B" pump and the Charging Pump Control Panel causing some burn marks on both.
- T+25" 0855 DS Bus Undervoltage alarm is received on the DS/FP Annunciator panel A. "A" CCW Pump and "A" Charging Pump will be lost as a result of the loss of the DS bus. "D" Service Water Pump alternate power supply from the DS bus is lost also.
- T+26" 0856 480 Volt Bus Ground Alarm (APP-009-E7) is received to give the Control Room indications of other potential problems. Approximate time for Fire Brigade at the scene.
- T+30" 0900 Approximate time for declaring ALERT based on fire with potential to effect safety related equipment.
- T+38" 0908 Approximate time fire is reported out. Actual time for "fire out" will be after 15 minutes of in room fire fighting. Initial attempts with portable equipment will be unsuccessful.
- T+45" 0915 Charging Pump High Speed alarm (APP-003-F4) is received on the RTGB. Steam Generator Tube Rupture is beginning (100 gpm leak ramped in over 10 minutes) in "A" Steam Generator.
- T+46" 0916 A second Charging Pump will be started and a leak rate determination (OST-051) may be started.
- T+50" 0920 R-19A (Steam Generator Blowdown) monitor alarms.
- T+52" 0922 R-15 (Condenser Air Ejector Discharge) monitor alarms.

T+56" 0926 Fan belts break on HVS-1 interrupting supply air to the Auxiliary Building.

1993 Deferred Exercise Time line (Continued)

- T+59" 0929 Start shutdown of the Reactor at 2% a minute, RCS boration begins.
- T+72" 0942 Approximate time to recover DS bus (actual time to be determined by player response), this will recover "A" CCW Pump.
- T+75" 0945 Shutdown rate increased to 3% a minute.
- T+97" 1007 A spurious Turbine trip and an failure of the reactor to automatically trip (ATWS). Manual Trip from the RTGB will be successful.
- T+98" 1008 Due to a failure of the Steam Dump System to operate all three Steam Generator PORVs lift to reduce pressure.
- T+102" 1012 "A" S/G PORV will remain open after temperature is returned to normal.
- T+103" 1013 The Main Steam Isolation Valve for "A" S/G to be shut after RCS temperature is reduced below 547F.
- T+107" 1017 Approximate time to declare SITE AREA EMERGENCY based on two (RCS and Containment) Fission Product Barriers breached.
- T+152" 1102 "A" S/G PORV fails full open.
- T+166" 1116 LPMS alarm is received in the Control Room.
- T+168" 1118 R-9 (Letdown line) monitor alarms and continues to increase.
- T+171" 1121 R-9 exceeds 5 Rem (if Letdown is in service).
- T+175" 1125 Approximate time for GENERAL EMERGENCY declaration.

T+176-END 1126 Cooldown and depressurization to stop release.

T+220" 1210 Chain drive on Turbine Turning Gear breaks, causing turning gear to stop.

T+270" 1300 Approximate end of drill.

Developed: March 16, 1994

ø

T-Time	Clock	Simulator Instruction	Event Description	Emergency Plan Actions	Missions Dispatched
0173	1123	Xmitter Override: RMS (31A): 55.1 mR/hr in 4900 sec.	Control Room continues to attempt to cool down and stop release.		
		If Letdown is NOT secured: RMS (R-9): 9227 mR/hr in 2100 sec. RMS (R-4): 923 mR/hr in 2100 sec.	X		
0179	1129	Xmitter Override: RMS (31B): 3.2 mR/hr in 300 sec. RMS (31C): 3.2 mR/hr in 300 sec.			
0188	1138			Approximate time to declare a General Emergency, based on breach of all three fission product barriers, alarm on R-31A, and/or dose projection.	
0210	1200	If Letdown is NOT secured: Xmitter Override: RMS (R-9): 7414 mR/hr in 5400 sec. RMS (R-4): 741 mR/hr in 5400 sec.			
0220	1210	Malfuntsion: Turning Gear Motor Trip, APP -008, Window D-2 Turbine ar Zero Speed, APP-009, Window F-2	After turbine turning gear is engaged, a failure in the turning gear drive chain occurs, causing the turning gear to stop.		
0255	1245	Xmitter Override: RMS (31A): 26.4 mR/hr in 2700 sec.	·		_
0270	1300	Terminate Drill	Terminate Drill	Terminate Drill	Terminate Drill

Exercise: March 30, 1994

Page 5

.

Developed: March 16, 1994

T-Time	Clo	ock Simulator Instruction	Event Description	Emergency Plan Actions	Missions Dispatched	
-0030	0800	Set IC = 13; Set Met Data Flag: JLOA MET = False (File: 33094) 100% Power, EOL 22 ppm Boron "A" Charging Pump operating	Initial Conditions: Reactor is at 100% power. The cation demineralizer is not in Same	Control Room/E&RC/Maintenance turnover briefing.		
		 A "Charging Fump operating "A" CCW Pump running The cation demineralizer is not in service. MAL MSS 6A,B,C,D,E (Steam dumps fail shut) 	"A Charging Pump and "A" CCW Pump are in service.			
	•	MAL RPS-1A and 1B, (Fail to trip auto only) Fail SI Flow indication on ERFIS only. Xmitter Override:				
		RMS (R-2): 11 mR/hr RMS (R-4): 6 mR/hr RMS (R-7): 8 mR/hr RMS (R-9): 70 mR/hr RMS (R-11): 20000 CPM RMS (R-12): 1200 CPM				
		RMS (R-14A): 700 CPM RMS (R-14B): 20 CPM RMS (R-14C): 40 CPM RMS (R-14C): 10 CPM RMS (R-14E): 10 CPM				
		RMS (R-15): 15 CPM RMS (19A): 2000 CPM RMS (19B): 1000 CPM RMS (19C): 1000 CPM RMS (31A): .3 MR/HR RMS (31B): .4 MR/HR				
0000	0830	RMS (31C): .6 MR/HR RMS (32A),(32B): 1 R/HR RMS (33): .35 MR/HR Exercise begins:		· · · · · · · · · · · · · · · · · · ·		

:

T-Time	C	lock Simulator Instruction	Event Description	Emergency Plan Actions	Missions Dispatched
0016	0846	LOA FPS-22 to true: Fire Alarm Train A, Charging Pump Room	A fire alarm in the charging pump room occurs.	Control Room dispatches AO to investigate	AO is dispatched to Charging Pump room.
0018	0848	LOA FPS-23 to true: Fire Alarm Train B, Charging Pump Room	Second train of fire alarm in charging pump room comes in.	Control Room sounds fire alarm and dispatches fire brigade.	Fire brigade musters
0021	0851				Status report from charging pump room. Room has heavy smoke near the overhead and flames appear to be coming from the "A" Charging Pump fire. Sparks have been thrown from "A" motor onto "B" pump causing some burn marks on the motor.
0025	0855	LOA EPS-63 to False: Loss of DS Bus	A DS Bus Undervoltage alarm is received on the DS/FP Annunciator panel A. "A" CCW Pump and "A" Charging Pump will be lost as a result of the loss of the DS bus. "D" Service Water Pump alternate power supply from the DS bus is lost also.	**	
0026	0856	Override EPS-5: 480v bus ground alarm.	A 480 volt bus ground alarm (APP- 009-E7) is received to give the Control Room indications of other potential problems.	An Alert should be declared based upon a fire potentially affecting safety related equipment.	Fire brigade should reach the scene.
0038	0908	LOA EPS-157 to faise to rack out "A" Charging Pump breaker.			Fire brigade should report fire is out.
0041	0911	بې:		Offsite Agencies should be notified of an Alert. Search of TSC for incorporating into Protected Area should begin. PA announcement of Alert. TSC Personnel should assemble in old O&M Bldg.	
0043	0913	MAL SGN-2A at 100 gpm over 600 sec. Xmitter Override: RMS (R-15): 4359 CPM in 600 sec. RMS (19A): 3500 CPM in 600 sec.	A Steam Generator tube leak begins in the "A" Steam Generator. Control Room will first detect leak with a charging pump high speed alarm.		

Exercise: March 30, 1994

T -Time	Cl	ock Simulator Instruction	Event Description	Emergency Plan Actions	Missions Dispatched
0046	0916	Xmitter Override: RMS (R-14A):2495 CPM in 3600 sec. RMS (R-14B): 142 CPM in 3600 sec. RMS (R-14C):1836 CPM in 3600 sec.	A second charging pump will be started and a leak rate determination (OST- 051) may be started.	Review EALs. EAL should indicate Breach of RCS once leak rate is determined. This is still only an Alert.	
Var- iable	Var- iable	On R-19A Alarm/isolation: decayR-19A to 2000 cpm in 10000 seconds	An alarm is received for the Steam ` Generator blowdown monitor. Blowdown is automatically isolated.		
Var- iable	Var- iable		An alarm is received for the condenser air ejector discharge monitor.		
0053	0923	Xmitter Override: RMS (R-15): 16504 CPM in 3120 sec.			
0056	0926	Malfunction: HVS-1 Trouble alarm, APP-010, Window A-5	HVS-1 belts break interrupting supply ari to the Auxiliary Building.	Search of TSC should be complete. Personnel should be allowed to enter TSC.	
0059	0929		Control Room should begin shut down of unit at approximately 2% per minute. RCS boration begins.	Approximate time that TSC, EOF and OSC will be activated.	
0072	0932	LOA EPS-155 to true: approximate time to reenergize DS bus.	DS Bus is reenergized to recover "A" CCW pump.		
0075	0945		Control Room increases shutdown rate to approximately 3% per minute.		
0097	1007	EH oil leak at 20 gpm, 30 Seconds after EH leak: MAL Tur-1: Turbine Trip ATWS trip from RTGB successful	EH leak causes turbine trip and a failure of the reactor to automatically trip (ATWS) occurs. A manual trip from the RTGB is successful.	A review of the EALs indicates the ATWS as an Alert also.	
0098	1008		Steam dumps fail to open and all three Steam Generator PORVs lift. to reduce pressure.		

.

:

-

ROBINSON NUCLEAR PROJECT ALL TIMES ARE APPROXIMATE

T-Time	Clock	Simulator Instruction	Event Description	Emergency Plan Actions	Missions Dispatched
0102	1012	MAL MSS-4A to 30%: "A" S/G PORV fails to completely shut.	The "A" S/G PORV will remain open after temperature and pressure in the steam generator return to below the pressure set point.	Review EALs	Dispatch AO to investigate the PORV. Form an OSC repair team to gag the valve shut.
0103	1013	Xmitter Override: RMS (R-15): 3184 CPM in 3600 sec. RMS (R-14A):1045 CPM in 3600 sec RMS (R-14B): 44 CPM in 3600 sec. RMS (R-14C): 385 CPM in 3600 sec.	The MSIV for "A" Steam Generator is shut after RCS temperature is reduced below 547°F.		
0107	1017			Approximate time that a SITE AREA EMERGENCY is declared based upon: RCS Leakage > 50 gpm PORV stuck open = containment breach	
0152	1102	MAL MSS-4A to 100%: "A" S/G PORV fails to full open.	"A" Steam Generator PORV fails to full open.		
0166	1116	Override RCS-18 on: LPMS alarm	An LPMS alarm is recieved from the reactor vessel.		
0168	1118	Xmitter Override: RMS (31A): 23.8 mR/hr in 300 sec. R-31A MUST Alarm! RMS (R-15): 132 CPM in 7200 sec. RMS (R-14A): 713 CPM in 7200 sec. RMS (R-14B): 25 CPM in 3600 sec. RMS (R-14C): 45 CPM in 3600 sec. If Letdown is NOT secured: RMS (R-4): 714 mR/hr in 2100 sec. RMS (R-9): 7135 mR/hr in 300 sec.			·
Var- iable	Var- iable		IF Letdown is NOT secured: R-9 (Letdown Monitor) alarms, leading to a fuel fission product barrier breach.	Review EALs	
Var- iable	Var- iable		R-31A (Main Steam Line A) radiation monitor alarms, indicating a breach of all three fission product barriers.	Review EALs	·

:

٠.

CAROLINA POWER AND LIGHT COMPANY ROBINSON NUCLEAR PROJECT DEPARTMENT

1993 DEFERRED EXERCISE

.

3.1 <u>MESSAGES</u>

۰.

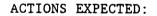
CON-94-0222 RNPD-94-03-R0

..

CP&L EXERCISE MESSAGE CARD

RNPD Plant

Message No. <u>1</u> Date <u>3-29-94</u> Time <u>Player Briefing</u>


MESSAGE FOR: ALL PARTICIPANTS

FROM: CONTROLLER

.

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

THE PLANT HAS BEEN AT 100% POWER FOR THE LAST 80 DAYS, NEAR THE END OF CORE LIFE (300 EFPD). THE BORON CONCENTRATION IS 22 PPM. THE "DIAL UP" PORT AT THE METEOROLOGICAL TOWER FOR USE BY PCs IS OUT OF SERVICE FOR THE REST OF THE WEEK. MET DATA IS AVAILABLE VIA ERFIS.

REVIEW DSR AND SHARE WITH EMPLOYEES AS APPROPRIATE.

FOR CONTROLLER USE ONLY

DATE 3-29-94

ROBINSON NUCLEAR PROJECT OPERATIONS DAILY STATUS REPORT

DAYS OF CONTINUOUS RUN: 80 ON LINE: 01-08 @ 0557 CORE THERMAL POWER: 100 ELECTRIC GEN: NET 690 GROSS 724 MDC: 683

 SIGNIFICANT OCCURRENCES OR EVOLUTIONS SINCE LAST REPORT (SCRAM, S/U, S/D, ETC.) AFFECTING POWER LEVEL OR SCHEDULE: NET GENERATION THROUGH MIDNIGHT 3-28-94: 4,026,328

2. GENERATION OR OUTAGE PLANS AND LIMITS FOR NEXT 24 HOURS:

3. SIGNIFICANT PROBLEMS THAT HAVE POTENTIAL TO AFFECT LOAD OR SCHEDULE: SIGNIFICANT LCO'S:

NEW PROBLEMS:

4. ADDITIONAL COMMENTS: MAJOR WORK IN PROGRESS:

ABNORMAL PLANT CONDITIONS:

ANNUNCIATOR: LIGHTED 0 DISABLED 0 PRIMARY COOLANT LEAKAGE .0396 CONDENSER AIR INLEAKAGE 0 AVERAGE S/G CATION CONDUCTIVITY .11 MICRO-SIEMENS (ACTION LEVEL 1 - >0.8)

CP&L EXERCISE MESSAGE_CARD

RNPD Plant

Message No. _____ 2 ____ Date ____ 3-30-94 Time ____0800

MESSAGE FOR: OPERATING SHIFT PERSONNEL

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

PLANT INITIAL CONDITIONS: 100% POWER NEAR END OF CORE LIFE, BORON CONCENTRATION 22 PPM. NORMAL WORK ACTIVITIES IN PROGRESS PER PLANT SCHEDULE (ATTACHED).

THE DIAL-UP PORT AT THE METEOROLOGICAL TOWER FOR USE BY PCs IS OUT OF SERVICE. MET DATA IS AVAILABLE FROM ERFIS.

ACTIONS EXPECTED:

SHIFT OPERATIONS PERSONNEL TO REVIEW AND UNDERSTAND STATUS OF PLANT.

FOR CONTROLLER USE ONLY

CON-94-0222 RNPD-94-03-R0

3.1-2

DATE 3-30-94

ROBINSON NUCLEAR PROJECT OPERATIONS DAILY STATUS REPORT

DAYS	OF	CONTINUOUS	RUN:	81
		ON (LINE:	01-08
			6	0557

CORE THERMAL POWER:	100
ELECTRIC GEN: NET	690
GROSS	724
MDC:	683

 SIGNIFICANT OCCURRENCES OR EVOLUTIONS SINCE LAST REPORT (SCRAM, S/U, S/D, ETC.) AFFECTING POWER LEVEL OR SCHEDULE: NET GENERATION THROUGH MIDNIGHT 3-29-94: 4,043,704

2. GENERATION OR OUTAGE PLANS AND LIMITS FOR NEXT 24 HOURS:

3. SIGNIFICANT PROBLEMS THAT HAVE POTENTIAL TO AFFECT LOAD OR SCHEDULE: SIGNIFICANT LCO'S:

NEW PROBLEMS:

.-

4. ADDITIONAL COMMENTS: MAJOR WORK IN PROGRESS:

ABNORMAL PLANT CONDITIONS:

	•
ANNUNCIATOR: LIGHTED 0	DISABLED 0
PRIMARY COOLANT LEAKAGE .0396	CONDENSER AIR INLEAKAGE 0
AVERAGE S/G CATION CONDUCTIVITY	.11 MICRO-SIEMENS (ACTION LEVEL 1 - >0.8)

RNPD Plant

Message No. _____ 3 ____ Date ____ 3-30-94 ____ Time ___0846

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

FIRE ALARM COMPUTER:

A11 30-MAR-94 08:46 ZN-4 FIRE ALM. TRN-A CHARGING PUMP ROOM. A55 30-MAR-94 08:46 ZN-NO FIRE ALM. TRN-A FDAP A1 MASTER FIRE ALM.

ACTIONS EXPECTED:

DISPATCH FIRE TECH/FIRE BRIGADE MEMBER TO INVESTIGATE STATUS OF CHARGING PUMP ROOM.

FOR CONTROLLER USE ONLY

REFERENCE MISSION #1

					RNPD
					Plant
Message No.	Α	Date	3-30-94	Time	ANY TIME AFTER
·	CONTINGENCY				0846

MESSAGE FOR: ANY PASSERS-BY

FROM: CONTROLLER - FIRE

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

YOU HEAR A LOUD BELL RINGING.

ACTIONS EXPECTED:

NOTIFY DRILL CONTROL ROOM VIA THE PA SYSTEM.

FOR CONTROLLER USE ONLY

THE BELL IS FROM FDAP PANEL. INFORMATION MAY BE GIVEN TO ANY PASSER-BY. ENSURE, AND IF NECESSARY, PROMPT: "THIS IS AN EXERCISE MESSAGE" OVER THE PA SYSTEM.

REFERENCE MISSION #1

					RI	IPD
						Plant
M	4	Dete	2 20 0/	Time	0848	
Message No.	4	Date	3-30-94	Time _	0040	

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

FIRE ALARM COMPUTER:

. •

A73 30-MAR-94 08:48 ZN-4 FIRE ALM. TRN-B CHARGING PUMP ROOM. B09 30-MAR-94 08:48 ZN-NO FIRE ALM. TRN-B FDAP B1 MASTER FIRE ALM.

ACTIONS EXPECTED:

CONTROL OPERATOR SOUNDS PLANT FIRE ALARM AND MAKES PLANT PAGE ANNOUNCEMENT REGARDING A FIRE IN THE CHARGING PUMP ROOM. ALSO MAKES PLANT PAGE ANNOUNCEMENT FOR FIRE BRIGADE TO RESPOND.

COORDINATE WITH CONTROL ROOM THE SOUNDING OF THE PLANT FIRE ALARM.

SHIFT SUPERVISOR/DESIGNEE MAY START EVALUATING THE EALS FOR CLASSIFICATION OF EVENT.

FOR CONTROLLER USE ONLY

ENSURE, AND IF NECESSARY, PROMPT: "THIS IS AN EXERCISE MESSAGE" OVER THE PA SYSTEM.

REFERENCE MISSION #1

RNPD____

Plant

Message No. <u>5</u> Date <u>3-30-94</u> Time <u>UNSPECIFIED</u> (SEE BELOW)

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

FIRE ALARM COMPUTER:

C58 A50 30-MAR-94 _____ ZN-NO FIRE ALM TRN-NO M.D. FIRE PUMP RUNNING

ACTIONS EXPECTED:

NONE SPECIFIED

FOR CONTROLLER USE ONLY

ALARM TIME IS 08:55 IF MOTOR DRIVEN FIRE PUMP WAS NOT MANUALLY STARTED BY CONTROL ROOM PERSONNEL. OTHERWISE, THE ALARM TIME IS ACTUAL TIME OF CONTROL ROOM ACTION IF THEY DO MANUALLY START THE PUMP. ENTER TIME OF MANUAL PUMP START OR SPRINKLER ACTIVATION IN BLANK SPACE ABOVE.

REFERENCE MISSION #1

CON-94-0222 RNPD-94-03-R0

> <u>RNPD</u> Plant

Message No. _____6 ___ Date ____3-30-94 ___ Time ___0855_____

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

DS/FP ANNUNCIATOR PANEL A ALARMS: DS BUS UNDERVOLTAGE (APP-021-E1) ALARMS 52/32A TRIP (APP-021-22) ALARMS

ANNUNCIATOR PANEL 1 ALARM: COMP COOL PUMPS LO PRESS (APP-001-F5) ON RTGB: "A" CCW PUMP INDICATOR LIGHTS ARE OUT "B" & "C" CCW PUMPS LIGHTS INDICATE RED

ACTIONS EXPECTED:

CONTROL ROOM PERSONNEL MAY CONTACT I&C OR ANY NON-FIRE BRIGADE A.O. TO INVESTIGATE BUS ALARM.

CONTROL ROOM PERSONNEL MAY CONTACT FIRE BRIGADE REGARDING ISOLATION OF ELECTRICAL FEEDS TO "A" CHARGING PUMP AND RECEPTACLES IN CHARGING PUMP ROOM.

CONTROL ROOM PERSONNEL MAY INVESTIGATE IMPACT OF LOSS OF DS BUS ON PLANT (I.E., LOSS OF "A" CCW PUMP AND DS BUS FEED TO "D" SERVICE WATER PUMP).

FOR CONTROLLER USE ONLY

DS BUS TRIPPED VIA OPENING OF BREAKER 32A. THE "A" CHARGING PUMP CIRCUITRY SHORTED AND THE BREAKER FAILED TO TRIP. THIS SHORT PULLED DOWN THE VOLTAGE ON THE DS BUS AND THE 32A (BUS SUPPLY) BREAKER TRIPPED ON UV. OPENING AND/OR RACKING OUT THE "A" CHARGING PUMP BREAKER WILL CLEAR THE DS BUS FAULT AND THE BUS MAY BE RE-ENERGIZED VIA BREAKER 32A OR VIA THE DS DIESEL AND BREAKER 32B. IF AN ATTEMPT IS MADE TO RESTORE THE DS BUS VIA THE DS DIESEL AND BREAKER 32B PRIOR TO CLEARING THE "A" CHARGING PUMP BREAKER FAULT, THE 32B BREAKER WILL ALSO TRIP ON UV.

REFERENCE MISSION #2

				K	INPD	
					Plant	
Message No	7	Date	3-30-94	 0856		

.

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

APP-009 E7 "480V GROUND FAULT"

ACTIONS EXPECTED:

REFER TO ANNUNCIATOR PANEL PROCEDURES.

DISPATCH AO TO LOCATE GROUND.

FOR CONTROLLER USE ONLY

GROUND IS TO GIVE INDICATIONS THAT THERE <u>MAY</u> BE OTHER PROBLEMS. GROUND ON "B" CHARGING PUMP. (E1 BUS)

CON-94-0222 RNPD-94-03-R0

τ.

ACTIONS EXPECTED:

REPORT LOCATION.

DISPATCH AO TO LOCATE GROUND.

FOR CONTROLLER USE ONLY

CON-94-0222 RNPD-94-03-R0 . .

> RNPD Plant

Message No. <u>8</u> Date <u>3-30-94</u> Time <u>ON ARRIVAL (SEE BELOW)</u>

MESSAGE FOR: FIRE TECH/FIRE BRIGADE TEAM LEADER/AO

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

CHARGING PUMP ROOM SIGHT AND SOUND INFORMATION: ROOM HAS HEAVY SMOKE NEAR OVERHEAD, FLAMES ARE PRESENT ON "A" CHARGING PUMP MOTOR. DOES NOT FEEL INTENSE HEAT AT DOOR.

FDAP PANELS ARE ALARMING AND ZONE LIGHT FOR CHARGING PUMP ROOM IS LIT.

NOTIFICATION OF ROOM STATUS BE MADE TO THE CONTROL ROOM. ONCE TEAM LEADER IS ON SCENE, HE WILL UPDATE THE RESPONDING FIRE BRIGADE MEMBERS. RC FIRE SUPPORT PERSONNEL SHOULD RESPOND WITH THE BRIGADE.

FOR CONTROLLER USE ONLY

PROVIDE INFORMATION TO FIRE TECH/FIRE BRIGADE TEAM LEADER WHEN THEY FIRST ENTER THE CHARGING PUMP ROOM.

REFERENCE MISSION #1

> RNPD Plant

Message No. <u>B</u> Date <u>3-30-94</u> Time <u>NOT SPECIFIED (SEE BELOW)</u> CONTINGENCY

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

"A" CHARGING PUMP HAS NO LIGHT INDICATION. IF A START IS ATTEMPTED, THERE IS STILL NO LIGHT INDICATION AND CHARGING FLOW DOES NOT INCREASE.

ACTIONS EXPECTED:

CONTROL ROOM PERSONNEL MAY CONTACT I&C OR NON-FIRE BRIGADE A.O. TO INVESTIGATE PUMP STATUS.

FOR CONTROLLER USE ONLY

IF STATUS OF "A" CHARGING PUMP IS DISCOVERED BY CONTROL ROOM PERSONNEL AS A RESULT OF LOSS OF DS BUS, PROVIDE THIS MESSAGE AT THAT TIME. OTHERWISE, PROVIDE THIS MESSAGE IF THEY ATTEMPT TO START THE "A" CHARGING PUMP.

REFERENCE MISSION #2.

RNPD

Plant

Message No. 9 Date <u>3-30-94</u> Time <u>NOT SPECIFIED (SEE BELOW)</u>

MESSAGE FOR: FIRE BRIGADE

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

THE FIRE IS EXTINGUISHED. ROOM STILL CONTAINS CONSIDERABLE SMOKE. WATER IS ON THE FLOOR (IF HOSE USED).

ACTIONS EXPECTED:

FIRE BRIGADE TO NOTIFY CONTROL ROOM THAT FIRE IS OUT, SCOPE OF DAMAGE IS UNKNOWN AND A LARGE AMOUNT OF SMOKE IS STILL IN ROOM.

FIRE BRIGADE MAY MAKE PREPARATIONS FOR SMOKE EJECTION.

FIRE BRIGADE MAY ALSO DE-ENERGIZE SELECTED ELECTRICAL FEEDS TO THE ROOM. SIMULATION OF THE DE-ENERGIZING IS PERMITTED.

FOR CONTROLLER USE ONLY

ACTUAL MESSAGE TIME IS TO BE AFTER 15 MINUTES OF FIRE FIGHTING ACTIONS INSIDE OF THE CHARGING PUMP ROOM WITH FIRE HOSES AND/OR APPROPRIATE FIRE EXTINGUISHERS. NO ACTUAL EXTINGUISHER ACTUATION OR HOSE ENERGIZATION IS TO BE DONE. SIMULATE THESE ACTIONS.

CREDIT FOR SIMULATION OF DE-ENERGIZING ELECTRICAL FEEDS SHOULD BE EARNED BY PLAYERS BY DEMONSTRATION OF KNOWLEDGE REGARDING HOW AND WHERE TO PERFORM THESE ACTIONS.

REFERENCE MISSION #1

CON-94-0222 RNPD-94-03-R0

MESSAGE FOR: SHIFT SUPERVISOR

FROM: CONTROLLER - CONTROL ROOM

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

DECLARE AN ALERT BASED UPON CONFIRMED FIRE. FIRE HAS THE POTENTIAL TO AFFECT SAFETY RELATED EQUIPMENT.

ACTIONS EXPECTED:

SHIFT SUPERVISOR WILL DECLARE ALERT AND IMPLEMENT ACTIONS OF PEP-103.

FOR CONTROLLER USE ONLY

GIVE THIS MESSAGE OUT ONLY IF AN ALERT HAS NOT BEEN DECLARED BY 0913.

DO NOT GIVE THIS MESSAGE WITHOUT APPROVAL OF LEAD EXERCISE CONTROLLER.

CON-94-0222 RNPD-94-03-R0

> RNPD Plant

Message No. _____10 ____ Date ____3-30-94 Time 0915

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

ANNUNCIATOR PANEL 1 ALARM: CHARGING PUMPS HI SPEED (APP-003-F4) ALARMS ON RTGB: MAXIMUM DEMAND SIGNAL PRESENT ON SPEED CONTROLLER FOR OPERATING CHARGING PUMP

ACTIONS EXPECTED:

CONTROL OPERATOR STARTS A SECOND CHARGING PUMP (REFER TO CONTINGENCY MESSAGE B REGARDING USE OF THE "A" CHARGING PUMP).

CONTROL ROOM PERSONNEL MAY DISPATCH A.O. TO INVESTIGATE CHARGING PUMP ROOM LEAKS AND/OR OTHER AUX. BLDG. LEAKS/SUMPS.

CONTROL ROOM PERSONNEL MAY OBSERVE VCT LEVEL, PRESSURIZER LEVEL, LETDOWN FLOWRATE AND CHARGING FLOWRATE.

CONTROL ROOM PERSONNEL MAY PERFORM OST-051.

FOR CONTROLLER USE ONLY

100 GPM LEAK STARTING WHEN OST-051 IS INITIATED PROVIDE ATTACHED INITIAL DATA FORM AFTER PLAYER HAS SHOWN KNOWLEDGE OF HOW TO OBTAIN DATA AND FILL IN THE APPROPRIATE INITIAL READING TIME. THE FINAL DATA FORM IS ASSOCIATED WITH MESSAGE #13.

CON-94-0222 RNPD-94-03-R0

gpm

ATTACHMENT 8.1 Page 1 of 1

LEAKAGE EVALUATION DATA SHEET

		TOTAL LE	KAGE		TAN	K INLEAKAGE	DATA	<u></u>
STEP NO	ITEM	VCT LVL LI-115 (NEAREST 0.1*)	PZR LVL LI-459A or LI-460	RCS TEMP. (TAVG TR-408) (≥540°F) (TR-413) (<540°F)	PZR RELIEF TANK L1-470	RCS DRAIN TANK LI-1003	ACCUMULATORS LI - 920 LI - 924 LI - 928	TIME
7.1	Initial				70	23	77	
	Reading	34.9	52	575	gal*	gal**	76 77	
7.3	Finel							
/.5	Reading				gal*			
Difference	 >			N/A	N/A	N/A		
•								
Multiplio	<u>د</u>	23.78 gal/in	50.56 gal/%	N/A	N/A	N/A	7 gal/%	N/A
Change in (gals)	Volume			N/A				N/A

L.

Total Leakage

- (A VCT Lvl. gal) + (A Pzr Lvl. gal) -

(Test Duration, min)

COMMENTS;

Rate

3.1-14A

*Use Curve Book, Curve 8.23 to convert tank level into gallons (if level did not change, N/A). **Use Curve Book, Curve 8.10 to convert tank level into gallons (if level did not change, N/A).

٠.

CON - 94 - 0222 RNPD - 94 - 03 - R0

4

> RNPD Plant

Message No. <u>11</u> Date <u>3-30-94</u> Time 0920

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

ANNUNCIATOR PANEL 2 ALARM: PROCESS MONITOR HI RADIATION (APP-021-A2) ALARMS RADIATION MONITOR PANEL: R-19A ALARMS AT 3500 CPM AND IS INDICATING 4000 CPM.

ACTIONS EXPECTED:

PERFORM AOP-005 ACTIONS. CONTACT CHEMISTRY TO SOURCE CHECK THE MONITOR. MAKE PAGE ANNOUNCEMENT REGARDING R-19A ALARM. CHECK TO VERIFY THAT BLOWDOWN ISOLATION VALVES ARE SHUT FOR "A" STEAM GENERATOR.

MAY DISPATCH AN A.O. TO CHECK STATUS OF FCV-4204A.

FOR CONTROLLER USE ONLY

FCV-1930 A & B IS CLOSED.

POST ATTACHED FORM LOCALLY NEAR R-19A AREA.

THIS IS AN EXERCISE MESSAGE

NOTICE:

PROCESS RADIATION MONITOR R-19A

IS IN ALARM

CON - 94 - 0222 RNPD - 94 - 03 - R0

3.1-15A

RNPD

Plant

Message No.	D	Date	3-30-94	Time FLOATING, FOLLOWS
	CONTINGENCY		,	MESSAGE #11 ACTIONS

MESSAGE FOR: CHEMISTRY TECHNICIAN

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

NO STEAM GENERATOR "A" SAMPLE FLOW.

ACTIONS EXPECTED:

R19A INTERLOCK RESET AND SAMPLE TAKEN. (SEE CONTROLLER MESSAGE BELOW)

FOR CONTROLLER USE ONLY

HAND OUT ONLY IF R-19A INTERLOCK NOT RESET PRIOR TO SAMPLING. MAY BE RESET AT RTGB (KEYSWITCHED) OR A SECOND PERSON MUST HOLD THE CONTROL SWITCH FOR VALVES FCV-1933A & B TO THE OPEN POSITION ON THE BLOWDOWN CONTROL VALVE PANEL FOR THE DURATION OF THE SAMPLING.

					R	NPD
						Plant
No.	12	Date _	3-30-94	Time	0922	

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

Message

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

ANNUNCIATOR PANEL 2 ALARM (REFLASH): PROCESS MONITOR HI RADIATION REFLASHES RADIATION MONITOR PANEL: R-15 ALARMS AND IS READING 2500 CPM.

ACTIONS EXPECTED:

PERFORM AOP-005 ACTIONS PERFORM SOURCE CHECK OF R-15 MAKE PAGE ANNOUNCEMENT REGARDING R-15 ALARM CONTROL ROOM PERSONNEL MAY REFER TO EALS

FOR CONTROLLER USE ONLY

R-15 IS READING 2500 CPM AND INCREASING RAPIDLY.

CON-94-0222 RNPD-94-03-R0

					RNPD
•					Plant
Message No.	13	Date	3-30-94	_ Time	NOT SPECIFIED
					5 MIN AFTER
		-			
					MESSAGE #10
	<u> </u>		<u> </u>		

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

OST-051 DATA (FINAL) (DATA ATTACHED)

ACTIONS EXPECTED:

SATISFACTORY COMPLETION OF OST-051 INDICATES 55 GPM UNIDENTIFIED LEAKAGE. CONTROL ROOM PERSONNEL MAY REFER TO EALS.

FOR CONTROLLER USE ONLY

FINAL DATA TO BE GIVEN 5 MINUTES AFTER INITIAL DATA, FILL IN THE APPROPRIATE TIMES. 55 GPM MAINTAINS ALERT BASED ON 1 FPB BREACHED (RCS).

ATTACHMENT 8.1 Page 1 of 1

CON-94-0222 RNPD-94-03-R0

4.

3.1-18A

LEAKAGE EVALUATION DATA SHEET

	- -	TOTAL LE	AKAGE		TAN	K INLEAKAGE	DATA	
STEP NO.	ITEN	VCT LVL LI-115 (NEAREST 0.1")	PZR LVL LI-459A or LI-460	RCS TEMP. (TAVG TR-408) (≥540°F) (TR-413) (<540°F)	PZR RELIEF TANK LI-470	RCS DRAIN TANK LI-1003	ACCUMULATORS L1 - 920 L1 - 924 L1 - 928	TIME
7.1	Initial Reading	34.9	52	575	70 gal *	23 gal**	77 76 77	
7.3	Final			· · ·	70	. 23	77	
Reading	23.2	52	575	gal*	gal**	76 77		
Differenc	:e			N/A	N/A 	N/A		5
Multiplie	r	23.78 gal/in	50.56 gal/s	N/A	N/A	N/A	7 gal/%	N/A
Change in (gals)	N Volume			N/A				N/A

gpm

Total Leakage

- (Δ VCT Lvl. gal) + (Δ Pzr Lvl. gal) -(Test Duration, min) Rate

COMMENTS:

*Use Curve Book, Curve 8.23 to convert tank level into gallons (if level did not change, N/A).

**Use Curve Book, Curve 8.10 to convert tank level into gallons (if level did not change, N/A).

٠.

1

						RI	NPD	
							Plant	
Message	No	E CONTINGENCY	Date _	3-30-94	Time _	0929	<u>.</u>	
MESSAGE	FOR :	CONTROL OPERATOR	· -					

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

COMMENCE UNIT SHUTDOWN AT A RATE OF 2%/MINUTE

ACTIONS EXPECTED:

START BORATION OF RCS TO FACILITATE TAVE/AFLUX CONTROL DURING POWER DECREASE. CONTROL ROOM OPERATORS MAY LOOK AHEAD TO HSD/CSD SHUTDOWN MARGIN PROJECTIONS. PERFORM ACTIONS PER GP-006.

FOR CONTROLLER USE ONLY

IF DECISION IS MADE TO SHUTDOWN AT AN EARLIER TIME, DELAY UNTIL AFTER 0915. IF SHUTDOWN DECISION IS NOT MADE BY 0929, FORCE THE SHUTDOWN TO BEGIN TO MAINTAIN APPLICABILITY OF SPDS DATA SHEET INFORMATION.

•						<u> </u>	
			. •			Pla	ant
Message	No.	14	Date _	3-30-94	Time _	0945	

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

2

INCREASE SHUTDOWN RATE TO 3%/ MINUTE

ACTIONS EXPECTED:

CONTROL OPERATOR MAY CHANGE BORATION RATE

FOR CONTROLLER USE ONLY

TO MAINTAIN APPLICABILITY OF SPDS DATA SHEET INFORMATION. ALSO, BEGIN TO FILL IN STATUS OF CHARGING PUMP "A" AND DS BUS/DG.

CON-94-0222 RNPD-94-03-R0 .

RNPD Plant

Message No. _____15 ____ Date ____3-30-94 ____ Time ___1007

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

ANNUNCIATOR PANEL 4 ALARM (FIRST OUT PANEL): TURBINE TRIP TRIP (APP-004-F4) IS FLASHING.

TURBINE STOP AND GOVERNOR VALVES ARE ALL GREEN. BOTH REACTOR TRIP BREAKERS INDICATE RED.

REACTOR POWER IS OBSERVED TO BE STEADY, AVERAGE TEMPERTURE (RCS_{TAVG}) IS INCREASING.

ACTIONS EXPECTED:

, •

CONTROL ROOM PERSONNEL ENTER EOP NETWORK PATH-1.

CONTROL OPERATOR BEGINS EMERGENCY BORATION IN RESPONSE TO 2 STUCK CONTROL RODS.

CONTROL ROOM PERSONNEL MAY REFER TO EALS.

MANUALLY TRIP REACTOR USING PUSHBUTTONS ON RTGB.

FOR CONTROLLER USE ONLY

REFERENCE MISSIONS #4 & #5.

THIS IS AN ATWS, CONTROL OPERATOR MAY DISPATCH AOS TO TRIP REACTOR LOCALLY. REACTOR TRIPS FROM RTGB, INFORM CO OF REACTOR TRIP AFTER ATTEMPT WITH MANUAL PUSHBUTTON.

RNPD Plant

Message No. <u>16</u> Date <u>3-30-94</u> Time 1008

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

ALL 3 STEAM GENERATOR PORVS (RV-1,2,3) HAVE DUAL INDICATIONS. CONDENSER STEAM DUMP VALVES ALL INDICATE GREEN.

ACTIONS EXPECTED:

CONTROL ROOM PERSONNEL MAY CONTACT I&C/OSC REGARDING FAILURE OF STEAM DUMPS TO ACTUATE. MAY ALSO SEND A.O. TO INVESTIGATE STEAM DUMP VALVES.

CONTROL ROOM PERSONNEL SHOULD RECOGNIZE THAT THE S/G "A" PORV OPEN CONSTITUTES AN ATMOSPHERIC RELEASE. CONTROL ROOM PERSONNEL MAY REFER TO EALS.

FOR CONTROLLER USE ONLY

REFERENCE MISSION #6.

CON-94-0222 RNPD-94-03-R0

RNPD Plant

Message	e No	17		Date	3-30-94	Time	_1010
MESSAGI	E FOR:	CONTROL	OPERATOR	-			
FROM:	CONTRO	LLER					

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE" ANNUNCIATOR PANEL 8 ALARM: EH FLUID LEVEL LO ALARMS.

ACTIONS EXPECTED:

MAY DISPATCH A.O. TO INVESTIGATE EH FLUID LOSS. CONTROL OPERATOR MAY TRIP EH PUMPS.

FOR CONTROLLER USE ONLY

REFERENCE MISSION #4

RNPD

Plant

Message No. <u>18</u> Date <u>3-30-94</u> Time 1011

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE" ANNUNCIATOR PANEL 6 ALARM: S.G. 1 ACTUAL - S.P. LVL DEV ALARMS

ACTIONS EXPECTED:

FOR CONTROLLER USE ONLY

LEVEL DECREASING IN S/G "A" DUE TO STUCK OPEN PORV.

REFERENCE MESSAGE #19

> <u>RNPD</u> Plant

Message No. <u>19</u> Date <u>3-30-94</u> Time <u>1012</u>

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

AVERAGE COOLANT TEMPERATURE IS 547°F. THE S/G "A" PORV HAS DUAL INDICATION AND THE "B" AND "C" PORV INDICATOR LIGHTS ARE GREEN. STEAM NOISE REMAINS AUDIBLE.

ACTIONS EXPECTED:

CONTROL ROOM PERSONNEL MAY REFER TO EALS.

CONTROL ROOM PERSONNEL MAY REQUEST A.O./OSC HELP TO ISOLATE "A" S/G PORV (OR PORV AIR SUPPLY).

CONTROL OPERATOR MAY CLOSE THE "A" MSIV TO ISOLATE THE "A" S/G.

FOR CONTROLLER USE ONLY

CONDITIONS NOW SATISFIED FOR SITE AREA EMERGENCY (2 FPBS LOST-CV & RCS)

REFERENCE MISSION #7.

CON-94-0222 RNPD-94-03-R0

RNPD

Plant

Message	Ňo.	20	Date	3-30-94	FLOATING - WHEN SIT AREA EMERG. Time DECLARED		
			-				

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

. •

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

SEE ATTACHED PEP-104 SHEET.

ACTIONS EXPECTED:

FOR CONTROLLER USE ONLY

MAKE SURE THIS MESSAGE IS USED IN LIEU OF THE ACTUAL PEP MESSAGE.

*** FOR DRILL USE ONLY ***

2.0 <u>PROCEDURE</u> (Continued)

- 2.5.1 If not, call Security and request that the TSC be searched and incorporated into the Protected Area. If conditions exist as defined in the Robinson Security Plan, inform Security that you (Shift Supervisor or SRO in the Control Room) are invoking 10CFR50.54x and to allow IMMEDIATE access to the TSC via the Protected Area.
- 2.6 With the VLC switch in the "EMERGENCY" position, perform a site-wide announcement over the plant PA as follows:

2.6.1 Sound Site Evacuation Alarm for approximately 15 seconds.

2.6.2 Make the following announcement.

. -

ATTENTION ALL PERSONNEL. ATTENTION ALL PERSONNEL. THIS IS A DRILL MESSAGE. A SITE AREA EMERGENCY HAS BEEN DECLARED. THE CAUSE OF THE EMERGENCY IS _____

.

ALL NON-EMERGENCY RESPONSE PERSONNEL DO NOT EVACUATE THE PLANT SITE TO THE (choose one) EAST OR WEST PARKING LOT ASSEMBLY AREA. I REPEAT, DO NOT EVACUATE. THE USE OF THE PUBLIC ADDRESS SYSTEM IS NOW RESTRICTED TO (choose one) DRILL OR EMERGENCY COMMUNICATIONS UNTIL FURTHER NOTICE.

2.6.3 If the TSC has been incorporated into the Protected Area, announce:

ALL RNPD EMERGENCY RESPONSE ORGANIZATION PERSONNEL REPORT TO YOUR DESIGNATED FACILITY.

2.6.4 If the TSC has not been incorporated into the Protected Area, announce:

ALL TECHNICAL SUPPORT CENTER (TSC) PERSONNEL REPORT TO THE O&M MODULAR BUILDING AND AWAIT FURTHER INSTRUCTIONS. ALL OTHER RNPD EMERGENCY RESPONSE ORGANIZATION PERSONNEL REPORT TO YOUR DESIGNATED FACILITY.

2.6.4.1 Upon notification that TSC has been incorporated into the Protected Area, announce: ATTENTION ALL TSC PERSONNEL, THE TECHNICAL SUPPORT CENTER IS READY FOR ACCESS, REPORT TO THE TSC.

	•				RNPD
					Plant
Message No	21	Date	3-30-94	Time _	1014
MESSAGE FOR:	CONTROL OPERATOR				
FROM: CONTROL	LLER				

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE" ANNUNCIATOR PANEL 6 ALARM S.G. 1 ("A") NAR. RGE LO/LO-LO/LVL (APP-006-D1) ALARMS

ACTIONS EXPECTED:

FOR CONTROLLER USE ONLY

LOW LEVEL ALARM ON "A" S/G <35%

Plant Message No. <u>F</u> Date <u>3-30-94</u> Time <u>1015</u> CONTINGENCY

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

CLOSE THE "A" MSIV.

.

ACTIONS EXPECTED:

FOR CONTROLLER USE ONLY

DATA PRESUMES "A" MSIV CLOSED BY 1015. ISSUE THIS MESSAGE IF VALVE IS NOT CLOSED BY 1015.

CON-94-0222 RNPD-94-03-R0

3.1-28

RNPD

<u>RNPD</u> Plant Message No. <u>G</u> Date <u>3-30-94</u> Time <u>1016</u> CONTINGENCY

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE" ANNUNCIATOR PANEL 8 ALARM: EH FLUID LEVEL HI/LO-LO ALARMS.

ACTIONS EXPECTED:

MAY SEND A.O. TO INVESTIGATE EH FLUID LOSS. CONTROL OPERATOR MAY TRIP EH PUMPS.

FOR CONTROLLER USE ONLY

HAND OUT IF EH PUMPS NOT STOPPED IN RESPONSE TO MESSAGE #17.

REFERENCE MISSION #4

CON-94-0222 RNPD-94-03-R0

> RNPD Plant

Message No. <u>H</u> Date <u>3-30-94</u> Time <u>1021</u> CONTINGENCY

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

ANNUNCIATOR PANEL 8 ALARM: EH FLUID RES LEVEL LO TURB DC LOST (APP-008-33) ALARMS

EH PUMPS TRIP

ACTIONS EXPECTED:

MAY SEND A.O. TO INVESTIGATE EH FLUID LOSS.

FOR CONTROLLER USE ONLY

HAND OUT ONLY IF EH PUMPS NOT STOPPED.

REFERENCE MISSION #4

CON-94-0222 RNPD-94-03-R0

Message No. <u>H</u> Date <u>3-30-94</u> Time <u>1021</u> CONTINGENCY

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

ANNUNCIATOR PANEL 8 ALARM: EH FLUID RES LEVEL LO TURB DC LOST (APP-008-C1) ALARMS

EH PUMPS TRIP

ACTIONS EXPECTED:

MAY SEND A.O. TO INVESTIGATE EH FLUID LOSS.

FOR CONTROLLER USE ONLY

HAND OUT ONLY IF EH PUMPS NOT STOPPED.

REFERENCE MISSION #4

<u>RNPD</u> Plant Message No. <u>22</u> Date <u>3-30-94</u> Time <u>1030</u>

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

ANNUNCIATOR PANEL 6 ALARM (REFLASH): S.G. 1 ("A") NAR RGE LO/LO-LO/LVL (APP-006-D1)

ACTIONS EXPECTED:

FOR CONTROLLER USE ONLY

LO-LO LEVEL ALARM ON "A" S/G <16%

(

RNPD Plant

Message No. _____J Date <u>3-30-94</u> Time <u>1037</u> CONTINGENCY

MESSAGE FOR: SITE EMERGENCY COORDINATOR - TSC

FROM: CONTROLLER - TSC

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

DECLARE A SITE AREA EMERGENCY BASED UPON A BREACH OF THE RCS (>50 GPM LEAK) AND A BREACH OF CONTAINMENT (PORV STUCK OPEN ON PRIMARY TO SECONDARY LEAK).

ACTIONS EXPECTED:

CONTROL ROOM PERSONNEL MAY START A COOLDOWN.

CONTROL ROOM PERSONNEL MAY REQUEST PERIODIC RCS BORON SAMPLES.

SEC WILL DECLARE SITE AREA EMERGENCY AND IMPLEMENT ACTIONS OF PEP-104.

FOR CONTROLLER USE ONLY

GIVE THIS MESSAGE OUT ONLY IF A SITE AREA EMERGENCY HAS NOT BEEN DECLARED BY 1037.

DO NOT GIVE THIS MESSAGE WITHOUT THE PERMISSION OF THE LEAD EXERCISE CONTROLLER.

CON-94-0222 RNPD-94-03-R0 .

RNPD

Plant

Message	No	23	Date	3-30-94	FLOATING-TIME OF SITE AREA Time <u>EMERG. + 25 MIN.</u>
MESSAGE	FOR :	SECURITY			

FROM: CONTROLLER - SECURITY

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE" ACCOUNTABILITY IS COMPLETE AND THERE ARE NO MISSING PERSONS.

ACTIONS EXPECTED:

THIS INFORMATION IS RELAYED TO THE TSC.

FOR CONTROLLER USE ONLY

RECORD TIME MESSAGE ISSUED:

CON-94-0222 RNPD-94-03-R0

					Plant
Message No	». <u>К </u>	Date _	3-30-94	 1040	
	CONTINGEN	ICY			
MESSAGE FC	R: CONTROL C	PERATOR			

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

COMMENCE RCS COOLDOWN PER GP-007.

ACTIONS EXPECTED:

CONTROL ROOM PERSONNEL START A COOLDOWN. CONTROL ROOM PERSONNEL MAY REQUEST PERIODIC RCS BORON SAMPLES.

FOR CONTROLLER USE ONLY

GIVE THIS MESSAGE OUT ONLY IF COOLDOWN HAS NOT STARTED BY 1040. COOLDOWN MUST START BY 1040 HOURS TO MAINTAIN SCENARIO TIMELINE.

DO NOT GIVE THIS MESSAGE WITHOUT PERMISSION OF THE LEAD EXERCISE CONTROLLER.

CON-94-0222 RNPD-94-03-R0 RNPD

RNPD

Plant

Message No. <u>L</u> Date <u>3-30-94</u> Time <u>1040</u> CONTINGENCY

MESSAGE FOR: PLANT OPERATIONS DIRECTOR - TSC

FROM: CONTROLLER - TSC

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE" INCREASE COOLDOWN RATE UP TO TECHNICAL SPECIFICATION LIMITS.

ACTIONS EXPECTED:

PLANT OPERATIONS DIRECTOR TO CONTACT CONTROL ROOM WITH ABOVE INSTRUCTIONS.

FOR CONTROLLER USE ONLY

GIVE THIS MESSAGE OUT ONLY IF MAXIMUM COOLDOWN RATE ORDER HAS NOT BEEN PREVIOUSLY ISSUED.

THIS IS NEEDED TO MAINTAIN SCENARIO TIMELINE.

DO NOT GIVE OUT WITHOUT PERMISSION OF LEAD EXERCISE CONTROLLER.

CON-94-0222 RNPD-94-03-R0

					RNPD
	• .				Plant
Message No.	24	Date _	3-30-94	Time	1120

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

ANNUNCIATOR PANEL 2 ALARM: ACCIDENT MONITOR HI RADIATION (APP-021-B2) ALARMS RADIATION MONITOR PANEL: R-31A ALARMS AND READS 16 MR/HR.

ACTIONS EXPECTED:

PERFORM AOP-005 ACTIONS.

PERFORM SOURCE CHECK OF R-31A.

MAKE PAGE ANNOUNCEMENT REGARDING R-31A ALARM.

FOR CONTROLLER USE ONLY

R-31A READS 16 mR/hr WITH SLIGHT DOWNWARD TREND.

CON-94-0222 RNPD-94-03-R0

> <u>RNPD</u> Plant

Message No. <u>25</u> Date <u>3-30-94</u> Time <u>1102</u>

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER - CONTROL ROOM

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

THE S/G "A" PORV GREEN POSITION INDICATOR LIGHT HAS EXTINGUISHED. THE RED LIGHT REMAINS ILLUMINATED. THE STEAM NOISES ARE LOUDER.

ACTIONS EXPECTED:

INFORM THE TSC THAT THE S/G "A" PORV NOW INDICATES FULL OPEN.

FOR CONTROLLER USE ONLY

THE S/G "A" PORV IS NOW ACTUALLY FULL OPEN (MAXIMUM RELEASE PATH).

REFERENCE MISSION #7

CON-94-0222 RNPD-94-03-R0

						R	NPD
							Plant
Message	No	26	_ Date	3-30-94	Time	1116	
MESSAGE	FOR:	CONTROL OPERATO	DR -				

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE" ANNUNCIATOR PANEL 36 ALARM: LPMS ALARM (APP-036-A12) LPMS TROUBLE.

ACTIONS EXPECTED:

DISPATCH STA OR ALTERNATE TO LPMS PANEL

FOR CONTROLLER USE ONLY

REFERENCE MISSION #9.

CON-94-0222 RNPD-94-03-R0

> <u>RNPD</u> Plant

Message No. <u>27</u> Date <u>3-30-94</u> Time <u>1118</u>

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE" ANNUNCIATOR PANEL 21 ALARM: ACCIDENT MONITOR HI RADIATION (APP-021-B2) RADIATION MONITOR PANEL: R-31A ALARMS AND INDICATES 25 mR/hr.

ACTIONS EXPECTED:

PERFORM AOP-005 ACTIONS.

PERFORM SOURCE CHECK OF R-9 AND R-31A.

MAKE PAGE ANNOUNCEMENT REGARDING R-9 AND R-31A ALARMS.

CONTROL ROOM PERSONNEL MAY REFER TO EALS.

CONTINUATION OF COOLDOWN/DEPRESSURIZATION TO MITIGATE RELEASE.

FOR CONTROLLER USE ONLY

R-31A INDICATES 25 mR/hr AND IS INCREASING RAPIDLY.

CONDITIONS NOW SATISFIED FOR GENERAL EMERGENCY (3 FPB LOST).

POST ATTACHED FORM LOCALLY NEAR R-9 AREA.

CON-94-0222 RNPD-94-03-R0

THIS IS AN EXERCISE MESSAGE

NOTICE:

AREA RADIATION MONITOR R-9

IS IN ALARM

					RNI	<u>2D</u>
						Plant
Message No	28	_ Date	3-30-94	_ Time	1125	
MESSAGE FOR:	E&RC LEADER OR	PERSONNEL		· · ·		

FROM: CONTROLLER - OSC

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE" THE FRISKERS AND PORTAL MONITORS AT PAP-EAST ARE ALSO ALARMING.

ACTIONS EXPECTED:

FOR CONTROLLER USE ONLY

IF ASKED, MONITORS READ 1500 CPM.

POST ATTACHED FORMS LOCALLY NEAR FRISKERS AND/OR PORTAL MONITORS.

CON-94-0222 RNPD-94-03-R0

THIS IS AN EXERCISE MESSAGE

NOTICE:

PAP-EAST FRISKER MONITORS

ARE IN ALARM

CON - 94 - 0222 RNPD - 94 - 03 - RC

THIS IS AN EXERCISE MESSAGE

NOTICE:

PAP-EAST PORTAL MONITORS

ARE IN ALARM

> RNPD Plant

Message No. _____29 ___ Date ____3-30-94 ____Time 1129

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER - CONTROL ROOM

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

ANNUNCIATOR PANEL 2 ALARM: ACCIDENT MONITOR HI RADIATION (APP-021-B2) REFLASHES. RADIATION MONITOR PANEL: R-31B AND R-31C INCREASE AND BOTH INDICATE 3 mR/hr.

ACTIONS EXPECTED:

FOR CONTROLLER USE ONLY

INCREASE TO "SHINE" FROM RELEASE ON "A" SG LINE.

CON-94-0222 RNPD-94-03-R0

RNPD

Plant

Message No. 30 Date 3-30-94 Time CONTINGENCY MESSAGE

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

ANNUNCIATOR PANEL 2 ALARM: AREA MONITOR HI RADIATION REFLASHES. RADIATION MONITOR PANEL : R-6 ALARMS AND INDICATES 55 mR/hr.

ACTIONS EXPECTED:

IMPLEMENT AOP-005 ACTIONS.

PERFORM SOURCE CHECK OF R-6.

MAKE PAGE ANNOUNCEMENT REGARDING R-6 ALARM.

FOR CONTROLLER USE ONLY

R-6 INDICATES 55 MR/HR AND IS RAPIDLY INCREASING.

POST ATTACHED FORM LOCALLY NEAR R-6 AREA.

CON-94-0222 RNPD-94-03-R0

THIS IS AN EXERCISE MESSAGE

 $\{ i \}$

NOTICE:

AREA RADIATION MONITOR R-6

IS IN ALARM

con - 94 - 0222 RNPD - 94 - 03 - R0

3.1-42A

.....

MESSAGE FOR: CONTROL OPERATOR

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

ANNUNCIATOR PANEL APP-021-B2 ALARM: AREA MONITOR HI RADIATION REFLASHES. RADIATION MONITOR PANEL: R-4 ALARMS AND INDICATES 100 mR/hr.

ACTIONS EXPECTED:

IMPLEMENT AOP-005 ACTIONS.

PERFORM SOURCE CHECK OF R-4.

MAKE PAGE ANNOUNCEMENT REGARDING R-4 ALARM.

FOR CONTROLLER USE ONLY

R-4 INDICATES 100 MR/HR AND IS RAPIDLY INCREASING.

POST ATTACHED FORM LOCALLY NEAR R-4 AREA.

CON-94-0222 RNPD-94-03-R0

THIS IS AN EXERCISE MESSAGE

NOTICE:

AREA RADIATION MONITOR R-4

IS IN ALARM

CON-9 RNPD-

0222 -03-R0

						RNPD
						Plant FLOATING - WHEN GENERAL EMERG.
Message	No	32	Date	3-30-94	Time	DECLARED
MESSAGE	FOR :	CONTROL OPERATOR	:			

FROM: CONTROLLER

.

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

SEE ATTACHED PEP-105 SHEET.

ACTIONS EXPECTED:

FOR CONTROLLER USE ONLY

MAKE SURE THIS MESSAGE IS USED IN LIEU OF THE ACTUAL PEP MESSAGE.

CON-94-0222 RNPD-94-03-R0

*** FOR DRILL USE ONLY ***

2.0 <u>PROCEDURE</u> (Continued)

2.5.2 Make the following announcement (with VLC switch in the "EMERGENCY" position): ATTENTION ALL PERSONNEL. ATTENTION ALL PERSONNEL. THIS IS A DRILL MESSAGE. A GENERAL EMERGENCY HAS BEEN DECLARED. THE CAUSE OF THE EMERGENCY IS _______

> ALL RNPD EMERGENCY RESPONSE ORGANIZATION PERSONNEL REPORT TO YOUR DESIGNATED EMERGENCY RESPONSE FACILITY. ALL OTHER PLANT PERSONNEL DO NOT EVACUATE THE PLANT SITE TO THE (choose one) EAST OR WEST PARKING LOT ASSEMBLY AREA. I REPEAT, DO NOT EVACUATE. THE USE OF THE PUBLIC ADDRESS SYSTEM IS NOW RESTRICTED TO (choose one) DRILL OR EMERGENCY COMMUNICATIONS UNTIL FURTHER NOTICE.

2.5.3 Continue to sound the Site Evacuation Alarm for approximately 1 minute.

2.5.4 Upon initiation of evacuation procedure, implement PEP-502, Personnel Accountability, and PEP-504, Access Control.

- 2.6 Determine if the TSC has been incorporated into the Protected Area.
- 2.6.1 If it has, go to Step 2.7.

NOTE

A deviation from 10CFR73.55(d) is required when allowing TSC access prior to search by Security.

2.6.2 If not, call Security and request that the TSC be immediately incorporated into the Protected Area. Inform them that you (the Shift Supervisor or SRO in the Control Room) are invoking 10CFR50.54(x), and to allow IMMEDIATE access to TSC via the Protected Area.

*** FOR DRILL USE ONLY ***

CON-94-0222 RNPD-94-03-R0

ant

MESSAGE FOR: SITE EMERGENCY COORDINATOR - TSC

FROM: CONTROLLER - TSC

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

DECLARE A GENERAL EMERGENCY BASED ON A BREACH OF ALL THREE FISSION PRODUCT BARRIERS.

SEC WILL DECLARE A GENERAL EMERGENCY AND IMPLEMENT ACTIONS OF PEP-105. CONTROL ROOM WILL CONTINUE COOLDOWN/DEPRESSURIZATION TO MITIGATE RELEASE.

FOR CONTROLLER USE ONLY

GIVE THIS MESSAGE OUT ONLY IF A GENERAL EMERGENCY HAS NOT BEEN DECLARED BY 1143. DO NOT GIVE THIS MESSAGE OUT WITHOUT THE PERMISSION OF THE LEAD EXERCISE CONTROLLER.

CON-94-0222 RNPD-94-03-R0

RNPD

Plant

Message No.	0	Date	3-30-94	Time	FLOATING, WHEN RCS SAMPLE PURGE IS
-	CONTINGENCY		·····		STARTED AFTER 1116

MESSAGE FOR: CHEMISTRY TEAM MEMBER IN PRIMARY SAMPLE ROOM

FROM: CONTROLLER - CHEMISTRY

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE" R-6 RAD MONITOR INDICATES OFFSCALE HIGH AND LOCALLY ALARMS.

ACTIONS EXPECTED:

EVACUATE SAMPLE ROOM. NOTIFY EXERCISE CONTROL ROOM.

FOR CONTROLLER USE ONLY

IMMEDIATELY INFORM CONTROL ROOM CONTROLLERS PRIOR TO ISSUING THIS MESSAGE. POST ATTACHED FORM LOCALLY NEAR THE R-6 AREA.

CON-94-0222 RNPD-94-03-R0

THIS IS AN EXERCISE MESSAGE

111

NOTICE:

AREA RADIATION MONITOR R-6

IS IN ALARM

CON-94-0222 RNPD-94-03-F

94-03-R0

<u>RNPD</u> Plant

Message No. _____ 33 ____ Date ____ 03-30-94 ____ Time 1300 (SEE BELOW)

MESSAGE FOR: EMERGENCY RESPONSE MANAGER

FROM: CONTROLLER

MESSAGE/SIMULATED PLANT CONDITIONS: "THIS IS AN EXERCISE MESSAGE"

THE EXERCISE IS OVER.

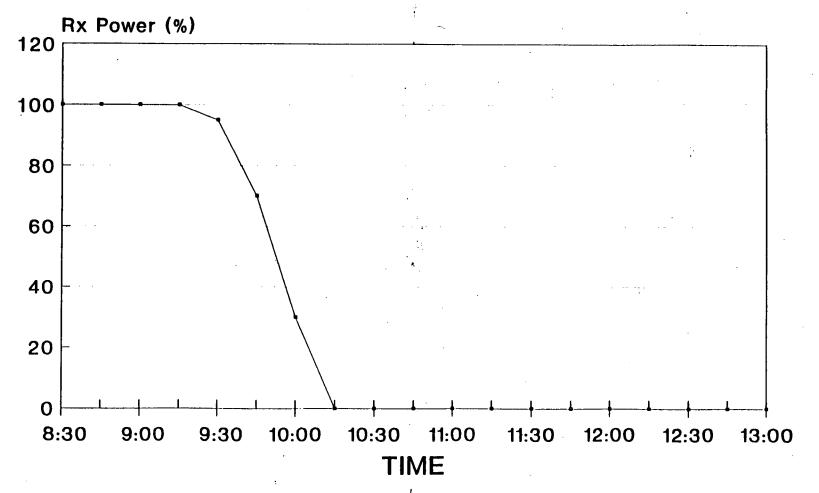
ACTIONS EXPECTED:

FOR CONTROLLER USE ONLY

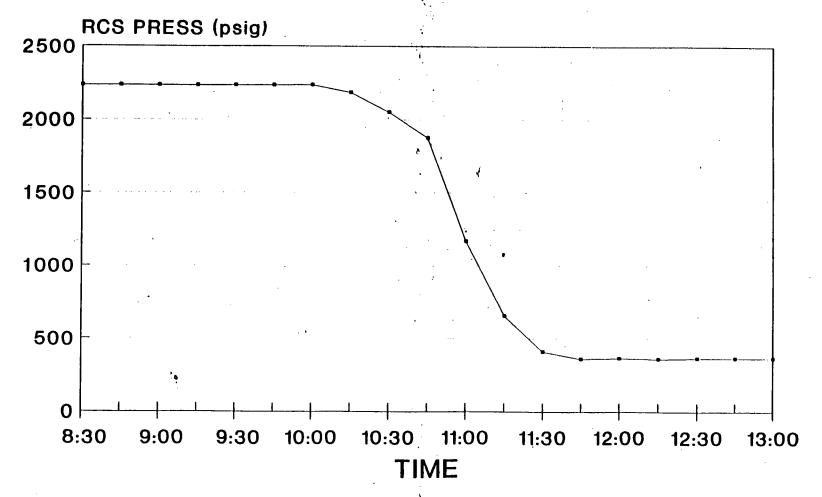
ENSURE NOTIFICATIONS ARE MADE TO NRC, JIC, STATE, COUNTIES, PLAYERS.

1300 EST IS NOMINAL EXERCISE COMPLETION TIME. THE LEAD EXERCISE CONTROLLER MAY CHOOSE TO END THE EXERCISE PRIOR TO 1300 OR EXTEND IT BEYOND AT HIS DISCRETION.

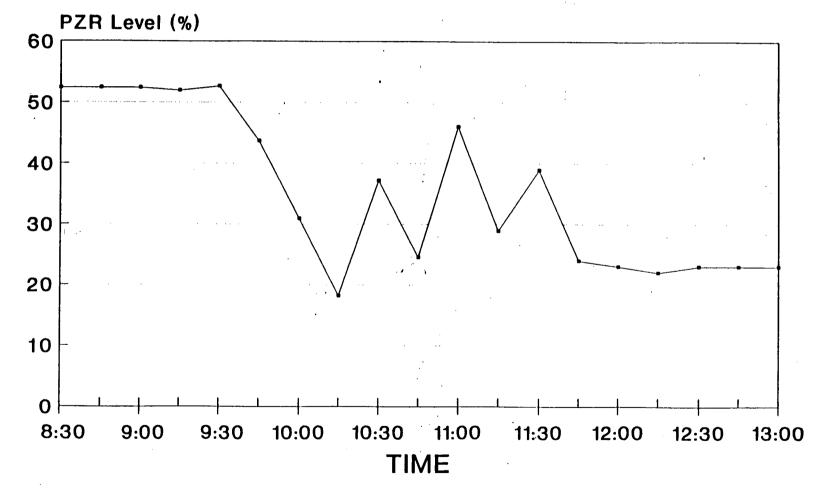
CON-94-0222 RNPD-94-03-R0

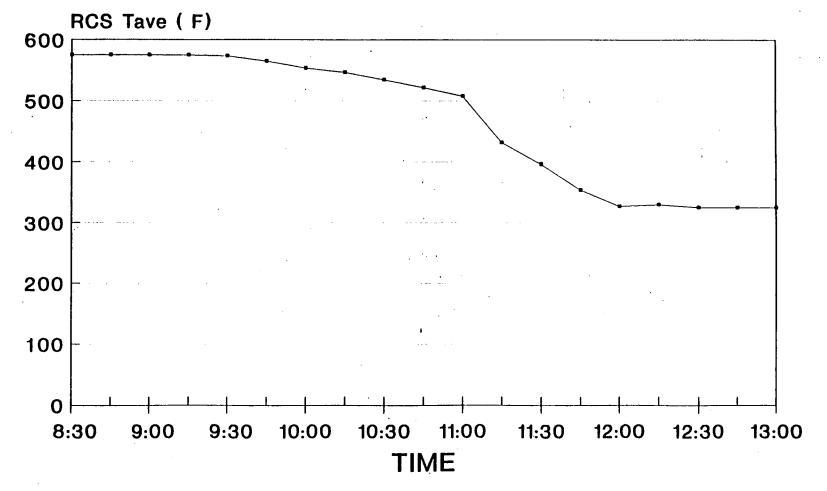

SECTION 3.1.1 GRAPHS TABLE OF CONTENTS

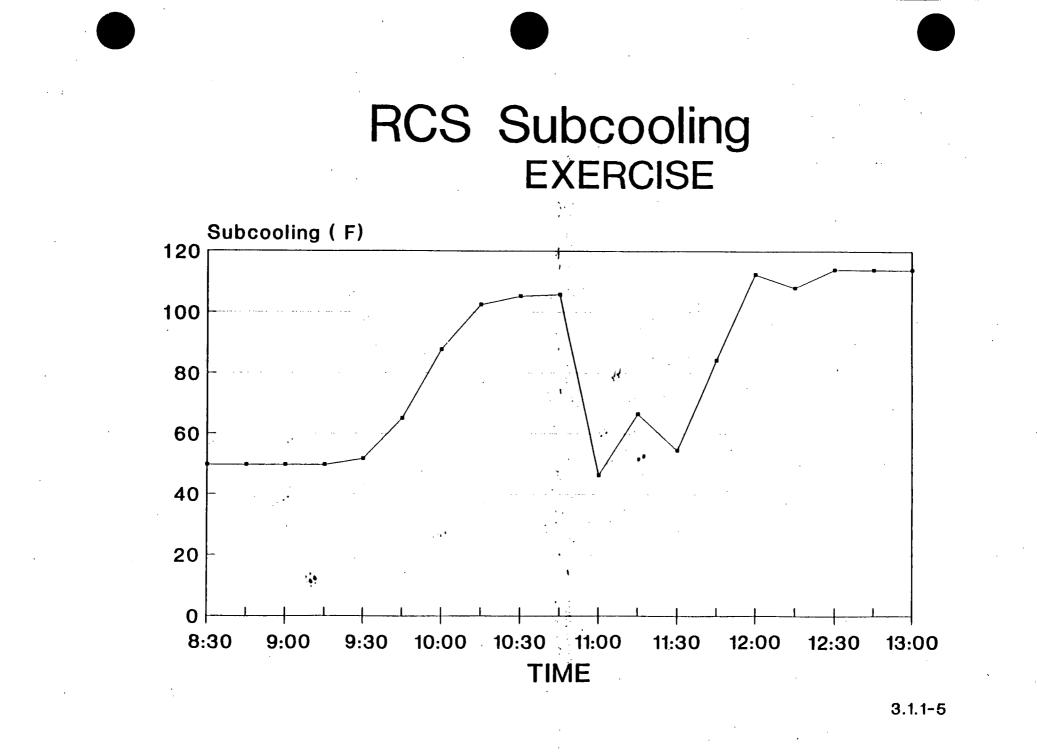
Graph Number 3.1.1-1 3.1.1-2 3.1.1-3 3.1.1-4 3.1.1-5 3.1.1-6 3.1.1-7 3.1.1-8 3.1.1-9 3.1.1-10 3.1.1-11 3.1.1-12 3.1.1-13 3.1.1-14 3.1.1-15 3.1.1-16 3.1.1-17 3.1.1-18 3.1.1-19 3.1.1-20 3.1.1-21 3.1.1-22 3.1.1-23 3.1.1-24 3.1.1-25 3.1.1-26 3.1.1-27 3.1.1-28 3.1.1-29 3.1.1-30 3.1.1-31 3.1.1-32 3.1.1-33 3.1.1-34 3.1.1-35


Graph Title Reactor Power RCS Pressure PZR Level RCS Tave RCS Subcooling Charging Flow Letdown Flow Containment Press Containment Temperature Loop A Thot Loop B Thot Loop C Thot Loop A Tcold Loop B Tcold Loop C Tcold Loop A Delta T Loop B Delta T Loop C Delta T Ave of 5 Highest T/Cs RCS Cooldown Rate S/G A Press S/G B Press S/G C Press S/G A Feedwater Flow S/G B Feedwater Flow S/G C Feedwater Flow S/G A Steam Flow S/G B Steam Flow S/G C Steam Flow S/G A Level (WR) S/G B Level (WR) S/G C Level (WR) S/G A Level (NR) S/G B Level (NR) S/G C Level (NR)

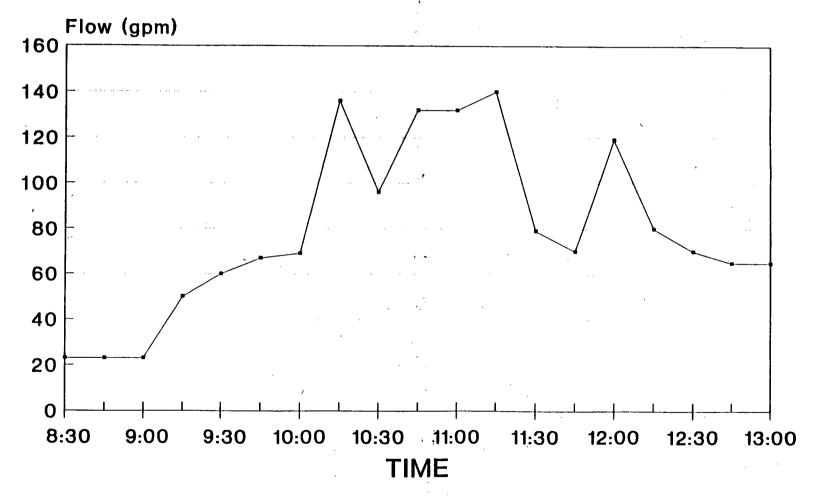
3.1.1-0a


Reactor Power EXERCISE

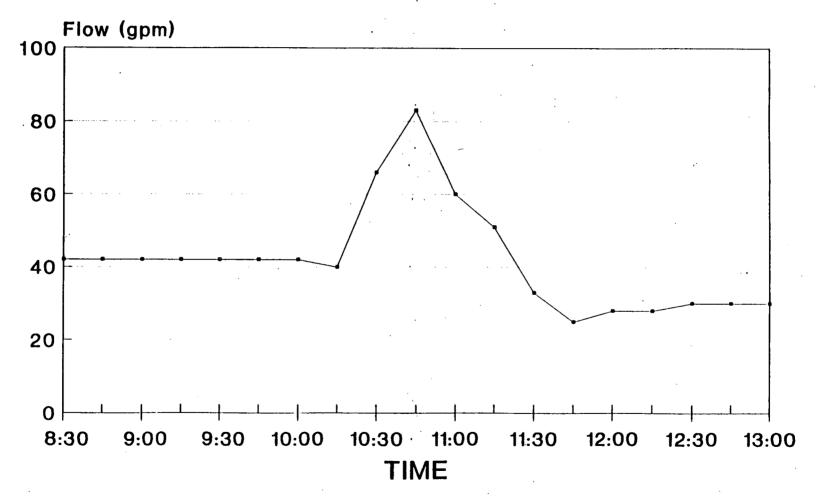

PZR Level EXERCISE

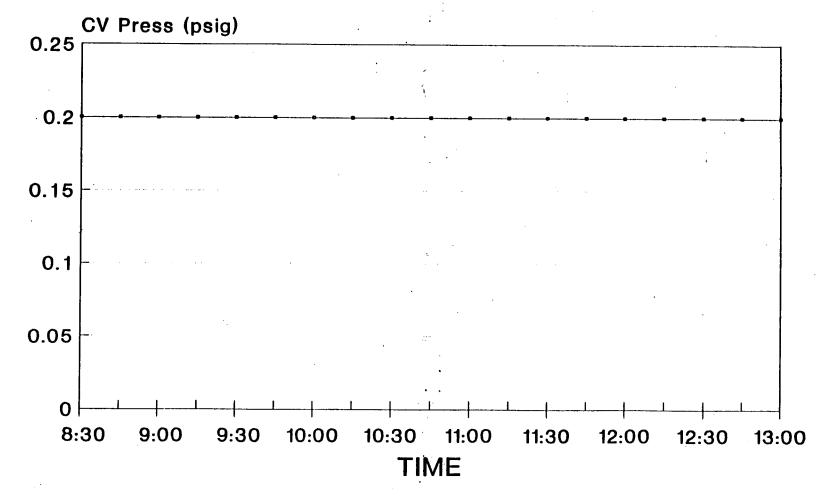


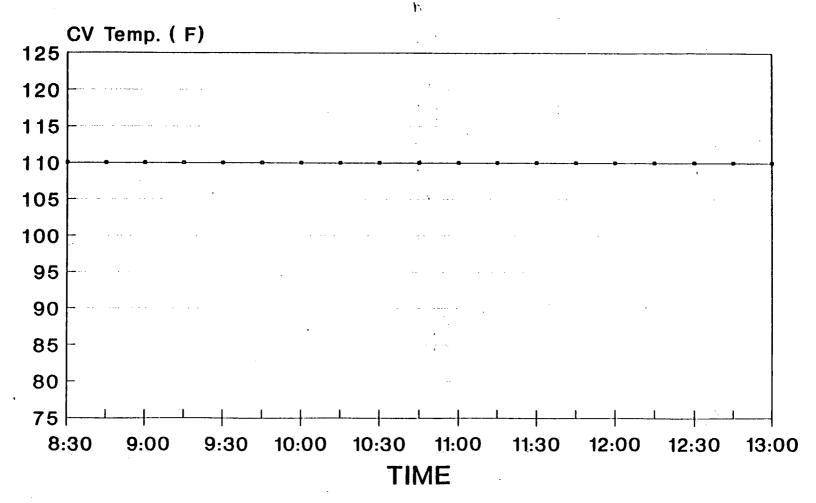
3.1.1-3

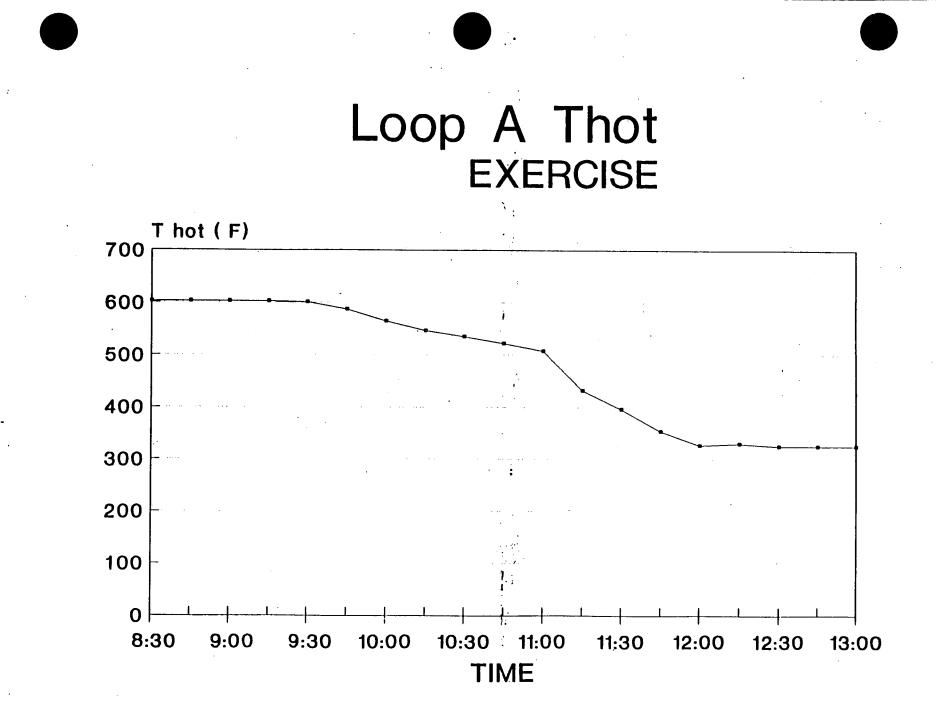

11

RCS Tave EXERCISE

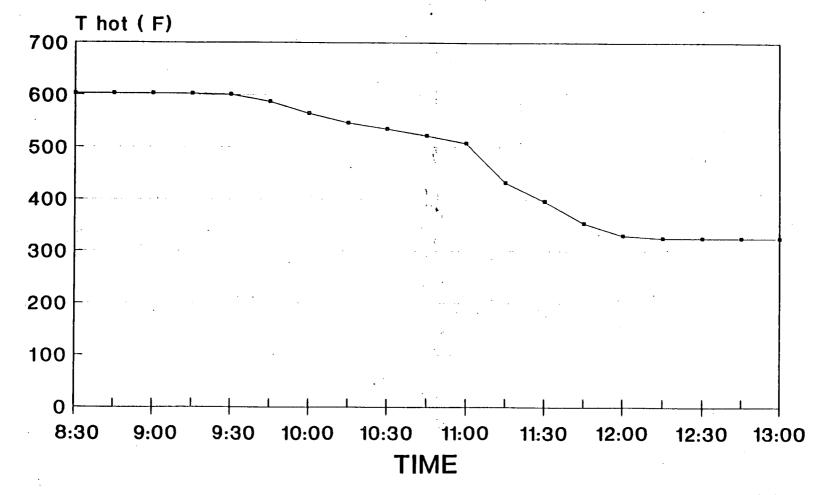



Charging Flow EXERCISE

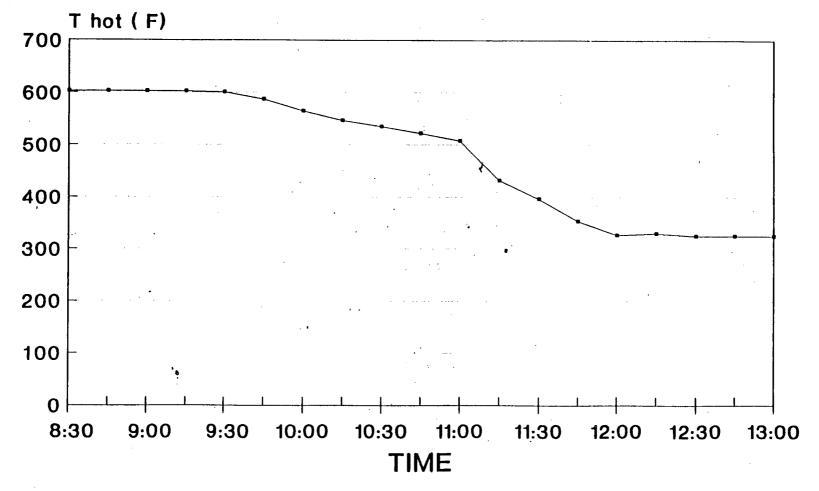

Letdown Flow EXERCISE

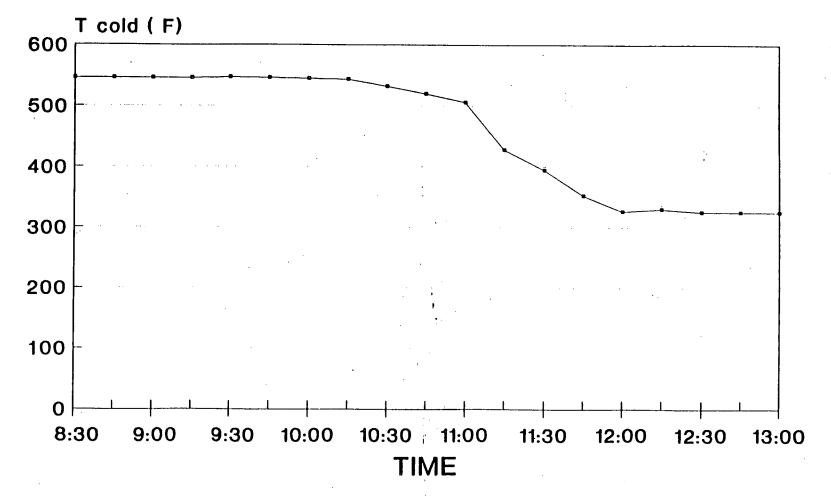


Containment Press EXERCISE

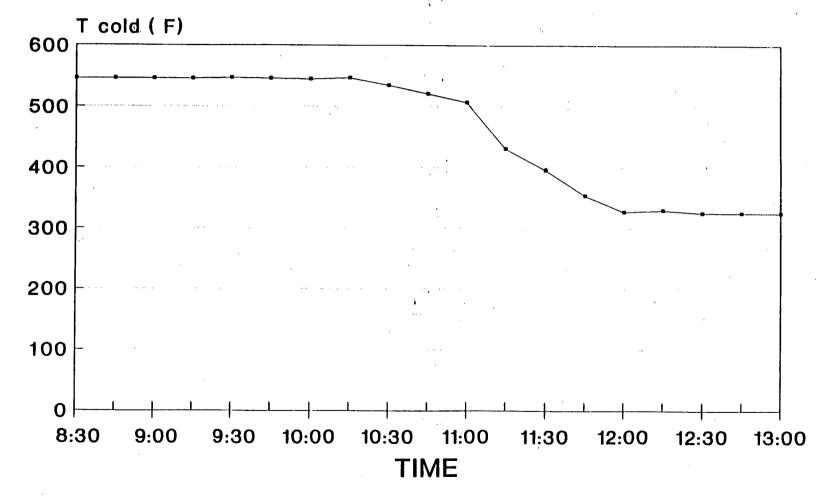


Containment Temperature EXERCISE

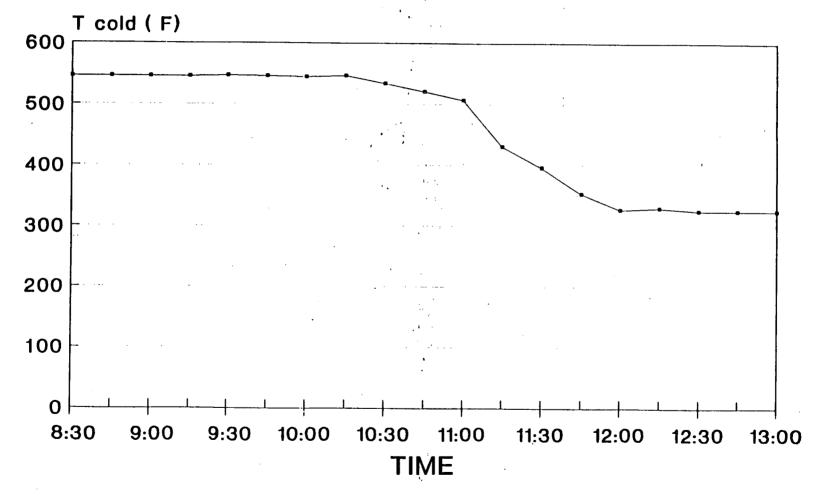


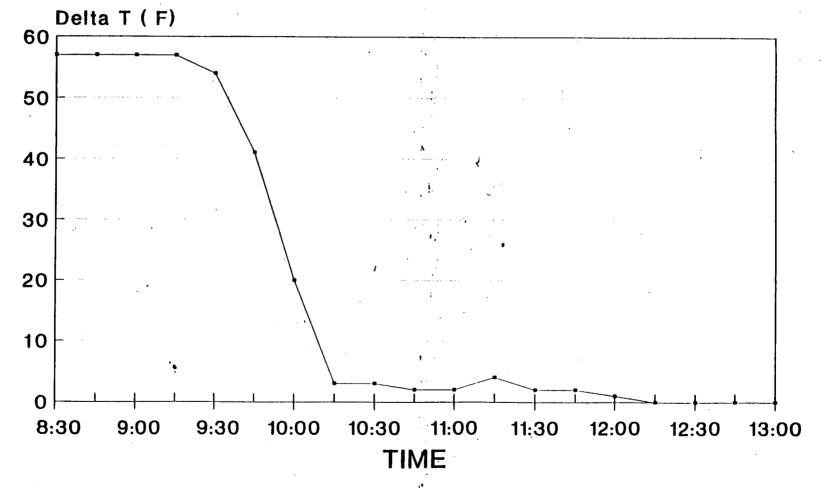

Loop B Thot EXERCISE

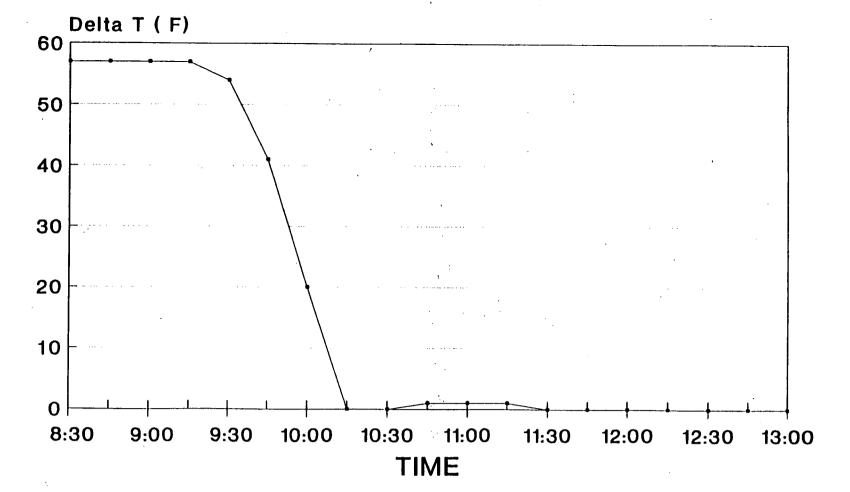
Loop C Thot EXERCISE

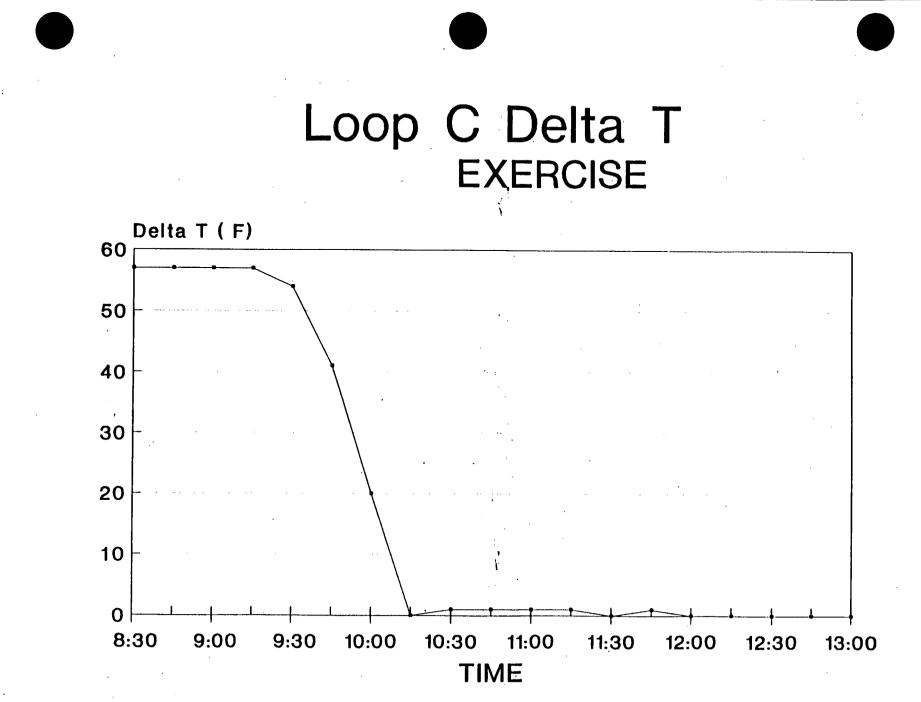


Loop A Tcold EXERCISE

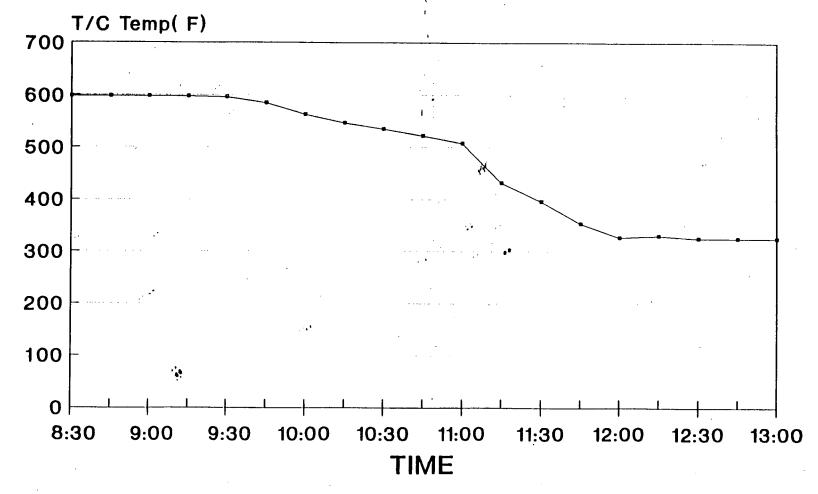


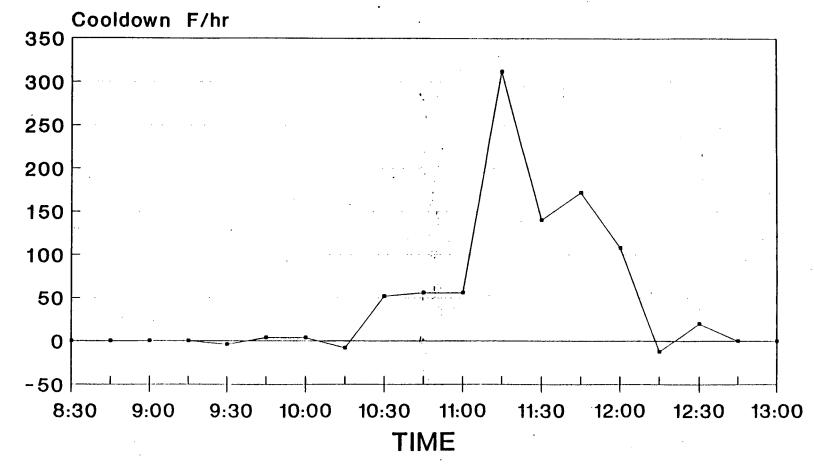

Loop B Tcold EXERCISE


Loop C Tcold EXERCISE



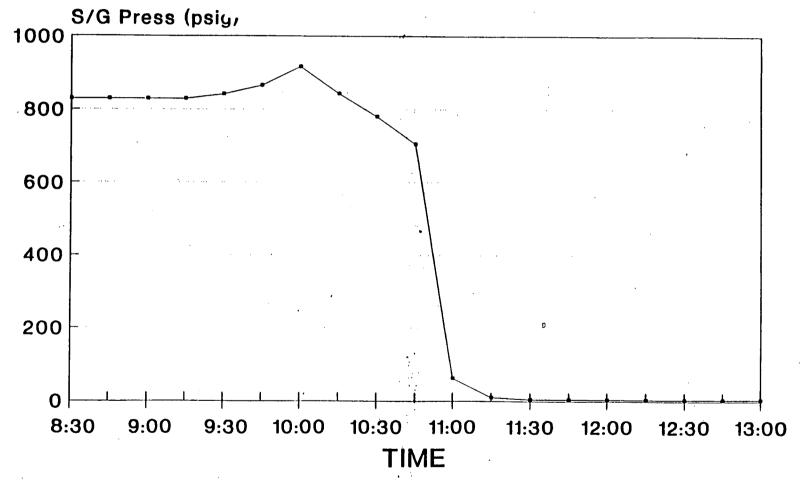
Loop A Delta T EXERCISE

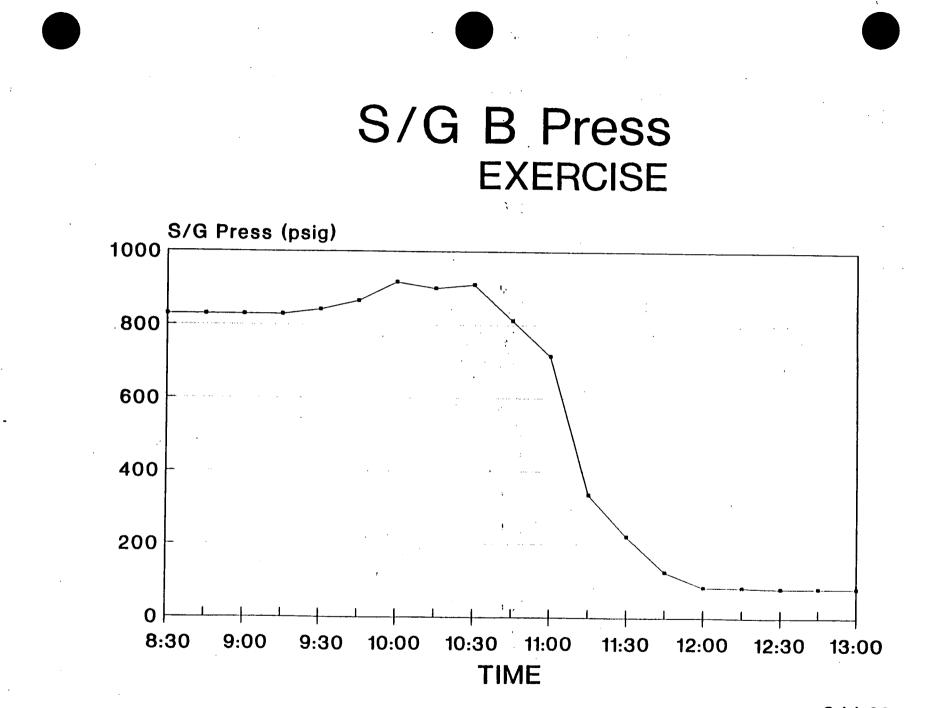




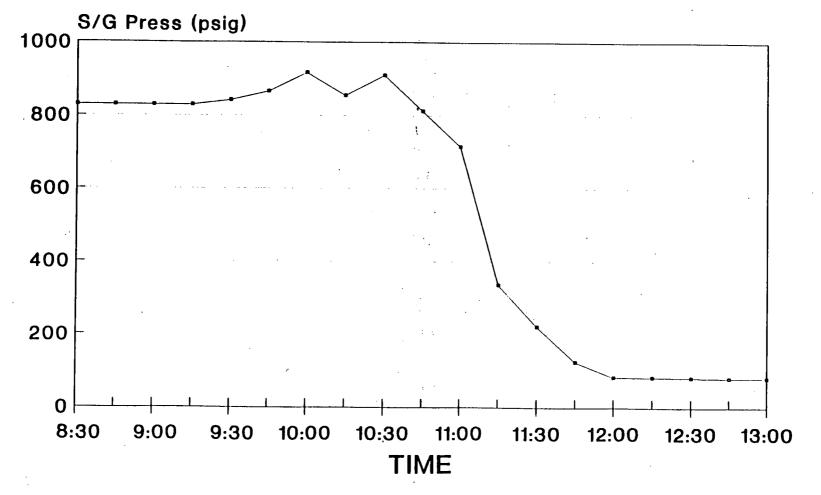
3.1.1-18

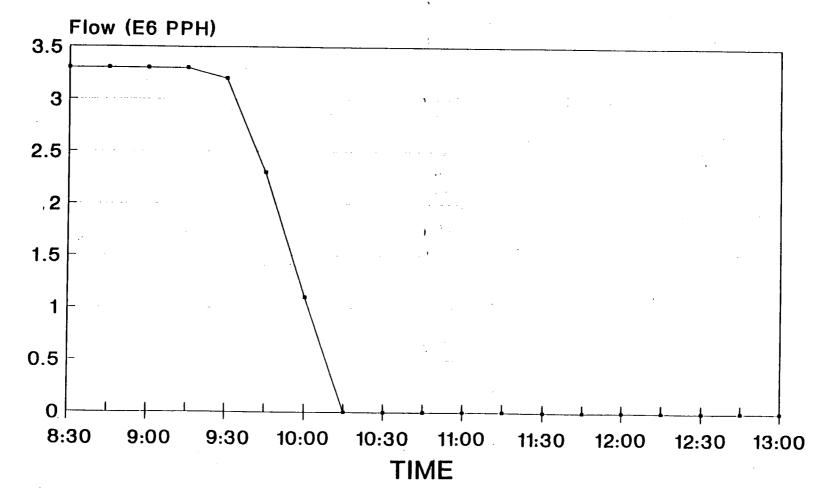
Ave of 5 Highest T/Cs EXERCISE



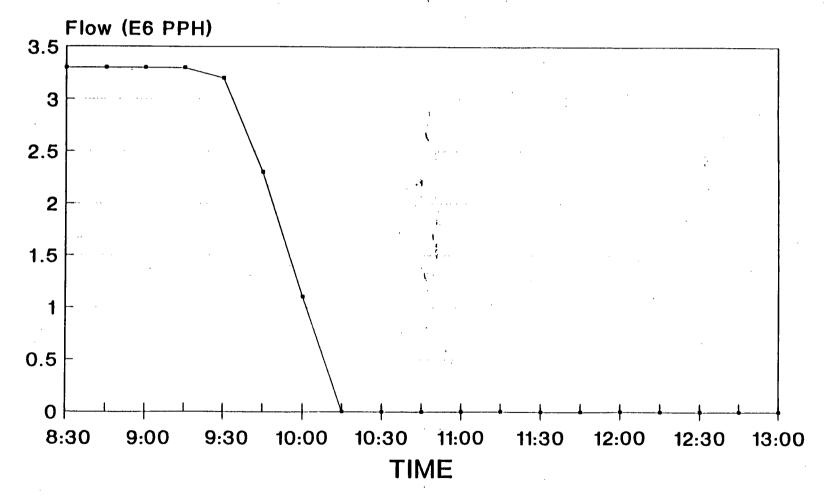

RCS Cooldown Rate EXERCISE

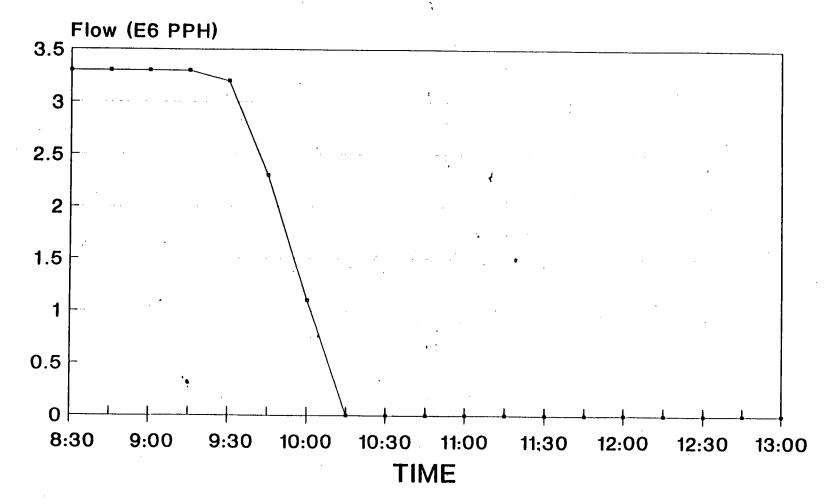
Based on Cold Leg Temp


S/G A Press EXERCISE

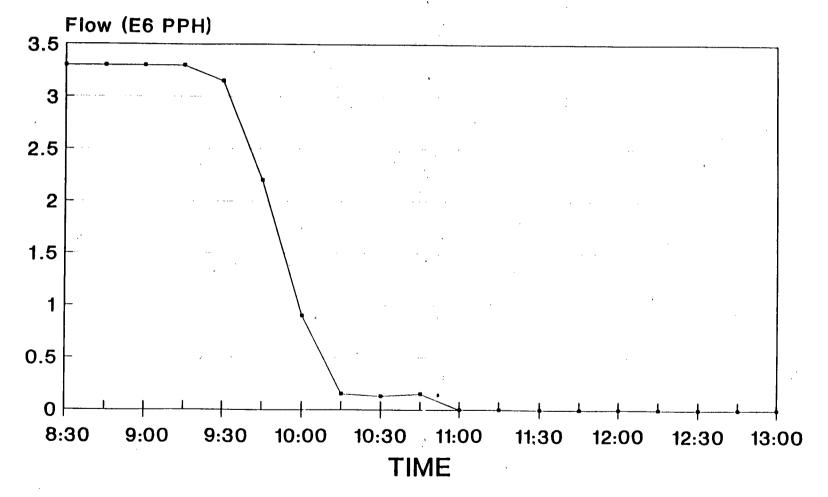


^{3.1.1-22}

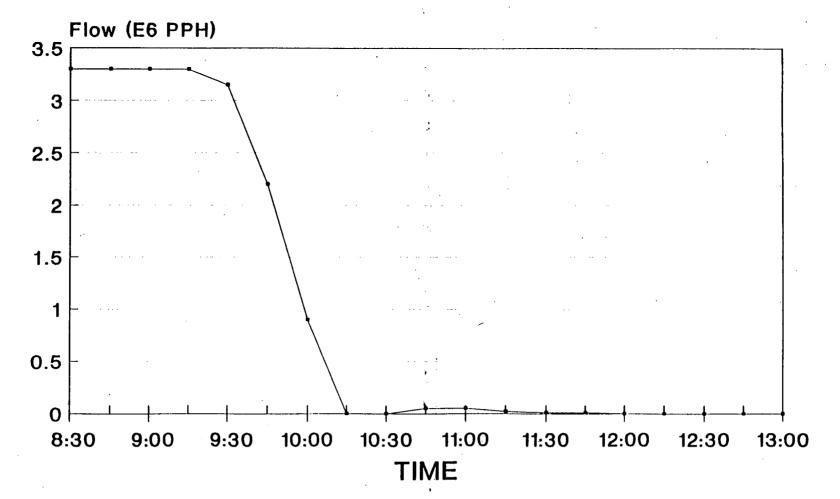


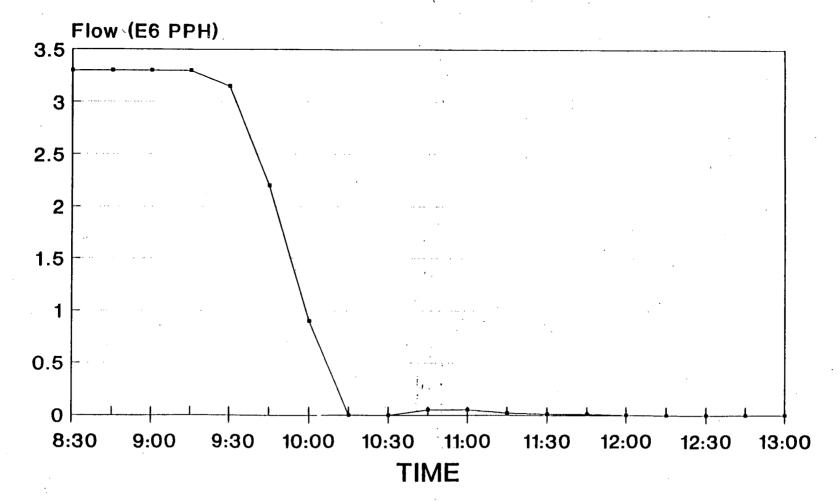

S/G A Feedwater Flow EXERCISE

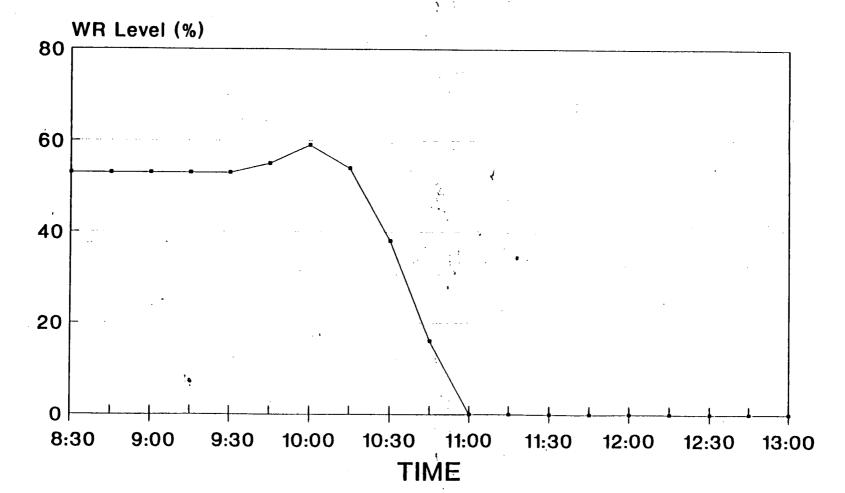
S/G B Feedwater Flow EXERCISE

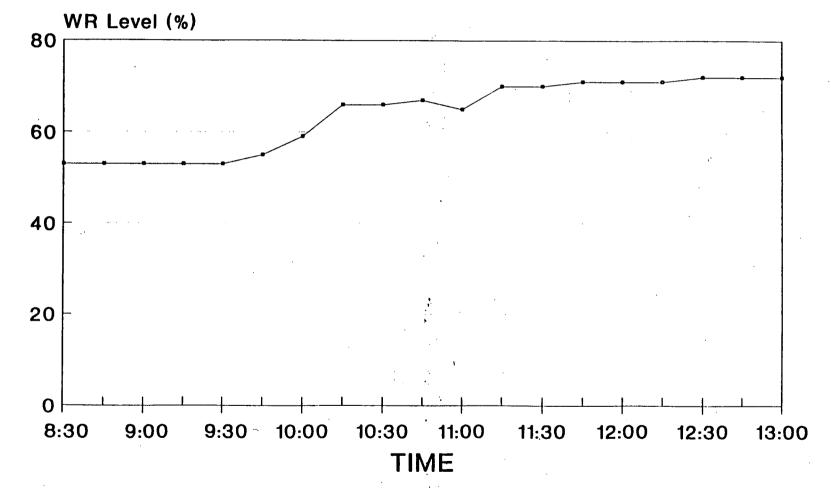


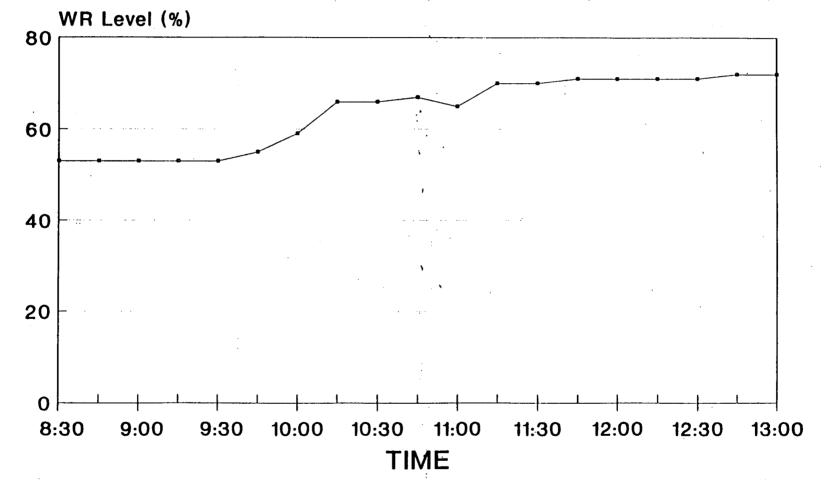
S/G C Feedwater Flow EXERCISE

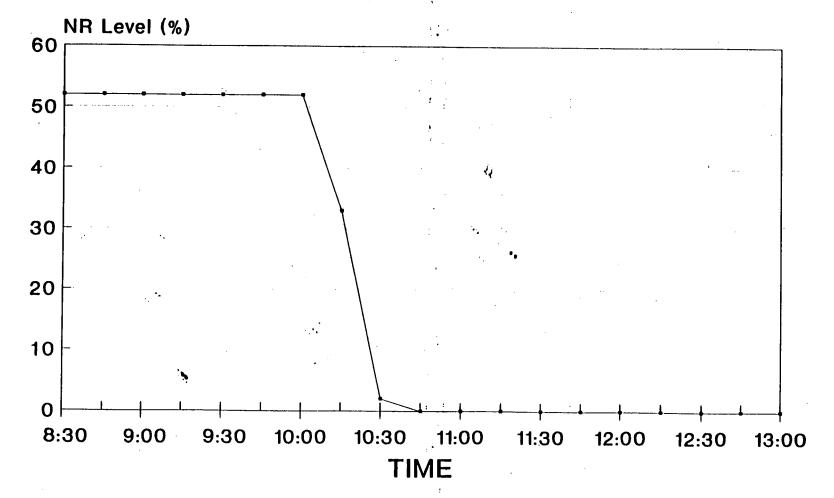


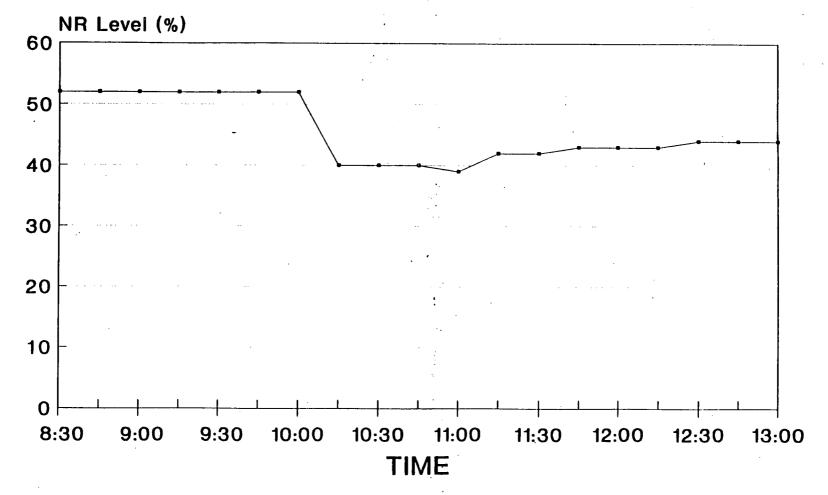

S/G A Steam Flow EXERCISE

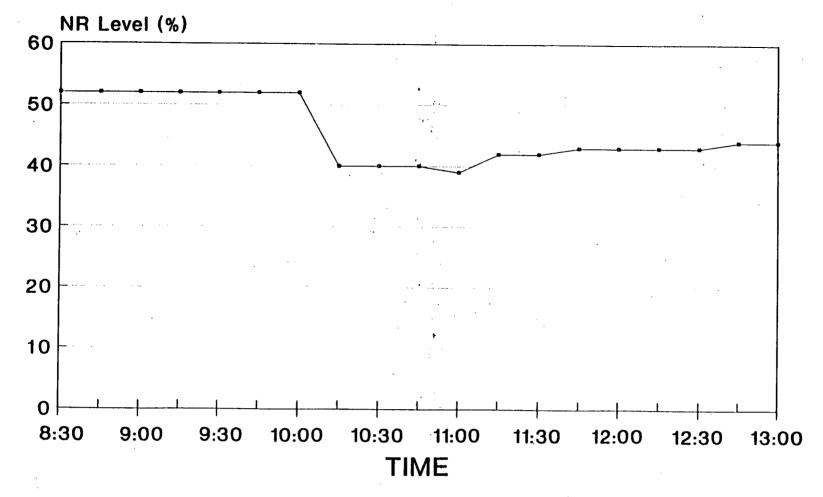

S/G B Steam Flow EXERCISE


S/G C Steam Flow EXERCISE


S/G A Level (WR) EXERCISE


S/G B Level (WR) EXERCISE


S/G C Level (WR) EXERCISE


S/G A Level (NR) EXERCISE

S/G B Level (NR) EXERCISE

S/G C Level (NR) EXERCISE

CAROLINA POWER AND LIGHT COMPANY ROBINSON NUCLEAR PROJECT DEPARTMENT

1994 DEFERRED EXERCISE

3.2 PLANT PARAMETERS

CON-94-0222 RNPD-94-03-R0

Page 1 of 1

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

EMERGENCY CLASSIFICATION (CIRCLE) UNUSUAL EVENT SITE AREA EMERGENCY

ENGINEERED SAFETY FEATURES

Completed By:

ALERT GENERAL EMERGENCY

ENVIRONMENTAL SYSTEMS WIND SPEED UPPER (MPH) 7.1 LOWER (MPH) 3.7 WIND DIR. UPPER (° FROM) 233 LOWER (° FROM) 229

AIR TEMPERATURE	(°F)	46.1
STABILITY CLASS		D

AREA RADIATION MONITORS

K-1	CONTROL ROOM (MR/HR)	0.1
R-2	CONT. AREA (MR/HR)	11
R-3	HP WORK AREA (MR/HR)	0.15
R-4	CHG. PUMP RM (MR/HR)	6
R-5	SPENT FUEL PIT (MR/HR)	0.7
R-6	SAMPLING ROOM (MR/HR)	0.8
R-7	IN-CORE INST (MR/HR) _	
R-8	DRUM. RM. (MR/HR)	1.5
R-9	FAILED FUEL (MR/HR)	62
R-33	5 MON BLDG (MR/HR)	0.35

PROCESS RADIATION MONITORS

.

R-11 CV VENT PART. (CPM)20K
R-12 CV VENT GAS (CPM)1.2K
R-14A "P" PLT VNT (CPM) 700
R-148 "I" PLT VNT (CPM)20
R-14C "NG" PLT VNT (CPM) 40
R-15 COND. AIR EJEC. (CPM) 15
R-16 CV FAN CW (CPM) 290
R-17 COMP. CW (CPM) 290
R-18 WASTE DISPOSAL (CPM) 16.5K
R-19A S/G A BLOWDOWN (CPM) 2.0K
R-19B S/G B BLOWDOWN (CPM) 1.0K
R-19C S/G C BLOWDOWN (CPM) 1.0K
R-20 FUEL HDLG BASE (CPM)40
R-21 FUEL HDLG UPPER (CPM) 25
ACCIDENT RADIATION MONITORS
R-30 F.H. BASE HI RG (MR/HR) 0.5
R-31A "A" MN STM (MR/HR)0.3
R-31B "B" MN STM (MR/HR) 0.4
R-31C "C" MN STM (MR/HR)0.6
R-32A CV HI RG (R/HR)1
R-32B CV HI RG (R/HR)1
R-14D PLT VNT GAS (MID) (CPM) 10
R-14E PLT VNT GAS (HI) (CPM) 10
R-37 CONDENSATE POLISHER (CPM) 115

CONTAINMENT STATUS	
PRESSURE (PSIG)	0.2
TEMPERATURE (°F)	110
HYDROGEN CONC. (%)	
SUMP LEVEL (INCHES)	
RWST LEVEL (%)	91
PRIMARY SYSTEM	
RCS PRESSURE (PSIG)	2235
PZR LEVEL (%)	52.4
TAVE (°F)	575.4
LOOP A TH (°F)	603
TC (°F)	
<u></u> T	57
LOOP B TH (°F)	603
TC (°F)	
ΔΤ	57
LOOP C TH (°F)	603
- TC (°F)	546
<u>م</u> ۲	57
SUBCOOLING (°F)	49.7
CHARGING FLOW (GPM)	23
LETDOWN FLOW (GPM)	42
REACTOR POWER	100
ACTIVITY:	
GROSS (Uci/mi)	
I ¹³¹ (Uci/mi)	
AVG 5 HOTTEST T/Cs	598
BORON CONC. (PPM)	
SECONDARY SYSTEM	
S/G A	

LEVWR(%) 53 NR(%) 52
PRESS (PSIG) 829
FEED (PPH) 3.3
STEAM (PPH) 3.3
ACT. (Uci/ml)
S/G B
LEVWR(%) 53 NR(%) 52
PRESS (PSIG) 829
FEED (PPH) 3.3
STEAM (PPH) 3.3
ACT. (Uci/mi)
S/G C
LEVWR(%) 53 NR(%) 52
PRESS (PSIG) 829
FEED (PPH) 3.3
STEAM (PPH) 3.3
ACT. (Uci/mi)

PRI/SEC. LK. RT (GPM)

SI ACTUATED: TIME RESET: TIME CS ACTUATED: TIME RESET: TIME CONT. ISO. A ACTUATED: TIME RESET: TIME CONT. ISO. B ACTUATED: TIME _ RESET: TIME SPRAY ADD TANK LEVEL (%) ____61 SI COLD-LEG FLOW (GPM) _____O SI HOT-LEG INJECT START EQUIPMENT STATUS N = NOT AVAILABLE A = AVAILABLE (NOT OPERATING) O = OPERATING E = ENERGIZEDPRIMARY RCP A <u>0</u> B <u>0</u> C <u>0</u> CHG PUMP A A B A C O SI PUMP A<u>A</u>B<u>A</u>C<u>N</u> CS PUMP A A B A RHR PUMP A A B A HVH 1 _ 0 2 _ 0 3 _ 0 4 _ 0 SECONDARY CST LEVEL (%) _____91 FEED PUMP A __O B __O COND PUMP A O B O AFW MOTOR A <u>A</u> B <u>A</u> AFW STEAM A MSIV A O B O C O ELECTRICAL EDG A A B A DS/DG <u>A</u> OFFSITE <u>E</u> EMER. BUS E1 ____ E2 ___ FROM: OFFSITE _E___ D.G. _A__ FANS HVE 1A _____ 1B _____ HVE 2A _____ 0 ___ 2B ____ A HVE 5A _____ 5B ___ A HVE 15 0 15A Α

LEGEND:

OSH = OFF SCALE HIGH OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

PEP-171 94-0222

Rev. 26

Page 52 of 76 3.2-1

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

EMERGENCY CLASSIFICATION (CIRCLE) UNUSUAL EVENT SITE AREA EMERGENCY

GENERAL EMERGENCY

Date/Time: ________ / 0845

Completed By:

ALERT

ENVIRONMENTAL SYSTEMS

ENVIRONMENTAL STOTENS	
WIND SPEED UPPER (MPH)	5.7
LOWER (MPH)	3.8
WIND DIR. UPPER (° FROM)	228
LOWER (° FROM) _	230
AIR TEMPERATURE (°F)	48.2
STABILITY CLASS	D

AREA RADIATION MONITORS

R-1	CONTROL ROOM (MR/HR)	0.1
R-2	CONT. AREA (MR/HR)	11
R-3	HP WORK AREA (MR/HR)	0.15
R-4	CHG. PUMP RM (MR/HR) _	6
R-5	SPENT FUEL PIT (MR/HR)	0.7
R-6	SAMPLING ROOM (MR/HR)	0.8
R-7	IN-CORE INST (MR/HR) _	8
R-8	DRUM. RM. (MR/HR)	1.5
R-9	FAILED FUEL (MR/HR)	62
R-33	MON BLDG (MR/HR)	0.35

PROCESS RADIATION MONITORS

R-14A "P" PLT VNT (CPM) 700 R-14B "I" PLT VNT (CPM) 20 R-14C "NG" PLT VNT (CPM) 40 R-15 COND. AIR EJEC. (CPM) 15 R-16 CV FAN CW (CPM) 290 R-17 COMP. CW (CPM) 290 R-17 COMP. CW (CPM) 290 R-18 WASTE DISPOSAL (CPM) 16.5K R-19A S/G A BLOWDOWN (CPM) 2.0K R-19B S/G B BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-20 FUEL HDLG BASE (CPM) 40 40 R-21 FUEL HDLG UPPER (CPM) 25 ACCIDENT RADIATION MONITORS R-30 F.H. BASE HI RG (MR/HR) 0.3 3 R-318 "B" MN STM (MR/HR) 0.4 3 R-318 "B" MN STM (MR/HR) 0.6 4 R-32A CV HI RG (R/HR) 1 1 1 R-32B CV HI RG (R/HR) 1 <td>R-11 CV VENT PART. (CPM)20K</td>	R-11 CV VENT PART. (CPM)20K
R-14A "P" PLT VNT (CPM) 700 R-14B "I" PLT VNT (CPM) 20 R-14C "NG" PLT VNT (CPM) 40 R-15 COND. AIR EJEC. (CPM) 15 R-16 CV FAN CW (CPM) 290 R-17 COMP. CW (CPM) 290 R-17 COMP. CW (CPM) 290 R-18 WASTE DISPOSAL (CPM) 16.5K R-19A S/G A BLOWDOWN (CPM) 2.0K R-19B S/G B BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-20 FUEL HDLG BASE (CPM) 40 40 R-21 FUEL HDLG UPPER (CPM) 25 ACCIDENT RADIATION MONITORS R-30 F.H. BASE HI RG (MR/HR) 0.3 3 R-318 "B" MN STM (MR/HR) 0.4 3 R-318 "B" MN STM (MR/HR) 0.6 4 R-32A CV HI RG (R/HR) 1 1 1 R-32B CV HI RG (R/HR) 1 <td>R-12 CV VENT GAS (CPM) 1.2K</td>	R-12 CV VENT GAS (CPM) 1.2K
R-14C "NG" PLT VNT (CPM) 40 R-15 COND. AIR EJEC. (CPM) 15 R-16 CV FAN CW (CPM) 290 R-17 COMP. CW (CPM) 290 R-17 COMP. CW (CPM) 290 R-18 WASTE DISPOSAL (CPM) 16.5K R-19A S/G A BLOWDOWN (CPM) 2.0K R-19B S/G B BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-20 FUEL HDLG BASE (CPM) 40 R-21 FUEL HDLG UPPER (CPM) 25 ACCIDENT RADIATION MONITORS R-30 F.H. BASE HI RG (MR/HR) 0.5 R-31A "A" MN STM (MR/HR) 0.3 R-31B "B" MN STM (MR/HR) 0.4 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10	
R-15 COND. AIR EJEC. (CPM) 15 R-16 CV FAN CW (CPM) 290 R-17 COMP. CW (CPM) 290 R-17 COMP. CW (CPM) 290 R-18 WASTE DISPOSAL (CPM) 16.5K R-19A S/G A BLOWDOWN (CPM) 2.0K R-19B S/G A BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-20 FUEL HDLG BASE (CPM) 40 25 ACCIDENT RADIATION MONITORS R-30 R-30 F.H. BASE HI RG (MR/HR) 0.3 R-318 "B" MN STM (MR/HR) 0.3 R-31B "B" MN STM (MR/HR) 0.4 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10	R-148 "I" PLT VNT (CPM)20
R-16 CV FAN CW (CPM) 290 R-17 COMP. CW (CPM) 290 R-18 WASTE DISPOSAL (CPM) 16.5K R-19A S/G A BLOWDOWN (CPM) 2.0K R-19B S/G B BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-20 FUEL HDLG BASE (CPM) 40 R-21 FUEL HDLG UPPER (CPM) 25 ACCIDENT RADIATION MONITORS R-30 R-30 F.H. BASE HI RG (MR/HR) 0.3 R-31B "B" MN STM (MR/HR) 0.4 R-31C "C" MN STM (MR/HR) 0.6 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10	R-14C "NG" PLT VNT (CPM) 40
R-17 COMP. CW (CPM) 290 R-18 WASTE DISPOSAL (CPM) 16.5K R-19A S/G A BLOWDOWN (CPM) 2.0K R-19B S/G B BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-20 FUEL HDLG BASE (CPM) 40 R-21 FUEL HDLG UPPER (CPM) 25 ACCIDENT RADIATION MONITORS 8 R-30 F.H. BASE HI RG (MR/HR) 0.3 R-318 "B" MN STM (MR/HR) 0.4 R-312 C'C' MN STM (MR/HR) 0.6 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10	R-15 COND. AIR EJEC. (CPM) 15
R-17 COMP. CW (CPM) 290 R-18 WASTE DISPOSAL (CPM) 16.5K R-19A S/G A BLOWDOWN (CPM) 2.0K R-19B S/G B BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-20 FUEL HDLG BASE (CPM) 40 R-21 FUEL HDLG UPPER (CPM) 25 ACCIDENT RADIATION MONITORS 8 R-30 F.H. BASE HI RG (MR/HR) 0.3 R-318 "B" MN STM (MR/HR) 0.4 R-312 C'C' MN STM (MR/HR) 0.6 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10	R-16 CV FAN CW (CPM) 290
R-18 WASTE DISPOSAL (CPM) 16.5K R-19A S/G A BLOWDOWN (CPM) 2.0K R-19B S/G B BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-20 FUEL HDLG BASE (CPM) 40 R-21 FUEL HDLG UPPER (CPM) 25 ACCIDENT RADIATION MONITORS R-30 F.H. BASE HI RG (MR/HR) 0.5 R-31A "A" MN STM (MR/HR) 0.3 3 R-31B "B" <mn< td=""> STM (MR/HR) 0.6 3 R-31B "B"<mn< td=""> STM (MR/HR) 0.6 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D</mn<></mn<>	R-17 COMP. CW (CPM) 290
R-19B S/G B BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-20FUEL HDLG BASE (CPM) 40 R-21 FUEL HDLG UPPER (CPM) 25 ACCIDENT RADIATION MONITORS R-30 F.H. BASE HI RG (MR/HR) 0.3 R-318 "B" MN STM (MR/HR) 0.4 R-318 "B" MN STM (MR/HR) 0.4 R-312 "C" MN STM (MR/HR) 0.4 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10	R-18 WASTE DISPOSAL (CPM) 16.5K
R-19B S/G B BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-20FUEL HDLG BASE (CPM) 40 R-21 FUEL HDLG UPPER (CPM) 25 ACCIDENT RADIATION MONITORS R-30 F.H. BASE HI RG (MR/HR) 0.3 R-318 "B" MN STM (MR/HR) 0.4 R-318 "B" MN STM (MR/HR) 0.4 R-312 "C" MN STM (MR/HR) 0.4 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10	R-19A S/G A BLOWDOWN (CPM) 2.0K
R-19C S/G C BLOWDOWN (CPM) 1.0K R-20 FUEL HDLG BASE (CPM) 40 R-21 FUEL HDLG UPPER (CPM) 25 ACCIDENT RADIATION MONITORS R-30 F.H. BASE HI RG (MR/HR) 0.5 R-31A "A" MN STM (MR/HR) 0.3 R-31B "B" MN STM (MR/HR) 0.4 R-31C "C" MN STM (MR/HR) 0.6 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10	
R-21 FUEL HDLG UPPER (CPM) 25 ACCIDENT RADIATION MONITORS R-30 F.H. BASE HI RG (MR/HR) 0.5 R-31A "A" MN STM (MR/HR) 0.3 R-31B "B" MN STM (MR/HR) 0.4 R-31C "C" MN STM (MR/HR) 0.6 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10	
R-21 FUEL HDLG UPPER (CPM) 25 ACCIDENT RADIATION MONITORS R-30 F.H. BASE HI RG (MR/HR) 0.5 R-31A "A" MN STM (MR/HR) 0.3 R-31B "B" MN STM (MR/HR) 0.4 R-31C "C" MN STM (MR/HR) 0.6 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10	R-20 FUEL HDLG BASE (CPM)40
R-30 F.H. BASE HI RG (MR/HR) 0.5 R-31A "A" MN STM (MR/HR) 0.3 R-31B "B" MN STM (MR/HR) 0.4 R-31C "C" MN STM (MR/HR) 0.6 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10	
R-31A "A" MN STM (MR/HR) 0.3 R-31B "B" MN STM (MR/HR) 0.4 R-31C "C" MN STM (MR/HR) 0.6 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10	ACCIDENT RADIATION MONITORS
R-31B "B" MN STM (MR/HR) 0.4 R-31C "C" MN STM (MR/HR) 0.6 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10	R-30 F.H. BASE HI RG (MR/HR) 0.5
R-31C "C" MN STM (MR/HR) 0.6 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10	R-31A "A" MN STM (MR/HR) 0.3
R-31C "C" MN STM (MR/HR) 0.6 R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10	R-318 "B" MN STM (MR/HR)0.4
R-32A CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10	R-31C "C" MN STM (MR/HR) 0.6
R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10	R-32A CV HI RG (R/HR) 1
R-14D PLT VNT GAS (MID) (CPM) <u>10</u> R-14E PLT VNT GAS (HI) (CPM) <u>10</u>	R-32B CV HI RG (R/HR)1
	R-14D PLT VNT GAS (MID) (CPM) 10
R-37 CONDENSATE POLISHER (CPM) 115	R-14E PLT VNT GAS (HI) (CPM) 10
	R-37 CONDENSATE POLISHER (CPM) 115

TAVE (°F)	575.4
TAVE (°F) LOOP A TH (°F)	603
TC (°F)	546
	57
LOOP B TH (°F)	603
TC (°F)	
<u> </u>	
LOOP C TH (°F)	603
TC (°F)	546
∆T SUBCOOLING (°F)	57
SUBCOOLING (°F)	49.7
CHARGING FLOW (GPM)	23
LETDOWN FLOW (GPM)	
REACTOR POWER	
ACTIVITY:	
GROSS (Uci/mi)	
I ¹³¹ (Uci/mi)	
AVG 5 HOTTEST T/Cs	598
BORON CONC. (PPM)	
<u>SECONDARY SYSTEM</u> S/G A	
LEVWR(%) 53	NR(%) _52
PRESS (PSIG)	829
FEED (PPH)	
STEAM (PPH)	3.3
ACT. (Uci/ml)	
S/G B	
LEVWR(%) 53	NR(%) 52
PRESS (PSIG)	829
FEED (PPH)	33

ENGINEERED	SAFETY	FEATURE	<u>s</u>
SI ACTUATE		E	
KESEI	: IIME		
CS ACTUATE		E	
KESEI:	TIME		
CONT. ISO.	A ACTU	ATED: T	IME
	RES	ET: TIM	E
CONT. ISO.			
	RES	ET: TIM	E
SPRAY ADD	TANK LE	VEL (%)	61
SI COLD-LEG	G FLOW	(GPM)	0
SI HOT-LEG	INJECT	START	
EQUIPMENT S			
N = NOT AV/			
A = AVAILAR		OPERAT:	(NG)
0 = OPERAT			
E = ENERGIZ	ED		
PRIMARY			
RCP	A _0	<u> </u>	<u> </u>
CHG PUMP	A _ A	_ ^B _/	<u> </u>
SI PUMP	<u>^ _ A</u>	B	<u>v</u> c _
CS PUMP	<u>A</u> _A	BA	
RHR PUMP	<u>^ _ A</u>	BA	
HVH 1 0	2_0	_ 3 _0	_ 40
SECONDARY	•	••	
CST LEVEL ([,] ~)	91	
FEED PUMP A	0	B	
COND PUMP A	0	8 0	
AFW MOTOR A	<u>A</u> B	<u> </u>	
AFW STEAM _ MSIV A	<u> </u>		
MSIV A	_0	B _ O	C _O_
ELECTRICAL			
EDG A	<u> </u>	<u> </u>	
DS/DG	<u>A</u>		
OFFSITE	<u> </u>		
EMER. BUS E	1 <u> </u>	E	2 <u> </u>
rkum: Urrs	TIF E	D.G	• <u>A</u>
FANS		4-	
HVE 1A	A	- ¹⁸	<u>A</u>
HVE 2A		_ ²⁸	A
HVE 5A HVE 15	A	- ⁵⁸	<u> </u>
TIVE 10	0	_ 15A	A

OSH = OFF SCALE HIGH OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

Page 52 of 76 3.2-2

CONTAINMENT STATUS PRESSURE (PSIC)

PRESSURE (PSIG)	0.2
TEMPERATURE (°F)	110
HYDROGEN CONC. (%)	0
SUMP LEVEL (INCHES)	0
RWST LEVEL (%)	91

PRIMARY SYSTEM

PRIMARI SISIEM			
RCS PRESSURE (PSIG)	2235		
PZR LEVEL (%)	52.4		
TAVE (°F)	575.4		
LOOP A TH (°F)			
TC (°F)	546		
Tم			
LOOP B TH (°F)			
TC (°F)			
ΔΤΤ			
LOOP C TH (°F)			
TC (°F)	546		
Tه	57		
SUBCOOLING (°F)	49.7		
CHARGING FLOW (GPM)			
LETDOWN FLOW (GPM)	42		
REACTOR POWER	100		
ACTIVITY:			
GROSS (Uci/mi)			
I ¹³¹ (Uci/mi)			
AVG 5 HOTTEST T/Cs			
BORON CONC. (PPM)			

LEVWR(%) 53	_ NR(%)	_52_
PRESS (PSIG)	829	
FEED (PPH)	3.3	
STEAM (PPH)		
ACT. (Uci/ml)		
S/G B		
LEVWR(%) 53	NR(%)	52
PRESS (PSIG)	829	
FEED (PPH)	3.3	
STEAM (PPH)		
ACT. (Uci/mi)		
S/G C		
LEVWR(%) 53	NR(%)	52
PRESS (PSIG)	829	
FEED (PPH)	3.3	
STEAM (PPH)	3.3	
ACT. (Uci/mi)		

PRI/SEC. LK. RT (GPM) ____

PEP-171 94-0222

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

EMERGENCY CLASSIFICATION (CIRCLE)

LOWER (MPH) 4.2

WIND DIR. UPPER (° FROM) _______

LOWER (FROM)

Date/Time: <u>3/30/94</u> / 0900

ALERT GENERAL EMERGENCY

ENVIRONMENTAL SYSTEMS

WIND SPEED UPPER (MPH)

AIR TEMPERATURE (°F) ____

AREA RADIATION MONITORS

STABILITY CLASS

CONTAINMENT STATUS PRESSURE (PSIG) 0.2 TEMPERATURE (°F) 110 HYDROGEN CONC. (%) 0 0 SUMP LEVEL (INCHES) RWST LEVEL (%) 91

PRIMARY SYSTEM

RCS PRESSURE (PSIG)	2235
PZR LEVEL (%)	
TAVE (°F)	
LOOP A TH (°F)	
TC (°F)	546
<u>۸</u> ۲	57
LOOP B TH (°F)	
TC-(°F)	546
<u>م</u>	57
LOOP C TH (°F)	
TC (°F)	546
ΔΤ	
SUBCOOLING (°F)	
CHARGING FLOW (GPM)	
LETDOWN FLOW (GPM)	42
REACTOR POWER	100
ACTIVITY:	
GROSS (Uci/mi)	
I ¹³¹ (Uci/mi)	
AVG 5 HOTTEST T/Cs	
BORON CONC. (PPM)	

SECONDARY SYSTEM

S/G A		
LEVWR(%) _53	NR(%) _	52
PRESS (PSIG)	829	
FEED (PPH)		
STEAM (PPH)	3.3	
ACT. (Uci/ml)		
S/G B		
LEVWR(%) 53	NR(%)	52
PRESS (PSIG)	829	
FEED (PPH)	3.3	
STEAM (PPH)	3.3	
ACT. (Uci/mi)		
S/G C		
LEVWR(%) 53	NR(%) _	52
PRESS (PSIG)	829	
FEED (PPH)	3.3	
STEAM (PPH)		
ACT. (Uci/mi)	_	

PRI/SEC. LK. RT (GPM) ____

RESET: TIME CS ACTUATED: TIME _ RESET: TIME CONT. ISO. A ACTUATED: TIME RESET: TIME CONT. ISO. B ACTUATED: TIME ____ RESET: TIME ____ SPRAY ADD TANK LEVEL (%) ____61 SI COLD-LEG FLOW (GPM) _____0 SI HOT-LEG INJECT START EQUIPMENT STATUS N = NOT AVAILABLE A = AVAILABLE (NOT OPERATING) O = OPERATING E = ENERGIZEDPRIMARY RCP A <u>0</u> B <u>0</u> C <u>0</u> CHG PUMP A <u>N</u> B <u>A</u> C <u>O</u> SI PUMP A <u>A B A C N</u> A <u>A B A</u> CS PUMP RHR PUMP A A B A HVH 1 _0_ 2 _0_ 3 _0_ 4 _0_ SECONDARY CST LEVEL (%) _____91 FEED PUMP A __O__ B __O__ COND PUMP A O B O AFW MOTOR A A B A AFW STEAM A MSIV A <u>0</u> B <u>0</u> C <u>0</u> ELECTRICAL EDG A A B A DS/DG <u>N</u> OFFSITE <u>E</u> EMER. BUS E1 <u>E</u> E2 <u>E</u> FROM: OFFSITE <u>E</u> D.G. <u>A</u> FANS
 FANS

 HVE 1A
 A
 1B

 HVE 2A
 O
 2B

 HVE 5A
 A
 5B

 HVE 15
 O
 15A
 A Α A A

LEGEND:

OSH = OFF SCALE HIGH OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

UNUSUAL EVENT SITE AREA EMERGENCY

5.6

220

50.5

D

Completed By: ENGINEERED SAFETY FEATURES SI ACTUATED: TIME

R-1 CONTROL ROOM (MR/HR) 0.1
R-2 CONT. AREA (MR/HR) 11
R-3 HP WORK AREA (MR/HR) 0.15
R-4 CHG. PUMP RM (MR/HR) 6
R-5 SPENT FUEL PIT (MR/HR) 0.7
R-6 SAMPLING ROOM (MR/HR) 0.8
R-7 IN-CORE INST (MR/HR) 8
R-8 DRUM. RM. (MR/HR)1.5
R-9 FAILED FUEL (MR/HR) 62
R-33 MON BLDG (MR/HR) 0.35

PROCESS RADIATION MONITORS

R-11 CV VENT PART. (CPM) 20K
R-12 CV VENT GAS (CPM) 1.2K
R-14A "P" PLT VNT (CPM) _ 700
R-148 "I" PLT VNT (CPM)20
R-14C "NG" PLT VNT (CPM) 40
R-15 COND. AIR EJEC. (CPM) 15
R-16 CV FAN CW (CPM) 290
R-17 COMP. CW (CPM) 290
R-18 WASTE DISPOSAL (CPM) 16.5K
R-19A S/G A BLOWDOWN (CPM) 2.0K
R-19B S/G B BLOWDOWN (CPM) 1.0K
R-19C S/G C BLOWDOWN (CPM) 1.0K
R-20 FUEL HDLG BASE (CPM) 40
R-21 FUEL HDLG UPPER (CPM) 25
ACCIDENT RADIATION MONITORS
R-30 F.H. BASE HI RG (MR/HR) 0.5
R-31A "A" MN STM (MR/HR)
R-318 "B" MN STM (MR/HR)0.4
R-31C "C" MN STM (MR/HR)
R-32A CV HI RG (R/HR) 1
R-32B CV HI RG (R/HR)1
R-14D PLT VNT GAS (MID) (CPM) 10
R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10

PEP-171 94-0222

Rev. 26

Page 52 of 76 3.2-3

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

EMERGENCY CLASSIFICATION (CIRCLE) UNUSUAL EVENT SITE AREA EMERGENCY

Date/Time: _03/30/94 / 0915 _____

ALERT

ENVIRONMENTAL SYSTEMS

WIND SPEED UPPER (MPH) _

AIR TEMPERATURE (°F) ____

AREA RADIATION MONITORS

STABILITY CLASS

LOWER (MPH)

WIND DIR. UPPER (° FROM) 226

LOWER (° FROM)

R-1 CONTROL ROOM (MR/HR) ______ R-2 CONT. AREA (MR/HR) 11 R-3 HP WORK AREA (MR/HR) 0.15

R-4 CHG. PUMP RM (MR/HR) ____6

R-5 SPENT FUEL PIT (MR/HR) _0.7

R-6 SAMPLING ROOM (MR/HR) _____

R-7 IN-CORE INST (MR/HR)

GENERAL EMERGENCY

6.3

4.0

215

51.7

D

8

CONTAINMENT STATUS PRESSURE (PSIG) 0.2 110 TEMPERATURE (°F) HYDROGEN CONC. (%) Ω SUMP LEVEL (INCHES) Λ RWST LEVEL (%) 01 PRIMARY SYSTEM RCS PRESSURE (PSIG) ____2235 LOOP A TH (°F) ____ 603 TC (°F) _____ 546 _ ז⊿ ___57 LOOP B TH (°F) _____ 603 TC (°F) _____ . 546 **∆**T ____ 57 LOOPCTH_(°F)__ 603 TC (°F) ____ 546 **∆**T _ 57 SUBCOOLING (°F) 49.7 CHARGING FLOW (GPM) 50 LETDOWN FLOW (GPM) 42 REACTOR POWER 100 ACTIVITY: GROSS (Uci/mi) _ I¹³¹ (Uci/mi) AVG 5 HOTTEST T/Cs ____ 598 BORON CONC. (PPM)

SECONDARY SYSTEM		
S/G A		
LEVWR(%) _53	_ NR(%)	52
PRESS (PSIG)	829	
FEED (PPH)	3.3	
STEAM (PPH)		
ACT. (Uci/ml)		
S/G B		
LEVWR(%) 53	_ NR(%) _	52
PRESS (PSIG)		
FEED (PPH)	3.3	•
STEAM (PPH)		
ACT. (Uci/mi)		
S/G C		
LEVWR(%) 53	NR(%)	52
PRESS (PSIG)	829	
FEED (PPH)		
STEAM (PPH)		
ACT. (Uci/mi)		

PRI/SEC. LK. RT (GPM) ____

ENGINEERED SAFETY FEATURES
SI ACTUATED: TIME
RESET: TIME
CS ACTUATED: TIME
CONT. ISO. A ACTUATED: TIME
CONT. ISU. A ACTUATED: TIME
RESET: TIME
RESET: TIME
SPRAY ADD TANK LEVEL (%)
SI COLD-LEG FLOW (GPM) 0
SI HOT-LEG INJECT START
EQUIPMENT STATUS
N = NOT AVAILABLE
A = AVAILABLE (NOT OPERATING)
O = OPERATING
E = ENERGIZED
PRIMARY
RCP A O B O C O
CHG PUMP A N B A C O
SI PUMP A A B A C N
SIPUMP A <u>AB AC N</u> CSPUMP A <u>AB A</u>
HVH 1 _0 2 _0 3 _0 4 _0
SECONDARY
CST LEVEL (%)91
FEED PUMP A O B O
FEED PUMP A <u>O</u> B <u>O</u> COND PUMP A <u>O</u> B <u>O</u>
AFW MOTOR A A B A
AFW STEAMA
MSIV A O B O C O
ELECTRICAL
EDG A <u>A</u> B <u>A</u>
DS/DG N OFFSITE E
OFFSITEE
EMER. BUS E1 <u>E</u> E2 E
FROM: OFFSITE E D.G. A
FANS
HVE 1A A 1B A
HVE 2A 2B A
HVE 5A A 5B A
HVE 15 15A A
I EGEND .

LEGEND: OSH = OFF SCALE HIGH OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

Page 52 of 76 3.2-4

R-8 DRUM. RM. (MR/HR) <u>1.5</u> R-9 FAILED FUEL (MR/HR) <u>62</u> 1.5 R-33 MON BLDG (MR/HR) ____0.35 PROCESS RADIATION MONITORS R-11 CV VENT PART. (CPM) 20K R-12 CV VENT GAS (CPM) 1.2K R-14A "P" PLT VNT (CPM) ____844 R-14B "I" PLT VNT (CPM) _____ 30 R-14C "NG" PLT VNT (CPM) 184 R-15 COND. AIR EJEC. (CPM) 4359 R-16 CV FAN CW (CPM) ____ 290 R-17 COMP. CW (CPM) 290 R-18 WASTE DISPOSAL (CPM) 16.5K R-19A S/G A BLOWDOWN (CPM) 3.5K 40 1

R-19B S/G B BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-20 FUEL HDLG BASE (CPM) R-21 FUEL HDLG UPPER (CPM) _25 ACCIDENT RADIATION MONITORS R-30 F.H. BASE HI RG (MR/HR) 0.5 R-31A "A" MN STM (MR/HR) _____0.3_ R-31B "B" MN STM (MR/HR) _____0.4__ R-31C "C" MN STM (MR/HR) _____0.6___ R-32A CV HI RG (R/HR) R-32B CV HI RG (R/HR) 1 R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10

R-37 CONDENSATE POLISHER (CPM) 115

Rev. 26

PEP-171 94-0222

Completed By:

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

EMERGENCY CLASSIFICATION (CIRCLE) UNUSUAL EVENT SITE AREA EMERGENCY

Date/Time: <u>3/30/94</u> / 0930

Completed By:

0.2

110

0

0

<u>91</u>

2235

52.7

573.7

601

547

54

601

547

54

601

547

54

60

42

95

596

51.7

ALERT

ENVIRONMENTAL SYSTEMS

GENERAL EMERGENCY

CONTAINMENT STATUS

HYDROGEN CONC. (%)

SUMP LEVEL (INCHES)

RWST LEVEL (%) ____

RCS PRESSURE (PSIG)

PZR LEVEL (%)

LOOP A TH (°F) _

LOOP B TH (°F) __

LOOP C TH (°F) _

TC (°F) ____

TC (°F) ____

TC (°F) ____

∆T _

▲T _

۵T

PRIMARY SYSTEM

TAVE (°F) ____

PRESSURE (PSIG) TEMPERATURE (°F)

WIND SPEED UPPER (MPH)	6.6
LOWER (MPH)	4.6
WIND DIR. UPPER (° FROM)	214
LOWER (° FROM)	217
AIR TEMPERATURE (°F)	55.7
STABILITY CLASS	D

AREA RADIATION MONITORS

R-1	CONTROL ROOM (MR/HR)	0.1
	CONT. AREA (MR/HR)	
	HP WORK AREA (MR/HR)	
	CHG. PUMP RM (MR/HR)	
	SPENT FUEL PIT (MR/HR)	
R-6	SAMPLING ROOM (MR/HR)	0.8
R-7	IN-CORE INST (MR/HR) _	8
R-8	DRUM. RM. (MR/HR)	1.5
R-9	FAILED FUEL (MR/HR)	62
R-33	MON BLDG (MR/HR)	0.35

PROCESS RADIATION MONITORS

R-11 CV VENT PART. (CPM) 20K
R-12 CV VENT GAS (CPM)1.2K
R-14A "P" PLT VNT (CPM)1.1K
R-148 "I" PLT VNT (CPM)47
R-14C "NG" PLT VNT (CPM) 449
R-15 COND. AIR EJEC. (CPM) 8K
R-16 CV FAN CW (CPM) 290
R-17 COMP. CW (CPM) 290
R-18 WASTE DISPOSAL (CPM) 16.5K
R-19A S/G A BLOWDOWN (CPM) 3.5K
R-19B S/G B BLOWDOWN (CPM) 1.0K
R-19C S/G C BLOWDOWN (CPM) 1.0K
R-20 FUEL HDLG BASE (CPM)40
R-21 FUEL HDLG UPPER (CPM) 25
ACCIDENT RADIATION MONITORS
R-30 F.H. BASE HI RG (MR/HR) 0.5
R-31A "A" MN STM (MR/HR) 0.6
R-31B "B" MN STM (MR/HR) 0.4
R-31C "C" MN STM (MR/HR)0.6
R-32A CV HI RG (R/HR)1
R-32B CV HI RG (R/HR)1
R-14D PLT VNT GAS (MID) (CPM) 10
R-14E PLT VNT GAS (HI) (CPM) 10
R-37 CONDENSATE POLISHER (CPM) 115

SUBCOOLING (°F) CHARGING FLOW (GPM) LETDOWN FLOW (GPM) REACTOR POWER ACTIVITY: GROSS (Uci/mi) I¹³¹ (Uci/mi) AVG 5 HOTTEST T/Cs ____ BORON CONC. (PPM) SECONDARY SYSTEM S/G A LEV.-WR(%) 53 NR(%) 52 PRESS (PSIG) _____842 FEED (PPH) 3.2 STEAM (PPH) _____ 3.15

ACT. (Uci/ml)		
S/G B		
LEVWR(%) 53	_ NR(%) _	52
PRESS (PSIG)	842	
FEED (PPH)	3.2	
STEAM (PPH)	3.15	
ACT. (Uci/mi)		
S/G C		
LEVWR(%) 53	_ NR(%) _	52
PRESS (PSIG)	842	
FEED (PPH)	3.2	
STEAM (PPH)	3.15	
ACT. (Uci/mi)		

PRI/SEC. LK. RT (GPM) ____

ENGINEERED SAFETY FEATURES
SI ACTUATED: TIME
RESET: TIME
CS ACTUATED: TIME
RESET: TIME
CONT. ISO. A ACTUATED: TIME
RESET: TIME
CONT. ISO. B ACTUATED: TIME
RESET: TIME
SPRAY ADD TANK LEVEL (%) 61
SI COLD-LEG FLOW (GPM) 0
SI HOT-LEG INJECT START
EQUIPMENT STATUS
N = NOT AVAILABLE
A = AVAILABLE (NOT OPERATING)
O = OPERATING
E = ENERGIZED
PRIMARY
RCP A <u>0</u> B <u>0</u> C <u>0</u>
CHG PUMP A N B O C O SI PUMP A A B A C N
SIPUMP A A B A C N
CS PUMP A A B A
RHR PUMP A <u>A</u> B <u>A</u>
HVH 1 0 2 0 3 0 4 0
SECONDARY
CST LEVEL (%)91
FEED PUMP A O B O
COND PUMP A O B O
AFW MOTOR A <u>A</u> B <u>A</u>
AFW STEAM <u>A</u>
MSIV A <u>0</u> B <u>0</u> C <u>0</u>
ELECTRICAL
EDG A <u>A</u> B <u>A</u>
DS/DGN
OFFSITEE
EMER. BUS E1 E2 _E
FROM: OFFSITE E D.G. A
FANS
HVE 1A A 1B A
HVE 2A 2B A
HVE 5A A 5B A
HVE 15 15A A

LEGEND:

OSH = OFF SCALE HIGH OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

PEP-171 ·94-0222

Rev. 26

Page 52 of 76 3.2-5

ATTACHMENT 9.7 Page 1 of 1

. *

•

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

Page 1 of 1

EMERGENCY CLASSIFICATIO	N (CIRCLE)		Date/Time:	3/30/94	/ 0945
UNUSUAL EVENT SITE					
			Completed	By:	
ALERT GENE	RAL EMERGENCY			·	
ENVIRONMENTAL SYSTEMS		CONTAINMENT STATUS			ENGINEERED SAFETY FEATURES
WIND SPEED UPPER (MPH)		PRESSURE (PSIG)	0.2	-	SI ACTUATED: TIME
LOWER (MPH)		TEMPERATURE (°F)	110	- .	RESET: TIME
WIND DIR. UPPER (° FROM)	218	HYDROGEN CONC. (%)			CS ACTUATED: TIME
LOWER (° FROM)	213	SUMP LEVEL (INCHES)	00	_	RESET: TIME
AIR TEMPERATURE (°F)	59.6	RWST LEVEL (%)	91		CONT. ISO. A ACTUATED: TIME
STABILITY CLASS	<u>D</u>				RESET: TIME
		PRIMARY SYSTEM		. •	CONT. ISO. B ACTUATED: TIME
AREA RADIATION MONITORS		RCS PRESSURE (PSIG)	2235	-	RESET: TIME
R-1 CONTROL ROOM (MR/HR)					SPRAY ADD TANK LEVEL (%) 61
R-2 CONT. AREA (MR/HR)		TAVE (°F)	565.3	-	SI COLD-LEG FLOW (GPM) 0
R-3 HP WORK AREA (MR/HR)		LOOP A TH (°F)	587	_	SI HOT-LEG INJECT START
R-4 CHG. PUMP RM (MR/HR)	6	TC (°F)	546	_	EQUIPMENT STATUS
R-5 SPENT FUEL PIT (MR/H	R) <u>0.7</u>	ΔΤ	41	_	N = NOT AVAILABLE
R-6 SAMPLING ROOM (MR/HR)	0.8	LOOP B TH (°F)	587	_	A = AVAILABLE (NOT OPERATING)
R-7 IN-CORE INST (MR/HR)	8	TC (°F)	546		O = OPERATING
R-8 DRUM. RM. (MR/HR)	1.5	آه	41	_	E = ENERGIZED
R-9 FAILED FUEL (MR/HR)	62	LOOP C TH (°F)	587	-	PRIMARY
R-33 MON BLDG (MR/HR)		TC (°F)		_	RCP A <u>0</u> B <u>0</u> C <u>0</u>
		T	41		CHG PUMP A BOCO
PROCESS RADIATION MONITOR	<u>s</u>	∆T SUBCOOLING (°F)	65		SI PUMP A A B A C N
R-11 CV VENT PART. (CPM)	20K	CHARGING FLOW (GPM)	67		CS PUMP A A B A
R-12 CV VENT GAS (CPM)		LETDOWN FLOW (GPM)			RHR PUMP A A B A
R-14A "P" PLT VNT (CPM)	1.46K	REACTOR POWER			HVH 1 _0_ 2 _0_ 3 _0_ 4 _0_
R-14B "I" PLT VNT (CPM)		ACTIVITY:		-	SECONDARY
R-14C "NG" PLT VNT (CPM)		GROSS (Uci/mi)			CST LEVEL (%)91
R-15 COND. AIR EJEC. (CP	M) 10.6K	I ¹³¹ (Uci/mi)		- ·	FEED PUMP A O B O
R-16 CV FAN CW (CPM)	290	I ¹³¹ (Uci/mi) AVG 5 HOTTEST T/Cs	585	-	COND PUMP A O B O
R-17 COMP. CW (CPM)	290	BORON CONC. (PPM)		-	AFW MOTOR A A B A
R-18 WASTE DISPOSAL (CPM)					AFW STEAMA
R-19A S/G A BLOWDOWN (CPM		SECONDARY SYSTEM			MSIV A BO CO
R-19B S/G B BLOWDOWN (CPM		S/G A			ELECTRICAL
R-19C S/G C BLOWDOWN (CPM		LEVWR(%) 55	NR(%) 52		
R-20 FUEL HDLG BASE (CPM)		PRESS (PSIG)	866	-	
R-21 FUEL HDLG UPPER (CPM		FEED (PPH)	2.3	-	DS/DGE
ACCIDENT RADIATION MONITO		STEAM (PPH)			EMER. BUS E1 E2
R-30 F.H. BASE HI RG (MR		ACT. (Uci/ml)			FROM: OFFSITE D.GA
R-31A "A" MN STM (MR/HR)		S/G B		-	FANS
R-31B "B" MN STM (MR/HR)		LEVWR(%)55	NR(%) 52		HVE 1AA 1BA
R-31C "C" MN STM (MR/HR)		PRESS (PSIG)			
R-32A CV HI RG (R/HR)		FEED (PPH)			HVE 2A <u>O</u> 2B <u>A</u> HVE 5A <u>A</u> 5B <u>A</u>
R-32B CV HI RG (R/HR)		STEAM (PPH)			HVE 5AA 5BA HVE 150 15AA
R-14D PLT VNT GAS (MID)		ACT. (Uci/mi)			
R-14E PLT VNT GAS (HI) (C		S/G C		-	LEGEND:
R-37 CONDENSATE POLISHER		LEVWR(%) 55	NR(%) 52		
·					OSH = OFF SCALE HIGH
		PRESS (PSIG) FEED (PPH)	2 3	-	OSL = OFF SCALE LOW
		STEAM (PPH)	2.2	-	OOS = OUT OF SERVICE
					ISOL = ISOLATED
		`ACT. (Uci/mi)		-	

PRI/SEC. LK. RT (GPM) _____

PEP-171 Rev. 26 94-0222

Page 52 of 76 3.2-6

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

EMERGENCY CLASSIFICATION (CIRCLE) UNUSUAL EVENT SITE AREA EMERGENCY

Date/Time: _______/ 1000

Completed By: _____

GENERAL EMERGENCY

.

CONTAINMENT STATUS

ENVIRONMENTAL SYSTEMS	
WIND SPEED UPPER (MPH)	6.1
LOWER (MPH)	4.7
WIND DIR. UPPER (° FROM) _	213
LOWER (° FROM)	210
AIR TEMPERATURE (°F)	61.5
STABILITY CLASS	D

AREA RADIATION MONITORS

ALERT

R-1	CONTROL ROOM (MR/HR) _	0.1
R-2	CONT. AREA (MR/HR)	11
R-3	HP WORK AREA (MR/HR)	0.15
R-4	CHG. PUMP RM (MR/HR) _	6
R-5	SPENT FUEL PIT (MR/HR)	0.7
R-6	SAMPLING ROOM (MR/HR)	0.8
R-7	IN-CORE INST (MR/HR) _	7
R-8	DRUM. RM. (MR/HR)	1.5
R-9	FAILED FUEL (MR/HR)	62
R-33	5 MON BLDG (MR/HR)	0.35

PROCESS RADIATION MONITORS

R-11 CV VENT PART. (CPM) 20K
R-12 CV VENT GAS (CPM) 1.2K
R-14A "P" PLT VNT (CPM)
R-14B "I" PLT VNT (CPM)104
R-14C "NG" PLT VNT (CPM) 1.3K
R-15 COND. AIR EJEC. (CPM) 14.9K
R-16 CV FAN CW (CPM) 290
R-17 COMP. CW (CPM) 290
R-18 WASTE DISPOSAL (CPM) 16.5K
R-19A S/G A BLOWDOWN (CPM) 3.2K
R-19B S/G B BLOWDOWN (CPM) 1.0K
R-19C S/G C BLOWDOWN (CPM) 1.0K
R-20 FUEL HDLG BASE (CPM)40
R-21 FUEL HDLG UPPER (CPM)25
ACCIDENT RADIATION MONITORS
R-30 F.H. BASE HI RG (MR/HR) 0.5
R-31A "A" MN STM (MR/HR)0.4
R-318 "B" MN STM (MR/HR)0.4
R-31C "C" MN STM (MR/HR)0.6
R-32A CV HI RG (R/HR)1
R-32B CV HI RG (R/HR)1
R-14D PLT VNT GAS (MID) (CPM) 10
R-14E PLT VNT GAS (HI) (CPM) 10
R-37 CONDENSATE POLISHER (CPM) 115

PRESSURE (PSIG)	0.2
TEMPERATURE (°F)	110
HYDROGEN CONC. (%)	0
SUMP LEVEL (INCHES)	0
RWST LEVEL (%)	91
PRIMARY SYSTEM	
RCS PRESSURE (PSIG)	2236
PZR LEVEL (%)	30.9
TAVE (°F)	554
LOOP A TH (°F)	565
TC (°F)	545
<u>م</u>	20
LOOP B TH (°F)	565
TC (°F)	
	20
LOOP C TH (°F)	
· TC (°F)	545
	20
SUBCOOLING (°F)	87.7
CHARGING FLOW (GPM)	
LETDOWN FLOW (GPM)	42
REACTOR POWER	30
ACTIVITY:	
GROSS (Uci/mi)	
1 ¹³¹ (Uci/mi)	
AVG 5 HOTTEST T/Cs	563
BORON CONC. (PPM)	
SECONDARY SYSTEM	
S/G A	
LEVWR(%) _59_	NR(%) <u>52</u>
PRESS (PSIG)	
FEED (PPH)	1.1

FEED (PPH)	1.1
STEAM (PPH)	.9
ACT. (Uci/ml)	
S/G B	
LEVWR(%) _5	<u>9 NR(%) 52</u>
PRESS (PSIG)	917
FEED (PPH)	
STEAM (PPH)	
ACT. (Uci/mi)	
S/G C	
LEVWR(%)5	9_NR(%) 52_
PRESS (PSIG)	917
FEED (PPH)	1.1
STEAM (PPH)	.9
ACT. (Uci/mi)	
· · · ·	

PRI/SEC. LK. RT (GPM) _____

ENGINEERED SAFETY FEATURES
SI ACTUATED: TIME
RESET: TIME
CS ACTUATED: TIME
RESET: TIME
CONT. ISO. A ACTUATED: TIME
RESET: TIME
CONT. ISO. B ACTUATED: TIME
RESET: TIME
SPRAY ADD TANK LEVEL (%) 61
SI COLD-LEG FLOW (GPM) 0
SI HOT-LEG INJECT START
EQUIPMENT_STATUS
N = NOT AVAILABLE
A = AVAILABLE (NOT OPERATING)
O = OPERATING
E = ENERGIZED
PRIMARY
RCP A O B O C O CHG PUMP A B O C O
SI PUMP A A B A C N
CS PUMP A A B A
CSPUMP A <u>A</u> B <u>A</u> Rhr Pump A <u>A</u> B <u>A</u>
HVH 1 _0_ 2 _0_ 3 _0_ 4 _0_
SECONDARY
CST LEVEL (%) 91
CST LEVEL (%)91 FEED PUMP A B
COND PUMP A O B A
AFW MOTOR A A B
AFW STEAMA
MSIV A <u>0</u> B <u>0</u> C <u>0</u>
EDG A <u>A</u> B <u>A</u>
DS/DG
OFFSITE <u>E</u> EMER. BUS E1 <u>E</u> E2 <u>E</u>
FROM: OFFSITE E D.G. A
FANS
HVE 1AA 1BA
HVE 2A 2B A
HVE 5A A 5B A
HVE 15 15A A
I ECEND -

LEGEND: OSH = OFF SCALE HIGH OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

PEP-171 Rev. 26 94-0222

Page 52 of 76 3.2-7

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

Page 1 of 1

	IFICATION (CIRCLE) SITE AREA EMERGENC	r vale/1.1me	. <u> </u>	/ 1015
			eted By:	
ALERT	GENERAL EMERGENCY			
ENVIRONMENTAL SYST	EMS	CONTAINMENT STATUS		ENGINEERED SAFETY FEATURES
WIND SPEED UPPER ((MPH)7.7	PRESSURE (PSIG) 0.2		SI ACTUATED: TIME
LOWER (MF	PH) 5.7	TEMPERATURE (°F) 110		RESET: TIME
WIND DIR. UPPER (HYDROGEN CONC. (%) 0 SUMP LEVEL (INCHES) 0		CS ACTUATED: TIME
LOWER (° I	FROM)212	SUMP LEVEL (INCHES)O		RESET: TIME
AIR TEMPERATURE (°F) <u>61.9</u>	RWST LEVEL (%) 91		CONT. ISO. A ACTUATED: TIME
STABILITY"CLASS	D			RESET: TIME
		PRIMARY SYSTEM		CONT. ISO. B ACTUATED: TIME
AREA RADIATION MON		RCS PRESSURE (PSIG)2186		RESET: TIME
R-1 CONTROL ROOM (MR/HR)	PZR LEVEL (%) 18.2		SPRAY ADD TANK LEVEL (%) 61
R-2 CONT. AREA (MI	R/HR)11	TAVE (°F) 547		SI COLD-LEG FLOW (GPM) 0
R-3 HP WORK AREA	(MR/HR)	TAVE (°F) 547 LOOP A TH (°F) 547	<u> </u>	SI HOT-LEG INJECT START
R-4 CHG. PUMP RM		TC (°F)544		EQUIPMENT STATUS
R-5 SPENT FUEL PI	(MR/HR) 0.7	۵T 3		N = NOT AVAILABLE
R-6 SAMPLING ROOM	(MR/HR) 0.8	LOOP B TH (°F) 547		A = AVAILABLE (NOT OPERATING)
R-7 IN-CORE INST (TC (°F) 547		O = OPERATING
R-8 DRUM. RM. (MR/	(HR) <u>1.5</u>	۵T – T۵		E = ENERGIZED
R-9 FAILED FUEL (M	IR/HR) <u>62</u>	TC (°F) <u>547</u> △T <u>° 0</u> LOOP C TH (°F) <u>547</u>		PRIMARY
R-33 MON BLDG (MR/	HR)0.35	TC (°F)547		RCP A <u>0</u> B <u>0</u> C
		ΔΤΟ	·	CHG PUMP A BO C
PROCESS RADIATION		SUBCOOLING (°F) 102.5		SI PUMP A <u>A B A C</u>
R-11 CV VENT PART.		CHARGING FLOW (GPM) 136		
R-12 CV VENT GAS (CPM) <u>1.2k</u>	LETDOWN FLOW (GPM) 40		
R-14A "P" PLT VNT	(CPM)2.5K	REACTOR POWERO		HVH 1 0 2 0 3 0 4 0
R-14B "I" PLT VNT	(CPM) 142	ACTIVITY:		
R-14C "NG" PLT VNT	(CPM) 1.8K	GROSS (Uci/mi)		CST LEVEL (%)91
R-15 COND. AIR EJE	C. (CPM) <u>16.5k</u>	I ¹³¹ (Uci/mi)		FEED PUMP A _A B _A
R-16 CV FAN CW (CPI	1) 290	AVG 5 HOTTEST T/Cs 547		COND PUMP A _A B _A
R-17 COMP. CW (CPM) 290	BORON CONC. (PPM)	<u> </u>	
R-18 WASTE DISPOSAL	(CPM) 16.5K			AFW STEAMA
R-19A S/G A BLOWDON	N (CPM) _2.8K	SECONDARY SYSTEM	•	MSIV A ISOL B O C O
R-19B S/G B BLOWDON	N (CPM) 1.0K	S/G A		<u>ELECTRICAL</u>
R-19C S/G C BLOWDON	IN (CPM) 1.0K	LEVWR(%) _54_ NR(%) _3	3	
R-20 FUEL HDLG BAS	E (CPM)40	PRESS (PSIG) 843		DS/DG
R-21 FUEL HDLG UPPE		FEED (PPH) 0		OFFSITE E
ACCIDENT RADIATION		STEAM (PPH)15		
R-30 F.H. BASE HI		ACT. (Uci/ml)		EMER. BUS E1 E2 E2
R-31A "A" MN STM (S/G B		FROM: OFFSITE <u>E</u> D.G. <u>A</u> FANS
R-31B "B" MN STM (MR/HR)0.4	LEVWR(%) NR(%)	n	
R-31C "C" MN STM (M	IR/HR) 0.6	PRESS (PSIG) 900	<u>×</u>	HVE 1A 1B A
R-32A CV HI RG (R/I		FEED (PPH) 0	•	HVE 2A 2B A
R-32B CV HI RG (R/		PRESS (PSIG) 900 FEED (PPH) 0 STEAM (PPH) 0		HVE 5A 5B A
R-14D PLT VNT GAS		ACT. (Uci/mi)		HVE 15 15A A
R-14E PLT VNT GAS (HI) (CPM) 10	S/G C	<u> </u>	LECEND-
R-37 CONDENSATE POL	ISHER (CPM) 115	LEVWR(%) <u>66</u> NR(%) <u>4</u>	0	LEGEND:
		PRESS (PSIG) 900	· <u>v </u>	OSH = OFF SCALE HIGH
		FEED (PPH)0		OSL = OFF SCALE LOW
				OOS = OUT OF SERVICE

STEAM (PPH)

ACT. (Uci/mi)

PRI/SEC. LK. RT (GPM)

OOS = OUT OF SERVICE ISOL = ISOLATED

Page 52 of 76

Rev. 26

PEP-171 94-0222

0

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

CONTAINMENT STATUS

HYDROGEN CONC. (%)

RWST LEVEL (%)

PRIMARY SYSTEM

SUMP LEVEL (INCHES)

RCS PRESSURE (PSIG) ____

PZR LEVEL (%) TAVE (°F)

LOOP A TH (°F)

TC (°F) _____

LOOP B TH (°F)

LOOP C TH ("F) _

TC (°F) ____

SUBCOOLING (°F)

TC (°F) ____

۵T

۵T _

`∆T__

PRESSURE (PSIG) TEMPERATURE (°F)

EMERGENCY CLASSIFICATION (CIRCLE) UNUSUAL EVENT SITE AREA EMERGENCY Date/Time: _______/ 1030

Completed By:

0.2

110

0

0

90

2050 37.2

535

535

532

3

535

535

0

535

534

105.3

1

96

66

0

_535

GENERAL EMERGENCY

ENVIRONMENTAL SYSTEMS	
WIND SPEED UPPER (MPH)	6.5
LOWER (MPH)	4.9
WIND DIR. UPPER (° FROM)	217
LOWER (° FROM)	215
AIR TEMPERATURE (°F)	62.9
STABILITY CLASS	D

AREA RADIATION MONITORS

ALERT

R-1 CONTROL ROOM (MR/HR)	0.1
R-2 CONT. AREA (MR/HR)	11
R-3 HP WORK AREA (MR/HR) _	0.15
R-4 CHG. PUMP RM (MR/HR)	6
R-5 SPENT FUEL PIT (MR/HR)	0.7
R-6 SAMPLING ROOM (MR/HR)	0.8
R-7 IN-CORE INST (MR/HR)	5.1
R-8 DRUM. RM. (MR/HR)	1.5
R-9 FAILED FUEL (MR/HR)	61
R-33 MON BLDG (MR/HR)	0.35

PROCESS RADIATION MONITORS

R-11 CV VENT PART. (CPM) 20K
R-12 CV VENT GAS (CPM) 1.2K
R-14A "P" PLT VNT (CPM) 1.9K
R-148 "I" PLT VNT (CPM) 101
R-14C "NG" PLT VNT (CPM) 1.2K
R-15 COND. AIR EJEC. (CPM) 10.9K
R-16 CV FAN CW (CPM) 290
R-17 COMP. CW (CPM) 290
R-18 WASTE DISPOSAL (CPM) 16.5K
R-19A S/G A BLOWDOWN (CPM) 2.5K
R-19B S/G B BLOWDOWN (CPM) 1.0K
R-19C S/G C BLOWDOWN (CPM) 1.0K
R-20 FUEL HDLG BASE (CPM)40
R-21 FUEL HDLG UPPER (CPM)25
ACCIDENT RADIATION MONITORS
R-30 F.H. BASE HI RG (MR/HR) 0.5
R-31A "A" MN STM (MR/HR)0.3
R-31B "B" MN STM (MR/HR)0.4
R-31C "C" MN STM (MR/HR)0.6
R-32A CV HI RG (R/HR)1
R-32B CV HI RG (R/HR)1
R-14D PLT VNT GAS (MID) (CPM) 10
R-14E PLT VNT GAS (HI) (CPM) 10
R-37 CONDENSATE POLISHER (CPM) 115

CHARGING FLOW (GPM) LETDOWN FLOW (GPM) REACTOR POWER ACTIVITY: GROSS (Uci/mi) 1¹³¹ (Uci/mi) _____ AVG 5 HOTTEST T/Cs BORON CONC. (PPM) SECONDARY SYSTEM S/G A LEV.-WR(%) 38 NR(%) 2

LEV. WK(%)	20	_ NK(A)	<u> </u>
PRESS (PSIG))	780	
FEED (PPH)		0	
STEAM (PPH)			
ACT. (Uci/ml			
S/G B			
LEVWR(%)	66	_ NR(%) _	_40
PRESS (PSIG)	·	910	
FEED (PPH)		0	•
STEAM (PPH)		0	
ACT. (Uci/mi			
S/G C	. –		
LEVWR(%) _	66	NR(%)	40
PRESS (PSIG)		910	
FEED (PPH)		0	
STEAM (PPH)		0	
ACT. (Uci/mi			
	-		

PRI/SEC. LK. RT (GPM)

ENGINEERED SAFETY FEATURES
SI ACTUATED: TIME
RESET: TIME
CS ACTUATED: TIME
RESET: TIME
CONT. ISO. A ACTUATED: TIME
RESET: TIME
CONT. ISO. B ACTUATED: TIME
RESET: TIME
SPRAY ADD TANK LEVEL (%) 61
SI COLD-LEG FLOW (GPM) 0
SI HOT-LEG INJECT START
EQUIPMENT STATUS
N = NOT AVAILABLE
A = AVAILABLE (NOT OPERATING)
O = OPERATING
E = ENERGIZED
PRIMARY
RCP A O B O C O CHG PUMP A B _O C _O SI PUMP A B _O C _O
CHG PUMP A BO CO
SI PUMP A ABACN
CS PUMP A A B A
RHR PUMP A A B A
RHR PUMP A _ A B _ A HVH 1 _ O 2 _ O 3 _ O 4 _ O
SECONDARY
CST LEVEL (%)91
CST LEVEL (%) 91 FEED PUMP A B A COND PUMP A B A
COND PUMP A A B A
AFW MOTOR A A B A
AFW STEAMA
MSIV A ISOL B O C O
ELECTRICAL
EDG A <u>A</u> B <u>A</u>
DS/DG
DS/DG OFFSITEE
EMER. BUS E1 E2 _E
FROM: OFFSITE E D.G. A
FANS
five 1AA 1BA
HVE 2A 2B A
HVE 5A A 5B A
HVE 15 15A A

LEGEND: OSH = OFF SCALE HIGH OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

> Page 52 of 76 3.2-9

PEP-171 94-0222

Rev. 26

Page 1 of 1

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

EMERGENCY CLASSIFICATION (CIRCLE)

Date/Time: ________/ 1045 UNUSUAL EVENT SITE AREA EMERGENCY Completed By: ALERT GENERAL EMERGENCY ENVIRONMENTAL SYSTEMS CONTAINMENT STATUS ENGINEERED SAFETY FEATURES WIND SPEED UPPER (MPH) _____8.0 PRESSURE (PSIG) ____ 0.2 SI ACTUATED: TIME LOWER (MPH) _____ 6.0 110 TEMPERATURE (°F) RESET: TIME WIND DIR. UPPER (° FROM) 216 HYDROGEN CONC. (%) CS ACTUATED: TIME 0 LOWER (° FROM) ____ 210 SUMP LEVEL (INCHES) 0 RESET: TIME ____ AIR TEMPERATURE (°F) ____ 63.7 CONT. ISO. A ACTUATED: TIME _ RWST LEVEL (%) 90 STABILITY CLASS D RESET: TIME PRIMARY SYSTEM CONT. ISO. B ACTUATED: TIME RCS PRESSURE (PSIG) 1875 AREA RADIATION MONITORS RESET: TIME ____ R-1 CONTROL ROOM (MR/HR) 0.1 PZR LEVEL (%) 24.5 SPRAY ADD TANK LEVEL (%) ____61___ 522 R-2 CONT. AREA (MR/HR) _____11 TAVE (°F) _____ SI COLD-LEG FLOW (GPM) 0 LOOP A TH (°F) _____ R-3 HP WORK AREA (MR/HR) ________ 522 SI HOT-LEG INJECT START R-4 CHG. PUMP RM (MR/HR) ____ 5 TC (°F) _____ 520 EQUIPMENT STATUS R-5 SPENT FUEL PIT (MR/HR) 0.7 ∆T _____ 2 N = NOT AVAILABLE R-6 SAMPLING ROOM (MR/HR) __0.8 LOOP B TH (°F) ____ 522 A = AVAILABLE (NOT OPERATING) R-7 IN-CORE INST (MR/HR) _____4 TC (°F) _____ . 521 O = OPERATINGR-8 DRUM. RM. (MR/HR) _____1.5 **∆**T ___ 1 E = ENERGIZEDR-9 FAILED FUEL (MR/HR) _____61 LOOP C TH (°F) _____ 522 PRIMARY R-33 MON BLDG (MR/HR) _____0.35 TC (°F) _____ 521 RCP A <u>0</u> B <u>0</u> C <u>0</u> A _____ B ___ C ___ A ___ B ___ A C __N 1 ۵T CHG PUMP PROCESS RADIATION MONITORS SUBCOOLING (°F) _____105.8 SI PUMP CS PUMP R-11 CV VENT PART. (CPM) _____ 20K CHARGING FLOW (GPM) 132 A <u>A</u> B <u>A</u> R-12 CV VENT GAS (CPM) ____1.2K RHR PUMP A A B A LETDOWN FLOW (GPM) 83 R-144 "P" PLT VNT (CPM) _______ HVH 1 0 2 0 3 0 4 0 REACTOR POWER 0 R-148 "I" PLT VNT (CPM) _____74_ ACTIVITY: SECONDARY R-14C "NG" PLT VNT (CPM) 827 GROSS (Uci/mi) ___ CST LEVEL (%) _____91 R-15 COND. AIR EJEC. (CPM) 7.2K I¹³¹ (Uci/mi) FEED PUMP A A B A R-16 CV FAN CW (CPM) _____ 290 AVG 5 HOTTEST T/Cs 522 COND PUMP A A B A R-17 COMP. CW (CPM) 290 BORON CONC. (PPM) AFW MOTOR A O B A R-18 WASTE DISPOSAL (CPM) 16.5K AFW STEAM <u>A</u> R-19A S/G A BLOWDOWN (CPM) 2.2K SECONDARY SYSTEM MSIV A ISOL B O C O R-19B S/G B BLOWDOWN (CPM) 1.0K S/G A ELECTRICAL R-19C S/G C BLOWDOWN (CPM) 1.0K LEV.-WR(%) 16 NR(%) 0 EDG A A B A R-20 FUEL HDLG BASE (CPM) _____40 PRESS (PSIG) _____705____ DS/DG R-21 FUEL HDLG UPPER (CPM) _25 OFFSITE ____E FEED (PPH) _____0 ACCIDENT RADIATION MONITORS STEAM (PPH) _____15___ ACT. (Uci/ml) ____ EMER. BUS E1 ____ E2 _E R-30 F.H. BASE HI RG (MR/HR) 0.5 FROM: OFFSITE ____ D.G. _A R-31A "A" MN STM (MR/HR) _____0.3_ S/G B FANS R-318 "B" MN STM (MR/HR) _____0.4_ HVE 1A A 1B HVE 2A 0 2B HVE 5A A 5B HVE 15 0 15A LEV.-WR(%) 67 NR(%) 40 R-31C "C" MN STM (MR/HR) _____0.6___ PRESS (PSIG) 812 R-32A CV HI RG (R/HR) _____1 FEED (PPH) _____0 R-328 CV HI RG (R/HR) _____ ____1 STEAM (PPH) _____.05 R-14D PLT VNT GAS (MID) (CPM) 10 ACT. (Uci/mi) _____ R-14E PLT VNT GAS (HI) (CPM) 10_ S/G C LEGEND: R-37 CONDENSATE POLISHER (CPM) 115 LEV.-WR(%) 67 NR(%) 40 OSH = OFF SCALE HIGH PRESS (PSIG) _____ 812 OSL = OFF SCALE LOW

FEED (PPH) _____

·ACT. (Uci/mi) ____

PRI/SEC. LK. RT (GPM) ____

0

.05

PEP-171 94-0222

Rev. 26

Page 52 of 76 3.2-10

OOS = OUT OF SERVICE

ISOL = ISOLATED

Α

Α

Α

ATTACHMENT 9.7

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

CONTAINMENT STATUS

PRESSURE (PSIG)

TEMPERATURE (°F)

HYDROGEN CONC. (%)

SUMP LEVEL (INCHES)

RWST LEVEL (%)

PZR LEVEL (%)

PRIMARY SYSTEM RCS PRESSURE (PSIG)

EMERGENCY CLASSIFICATION (CIRCLE) UNUSUAL EVENT SITE AREA EMERGENCY

Date/Time: 3/30/94 / 1100

Completed By: ____

0.2

110

0

0

89

1167

46

ENGINEERED SAFETY FEATURES SI ACTUATED: TIME ____ RESET: TIME CS ACTUATED: TIME RESET: TIME CONT. ISO. A ACTUATED: TIME RESET: TIME CONT. ISO. B ACTUATED: TIME _ RESET: TIME ____ SPRAY ADD TANK LEVEL (%) ____61 SI COLD-LEG FLOW (GPM) _____0 SI HOT-LEG INJECT START EQUIPMENT STATUS N = NOT AVAILABLE A = AVAILABLE (NOT OPERATING) O = OPERATINGE = ENERGIZEDPRIMARY RCP A <u>0</u> B <u>0</u> C <u>0</u> _____B___C__O CHG PUMP A _ A A B A C N SI PUMP CS PUMP <u>A</u> A <u>A</u> B _ RHR PUMP HVH 1 0 2 0 3 0 4 0 SECONDARY CST LEVEL (%) 91 FEED PUMP A A B A COND PUMP A A B A AFW MOTOR A O B A AFW STEAM ____A MSIV A ISOL B O C O ELECTRICAL EDG A _ A B _ A DS/DG OFFSITE E EMER. BUS E1 E E E2 _ FROM: OFFSITE E D.G. A FANS <u>A</u> 1B _____ HVE 1A _____ HVE 2A _____ 2B ____ A HVE 5A _____ 5B __ A HVE 15

LEGEND:

OSH = OFF SCALE HIGH OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

GENERAL EMERGENCY ALERT

ENVIRONMENTAL SYSTEMS	
WIND SPEED UPPER (MPH)	7.2
LOWER (MPH)	5.7
WIND DIR. UPPER (° FROM) _212
LOWER (° FROM)	206
AIR TEMPERATURE (°F)	64.8
STABILITY CLASS	D

AREA RADIATION MONITORS

R-1 CONTROL ROOM (MR/HR)	0.1
R-2 CONT. AREA (MR/HR)	11
R-3 HP WORK AREA (MR/HR) _	0.15
R-4 CHG. PUMP RM (MR/HR)	5
R-5 SPENT FUEL PIT (MR/HR)	0.7
R-6 SAMPLING ROOM (MR/HR)	0.8
R-7 IN-CORE INST (MR/HR)	3
R-8 DRUM. RM. (MR/HR)	1.5
R-9 FAILED FUEL (MR/HR)	61
R-33 MON BLDG (MR/HR)	0.35

PROCESS RADIATION MONITORS

R-11 CV VENT PART. (CPM) 20K
R-12 CV VENT GAS (CPM) 1.2K
R-14A "P" PLT VNT (CPM)
R-148 "I" PLT VNT (CPM) 56
R-14C "NG" PLT VNT (CPM) 561
R-15 COND. AIR EJEC. (CPM) 4.8K
R-16 CV FAN CW (CPM)290
R-17 COMP. CW (CPM) 290
R-18 WASTE DISPOSAL (CPM) 16.5K
R-19A S/G A BLOWDOWN (CPM) 2.0K
R-19B S/G B BLOWDOWN (CPM) 1.0K
R-19C S/G C BLOWDOWN (CPM) 1.0K
R-20 FUEL HDLG BASE (CPM)40
R-21 FUEL HDLG UPPER (CPM) 25
ACCIDENT RADIATION MONITORS
R-30 F.H. BASE HI RG (MR/HR) 0.5
R-31A "A" MN STM (MR/HR)0.3_
R-31B "B" MN STM (MR/HR)0.4
R-31C "C" MN STM (MR/HR)
R-32A CV HI RG (R/HR)1
R-32B CV HI RG (R/HR)1
R-14D PLT VNT GAS (MID) (CPM) 10
R-14E PLT VNT GAS (HI) (CPM) 10
K 142 FET WIT GNS (1117 (CFR)) 10

TAVE (°F) 508 LOOP A TH (°F) ____ 508 506 TC (°F) _____ ۵T 2 LOOP B TH (°F) _ 508 TC (°F) ____ 507 ۵T 1 LOOP C TH (°F) _ 508 TC (°F) ____ 507 1 ۵T SUBCOOLING (°F) 46.3 CHARGING FLOW (GPM) 132 LETDOWN FLOW (GPM) 60 REACTOR POWER 0 ACTIVITY: GROSS (Uci/mi) I¹³¹ (Uci/mi) _ AVG 5 HOTTEST T/Cs ____ 508 BORON CONC. (PPM) SECONDARY SYSTEM S/G A LEV.-WR(%) 0 NR(%) 0

PRESS (PSIG)	63	
FEED (PPH) _	0	
STEAM (PPH)		
ACT. (Uci/ml))	
S/G B		
LEVWR(%)	65_ NR(%)	39
PRESS (PSIG)	716	
FEED (PPH) _	0	
STEAM (PPH)	.05	
ACT. (Uci/mi))	
S/G C		
LEVWR(%)	65 NR(%)	39
PRESS (PSIG)	716	
FEED (PPH)	0	
STEAM (PPH)		
ACT. (Uci/mi)		

PRI/SEC. LK. RT (GPM) __

PEP-171 94-0222

Rev. 26

Page 52 of 76 3.2-11

Page 1 of 1

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

EMERGENCY CLASSIFICATION (CIRCLE)

Date/Time: _______/ 1115

UNUSUAL EVENT SITE AREA EMERGENCY Completed By: GENERAL EMERGENCY ENVIRONMENTAL SYSTEMS CONTAINMENT STATUS WIND SPEED UPPER (MPH) ____ 6.2 PRESSURE (PSIG) ____ 0.2 5.6 TEMPERATURE (°F) 110 WIND DIR. UPPER (° FROM) 216 HYDROGEN CONC. (%) 0 LOWER (° FROM) 210 SUMP LEVEL (INCHES) 0 RWST LEVEL (%) 65.7 89 D PRIMARY SYSTEM RCS PRESSURE (PSIG) ____656 PZR LEVEL (%) 28.9 TAVE (°F) 432 LOOP A TH (°F) __ 432 TC (°F) 428 ۵T - 4 LOOP B TH (°F) _ 432 TC (°F) ____ 431 1 ۵T LOOP C TH (°F) _ 432 TC (°F) _____ 431 ∆T . 1 SUBCOOLING (°F) 66.5 CHARGING FLOW (GPM) _ 140 LETDOWN FLOW (GPM) ____ 51 REACTOR POWER 0 ACTIVITY: GROSS (Uci/mi) _ I¹³¹ (Uci/mi) _____ AVG 5 HOTTEST T/Cs _____432 BORON CONC. (PPM) ____ SECONDARY SYSTEM

S/G A			
LEVWR(%)	0	_ NR(%)	0
PRESS (PSIG)		10	
FEED (PPH) _		0	
STEAM (PPH)			
ACT. (Uci/ml)			
S/G B			
LEVWR(%)	70	_ NR(%)	42
PRESS (PSIG)		336	
FEED (PPH)		0	
STEAM (PPH)		.02	
ACT. (Uci/mi))		
S/G C			
LEVWR(%)	70	NR(%)	42
PRESS (PSIG)	_	336	
FEED (PPH)		0	
STEAM (PPH)		.02	
ACT. (Uci/mi))		

PRI/SEC. LK. RT (GPM) ____

SI ACTUATED	D: TIME
RESET	: TIME
CS ACTUATED	D: TIME
RESET:	TIME
CONT. ISO.	A ACTUATED: TIME
	RESET: TIME
CONT. ISO.	B ACTUATED: TIME
	RESET: TIME
SPRAY ADD	TANK LEVEL (%)61
SI COLD-LEG	G FLOW (GPM) 0
SI HOT-LEG	INJECT START
EQUIPMENT S	STATUS
N = NOT AVA	
A = AVAILAE	BLE (NOT OPERATING)
O = OPERATI	ING
E = ENERGIZ	LED
PRIMARY	
RCP	A <u> </u>
CHG PUMP	A BO _ C
SI PUMP	A <u>A B A</u> C
CS PUMP	A <u>A</u> B <u>A</u>
RHR PUMP	A <u>A</u> B <u>A</u>
HVH 1 <u>0</u>	2_0_3_0_4
SECONDARY	
CST LEVEL ((%)91
FEED PUMP A	A_B_A_
COND PUMP A	A B A
	<u> </u>
AFW STEAM	<u> </u>
	<u>ISOLBOCO</u>
ELECTRICAL	
	<u>A</u> B <u>A</u>
DS/DG	
OFFSITE	
EMER. BUS E	E E E E
	SITE E D.G. A
FANS	 .
HVE 1A	<u>A</u> 1B <u>A</u>
	<u> </u>
HVE 5A	<u>A</u> 5B <u>A</u> <u>0</u> 15A <u>A</u>

LEGEND: OSH = OFF SCALE HIGH OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

> Page 52 of 76 3.2-12

LOWER (MPH) AIR TEMPERATURE (°F) ____ STABILITY CLASS

ALERT

AREA RADIATION MONITORS

R-1	CONTROL ROOM (MR/HR)	0.1
R-2	CONT. AREA (MR/HR)	11
R-3	HP WORK AREA (MR/HR)	0.15
R-4	CHG. PUMP RM (MR/HR)	5
R-5	SPENT FUEL PIT (MR/HR)	_0.7
R-6	SAMPLING ROOM (MR/HR)	0.8
R-7	IN-CORE INST (MR/HR) _	2
R-8	DRUM. RM. (MR/HR)	1.5
R-9	FAILED FUEL (MR/HR)	61
R-33	5 MON BLDG (MR/HR)	0.35

PROCESS RADIATION MONITORS

R-11 CV VENT PART. (CPM) 20K
R-12 CV VENT GAS (CPM) 1.2K
R-14A "P" PLT VNT (CPM) 1.0K
R-14B "I" PLT VNT (CPM)44
R-14C "NG" PLT VNT (CPM) 385
R-15 COND. AIR EJEC. (CPM) 3.2K
R-16 CV FAN CW (CPM) 290
R-17 COMP. CW (CPM)290
R-18 WASTE DISPOSAL (CPM) 16.5K
R-19A S/G A BLOWDOWN (CPM) 1.7K
R-19B S/G B BLOWDOWN (CPM) 1.0K
R-19C S/G C BLOWDOWN (CPM) 1.0K
R-20 FUEL HDLG BASE (CPM)40
R-21 FUEL HDLG UPPER (CPM) _25
ACCIDENT RADIATION MONITORS
R-30 F.H. BASE HI RG (MR/HR) 0.5
R-31A "A" MN STM (MR/HR) 0.3
R-31B "B" MN STM (MR/HR)0.4
R-31C "C" MN STM (MR/HR)
R-32A CV HI RG (R/HR)1
R-32B CV HI RG (R/HR)1
R-14D PLT VNT GAS (MID) (CPM) 10
R-14E PLT VNT GAS (HI) (CPM) 10
R-37 CONDENSATE POLISHER (CPM) 115

Rev. 26

Page 1 of 1

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

Page 1 of 1

EMERGENCY CLASSIFICATION (CIRCLE) Date/Time: 3/30/94 / 1130 UNUSUAL EVENT SITE AREA EMERGENCY Completed By: ALERT GENERAL EMERGENCY ENVIRONMENTAL SYSTEMS CONTAINMENT STATUS ENGINEERED SAFETY FEATURES WIND SPEED UPPER (MPH) 7.9 LOWER (MPH) 6.1 PRESSURE (PSIG) ____ 0.2 SI ACTUATED: TIME 110 TEMPERATURE (°F) RESET: TIME CS ACTUATED: TIME _ WIND DIR. UPPER (° FROM) 210 HYDROGEN CONC. (%) 0 RESET: TIME LOWER (° FROM) 216 SUMP LEVEL (INCHES) _ ۵ 66.7 AIR TEMPERATURE (°F) _____ RWST LEVEL (%) 88 CONT. ISO. A ACTUATED: TIME D STABILITY CLASS RESET: TIME PRIMARY SYSTEM CONT. ISO. B ACTUATED: TIME RCS PRESSURE (PSIG) AREA_RADIATION MONITORS 410 RESET: TIME PZR LEVEL (%) SPRAY ADD TANK LEVEL (%) ____61 R-1 CONTROL ROOM (MR/HR) 0.6 38.9 R-2 CONT. AREA (MR/HR) _____11 TAVE (°F) _____ 396 SI COLD-LEG FLOW (GPM) ____ 0 LOOP A TH (°F) _____ R-3 HP WORK AREA (MR/HR) _0.15 396 SI HOT-LEG INJECT START TC (°F) _____ R-4 CHG. PUMP RM (MR/HR) 5 394 EQUIPMENT STATUS **∆**⊺ _ R-5 SPENT FUEL PIT (MR/HR) 0.7 2 N = NOT AVAILABLE R-6 SAMPLING ROOM (MR/HR) _0.8 LOOP B TH (°F) 396 A = AVAILABLE (NOT OPERATING) TC (°F) _____ 396 R-7 IN-CORE INST (MR/HR) 7 O = OPERATING1.5 R-8 DRUM. RM. (MR/HR) ___ 0 ΔT _ E = ENERGIZEDR-9 FAILED FUEL (MR/HR) _ LOOP C TH (°F) 396 PRIMARY - TC (°F) _____ 396 R-33 MON BLDG (MR/HR) _____0.35 RCP 0 A ____ B ___ C __O ۵T CHG PUMP PROCESS RADIATION MONITORS SUBCOOLING (°F) 54.5 A <u>A B A C N</u> SI PUMP R-11 CV VENT PART. (CPM) _____ 20K CHARGING FLOW (GPM) _ 79 CS PUMP A <u>A</u> B <u>A</u> R-12 CV VENT GAS (CPM) _____1.2K LETDOWN FLOW (GPM) 33 RHR PUMP A <u>A</u> B <u>A</u> R-14A "P" PLT VNT (CPM) ____ 928 REACTOR POWER _____O HVH 1 0 2 0 3 0 4 0 R-148 "I" PLT VNT (CPM) ____ 36 ACTIVITY: SECONDARY GROSS (Uci/mi) ___ R-14C "NG" PLT VNT (CPM) 268 CST LEVEL (%) _____91 R-15 COND. AIR EJEC. (CPM) 2.1K I¹³¹ (Uci/mi) FEED PUMP A A B A R-16 CV FAN CW (CPM) _____ AVG 5 HOTTEST T/Cs _____ 290 396 COND PUMP A A B A BORON CONC. (PPM) R-17 COMP. CW (CPM) 290 AFW MOTOR A O B A R-18 WASTE DISPOSAL (CPM) 16.5K AFW STEAM A R-19A S/G A BLOWDOWN (CPM) 1.5K MSIV A ISOL B O C O SECONDARY SYSTEM R-19B S/G B BLOWDOWN (CPM) 1.0K S/G A ELECTRICAL R-19C S/G C BLOWDOWN (CPM) 1.0K EDG A <u>A</u> B <u>A</u> LEV.-WR(%) 0 NR(%) 0 PRESS (PSIG) 10 FEED (PPH) 0 R-20 FUEL HDLG BASE (CPM) _____40__ DS/DG DS/DG OFFSITE <u>E</u> FEED (PPH) 0 STEAM (PPH) 0 R-21 FUEL HDLG UPPER (CPM) 25 OFFSITE <u>E</u> EMER. BUS E1 <u>E</u> E2 <u>E</u> FROM: OFFSITE <u>E</u> D.G. <u>A</u> ACCIDENT RADIATION MONITORS ACT. (Uci/ml) R-30 F.H. BASE HI RG (MR/HR) 0.5 R-31A "A" MN STM (MR/HR) 24 R-31B "B" MN STM (MR/HR) _____4 S/G B FANS HVE 1A _____ A ___ 1B ____ A HVE 2A _____ 2B ____ A R-318 "B" MN SIM (MR/HR) _____6 LEV.-WR(%) _____ NR(%) _____ 42 PRESS (PSIG) _____221 R-31C "L" HN C.... R-32A CV HI RG (R/HR) FEED (PPH) 0 STEAM (PPH) .01 HVE 5A _____ 5B ____ A R-32B CV HI RG (R/HR) _ 6_ HVE 15 _____ 15A ____ A R-14D PLT VNT GAS (MID) (CPM) 10 ACT. (Uci/mi) _____ R-14E PLT VNT GAS (HI) (CPM) 10 S/G C LEGEND: LEV.-WR(%) _____ NR(%) _____ 42___ R-37 CONDENSATE POLISHER (CPM) 115 OSH = OFF SCALE HIGH

PRESS (PSIG) _____221

FEED (PPH) _____0

STEAM (PPH) _____.01

PRI/SEC. LK. RT (GPM) ____

ACT. (Uci/mi) ____

USH = OFF SCALE HIGH OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

PEP-171 94-0222

٤

Rev. 26

Page 52 of 76 3.2-13

ATTACHMENT 9.7

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

Page 1 of 1

EMERGENCY CLASSIFICATION (CIRCLE) UNUSUAL EVENT SITE AREA EMERGENCY

GENERAL EMERGENCY

Completed By:

0.2

0

88

110

CONTAINMENT STATUS

PRESSURE (PSIG) ____

TEMPERATURE (°F) HYDROGEN CONC. (%)

RWST LEVEL (%)

SUMP LEVEL (INCHES) ____0

· ·
ENGINEERED SAFETY FEATURES
SI ACTUATED: TIME
RESET: TIME
CS ACTUATED: TIME
RESET: TIME
CONT. ISO. A ACTUATED: TIME
RESET: TIME
CONT. ISO. B ACTUATED: TIME
RESET: TIME
SPRAY ADD TANK LEVEL (%) _ 61
SI COLD-LEG FLOW (GPM)0
SI HOT-LEG INJECT START
EQUIPMENT STATUS
N = NOT AVAILABLE
A = AVAILABLE (NOT OPERATING)
O = OPERATING
E = ENERGIZED
PRIMARY
RCP A O B O C C CHG PUMP A B O C C
CHG PUMP A BO C
SI PUMP A A B A C
CSPUMP A <u>A</u> B <u>A</u> RHR PUMP A <u>A</u> B <u>A</u>
RHR PUMP A <u>A</u> B <u>A</u>
HVH 1 _ 0 2 _ 0 3 _ 0 4 _ 0
SECONDARY
CST LEVEL (%) 91
FEED PUMP A <u>A</u> B <u>A</u> COND PUMP A <u>A</u> B <u>A</u>
AFW MOTOR A O B A
AFW STEAM <u>A</u> MSIV A <u>ISOL</u> B <u>O</u> C <u>O</u>
ELECTRICAL
EDG A <u>A</u> B <u>A</u>
DS/DG OFFSITEE
EMER. BUS E1 E2
FROM: OFFSITE E D.G. A
FANS
HVE 1A A 1BA
HVE 2A O 2B A
HVE 5A A 5B A
HVE 15 15A A
LEGEND:
OSH = OFF SCALE HIGH

ENVIRONMENTAL SYSTEMS

ALERT

WIND SPEED UPPER (MPH)	8.1
LOWER (MPH)	6.1
WIND DIR. UPPER (° FROM) _	216
LOWER (° FROM)	218
AIR TEMPERATURE (°F)	67.3
STABILITY CLASS	D

AREA RADIATION MONITORS

R-1 CONTROL ROOM (MR/HR)	0.5
R-2 CONT. AREA (MR/HR)	21
R-3 HP WORK AREA (MR/HR) _	0.15
R-4 CHG. PUMP RM (MR/HR)	
R-5 SPENT FUEL PIT (MR/HR)	0.7
R-6 SAMPLING ROOM (MR/HR)	0.8
R-7 IN-CORE INST (MR/HR)	9
R-8 DRUM. RM. (MR/HR)	1.5
R-9 FAILED FUEL (MR/HR)	
R-33 MON BLDG (MR/HR)	0.35

PROCESS RADIATION MONITORS

R-11 CV VENT PART. (CPM) 20K
R-12 CV VENT GAS (CPM)1.2K
R-14A "P" PLT VNT (CPM) 851
R-14B "I" PLT VNT (CPM) 30
R-14C "NG" PLT VNT (CPM) 191
R-15 COND. AIR EJEC. (CPM) 1.4K
R-16 CV FAN CW (CPM) 290
R-17 COMP. CW (CPM) 290
R-18 WASTE DISPOSAL (CPM) 16.5K
R-19A S/G A BLOWDOWN (CPM) 1.4K
R-19B S/G B BLOWDOWN (CPM) 1.0K
R-19C S/G C BLOWDOWN (CPM) 1.0K
R-20 FUEL HDLG BASE (CPM) 40
R-21 FUEL HDLG UPPER (CPM) 25
ACCIDENT RADIATION MONITORS
R-30 F.H. BASE HI RG (MR/HR) 0.5
R-31A "A" MN STM (MR/HR)25
R-318 "B" MN STM (MR/HR)4
R-31C "C" MN STM (MR/HR)6
R-32A CV HI RG (R/HR)1
R-32B CV HI RG (R/HR) 1
R-14D PLT VNT GAS (MID) (CPM) 10
R-14E PLT VNT GAS (HI) (CPM) 10
R-37 CONDENSATE POLISHER (CPM) 115

PEP-171 94-0222

Rev. 26

PRIMARY SYSTEM RCS PRESSURE (PSIG) 360 PZR LEVEL (%) 24 TAVE (°F) 354 1000 A TH (°F)
PZR LEVEL (%)24 TAVE (°F)354
TAVE (°F) 354
LOOP A TH (°F)354
TC (°F)352
ΔT2
LOOP B TH (°F) 354
TC (°F) 354
TT
LOOP C TH (°F) 354
TC (°F) 353
۵۲ ۱
SUBCOOLING (°F) 84.2
CHARGING FLOW (GPM) 70
LETDOWN FLOW (GPM) 25
REACTOR POWER 0
ACTIVITY:
GROSS (Uci/mi)
I ¹³¹ (Uci/mi)
AVG 5 HOTTEST T/Cs 354
BORON CONC. (PPM)

SECONDARY SYSTEM S/G A

3/4 A		
LEVWR(%)	0 NR(%)	0
PRESS (PSIG)	10	
FEED (PPH)		
STEAM (PPH)		
ACT. (Uci/ml)		
S/G B		
LEVWR(%)	71NR(%)	_43
PRESS (PSIG)	125	
FEED (PPH)		
STEAM (PPH)		
ACT. (Uci/mi)		
S/G C		
LEVWR(%)	71 NR(%)	43
PRESS (PSIG)	125	
FEED (PPH)	0	
STEAM (PPH)		
ACT. (Uci/mi)		

PRI/SEC. LK. RT (GPM) _

OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

> Page 52 of 76 3.2-14

ATTACHMENT 9.7 Page 1 of 1

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

CONTAINMENT STATUS

PRESSURE (PSIG)

TEMPERATURE (°F)

HYDROGEN CONC. (%)

EMERGENCY CLASSIFICATION (CIRCLE) UNUSUAL EVENT SITE AREA EMERGENCY

Date/Time: ________/ 1200

Completed By: _

0.2

110

Ω

ENVIRONMENTAL SYSTEMS WIND SPEED UPPER (MPH) 8.1 LOWER (MPH) 6.3 WIND DIR. UPPER (° FROM) 226 LOWER (° FROM) 221 AIR TEMPERATURE (°F) ____ 68.1 STABILITY CLASS D

AREA RADIATION MONITORS

ALERT

R-1	CONTROL ROOM (MR/HR)	0.4
R-2	CONT. AREA (MR/HR)	28
R-3	HP WORK AREA (MR/HR)	0.15
R-4	CHG. PUMP RM (MR/HR)	
R-5	SPENT FUEL PIT (MR/HR) 0.7
R-6	SAMPLING ROOM (MR/HR)	0.8
R-7	IN-CORE INST (MR/HR)	23
R-8	DRUM. RM. (MR/HR)	1.5
R-9	FAILED FUEL (MR/HR)	
R-33	5 MON BLDG (MR/HR)	0.35

PROCESS_RADIATION MONITORS

R-11 CV VENT PART. (CPM) 20K
R-12 CV VENT GAS (CPM) 1.2K
R-14A "P" PLT VNT (CPM)800
R-14B "I" PLT VNT (CPM)27
R-14C "NG" PLT VNT (CPM) 140
R-15 COND. AIR EJEC. (CPM) 935
R-16 CV FAN CW (CPM) 290
R-17 COMP. CW (CPM) 290
R-18 WASTE DISPOSAL (CPM) 16.5K
R-19A S/G A BLOWDOWN (CPM) 1.2K
R-19B S/G B BLOWDOWN (CPM) 1.0K
R-19C S/G C BLOWDOWN (CPM) 1.0K
R-20 FUEL HDLG BASE (CPM) 40
R-21 FUEL HDLG UPPER (CPM)
ACCIDENT RADIATION MONITORS
R-30 F.H. BASE H1 RG (MR/HR) 0.5
R-31A "A" MN STM (MR/HR)44_
R-31B "B" MN STM (MR/HR)4
R-31C "C" MN STM (MR/HR)6
R-32A CV HI RG (R/HR)1
R-32B CV HI RG (R/HR)1
R-14D PLT VNT GAS (MID) (CPM) 10
R-14E PLT VNT GAS (HI) (CPM) 10
R-37 CONDENSATE POLISHER (CPM) 115

SUMP LEVEL (INCHES) _ 0 87 RWST LEVEL (%) PRIMARY SYSTEM RCS PRESSURE (PSIG) __ 364 PZR LEVEL (%) _____ 23 TAVE (°F) 327 LOOP A TH (°F) ____ 327 TC (°F) _____ 326 ΔT ____ 1 LOOP B TH (°F) 327 TC (°F) ____ 327 ۵T _ 0 LOOP C TH (°F) ____ 327 TC (°F) ____ 327 ۵T 0 SUBCOOLING (°F) 112.5 CHARGING FLOW (GPM) _____119 LETDOWN FLOW (GPM) 28 REACTOR POWER 0 ACTIVITY: GROSS (Uci/mi) _ I¹³¹ (Uci/mi) _____ AVG 5 HOTTEST T/Cs 327 BORON CONC. (PPM) ____

SECONDARY SYSTEM S/G A LEV.-WR(%) ____ NR(%) ___ 0 PRESS (PSIG) 10 FEED (PPH) 0 STEAM (PPH) 0 ACT. (Uci/ml) S/G B LEV.-WR(%) _____ NR(%) _____43___ PRESS (PSIG) 83 FEED (PPH) 0 STEAM (PPH) ____ 0 ACT. (Uci/mi) _ S/G C LEV.-WR(%) 71 NR(%) 43 PRESS (PSIG) ______83 FEED (PPH) 0 STEAM (PPH) 0 'ACT. (Uci/mi) ____

PRI/SEC. LK. RT (GPM) __

ENGINEERED SAFETY FEATURES
SI ACTUATED: TIME
RESET: TIME
CS ACTUATED: TIME
RESET: TIME
CONT. ISO. A ACTUATED: TIME
RESET: TIME
CONT. ISO. B ACTUATED: TIME RESET: TIME
SPRAY ADD TANK LEVEL (%)61
SI COLD-LEG FLOW (GPM)O SI HOT-LEG INJECT START
EQUIPMENT STATUS
N = NOT AVAILABLE
A = AVAILABLE (NOT OPERATING)
O = OPERATING
E = ENERGIZED
PRIMARY
SI PUMP A A B A C N
CS PUMP A <u>A</u> B <u>A</u> RHR PUMP A <u>A</u> B <u>A</u>
HVH 1 0 2 0 3 0 4 0
SECONDARY
CST LEVEL (%)91 FEED PUMP A B
COND PUMP A A B A
AFW MOTOR A A B A
AFW STEAMA
MSIV A <u>ISOL</u> B <u>O</u> C <u>O</u>
ELECTRICAL
EDG A <u>A</u> B <u>A</u>
DS/DG
EMER. BUS E1 E2
FROM: OFFSITE E D.G. A
FANS
HVE 1A 1B A
HVE 2A 2B A
HVE 5A 5B A
HVE 15 15AA

LEGEND:

OSH = OFF SCALE HIGH OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

Rev. 26

PEP-171 94-0222

Page 52 of 76 3.2-15

GENERAL EMERGENCY

ATTACHMENT 9.7 Page 1 of 1

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

EMERGENCY CLASSIFICATION (CIRCLE) UNUSUAL EVENT SITE AREA EMERGENCY Date/Time: ________/ 1215______

Completed By:

ALERT GENERAL EMERGENCY

ENVIRONMENTAL SYSTEMS	
WIND SPEED UPPER (MPH)	7.5
LOWER (MPH)	5.3
WIND DIR. UPPER (" FROM)	220
LOWER (° FROM)	223
AIR TEMPERATURE (°F)	69.1
STABILITY CLASS	D

AREA RADIATION MONITORS

R-1 CONTROL ROOM (MR/HR) 0.3
R-2 CONT. AREA (MR/HR) 37
R-3 HP WORK AREA (MR/HR) 0.15
R-4 CHG. PUMP RM (MR/HR)
R-5 SPENT FUEL PIT (MR/HR) 0.7
R-6 SAMPLING ROOM (MR/HR) 0.8
R-7 IN-CORE INST (MR/HR) 45
R-8 DRUM. RM. (MR/HR)
R-9 FAILED FUEL (MR/HR)
R-33 MON BLDG (MR/HR) 0.35

PROCESS RADIATION MONITORS

R-11 CV VENT PART. (CPM)
R-12 CV VENT GAS (CPM) 1.2K
R-14A "P" PLT VNT (CPM)
R-14B "I" PLT VNT (CPM)25
R-14C "NG" PLT VNT (CPM) 106
R-15 COND. AIR EJEC. (CPM) 624
R-16 CV FAN CW (CPM)290
R-17 COMP. CW (CPM)290
R-18 WASTE DISPOSAL (CPM) 16.5K
R-19A S/G A BLOWDOWN (CPM) 1.2K
R-19B S/G B BLOWDOWN (CPM) 1.0K
R-19C S/G C BLOWDOWN (CPM) 1.0K
R-20 FUEL HDLG BASE (CPM)40
R-21 FUEL HDLG UPPER (CPM) 25
ACCIDENT RADIATION MONITORS
R-30 F.H. BASE HI RG (MR/HR) 0.5
R-31A "A" MN STM (MR/HR) 45
R-318 "B" MN STM (MR/HR)4
R-31C "C" MN STM (MR/HR)6
R-32A CV HI RG (R/HR)1_
R-32B CV HI RG (R/HR)1
R-14D PLT VNT GAS (MID) (CPM) 10
R-14E PLT VNT GAS (HI) (CPM) 10
R-37 CONDENSATE POLISHER (CPM) 115

CONTAINMENT STATUS	
PRESSURE (PSIG)	0.2
TEMPERATURE (°F)	110
HYDROGEN CONC. (%) _	
SUMP LEVEL (INCHES)	0
RWST LEVEL (%)	87
PRIMARY SYSTEM	
RCS PRESSURE (PSIG)	360
PZR LEVEL (%)	22
TAVE ("F)	330
LOOP A TH (°F)	770
TC (°F)	330
ΔΤ	0
LOOP B TH (°F)	330
TC (°F)	330
ΔΤΤ	0
LOOP C TH. (°F)	330
TC (°F)	330
ΔΤΤ	0
SUBCOOLING (°F)	
CHARGING FLOW (GPM)	80
LETDOWN FLOW (GPM)	
REACTOR POWER	
ACTIVITY:	
GROSS (Uci/mi)	
I ¹³¹ (Uci/mi)	
AVG 5 HOTTEST T/Cs	330
BORON CONC. (PPM)	
SECONDARY SYSTEM	

S/G A			
LEVWR(%) _	0	NR(%)	0
PRESS (PSIG)		10	
FEED (PPH)		0	
STEAM (PPH)			
ACT. (Uci/ml			
S/G B			
LEVWR(%) _	71	NR(%)	43
PRESS (PSIG)	_	83	
FEED (PPH)		0	•
STEAM (PPH)			
ACT. (Uci/mi)		
S/G C			
LEVWR(%)	71	NR(%)	43
PRESS (PSIG)			
FEED (PPH)		0	
STEAM (PPH)			
ACT. (Uci/mi			

PRI/SEC. LK. RT (GPM) _____

ENGINEERED SI ACTUATE			
RESET	: TIME		
CS ACTUATE	D: TIME		
RESET:	TIME _		
CONT. ISO.		TED: TI	ME
		T: TIME	
CONT. ISO.			
		T: TIME	
SPRAY ADD			
SI COLD-LE			
SI HOT-LEG	INJECT	START	
EQUIPMENT			
N = NOT AV			
A = AVAILA	BLE (NOT	OPERATI	NG)
O = OPERAT			
E = ENERGI	ZED		
PRIMARY			
RCP	A O	B	С
CHG PUMP	Α	во	_ c _
SI PUMP	A A	B A	
CS PUMP	A _ A	в <u>А</u> в <u>А</u>	
RHR PUMP	A _A	в <u> </u>	
HVH 1 _ 0_	2 0	3_0	4_0
SECONDARY			·
CST LEVEL	(%)	91	
FEED PUMP	A <u>A</u>	B <u>A</u>	
COND PUMP	<u>A</u> A	B <u>A</u>	
AFW MOTOR	A <u>A</u> B	<u> </u>	
AFW STEAM MSIV	<u> </u>		
MSIV	A ISOL	B <u> </u>	c <u>o</u>
ELECTRICAL	<u>.</u>		
	AA B	<u> </u>	
DS/DG			
OFFSITE _	E		
EMER. BUS FROM: OFF	E1E	E	2 <u>E</u>
FROM: OFF	SITE <u>E</u>	D.G	. <u>A</u>
FANS			
HVE 2A	<u>A</u>	1B	<u>A</u>
HVE 2A	0	_ 2B	Α
HVE 5A	<u>A</u>	_ 5B	<u>A</u>
HVE 15	0	_ 15A _	A

OSH = OFF SCALE HIGH OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

PEP-171 94-0222 Rev. 26

Page 52 of 76 3.2-16

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

EMERGENCY CLASSIFICATION (CIRCLE) UNUSUAL EVENT SITE AREA EMERGENCY Completed By:

ENVIRONMENTAL SYSTEMS

AREA RADIATION MONITORS

PROCESS RADIATION MONITORS R-11 CV VENT PART. (CPM) ___

R-12 CV VENT GAS (CPM) ____1.2K R-14A "P" PLT VNT (CPM) _____744 R-14B "I" PLT VNT (CPM) ____

R-14C "NG" PLT VNT (CPM) 84 R-15 COND. AIR EJEC. (CPM) 418 R-16 CV FAN CW (CPM) _____ 290

R-18 WASTE DISPOSAL (CPM) 16.5K R-19A S/G A BLOWDOWN (CPM) 1.0K R-19B S/G B BLOWDOWN (CPM) 1.0K R-19C S/G C BLOWDOWN (CPM) 1.0K R-20 FUEL HDLG BASE (CPM) _____40 R-21 FUEL HDLG UPPER (CPM) 25 ACCIDENT RADIATION MONITORS R-30 F.H. BASE HI RG (MR/HR) 0.5 R-31A "A" MN STM (MR/HR) _____51_

R-318 "B" MN STM (MR/HR) _____4 R-31C "C" MN STM (MR/HR) _____6_ R-32A CV HI RG (R/HR) _____1 R-32B CV HI RG (R/HR)

R-14D PLT VNT GAS (MID) (CPM) 10 R-14E PLT VNT GAS (HI) (CPM) 10

R-37 CONDENSATE POLISHER (CPM) 115

R-17 COMP. CW (CPM) ____

R-1 CONTROL ROOM (MR/HR) 0.2 R-2 CONT. AREA (MR/HR) 44 R-3 HP WORK AREA (MR/HR) 0.15 R-4 CHG. PUMP RM (MR/HR) __ R-5 SPENT FUEL PIT (MR/HR) 0.7 R-6 SAMPLING ROOM (MR/HR) _____ R-7 IN-CORE INST (MR/HR) 72.2 R-8 DRUM. RM. (MR/HR) _____1.5 R-9 FAILED FUEL (MR/HR) ____ R-33 MON BLDG (MR/HR) 0.35

STABILITY CLASS

WIND SPEED UPPER (MPH)

ALERT

GENERAL EMERGENCY

9.9

С

20K

23

290

1

CONTAINMENT_STATUS	
PRESSURE (PSIG)	0.2
TEMPERATURE (°F)	
HYDROGEN CONC. (%)	0
SUMP LEVEL (INCHES)	
RWST LEVEL (%)	86
PRIMARY SYSTEM	
RCS PRESSURE (PSIG)	365
PZR LEVEL (%)	23
TAVE (°F)	325
LOOP A TH (°F)	325
TC (°F)	
ΔΤ	0
LOOP B TH (°F)	325
TC (°F)	325
ΔΤ	0
LOOP C TH (°F)	325
TC (°F)	
ΔT	0
SUBCOOLING (°F)	114
CHARGING FLOW (GPM)	70
LETDOWN FLOW (GPM)	30
REACTOR POWER	0
ACTIVITY:	
GROSS (Uci/mi)	
I ¹³¹ (Uci/mi)	
AVG 5 HOTTEST T/Cs _	325
BORON CONC. (PPM)	
<u>SECONDARY SYSTEM</u> S/G A	

-,		
LEVWR(%)	0 NR(%)	0
PRESS (PSIG)	10	
FEED (PPH)	0	
STEAM (PPH)		
ACT. (Uci/ml)		
S/G B		
LEVWR(%)	72 NR(%)	
PRESS (PSIG)	80	
FEED (PPH)	0	
STEAM (PPH)		
ACT. (Uci/mi)		
S/G C		
LEVWR(%)	71 NR(%)	43
PRESS (PSIG)	82	
FEED (PPH)	0	
STEAM (PPH)		
ACT. (Uci/mi)		

PRI/SEC. LK. RT (GPM) ____

ENGINEERED SAFETY FEATURES
SI ACTUATED: TIME
DECET. TIME
CS ACTUATED: TIME
RESET: TIME
CONT. ISO. A ACTUATED: TIME
RESET: TIME
CONT. ISO. B ACTUATED: TIME
RESET: TIME
SPRAY ADD TANK LEVEL (%) 61
SI COLD-LEG FLOW (GPM) 0
SI HOT-LEG INJECT START
EQUIPMENT STATUS
N = NOT AVAILABLE
A = AVAILABLE (NOT OPERATING)
O = OPERATING
E = ENERGIZED
PRIMARY
RCP A <u>0</u> B <u>0</u> C <u>0</u>
CHG PUMP A BO CO
SIPUMP A <u>A</u> B <u>A</u> C <u>N</u>
CS PUMP A A B A
RHR PUMP A A B A
HVH 1 0 2 0 3 0 4 0
SECONDARY
CST LEVEL (%)91
FEED PUMP A A B A
COND PUMP A <u>A</u> B <u>A</u> AFW MOTOR A <u>A</u> B <u>A</u>
AFW MOTOR A <u>A</u> B <u>A</u>
AFW STEAM A
MSIV A <u>ISOL</u> B O C O
ELECTRICAL
EDG A <u>A</u> B <u>A</u>
DS/DG
OFFSITEE
OFFSITEE EMER. BUS E1 E2 _E
FROM: OFFSITE _E D.GA
FANS
HVE 1A A 1B A
HVE 2A 2B A
HVE 5A A 5B A
HVE 15 15A A

LEGEND:

OSH = OFF SCALE HIGH OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

Rev. 26

Page 52 of 76 3.2-17

ATTACHMENT 9.7 Page 1 of 1

LOWER (MPH) 6.2 WIND DIR. UPPER (° FROM) 222 LOWER (° FROM) ____ 218 AIR TEMPERATURE (°F) _____ 69.6

ATTACHMENT 9.7

Page 1 of 1

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

EMERGENCY CLASSIFICATION (CIRCLE) UNUSUAL EVENT SITE AREA EMERGENCY

LOWER (MPH) 6.6 WIND DIR. UPPER (° FROM) 226 LOWER (° FROM) ____

Date/Time: ________/ 1245

Completed By:

ALERT

ENVIRONMENTAL SYSTEMS WIND SPEED UPPER (MPH) _____

AIR TEMPERATURE (°F) ____

AREA RADIATION MONITORS

R-1 CONTROL ROOM (MR/HR) 0.2 R-2 CONT. AREA (MR/HR)

R-3 HP WORK AREA (MR/HR) ______ R-4 CHG. PUMP RM (MR/HR) R-5 SPENT FUEL PIT (MR/HR) 0.7 R-6 SAMPLING ROOM (MR/HR) 0.8 R-7 IN-CORE INST (MR/HR) 104 R-8 DRUM. RM. (MR/HR) 1.5 R-9 FAILED FUEL (MR/HR) R-33 MON BLDG (MR/HR) ______0.35

PROCESS RADIATION MONITORS R-11 CV VENT PART. (CPM) ____

R-12 CV VENT GAS (CPM)

R-14A "P" PLT VNT (CPM)

R-14C "NG" PLT VNT (CPM)_

R-17 COMP. CW (CPM)

R-148 "I" PLT VNT (CPM) ____

R-15 COND. AIR EJEC. (CPM) 418 R-16 CV FAN CW (CPM) _____290_

R-18 WASTE DISPOSAL (CPM) 16.5K R-19A S/G A BLOWDOWN (CPM) 1.0K

R-198 S/G B BLOWDOWN (CPM) 1.0K

R-19C S/G C BLOWDOWN (CPM) 1.0K

R-20 FUEL HDLG BASE (CPM) _____40___

R-21 FUEL HDLG UPPER (CPM) 25

R-30 F.H. BASE HI RG (MR/HR) 0.5

R-31A "A" MN STM (MR/HR) _____55_

R-318 "B" MN STM (MR/HR) _____4

R-31C "C" MN STM (MR/HR) _____6_

R-32B CV HI RG (R/HR) _____1

R-14D PLT VNT GAS (MID) (CPM) 10

R-14E PLT VNT GAS (HI) (CPM) 10

R-37 CONDENSATE POLISHER (CPM) 115

R-32A CV HI RG (R/HR) _

ACCIDENT RADIATION MONITORS

STABILITY CLASS

GENERAL EMERGENCY

8.7

222

69.8

С

48

20K

1.2K

729

22

69

290

1

CONTAINMENT STATUS	
PRESSURE (PSIG)	0.2
TEMPERATURE (°F)	
HYDROGEN CONC. (%)	
SUMP LEVEL (INCHES)	
RWST LEVEL (%)	
PRIMARY SYSTEM	
RCS PRESSURE (PSIG)	365
PZR LEVEL (%)	
TAVE (°F)	
LOOP A TH (°F)	
TC (°F)	325
	0
LOOP B TH (°F)	325
TC (°F)	
ΔΤ	0
LOOP C TH (°F)	325
TC (°F)	
ΔΤΤΔ	
SUBCOOLING (°F)	114
CHARGING FLOW (GPM)	
LETDOWN FLOW (GPM)	30
REACTOR POWER	0
ACTIVITY:	· · · · · · · · · · · · · · · · · · ·
GROSS (Uci/mi)	
I ¹³¹ (Uci/mi)	
AVG 5 HOTTEST T/Cs	
BORON CONC. (PPM)	

SECONDARY SYSTEM S/G A LEV.-WR(%) 0 NR(%) 0 PRESS (PSIG) _____ 10 FEED (PPH) _____0 STEAM (PPH) 0 ACT. (Uci/ml) _____ S/G B LEV.-WR(%) 72 NR(%) 44 PRESS (PSIG) 80 0 FEED (PPH) STEAM (PPH) 0 ACT. (Uci/mi) ____ S/G C LEV.-WR(%) _____ NR(%) ____44___ PRESS (PSIG) 80 FEED (PPH) 0

STEAM (PPH) _____0 ACT. (Uci/mi) _____

PRI/SEC. LK. RT (GPM) ____

ENGI	NEERED	SAFETY	FEATURE	ES
	RESET	: TIME		
CS A	CTUATE	D: TIM	E	
	RESET:	TIME		
CONT	. 150.	A ACTU	ATED:	TIME
				ME
CONT	. ISO.	B ACTU	ATED:	
		RES	ET: TI	ME
SPRA	Y ADD	TANK LE	VEL (%)	61
SI C	OLD-LE	G FLOW	(GPM)	0
SI H	OT-LEG	INJECT		
		STATUS		
		AILABLE		
			T OPERAT	ING)
	OPERAT			
E =	ENERGI	ZED		
PRIM	ARY			
RCP		A	о в	<u>o</u> c <u>o</u>
CHG	PUMP	Α	B	0 0 0
SI P	UMP	A	<u></u> а <u>_</u>	0 C 0 A C N
CS P	UMP	A A	B /	1
RHR	PUMP	AA	в	- \
нлн	1 0	2 0	3 0	<u> </u>
SECO	NDARY			
		(%)	91	
FEED	PUMP	A A	B A	•
COND	PUMP	A _ A	B A B A	•
AF₩	MOTOR	A <u>A</u> B	A	•
AFW	STEAM	A		
MSIV		A ISOL	BO	_ c
ELEC	TRICAL			
EDG		A _ A B	A	
DS/D	G	A <u>A</u> B		
OFFS	ITE	E		
EMER	. BUS	E1 <u>E</u>		E2 <u>E</u> .G. <u>A</u>
FROM	: OFF	SITE <u> </u>	D.	.G. <u>A</u>
<u>FANS</u>				
HVE	1A	Α	1B	<u>A</u>
HVE	2A	0	2B	A
HVE	5A	A	58	A
	15	0		

LEGEND: OSH = OFF SCALE HIGH OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

PEP-171 94-0222

Rev. 26

Page 52 of 76 3.2-18

ATTACHMENT 9.7

SAFETY PARAMETER DISPLAY SYSTEM/PLANT STATUS

CONTAINMENT STATUS

PRESSURE (PSIG)

TEMPERATURE (°F) ____

EMERGENCY CLASSIFICATION (CIRCLE) UNUSUAL EVENT SITE AREA EMERGENCY

Date/Time: 3/30/94 / 1300

Completed By: ____

0.2

110

ALERT GENERAL EMERGENCY

ENVIRONMENTAL SYSTEMS	
WIND SPEED UPPER (MPH)	8.7
LOWER (MPH)	6.2
WIND DIR. UPPER (° FROM)	224
LOWER (° FROM)	225
AIR TEMPERATURE (°F)	70.5
STABILITY CLASS	С

AREA RADIATION MONITORS

R-1 CONTROL ROOM (MR/HR)	0.2
R-2 CONT. AREA (MR/HR)	48
R-3 HP WORK AREA (MR/HR)	0.15
R-4 CHG. PUMP RM (MR/HR)	
R-5 SPENT FUEL PIT (MR/HR)	0.7
R-6 SAMPLING ROOM (MR/HR) _	.8
R-7 IN-CORE INST (MR/HR)	135
R-8 DRUM. RM. (MR/HR)	1.5
R-9 FAILED FUEL (MR/HR)	
R-33 MON BLDG (MR/HR)	0.35

PROCESS RADIATION MONITORS

R-11 CV VENT PART. (CPM) 20K
R-12 CV VENT GAS (CPM)1.2K
R-14A "P" PLT VNT (CPM) 719
R-148 "I" PLT VNT (CPM) 21
R-14C "NG" PLT VNT (CPM) 59
R-15 COND. AIR EJEC. (CPM) 282
R-16 CV FAN CW (CPM) 290
R-17 COMP. CW (CPM) 290
R-18 WASTE DISPOSAL (CPM) 16.5K
R-19A S/G A BLOWDOWN (CPM) 1.0K
R-19B S/G B BLOWDOWN (CPM) 1.0K
R-19C S/G C BLOWDOWN (CPM) 1.0K
R-20 FUEL HDLG BASE (CPM) 40
R-21 FUEL HDLG UPPER (CPM) 25
ACCIDENT RADIATION MONITORS
R-30 F.H. BASE HI RG (MR/HR) 0.5
R-31A "A" MN STM (MR/HR)55
R-31B "B" MN STM (MR/HR)4
R-31C "C" MN STM (MR/HR)6
R-32A CV HI RG (R/HR)1
R-32B CV HI RG (R/HR)1
R-14D PLT VNT GAS (MID) (CPM) 10
R-14E PLT VNT GAS (HI) (CPM) 10
R-37 CONDENSATE POLISHER (CPM) 115

HYDROGEN CONC. (%)	. 0
SUMP LEVEL (INCHES)	0
RWST LEVEL (%)	
PRIMARY SYSTEM	
RCS PRESSURE (PSIG) _	365
PZR LEVEL (%)	23
TAVE (°F)	
LOOP A TH (°F)	
TC (°F)	
ΔΤ	
LOOP B TH (°F)	325
TC (°F)	
ΔΤ	- 0
ΔT LOOP C TH (°F)	325
TC (°F)	-325
▲ T	0
SUBCOOLING (°F)	114
CHARGING FLOW (GPM)	65
LETDOWN FLOW (GPM)	
REACTOR POWER	
ACTIVITY:	
GROSS (Uci/mi)	
I ¹³¹ (Uci/mi)	
AVG 5 HOTTEST T/Cs	325
BORON CONC. (PPM)	

SECONDARY SYSTEM S/G A LEV.-WR(%) Ω

$\frac{1}{1}$	_ MK(A) .	
PRESS (PSIG)	10	
FEED (PPH)		
STEAM (PPH)		
ACT. (Uci/ml)		
S/G B		
LEVWR(%) 72	NR(%)	44
PRESS (PSIG)	80	
FEED (PPH)	. 0	•
STEAM (PPH)		
ACT. (Uci/mi)		
S/G C		
LEVWR(%) 72	NR(%)	44
PRESS (PSIG)	80	
FEED (PPH)	0	
STEAM (PPH)		
ACT. (Uci/mi)		

ND/91

Δ

PRI/SEC. LK. RT (GPM) ____

ENGINEERED SAFETY FEATURES SI ACTUATED: TIME RESET: TIME CS ACTUATED: TIME RESET: TIME CONT. ISO. A ACTUATED: TIME RESET: TIME CONT. ISO. B ACTUATED: TIME ____ RESET: TIME SPRAY ADD TANK LEVEL (%) _____61 SI COLD-LEG FLOW (GPM) ____O SI HOT-LEG INJECT START EQUIPMENT STATUS N = NOT AVAILABLE A = AVAILABLE (NOT OPERATING) O = OPERATINGE = ENERGIZEDPRIMARY A _____ B ___ C ___ A _____ B ___ C ___ A ____ B ___ A C ___N RCP CHG PUMP SI PUMP A <u>A B A</u> CS PUMP HVH 1 0 2 0 3 0 4 0 SECONDARY CST LEVEL (%) ____91 FEED PUMP A A B A COND PUMP A A B A AFW MOTOR A A B A AFW STEAM A MSIV A ISOL B O C O ELECTRICAL EDG A <u>A</u> B <u>A</u> DS/DG OFFSITE E EMER. BUS E1 ____ E2 _E FROM: OFFSITE _ D.G. A FANS Α A A A

LEGEND: OSH = OFF SCALE HIGH OSL = OFF SCALE LOW OOS = OUT OF SERVICE ISOL = ISOLATED

PEP-171 94-0222

Rev. 26

Page 1 of 1

CAROLINA POWER AND LIGHT COMPANY ROBINSON NUCLEAR PROJECT DEPARTMENT

1993 DEFERRED EXERCISE

3.3 <u>METEOROLOGICAL INFORMATION</u>

in.

CON-94-0222 RNPD-94-03-R0

FORECAST DISCUSSION FOR H. B. ROBINSON NUCLEAR PLANT

07:00 EST

3-30-94

A strong area of high pressure will push moisture from the Atlantic over the region today and tomorrow. This will give us a mixture of sun and clouds and at times today, skies will be cloudy. The chance of rain is very low since there are no weather features to act on the moisture to produce rain. Afternoon temperatures will be mild and winds will be from the south to southwest.

.

-END DISCUSSION-

CON-94-0222 RNPD-94-03-R0

CP&L CAROLINA POWER & LIGHT COMPANY ONSITE METEOROLOGICAL DATA

Date: March 30, 1994

Robinson 0830 0845 Time (EST) 7.1 5.7 Upper Speed (mph) 233 228 Upper Direc. (DEG) 3.7 3.8 Lower Speed (mph) Lower Direc. (DEG) 229 230 AMB Temp. (°F) 46.1 48.2 ΔT (°C/100m) -.55 -.63 Stability Class D D

Time (EST)	0900	0915	0930	0945
Upper Speed (mph)	5.6	6.3	6.6	5.0
Upper Direc. (DEG)	218	226	214	218
Lower Speed (mph)	4.2	4.0	4.6	4.3
Lower Direc. (DEG)	220	215	217	213
AMB Temp. (°F)	50.5	51.7	55.7	59.6
∆T (°C/100m)	69		83	89
Stability Class	D	D	D	D

CON-94-0222 RNPD-94-03-R0

CP&L CAROLINA POWER & LIGHT COMPANY ONSITE METEOROLOGICAL DATA

Date: March 30, 1994

Robinson											
Time (EST)	1000	1015	1030	1045							
Upper Speed (mph)	6.1	7.7	6.5	8.0							
Upper Direc. (DEG)	213	210	217	216							
Lower Speed (mph)	4.7	5.7	4.9	6.0							
Lower Direc. (DEG)	210	212	215	210							
AMB Temp. (°F)	61.5	<u> </u>	62.9	63.7							
ΔT (°C/100m)	98	-1.11	-1.15	-1.33							
Stability Class	D	D	D	D							
Time (EST)	1100	1115	1130	1145							
Upper Speed (mph)	7.2	6.2	7.9	8.1							
Upper Direc. (DEG)	212	216	210	216							
Lower Speed (mph)	5.7	5.6	6.1	6.1							
Lower Direc. (DEG)	206	210	216	218							
AMB Temp. (°F)	64.8	65.7	66.7	67.3							
ΔT (°C/100m)	-1.38	-1.46	-1.47	1.44							
Stability Class	D	D	D	D							

· ·

CON-94-0222 RNPD-94-03-R0

CP&L CAROLINA POWER & LIGHT COMPANY ONSITE METEOROLOGICAL DATA

Date: March 30, 1994

Robinson										
Time (EST)	1200	1215	1230	1245						
Upper Speed (mph)	8.1	7.5	9.9	8.7						
Upper Direc. (DEG)	226	220	222	226						
Lower Speed (mph)	6.3	5.3	6.2	6.6						
Lower Direc. (DEG)	221	223	218	222						
AMB Temp. (°F)	68.1	69.1	69.6	69.8						
∆T (°C/100m)	-1.48		-1.53	-1.59						
Stability Class	D	D	C	C						
Time (EST)	1300	1315	1330	1345						
Upper Speed (mph)	8.7	8.7	10.3	7.8						
Upper Direc. (DEG)	224	226	224	227						
Lower Speed (mph)	6.2	6.1	5.9	6.0						
Lower Direc. (DEG)	225	222	218	221						
AMB Temp. (°F)	70.5	70.7	70.7	71.0						
ΔT (°C/100m)	-1.68		-1.52	-1.59						
Stability Class	<u> </u>	C	C	C						

CON-94-0222 RNPD-94-03-R0

۰.

CAROLINA POWER & LIGHT COMPANY METEOROLOGICAL FORECAST FORM

Date: <u>March 30, 1994</u> Time Issued: <u>0800 EST</u>	
Issued By: Received By:	
Forecast Location:Robinson Nuclear Project	
A) Next 1 Hour	
1) Wind Direction: Sector <u>SW</u> Deg. <u>225</u>	
2) Winds Should Remain (<u>Steady;</u> Shifting; Variable) 2a) Variation Should Be <u>± 10</u> Deg.	
3) Wind Velocity:3 to5 (MPH)	
4) Stability ClassD	
5) Precipitation Activity Will Be (<u>None</u> , Scattered, Steady)	
6) Precipitation Type (Rain, Rainshowers, Thunderstorms, Ice, Snow)	
7) Precipitation Intensity (Light, Moderate, Severe)	
3) Next 3 Hours:	
Winds: SW 4 - 6 mph	
Precipitation: None	<u> </u>
Stability Class: D	
) Remarks:	

CON-94-0222 RNPD-94-03-R0

CAROLINA POWER & LIGHT COMPANY METEOROLOGICAL FORECAST FORM

Dat	te: <u>March 30, 1994</u> Time Issued: <u>0900 EST</u>
Iss	sued By: Received By:
For	recast Location: <u>Robinson Nuclear Project</u>
A)	Next l Hour
	1) Wind Direction: Sector <u>SW</u> Deg. <u>220</u>
	2) Winds Should Remain (<u>Steady</u> ; Shifting; Variable) 2a) Variation Should Be <u>± 10</u> Deg.
	3) Wind Velocity: <u>4</u> to <u>6</u> (MPH)
	4) Stability Class <u>D</u>
	5) Precipitation Activity Will Be (<u>None</u> , Scattered, Steady)
	6) Precipitation Type (Rain, Rainshowers, Thunderstorms, Ice, Snow)
	7) Precipitation Intensity (Light, Moderate, Severe)
B)	Next 3 Hours:
	Winds: SW 4 - 6 mph
	Precipitation: None
	Stability Class: D
C)	Remarks:

CON-94-0222 RNPD-94-03-R0

CAROLINA POWER & LIGHT COMPANY METEOROLOGICAL FORECAST FORM

Date: <u>March 30, 1994</u>	Time Issued:	1000 EST									
Issued By:	Received By:										
Forecast Location: <u>Robinson</u>	Nuclear Project										
A) Next 1 Hour											
1) Wind Direction: Sector	SSW Deg210	<u> </u>									
2) Winds Should Remain (<u>St</u> 2a) Variation Should Be	<u>ceady;</u> Shifting; Variable <u>± 10</u> Deg.)									
3) Wind Velocity:4	to <u>6</u> (MPH)										
4) Stability Class <u>D</u>											
5) Precipitation Activity W	Vill Be (<u>None</u> , Scattered,	Steady)									
6) Precipitation Type (Rain	6) Precipitation Type (Rain, Rainshowers, Thunderstorms, Ice, Snow)										
7) Precipitation Intensity	(Light, Moderate, Severe)									
B) Next 3 Hours: <u>Winds: SSW 4 - 6 mp</u>	1										
	······										
Stability Class: $D \rightarrow C$											
C) Remarks:											
	······································										

CON-94-0222 RNPD-94-03-R0

CAROLINA POWER & LIGHT COMPANY METEOROLOGICAL FORECAST FORM

Date: <u>March 30, 1994</u> Time Issued: <u>1</u>	100 EST
Issued By: Received By:	
Forecast Location: <u>Robinson Nuclear Project</u>	
A) Next 1 Hour	
1) Wind Direction: Sector <u>SSW</u> Deg. <u>210</u>	
 Winds Should Remain (<u>Steady;</u> Shifting; Variable) 2a) Variation Should Be <u>± 10</u> Deg. 	
3) Wind Velocity: <u>4</u> to <u>6</u> (MPH)	
4) Stability Class <u>D</u>	
5) Precipitation Activity Will Be (<u>None</u> , Scattered, S	teady)
6) Precipitation Type (Rain, Rainshowers, Thunderstor	ms, Ice, Snow)
7) Precipitation Intensity (Light, Moderate, Severe)	
B) Next 3 Hours:	
Winds: SW 4 - 6 mph	
Precipitation: None	
<u>Stability Class: $D \rightarrow C$</u>	
C) Remarks:	

CON-94-0222 RNPD-94-03-R0

CAROLINA POWER & LIGHT COMPANY METEOROLOGICAL FORECAST FORM

Dat	e: <u>March 30, 1994</u> Time Issued: <u>1200 EST</u>
Iss	ued By: Received By:
For	ecast Location: <u>Robinson Nuclear Project</u>
A)	Next 1 Hour
	1) Wind Direction: Sector <u>SW</u> Deg. <u>220</u>
	2) Winds Should Remain (<u>Steady;</u> Shifting; Variable) 2a) Variation Should Be <u>± 10</u> Deg.
	3) Wind Velocity: <u>4</u> to <u>6</u> (MPH)
	4) Stability Class $D \rightarrow C$
	5) Precipitation Activity Will Be (<u>None</u> , Scattered, Steady)
	6) Precipitation Type (Rain, Rainshowers, Thunderstorms, Ice, Snow)
·	7) Precipitation Intensity (Light, Moderate, Severe)
B)	Next 3 Hours: Winds: SW 4 - 6 mph
	Stability Class: C
C)	Remarks:

CON-94-0222 RNPD-94-03-R0

CAROLINA POWER & LIGHT COMPANY METEOROLOGICAL FORECAST FORM

Dat	e: <u>March 30, 1994</u> Time Issued: <u>1300 EST</u>
Iss	ued By: Received By:
For	ecast Location:
A)	Next 1 Hour
	1) Wind Direction: Sector <u>SW</u> Deg. <u>220</u>
	2) Winds Should Remain (<u>Steady;</u> Shifting; Variable) 2a) Variation Should Be <u>± 10</u> Deg.
	3) Wind Velocity: <u>4</u> to <u>6</u> (MPH)
	4) Stability Class <u> </u>
	5) Precipitation Activity Will Be (<u>None</u> , Scattered, Steady)
	6) Precipitation Type (Rain, Rainshowers, Thunderstorms, Ice, Snow)
	7) Precipitation Intensity (Light, Moderate, Severe)
B)	Next 3 Hours:
	Winds: SW 4 - 6 mph
	Precipitation: None
	Stability Class: C
C)	Remarks:
	•

CON-94-0222 RNPD-94-03-R0

CAROLINA POWER AND LIGHT COMPANY ROBINSON NUCLEAR PROJECT DEPARTMENT

1993 DEFERRED EXERCISE

3.4 RADIOLOGICAL INFORMATION

CON-94-0222 RNPD-94-03-R0

• •

Radiological Release Design Parameters

Assumptions:

Mean Wind Direction = 212° degrees Mean Wind Velocity = 5.9 mph Stability Class = D Failed Fuel 9% at 1130

Release Rates - See attached figure.

Plume - See attached figures for onsite and offsite at peak release.

Note: Onsite plume is sculptured to represent structure effects of containment, Unit 1 Boiler structure, Unit 1 stack and the Radwaste Building.

. . . .

CON-94-0222 RNPD-94-03-R0

3.4-1

CAROLINA POWER AND LIGHT COMPANY

ROBINSON NUCLEAR PROJECT DEPARTMENT

1993 DEFERRED EXERCISE

3.4A RADIOCHEMISTRY DATA

· 14

CON-94-0222 RNPD-94-03-R0

ROBINSON PROJECT EXERCISE MARCH 1994

PRIMARY SYSTEM ACTIVITY

04:16 PM 01/25/94 SHEET 1

NUCLIDE 09:15 AM 09:30 AM 09:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:00 AM 11:15 AM 11:30 AM 11:45 AM 12:00 PM 12:15 PM 12:30 PM 12:45 PM 01:00 PM 01:15 PM 01:30 PM NORMAL NORMAL NORMAL SHUTDOWN SHUTDOWN SHUTDOWN ACCIDENT A

 I - 131
 1.46E-05
 1.46E+01
 1.46E+01

0.00E+00 KR-83M 1.60E-05 1.60E-05 1.60E-05 1.60E-05 1.50E-05 1.40E-05 1.31E-05 1.22E-05 1.16E-05 5.41E-01 6.43E-01 6.80E-01 6.46E-01 6.14E-01 5.73E-01 5.35E-01 4.99E-01 4.69E-01 KR-85M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.90E-01 6.01E-01 6.57E-01 6.49E-01 6.41E-01 6.24E-01 6.05E-01 5.87E-01 5.75E-01 KR-85 3.50E-03 3.50E-03 3.50E-03 3.50E-03 2.97E-03 2.52E-03 2.14E-03 1.82E-03 1.57E-03 5.50E-01 6.03E-01 5.89E-01 5.08E-01 4.38E-01 3.71E-01 3.14E-01 2.66E-01 2.27E-01 KR-87 KR-88 2.00E-04 2.00E-04 2.00E-04 2.00E-04 1.83E-04 1.67E-04 1.53E-04 1.40E-04 1.30E-04 1.19E+00 1.39E+00 1.44E+00 1.34E+00 1.25E+00 1.14E+00 1.04E+00 9.47E-01 8.71E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.05E-01 5.40E-02 2.56E-02 9.33E-04 3.40E-05 1.22E-06 4.36E-08 1.56E-09 5.64E-11 KR-89 XE-131M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.46E-01 1.79E-01 1.96E-01 1.93E-01 1.91E-01 1.85E-01 1.80E-01 1.74E-01 1.70E-01 XE-133M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.63E-01 4.44E-01 4.85E-01 4.77E-01 4.70E-01 4.55E-01 4.41E-01 4.26E-01 4.16E-01 9.40E-05 9.40E-05 9.40E-05 9.40E-05 9.14E-05 8.87E-05 8.62E-05 8.38E-05 8.28E-05 2.46E+01 3.01E+01 3.29E+01 3.20E+01 3.11E+01 3.02E+01 2.92E+01 2.86E+01 XE-133 XE-135M 1.10E-02 1.10E-02 1.10E-02 1.10E-02 5.49E-03 2.74E-03 1.37E-03 6.83E-04 3.46E-04 2.91E-01 2.15E-01 1.44E-01 7.28E-02 3.69E-02 1.84E-02 9.16E-03 4.56E-03 2.29E-03 1.50E-04 1.50E-04 1.50E-04 1.50E-04 1.43E-04 1.37E-04 1.31E-04 1.25E-04 1.21E-04 1.33E+00 1.61E+00 1.73E+00 1.68E+00 1.63E+00 1.56E+00 1.49E+00 1.42E+00 1.36E+00 XE-135 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.70E-01 1.15E+00 1.22E+00 1.15E+00 1.09E+00 1.02E+00 9.50E-01 8.85E-01 8.31E-01 XE-138 TOTAL NG 1.50E-02 1.50E-02 1.50E-02 1.50E-02 8.90E-03 5.67E-03 3.89E-03 2.86E-03 2.26E-03 3.07E+01 3.70E+01 4.01E+01 3.92E+01 3.84E+01 3.71E+01 3.57E+01 3.44E+01 3.35E+01

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.92E-01 2.32E-01 2.50E-01 2.42E-01 2.35E-01 2.24E-01 2.14E-01 2.04E-01 1.96E-01 SR-89 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.29E-01 4.03E-01 4.40E-01 4.33E-01 4.27E-01 4.14E-01 4.01E-01 3.89E-01 3.79E-01 TE-132 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.11E-01 5.04E-01 5.51E-01 5.44E-01 5.37E-01 5.22E-01 5.06E-01 4.91E-01 4.80E-01 BA-140 ZR-97 4.00E-06 4.00E-06 4.00E-06 4.00E-06 3.51E-06 3.08E-06 2.71E-06 2.38E-06 2.12E-06 3.52E-01 3.98E-01 4.00E-01 3.56E-01 3.18E-01 2.79E-01 2.44E-01 2.14E-01 1.89E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.29E-01 3.86E-01 4.05E-01 3.79E-01 3.56E-01 3.28E-01 3.02E-01 2.78E-01 2.58E-01 CE-143 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.62E-01 1.98E-01 2.17E-01 2.14E-01 2.11E-01 2.05E-01 1.99E-01 1.93E-01 1.89E-01 ND-147 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.32E-02 1.14E-01 1.25E-01 1.24E-01 1.22E-01 1.19E-01 1.15E-01 1.12E-01 1.09E-01 CS-134 CS-137 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.02E-02 3.70E-02 4.04E-02 4.00E-02 3.95E-02 3.84E-02 3.72E-02 3.61E-02 3.54E-02 4.00E-06 4.00E-06 4.00E-06 4.00E-06 3.51E-06 3.08E-06 2.71E-06 2.38E-06 2.12E-06 1.90E+00 2.27E+00 2.43E+00 2.33E+00 2.25E+00 2.13E+00 2.02E+00 1.92E+00 1.84E+00 TOTAL 1.60E-02 1.60E-02 1.60E-02 1.60E-02 9.78E-03 6.44E-03 4.57E-03 3.47E-03 2.82E-03 1.21E+02 1.46E+02 1.57E+02 1.53E+02 1.48E+02 1.42E+02 1.36E+02 1.30E+02 1.26E+02 GRAND

STEAM GENERATOR ACTIVITY

NUCLIDE 09:15 AM 09:30 AM 09:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:00 AM 11:15 AM 11:30 AM 11:45 AM 12:00 PM 12:15 PM 12:30 PM 12:45 PM 01:00 PM 01:15 PM 01:30 PM 01:30 PM 01:30 PM 01:30 PM 01:30 PM 01:15 PM 01:00 PM 01:15 PM 01:15 PM 01:15 PM 01:15 PM 01:15 PM 01:15 PM 01:1

04:16 PM 01/25/94

SHEET

2

 I-131
 9.58E-07
 1.77E-06
 2.34E-06
 3.28E-06
 3.95E-06
 2.03E-06
 1.75E-06
 5.09E-07
 6.35E-01
 1.07E+00
 2.13E+00
 2.44E+00
 2.41E+00
 2.37E+00
 2.26E+00
 2.56E+00

 I-132
 1.64E-05
 3.02E-05
 4.01E-05
 5.61E-05
 6.66E-05
 4.18E-05
 3.20E-05
 2.65E-05
 6.79E-06
 9.77E-02
 1.57E-01
 2.34E-01
 3.07E-01
 2.86E-01
 2.61E-01
 2.32E-01
 2.48E-01

 I-133
 8.53E-06
 1.57E-05
 2.09E-05
 2.92E-05
 3.51E-05
 2.26E-05
 1.79E-05
 1.54E-05
 4.41E-06
 3.89E-01
 6.52E-01
 1.01E+00
 1.46E+00
 1.44E+00
 1.40E+00
 1.33E+00
 1.50E+00

 I-134
 2.69E-05
 6.58E-05
 9.20E-05
 1.07E-04
 6.47E-05
 4.68E-05
 7.90E-06
 9.01E-02
 1.34E-01
 1.86E-01
 2.07E-01
 1.47E-01
 1.17E-01
 1.14E+01

 I-135
 1.28E-05
 3.13E-05
 4.38E-05
 5.25E-05
 3.35E-05
 2.24E-05
 6.24E-06
 1.94E-01
 3.22E-01
 6.19E-01
 6.76E-01
 6.49E-01
 6.05E-01</

KR-83M 1.03E-05 1.90E-05 2.51E-05 3.52E-05 4.20E-05 2.66E-05 2.06E-05 1.74E-05 4.68E-06 7.91E-01 1.33E+00 2.07E+00 2.63E+00 3.00E+00 2.96E+00 2.90E+00 2.76E+00 3.11E+00 0.00E+00 0 KR-85 1.05E-06 1.94E-06 2.57E-06 3.59E-06 4.30E-06 2.73E-06 2.13E-06 1.80E-06 4.91E-07 8.57E-03 1.41E-02 2.15E-02 2.66E-02 2.97E-02 2.85E-02 2.70E-02 2.49E-02 2.74E-02 KR-87 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.76E-03 1.31E-02 2.05E-02 2.61E-02 2.99E-02 2.95E-02 2.91E-02 2.78E-02 3.15E-02 KR-88 2.30E-04 4.23E-04 5.61E-04 7.85E-04 9.22E-04 5.69E-04 4.24E-04 3.41E-04 8.03E-05 8.74E-03 1.35E-02 1.93E-03 2.24E-02 2.36E-02 2.10E-02 1.82E-02 1.54E-02 1.57E-02 KR - 89 XE-131M 1.31E-05 2.42E-05 3.21E-05 4.49E-05 5.35E-05 3.38E-05 2.60E-05 2.17E-05 5.72E-06 1.89E-02 3.06E-02 4.60E-02 5.61E-02 6.18E-02 5.82E-02 5.40E-02 4.88E-02 5.26E-02 XE-133M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.25E-03 1.99E-03 1.63E-03 1.03E-03 7.05E-04 4.17E-04 2.29E-04 1.27E-04 9.35E-05 XE-133 0.00E+00 2.31E-03 3.90E-03 6.09E-03 7.75E-03 8.89E-03 8.78E-03 8.64E-03 8.25E-03 9.35E-03 XE-135M 0.00E+00 5.75E-03 9.69E-03 1.51E-02 1.92E-02 2.20E-02 2.17E-02 2.13E-02 2.03E-02 2.29E-02 XE-135 6.17E-06 1.14E-05 1.51E-05 2.11E-05 2.54E-05 1.64E-05 1.30E-05 1.13E-05 3.27E-06 3.90E-01 6.57E-01 1.03E+00 1.31E+00 1.49E+00 1.49E+00 1.45E+00 1.39E+00 1.57E+00 XE-138 7.22E-04 1.33E-03 1.76E-03 2.47E-03 2.67E-03 1.49E-03 9.63E-04 6.77E-04 1.05E-04 4.65E-03 5.28E-03 5.83E-03 5.11E-03 4.20E-03 2.83E-03 1.75E-03 1.06E-03 8.25E-04 9.82E-04 1.81E-03 2.40E-03 3.36E-03 3.72E-03 2.14E-03 1.45E-03 1.07E-03 1.99E-04 1.24E+00 2.08E+00 3.23E+00 4.10E+00 4.68E+00 4.60E+00 4.51E+00 4.29E+00 4.84E+00 TOTAL

SR-89 9.82E-04 1.81E-03 2.40E-03 3.36E-03 3.72E-03 2.14E-03 1.45E-03 1.07E-03 1.99E-04 4.86E-01 8.09E-01 1.25E+00 1.59E+00 1.81E+00 1.77E+00 1.73E+00 1.65E+00 1.85E+00 0.00E+00 3.04E-03 5.07E-03 7.83E-03 9.84E-03 1.11E-02 1.09E-02 1.05E-02 9.88E-03 1.10E-02 BA-140 0.00E+00 5.21E-03 8.78E-03 1.37E-02 1.74E-02 1.99E-02 1.97E-02 1.93E-02 1.93E-02 1.94E-02 2.09E-02 ZR-97 0.00E+00 6.51E-03 1.10E-02 1.72E-02 2.18E-02 2.50E-02 2.44E-02 2.33E-02 2.63E-02 CE-143 ND-147 2.63E-07 4.84E-07 6.42E-07 8.98E-07 1.06E-06 6.62E-07 5.00E-07 4.09E-07 1.01E-07 5.58E-03 8.81E-03 1.29E-02 1.53E-02 1.55E-02 1.55E-02 1.35E-02 1.35E-02 1.17E-02 1.23E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.21E-03 8.49E-03 1.28E-02 1.58E-02 1.58E-02 1.55E-02 1.55E-02 1.54E-02 1.54E-02 CS-134 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.56E-03 4.32E-03 6.75E-03 8.59E-03 9.84E-03 9.73E-03 9.57E-03 9.14E-03 1.04E-02 CS-137 TOTAL 9.82E-04 1.81E-03 2.40E-03 3.36E-03 3.72E-03 2.14E-03 1.45E-03 1.07E-03 1.99E-04 5.14E-01 8.56E-01 1.33E+00 1.67E+00 1.91E+00 1.87E+00 1.83E+00 1.73E+00 1.95E+00 2.03E-03 3.74E-03 4.96E-03 6.94E-03 7.71E-03 4.44E-03 3.02E-03 2.24E-03 4.24E-04 3.16E+00 5.27E+00 8.16E+00 1.03E+01 1.17E+01 1.15E+01 1.12E+01 1.06E+01 1.19E+01 GRAND

ROBINSON PROJECT EXERCISE MARCH 1994

:

						•						
01/25/94 04:16 PM			PRIMAR	Y SAMPLE	EXPOSURE	RATES	04:16	PM 01/25/	94	SHEET	3	PAGE 1
	08:30 AM 08:45	AM 09:00	AM 09:15	AM 09:30	AM 09:45	AM 10:00 2	AM 10:15	AM 10:30	AM 10:45	AM 11:00	AM 11	:15 AM
UNDILUTED & UNSHIELDED	0	0	0	0 .	0	0	0	0	0	0	0	0
UNDILUTED & SHIELDED	0	0	0	0	0	0	0	0	0	0	0	0
			• .									
PASS LIQUID SAMPLE (mR/hr on Contact)												
UNDILUTED & UNSHIELDED	0	0	0	0	0	0	0	0	0	0	0	0
UNDILUTED & SHIELDED	0	0	0	0	0	0	0	0	0	0	0	0
DILUTED 1000:1 & UNSHIELDED	0	0	0	0	ο.	0	0	0	0	0	0	0
DILUTED 1000:1 & SHIELDED	0	0	0	0	0	0	0	0	0	0	0	0
						•						
STRIPPED GAS SAMPLE REGULAR & PASS (mR/hr on contact)												
UNDILUTED & UNSHIELDED	0	0	0	0	0	0	0	0	0	0	0	0
UNDILUTED & SHIELDED	0	0	0	0	0	0	0	0	o	0	0	0
DILUTED 1000:1 & UNSHIELDED	0	0	0	0	0	0	0	0	0	0	0	0
DILUTED 1000:1 & SHIELDED	0	0	0	₀	0	0	0	0	0	0	0	0

CONDENSED STEAM SAMPLE EXPOSURE RATES

CONDENSED STEAM												
SAMPLE (mR/hr on Contact)	0	0	0	0	. 0	0	0	0	0	0	0	0

ROBINSON PROJECT EXERCISE MARCH 1994 :

01/25/94 04:16 PM					PRIMARY S	AMPLE EXPC	SURE RATS	HEET 3	PAGE 2
	11:30 AM	11:45 AM	12:00 PM			•			1:30 PM
UNDILUTED & UNSHIELDED	14020	16397	17144	16094	15168	14113	13149	12291	11620
UNDILUTED & SHIELDED	11	13	14	13	12	11	. 11	. 10	9
PASS LIQUID SAMPLE (mR/hr on Contact)				•					
UNDILUTED & UNSHIELDED	4314	5045	5275	4952	4667	4342	4046	3782	3575
UNDILUTED & SHIELDED	0	0	0	0	0	0	0	0	0
DILUTED 1000:1 & UNSHIELDED	6	7	8	7	7	6	6	5	5
DILUTED 1000:1 & SHIELDED) 0	0	0	0	0	0	0	0	0
							Ū		0
STRIPPED GAS SAMPLE REGULAR & PASS (mR/hr on contact)								
UNDILUTED & UNSHIELDED	2	2	2	2	2	2	2	2	2
UNDILUTED & SHIELDED	0	0	0	0	0	0	0	~ 0	2 0
DILUTED 1000:1 & UNSHIELDED	0	0	0	0	0	0	0	0	0
DILUTED 1000:1 & SHIELDED	0	0	0	0	1 0	0	. 0	0	' 0
					•	-	•	Ū	v
					CONDENSED	STEAM SAM	PLEEEXPOS	URE RATES	
CONDENSED STEAM									
SAMPLE (mR/hr on Contact)	192	312	473	582	648	620	588	543	599

. .

.

'e

.

.

CAROLINA POWER AND LIGHT COMPANY

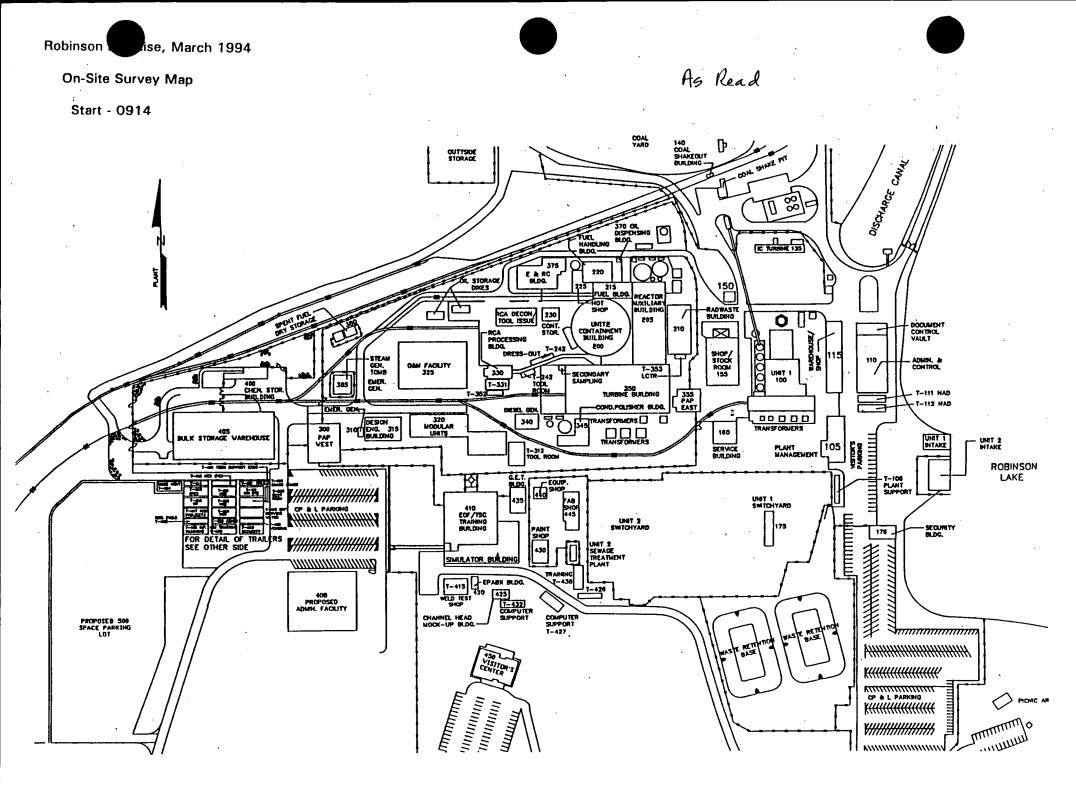
ROBINSON NUCLEAR PROJECT DEPARTMENT

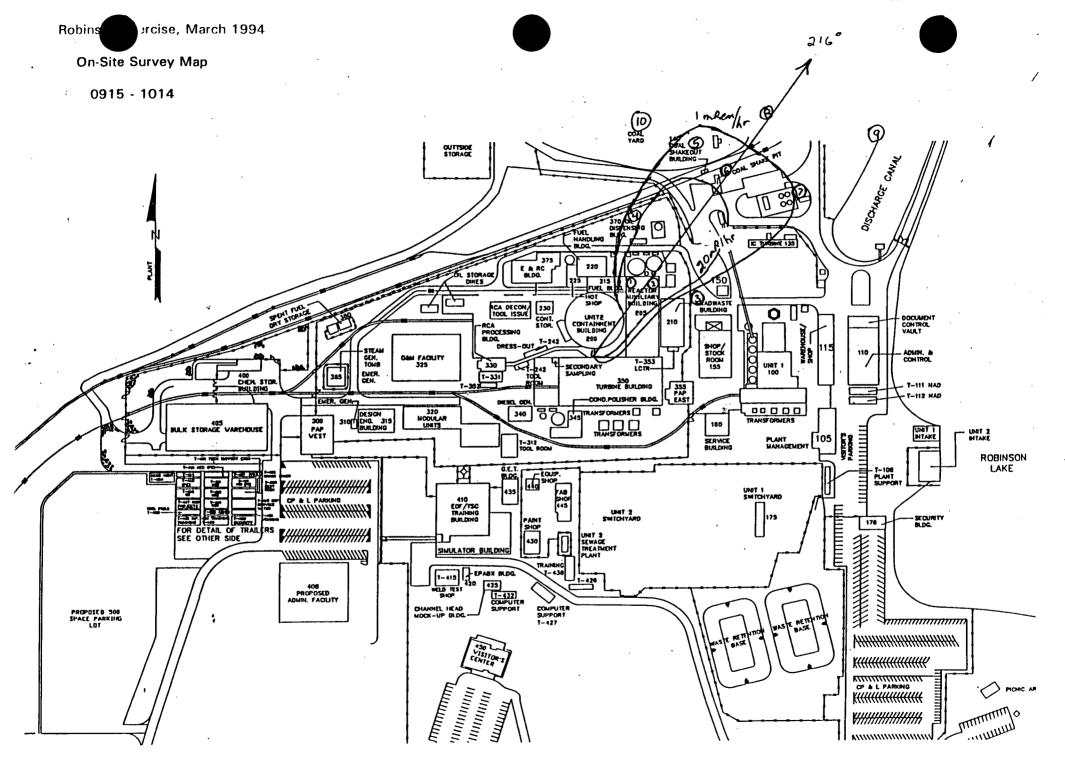
1994 DEFERRED EXERCISE

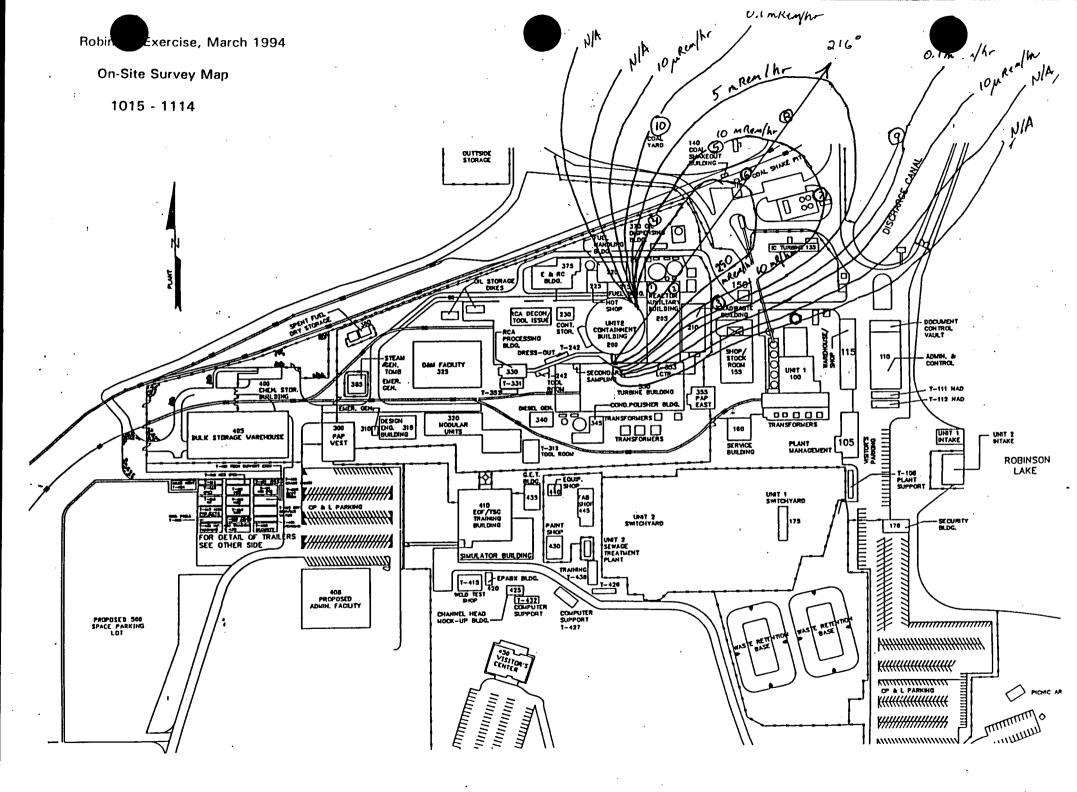
3.4B ONSITE RADIOLOGICAL INFORMATION

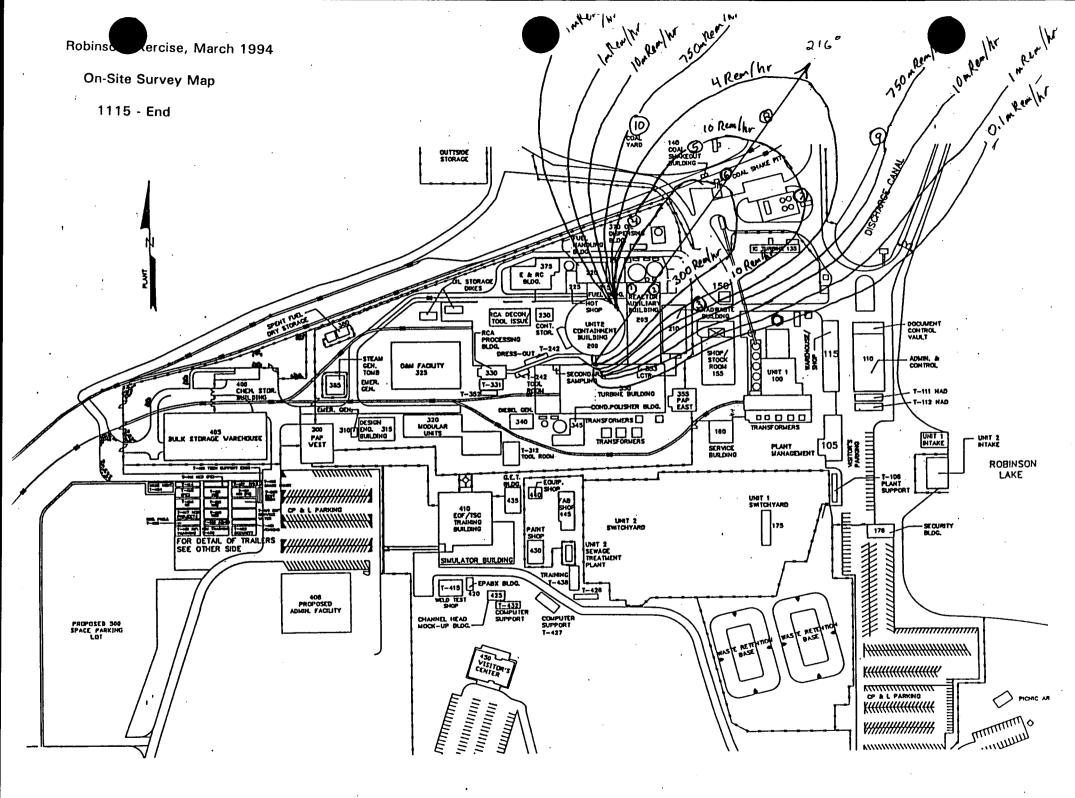
CON-94-0222 RNPD-94-03-R0

••


ROBINSON PROJECT EXERCISE MARCH 1994


:


09:15 AM 09:30 AM 09:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:00 AM 11:15 AM 11:30 AM 11:45 AM 12:00 PM 12:15 PM 12:30 PM 12:45 PM 01:00 PM 01:15 PM 01:30 PM CONT NUCLIDE CHEM. uCi/ml I-131 1.35E-15 1.35E-15 1.35E-15 1.35E-15 1.30E-15 1.26E-15 1.21E-15 1.17E-15 1.15E-15 `2.52E-10 3.10E-10 3.37E-10 3.30E-10 3.23E-10 3.12E-10 3.00E-10 2.88E-10 2.88E-10 2.80E-10 I-132 4.25E-15 4.25E-15 4.25E-15 4.25E-15 3.39E-15 2.69E-15 2.13E-15 1.69E-15 1.37E-15 5.85E-11 6.18E-11 5.75E-11 4.66E-11 3.77E-11 2.99E-11 2.37E-11 1.87E-11 1.50E-11 I-133 2.02E-15 2.02E-15 2.02E-15 2.02E-15 1.92E-15 1.82E-15 1.82E-15 1.63E-15 1.57E-15 1.26E-10 1.53E-10 1.64E-10 1.58E-10 1.52E-10 1.44E-10 1.36E-10 1.28E-10 1.22E-10 I-134 4.25E-15 4.25E-15 4.25E-15 4.25E-15 3.38E-15 2.68E-15 2.13E-15 1.69E-15 1.37E-15 5.85E-11 6.17E-11 5.75E-11 4.66E-11 3.77E-11 2.99E-11 2.36E-11 1.87E-11 1.49E-11 I-135 1.04E-14 1.04E-14 1.04E-14 1.04E-14 9.10E-15 8.00E-15 7.10E-15 6.33E-15 5.78E-15 9.12E-10 1.11E-09 1.19E-09 1.15E-09 1.12E-09 1.07E-09 1.02E-09 9.77E-10 9.43E-10 TOTAL 2.23E-14 2.23E-14 2.23E-14 2.23E-14 2.23E-14 1.91E-14 1.64E-14 1.43E-14 1.25E-14 1.12E-14 1.41E-09 1.69E-09 1.81E-09 1.73E-09 1.67E-09 1.58E-09 1.58E-09 1.43E-09 1.37E-09 0.00E+00 0 KR - 83M 6.21E-14 7.61E-14 8.96E-14 1.03E-13 1.14E-13 1.24E-13 1.33E-13 1.40E-13 1.47E-13 5.57E-10 1.20E-09 1.85E-09 2.44E-09 2.98E-09 3.45E-09 3.87E-09 4.23E-09 4.55E-09 KR-85M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.04E-10 1.12E-09 1.80E-09 2.46E-09 3.12E-09 3.77E-09 4.39E-09 4.39E-09 5.58E-09 KR-85 KR-87 1.19E-11 1.39E-11 1.58E-11 1.73E-11 1.82E-11 1.84E-11 1.83E-11 1.78E-11 1.72E-11 5.80E-10 1.13E-09 1.59E-09 1.91E-09 2.11E-09 2.22E-09 2.26E-09 2.25E-09 2.19E-09


KR-88 7.51E-13 9.12E-13 1.06E-12 1.20E-12 1.32E-12 1.41E-12 1.40E-12 1.54E-12 1.58E-12 1.23E-09 2.58E-09 3.91E-09 5.06E-09 6.03E-09 6.84E-09 7.50E-09 8.02E-09 8.43E-09 KR-89 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.11E-10 6.33E-11 2.86E-21 2.02E-12 1.09E-13 5.28E-15 2.40E-16 1.04E-17 4.43E-19 XE:131M 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.50E-10 3.34E-10 5.35E-10 7.33E-10 9.29E-10 1.12E-09 1.30E-09 1.48E-09 1.66E-09 XE-133M 0.00E+00 3.73E-10 8.29E-10 1.32E-09 1.81E-09 2.29E-09 2.75E-09 3.19E-09 3.62E-09 4.04E-09 XE-133 3.86E-13 4.82E-13 5.78E-13 6.74E-13 7.67E-13 8.57E-13 9.44E-13 1.03E-12 1.11E-12 2.53E-08 5.62E-08 9.00E-08 1.23E-07 1.56E-07 1.88E-07 2.19E-07 2.48E-07 2.77E-07 2.16E-11 2.24E-11 2.28E-11 2.30E-11 1.74E-11 1.18E-11 7.44E-12 4.52E-12 2.67E-12 3.00E-10 3.75E-10 3.40E-10 2.49E-10 1.66E-10 1.04E-10 6.28E-11 3.69E-11 2.13E-11 XE-135M 6.00E-13 7.44E-13 8.85E-13 1.02E-12 1.15E-12 1.27E-12 1.38E-12 1.49E-12 1.58E-12 1.37E-09 3.00E-09 4.73E-09 6.38E-09 7.94E-09 9.40E-09 1.08E-08 1.20E-08 1.32E-08 XE-135 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.97E-10 2.14E-09 3.30E-09 4.36E-09 5.30E-09 6.14E-09 6.87E-09 7.50E-09 8.06E-09 XE-138 2.26E-11 2.36E-11 2.43E-11 2.47E-11 1.94E-11 1.39E-11 9.77E-12 7.04E-12 5.37E-12 2.83E-08 6.26E-08 9.97E-08 1.36E-07 1.72E-07 2.06E-07 2.39E-07 2.72E-07 3.03E-07 TOTAL

SR-89 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.97E-12 2.40E-12 2.59E-12 2.52E-12 2.44E-12 2.33E-12 2.22E-12 2.12E-12 2.03E-12 TE-132 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.38E-12 4.17E-12 4.56E-12 4.50E-12 4.44E-12 4.31E-12 4.17E-12 4.04E-12 3.94E-12 BA-140 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.23E-12 5.22E-12 5.72E-12 5.65E-12 5.58E-12 5.42E-12 5.26E-12 5.10E-12 4.99E-12 ZR-97 4.15E-17 4.15E-17 4.15E-17 4.15E-17 3.65E-17 3.20E-17 2.81E-17 2.47E-17 2.21E-17 3.62E-12 4.12E-12 4.14E-12 3.70E-12 3.30E-12 2.90E-12 2.54E-12 2.22E-12 1.96E-12 CE-143 0.00E+00 3.38E-12 4.01E-12 4.20E-12 3.94E-12 3.69E-12 3.41E-12 3.14E-12 2.89E-12 2.68E-12 ND-147 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.66E-12 2.05E-12 2.25E-12 2.22E-12 2.19E-12 2.13E-12 2.07E-12 2.01E-12 1.96E-12 CS-134 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.58E-13 1.18E-12 1.30E-12 1.28E-12 1.27E-12 1.23E-12 1.20E-12 1.16E-12 1.14E-12 CS-137 0.00E+00 0.00E+13 0.0 TOTAL 4.15E-17 4.15E-17 4.15E-17 4.15E-17 3.65E-17 3.20E-17 2.81E-17 2.47E-17 2.21E-17 9.94E-12 1.17E-11 1.23E-11 1.16E-11 1.09E-11 1.01E-11 9.32E-12 8.65E-12 8.11E-12

:

TIME:	08:30 AM				are "as re								01/24/94	05:01 PM	SHEET	. 1
ON SITE	2. Multiply the airborne values by the ft ³ ON SITE FIELD DATA Sampled. 3. Veg. value based on a 1 kilogram sample									MADE QUTSIE		OFF SITE	LABORATORY	DATA	1. Multiply veg. va	•
AMBIENT	RADIATIO	N READING		-	C means cp		•	•				CONTAMINA	TION SAMPL	E RESULTS	No. of grams in s	ampie.
									IODINE	`PART.	VEGETAT'N					
	1 METER	ABOVE SUR	FACE		6" ABOVE	SURFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE PARTIC	TLD
	Dose Rate	Dose Rat	T.tm-19	HP-210	Dose Rate	Doge Pate	LID-19	HP-210	HP-210	HP-210	HP-210	AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VEG	DOSE
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact		,	,	per, 9 per, 9	navem
1	0	0.0	0.0	0.0	O	0.0	0.0	0.0	0.0	0,0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.0
2	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00		0.0
3	0	0.0	0.0	0.0	0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.0
4 ·	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.0
5	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.0
6	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0-00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.0
7	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.0
8	0	0.0	0.0	0.0	. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.0
9	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.0
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.0

'•

:

2. Multiply the airborne values by the ft3 CONTAMINATION READINGS ON SITE FIELD DATA Sampled. READINGS MADE OUTSIDE PLUME OFF SITE LABORATORY DATA 1. Multiply veg. 3. Veg. value based on a 1 kilogram sample No. of grams in the second of the second	n sample.
3. Veg. value based on a 1 kilogram sample No. of grams is AMBIENT RADIATION READINGS 4. ERRATIC means cpm to high to be reliable CONTAMINATION SAMPLE RESULTS IODINE PART. VEGETAT'N 1 METER ABOVE SURFACE 6" ABOVE SURFACE AIRBORNE AIRBORNE SAMPLE IODINE AIRBORNE AIRBORNE SAMPLE IODINE PART AIRBORNE AIRBORNE	n sample.
AMBIENT RADIATION READINGS 4. ERRATIC means cpm to high to be reliable CONTAMINATION SAMPLE RESULTS IODINE PART. VEGETAT'N 1 METER ABOVE SURFACE 6" ABOVE SURFACE AIRBORNE AIRBORNE SAMPLE IODINE PART IODINE IODINE PARTI AIRBORNE AIRBORNE SURFACE VEGETAT'N VEC	
IODINE `PART. VEGETAT'N 1 METER ABOVE SURFACE 6" ABOVE SURFACE AIRBORNE AIRBORNE SAMPLE IODINE PART IODINE IODINE PART AIRBORNE AIRBORNE SURFACE VEGETAT'N VEG	
1 METER ABOVE SURFACE 6" ABOVE SURFACE AIRBORNE AIRBORNE AIRBORNE SAMPLE IODINE PART IODINE IODINE PART AIRBORNE AIRBORNE SURFACE VEGETAT'N VEG	
AIRBORNE AIRBORNE SURFACE VEGETAT'N VEG	
	C TLD
Dose Rate Dose Rat LUD-19 HP-210 Dose RateDose Rate LUD-19 HP-210 HP-210 HP-210 HP-210	DOSE
SAMPLE CW OW D/R C/R CW OW D/R C/R cpm/cfm cpm/cfm mR/hr uCi/cc uCi/cc uCi/m ² pCi/g pCi/	g mRem
POINT mR/hr mR/hr uR/hr mR/hr mR/hr uR/hr cpm SAMPLE SAMPLE contact	-
1 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00 0.0
2 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00 0.0
3 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
4 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0
5 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00 0.0
€ 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00 0.0
7 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00 0.0
8 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	~ ~ ~
9 0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.	00 0.0
10 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	

:

TIME: ON SIT	09:00 AM Te field da	STA		2. Multig San	are "as re bly the air mpled.	borne val	-			ATION READIN MADE OUTSIN		OFF SITE	01/24/94 LABORATORY	05:01 PM	1. Multiply	SHEET y veg. va	3 lues by		
AMBIEN	T RADIATIC	N READING	S		value based C means cp		-	•.				No. of grams in sample. CONTAMINATION SAMPLE RESULTS							
	1 METER ABOVE SURFACE				6" ABOVE	SURFACE			IODINE AIRBORNE	`PART. AIRBORNE	VEGETAT'N SAMPLE	IODINE AIRBORNE	PART AIRBORNE	IODINE SURFACE	IODINE VEGETAT'N	PARTIC	TLD DOSE		
	Dose Rate	Dose Rat	LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	HP-210	HP-210	HP-210			DOMINED	VEGETAT N	10	DUBE		
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem		
PÒINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact				1	1 3			
1	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 (0.00E+00	. 0.0		
2	0	0.0	0.0	0.0	0	υ.Ο	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00±+00	0.00E+00 (0.00E+00	0.0		
3	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 (0.00E+00	0.0		
4	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 (0.00E+00	0.0		
5	0	0.0	0.0	0.0	0	0.0	` 0.0	0.0	0.0	0.0	0.0	Ó.00E+00	0.00E+00	0.00E+00	0.00E+00 (0.00E+00	0.0		
6	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0 700E+00	0.00E+00	0.00E+00	0.00E+00 (0.00E+00	0.0		
7	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0	0.00E+00	0.0		
8	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00.0	0.00E+00	0.0		
9	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 C	0.00E+00	0.0		
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0).00E+00	0.0		

.

TIME:	09:15 AM				are "as re ply the air		ues by ti	he ft^3 `	CONTAMIN	TION READIN	NGS		01/24/94	05:01 PM	SHEET	4			
ON SIT	E FIELD DA	TA		San	mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply veg. va	lues by			
				3. Veg. v	value based	on a 1 k	ilogram #	sample							No. of grams in s	ample			
AMBIEN	T RADIATIO	N READING	S	4. ERRATI	IC means cp	m to high	to be re	eliable				CONTAMINATION SAMPLE RESULTS							
									IODINE	PART.	VEGETAT'N								
	1 METER	ABOVE SUR	FACE		6" ABOVE	SURFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE PARTIC	TLD			
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VEG	DOSE			
	Dose Rate	Dose Rat	LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	HP-210	HP-210	HP-210								
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem			
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact								
1	6	5988.6	7186.3	479.1	7	7347.6	8817.1	587.8	0.9	1332.1	0.0	8.90E-09	1.33E-05	0.00E+00	0.00E+00 0.00E+00	0.0			
2	6	5607.3	6728.7	448.6	7	6879.7	8255.7	550.4	0.8	1247.3	0.0	8.33E-09			0.00E+00 0.00E+00	0.0			
3	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0				0.00E+00 0.00E+00	0.0			
4	2	1727.0	2072.4	138.2	2	2118.9	2542.7	169.5	0.3	384.7	0.0	2.57E-09		•	0.00E+00 0.00E+00	0.0			
5	0	184.1	220.9	14.7	0	225.9	271.1	18.1	0.0	41.0	•	2.74E-10	4.10E-07		0.00E+00 0.00E+00	0.0			
6	0	176.5	211.8	14.1	0	216.6	259.9	17.3	0.0	39.3	0.0	2362E-10	3.93E-07	0.00E+00	0.00E+00 0.00E+00	0.0			
7	0	107.0	128.4	8.6	0	139.1	167.0	11.1	0.0	0.0	0.0	0.00E+00	0.00E+00		0.00E+00 0.00E+00	0.0			
8	0	73.6	88.3	5.9	. 0	90.3	108.3	7.2	0.0	16.4	. 0.0	1.09E-10	1.64E-07		0.00E+00 0.00E+00	0.0			
9	0	14.1	17.0	1.1	0	17.4	20.8	1.4	0.0	3.1	. 0.0	2.10E-11	3.15E-08		0.00E+00 0.00E+00	0.0			
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00			0.00E+00 0.00E+00	0.0			

.

:

TIME:	09:30 AM			1. Zeros	are "as re	ead"						•	01/24/94	05:01 PM	SHEET	5			
				2. Multi	ply the aim	rborne val	lues by the	he ft^3	CONTAMINA	TION READI	NGS					5			
ON SIT	E FIELD DA	TA		Sar	mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply veg. va	alues by			
				3. Veg. v	value based	ional)	cilogram :	sample							No. of grams in s				
AMBIEN	T RADIATIO	N READING	S	4. ERRATI	IC means c	om to high	n to be re	eliable				CONTAMINATION SAMPLE RESULTS							
									IODINE	PART.	VEGETAT'N								
	1 METER	ABOVE SUF	RFACE		6" ABOVE	SURFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE PARTIC	TLD			
		_										AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VEG	DOSE			
		Dose Rat		HP-210		Dose Rate	2 LUD-19	HP-210	HP-210	HP-210	HP-210								
SAMPLE		OW	D/R	C/R ·	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem			
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact								
1	12	12497.7	14997.3	999.8	15	15002.8	18003.4	1200.2	1.6	2455.5	0.0	1.64E-08	2.46E-05	2.67E-04	2.67E-01 4.00E+04	24.0			
2	12	11702.0	14042.4	936.2	14	14047.5	16857.1	1123.8	1.5	2299.2	0.0	1.54E-08			2.50E-01 3.74E+04	22.4			
3	0	0.1	0.1	0.0	0	0.1	0.1	0.0	0.0	0.0	0.0	9.00E-14	1.35E-10	1.47E-09	1.47E-06 2.19E-01	0.0			
4	4	3604.2	4325.0	288.3	4	4326.6	5191.9	346.1	0.5	708.1	0.0	4.73E-09			7.70E-02 1.15E+04	6.9			
5	0	384.2	461.1	30.7	0	461.3	553.5	36.9	0.1	75.5	0.0	5.04E-10	7.55E-07	8.21E-06	8.21E-03 1.23E+03	0.7			
6	0	368.4	442.1	29.5	0	442.2	530.7	35.4	0.0	72.4	0.0	4284E-10	7.24E-07	7.87E-06	7.87E-03 1.18E+03	0.7			
7	0	197.3	236.8	15.8	0	256.5	307.8	20.5	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.4			
8	0	153.5	184.3	12.3	0	184.3	221.2	14.7	0.0	30.2	0.0	2.02E-10	3.02E-07	3.28E-06	3.28E-03 4.91E+02	0.3			
9	0	29.5	35.4	2.4	0	35.4	42.5	2.8	0.0	5.8	0.0	3.88E-11	5.80E-08	6.31E-07	6.31E-04 9.44E+01	0.1			
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.0			

TIME:	09:45 AM				are "as re bly the aim		lues by th	ne ft^3	CONTAMINA	TION READIN	NGS		01/24/94	05:01 PM	S	HEET	6			
ON SIT	E FIELD DA	ATA		San	mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE LABORATORY DATA 1. Multiply veg. values								
				3. Veg. v	value based	iona 1 k	cilogram s	ample				No. of grams in sample.								
AMBIEN	T RADIATIO	ON READING	S	4. ERRATI	C means cr	om to high	n to be re	liable				CONTAMINATION SAMPLE RESULTS								
									IODINE	PART.	VEGETAT'N									
	1 METER	ABOVE SUR	RFACE		6" ABOVE	SURFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE	PARTIC	TLD			
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE			
	Dose Rate	Dose Rat	LUD-19	HP-210	Dose Rate	eDose Rate	LUD-19	HP-210	HP-210	HP-210	HP-210									
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem			
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact									
· 1	19	18782.3	22538.7	1502.6	22	22103.3	26524.0	1768.3	2.2	3255.3	0.0	2.17E-08	3.26E-05	7.59E-04	7.59E-01 1	.14E+05	73.9			
2	18	17586.4	21103.6	1406.9	21	20696.0	24835.2	1655.7	2.0	3048.1	0.0				7.11E-01 1		69.2			
- 3	0	0.1	0.1	0.0	. 0	0.1	0.1	0.0	0.0	0.0	0.0	1.19E-13	1.79E-10	4.17E-09	4.17E-06 6	.24E-01	0.0			
4	5	5416.5	6499.8	433.3	6	6374.3	7649.1	509.9	0.6	938.8	0.0			•	2.19E-01 3		21.3			
5	1	577.4	692.9	46.2	1	679.6	815.5	54.4	0.1	100.1	0.0	6.69E-10	1.00E-06	2.33E-05	2.33E-02 3	.49E+03	2.3			
6	1	553.6	664.4	44.3	1	651.5	781.8	52.1	0.1	96.0	0.0	6 41E-10	9.60E-07	2.24E-05	2.24E-02 3	.35E+03	2.2			
7	0	261.6	313.9	20.9	0	340.0	408.0	27.2	0.0	0.0	0.0	0.00E+00			0.00E+00 0		1.2			
8	0	230.8	276.9	18.5	0	271.6	325.9	21.7	0.0	40.0	0.0	2.67E-10	4.00E-07	9.33E-06	9.33E-03 1	.40E+03	0.9			
9	0	44.4	53.2	3.5	0	52.2	62.7	4.2	0.0	7.7	0.0	5.14E-11	7.69E-08	1.79E-06	1.79E-03 2	.68E+02	0.2			
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0	.00E+00	0.0			

;

ON SITE	10:00 AM Field DA Radiatio	ATA DN READING	38	2. Multig Sam 3. Veg. v	are "as ro ply the air mpled. value based IC means cp	rborne val 1 on a 1 }	cilogram £	ample		ATION READIN MADE QUTSII			01/24/94 LABORATORY	-	SH 1. Multiply No. of gra		
		ABOVE SUR		HP-210	6" ABOVE	SURFACE			IODINE AIRBORNE	PART.	VEGETAT'N SAMPLE	IODINE	PART AIRBORNE	IODINE SURFACE	IODINE P VEGETAT'N	ARTIC VEG	TLD DOSE
SAMPLE POINT	CW mR/hr	OW mR/hr	D/R uR/hr	C/R cpm	CW mR/hr	OW MR/hr	D/R D/R uR/hr	HP-210 C/R cpm	HP-210 cpm/cfm SAMPLE	HP-210 cpm/cfm SAMPLE	HP-210 mR/hr contact	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
1 2 3 4 5 6 7 8 9	28 26 0 8 1 1 0 0 0	28187.3 26392.5 0.2 8128.8 866.6 830.9 366.0 346.3 66.6	33824.7 31671.0 0.2 9754.6 1039.9 997.1 439.1 415.6 79.9	2255.0 2111.4 0.0 650.3 69.3 66.5 29.3 27.7 5.3	31 0 9 1 1 0 0	1009.5 967.8 475.7 403.4	36891.7 0.2 11362.5 1211.3 1161.4 570.9 484.1	2626.7 2459.4 0.0 757.5 80.8 77.4 38.1 32.3	3.0 2.8 0.0 0.9 0.1 0.1 0.0 0.0	4554,5 4264.5 0.0 1313.4 140.0 134.3 0.0 56.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.85E-08 1.67E-13 8.77E-09 9.35E-10 8297E-10 0.00E+00 3.74E-10	4.26E-05 2.50E-10 1.31E-05 1.40E-06 1.34E-06 0.00E+00 5.60E-07	1.32E-03 7.75E-09 4.07E-04 4.34E-05 4.16E-05 0.00E+00 1.73E-05	1.41E+00 2. 1.32E+00 1. 7.75E-06 1. 4.07E-01 6. 4.34E-02 6. 4.16E-02 6. 0.00E+00 0. 1.73E-02 2.	98E+05 16E+00 09E+04 50E+03 23E+03 00E+00 60E+03	149.1 139.6 0.0 43.0 4.6 4.4 2.3 1.8
10	0	0.0	0.0	5.3 0.0	0	77.6 0.0	93.1 0.0	6.2 0.0	0.0 0.0	10.8 0:0	0.0				3.33E-03 4. 0.00E+00 0.		0.4 0.0

t.

:

•

TIME:	10:15 AM			1. Zeros	are "as r	ead"							01/24/94	05:02 PM	5	HEET	8
				2. Multig	ly the ai	rborne val	lues by th	ne ft^3	CONTAMINA	TION READIN	NGS						
ON SITE	FIELD D	ATA		San	mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply	veq.va	lues by
				3. Veg. v	value base	dona 1	kilogram s	sample							No. of gi	ams in s	ample.
AMBIENT	RADIATIO	ON READING	GS	4. ERRATI	(C means c	pm to hig	h to be re	eliable				CONTAMINA	TION SAMPI	E RESULTS	5		F
									IODINE	PART.	VEGETAT'N						
	1 METER	ABOVE SU	RFACE		6" ABOVE	SURFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE	PARTIC	TLD
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
	Dose Rate	e Dose Ra	t LUD-19	HP-210	Dose Rat	eDose Rate	e LUD-19	HP-210	'HP-210	HP-210	HP-210						
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/q	pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mŔ/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact				1	1	
	,																
1			466244.2			499290.5			12.8	6080.8	0.0	1.28E-07	6.08E-05	2.32E-03	2.32E+00 3	3.48E+05	261.8
2	364	363797.8	436557.3	29103.8	467	467499.6	560999.5	37400.0	12.0	5693.6	0.0	1.20E-07	5.69E-05	2.18E-03	2.18E+00	3.26E+05	245.2
3	0	2.1	2.6	0.2	0	2.7	3.3	0.2	0.0	0.0	0.0	7.03E-13	3.34E-10	1.28E-08	1.28E-05	L.91E+00	0.0
4	112	112048.5	134458.2	8963.9	144	143988.3	172786.0	11519.1	3.7	1753.6	0.0	3.69E-08	1.75E-05	6.70E-04	6.70E-01	L.00E+05	75.5
5	12	11945.3	14334.4	955. 6	15	15350.4	18420.4	1228.0	0.4	186.9	0.0	3.94E-09	1.87E-06	7.15E-05	7.15E-02	L.07E+04	8.0
6	11	11452.9	13743.5	916.2	15	14717.6	17661.1	1177.4	0.4	179.2	0.0	3.*77E-09	1.79E-06	6.85E-05	6.85E-02	L.03E+04	7.7
7 -	9	8747.9	10497.5	699.8	11	11364.9	13637.8	909.2	0.2	22., 8	0.0	2.03E-09	2.28E-07	0.00E+00	0.00E+00 (0.00E+00	3.7
8	5	4773.4	5728.1	381.9	. 6	6134.1	7360.9	490.7	0.2	74.7	0.0	1.57E-09	7.47E-07	2.86E-05	2.86E-02 4	1.27E+03	3.2
9	1	917.9	1101.5	73.4	1	1179.6	1415.5	94.4	0.0	14.4	· 0.0	3.03E-10	1.44E-07	5.49E-06	5.49E-03 8	3.22E+02	0.6
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 (0.00E+00	0.0

.

.

	10:30 AM FIELD D			2. Multij Sar	are "as r ply the ai mpled. value base	rborne va	-			TION RÉADII MADE OUTSII		OFF SITE	01/24/94 LABORATORY		S 1. Multiply No. of gr	5	•
AMBIENT	RADIATI	ON READING	35		IC means c		-	•.				CONTAMINA	TION SAMPL	E RESULTS	NO. OL GI	ams in sa	impie.
	1 METER	ABOVE SUI	RFACE		6" ABOVE	SURFACE			IODINE AIRBORNE	PART.	VEGETAT'N SAMPLE	IODINE AIRBORNE	PART AIRBORNE	IODINE SURFACE	IODINE VEGETAT'N	PARTIC VEG	TLD DOSE
		e Dose Rat		HP-210	Dose Rat	eDose Rat	e LUD-19	HP-210	HP-210	HP-210	HP-210						
SAMPLE	CW	OW .	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact						
1	191	190959.0	229150.8	15276.7	242	241652.3	289982.7	19332.2	6.1	2396.3	0.0	6.10E-08	2.40E-05	6.17E-03	6.17E+00 5	.30E+05	1816.0
2	179	178800.2	214560.3	14304.0	226	226265.7	271518.9	18101.3	5.7	2243.7	0.0	5.71E-08	2.24E-05	5.77E-03	5.77E+00 4	.97E+05	1700.3
3	0	1.0	1.3	0.1	0	1.3	1.6	0.1	0.0	0.0	0.0	3.35E-13	1.32E-10	3.38E-08	3.38E-05 2	.91E+00	0.0
4	55	55069.9	66083.8	4405.6	70	69689.1	83626.9	5575.1	1.8	691.0	0.0	1.76E-08	6.91E-06	1.78E-03	1.78E+00 1	.53E+05	523.7
5	6	5870.9	7045.1	469.7	7	7429.4	8915.3	594.4	0.2	73.7	0.0	1.88E-09	7.37E-07	1.90E-04	1.90E-01 1	.63E+04	55.8
6	6	5628.9	6754.7	450.3	7	7123.2	8547.8	569.9	0.2	70.6	0.0	1 ² 80E-09	7.06E-07	1.82E-04	1.82E-01 1	.56E+04	53.5
7	4	4031.4	4837.7	322.5	5	5229.2	6275.1	418.3	0.1	12.7	0.0	1.22E-09	1.27E-07	6.08E-05	6.08E-02 6	.83E+02	38.7
8	2	2346.1	2815.3	187.7	3	2968.9	3562.6	237.5	0.1	29.4	0.0	7.50E-10	2.94E-07	7.58E-05	7.58E-02 6	.52E+03	22.3
9	0	451.1	541.4	36.1	1	570.9	685.1	45.7	0.0	5.7	0.0	1.44E-10	5.66E-08	1.46E-05	1.46E-02 1	.25E+03	4.3
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0	.00E+00	0.0

:

.

TIME:	10:45 AM				are "as r bly the ai		lues by th	ne f⊧^3 ·	CONTRACTOR	TION READIN	NGG		01/24/94	05:02 PM	SHEET	10
ON SITE	FIELD DA	ATA		San	pled. Value base		_			MADE OUTSI		OFF SITE	LABORATORY	DATA	1. Multiply veg. v	•
AMBIENT	RADIATIO	ON READING	S	-	C means c		-	•			• .	CONTAMINA	TION SAMPI	E RESULTS	No. of grams in	sample.
	1 METER	ABOVE SUR	FACE		6" ABOVE	SURFACE			IODINE AIRBORNE	PART. AIRBORNE	VEGETAT'N SAMPLE	IODINE AIRBORNE	PART AIRBORNE	IODINE SURFACE	IODINE PARTIC VEGETAT'N VEG	TLD DOSE
1	Dose Rate	e Dose Rat	LUD-19	HP-210	Dose Rat	eDose Rate	e LUD-19	HP-210	HP-210	HP-210	HP-210	AIRBORNS	AIRBORNE	SURFACE	VEGETAT N VEG	DOSE
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact					
1	109	109222.0	131066.5	8737.8	135	134888.5	161866.2	10791.1	3.7	1539.4	0.0	3.70E-08	1.54E-05	8.00E-03	8.00E+00 6.02E+05	2579.8
2	102	102267.6	122721.2	8181.4	126	126299.8	151559.8	10104.0	3.5	1441.3	0.0	3.46E-08	1.44E-05	7.49E-03	7.49E+00 5.64E+05	2415.5
3	0	0.6	0.7	0.0	0	0.7	0.9	0.1	0.0	0.0	0.0	2.03E-13	8.45E-11	4.39E-08	4.39E-05 3.31E+00	0.0
4	31	31498.1	37797.7	2519.8	39	38899.9	46679.9	3112.0	1.1	443.9	0.0	1.07E-08	4.44E-06	2.31E-03	2.31E+00 1.74E+05	744.0
5	3	3358.0	4029.6	268.6	4	4147.1	4976.5	331.8	0.1	47.3	0.0	1.14E-09	4.73E-07	2.46E-04	2.46E-01 1.85E+04	79.3
6	3	3219.5	3863.4	257.6	4	3976.1	4771.3	318.1	0.1	45.4	0.0	1 ² 09E-09	4.54E-07	2.36E-04	2.36E-01 1.78E+04	76.0
7	2	2068.2	2481.8	165.5	3	2674.6	3209.5	214.0	0.1	7.2	0.0	7.69E-10	7.17E-08	9.74E-05	9.74E-02 1.06E+03	54.8
8	1	1341.9	1610.2	107.3	2	1657.2	1988.6	132.6	0.0	18.9	0.0	4.54E-10	1.89E-07	9.82E-05	9.82E-02 7.40E+03	31.7
9	0	258.0	309.6	20.6	0	318.7	382.4	25.5	0.0	3.6	. 0.0	8.74E-11	3.64E-08	1.89E-05	1.89E-02 1.42E+03	6.1
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.0

•

	11:00 AM E FIELD D			2. Multin Sam	mpled.	rborne va	lues by t kilogram s			TION READIN MADE OUTSIN		OFF SITE	01/24/94 LABORATORY	05:02 PM 2 Data	1. Multiply	-	-
AMBIEN	T RADIATI	ON READING	S				h to be re	•				CONTRACTOR			No. of gr	ams in s	ample.
	1 METER	ABOVE SUR	RFACE		6" ABOVE				IODINE AIRBORNE	`PART. AIRBORNE	VEGETAT'N SAMPLE	IODINE	TION SAMPL PART AIRBORNE	IODINE SURFACE	IODINE VEGETAT'N	PARTIC	TLD DOSE
	Dose Rat	e Dose Rat	LUD-19	HP-210	Dose Rat	eDose Rat	e LUD-19	HP-210	HP-210	HP-210	HP-210					.20	2008
SAMPLE		OW	D/R	C/R	CW	OM	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact					-, -	
1	276	276151.1	331381.3	22092.1	351	351341.2	421609.5	28107.3	9.6	1689.4	0.0	9.65E-08	1.69E-05	9.11E-03	9.11E+00 6	.48E+05	3016.7
2	259	258567.9	310281.5	20685.4	329	328970.6	394764.7	26317.6	9.0	1581.9	0.0	9.03E-08	1.58E-05	8.53E-03	8.53E+00 6	.07E+05	2824.6
3	0	1.5	1.8	0.1	0	1.9	2.3	0.2	0.0	0.0	0.0				5.00E-05 3		0.0
4	80	79638.0	95565.7	6371.0	101	101321.8	121586.2	8105.7	2.8	487.2	0.0	2.78E-08	4.87E-06	2.63E-03	2.63E+00 1	.87E+05	870.0
5	8	8490.1	10188.1	679.2	11	10801.8	12962.1	864.1	0.3	51.9	0.0	2.97E-09	5.19E-07	2.80E-04	2.80E-01 1	.99E+04	92.7
6	8	8140.1	9768.1	651.2	10	10356.5	12427.8	828.5	0.3	49.8	0.0	2 -84E-09	4.98E-07	2.68E-04	2.68E-01 1	.91E+04	88.9
7	6	5972.8	7167.3	477.8	8	7749.4	9299.3	620.0	0.0	3.7	0.0				1.20E-01 1		63.1
8	3	3392.7	4071.2	271.4	4	4316.5	5179.7	345.3	0.1	20.8	0.0	1.19E-09			1.12E-01 7		37.1
9	1	652.4	782.9	52.2	1	830.0	996.0	66.4	0.0	4.0	0.0	2.28E-10			2.15E-02 1		7.1
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00		0.00E+00 0		0.0

:

:

ON SI	11:15 AM TE FIELD DA	N READING		2. Multin San 3. Veg. v	are "as re oly the ain mpled. value based IC means cp	borne val Ion a 1 k	cilogram s	ample		MADE OUTSI			01/24/94 LABORATORY		S 1. Multiply No. of gr	5	
	1 METER	ABOVE SUR	RFACE		6" ABOVE	SURFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE	PARTIC	TLD
	Dose Rate	Dogo Bat		HP-210	.							AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
SAMPL		OW OW	D/R	HP-210 C/R	Dose Rate			HP-210	HP-210	HP-210	HP-210						
POINT		mR/hr	uR/hr		CW	OW D ()	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
10101	uut/ IIL	14(7)111	uk/III	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact						
1	59	58508.7	70210.4	4680.7	68	68316.2	81979.5	5465.3	1.8	273.6	0.1	1.76E-08	2.74E-06	1.20E-02	1.20E+01 6	.99E+05	4121.3
2	55	54783.3	65739.9	4382.7	64	63966.4	76759.7	5117.3	1.7	256.2	0.1	1.65E-08			1.12E+01 6		3858.9
3	0	0.3	0.4	0.0	0	0.4	0.4	0.0	0.0	0.0	0.0	9.68E-14	1.50E-11	6.59E-08	6.59E-05 3	.84E+00	0.0
4	· 17	16873.1	20247.7	1349.8	20	19701.4	23641.7	1576.1	0.5	78.9	0.0			•	3.46E+00 2		1188.5
5	2	1798.8	2158.6	143.9	2	2100.3	2520.4	168.0	0.1	8.4	0.0				3.69E-01 2		126.7
6	2	1724.7	2069.6	138.0	2	2013.8	2416.5	161.1	0.1	8.1	0.0	5 ³ 20E-10			3.54E-01 2		121.5
7	8	8175.6	9810.8	654.1	8	8407.4	10088.9	672.6	2292.1	6709.0	0.0	2.29E-05			1.34E-01 1		87.0
8	1	718.8	862.6	57.5	1	839.3	1007.2	67.1	0.0	3.4	0.0	2.17E-10			1.47E-01 8		50.6
9	0	138.2	165.9	11.1	0	161.4	193.7	12.9	0.0	0.6	0.0	4.17E-11			2.83E-02 1		9.7
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0				0.00E+00 0		0.0

TIME:				2. Multi Sar	are "as r ply the ai mpled.	rborne va				ATION READIN		OFF SITE	01/24/94 LABORATORY	05:02 PM	S 1. Multiply	HEET veg. va	13	3
AMBIENT	RADIATI	ON READIN	1GS		value base IC means c			-				CONTAMINA	TION SAMPL	E RESULTS	No. of gra	ams in s	ample.	
	1 METER	ABOVE SU	IRFACE		6" ABOVE	SURFACE			IODINE AIRBORNE	~ PART. AIRBORNE	VEGETAT'N SAMPLE	IODINE	PART AIRBORNE	IODINE	IODINE	PARTIC VEG	TLD	
I Sample Point	CW CW mR/hr	e Dose Ra OW mR/hr	at LUD-19 D/R uR/hr	HP-210 C/R cpm	Dose Rat CW mR/hr	eDose Rat OW mR/hr	e LUD-19 D/R uR/hr	HP-210 C/R cpm	HP-210 cpm/cfm SAMPLE	HP-210 cpm/cfm SAMPLE	HP-210 mR/hr contact	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	DOSE mRem	
1			ERRATIC		302370	ERRATIC	ERRATIC	-	107622.6	739732.6	0.1	1.08E-03	7.40E-03	1.25E-02	1.25E+01 7	.07E+05	4355.3	3
2 3 4	1				2		ERRATIC 1991.4	132.8	100770.1 0.6	692632.2 4.1	0.1 0.0	1.01E-03 5.91E-09			1.17E+01 6 6.88E-05 3		4078.0 0.0	
5	7157	ERRATIC ERRATIC	ERRATIC	572546.2	9296	ERRATIC		ERRATIC 743693.2 713036.0	31036.8 3308.8 3172.4	213328.4 22742.6 21805.1	0.0 0.0 0.0	3.10E-04 3.31E-05	2.27E-04	3.85E-04	3.61E+00 2 3.85E-01 2	.17E+04	1256.0 133.9	•
7 8	2860	ERRATIC ERRATIC	ERRATIC			ERRATIC	ERRATIC	572014.5 297185.1	5638.5 1322.2	16512.7 9088.1	3.5 0.0	3217E-05 5.64E-05 1.32E-05	1.65E-04	6.88E-01	3.69E-01 2. 6.88E+02 2. 1.54E-01 8.	.03E+05	128.4 119.7 53.5	,
9 10	550 0	549945.7 0.0	659934.9 0.0	43995.7 0.0	714	714336.9 0.0	857204.2 0.0	57146.9 0.0	254.3 0.0	1747.6 0.0	0.0 0.0		1.75E-05	2.96E-05	2.96E-02 1. 0.00E+00 0.	.67E+03	10.3 0.0	•

•

.

•

.

•

.

:

	11:45 AM FIELD D			2. Multij	are "as r ply the ai mpled.		lues by t	the ft^3		ATION READIN MADE OUTSIN			01/24/94 LABORATORY	05:02 PM	1. Multiply	SHEET	14
AMBIENT	RADIATI	ON READIN	IGS		value base IC means c		-	-	IODINE				TION SAMPL		No. of g		-
		ABOVE SU			6" ABOVE	SURFACE			AIRBORNE	PART. AIRBORNE	VEGETAT'N SAMPLE	IODINE AIRBORNE	PART AIRBORNE	IODINE SURFACE	IODINE VEGETAT'N	PARTIC VEG	TLD DOSE
SAMPLE POINT	Dose Rati CW mR/hr	e Dose Ra OW mR/hr	D/R D/R uR/hr	HP-210 C/R cpm	Dose Rat CW mR/hr	eDose Rat OW mR/hr	e LUD-19 D/R uR/hr	HP-210 C/R cpm	·HP-210 cpm/cfm SAMPLE	HP-210 cpm/cfm SAMPLE	HP-210 mR/hr contact	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
1 2 3	252328	ERRATIC	ERRATIC	ERRATIC	327458	ERRATIC ERRATIC			128803.7 120602.5	1084700.5 1015635.2	163.1 152.7	1.29E-03 1.21E-03			3.23E+04 2 3.02E+04 2		
4 · 5	8285	ERRATIC ERRATIC	ERRATIC ERRATIC	ERRATIC 662815.8	100856	1919.4 Erratic Erratic	ERRATIC	153.5 Erratic 860166.9	0.7 37145.2 3960.0	6.0 312812.2 33348.4	0.0 47.0 5.0	3.71E-04	3.13E-03	9.31E+00	1.77E-01 1 9.31E+03 6 9.93E+02 7	5.60E+06	
6 7 8	6376	ERRATIC ERRATIC ERRATIC	ERRATIC	635492.6 510044.0 264865.9	8271	ERRATIC	ERRATIC	824708.4 661715.4 343728.9	3796.7 9450.8 1582.4	31973.7 27744.4 13326.3	4.8 12.0 2.0	3.80E-05 9.45E-05	3.20E-04 2.77E-04	9.52E-01 2.38E+00	9.52E+02 6 2.38E+03 6 3.97E+02 2	5.75E+05 5.98E+05	27575.6 22143.8
9 10	637 0	636652.0 0.0	763982.4 0.0		826 0	826213.0 0.0	991455.6 0.0	66097.0 0.0	304.3 0.0	2562.6 0.0	0.4	3.04E-06	2.56E-05	7.63E-02	7.63E+01 5	5.41E+04	2210.1 0.0

	12:00 PM			2. Multi	are "as r ply the ai		lues by t	the ft^3	CONTAMINA	TION RÉADIM	NGS		01/24/94	05:02 PM	S	HEET	15
ON SITE	FIELD D	ATA			mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply	veg. va	alues by
				3. Veg. v	value base	dona 1	kilogram	sample							No. of gr	ams in a	sample.
AMBIENT	RADIATI	ON READIN	igs	4. ERRAT:	IC means c	pm to hig	h to be r	eliable				CONTAMINA	TION SAMPL	E RESULTS			
									IODINE	PART.	VEGETAT'N						
	1 METER	ABOVE SU	RFACE		6" ABOVE	SURFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE	PARTIC	TLD
•												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
	Dose Rat	e Dose Ra	t LUD-19	HP-210	Dose Rat	eDose Rat	e LUD-19	HP-210	HP-210	HP-210	HP-210						
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/q	pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact				- 5	•	
1	311481	ERRATIC	ERRATIC	ERRATIC	403809	ERRATIC	ERRATIC	ERRATIC	154282.3	1549875.2	358.2	1.54E-03	1.55E-02	7 095+01	7.09E+04 5	548+07	********
2	291648	ERRATIC	ERRATIC	ERRATIC	378098	ERRATIC	ERRATIC	ERRATIC	144458.8	1451191.1	335.4				6.64E+04 5		
3	2	1709.5	2051.4	136.8	2	2216.2	2659.4	177.3	0.8	8.5	. 0.0				3.89E-01 3		
4	89827	ERRATIC	ERRATIC	ERRATIC	116453	ERRATIC	ERRATIC	ERRATIC	44492.8	446962.0					2.05E+04 1		
5	9576	ERRATIC	ERRATIC	766102.6	12415	ERRATIC	ERRATIC	993187.3	4743.3	47649.9	11.0				2.18E+03 1		
6	9182	ERRATIC	ERRATIC	734521.7	11903	ERRATIC	ERRATIC	952245.2	4547.8	45685.6	10.6	•			2.09E+03 1		
7	7366	ERRATIC	ERRATIC	589301.3	9548	ERRATIC	ERRATIC	763824.0	11943.2	35204.1	26.3				5.21E+03 1		
8	3827	ERRATIC	ERRATIC	306140.1	. 4961	ERRATIC	ERRATIC	396884.8	1895.5	19041.2	4.4				8.72E+02 6		
9	736	735861.7	883034.1	58868.9	954	953982.5	ERRATIC	76318.6	364.5	3661.5	• 0.9	•			1.68E+02 1		
10	0	0.0	0.0	0.0	0				0.0	0.0	0.0		•		0.00E+00 0		4/38.7

. .

. .

'•

.

	12:15 PM				are "as r ply the ai		lues by t	the ft^3	CONTAMIN	ATION READIN	NGS		01/24/94	05:02 PM	S	SHEET	16
ON SITE	S FIELD D	ATA		San	mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply	veg.v	alues by
				3. Veg. v	value base	d, on a 1	kilogram	sample							No. of gi	rams in	sample.
AMBIENT	RADIATI	ON READIN	igs	4. ERRATI	IC means c	pm to hig	jh to be r	eliable		•		CONTAMINA	TION SAMPL	E RESULTS	-		-
									IODINE	PART.	VEGETAT'N				-		
	1 METER	ABOVE SU	IRFACE		6" ABOVE	SURFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE	PARTIC	TLD
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
		e Dose Ra	t LUD-19	HP-210	Dose Rat	eDose Rat	e LUD-19	HP-210	HP-210	HP-210	HP-210						
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/q	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact						
1	309377	ERRATIC	ERRATIC	ERRATIC	400464	ERRATIC	ERRATIC	ERRATIC	158647.7	1853201.4	592.0	1.59E-03	1.85E-02	1.17E+02	1.17E+05 1	025+08	*******
2	289678	ERRATIC	ERRATIC	ERRATIC	374966	ERRATIC	ERRATIC	ERRATIC	148546.3	1735203.9	554.3				1.10E+05 9		
3	2	1697.9	2037.5	135.8	2	2197.B	2637.4	175.8	0.9	. 10.2	0.0				6.43E-01 5		
4	89220	ERRATIC	ERRATIC	ERRATIC	115488	ERRATIC	ERRATIC	ERRATIC	45751.7	534437.0	170.7			•	3.38E+04 2		
5	9512	ERRATIC	ERRATIC	760926.1	12312	ERRATIC	ERRATIC	984960.2	4877.5	56975.4	18.2				3.60E+03 3		
6	91 19	ERRATIC	ERRATIC	729558.5	11804	ERRATIC	ERRATIC	944357.3	4676.5	54626.8	17.4				3.46E+03 3		
7	7310	ERRATIC	ERRATIC	584829.4	9463	ERRATIC	ERRATIC	757007.7	12873.4	38131.8	44.4				8.80E+03 2		
8	3801	ERRATIC	ERRATIC	304071.5	4920	ERRATIC	ERRATIC	393597.1·	1949.1	22767.8	7.3				1.44E+03 1		
9	731	730889.5	877067.4	58471.2	946	946080.2	ERRATIC	75686.4	374.8	4378.1	1.4				2.77E+02 2		
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0				0.00E+00 0		0.0

.

TIME:	12:30 PM			1. Zeros	are "as r	ead"							01/24/94	05:02 PM	e	HEET	17
				2. Multip	ply the ai	rborne va	lues by t	he ft ³	CONTAMINA	TION READIN	NGS				_		17
ON SITE	FIELD D	АТА		Sar	mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply	veg. v	alues by
				3. Veg. v	value base	dona 1	kilogram	sample							No. of gr	-	
AMBIENT	RADIATI	ON READIN	IGS	4. ERRATI	IC means c	pm to hig	gh to be r	eliable		· ·		CONTAMINA	TION SAMPL	E RESULTS	j -		sampre.
									IODINE	`PART.	VEGETAT'N						
	1 METER	ABOVE SU	IRFACE		6" ABOVE	SURFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE	PARTIC	TLD
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
	Dose Rat	e Dose Ra	t LUD-19	HP-210	Dose Rate	eDose Rat	e LUD-19	HP-210	HP-210	HP-210	HP-210						
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact				1 . 5	1,, 5	
1	311406	ERRATIC	ERRATIC	ERRATIC	402494	ERRATIC	ERRATIC	ERRATIC	158647.7	1853201.4	832.3	1 505 03	1 855 00	1.000.00			
2				ERRATIC	376866	ERRATIC		ERRATIC	140546.3		779.3				1.65E+05 1		
3	2	1709.1	2050.9	136.7	2			176.7	0.9	10.2	0.0				1.54E+05 1 9.05E-01 8		
4	89805	ERRATIC	ERRATIC	ERRATIC	116073	ERRATIC	ERRATIC	ERRATIC	45751.7	534437.0	240.0						
5	9574	ERRATIC	ERRATIC	765918.2	12374	ERRATIC	ERRATIC	989952.3	4877.5	56975.4	25.6	4.88E-05			4.75E+04 4		
6	9179	ERRATIC	ERRATIC	734344.8	11864	ERRATIC	ERRATIC	949143.6	4676.5	54626.8	23.0	4.68E-05			5.07E+03 4 4.86E+03 4		
7	7352	ERRATIC	ERRATIC	588172.5	9504	ERRATIC	ERRATIC	760350.8	12873.4	38131.8	63.9				1.27E+04 3		
8	3826	ERRATIC	ERRATIC	306066.4	4945	ERRATIC	ERRATIC	395592.0	1949.1	22767.8	10.2	1.95E-05			2.02E+03 1		
9	736		882821.5		951	950875.2	ERRATIC	76070.0	374.8	4378.1	2.0	3.75E-06			3.89E+02 3		
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0				0.00E+02 0		0.0

~

:

:

TIME:	12:45 PM				are "as r ply the ai		alues by t	he ft^3	CONTAMINA	ATION READIN	IGS		01/24/94	05:02 PM	5	HEET	18
ON SITE	S FIELD D	ата			mpled.				READINGS	MADE OUTSIC	E PLUME	OFF SITE	LABORATORY	DATA	1. Multiply	veg.v	alues by
				3. Veg. v	value base	dona 1	kilogram	sample							No. of gi		
AMBIENT	RADIATI	ON READIN	1GS	4. ERRATI	IC means c	pm to hig	h to be r	eliable		、	·	CONTAMINA	TION SAMPL	E RESILTS			
									IODINE	PART.	VEGETAT'N						
	1 METER	ABOVE SU	<i>RFACE</i>		6" ABOVE	SURFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE	PARTIC	TLD
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
	Dose Rat	e Dose Ra	at LUD-19	HP-210	Dose Rat	eDose Rat	e LUD-19	HP-210	HP-210	HP-210	. HP-210						
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact				2	F , J	
1	313436	ERRATIC	ERRATIC	ERRATIC	404523	ERRATIC	ERRATIC	ERRATIC	158647.7	1853201.4	1072.7	1.598-03	1 858-02	2 125+02	2.12E+05 2	125.00	
2	293479	ERRATIC	ERRATIC	ERRATIC	378767	ERRATIC	ERRATIC	ERRATIC	148546.3	1735203.9	1004.4				1.99E+05 2		
3	2	1720.2	2064.2	137.6	2	2220.1	2664.1	177.6	0.9	10.2	0.0						
4 ·	90390	ERRATIC	ERRATIC	ERRATIC	116659	ERRATIC	ERRATIC		45751.7	534437.0	309.3			· · · · ·	1.17E+00 1		31.5
5	9636	ERRATIC	ERRATIC			ERRATIC		994944.3	4877.5	56975.4					6.13E+04 6		
6		ERRATIC	ERRATIC								33.0	2			6.53E+03 6		
		ERRATIC	ERRATIC						4676.5	54626.8	31.6	4 *68E-05			6.26E+03 6		
,						ERRATIC		763693.9	12873.4	38131.8	83.4	1.29E-04	3.81E-04	1.65E+01	1.65E+04 4	.87E+06	135761.2
		ERRATIC	ERRATIC			ERRATIC		397586.9	1949.1	22767.8	13.2	1.95E-05	2.28E-04	2.61E+00	2.61E+03 2	.62E+06	70550.4
9	740		888575.5	59238.4	956	955670.2	ERRATIC	76453.6	374.8	4378.1	2.5	3.75E-06	4.38E-05	5.02E-01	5.02E+02 5	.04E+05	13566.4
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0	.00E+00	0.0

. .

TIME:	01:00 PM	1		1. Zeros	are "as r	ead"							01/24/94	05:02 PM		SHEET	. 19
ON SITE	S FIELD D	ATA			ply the ai mpled.	rborne va	alues by t	the ft ³		ATION READI							
					value base	dona 1	kilogram	ee- 1.	READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply	veg. v	alues by
AMBIENT	RADIATI	ON READIN	105					-							No. of gr	ams in	sample.
			100	4. ERRAL	IC means c	pm to nig	jn to be r	reliable				CONTAMINA	TION SAMPL	E RESULTS			
	1 1/5755								IODINE	PART.	VEGETAT'N						
	I METER	ABOVE SU	JRFACE		6" ABOVE	SURFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE	PARTIC	TLD
		-	•									AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
		e Dose Ra		HP-210	Dose Rat	eDose Rat	e LUD-19	HP-210	HP-210	HP-210	HP-210						
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/q	pCi/q	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact				1 5	£/J	
1	315466	ERRATIC	ERRATIC	ERRATIC	406553	ERRATIC	ERRATIC	ERRATIC	158647.7	1853201,4	1313.0	1 598-03	1 958-00	2 608.03	2.60E+05 2		
2	295379	ERRATIC	ERRATIC	ERRATIC	380667	ERRATIC	ERRATIC	ERRATIC		1735203.9							
3	2	1731.3	2077.6	138.5	2	2231.3			0.9	10.2					2.43E+05 2		
4 ·	90976	ERRATIC	ERRATIC	ERRATIC	117244	ERRATIC	ERRATIC	_	45751.7	534437.0					1.43E+00 1		
5	9699	ERRATIC	ERRATIC	775902.4	12499	ERRATIC			4877.5	56975.4	40.4				7.50E+04 7		
6	9299	ERRATIC	ERRATIC	743917.4		ERRATIC			4676.5			. '			7.99E+03 8		
7	7436	ERRATIC				ERRATIC		767037.0		54626.8	38.7				7.66E+03 7		
8	3876	ERRATIC		310056.2		ERRATIC		399581.8	12873.4	38131.8	102.9				2.04E+04 6		
9			894329.6						1949.1	22767.8	16.1				3.19E+03 3		
10	0	0.0				960465.3		76837.2	374.8	4378.1	3.1	3.75E-06	4.38E-05	6.14E-01	6.14E+02 6	.35E+05	16528.3
	Ū	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0	.00E+00	0.0

INSON EXERCISE MARCH 1994 ONSITE RELEAS

.

 \checkmark

TIME:	01:15 PM			1. Zeros	are "as r	ead"							01/24/94	05:02 PM	:	SHEET	20
				2. Multip	ply the ai	rborne va	lues by t	he ft^3	CONTAMIN	ATION READIN	IGS				•		
ON SITE	E FIELD D	ATA		Sar	mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply	y veq.v	alues by
				3. Veg. v	value base	d on a 1	kilogram	sample							No. of g	rams in ·	sample.
AMBIENT	T RADIATI	ON READIN	IGS	4. ERRAT	IC means c	pm to hig	h to be r	eliable				CONTAMINA	TION SAMPL	E RESULTS			
									IODINE	PART.	VEGETAT'N						
	1 METER	ABOVE SU	IRFACE		6" ABOVE	SURFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE	PARTIC	TLD
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
	Dose Rate	e Dose Ra	t LUD-19	HP-210	Dose Rat	eDose Rat	e LUD-19	HP-210	· HP-210	HP-210	HP-210						
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact				F/3	F, J	
1	317495	ERRATIC	ERRATIC	ERRATIC	408583	ERRATIC	ERRATIC	ERRATIC	158647.7	1853201.4	1553.4	1 59E-03	1 858-02	3 088+02	3.08E+05	3 245-08	********
· 2	297280	ERRATIC	ERRATIC	ERRATIC	382567	ERRATIC	ERRATIC	ERRATIC	148546.3		1454.5	•			2.88E+05		
3	2	1742.5	2091.0	139.4	2	2242.4	2690.9	179.4	0.9	10.2	0.0				1.69E+00		45.3
4	91561	ERRATIC	ERRATIC	ERRATIC	117829	ERRATIC	ERRATIC		45751.7	534437.0	448.0			1	8.87E+04		
5	9761	ERRATIC	ERRATIC	780894.5		ERRATIC	ERRATIC	ERRATIC	4877.5	56975.4	47.8				9.46E+03		
6	9359	ERRATIC	ERRATIC	748703.8	12044	ERRATIC	ERRATIC	963502.5	4676.5	54626.8	45.8	3			9.07E+03		
7.	7478	ERRATIC	ERRATIC	598201.8			ERRATIC	770380.1	12873.4	38131.8	122.4				2.42E+04		
8			ERRATIC			ERRATIC		401576.6	1949.1	22767.8	19.1				3.78E+03		
9			900083.6			965260.3		77220.8	374.8	4378.1	3.7				7.27E+02		
10	0	0.0			0				0.0	0.0	0.0				0.00E+00		0.0
	-			• • •	•	0.0	0.0	0.0	0.0	0.0	0.0	0.006+00	0.005+00	0.005+00	0.005+00	0.000+00	0.0

.

-/

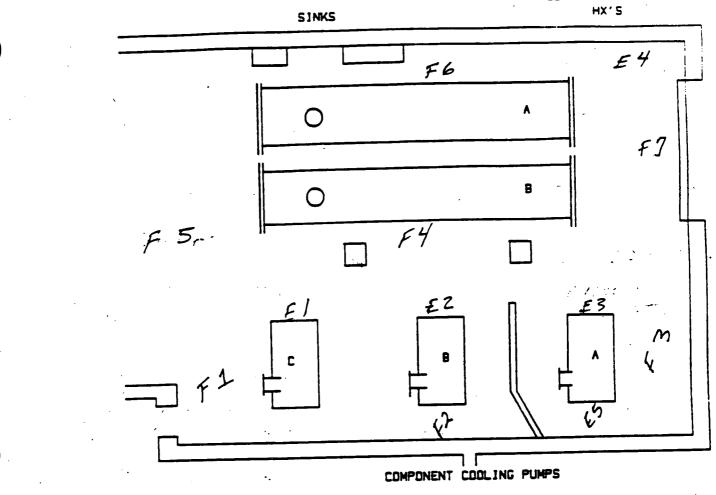
2

TIME:	01:30 PM			1. Zeros	are "as r	ead"							01/24/94	05:02 PM	S	HEET	21
				2. Multip	oly the ai	rborne va	lues by t	he ft^3	CONTAMINA	TION READIN	1GS						
ON SITE	FIELD D	АТА		Sar	mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply	veg. v	alues by
				3. Veg. v	value base	dona 1	kilogram	sample							No. of gr	ams in :	sample.
AMBIENT	RADIATI	ON READIN	GS	4. ERRAT	IC means c	pm to hig	h to be r	eliable				CONTAMINA	TION SAMPL	E RESULTS			
									IODINE	`PART.	VEGETAT'N						
	1 METER	ABOVE SU	RFACE		6" ABOVE	SURFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE	PARTIC	TLD
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
:	Dose Rat	e Dose Ra	t LUD-19	HP-210	Dose Rat	eDose Rat	e LUD-19	HP-210	HP-210	HP-210	HP-210						
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact						
1	319525	ERRATIC	ERRATIC	ERRATIC	410612	ERRATIC	ERRATIC	ERRATIC	158647.7	1853201.4	1793.7	1.59E-03	1.85E-02	3.55E+02	3.55E+05 3	8.80E+08	*******
2	299180	ERRATIC	ERRATIC	ERRATIC	384468	ERRATIC	ERRATIC	ERRATIC	148546.3	1735203.9	1679.5	1.49E-03	1.74E-02	3.33E+02	3.33E+05 3	8.56E+08	*******
3	2	1753.6	2104.3	140.3	2	2253.5	2704.2	180.3	0.9	10.2	0.0	8.71E-09	1.02E-07	1.95E-03	1.95E+00 2	2.09E+03	52.3
4	92146	ERRATIC	ERRATIC	ERRATIC	118415	ERRATIC	ERRATIC	ERRATIC	45751.7	534437.0	517.3	4.58E-04	5.34E-03	1.02E+02	1.02E+05 1	L.10E+08	********
5	9824	ERRATIC	ERRATIC	785886.5	12624	ERRATIC	ERRATIC	ERRATIC	4877.5	56975.4	55.1	4.88E-05	5.70E-04	1.09E+01	1.09E+04 1	L.17E+07	292934.7
6	9419	ERRATIC	ERRATIC	753490.1	12104	ERRATIC	ERRATIC	968288.8	4676.5	54626.8	52.9	4768E-05	5.46E-04	1.05E+01	1.05E+04 1	L.12E+07	280859.1
7	7519	ERRATIC	ERRATIC	601544.9	9672	ERRATIC	ERRATIC	773723.2	12873.4	38131.8	141.9	1.29E-04	3.81E-04	2.81E+01	2.81E+04 8	9.31E+06	224990.0
8	3926	ERRATIC	ERRATIC	314045.9	. 5045	ERRATIC	ERRATIC	403571.5	1949.1	22767.8	22.0	1.95E-05	2.28E-04	4.36E+00	4.36E+03 4	.67E+06	117058.8
9	755	754864.7	905837.7	60389.2	970	970055.3	ERRATIC	77604.4	374.8	4378.1	4.2	3.75E-06	4.38E-05	8.39E-01	8.39E+02 8	3.98E+05	22509.7
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	oʻo	0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0	0.00E+00	0.0

, **i**

1

.

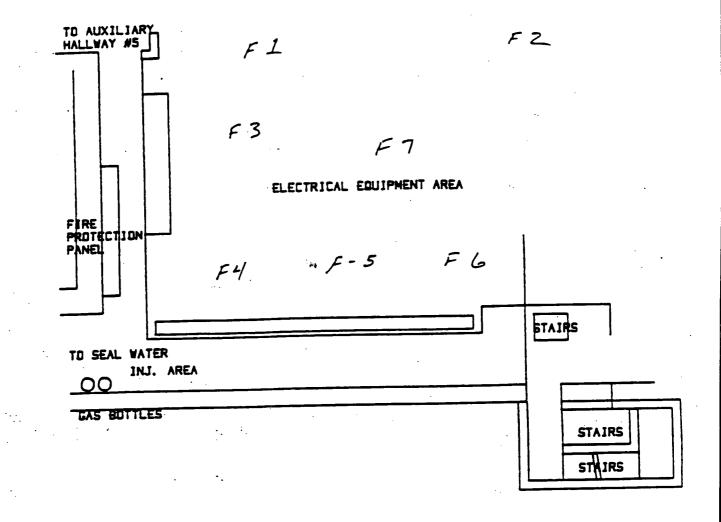

IN-PLANT · SURVEYS

÷.,,,

IM OR AREA: COMPONENT COOLING WATER ROOM

RAP =:

COMPONENT COOLANT

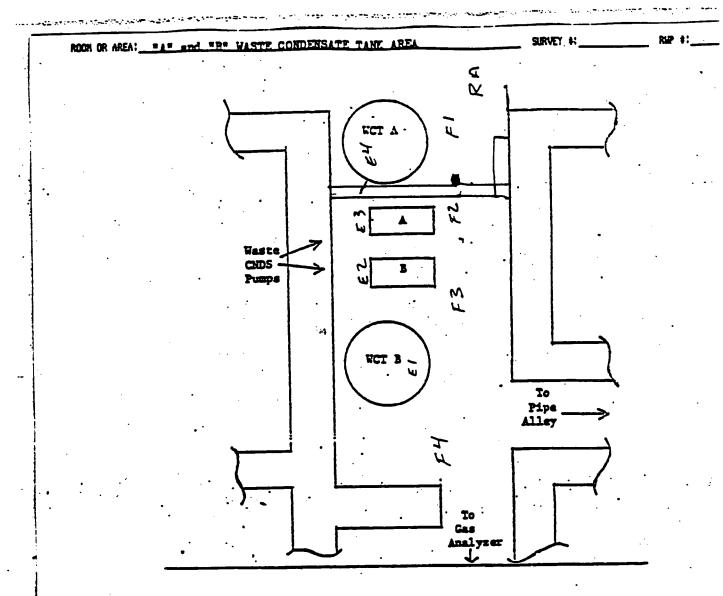


CA- ON	DESCRIPTION	CONTACT MR/HR	CONTACT MRAD/HR	18" MR/HR	SHEAR DPM/100cm2	AIRBORNE MPC FRAC.	INSTRUMENT TYPE ROZA TENN
-1	FLOOR			22	LMPD		TENN C
2				62	LMDA		· ·
3				12	LMDA		APPREVIATIO
Ý				62	LMOD		LHRA: Locked Hi
7				42	LMOA		
6				62	100		
7				62	LMPA	ļ	HCA: Hi-Contat
	'('PUMP			2	< MOA	<u> </u>	Area
	B' PUMP			42	90		CA: Contamira
	A' PUMP			22	ZMAD		OPEA: Contam.
				42	125		Equip. A
	adder			22	ZMOD		ARA: Airborne
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				<u> </u>			RA: Rad Area
				<u> </u>		Ļ	RMA: Rad Mater
			1			<u> </u>	SOP: Step-Off
MENTS	: MDA = 78 dom	Dri	11 Sura	4 - 11)	91 0000-	1000 BAT	
	•						F#: Floor Lo

۰.

## SURVEY #:_






DATE:

TPE:

ERFORMED BY:_

DESCRIPTION	CONTACT MR/HR	CONTACT MRAD/HR	18" MR/HR	SMEAR DPM/100cm2	AIREORNE MPC FRAC.	INSTRIMEN TYPE <u>Rd24</u>
FLOOR			42	LMDA	· · · · · ·	TENN
		<u>+</u>	12_	LMDA		
		+	62	LMDA		ABBREV
		<u>+</u>	42	LALDA		LHRA: Lock
			62	LMDA		HRA: Hi-R
			42	LMDA		HCA: Hi-C
V						Area
					<u> </u>	CA: Cont
			<b></b>			CPEA: Cont Equi
						ARA: Airi
			+			RA: Rad
	<del> </del>		+		+	RMA: Rad
		+	+			SOP: Ste
S: MDA = 80 1	Rill SURV	www. Hita	A 033	- 12 40.	······································	Et: Equ
						_ F#: Flo
						H#: Hot Page



LOCA- TION	DESCRIPTION	CONTACT NR/NR	CONTACT NRAD/HR	18* NR/HR	SHEAR BPH/100cm2	AIRBORNE NPC FRAC.	INSTRUMENT TYPE S <u>Raza</u>
=1	FLOOR			5	LMOR		TENN 1
				5	1 EMDA	-	
= 3				15	LMDA		
FY				5	1 impa		ABBREVIATION
				<u> </u>	1		LHRA: Locked Ha
EII	BWCT			38	1100		HRA: Hi-Rad Are
EZI	6 Pump			10	LMDA		HCA: Hi-Contae
E3	PUMP-A		<u> </u>	00	LMDA		<u>Area</u>
É41	AWCT		<u> </u>	35	// 3		CA: Contamina
1			<u> </u>	1	1		CPEA: Contas. P
				1			Equip. Ar
	•		<u> </u>	<u> </u>			ARA: Airborne
		· ·	<u> </u>	<u> </u>			RA: Rad Area
1			l				RMA: Rad Hate:
	•						SOP: Step-Off
TNAKENT	S: MDA - 50 Dom	Drill Su	YULY 11	141 0	800 - 111:	-	Et: Equip. La
				/			F#: Floor Loc
					وتوبية كمد البدكان ستعد		HI: Hat Spot
							Page:

3.4B-18

		FZ [		B E2 E3 E7	]   F6 ]	F3	DAZEL 4			
			B	3 : \		F7 LOCI	OL KER			
FREOR	IED BY:			DA	TE:	. c		IME:		<u></u>
	,		CONTACT	CONTACT	18"	SMEAR 2	AIRBORNE			SERIAL
LOCA. TION	,		CONTACT MR/HR	CONTACT MRAD/HR	MR/HR	SMEAR DPM/100cm ²	AIRBORNE MPC FRAC.	ת	(PE	NO.
LOCA	,	ON			MR/HR. 5	DPM/100cm ²	AIRBORNE MPC FRAC.	RC	0 <u>2 A</u>	NO. 2032
LOCA TION FI FZ	DESCRIPTI	01			MR/HR 5 Z	DPM/100cm ² <u> <i>LMDA</i></u> <u> 110</u>	AIRBORNE MPC FRAC.	RC	(PE	NO.
LOCA TION FI FZ	DESCRIPTI	01			MR/HR 5 2 5	DPM/100cm ²	AIRBORNE MPC FRAC.	RC	0 <u>2 A</u>	NO. 2032
LOCA TION FI FZ F3	DESCRIPTI				MR/HR 5 2 5 2 2	DPM/100cm ² <u>CMDA</u> <u>IIO</u> <u>CMDA</u> <u>V</u>	AIRBORNE MPC FRAC.		روب 2 <u>م</u> مربع	NO. 2032 #3
LOCA TION FI FZ F3 FV	DESCRIPTI				MR/HR 5 2 5 2 2 2 4 2	DPM/100cm ² <u>LMDA</u> <u>110</u> <u>LMDA</u> <u>103</u>	AIRBORNE MPC FRAC.		AND Locked	NO. 2032 #3
LOCA TION FI FZ FZ FZ FS	DESCRIPTI				MR/HR 5 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DPM/100cm ² <u>CMDA</u> <u>110</u> <u>CMDA</u> <u>103</u> <u>CMDA</u>	AIRBORNE MPC FRAC.	ABB LHRA:	(PE <u>)2 A</u> <u>م.م.</u> REVIATIO	NO. 2032 # 3 
LOCA TION FI FZ FZ FZ FS FS FS FS	DESCRIPTI				MR/HR 5 2 5 2 2 2 4 2	DPM/100cm ² <u>LMDA</u> <u>110</u> <u>LMDA</u> <u>103</u> <u>LMDA</u> <u>16</u>	AIRBORNE MPC FRAC.	ABB LHRA: HRA:	Area Hi-Rad Hi-Cont	NO. 2032 #3 www.key Hi-Rad Area camination
LOCA FI FZ F3 F5 F5 F5 F7 F7	DESCRIPTI				MR/HR 5 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DPM/100cm ² <u>CMDA</u> <u>110</u> <u>CMDA</u> <u>103</u> <u>CMDA</u>	AIRBORNE MPC FRAC.	ABB LHRA: HRA:	Area Hi-Rad Hi-Cont	NO. 2032 #3 with Key Hi-Rad Area camination
LOCA TION FI FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ	DESCRIPTI Floor C'c Charge	DN Pump			MR/HR 5 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DPM/100cm ² <u>CMDA</u> <u>110</u> <u>CMDA</u> <u>103</u> <u>CMDA</u> <u>161</u> <u>2412</u> <u>210</u>	AIRBORNE MPC FRAC.	ABU LHRA: HRA: CA:	REVIATIO	NO. 2032 #3 W KEY Hi-Rad Area samination ination Process
LOCA FI FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ	DESCRIPTI	Pump L			MR/HR 5 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DPM/100cm ² <u>LMDA</u> <u>110</u> <u>LMDA</u> <u>103</u> <u>LMDA</u> <u>161</u> <u>2412</u> <u>270</u> <u>155</u>	AIRBORNE MPC FRAC.	ABB LHRA: HCA: CA: CPEA:	REVIATIO Locked Area Hi-Rad Hi-Rad Area Contami Area Contami	NO. 2032 #3 white and Area containation ination Process Area
LOCA FI FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ	DESCRIPTI Floor "C' Charging "B" Charging L L	Pump fromp			MR/HR 5 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DPM/100cm ² <u>CMDA</u> <u>110</u> <u>CMDA</u> <u>103</u> <u>CMDA</u> <u>161</u> <u>2412</u> <u>210</u>	AIRBORNE MPC FRAC.	ABU LHRA: HRA: CA: CPEA: ARA:	PE )2 A NNN REVIATIO Locked Area Hi-Rad Hi-Rad Contami Area Contami Area Contami Area Contami Area Contami Area	NO. 2032 #3 
LOCA FI FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ FZ	DESCRIPTI Floor "c" changing "B" Changing L	Pump fromp			MR/HR 5 2 5 2 2 2 2 2 2 2 2 2 2	DPM/100cm ² <u>LMDA</u> <u>110</u> <u>LMDA</u> <u>103</u> <u>LMDA</u> <u>161</u> <u>2412</u> <u>270</u> <u>155</u>	AIRBORNE MPC FRAC.	ABU ABU LHRA: HRA: HRA: CA: CPEA: ARA: RMA:	REVIATIO Locked Area Hi-Rad Hi-Rad Area Contami Area Contami Area Rad Are	NO. 2032 #3 #3 W KEY Hi-Rad Area samination Process Area we Rad terial

2

10

12

DRill for 11/91

9 74

72

1210

ROOM OR AREA: CHARGING PUMP ROOM SURVEY#

90-4168

vou

Diain

مملك

4 SUPPORT

MDA =

70 dpm

E 1

FЬ

Ê8

Comments:

Sur: Step-UTT Pad E#: Equip. Location F#: Floor Location H#: Not Spot Loc. IC: Internal Contamination

Page:

0800 70 1115

of

NIA

RWP#

E6

### 5-5 E6 C P в A С N A T N É F2 F6 É2 EI REOL ε O E3 E5 C L F4 E F3 E8 ٢ 3.3 ً₿ TOOL F7 LOCKER FI RACPÉR TIME: DATE: PERFORMED BY: SERIAL NO. AIRBORNE MPC FRAC. INSTRUMENT CONTACT MRAD/HR 18" MR/HR SMEAR DPM/100cm² CONTACT MR/HR LOCA-TYPE DESCRIPTION 2032 ROZA 5600 < m>A FLOOR FI # 3 110 Tean 5550 F2 6750 < MDA F3 6620 く 64 103 ABBREVIATION KEY 750 F5 ABBREVIATION KET LHRA: Locked Hi-Rad Area NRA: Hi-Rad Area HCA: Hi-Contamination < M DA 6800 F 6 161 630 6 F7 Area CA: Contamination 2412 El "C# 5590 Chara Pungo Area CPEA: Contam. Process 210 6710 Er **`.R'** Equip. Area Airborne Rad 155 ARA -6710 83 ♦ Area Rad Area Rad Material 6740 RA: 167 11 A E4 Pare <u>ka-si.</u> RMA: 1322 Area 6740 V ES J Step-Off Pad L SOP: Equip. Location E#: F#: 979 5 610 Eb

ROOM OR AREA: CHARGING PUMP ROOM SURVEY=

90-4168

E7

68

Comments:

ພາເ

Hance

P

-pport

MDA = 70dpm

H#:

10:

Page:

72

1300

1210

1116 to

6720

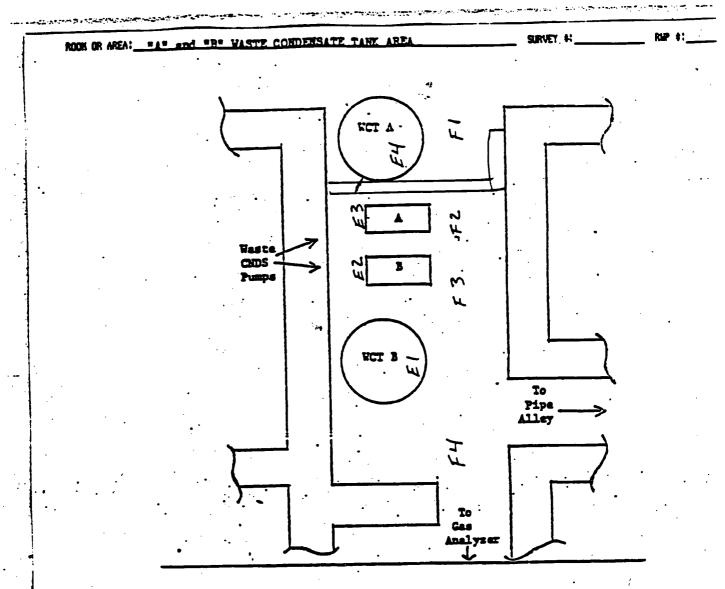
6700

11/91

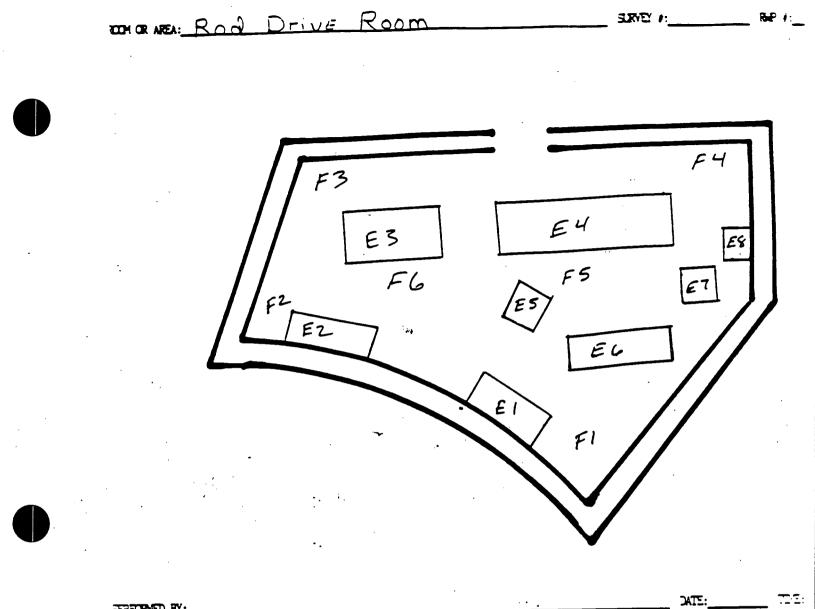
Drill for

.

HOT SOOT LOC.


_ of

Internal Contamination


÷

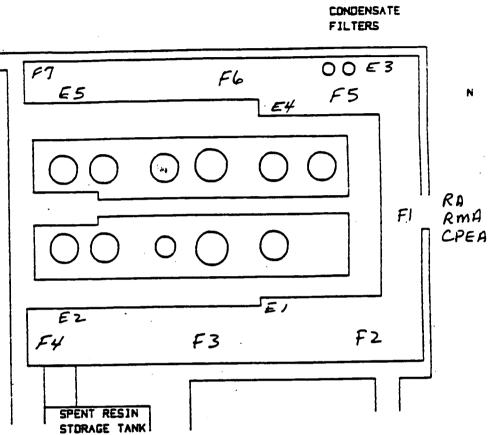
N/A

RWP#



DCA- TIOX	DESCRIPTION	EDNTACT HR/HR	CONTACT HRAD/HR	18' )R/HR	SHEAR BPH/100cm2	AIRBORNE NPC FRAC.	Instrument Type s
FI	FLOOR			1000	LMDA		
F2				1000	LMOR		
=3				750	LMOR		
-4				200	CMPA		ABBREVIATION
							LHRA: Locked Hi-
7	BWCT-			800	100		HRA: Hi-Rad Are
	BPUMP			800	LMDA		HCA: Hi-Contasi
	Apumo			900	LMDA		Area
	AWET			1000	<u>113</u>		CA: Contaminat
							CPEA: Contam. P
Í				<u> </u>	<u> </u>		Equip. Art
	•				[		ARA: Airborne
							RA: Rad Area
					•		RMA: Rad Hater
	· · · · · · · · · · · · · · · · · · ·	• • •		1			SOP: Step-Off i
กมหราก	IS: MDA - 80 dem	Drill	SUrvey	11/91	1116-	(300	Et: Equip. Lo
الجدلامي							F&: Floor Loc
							H#: Hot Spot




A- N DESCRIPTION	CONTACT MR/HR	CONTACT MRAD/HR	15" `\$/HR	SEAR IP:/100cm2	AFEORVE MEC FRAC.	euste: Fri
Floor		<b></b>	22	ZMDA		
1 1002			42	2 MDA		
			42	ZMOA		
			22	LMDA		AERE.
			42	LMDA		1374: Lack
		T	62	LMDA		HRA: H1-
		·	42	LMDA		HCA: H1-
		1	142	LMDA		Are
		1	42	LMDA		CA: Con
		1	42	LMDA		CPEA: Cor.
		1	62	LMPA		
			42	EMDA		ARA: Air
			62	ZMPA		RA: Rad
			62	LMPA		RMA: Rad
		+	42	LMDA		30 <b>P:</b> 500
ENIS: MAA - SO don	A DRill SUC	164 111		00 - 1300		E#: Equ

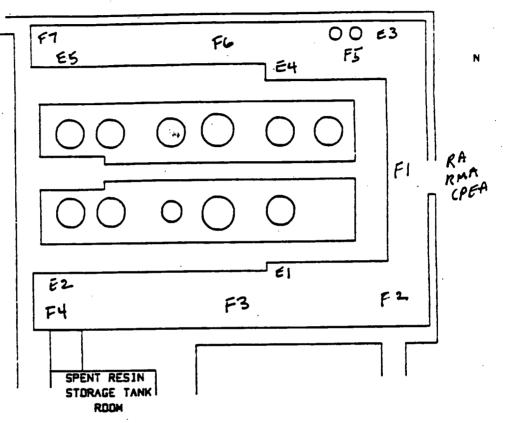
Parat

• 🛃

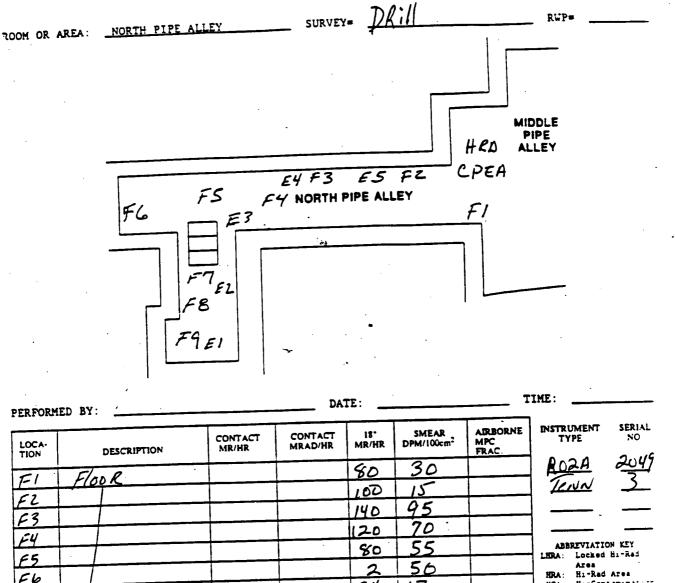
COM OR AREA: DEMINERALIZER ROOM

٠



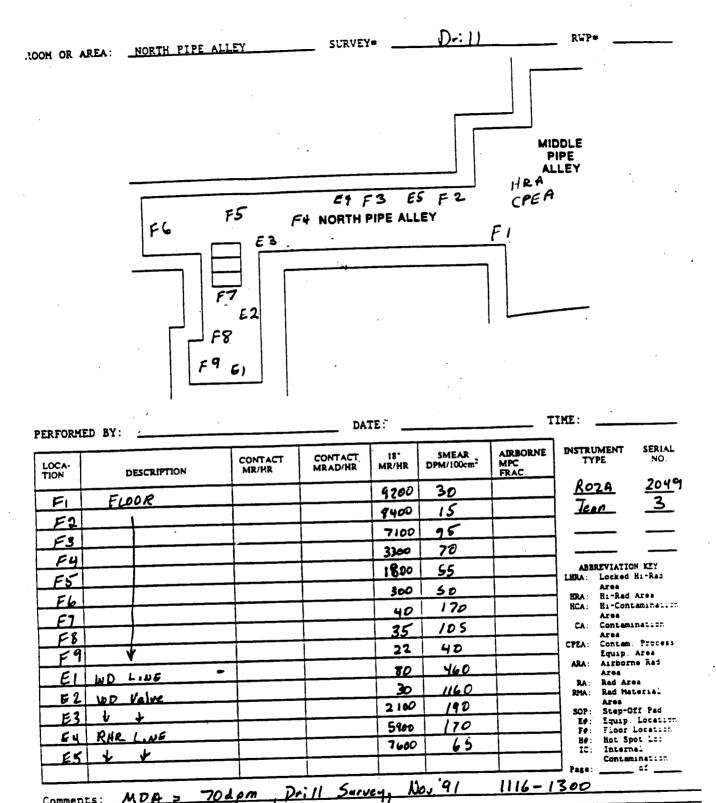

 		•	•	•	•
91	۱n	•			

ION	DESCRIPTION	CONTACT MR/HR	-CONTACT MRAD/HR	18" MR/HR	SMEAR DPM/100cm2	AIRBORNE MPC FRAC.	INSTRUMENT TYPE SET RO2A 249
F1	FLOOR			62	CMDA		TENN D3
52			<u></u>	2	<u>↓                                     </u>		
:3			<u> </u>	4	1 11		ABBREVIATION
ΞY				18	150		
=5		ļ		<u> </u>	LANDO		LHRA: Locked Hi-R
6				12	+*		HRA: Hi-Rad Area HCA: Hi-Contamin
07			+	8	<u><u> </u></u>	<u> </u>	
EI	Piping	<u> </u>			22	<u> </u>	Area CA: Contaminati
52	CUC 221 PbShielowy	10		7	12MDA	1	
22	Filter Housing	38		<u>  5</u>	230	<u> </u>	OPEA: Contam. Pro
EY	Piding			6	650	<u> </u>	Equip. Area
55	CUC-215 A' PEShislowy	20		6	LMDA	<u> </u>	ARA: Airborne Ra
		Ļ				<u> </u>	RA: Rad Area
	· .	-				L	RMA: Rad Materia
		1		1			j SUP: Step-ut Fa
MENI	S: MDA = 70 DOM	_DRI	1 SVTV	en NOV	<u>' 41 080</u>	0-1115	E#: Equip. Local F#: Floor Local


3.4B-23

ROOM OR AREA: DEMINERALIZER ROOM






CA- ON	DESCRIPTION	CONTACT MR/HR	CONTACT MRAD/HR	18" MR/HR	SMEAR DPM/100cm2	AIRBORNE MPC FRAC.	INSTRIMENT TYPE SERI
FI	FLOOR			10,000	< AD A		
F2	1 •			9.300			
B			I	4,900	+		
Fy				11,000	150		ABBREVIATION KI
FS				10,500	<mda< td=""><td></td><td>LHRA: Locked Hi-Rad</td></mda<>		LHRA: Locked Hi-Rad
F6				10,000	*		HRA: Hi-Rad Area
F7	V			10,500	100		HCA: Hi-Contaminat
EI	PIPING			4 700	22	ļ	Area
£ 2	CVC 221 Ph Shielding	1500	1	11.000	< MDA		CA: Contaminatio
E3 [	Filter Housins			4.500	230		OPEA: Contam. Proc
61	filing			10,100	650		Equip. Area
EST	CVC-215 A. Ph Shielding	1480		11.000	<md4< td=""><td></td><td>ARA: Airborne Rad</td></md4<>		ARA: Airborne Rad
				· ·		1	RA: Rad Area
							RMA: Rad Material
							SOP: Step-Off Pad
MENTS	: MDA = 70 DPM DRILL	SURVEY	DOU 'A	/ //	6 - 1300		Ef: Equip. Locat
			•	7			FI: Floor Locati



LOCA-FI FZ F3 F4 F5 F6 170 Hi-Contamination 24 HCA: F1 Area CA: Contemination <u>105</u> 30 F8 AFOA Area Contam. Process Equip. Area Airborne Rad CPEA: 40 20 F4 ARA : 80 460 • AFOR WD ,in e EI Rad Ares Rad Material RA: 30 1160 EZ RMA : VALUE いわ Area Step-Off Pad 80 190 SOP : WO VALUE E3 Equip. Location. Floor Location **Ε#**: **F#**: 120 170 RHR Line E4 8∉: Hot Spot La: 65 140 IC: Interna. RHR LINE ES Contamination Page: 22 , DrillSurven 0800-1115 NON 91 Comments: MDA = 70 dpm

90-4168



Comments: MDA =

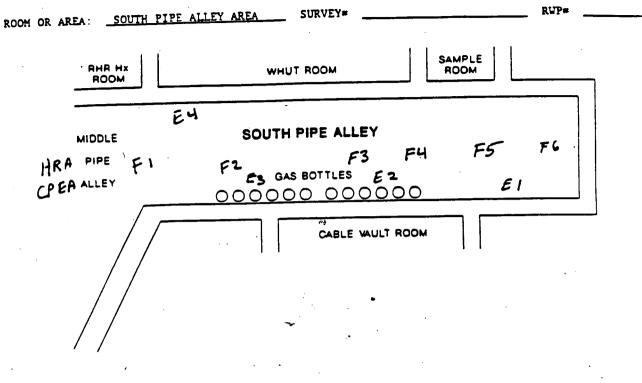
90-4168

ROOM OF	AREA: SOUTH PIPE	LLEY AREA	SURVEY	<u> </u>	<u>ill</u>	<u></u>	RWP#	
KUUM UK					SAM RO	PLE	·	
HRA CPE	E4 MIDDLE A PIPE F/ ALLEY	. –	GAS BOTTLE	13	F4 E2 00	FS El	F6	-
			ČAB	LE VAULT	ROOM			· .
					-			
PERFORM	MED BY:		DA'	TE:		I	IME:	
PERFORM	MED BY:	CONTACT MR/HR	CONTACT MRAD/HR	TE:	SMEAR DPM/100cm ²	ARBORNE MPC FRAC.		NO.
LOCA- TION	DESCRIPTION		CONTACT	18" MR/HR	SMEAR DPM/100cm ²	AIRBORNE	INSTRUMENT TYPE RO2A	
LOCA- TION	1		CONTACT	18-	DPM/100cm ²	AIRBORNE		NO.
LOCA- TION F1 F2	DESCRIPTION		CONTACT	18" MR/HR	DPM/100cm ²	AIRBORNE	INSTRUMENT TYPE RO2A	NO.
LOCA- TION F1 F2 F3	DESCRIPTION		CONTACT	18- MR/HR 10 4 2. 2	DPM/100cm ²	AIRBORNE	INSTRUMENT TYPE RO2A	NO.
LOCA- TION FI FZ F3 FY	DESCRIPTION		CONTACT	18- MR/HR 10 4	DPM/100cm ² 80 5 65	AIRBORNE	INSTRUMENT TYPE RO213 TENN ABBREVIAS	NO. 2049 3
LOCA TION F1 F2 F3 F4 F5	DESCRIPTION		CONTACT	18- MR/HR 10 4 2. 2	DPM/100cm ² 80 5 65 25	AIRBORNE	INSTRUMENT TYPE RO2A TENN ABBREVIAT LHRA: LOCK Area	NO. 2049 3 TION KEY NO. REP
LOCA TION FI FZ F3 F3 F5 F5 F6	DESCRIPTION Floor		CONTACT	18- MR/HR 10 4 2. 2 2 2 2	DPM/100cm ² 80 5 65 25 55 40	AIRBORNE	ABBREVIAT LHRA: LOCKO AF: BI-RC	NO. 2049 3 TION KEY NO. REP
LOCA TION FI F2 F3 F5 F6 E1	DESCRIPTION FlooR V SAMO/ VALUE		CONTACT	18 MR/HR 10 4 2. 2 2 2 2 2 2 2 2 2 2	DPM/100cm ² 80 5 65 25 55 40 30 9 25	AIRBORNE	INSTRUMENT TYPE RODA TENN ABBREVIAT LERA: LOCKA EFA: B1-RI BCA: B1-RI Area CA: Conta	NO. <u>2049</u> <u>3</u> TION KEY Nd Hi-Rac ad Area ontamination
LOCA TION FI F2 F3 F5 F6 E1	DESCRIPTION FlooR SAMPLE UALUE		CONTACT	18 MR/HR 10 4 2. 2. 2 2 2 2 4 2 4 2 4 2 2 2 2 2 2 2	DPM/100cm ² 80 5 65 25 55 40 30 9 25	AIRBORNE	ABBREVIAT LIRA: Locke Area CA: Cont. CPEA: Cont.	NO. 2049 3 NION KEY ad Hi-Rac ad Area ontamination amination am. Process
$   \begin{array}{c}     LOCA \\     TION \\     F1 \\     F2 \\     F3 \\     F4 \\     F5 \\     F6 \\     E1 \\     E2 \\     E3 \\   \end{array} $	DESCRIPTION Floor V SAMPLE VALUE SAMPLE VALUE		CONTACT	18 MR/HR 10 4 2. 2 2 2 2 2 2 2 2 2 2	DPM/100cm ² 80 5 65 25 55 40 30 9 25 2485	AIRBORNE	INSTRUMENT TYPE DOD A TENN ABBREVIAT LERA: Locke Area EFA: bi-Re HCA: Hi-Co Area CA: Cont. Area CPEA: Cont. Equij ARA: Airbo	NO. <u>2049</u> <u>3</u> TION KEY and H1-Ran and Area ontamination amination am. Process p. Area Some Rad
LOCA TION FI F2 F3 F5 F6 E1	DESCRIPTION FlooR SAMPLE UALUE		CONTACT	18 MR/HR 10 4 2. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DPM/100cm ² 80 5 65 25 55 40 30 9 25	AIRBORNE	INSTRUMENT TYPE ROD A TWA ABBREVIAL LIRA: Locke Area EFA: H:-Conta Area CA: Conta Area CFA: Conta Area CA: Conta Area CA: Conta Area RA: Area	NO. <u>2049</u> <u>3</u> TION KEY ad Hi-Rac ad Area ontamination amination amination amination amination amination Area orne Rad
$   \begin{array}{c}     LOCA \\     TION \\     F1 \\     F2 \\     F3 \\     F4 \\     F5 \\     F6 \\     E1 \\     E2 \\     E3 \\   \end{array} $	DESCRIPTION Floor V SAMPLE VALUE SAMPLE VALUE		CONTACT	18 MR/HR 10 4 2. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DPM/100cm ² 80 5 65 25 55 40 30 9 25 2485	AIRBORNE	ABBREVIAT LERA: Locke Area EFA: Hi-Ra CA: Contr Equi ARA: Area CPEA: Contr Equi ARA: Area RA: Rad RMA: Rad	NO. <u>2049</u> <u>3</u> <u></u> PION KEY ad Hi-Ran ad Area potential amination amination amination amination Area Material
$   \begin{array}{c}     LOCA \\     TION \\     F1 \\     F2 \\     F3 \\     F4 \\     F5 \\     F6 \\     E1 \\     E2 \\     E3 \\   \end{array} $	DESCRIPTION Floor V SAMPLE VALUE SAMPLE VALUE		CONTACT	18 MR/HR 10 4 2. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DPM/100cm ² 80 5 65 25 55 40 30 9 25 2485	AIRBORNE	INSTRUMENT TYPE RODA ABBREVIAT LHRA: LOCKA HI-RA: BCA: HI-RA BCA: HI-RA BCA: HI-RA Area CA: Conta Area CPEA: Conta Area CA: Conta Area CPEA: Conta Area CA: Area CPEA: Conta Area CA: Area CPEA: Conta Area CA: Bada Area CPEA: Conta SOP: Step EF: Equi	NO. <u>2049</u> <u>3</u> FION KEY ad Hi-Rac ad Area ontamination am. Process p. Area orne Rad Area Material -Off Pad p. Location
$   \begin{array}{c}     LOCA \\     TION \\     F1 \\     F2 \\     F3 \\     F4 \\     F5 \\     F6 \\     E1 \\     E2 \\     E3 \\   \end{array} $	DESCRIPTION Floor V SAMPLE VALUE SAMPLE VALUE		CONTACT	18 MR/HR 10 4 2. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DPM/100cm ² 80 5 65 25 55 40 30 9 25 2485	AIRBORNE	INSTRUMENT TYPE RODA ABBREVIAT LHRA: LOCKA HI-RA: BCA: HI-RA BCA: HI-RA BCA: HI-RA Area CA: Conta Area CPEA: Conta Area CA: Conta Area CPEA: Conta Area CA: Area CPEA: Conta Area CA: Area CPEA: Conta Area CA: Bada Area CPEA: Conta SOP: Step EF: Equi	NO. 2049 3 TION KEY ad Hi-Rac ad Area ad Area amination am. Process p. Area p. Area borne Rad Area Material -Off Pad p. Location r Location

Comments: MDA = TO Opm , DRill Survey NOU 91 0800-0914

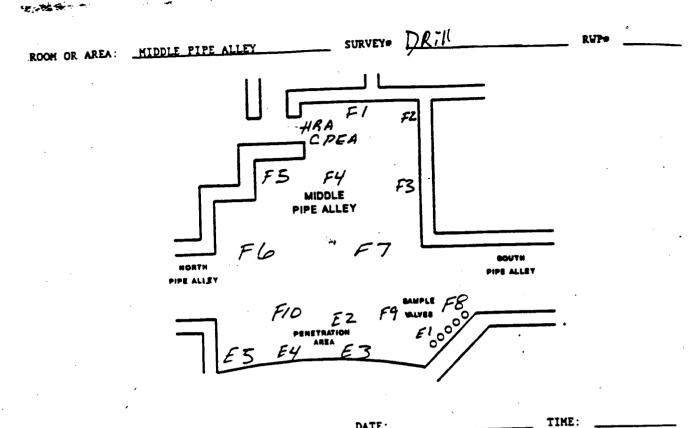
LOOM OR	AREA: SOUTH PIPE							
			VHUT ROOM		SAN	PLE OM		
hf	MIDDLE RA PIPE FI EA ALLEY	sou F ² c3	GAS BOTTLE	F3 Is E		F5 E 1	F6	
	. //		ĊAB	LE VAULT	ROOM			·
				•				
			¥	.•				
PERFORM	ED BY:		DA'	TE:		1	TIME:	
PERFORM	ED BY: DESCRIPTION	CONTACT MR/HR	DA CONTACT MRAD/HR	IE:	SMEAR DPM/100cm ²	ADRBORNE	IME : INSTRUMENT TYPE	SERIAL NO.
LOCA- TION	DESCRIPTION		CONTACT	18-	DPM/100cm ²	ADRBORNE	INSTRUMENT	NO. 204.
LOCA. TION			CONTACT	18" MR/HR	SMEAR DPM/100cm ² 8 0 5	ADRBORNE	INSTRUMENT TYPE	NO.
LOCA. TION FL F2	DESCRIPTION		CONTACT	18" MR/HR	DPM/100cm ² 8 0 5	ADRBORNE	INSTRUMENT TYPE	NO. 204
LOCA- TION FL F2 F3	DESCRIPTION		CONTACT	18- MR/HR 100 85	DPM/100cm ²	ADRBORNE	INSTRUMENT TYPE	NO. 204.
LOCA- TION FL F2 F3 F3	DESCRIPTION		CONTACT	18. MR/HR 100 85 80	DPM/100cm ² 80 5 65	ADRBORNE	INSTRUMENT TYPE <u>RO2-A</u> <u>TCA O</u> ABBREVIATI	NO. 2049 3
LOCA- TION FL F2 F3 F3 F5	DESCRIPTION		CONTACT	18- MR/HR 100 85 80 80	BDPM/100cm²           80           5           65           25	ADRBORNE	INSTRUMENT TYPE ROZA TCAA ABBREVIATI LHERA: Locked Area	NO. 2046 3 
LOCA- TION FL F2 F3 F3 F5 F6	DESCRIPTION FLOOR		CONTACT	18- MR/HR 100 85 80 80 75	DPM/100cm ² 80 5 65 25 55 40 309	ADRBORNE	INSTRUMENT TYPE <u>RO2-A</u> <u>TCA O</u> <u>ABBREVIATI</u> LHRA: Locked Area HF5A: H1-RAG HCA: H1-CON	NO. 2046 3 
LOCA- TION FL F2 F3 F4 F5 F6 E1	DESCRIPTION FLOOR V Sample value		CONTACT	18- MR/HR 100 85 80 90 75 73	DPM/100cm ² 80 5 65 25 55 40 309	ADRBORNE	INSTRUMENT TYPE RO2-A TCA O TCA O ABBREVIATI LERA: Locked Area HEA: H1-Can Area CA: Contag	NO. 204 3 
LOCA TION FL F2 F3 F4 F5 F6 E1 E2	DESCRIPTION FLOOR V Sample value (sas Bottle		CONTACT	18- MR/HR 100 85 80 80 75 73 40	DPM/100cm ² 80 5 25 25 55 40 309 25 2985	ADRBORNE	INSTRUMENT TYPE <u>AD2-A</u> <u>JCA A</u> <u>ABBREVIATI</u> LHRA: Locked Area HCA: H1-Rad HCA: H1-Rad HCA: H1-Con Area CA: Contem Area CA: Contem	NO. 204 3 
LOCA TION FL F2 F3 F4 F5 F6 E1 E2 E3	DESCRIPTION FLOOR V Sample value (sas Bottle		CONTACT	18- MR/HR 100 85 80 80 75 73 40 42	DPM/100cm ² 80 5 65 25 55 40	ADRBORNE	INSTRUMENT TYPE <u>RO2-A</u> <u>JCA O</u> <u>ABBREVIATI</u> LHRA: Locked Area HEA: H1-RAG HCA: H1-CON Area CA: Contam Area	NO. 204 3 
LOCA TION FL F2 F3 F4 F5 F6 E1 E2	DESCRIPTION FLOOR V Sample value (sas Bottle		CONTACT	18- MR/HR 100 85 80 80 75 73 40 42 43	DPM/100cm ² 80 5 25 25 55 40 309 25 2985	ADRBORNE MPC FRAC.	INSTRUMENT TYPE <u>RO2-A</u> <u>JCA O</u> <u>ABBREVIATION</u> LHRA: Locked Area HCA: H1-Rad HCA: H1-Con Area CA: Contem CPEA: Contem Equip. ARA: Airbor	NO. 204 3 
LOCA TION FL F2 F3 F4 F5 F6 E1 E2 E3	DESCRIPTION FLOOR V Sample value (sas Bottle		CONTACT	18- MR/HR 100 85 80 80 75 73 40 42 43	DPM/100cm ² 80 5 25 25 55 40 309 25 2985	ADRBORNE MPC FRAC.	INSTRUMENT TYPE <u>AD2-A</u> <u>JCA A</u> <u>ABBREVIATI</u> LHEA: Locked Area CA: Contage CFEA: Contage CFEA: Contage CFEA: Contage Area CA: Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Contage Area Area Contage Area Area Contage Area Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Contage Cont	NO. 204 3 
LOCA TION FL F2 F3 F4 F5 F6 E1 E2 E3	DESCRIPTION FLOOR V Sample value (sas Bottle		CONTACT	18- MR/HR 100 85 80 80 75 73 40 42 43	DPM/100cm ² 80 5 25 25 55 40 309 25 2985	ADRBORNE MPC FRAC.	INSTRUMENT TYPE <u>AD2-A</u> <u>JCA A</u> <u>ABBREVIATI</u> LHRA: Locked HCA: H1-Rad HCA: H1-Rad HCA: H1-Rad CA: Contem Area CA: Contem Equip. ARA: Airbor Area RA: Rad Ar RMA: Rad Me Area	NO. 204 3 
LOCA TION FL F2 F3 F4 F5 F6 E1 E2 E3	DESCRIPTION FLOOR V Sample value (sas Bottle		CONTACT	18- MR/HR 100 85 80 80 75 73 40 42 43	DPM/100cm ² 80 5 25 25 55 40 309 25 2985	ADRBORNE MPC FRAC.	INSTRUMENT TYPE <u>AD2-A</u> <u>JCA A</u> <u>JCA A</u> <u>ABBREVIATI</u> LERA: Locked Area HEA: H1-Con Area CA: Contam CPEA: Contam Equip ARA: Airbor Area CPEA: Contam Equip ARA: Airbor Area SOP: Step-C E6: Equip	NO. 2049 3 

Drill Survey Nov 91


= 70 dpm

MDA

90-4168

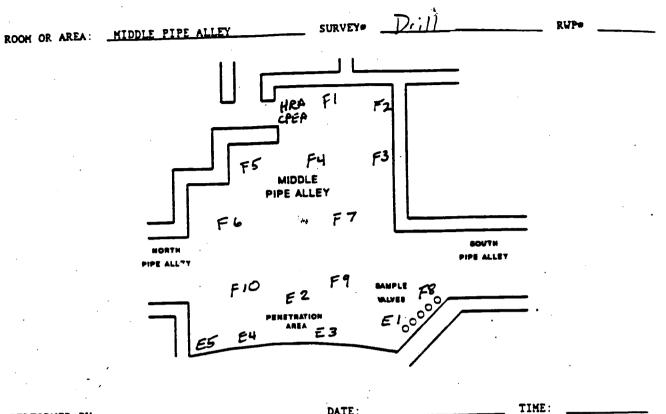

Comments:

0915-1115





RFORM	ED BY:		DA	.TE:		¥	TIME:
OCA- ION	DESCRIPTION	CONTACT MR/HR	CONTACT MRAD/HR	18" MR/HR	SMEAR DPM/100cm ²	AIRBORNE MPC FRAC.	INSTRUMENT SERIAL TYPE NO
FI	FLOOR			10000	80		<u>ROZA</u> 204 Jean 3
F2	1			8100	5		Jean 3
F3				5900	65 :		
64				3800	25		
<b>F</b> 5				2400	55		ABBREVIATION KEY
F6	V			1700	40		Area HEA: Hi-Red Area
El	Semple valve			2000	309		HCA: Hi-Contaminat:
E 2	Gas Boffle			4600	25		CA: Contamination
E3	V			7700	2985		CPEA: Contam. Proces Equip. Area
54	laze			4200	55		ARA: Airborne Rad
					•	1	RA: Red Area RMA: Red Material
							Area SOP: Step-Off Pad
							Ef: Equip. Location Ff: Floor Location
	-						HØ: Hot Spot Lot IC: Internal
	ts: _MDA = 708						Contamination Page: cf

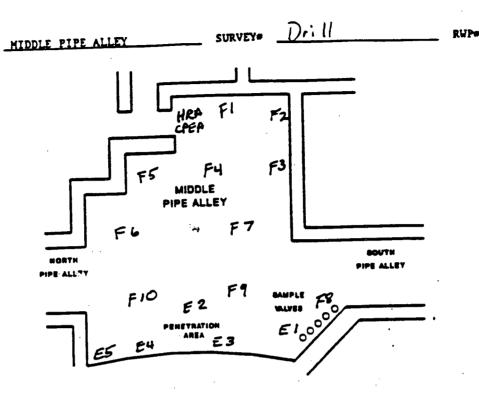



PERFORMED BY:

DATE:

0CA- 10N	DESCRIPTION	CONTACT MR/HR	CONTACT MRAD/HR	18° MR/HR	SMEAR DPM/100cm ²	AIRBORNE MPC FRAC.	INSTRUMENT SERIAL TYPE NO
:1	FLOOR			6	80	ļ	<u>Tim 3</u> RUZA 2049
2	F			8	105		KOZA 204/
3				30	25		
<u>-</u> 4				30	15		
				20	15		ABBREVIATION KEY LERA: Locked HirRad
<u>s</u>				20	85		Area BRA: B1-Rad Area
6				80	105		BCA: Bi*Contaminal.::
<u> </u>				100	95		CA: Contemination Area
<u>-</u> 8				80	50		CPEA: Contam. Process Equip. Area
9				80	55		ARA: Airborne Asi Ares
10			+	20	390		RA: Red Ares RMA: Red Material
E1_	Sparple Panel		+	80	32000		Area SOP: Step-Off Pad
<u> 2</u>	Blan down where			20	19.180		Ed: Equip. Local.in Fd: Floor Localiza
3	WATWALL			24	19,433		B#: Bot Spot Lo: IC: Internal
54	UCT-Value ADV Flunge Its: MDA= 70		+	30			Contemination
<u>55</u>	IADU Flunge					0.00	- 0914

90-4168




PERFORMED	BY:
-----------	-----

DATE:

	DESCRIPTION	CONTACT MR/HR	CONTACT MRAD/HR	18" MR/HR	SMEAR DPM/100cm ²	AIRBORNE MPC FRAC.	DISTRUMENT SERIAL TYPE NO
FI	FLOOR			6	80		Tena 3
FZ				8	105	ļ	ROZA ZOY
F3				32	25		
Fy				32	15	L	
FS				20	15	<u> </u>	ABBREVIATION NEY
Fb				25	85	<u> </u>	Area ERA: B1-Rad Area
F7				95	105		BCA: Bi-Contaminati: Aree
68				120	45		CA: Contemination Area
Fq				100	50		CFEA: Contam. Process Equip. Area
FID	×			95	55		ARA: Alfborne ñag Area
EI	Sample Perel			25	390		RA: Red Area RMA: Red Meterial
E2	Blow down Valve			190	3 2000		Area SOP: Step-Off Pad
E3	West Wall			60	19 180		Te: Equip. Location Fe: Floor Location
64	VCT - Volve			45	19433		B#: Bot Spot Lo: IC: Internal
ES	DON Group			40	12,290		Contaminatiin Page: Of
		dpm,	Dr:11 Su	irvey	Nov '91	0915-	1115

90-4168.



PERFORMED BY:

ROOM OR AREA:

DATE:

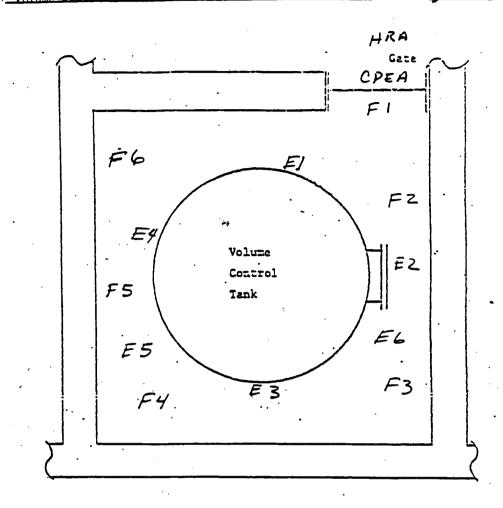
_____TIME:

LOCA-	DESCRIPTION	CONTACT MR/HR	CONTACT MRAD/HR	18° MR/HR	SMEAR DPM/100cm ²	AIRBORNE MPC FRAC.	DISTRUMENT SERIAL TYPE NO
FI	FLOOR			9000	80		ROZA ZOYA
FZ				9100	105		ROZA ZOYA
_				9600	25		
F3				9600	15		
Fu				9400	15		ABBREVIATION KEY
F5				10300	85		Ares
Fb				10400			MCA: E1-Contaminatit
FT				10700	95		Ares CA: Contamination
F 8				11,200	. 50		Area CPEA: Contam. Pritess Equip. Area
F٩				11,100	1 40		ARA: Airborne had Area
FID				10,500			RA: Red Ares
EI	Sample Perel			11.200			Area
E2_	Blow down Velve			11,100	1		SOP: Step-Off Pad E0: Equip. Location
E3	West Wall			11.100		1	Be: Bot Spot Location
Eg	VCT - Valve			1000	12,290		IC: Internal Contamination
<u> </u>	ADV Flease			10,10			- 1300 - 1300

90-4168

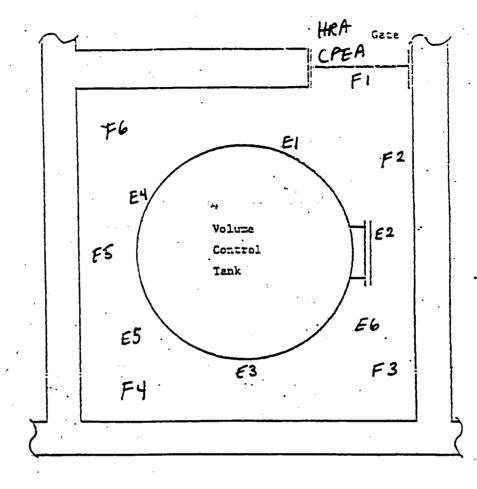
HEAT TRACE CONTROL PANEL F 2 F3 **a V** E3 A' BAST E2 PUMPS BORIC ACID FILTERS SAMPLE SINK ICPEA εI B' BAST £5 LADDER £4 -Ŧ1 E6

PERFORMED BY:


DATE:

____ TIME:

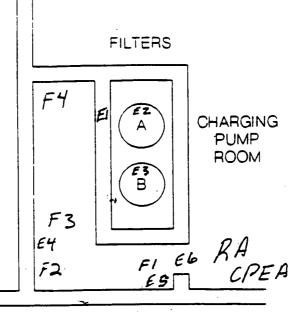
LOCA- TION	DESCRIPTION		CONTACT MRAD/HR	18" MR/HR	SMEAR DPM/100cm ²	AIRBORNE MPC FRAC.	INSTRU TYI	
=1	FLOOR			2	2 MDA		Lo	
= 1 - Z		-			106		Ten	w O
-3					91			· <u> </u>
cy	$\checkmark$	•		V	87			
EI	Sample Sink	5		3	LMDA			EVIATION KEY Locked Hi-Rad
22	Boric Acid filters			10	619	· · · · · ·		Area Hi-Rad Area
53	"A" BAST			10	133-			Hi-Contaminat Area
- 4	"B" BAST			.4	168		CA:	Contamination Area
5	CUCS PIPING			4	5600		CPEA:	Contam. Proce Equip. Area
E b				4	230		ARA:	Airborne Rad Area
E7	Pumps			3	141		RA: RNA:	Rad Area Rad Material
EB	Heat trace Panel			2	149		SOP:	Area Step-Off Pad
					<u> </u>		E#: F#:	Equip. Location Floor Location
							N#: IC:	Not Spot Loc. Internai
							Page:	Contamination


90-4168

SOM OR AREA: Volume Control Tank Room



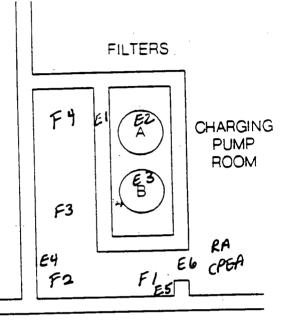
LOCA-		CONTACT	CONTACT	18"	SHEAR	AIRBORNE	INSTRUMENT
TION	DESCRIPTION	HR/HR	hrad/hr	NR/HR	DPM/100cm2	HPC FRAC.	ROZA 2484
FI	FLOOR			35	119		Tenn C3
FZ	-			100	188		
=3			1	1100	110		
=4			i	60	12MDA		ABBREVIATION KEY
-5			1	40	81	1	LHRA: Locked Hi-Rad Are
-6	V	1	1	40	177	4	HRA: Hi-Rad Area
<u> </u>	TANK	120		20	ICMDA	1	HCA: Hi-Contaxination
E 2	MANWAY	15		15	LMDA		Area
53	TANK (BOTTOM)	160		100	500	1	CA: Contomination Are
54 1		1300	1 :	150	181	1	CPEA: Contos. Process
ESI	Sipe	1100		100	1106		Equip. Area
61	DIVE	40	1	9D	223		ARA: Airborne Rad Area
1				1			RA: Rad Area
			1				RMA: Rod Hoterial Are
- 1				1			SOP: Step-Off-Fad
DENENTS	: MDA=70 dpm;	DRILLS	Urvey	060	0-1115		Et: Equip. Location
910.21.1 <b>9</b>	·						F#: Floor Location
					· · · · · · · · · · · · · · · · · · ·		H4: Hot Spot Locatio


ESON OF AREA: Volume Control Tank Room



OCA-		CONTACT	CONTACT	18'	SHEAR	AIRBORNE	INSTRUMENT	•
HOIT	DESCRIPTION	NR/HR	KRAD/HK	NF./HR	DPH/100cm2	HOC FRAC.	TYFE RDZ-D	SERIAL # 2484
FI FLOOR				10,000				0.3
F2				10,000	188			
F3				10,000	110			
AL L				10,000	<ad4< td=""><td></td><td>ABBREVI</td><td>ATION REV</td></ad4<>		ABBREVI	ATION REV
FS				16.000	<b>T</b> (	1		d Hi-Rad Are
FU V				10,000	177		HRA: Hi-Ro	-
ELI TANK		15,000		15,000	< <u> ADA</u>		HCA: Hi-Co	ntalilit.
E2 HANK	AY	15,000			K M DA		Area	
R3 TANK	(BOTTOM)	15,000			500	<u> </u>		ainstisa Are
<u>ral y</u>	<u> </u>	15000					CPEA: Conto	
ESI: PIPE		15,000			166_			. Area
E6 PIEL		15,000		*	223			orne fac Arec
1						<u> </u>	RA: Rad A	
					<u> </u>			lateriai Are
			<u> </u>		<u> </u>	l		Off Fac
ORHENTS: 141	A = 70 d PM	Drin S	ur veg		- 1300			. Location
			1				F#: Floor H#: Hot S	Location

ROOM OR AREA:


DRill

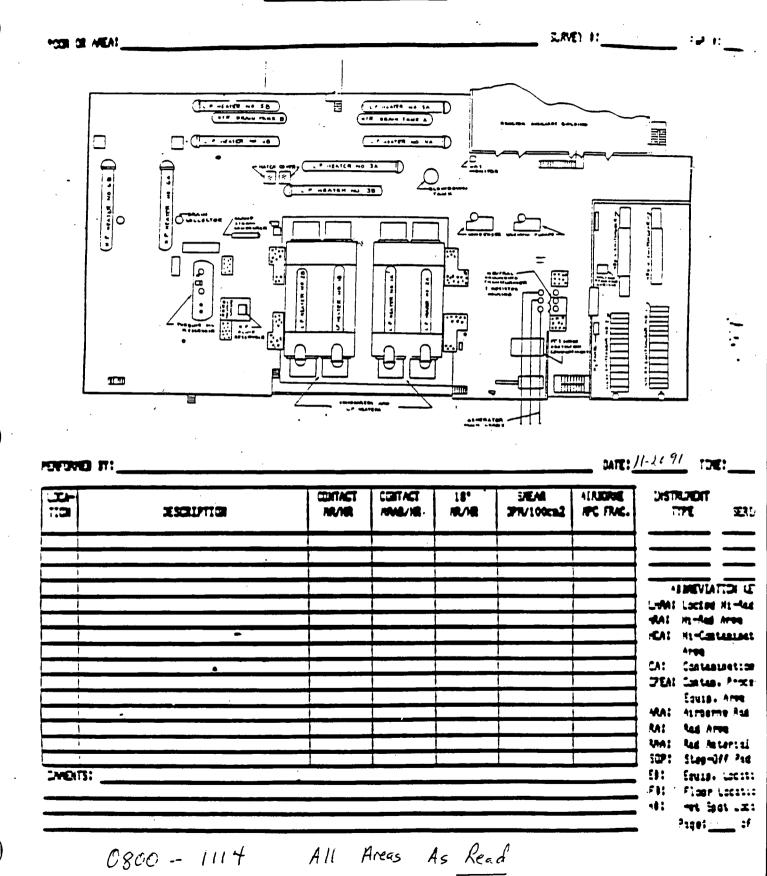


OCA-	DESCRIPTION	CONTACT MR/HR	CONTACT MRAD/HR	18" MR/HR	SMEAR DPM/100cm ²	AIRBORNE MPC FRAC	INSTRUMENT SERIAL TYPE NO
7(	FLOOR			15	LMDA		<u>Roza 143</u> 6112B 2430
2				10	84		6112B 2430 Tenn 04
3				5	106		TENN 04
4				6	CMDA		
' <del>4</del> (	Filter Cubicle Well			20	350		ABBREVIATION KEY LHRA: Locked H1-Red
2	"A"Filter Housing			120	1347		HRA: LOCKEd HI-Rec Aree HRA: Hi-Rad Area
3	"B" Filter Housing			40	1545		HCA: HI-Contamination Area
4	DIDING			5	198		- CA: Contamination Area
5	DROIN Pipe			15	100		CPEA: Contam. Process Equip. Area
6	Door interior			15	LMDA		ARA: Alrborne Rad
							RA: Rad Area RMA: Rad Material
						•	Area SOP: Step-Off Pad
				<u> </u>	• .		EF: Equip. Location FF: Floor Location
						<u> </u>	He: Hot Spot Loc. IC: Internal
							Contamination Page: of

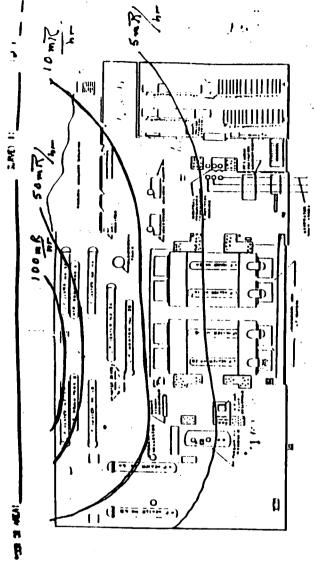


.




OCA-	DESCRIPTION	CONTACT MR/HR	CONTACT MRAD/HR	18" MR/HR	SMEAR DPM/100cm ²	AIRBORNE MPC FRAC	INSTRUMENT SERIAL TYPE NO.
FI	FLOOR			8,00	XMDA		ROZA 1436
F2	PLOC			7500	84		<u>6/12B 2430</u>
F3				8100	106		Tean 04
Fy				7900	ZMDA		
EI	Filter Cubicle Wa	n		9100	350		ABBREVIATION KEY LHRA: Locked Hi-Rad
82	"A" Filter Hossi		1	NA	1347		HRA: Hi-Rad Area
É3	"B" Filter Hassi		I	NA	1545		HCA: Hi-Contaminatio
E4	Piping	<u> </u>		8000	198		CA: Contemination Area
ES	Drain Pipe			8000	100		CPEA: Contam. Process Equip. Area
<u>E6</u>	Doer laterior			8000	KADA		ARA: Airborne Rad Area
		•				1	RA: Rad Area RMA: Rad Material
					ļ	<u> </u>	Area SOP: Step-Off Pad
					<u> </u>		Ef: Equip. Location Ff: Floor Location
							H#: Hot Spot Loc. IC: Internal Contemination
				1			Page: of

90-4168


9.48-95

ATTACHMENT 11.1 Page 1 of 1

SURVEY MAP & DATA TABLE



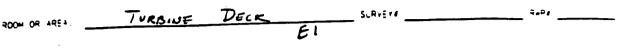
3.4B-36

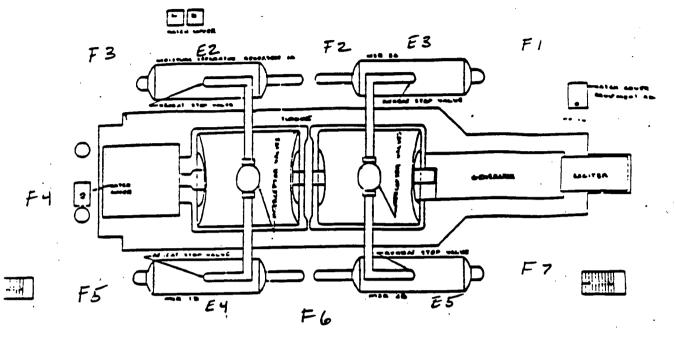


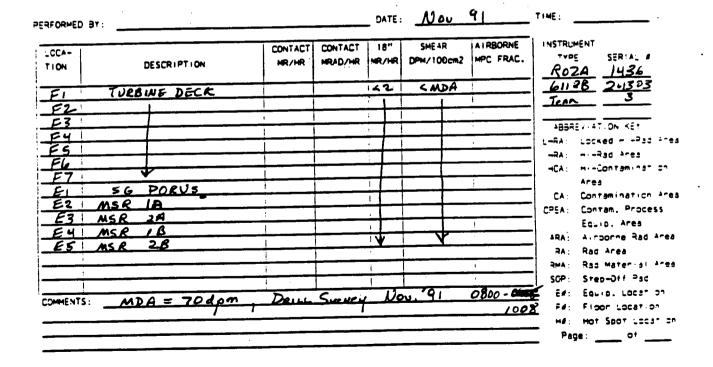
June 1 ₽₹ è CUNCI **AP** 

1.5

Î Î Î Î Î Î

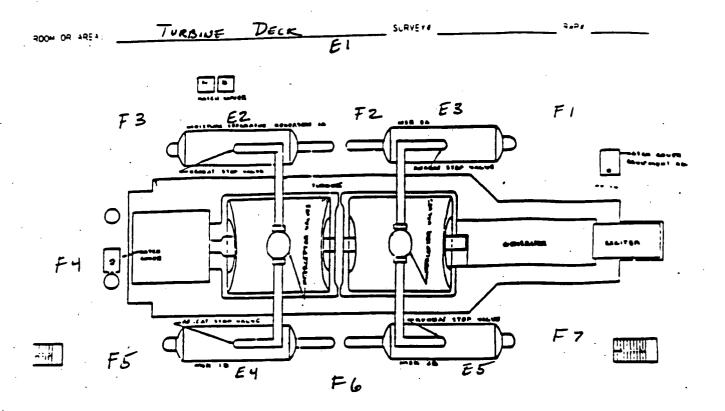

3


Ë


Ë

ž ä ä 5 Ë

Termination Dr:26 4 ر///

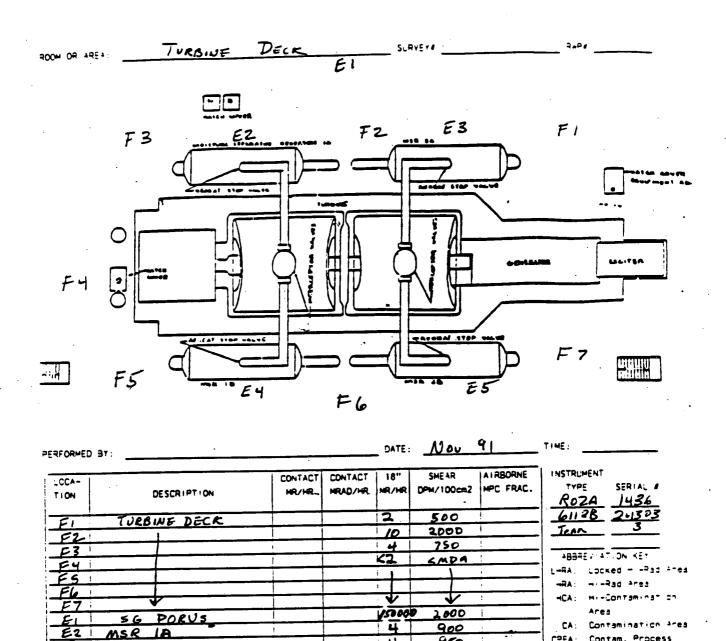







FHS:87-5782

3.4B-38




CCA-		DESCRIPTION	CONTACT MR/HR	CONTACT MRAD/HR	18" MR/HR	SMEAR DPM/100cm2	MPC FRAC.	INSTRUM	E SERIAL #
FI	TURB	INF DECK			1 42	SADA		611-	28 2.1303
F2		1					1	Ican	
F3 1			i.		1				
FY I								• 1	EF ATION KET
FSI							<u> </u>		LockedPad 1-
F6									
F7		V					<u>.</u>		HI-Contamination
EI	56	PORUS			10	<b></b>	:	·	Area Contamination are
E2 1	MSR	(A			122				Contam, Process
E3	MSR	2A	1						Ecuip. Area
EYI	MSR	1B			$\overline{}$				Auroprine Rad Are
ESI	MSR	28						-	Rad Area
1									Rad Material are
<u> </u>							- <u>-</u>		Step-Off Dad
HMENTS:	MD	A = 70dpm	Deur	Survey	No	n. 91	1009 - 111	E#:	Equip, Location
			1	1					Mot Spot Locar d

O

FMS:87-5782

3.4B-39



950

LADA 1

i

1116-1500

¥

91

U

122

Nov

162

1

DRILL SWENCH

FMS:87-5782

MSR

MSR

MSR

MSR

E3 1

EYI

E5 1

COMMENTS:

- I

la

24

1B

28

MDA = 70dom

3.4B-40

CPEA: Contam. Process

Rad Area

ARA:

RA:

RMA :

SCP :

€#:

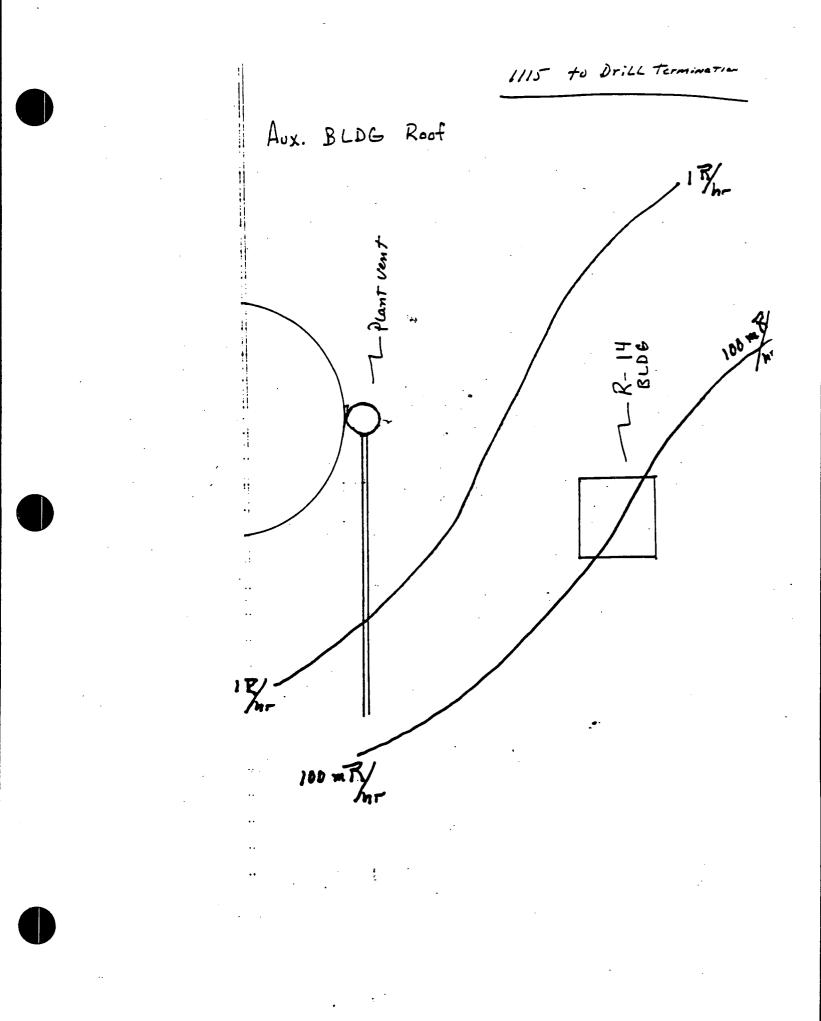
F.4 -

Page :

Equip. Area

Step-Off Pac

borne Rad Area


Rad Material area

Equip. Location

_ 01

Fipor Location

H#: Hot Spot Locat on



# CAROLINA POWER AND LIGHT COMPANY ROBINSON NUCLEAR PROJECT DEPARTMENT

1993 DEFERRED EXERCISE

# 3.4C OFFSITE RADIOLOGICAL INFORMATION

CON-94-0222 RNPD-94-03-R0 01/25/94 04:16 PM

SHEET 4 PAGE 1

RADIATION MONITORS AND SOURCE TERM

08:30 AM 08:45 AM 09:00 AM 09:15 AM 09:30 AM 09:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:00 AM 11:15 AM 11:30 AM 11:45 AM

SOURCE TERMS				
	COL	DCF	TEDM	C

_ _ . . . . . . . . . . .

SECONDARY RELEASE ACTIVITY	uCi/ml	0.00E+00 0.00E+00 0.00E+00 2.03E-03 3.74E-03 4.96E-03 6.94E-03 7.71E-03 4.44E-03 3.02E-03 2.24E-03 4.24E-04 3.16E+00 5.27E+00
S/G WATER ACTIVITY	uCi/ml	0.00E+00 0.00E+00 0.00E+00 1.05E-03 1.93E-03 2.56E-03 3.58E-03 3.98E-03 2.30E-03 1.57E-03 1.17E-03 2.25E-04 1.92E+00 3.19E+00
S/G BLOWDOWN MONITOR	CPM	0.00E+00 0.00E+00 0.00E+00 1.10E+03 2.02E+03 2.68E+03 3.75E+03 4.16E+03 2.40E+03 1.63E+03 1.21E+03 9.08E+02 6.76E+06 1.13E+07
MAIN STEAM/PORV ACTIVITY	uCi/ml	0.00E+00 0.00E+00 0.00E+00 2.03E-03 3.74E-03 4.96E-03 6.94E-03 7.71E-03 4.44E-03 3.02E-03 2.24E-03 4.24E-04 3.16E+00 5.27E+00
MAIN STEAM MONITOR (MSL ONL	Y)mR/hr	0.00E+00 0.00E+00 0.00E+00 2.62E-02 5.00E-02 7.95E-02 9.98E-02 9.92E-02 4.57E-02 2.29E-02 9.99E-03 1.33E-03 2.35E+01 3.74E+01
COND. AIR EJECTOR	CPM .	0.00E+00 0.00E+00 0.00E+00 4.34E+03 8.01E+03 1.06E+04 1.49E+04 1.65E+04 1.09E+04 7.23E+03 4.79E+03 3.17E+03 2.10E+03 1.39E+03
• • • • • • • • • • • • • • • • • • • •		·····

MONITOR			ALARM								10:15 AM 1						
R2	CV LOW RANGE	mR/hr	100		11	11		11	11	10.00 AM	10:15 AM 1 11	0:30 AM	10:45 AM				
R4	CHARGING PUMP AREA	mR/hr	50		6		6	6	6	6		6	6	11	11	11	21
R7	IN-CORE INST. AREA	mR/hr	200	8.0	8.0	8.0	8.0	8.0	8.0	7.0	6.0	5.1	4.1	3.1	6	714	858
R9	LETDOWN LINE AREA	mR/hr	3000	70	62	62	62	62	62	62	62	61	4.1 61	,. 3.1 ,. 61	2.1	1.1	8.9
R11	CV AIR PART.	CPM	40K	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	61	7135	8577
R12	CV AIR GAS	CPM	~2-3K	1200	1200	1200	1200	1200	1200	1200	1200 ²	1200	1200	1200	20000	20000	20000
R14A	PLANT VENT PART.	CPM	2000000	700	700	700	844	1109	1460	1951	2495	1889	1200	1200	1200	1200	1200
R14B	PLANT VENT IODINE	CPM	1400000	20	20	20	30	47	71	104	142	1005	74	56	1045 44	928	851
R14C	PLANT VENT GAS LOW	CPM	1500	40	40	40	184	449	800	1291	1836	1229	827	561	385	36 268	30
R14D	PLANT VENT GAS MID	CPM	136000	10	8	8	8	8	8		8	1225	8	501	365	268	191
R14E	PLANT VENT GAS HIGH	CPM	150000	10	.30	30	30	30	30	30	30	30	30	30	30	8 30	30
R15	COND. AIR EJECTOR	CPM	1500	15	15	15	4359	8023	10631	14868	16504	10932	7243	4801	3184	2113	1404
R19A	SG "A" BLOWDOWN	CPM	3600	2000	2000	2000	3096	4021	3568	3166	2810	2494	2213	1964	1743	1547	1373
R19B	SG "B" BLOWDOWN	CPM	3700	1000	1000	1000	1001	1001	1001	1001	1001	1000	1000	1000	1000	1000	1000
R19C	SG "C" BLOWDOWN	CPM	3300	1000	1000	1000	1001	1001	1001	1001	1001	1000	1000	1000	1000	1000	1000
R23P	RADWASTE BLDG PART.	CPM	9800	60	60	60	60	60	60	60	60	60	60	60	60	60	60
R231	RADWASTE BLDG IOD.	CPM	1350	10	10	10	10	10	10	10	10	10	10	10	10	10	10
R23NG	RADWASTE BLDG GAS	CPM	1000	20	20	20	20	20	20	20	20	20	20	20	20	20	20
R31A	MAIN STEAM "A"	mR/hr	12	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.3	23.8	37.7
R31B	MAIN STEAM "B"	mR/hr	12	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	23.8	0.4
R31C	MAIN STEAM "C"	mR/hr	12	0.6	0.6	0.6	0.6	0.6	0.6	0.6	. 0.6	0.6	0.6	0.6	0.4	0.4	0.4
R32A	CV HIGH RANGE	R/hr	10-1000	1	1	1	1	1	1	1	1	1	1	1	1	1	1
R32B	CV HIGH RANGE	R/hr	10-1000	1	1	1	1	1	1	1	1	1	1	1	1	. L 1	1
R33	MONITOR BLDG AREA	mR/hr	100	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35

:

----

SHEET 4 PAGE 2

2

12:00 PM 12:15 PM 12:30 PM 12:45 PM 01:00 PM 01:15 PM 01:30 PM

SOURCE	TERMS			•						
SECONDA	RY RELEASE ACTIVITY	uCi/m	nl	8.16E+00	1.03E+01	1.17E+01	1.15E+01	1.12E+01	1.06E+01	1.19E+01
S/G WAT	ER ACTIVITY	uCi/m	n1			7.02E+00				
S/G BLO	WDOWN MONITOR	CPM				2.50E+07				
MAIN ST	EAM/PORV ACTIVITY	uCi/m	11			1.17E+01				
MAIN ST	EAM MONITOR (MSL ONLY	)mR/hr	<del>.</del>			5.05E+01				
COND. A	IR EJECTOR	CPM				4.03E+02				
• • • • • • • •										• • • • • • • • • • •
MONITOR	S		ALARM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	01:00 PM	01:15 PM	01:30 PM
R2	CV LOW RANGE	mR/hr	100		37		48	48	47	45
R4	CHARGING PUMP AREA	mR/hr	50	923	896	871	835	799	766	741
R7	IN-CORE INST. AREA	mR/hr	200	22.7	44.5	72.2	103.9	134.9	165.1	193.7
R9	LETDOWN LINE AREA	mR/hr	3000	9227	8960	8713	8350	7,995	7664	7414
R11	CV AIR PART.	CPM	40K	20000	20000	20000	20000	20000	20000	20000
R12	CV AIR GAS	CPM	~2-3K	1200	1200	1200	1200	1200	1200	1200
R14A	PLANT VENT PART.	CPM	2000000	800	766	744	729	719	713	708
R14B	PLANT VENT IODINE	CPM	1400000	27	25	23	22	21	21	21
R14C	PLANT VENT GAS LOW	CPM	1500	140	106	84	69	59	. 53	48
R14D	PLANT VENT GAS MID	CPM	136000	8	8	8	8	8	8	8
R14E	PLANT VENT GAS HIGH	CPM	150000	30	30	30	30	30	30	30
R15	COND. AIR EJECTOR	CPM	1500	935	624	418	282	192	132	. 92
R19A	SG "A" BLOWDOWN	CPM	3600	1218	1081	1000	1000	1000	1000	1000
R19B	SG "B" BLOWDOWN	CPM	3700	1000	1000	1000	1000	1000	1000	1000
R19C	SG "C" BLOWDOWN	CPM	3300	1000	1000	1000	1000	1000	1000	1000
R23P	RADWASTE BLDG PART.	CPM	9800	5	6	7	7	7	6	7
R231	RADWASTE BLDG IOD.	CPM	1350	1	1	1	1	1	1	1
R23NG	RADWASTE BLDG GAS	CPM	1000	2	2	2	2	2	2	2
R31A	MAIN STEAM "A"	mR/hr	12	43.5	44.6	50.8	55.1	48.5	29.7	26.4
R31B	MAIN STEAM "B"	mR/hr	12	0.4	0.4	0.4	0.4	0.4	0.4	0.4
R31C	MAIN STEAM "C"	mR/hr	12	0.6	0.6	0.6	0.6	0.6	0.6	0.6
R32A	CV HIGH RANGE	R/hr	10-1000	1	1	1	1	1	. 1	1
R32B	CV HIGH RANGE	R/hr	10-1000	1	1	1	1	1	1	1
R33	MONITOR BLDG AREA	mR/hr	100	0.35	0.35	0.35	0.35	0.35	0.35	0.35





# ROBINSON PROJECT EXERCISE MARCH 1994 SOURCE TERM

	08:30 AM 09:15 AM 09:30 AM 09:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:00 AM 11:15 AM 11:30 AM 11:45 AM 12:00 PM 12:15 PM 12:30 PM
NG RELEASE RATE (CI/SEC)	0.00E+00 1.44E-04 2.65E-04 3.51E-04 4.91E-04 1.17E-02 5.36E-03 2.71E-03 7.95E-03 1.04E-03 7.36E+00 8.49E+00 9.76E+00 9.63E+00 1.55E+01
I RELEASE RATE (CI/SEC)	0.00E+00 9.60E-06 1.77E-05 2.35E-05 3.28E-05 1.38E-04 6.58E-05 3.99E-05 1.04E-04 1.90E-05 1.16E+00 1.39E+00 1.66E+00 1.71E+00 2.55E+00

### PART RELEASE RATE

0.00E+00 1.44E-04 2.65E-04 3.51E-04 4.91E-04 6.56E-04 2.58E-04 1.66E-04 1.82E-04 2.95E-05 7.98E-02 1.17E-01 1.67E-01 2.00E-01 2.46E-01

.

1

.

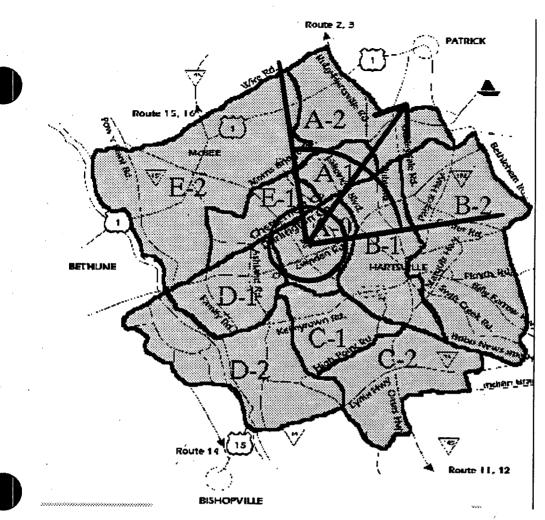
£

· ·

· ·



### ROBINSON PROJECT EXERCISE MARCH 1994 SOURCE TERM 1


	08:30 AM 12:45 PM 01:00 PM 01:15 PM 01:30 PM
NG RELEASE RATE (CI/SEC)	0.00E+00 1.67E+01 1.49E+01 8.57E+00 7.16E+00
I RELEASE RATE (CI/SEC)	0.00E+00 2.69E+00 2.41E+00 1.52E+00 1.37E+00

### PART RELEASE RATE

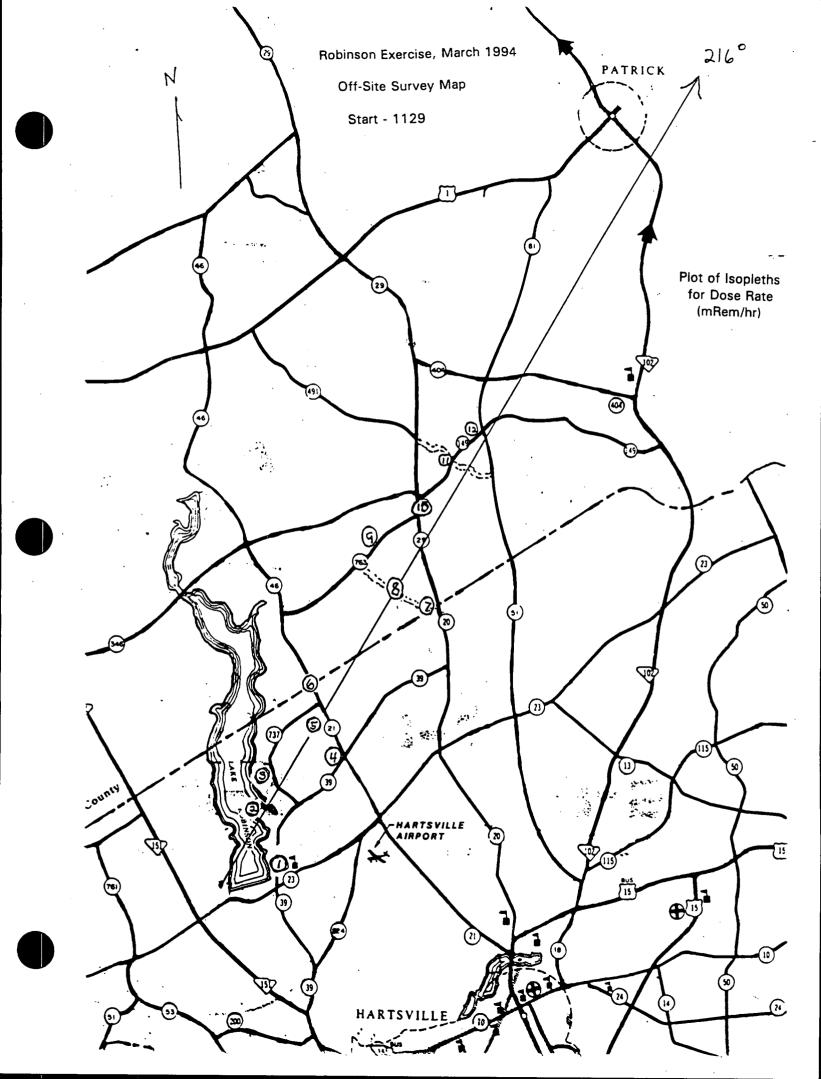
0.00E+00 2.47E-01 2.36E-01 2.01E-01 2.16E-01

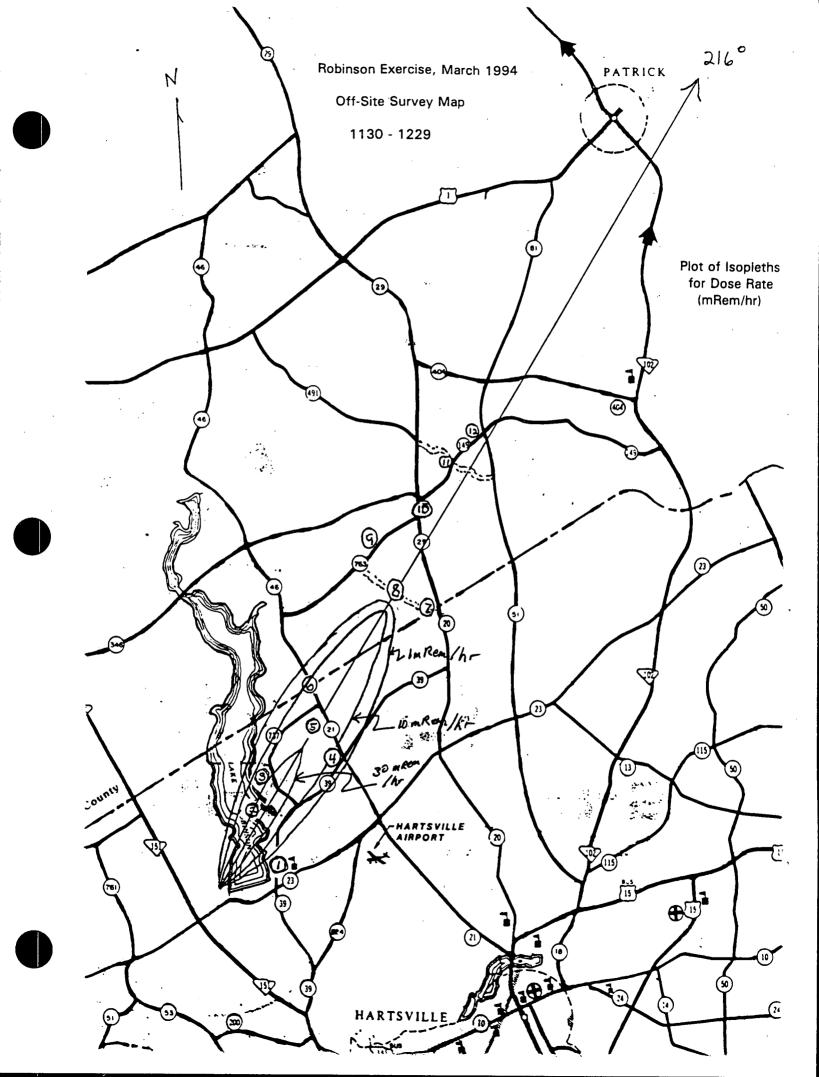
2

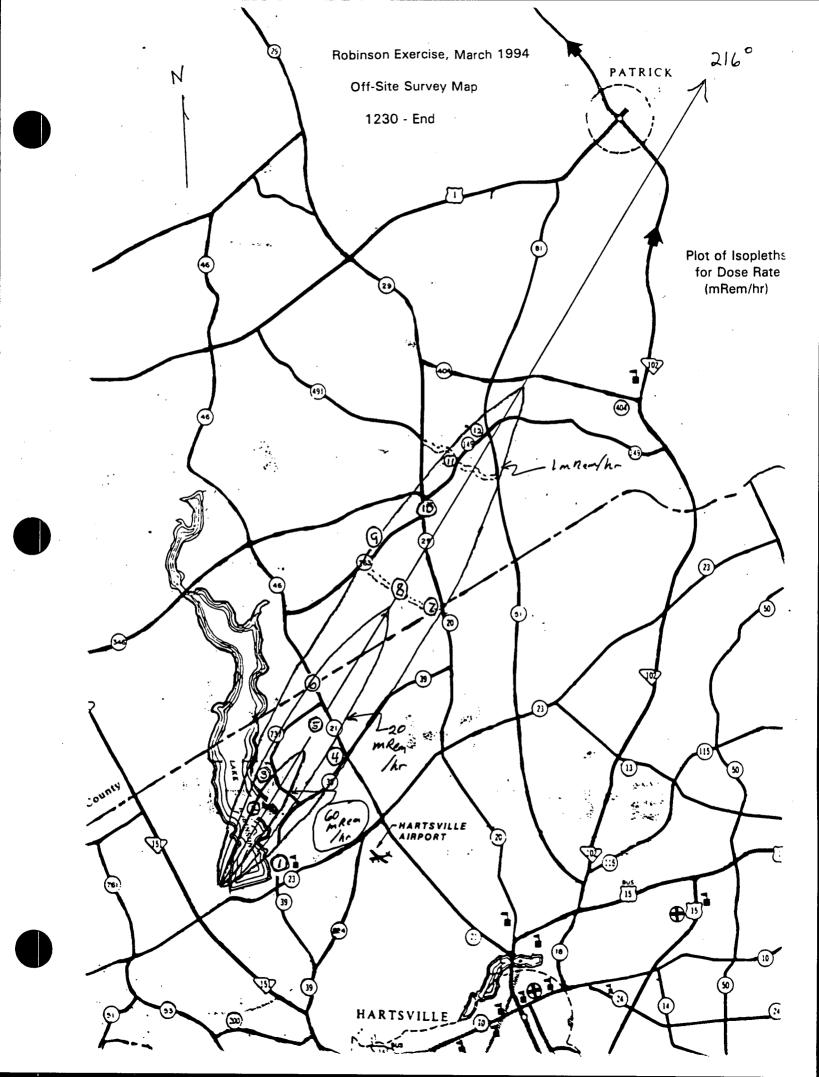
Robinson

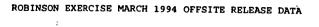


WIND DIR. 216 degrees


EXIT


### ROBINSON ANNUAL EXERCISE 03/31/94


### Sampling Points


•

#	Description	Distance (Downwind)	Degrees (From Plume)
1.	Johnson's Landing	0.7	32
2.	Atkinson's Landing	1.21	16.5
3.	Easterling's Landing where gas line crosses	1.77	0
4.	Grantham's Crossroads	2.73	12.5
5.	Secondary Road 21 @ plume centerline	3.16	0
<b>6</b> .	County line on Secondary Road 21	3.38	5.5
7.	Secondary Road 20	5.36	8.0
8.	Dirt road at plume centerline	5.42	0
9.	Prospect Church on Secondary Road 763	5.87	4.0
10.	Beaver Dam Creek Bridge on Secondary Road 29 (Chesterfield Co.)	6.58	1.0
11.	On dirt road near the intersection with Secondary Road 29 (Chesterfield Co.)	7.43	0
12.	Ousleydale Baptist Church Secondary Road 149 (Chesterfield Co.)	8.02	0









Ŷ

TIME:	08:30 AM	•			are "as rea								02/01/94	11:43 AM	SHEET	•
OFF SI	TE FIELD D	ATA		San	oly the airt mpled. value based					ATION READIN		OFF SITE	LABORATORY		1. Multiply veg. v	-
AMBIEN	r RADIATIO	N READINGS			C means cpm			-	IODINE	PART.		CONTAMINA	TION SAMPL	E RESULTS	No. of grams in :	sample.
	1 METER	ABOVE SURF	ACE		6" ABOVE S	URFACE			AIRBORNE		VEGETAT'N SAMPLE	IODINE AIRBORNE	PART AIRBORNE	IODINE	IODINE PARTIC	TLD
SAMPLE	CW	Dose Rate	D/R	HP-210 C/R	Dose Rate CW	Dose Rate OW	LUD-19 D/R	HP-210 . C/R	HP-210 cpm/cfm	HP-210 cpm/cfm	HP-210 mR/hr	uCi/cc	uCi/cc	SURFACE uCi/m ²	VEGETAT'N VEG	DOSE
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	Cpm	SAMPLE	SAMPLE	contact			,	por/g por/g	nicen
1	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
2 3	0	0.0 0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
4.	0	0.0	0.0 0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
5	0	0.0	0.0	0.0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0	0.00E+00		0.00	0.00E+00 0.00E+00	0.0
6	0	0.0	0.0	0.0	0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	. 0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
7	0	0.0	0.0	0.0	0	. 0.0	0.0	0.0	0.0	0.0	0	10.00E+00			0.00E+00 0.00E+00	0.0
8 -	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00 0.00E+00	0.00	0.00E+00 0.00E+00	0.0
9	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0		0.00E+00		0.00E+00 0.00E+00 0.00E+00 0.00E+00	0.0
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00			0.00E+00 0.00E+00	0.0 0.0
11	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0		0.00E+00	0.00	0.00E+00 0.00E+00	0.0
12	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0. <u>0</u>	0	0.00E+00			0.00E+00 0.00E+00	0.0

.

•

4

•

TIME:	08:45 AM				are "as rea								02/01/94	11:43 AM	S	HEET	2
OFF SIT	E FIELD D	ATA		San	oly the airb mpled. value based		•			ATION READIN		OFF SITE	LABORATORY	DATA	1. Multiply No. of gr		-
AMBIENT	RADIATIO	N READINGS	8	4. ERRATI	C means cpm	to high	to be rel	iable				CONTAMINA	TION SAMPL	E RESULTS			· ·
	1 METER 7	ABOVE SURF	ACE		6" ABOVE S	URFACE			IODINE AIRBORNE	<b>PART.</b> AIRBORNE	VEGETAT'N SAMPLE	IODINE	PART AIRBORNE	. IODINE SURFACE	IODINE VEGETAT'N	PARTIC	TLD DOSE
SAMPLE	Dose Rate CW	Dose Rate OW	LUD-19 D/R	HP-210 C/R	Dose Rate CW	Dose Rate OW	LUD-19 D/R	HP-210 C/R	HP-210 cpm/cfm	HP-210 cpm/cfm	HP-210 mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/q	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact	462,00	ue1, ce	uci/	perid	per/g	
1	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
2	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
3	0	0.0	. 0.0	0.0	0	0.0	0.0	0.0	0.0	. 0.0	. 0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
4	0		0.0	0.0	. 0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
5	0	0.0	0.0	0.0	0	0.0	0.0	0.0	. 0.0	0.0	· 0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
6	0	0.0	0.0	0.0	. 0	0.0	0.0	0.0	0.0	0.0	0	\$0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
7	0	. 0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
8	0	0.0	0.,0	0.0	0	0.0	0.0	0.0	0.0	Q.Q	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
9	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
11	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
12	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0

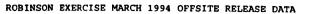
:

		,														
TIME:	09:00 AM			1. Zeros	are "as read	d"				•			02/01/94	11:43 AM	SHEET	3
				2. Multip	ply the airbo	orne valu	es by the	e ft^3 ·	CONTAMIN	ATION READIN	igs					
OFF SIT	TE FIELD D	ATA		Sar	mpled.				READINGS	MADE OUTSIE	E PLUME	OFF SITE	LABORATORY	DATA	1. Multiply veq. v	alues by
				3. Veg. v	value based o	ona 1 ki	logram sa	ample							No. of grams in	2
AMBIENT	r RADIATIC	N READINGS		4. ERRAT	IC means cpm	to high	to be re	- liable	·			CONTAMINA	TION SAMPL	E RESILTS	Not or grams in	sumpre.
					-	-			IODINE	PART.	VEGETAT'N					
	1 METER	ABOVE SURF	ACE		6" ABOVE SI	URFACE			AIRBORNE		SAMPLE	IODINE	PART	IODINE	IODINE PARTIC	TLD
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VEG	
	Dose Rate	Dose Rate	LUD-19	HP-210	Dose Rate 1	Dose Rate	LUD-19	HP-210	HP-210	HP-210	HP-210	AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VEG	DOSE
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2		
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact	uci/ee	uc1/00		pCi/g pCi/g	mRem
			,	cpin		Mac/ 111	un, m	Cpm	SPAFLE	SAMPLE	concact					
1	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
2	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	
3	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	
4 .	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	<b>0</b> .0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	
5	0	0.0	0.0	0.0	0 [`]	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	
6	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	. 0	\$0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	
7	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00		0.00		
8	· 0	0.0	0.0	0.0	. 0	0.0	0.0	0.0	0.0	0.0	0		0.00E+00		0.00E+00 0.00E+00	
9	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	•. 0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00		0.00	0.00E+00 0.00E+00	
11	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	
12	0	0.0	0.0	0.0	. o	0.0	0.0	0.0	0.0	0.0	0		0.00E+00	0.00	0.00E+00 0.00E+00	
										- • •	v	0.002.00	0.000+00	0.00	5.55 <u>5</u> +00 0.00 <u>6</u> +00	0.0

.

.

. •


.

.

. .

-

:



	09:15 AM Te field di	DATA		2. Multip	are "as read oly the airbo mpled.		es by the	e ft^3		TION READIN			02/01/94		SHEET	4
				-	value based o	on a 1 ki	logram sa	umple	KEADING5	MADE OUISIL	DE PLOME	OFF SITE	LABORATORY	DATA	1. Multiply veg. va	-
AMBIEN	radiatio	N READINGS			IC means cpm		-	•		•		CONTAMINA	TION SAMPL	E RESULTS	No. of grams in s	ample.
									IODINE	• PART.	VEGETAT'N					
	1 METER /	ABOVE SURF	ACE		6" ABOVE SI	URFACE		•	AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE PARTIC	TLD
	Dose Rate	Dose Rate	1.ITD_19	HP-210	Dose Rate I	Dogo Bato	1170 10	WD 010				AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VEG	DOSE
SAMPLE	CW	OW OW	D/R	C/R	CW	OW OW	D/R	HP-210 C/R	HP-210 cpm/cfm	HP-210 cpm/cfm	HP-210 mR/hr	uCi/cc				
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	.contact	uci/ce	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem
1	0	0.0	0.0													
2	0	0.0	0.0		0	0.0	0.1	0.1	0.0	0.0	0		9.95E-11	0.00	0.00E+00 0.00E+00	0.0
2	0	0.0		0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
د ۸	-		0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	. 0.00	0.00E+00 0.00E+00	0.0
	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0 <b>4</b> 0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
5	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
6	0	0.0	0.0	0.0	0	0.0	0.0	0.0	· 0.0	0.0	0	10.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
7	0	0.0	0:0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
8	0	0.0	0.0	0.0	. 0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
9	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	• 0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
11	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
12	0	0.0	0.0	0.0	• 0	0.0	0.0	0.0	0.0	0.Q	· 0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0

.

. .

TIME:	09:30 AM			1. Zeros	are "as rea	ıd"					· .		02/01/94	11:44 AM	SH	EET	. 5
				2. Multig	ly the airb	orne valu	es by the	e ft^3	CONTAMIN	ATION READIN	NGS						
OFF SI	TE FIELD D	ATA		San	mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply	veg. va	lues by
				3. Veg. v	value based	on a 1 ki	logram sa	ample							No. of gra	ms in s	ample.
AMBIEN	r RADIATIC	N READINGS	;	4. ERRATI	(C means cpm	to high	to be re	liable				CONTAMINA	TION SAMPL	E RESULTS			•
									IODINE	` PART.	VEGETAT'N						
	1 METER	ABOVE SURF	ACE		6" ABOVE S	URFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE P	ARTIC	TLD
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
	Dose Rate	Dose Rate	LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	HP-210	HP-210	HP-210						
SAMPLE	CW	OM	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact				<u> </u>		
1	0	0.0	0.1	0.1	0	0.0	0.1	0.1	0.0								
2	0	0.0	0.2	0.2	0	0.0	0.1	0.1	0.0	0.0	0		1.83E-10		1.99E-06 2.		0.0
-	0	0.0	0.5	0.2	0	0.0	0.2	0.3		0.0	0		4.47E-10	0.00	0.00E+00 0.		0.0
4	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.1	0		1.18E-09	•			0.0
5	0	0.0	0.0	0.0	0	0.0	0.0			0.0	0		0.00E+00	0.00	0.00E+00 0.		0.0
5	0	0.0	0.0	0.0	0	0.0		0.0	0.0	0.0	0	·•	0.00E+00	0.00	0.00E+00 0.		0.0
7	-	0.0					0.0	0.0	0.0	0.0	0	\$0.00E+00		0.00	0.00E+00 0.	00E+00	0.0
,	0		0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.	00E+00	0.0
в	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.	00E+00	0.0
9	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	. 0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.	00E+00	0.0
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.	00E+00	0.0
11	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.	00E+00	0.0
12	0	0.0	0.0	0.0	. 0	0.0	0.0	0.0	0.0	0. Q	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.0	00E+00	0.0

TIME:	09:45 AM			1. Zeros	are "as rea	d"							02/01/94	11:44 AM	SHEET	6
				2. Multip	oly the airb	orne valu	es by the	e ft^3	CONTAMINA	ATION READIN	NGS .					v
OFF SI	TE FIELD D	ATA			mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply veg. va	lues by
					value based		-	• • •							No. of grams in s	ample.
AMBIEN	T RADIATIC	N READINGS	}	4. ERRATI	IC means cpm	to high	to be rel	liable				CONTAMINA	TION SAMPL	E RESULTS		-
									IODINE	PART.	VEGETAT'N					
	1 METER	ABOVE SURF	ACE		6" ABOVE S	URFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE PARTIC	TLD
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VEG	DOSE
SAMPLE		Dose Rate		HP-210	Dose Rate			HP-210	HP-210	HP-210	HP-210					
POINT	mR/hr	OW mR/hr	D/R	C/R	CW	OW .	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem
POINT	mk/IIL	mk/nr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact					
1	0	0.0	0.1	0.2	0	0.0	0.2	0.2	0.0	.0.0	0	1 628-13	2.43E-10	0.00		
2	0	0.0	0.4	0.5	0	0.0	0.5	0.6	0.0	0.1	0		8.25E-10	0.00	5.67E-06 8.49E-01 8.97E-06 1.34E+00	0.0
3	0	0.0	1.1	1.3	0	0.0	1.3	1.6	0.0	0.2	ů O	1.45E-12			2.36E-05 3.53E+00	0.0
4 ·	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0		7.20E-11	, 0.00 , 0.00	0.00E+00 0.00E+00	0.0 0.0
5	0	0.0	0.2	0.3	0	0.0	0.3	0.3	0.0	0.0	0		4.86E-10	0.00	0.00E+00 0.00E+00	0.0
6	0	0.0	0.1	0.1	0	0.0	0.1	0.2	0.0	0.0	0	¥ 1.72E-13		0.00	0.00E+00 0.00E+00	0.0
7	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00		0.00	0.00E+00 0.00E+00	0.0
8	0	0.0	0., 0	0.0	0	0.0	0.0	0.0	0.0	0.0	0		0.00E+00	0.00	0.00E+00 0.00E+00	0.0
9	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
10	0	0.0	0.0	0.0	0	. 0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
11	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
12	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0

:

10:00 AM			1. Zeros	are "as rea	d"			•		·		02/01/94	11:44 AM	SHEET	7
							ft^3	CONTAMINA	TION READIN	GS					
TE FIELD D	ATA		San	mpled.				READINGS	MADE OUTSID	E PLUME	OFF SITE	LABORATORY	DATA	1. Multiply veg. va	lues by
			3. Veg. v	alue based	on a 1 ki	logram sa	mple								
T RADIATIC	N READINGS		4. ERRATI	C means cpm	to high	to be rel	iable				CONTAMINA	TION SAMPL	E RESULTS	5	
								IODINE	PART.	VEGETAT'N					
1 METER	ABOVE SURF	ACE		6" ABOVE S	URFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE PARTIC	TLD
			·								AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VEG	DOSE
Dose Rate	Dose Rate	LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	HP-210	HP-210	HP-210					
	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem
mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cþm	SAMPLE	SAMPLE	contact					
0	0.0	0.2	0.3	0	0.0	0.2	0.3	0.0	0.0	0	2.27E-13	3.40E-10	0.00	1.05E-05 1.58E+00	0.0
0	0.0	0.6	0.8	0	0.0	0.7	0.9	0.0	0.1	0	7.30E-13	1.09E-09	0.00	2.55E-05 3.82E+00	0.0
0	0.0	1.7	2.0	0	0.0	2.0	2.3	0.0	0.3	0	1.92E-12	2.88E-09	0.00	6.71E-05 1.01E+01	0.0
0	0.0	0.1	0.1	0	0.0	0.1	0.1	0.0	0.0	0	8.86E-14	1.33E-10	0.00	1.44E-06 2.16E-01	0.0
0	0.0	0.5	0.5	, 0	0.0	0.5	0.7	0.0	0.1	. 0	5.98E-13	8.95E-10	0.00	9.73E-06 1.46E+00	0.0
0	0.0	0.2	0.3	· 0	0.0	0.3	0.3	0.0	0.0	0	3.17E-13	4.75E-10	0.00	5.16E-06 7.73E-01	0.0
- 0	0.0	0.0	0.0	0	. 0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0. <u>0</u>	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
	T RADIATIC 1 METER Dose Rate CW mR/hr 0 0 0 0 0 0 0 0 0 0 0 0 0	TE FIELD DATA         T RADIATION READINGS         1 METER ABOVE SURF         Dose Rate Dose Rate         CW       OW         mR/hr       mR/hr         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0	TE FIELD DATA         T RADIATION READINGS         1 METER ABOVE SURFACE         Dose Rate Dose Rate LUD-19         CW       OW         D/R         mR/hr       mR/hr         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0	2. Multig TE FIELD DATA Sam 3. Veg. V T RADIATION READINGS 4. ERRATION 1 METER ABOVE SURFACE Dose Rate Dose Rate LUD-19 HP-210 CW OW D/R C/R mR/hr mR/hr uR/hr cpm 0 0.0 0.2 0.3 0 0.0 0.2 0.3 0 0.0 0.6 0.8 0 0.0 0.1 0.1 0 0.0 0.1 0.1 0 0.0 0.1 0.1 0 0.0 0.5 0.5 0 0.0 0.0 0.2 0 0.0 0.0 0.0 0 0.0 0.0 0.0 1 METER ABOVE SURFACE	2. Multiply the airbox         TE FIELD DATA         Sampled.         3. Veg. value based         T RADIATION READINGS         1 METER ABOVE SURFACE         6* ABOVE SURFACE         Dose Rate Dose Rate LUD-19         HP-210       Dose Rate         CN       OW         D/R       C/R         CN       ON         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0 <td>2. Multiply the airborne value         TE FIELD DATA         Sampled.         3. Veg. value based on a 1 ki         T RADIATION READINGS         1 METER ABOVE SURFACE         Dose Rate Dose Rate LUD-19         HP-210       Dose Rate Dose Rate Dose Rate         CN       OW         D/R       C/R         CN       ON         O       0.0         O       0.0         O       0.0         O       0.0         O       0.0</td> <td>2. Multiply the airborne values by the Sampled.         3. Veg. value based on a 1 kilogram sa         3. Veg. value based on a 1 kilogram sa         4. ERRATIC means cpm to high to be rel         1 METER ABOVE SURFACE         6* ABOVE SURFACE         CW       OW         Dose Rate Dose Rate LUD-19         HP-210       Dose Rate Dose Rate LUD-19         CW       OW         D/R       C/R         CW       OW         D/R       C/R         CW       OW         D/R       C/R         CW       OW         O       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0</td> <td>2. Multiply the airborne values by the ft^3 Sampled.         3. Veg. value based on a 1 kilogram sample         4. ERRATIC means cpm to high to be reliable         1 METER ABOVE SURFACE         CW       OW         DOSE Rate Dose Rate LUD-19       HP-210         CW       OW         D/R       C/R         CW       OW         D/R       C/R         CW       OW         D/R       C/R         CW       OW         D/R       C/R         CW       ON         O       0.0         O       0.0     &lt;</td> <td>2. Multiply the airborne values by the ft*3 Sampled.         CONTAMINA READINGS           TE FIELD DATA         Sampled.         READINGS           3. Veg. value based on a 1 kilogram sample         IODINE           T RADIATION READINGS         4. ERRATIC means cpm to high to be reliable         IODINE           1 METER ABOVE SURFACE         6* ABOVE SURFACE         AIRBORNE           Dose Rate Dose Rate LUD-19         HP-210         Dose Rate Dose Rate LUD-19         HP-210           CW         OW         D/R         C/R         CW         OW         D/R         C/R         cpm/cfm           mR/hr         mR/hr         uR/hr         cpm         mR/hr         mR/hr         uR/hr         cpm         SAMPLE           0         0.0         0.2         0.3         0         0.0         0.2         0.3         0.0           0         0.0         0.2         0.3         0         0.0         0.0         0.0           0         0.0         0.2         0.3         0         0.0         0.0         0.0           0         0.0         0.2         0.3         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0</td> <td>2. Multiply the airborne values by the ft^3       CONTAMINATION READING         TE FIELD DATA       Sampled.       READINGS made outsing         3. Veg. value based on a 1 kilogram sample       TRADIATION READINGS       4. ERRATIC means cpm to high to be reliable         1 METER ABOVE SURFACE       6* ABOVE SURFACE       IODINE       PART.         AIRBORNE       AIRBORNE       AIRBORNE       AIRBORNE         Dose Rate       DOSE Rate       LUD-19       HP-210       HP-210         CM       OW       D/R       C/R       CN       OW       D/R       C/R       cpm/cfm         MR/hr       mR/hr       uR/hr       cpm       mR/hr       mR/hr       uR/hr       cpm/cfm       cpm/cfm         0       0.0       0.2       0.3       0       0.0       0.2       0.3       0.0       0.0         0       0.0       0.2       0.3       0       0.0       0.0       0.0       0.0         0       0.0       0.2       0.3       0       0.0       0.0       0.0       0.0         0       0.0       0.2       0.3       0       0.0       0.0       0.0       0.0         0       0.0       0.2       0.3       0.</td> <td>2. Multiply the airborne values by the ft*3 Sampled.       CONTAMINATION READINGS MADE OUTSIDE PLUME         TRADIATION READINGS       Sampled.       CONTAMINATION READINGS MADE OUTSIDE PLUME         T RADIATION READINGS       IDDINE       SERAT DINGS       CONTAMINATION READINGS MADE OUTSIDE PLUME         I METER ABOVE SURFACE       IDDINE       PART.       VEGETAT'N         IMENTION READINGS       CONTAMINATION READINGS MADE OUTSIDE PLUME         IDDINE       PART.       VEGETAT'N         ABOVE SURFACE       IDDINE       PART.       VEGETAT'N         Dose Rate LUD-19       HP-210       HP-</td> <td>2. Multiply the airborne values by the ft*3         CONTAMINATION READINGS         OFF SITE           TE FIELD DATA         2. Multiply the airborne values by the ft*3         CONTAMINATION READINGS         OFF SITE           T RADIATION READINGS         4. ERRATIC means cpm to high to be reliable         CONTAMINATION READINGS         CONTAMINATION READINGS           T RADIATION READINGS         CONTAMINATION READINGS         CONTAMINATION READINGS           T RADIATION READINGS         CONTAMINATION READINGS         CONTAMINATION READINGS           T RADIATION READINGS         CONTAMINATION READINGS           I METE SURFACE         IODINE         PART.         VEGETAT'N           I METE XBOVE SURFACE         CONTAMINATION READINGS           Dose Rate LUD-19         HP-210         HP-210         HP-210           MPC         C/R         CONTAMINATION READINGS           CONTAMINATION READINGS           DOSE Rate LUD-19         HP-210         HP-210         HP-210         HP-210           MET<td>2. Multiply the airborne values by the ft*3 Sampled.       CONTAMINATION READINGS       OFF SITE LABORATORY         TE FIELD DATA       Sampled.       READINGS MADE OUTSIDE PLUME       OFF SITE LABORATORY         3. Veg. value based on a 1 kilogram sample       CONTAMINATION READINGS       CONTAMINATION READINGS       OFF SITE LABORATORY         1 METER ABOVE SURFACE       6* ABOVE SURFACE       IODINE       PART.       VEGETAT'IN       CONTAMINATION READINGS         0 0.0       0.0       CR       CN       OH       D/R       C/R       CN       OH       D/R       C/R       cm       AIRBORNE       AIRBORNE       SAMPLE       IODINE       PART.       AIRBORNE       A</td><td>2. Multiply the airborne values by the ft*3 Sampled.       CONTAMINATION READINGS READINGS MADE OUTSIDE PLUME       OFF SITE LABORATORY DATA         3. Veg. value based on a 1 kilogram sample       -       CONTAMINATION READINGS       CONTAMINATION READINGS         T RADIATION READINGS       4. ERRATIC means cpm to high to be reliable       CONTAMINATION READINGS       OFF SITE LABORATORY DATA         1 METER ABOVE SURFACE       6" ABOVE SURFACE       IODINE       PART.       VEGETAT'N AIRBORNE       CONTAMINATION SAMPLE         Dose Rate LUD-19       HP-210       Dose Rate LUD-19       HP-210       HP-210       HP-210       HP-210       HP-210         MR/hr       mR/hr       uR/hr       cpm       mR/hr       uR/hr       cpm       cu/i/cc       uCi/cc       <t< td=""><td>2. Multiply the airborne values by the ft*3 Sampled.       CONTAMINATION READINGS       OFF SITE LABORATORY DATA       I. Multiply veg. value based on a 1 kilogram sample         1. Veg. value based on a 1 kilogram sample       3. Veg. value based on a 1 kilogram sample       No. of grams in a contamination READINGS         1 METER ABOVE SURFACE       6* ABOVE SURFACE       6* ABOVE SURFACE       IODINE       PART.       VEGETAT'N         1 METER ABOVE SURFACE       6* ABOVE SURFACE       6* ABOVE SURFACE       INP-210       HP-210       HP-2</td></t<></td></td>	2. Multiply the airborne value         TE FIELD DATA         Sampled.         3. Veg. value based on a 1 ki         T RADIATION READINGS         1 METER ABOVE SURFACE         Dose Rate Dose Rate LUD-19         HP-210       Dose Rate Dose Rate Dose Rate         CN       OW         D/R       C/R         CN       ON         O       0.0         O       0.0         O       0.0         O       0.0         O       0.0	2. Multiply the airborne values by the Sampled.         3. Veg. value based on a 1 kilogram sa         3. Veg. value based on a 1 kilogram sa         4. ERRATIC means cpm to high to be rel         1 METER ABOVE SURFACE         6* ABOVE SURFACE         CW       OW         Dose Rate Dose Rate LUD-19         HP-210       Dose Rate Dose Rate LUD-19         CW       OW         D/R       C/R         CW       OW         D/R       C/R         CW       OW         D/R       C/R         CW       OW         O       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0         0       0.0	2. Multiply the airborne values by the ft^3 Sampled.         3. Veg. value based on a 1 kilogram sample         4. ERRATIC means cpm to high to be reliable         1 METER ABOVE SURFACE         CW       OW         DOSE Rate Dose Rate LUD-19       HP-210         CW       OW         D/R       C/R         CW       OW         D/R       C/R         CW       OW         D/R       C/R         CW       OW         D/R       C/R         CW       ON         O       0.0         O       0.0     <	2. Multiply the airborne values by the ft*3 Sampled.         CONTAMINA READINGS           TE FIELD DATA         Sampled.         READINGS           3. Veg. value based on a 1 kilogram sample         IODINE           T RADIATION READINGS         4. ERRATIC means cpm to high to be reliable         IODINE           1 METER ABOVE SURFACE         6* ABOVE SURFACE         AIRBORNE           Dose Rate Dose Rate LUD-19         HP-210         Dose Rate Dose Rate LUD-19         HP-210           CW         OW         D/R         C/R         CW         OW         D/R         C/R         cpm/cfm           mR/hr         mR/hr         uR/hr         cpm         mR/hr         mR/hr         uR/hr         cpm         SAMPLE           0         0.0         0.2         0.3         0         0.0         0.2         0.3         0.0           0         0.0         0.2         0.3         0         0.0         0.0         0.0           0         0.0         0.2         0.3         0         0.0         0.0         0.0           0         0.0         0.2         0.3         0.0         0.0         0.0         0.0           0         0.0         0.0         0.0         0.0	2. Multiply the airborne values by the ft^3       CONTAMINATION READING         TE FIELD DATA       Sampled.       READINGS made outsing         3. Veg. value based on a 1 kilogram sample       TRADIATION READINGS       4. ERRATIC means cpm to high to be reliable         1 METER ABOVE SURFACE       6* ABOVE SURFACE       IODINE       PART.         AIRBORNE       AIRBORNE       AIRBORNE       AIRBORNE         Dose Rate       DOSE Rate       LUD-19       HP-210       HP-210         CM       OW       D/R       C/R       CN       OW       D/R       C/R       cpm/cfm         MR/hr       mR/hr       uR/hr       cpm       mR/hr       mR/hr       uR/hr       cpm/cfm       cpm/cfm         0       0.0       0.2       0.3       0       0.0       0.2       0.3       0.0       0.0         0       0.0       0.2       0.3       0       0.0       0.0       0.0       0.0         0       0.0       0.2       0.3       0       0.0       0.0       0.0       0.0         0       0.0       0.2       0.3       0       0.0       0.0       0.0       0.0         0       0.0       0.2       0.3       0.	2. Multiply the airborne values by the ft*3 Sampled.       CONTAMINATION READINGS MADE OUTSIDE PLUME         TRADIATION READINGS       Sampled.       CONTAMINATION READINGS MADE OUTSIDE PLUME         T RADIATION READINGS       IDDINE       SERAT DINGS       CONTAMINATION READINGS MADE OUTSIDE PLUME         I METER ABOVE SURFACE       IDDINE       PART.       VEGETAT'N         IMENTION READINGS       CONTAMINATION READINGS MADE OUTSIDE PLUME         IDDINE       PART.       VEGETAT'N         ABOVE SURFACE       IDDINE       PART.       VEGETAT'N         Dose Rate LUD-19       HP-210       HP-	2. Multiply the airborne values by the ft*3         CONTAMINATION READINGS         OFF SITE           TE FIELD DATA         2. Multiply the airborne values by the ft*3         CONTAMINATION READINGS         OFF SITE           T RADIATION READINGS         4. ERRATIC means cpm to high to be reliable         CONTAMINATION READINGS         CONTAMINATION READINGS           T RADIATION READINGS         CONTAMINATION READINGS         CONTAMINATION READINGS           T RADIATION READINGS         CONTAMINATION READINGS         CONTAMINATION READINGS           T RADIATION READINGS         CONTAMINATION READINGS           I METE SURFACE         IODINE         PART.         VEGETAT'N           I METE XBOVE SURFACE         CONTAMINATION READINGS           Dose Rate LUD-19         HP-210         HP-210         HP-210           MPC         C/R         CONTAMINATION READINGS           CONTAMINATION READINGS           DOSE Rate LUD-19         HP-210         HP-210         HP-210         HP-210           MET <td>2. Multiply the airborne values by the ft*3 Sampled.       CONTAMINATION READINGS       OFF SITE LABORATORY         TE FIELD DATA       Sampled.       READINGS MADE OUTSIDE PLUME       OFF SITE LABORATORY         3. Veg. value based on a 1 kilogram sample       CONTAMINATION READINGS       CONTAMINATION READINGS       OFF SITE LABORATORY         1 METER ABOVE SURFACE       6* ABOVE SURFACE       IODINE       PART.       VEGETAT'IN       CONTAMINATION READINGS         0 0.0       0.0       CR       CN       OH       D/R       C/R       CN       OH       D/R       C/R       cm       AIRBORNE       AIRBORNE       SAMPLE       IODINE       PART.       AIRBORNE       A</td> <td>2. Multiply the airborne values by the ft*3 Sampled.       CONTAMINATION READINGS READINGS MADE OUTSIDE PLUME       OFF SITE LABORATORY DATA         3. Veg. value based on a 1 kilogram sample       -       CONTAMINATION READINGS       CONTAMINATION READINGS         T RADIATION READINGS       4. ERRATIC means cpm to high to be reliable       CONTAMINATION READINGS       OFF SITE LABORATORY DATA         1 METER ABOVE SURFACE       6" ABOVE SURFACE       IODINE       PART.       VEGETAT'N AIRBORNE       CONTAMINATION SAMPLE         Dose Rate LUD-19       HP-210       Dose Rate LUD-19       HP-210       HP-210       HP-210       HP-210       HP-210         MR/hr       mR/hr       uR/hr       cpm       mR/hr       uR/hr       cpm       cu/i/cc       uCi/cc       <t< td=""><td>2. Multiply the airborne values by the ft*3 Sampled.       CONTAMINATION READINGS       OFF SITE LABORATORY DATA       I. Multiply veg. value based on a 1 kilogram sample         1. Veg. value based on a 1 kilogram sample       3. Veg. value based on a 1 kilogram sample       No. of grams in a contamination READINGS         1 METER ABOVE SURFACE       6* ABOVE SURFACE       6* ABOVE SURFACE       IODINE       PART.       VEGETAT'N         1 METER ABOVE SURFACE       6* ABOVE SURFACE       6* ABOVE SURFACE       INP-210       HP-210       HP-2</td></t<></td>	2. Multiply the airborne values by the ft*3 Sampled.       CONTAMINATION READINGS       OFF SITE LABORATORY         TE FIELD DATA       Sampled.       READINGS MADE OUTSIDE PLUME       OFF SITE LABORATORY         3. Veg. value based on a 1 kilogram sample       CONTAMINATION READINGS       CONTAMINATION READINGS       OFF SITE LABORATORY         1 METER ABOVE SURFACE       6* ABOVE SURFACE       IODINE       PART.       VEGETAT'IN       CONTAMINATION READINGS         0 0.0       0.0       CR       CN       OH       D/R       C/R       CN       OH       D/R       C/R       cm       AIRBORNE       AIRBORNE       SAMPLE       IODINE       PART.       AIRBORNE       A	2. Multiply the airborne values by the ft*3 Sampled.       CONTAMINATION READINGS READINGS MADE OUTSIDE PLUME       OFF SITE LABORATORY DATA         3. Veg. value based on a 1 kilogram sample       -       CONTAMINATION READINGS       CONTAMINATION READINGS         T RADIATION READINGS       4. ERRATIC means cpm to high to be reliable       CONTAMINATION READINGS       OFF SITE LABORATORY DATA         1 METER ABOVE SURFACE       6" ABOVE SURFACE       IODINE       PART.       VEGETAT'N AIRBORNE       CONTAMINATION SAMPLE         Dose Rate LUD-19       HP-210       Dose Rate LUD-19       HP-210       HP-210       HP-210       HP-210       HP-210         MR/hr       mR/hr       uR/hr       cpm       mR/hr       uR/hr       cpm       cu/i/cc       uCi/cc       uCi/cc <t< td=""><td>2. Multiply the airborne values by the ft*3 Sampled.       CONTAMINATION READINGS       OFF SITE LABORATORY DATA       I. Multiply veg. value based on a 1 kilogram sample         1. Veg. value based on a 1 kilogram sample       3. Veg. value based on a 1 kilogram sample       No. of grams in a contamination READINGS         1 METER ABOVE SURFACE       6* ABOVE SURFACE       6* ABOVE SURFACE       IODINE       PART.       VEGETAT'N         1 METER ABOVE SURFACE       6* ABOVE SURFACE       6* ABOVE SURFACE       INP-210       HP-210       HP-2</td></t<>	2. Multiply the airborne values by the ft*3 Sampled.       CONTAMINATION READINGS       OFF SITE LABORATORY DATA       I. Multiply veg. value based on a 1 kilogram sample         1. Veg. value based on a 1 kilogram sample       3. Veg. value based on a 1 kilogram sample       No. of grams in a contamination READINGS         1 METER ABOVE SURFACE       6* ABOVE SURFACE       6* ABOVE SURFACE       IODINE       PART.       VEGETAT'N         1 METER ABOVE SURFACE       6* ABOVE SURFACE       6* ABOVE SURFACE       INP-210       HP-210       HP-2

.

TIME:	10:15 AM			1. Zeros	are "as rea	ad"							02/01/94	11:45 AM	SHEET	
				2. Multi	ply the airb	oorne valu	ues by the	€ ft^3	CONTAMIN	ATION READIN	NGS		-,,		SABET	8
OFF SI	TE FIELD [	DATA			mpled. value based	on alki	logram s	ample	READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply veg	-
AMBIENT	r RADIATIC	ON READINGS	5		IC means cpm		-	-				CONTAMINA	ATION SAMPL	E RESULTS	No. of grams	in sample.
	1 METER	ABOVE SURF	ACR		6" ABOVE S				IODINE	` PART.	VEGETAT'N					
		Justia point	neu		O ABOVE S	ORFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE PART	IC TLD
	Dose Rate	e Dose Rate	LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	HP-210	HP-210	HP-210	AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VE	G DOSE
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi,	/a m.Rem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact				por, g por	g watem
1	0	0.0	2.9	3.5	0	.0.0	3.7	4.5	0.0	0.0	0	9.57E-13	4.54E-10	0.00	1.74E-05 2.60E	+00 0.0
2	0	0.0	0.9	1.1	0	0.0	1.1	1.3	0.0	0.2	. 0		1.53E-09	0.00	4.74E-05 7.10E	
3	0	0.0	2.5	3.0	0	0.0	2.9	3.5	0.0	0.4	· 0		4.03E-09		1.25E-04 1.87E	
<b>4</b> ·	0	0.0	0.1	0.1	0	0.0	0.1	0.1	0.0	0 ز 0	0		1.76E-10	0.00	4.10E-06 6.14E	
5	0	0.0	0.7	0.8	0	0.0	0.8	1.0	0.0	0.1	0	7.93E-13	1.19E-09	0.00	2.77E-05 4.14E	
6	0	0.0	0.4	0.4	0	0.0	0.4	0.5	0.0	0.1	· 0	¥4.21E-13	6.30E-10	0.00	1.47E-05 2.20E	
7	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E	F00 0.0
8	0	0.0	0.1	0.1	. 0	0.0	0.1	0.1	0.0	•0.0	· 0	1.35E-13	2.03E-10	0.00	0.00E+00 0.00E+	0.0
9	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	. 0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E	00 0.0
10	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	Ó.O	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+	0.0
11	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+	00 0.0
12	0	0.0	0.0	0.0	. 0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+	0.0

.

. .

.

.

'•

:

.

TIME:	10:30 AM		<ol> <li>Zeros are "as read"</li> <li>Multiply the airborne values by the ft³</li> </ol>							:			02/01/94	11:45 AM	S	HEET	9
		,		2. Multig	oly the airb	orne valu	es by th	e ft^3 ·	CONTAMIN	ATION READI	NGS		. , ,		5		9
OFF SIT	E FIELD I	DATA		Sar	mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply	ver ve	lugg by
				3. Veg. v	value based	on a 1 ki	logram s	ample			•				No. of gra		-
AMBIENT	RADIATIO	ON READINGS	3	4. ERRATI	(C means cpm	n to high	to be re	liable				CONTAMINA	TION SAMPL	E RESULTS	No. of gr	uns 111 5	ampie.
									IODINE	` PART.	VEGETAT'N						
	1 METER	ABOVE SURF	ACE		6" ABOVE S	URFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE	PARTIC	TLD
	Dose Rate Dose Rate LUD-											AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
	Dose Rate	Dose Rate	LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	HP-210	HP-210	HP-210						2000
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact						
1	0	0.0	1.4	1.7	0	0.0	1.8	2.2	0.0	0.0	0	4.56E-13	1.79E-10	0.00	4.61E-05 3	968.00	0.0
2	0	0.0	13.1	15.7	0	0.0	16.8	20.1	0.0	0.2	0		2.04E-09		7.81E-05 1		0.0
3	0	0.1	34.4	41.2	0	0.1	44.2	53.0	0.0	0.5	0		5.38E-09		2.06E-04 3		0.0
4	0	0.0	0.2	0.2	0	0.0	0.2	0.2	0.0	0.0	0		2.46E-10		7.63E-06 1		0.0
5	0	0.0	1.0	1.2	0	0.0	1.2	1.4	0.0	0.2	0	1.11E-12	1.66E-09	0.00	5.15E-05 7		0.0
6	0	0.0	0.5	0.7	0	0.0	0.6	0.8	0.0	0.1	0	\$5.88E-13	8.81E-10		2.73E-05 4		0.0
7	0	0.0	0.0	0.0	0	0.0	0.1	0.1	0.0	0.0	0		0.00E+00		0.00E+00 0.		·0.0
8	0	0.0	0,2	0.2	0	0.0	0.2	0.3	0.0	0.0	· 0	2.49E-13	3.73E-10		4.06E-06 6		0.0
9	0	0.0	0.0	0.1	0	0.0	0.1	0.1	0.0	0.0	. 0	7.18E-14	1.07E-10		0.00E+00 0.		0.0
10	0	0.0	0.1	0.1	0	0.0	0.1	0.1	0.0	0.0	0	9.36E-14	1.40E-10	0.00	0.00E+00 0.		0.0
11	0	0.0	0.1	0.1	0	0.0	0.1	0.1	0.0	0.0	0	8.06E-14	1.21E-10	0.00	0.00E+00 0.		0.0
12	0	0.0	0.0	0.1	0-	0.0	0.1	0.1	0.0	0. <u>0</u>	0	7.07E-14	1.06E-10	0.00	0.00E+00 0.		0.0

.



TIME:	10:45 AM			1. Zeros	are "as rea	d"							02/01/94	11:45 AM	SH	EET	10
				2. Multip	ly the airb	orne valu	es by the	e ft^3	CONTAMINA	TION READIN	NGS						
OFF SI	TE FIELD D	ATA		Sam	mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply v	veg. values	by
				3. Veg. v	value based	on a 1 ki	logram sa	ample							No. of gram	ms in sample	•.
AMBIEN	T RADIATIC	N READINGS	ł	4. ERRATI	C means cpm	to high	to be rel	liable				CONTAMINA	TION SAMPL	E RESULTS		_	
									IODINE	-PART.	VEGETAT'N						
	1 METER	ABOVE SURF	ACE		6" ABOVE S	URFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE PA	ARTIC TL	цD
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG DOS	SE
	Dose Rate	Dose Rate	LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	HP-210	HP-210	HP-210						
SAMPLE		OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g p	pCi/g mRe	em
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact						
1	0	0.0	0.8	1.0	o	0.0	1.0	1.2	0.0	0.0	0	2.76E-13	1.15E-10	0.00	5.97E-05 4.5	50E+00	0.0
2	0	0.0	6.4	7.7	0	0.0	8.1	9.7	0.0	0.1	0	2.05E-12	8.05E-10	0.00	2.07E-04 1.3	78E+01	0.0
3	0	0.0	16.9	20.3	0	0.0	21.4	25.7	0.0	0.2	0	5.40E-12	2.12E-09	. 0.00	5.45E-04 4.6	59E+01	0.0
. 4	0	0.0	2.1	2.5	0	0.0	2.7	3.2	0.0	0.0	0	6.92E-13	3.29E-10	0.00	1.26E-05 1.8	38E+00	0.0
5	0	0.0	14.2	17.0	0	0.0	18.2	21.8	0.0	0.2	0	4.67E-12	2.22E-09	0.00	8.47E-05 1.2	27E+01	0.0
6	0	0.0	7.5	9.0	0	0.0	9.7	11.6	0.0	0.1	0	¥.48E-12	1.18E-09	0.00	4.49E~05 6.7	73E+00	0.0
7	0	0.0	0.9	1.1	0	0.0	1.2	1.4	0.0	0.0	0	2.15E-13	2.41E-11	0.00	0.00E+00 0.0	)0E+00	0.0
8	0	0.0	0.3	0.3	0	0.0	0.3	0.4	0.0	0.0	0	3.31E-13	4.95E-10	0.00	1.15E-05 1.7	73E+00	0.0
9	0	0.0	0.1	0.1	0	0.0	0.1	0.1	0.0	0.0	0	1.32E-13	1.98E-10	0.00	2.15E-06 3.2	22E-01	0.0
10	0	0.0	0.1	0.2	0	0.0	0.2	0.2	0.0	0.0	0	1.73E-13	2.58E-10	0.00	2.81E-06 4.2	20E-01	0.0
11	0	0.0	0.1	0.1	0	0.0	0.1	0.2	0.0	0.0	0	1.49E-13	2.23E-10	0.00	2.42E-06 3.6	32E-01	0.0
12	0	0.0	0.1	0.1	0	0.0	0.1	0.1	0.0	0.0	0	1.30E-13	1.95E-10	0.00	2.12E-06 3.1	18E-01	0.0

:

TIME:	11:00 AM				are "as rea	-	es by the	e ft^3	CONTAMIN	TION READIN	NGS		02/01/94	11:45 AM	SHEET	11
OFF SI	TE FIELD I	DATA		San	mpled.					MADE OUTSI		OFF SITE	LABORATORY	DATA	1. Multiply veg. va	luce by
				3. Veg. v	value based	on a 1 ki	logram s	ample							No. of grams in s	-
AMBIEN	T RADIATIO	ON READINGS	6	4. ERRATI	C means cpm	to high	to be re	liable				CONTAMINA	TION SAMPL	E RESULTS	No. of grams in a	sampre.
									IODINE	PART.	VEGETAT'N					
	1 METER	ABOVE SURP	ACE		6" ABOVE S	URFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE PARTIC	TLD
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VEG	DOSE
	Dose Rate	e Dose Rate	LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	HP-210	HP-210	HP-210					2002
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact				r , 5 r - , 5	
1	0	0.0	2.1	2.5	0	0.0	2.6	3.1	0.0	0.0	0	7.21E-13	1.26E-10	0.00	6.80E-05 4.84E+00	0.0
2	0	0.0	3.7	4.4	0	0.0	4.5	5.4	0.0	0.1	0		5.17E-10		2.69E-04 2.02E+01	0.0
3	0	0.0	9.7	11.6	0	0.0	11.9	14.3	0.0	0.1	0	3.27E-12	1.36E-09		7.07E-04 5.33E+01	0.0
4.	0	0.0	1.0	1.2	0	0.0	1.3	1.6	0.0	0.0	0	3.30E-13	1.29E-10	+	3.33E-05 2.87E+00	0.0
5	0	0.0	7.0	8.4	0	0.0	8.8	10.6	0.0	0.1	0	2.23E-12	8.74E-10		2.25E-04 1.93E+01	0.0
6	0	0.0	3.7	4.4	0	0.0	4.7	5.6	0.0	0.0	0	4.18E-12	4.63E-10		1.19E-04 1.03E+01	0.0
7	0	0.0	0.4	0.5	0	0.0	0.6	0.7	0.0	0.0	0	1.29E-13	1.34E-11		6.44E-06 7.24E-02	0.0
8	0	0.0	0.4	0.5	0	0.0	0.5	0.6	0.0	0.1	· O	4.63E-13	6.93E-10	0.00	2.15E-05 3.21E+00	0.0
9	0	0.0	0.2	0.2	0	0.0	0.2	0.2	0.0	. 0.0	0	1.75E-13	2.63E-10	0.00	6.12E-06 9.17E-01	0.0
10	0	0.0	0.2	0.2	0	0.0	0.2	0.3	0.0	0.0	0	2.29E-13	3.42E-10	0.00	7.98E-06 1.20E+00	0.0
11	0	0.0	0.2	0.2	0	0.0	0.2	0.2	0.0	0.0	0	1.97E-13	2.95E-10	0.00	6.88E-06 1.03E+00	0.0
12	0	0.0	0.1	0.2	0	0.0	0.2	0.2	0.0	0.0	O	1.73E-13	2.59E-10	0.00	6.03E-06 9.03E-01	0.0

	TIME:	11:15 AM				are "as rea bly the airb		es by the	ft^3	CONTAMINA	TION READIN	NGS		02/01/94	11:45 AM	SHEET	12
	OFF SIT	TE FIELD D	DATA		San	pled. alue based		-			MADE OUTSI		OFF SITE	LABORATORY	DATA	<ol> <li>Multiply veg. va No. of grams in s</li> </ol>	
	AMBIENT	RADIATIC	N READINGS	;	4. ERRATI	C means cpm	to high	to be rel	iable				CONTAMINA	TION SAMPL	E RESULTS		ampie.
		1 METER	ABOVE SURF	ACE		6" ABOVE S	URFACE			IODINE AIRBORNE	-PART. AIRBORNE	VEGETAT'N SAMPLE	IODINE AIRBORNE	PART AIRBORNE	IODINE	IODINE PARTIC VEGETAT'N VEG	TLD
	•	Dose Rate	Dose Rate	LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	HP-210	HP-210	HP-210	MIRDORNE	AIRDONNE	SURFACE	VEGETATI N VEG	DOSE
	SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem
	POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact					
	1	0	0.0	0.4	0.5	0	0.0	0.5	0.6	0.0	.0.0	0	1.32E-13	2.04E-11	0.00	8.96E-05 5.22E+00	0.0
	2	0	0.0	9.3	11.1	0	0.0	11.8	14.2	0.0	0.1	0	3.24E-12	5.67E-10	0.00	3.06E-04 2.18E+01	0.0
	3	0	0.0	24.4	29.3	0	0.0	31.1	37.3	0.0	0.1	0	8.53E-12	1.49E-09	0.00	8.05E-04 5.74E+01	0.0`
	4	0	0.0	0.6	0.7	0	0.0	0.7	0.9	0.0	0.0	0	2.00E-13	8.32E-11	0.00	4.32E-05 3.25E+00	0,0
	5	0	0.0	4.0	4.8	0	.0.0	4.9	5.9	0.0	0.1	0	1.35E-12	5.61E-10	0.00	2.92E-04 2.20E+01	0.0
	6	0	0.0	2.1	2.5	0	0.0	2.6	3.1	0.0	0.0	0	7.15E-13	2.98E-10	0.00	1.55E-04 1.16E+01	0.0
	7	0	0.0	0.2	0.3	0	0.0	0.3	0.3	0.0	0.0	0	8.15E-14	7.60E-12	0.00	1.03E-05 1.13E-01	0.0
~	8	0	0.0	5.9	7.1	0	0.0	7.6	9.1	0.0	0.1	0	1.95E-12	9.25E-10	0.00	3.54E-05 5.29E+00	0.0
	9	0	0.0	0.2	0.3	. 0	0.0	0.3	0.3	0.0	0.0	0	2.45E-13	3.67E-10	0.00	1.14E-05 1.70E+00	0.0
	10	0	0.0	0.3	0.4	0	.0.0	0.3	0.4	0.0	0.0	0	3.20E-13	4.79E-10	0.00	1.48E-05 2.22E+00	0.0
	11	0	0.0	0.3	0.3	0	0.0	0.3	0.4	0.0	0.0	0	2.76E-13	4.13E-10	0.00	1.28E-05 1.91E+00	0.0
	12	0	0.0	0.2	0.3	0	0.0	0.3	0.3	0.0	0. Q	0	2.42E-13	3.62E-10	0.00	1.12E-05 1.68E+00	0.0

:

:

						•										
TIME:	11:30 AM			1. Zeros	are "as rea	d"			•				02/01/94	11:46 AM	SHEET	13
				2. Multig	oly the airb	orne valu	es by the	e ft^3	CONTAMINA	TION READIN	GS					
OFF SI	TE FIELD C	ATA		Sar	mpled.				READINGS	MADE OUTSID	E PLUME	OFF SITE	LABORATORY	DATA	1. Multiply veg. va	lues by
				3. Veg. v	value based	on a 1 ki	logram sa	ample							No. of grams in s	-
AMBIEN	T RADIATIC	N READINGS	l	4. ERRATI	C means cpm	to high	to be rel	liable				CONTAMINA	TION SAMPL	E RESULTS		-
			•						IODINE	PART.	VEGETAT'N					
	1 METER	ABOVE SURF	ACE		6* ABOVE S	URFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE PARTIC	TLD
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VEG	DOSE
		e Dose Rate		HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	HP-210	HP-210	HP-210				<i>,</i> .	
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact					
1	2	2.6	1739.1	2086.9	2	3.3	2258.9	2710.7	0.8	5.5	0	8.04E-09	5.53E-08	0.00	9.36E-05 5.28E+00	0.0
. 2	0	0.0	2.0	2.4	0	0.0	2.3	2.8	0.0	0.0	0	5.93E-13	9.19E-11	0.00	4.03E-04 2.35E+01	0.0
3	0	0.0	5.2	6.2	0	0.0	6.0	7.3	0.0	0.0	0	1.56E-12	2.42E-10	0.00	1.06E-03 6.18E+01	0.0
4.	0	0.0	1.5	1.8	Ο.	0.0	1.9	2.3	• 0.0	0.0	0	5.21E-13	9.13E-11	0.00	4.92E-05 3.50E+00	0.0
5	0	0.0	10.1	12.1	. 0	0.0	12.9	15.4	0.0	0.1	. 0	3.52E-12	6.16E-10	0.00	3.32E-04 2.36E+01	0.0
6	0	0.0	5.3	6.4	0	0.0	6.8	8.2	0.0	0.0	í o	1.87E-12	3.27E-10	0.00	1.76E-04 1.25E+01	0.0
7 -	•	0.0	0.6	0.8	0	• 0.0	0.8	1.0	0.0	0.0	0	4.76E-14	3.97E-12	0.00	1.28E-05 1.35E-01	0.0
8	0	0.0	2,9	3.5	0	0.0	. 3.7	4.4	0.0	0.0	0	9.28E-13	3.64E-10	0.00	9.38E-05 8.07E+00	0.0
9	0	0.0	3.1	3.8	0	0.0	4.0	4.8	0.0	0.0	0	1.03E-12	4.91E-10	0.00	1.88E-05 2.81E+00	0.0
10	0	0.0	4.1	4.9	0	0.0	5.3	6.3	0.0	0.1	0	1.35E-12	6.40E-10	0.00	2.44E-05 3.66E+00	0.0
11	0	0.0	3.5	4.2	0	0.0	4.5	5.4	0.0	0.1	0	1.16E-12	5.51E-10	0.00	2.11E-05 3.15E+00	0.0
12	· 0	0.0	3.1	3.7	0	0.0	4.0	4.8	0.0	0. Q	0	1.02E-12	4.83E-10	0.00	1.85E-05 2.77E+00	0.0

a.

.

TIME:	11:45 AM			1. Zeros	are "as rea	d"							02/01/94	11:46 AM	SHEET	14
				2. Multip	ly the airb	orne valu	es by the	e ft^3	CONTAMINA	TION READIN	IGS					
OFF SIT	E FIELD D.	АТА		San	mpled.				READINGS	MADE OUTSIE	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply veg. va	lues by
				3 Verr u	value based	on a 1 ki	logram g									•
				-			-	•							No. of grams in s	ample.
AMBIENT	RADIATIO	N READINGS	5	4. ERRATI	C means cpm	to high	to be rel	liable	•			CONTAMINA	TION SAMPLE	RESULTS		
									IODINE	PART.	VEGETAT'N					
	1 METER	ABOVE SURF	ACE		6" ABOVE S	URFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE PARTIC	TLD
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VEG	DOSE
	Dose Rate	Dose Rate	LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	HP-210	HP-210	HP-210					DODE
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R					a) (			_
			•						cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact					
1	2	3.0	2013.3	2415.9	3	3.8	2612.7	3135.3	1.0	8.1	0	9.62E-09	8.10E-08	0.00	2.41E-01 1.71E+02	0.1
2	8	11.5	7819.1	9382.9	10	14.9	10156.4	12187.6	3.6	24.8	0	3.61E-08	2.48E-07	0.00	4.21E-04 2.38E+01	0.0
3	21	30.3	20591.6	24709.9	27	39.3	26746.9	32096.2	9.5	65.4	· 0	9.52E-08	6.54E-07	0.00	1.11E-03 6.26E+01	0.0
4	0	0.0	0.3	0.4	. 0	0.0	0.4	0.4	0.0	0.0	0	9.53E-14	1.48E-11	0.00	6.48E-05 3.78E+00	0.0
5	0	0.0	2.1	2.6	0	0.0	2.5	. o	0.0	0.0	0	6.43E-13	9.98E-11	0.00	4.38E-04 2.55E+01	0.0
6	0	0.0	1.1	1.4	0	0.0	1.3	1.6	0.0	0.0	0	3.41E-13	5.29E-11	0.00	2.32E-04 1.35E+01	0.0
7	0	0.0	0.9	1.0	0	0.0	0.9	1.1	0.2	0.7	0		7.11E-09		1.42E-05 1.47E-01	0.0
8	0.	0.0	1.7	2.0	0	0.0	2.1	2.5	0.0	0.0	0		2.34E-10		1.22E-04 9.16E+00	0.0
9	0	0.0	1.5	1.8	. 0	0.0	1.9	2.3	0.0							
										0.0	0		1.93E-10		4.97E-05 4.28E+00	0.0
10	0	0.0	2.0	2.4	0	0.0	2.5	3.1	0.0	0.0	0	6.42E-13	2.52E-10	0.00	6.49E-05 5.58E+00	0.0
11	0	0.0	1.7	2.1	0	0.0	2.2	2.6	0.0	0.0	0	5.53E-13	2.17E-10	0.00	5.59E-05 4.81E+00	0.0
12	0	0.0	1.5	1.8	0	0.0	1.9	2.3	0.0	0. Q	0	4.85E-13	1.91E-10	0.00	4.90E-05 4.22E+00	0.0

INSON EXERCISE MARCH 1994 OFFSITE RELEASE DAT

TIME:	IME: 12:00 PM 1. Zeros are "as read"												02/01/94 11:46 AM			SHEET				
				2. Multip	ply the airb	orne valu	ues by the	e ft^3 ·	CONTAMINA	TION READIN	NGS						15			
OFF SIT	OFF SITE FIELD DATA				mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply v	veq. va	lues by			
				3. Veg. v	value based	on a 1 ki	llogram sa	ample					•		No. of gram					
AMBIENT	AMBIENT RADIATION READINGS			4. ERRATI	IC means cpm	n to high	to be re	liable				CONTAMINA	CONTAMINATION SAMPLE RESULTS							
									IODINE	PART.	VEGETAT'N									
	1 METER ABOVE SURFACE			6" ABOVE SURFACE					AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE PA	ARTIC	TLD			
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE			
	Dose Rate Dose Rate LUD-19			HP-210 Dose Rate Dose Rate LUD-19				HP-210	HP-210	HP-210	HP-210									
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g p	pCi/g	mRem			
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact									
1	2	3.4	2327.0	2792.4	3	4.4	3016.8	3620.1	1.2	11.6	0	1.15E-08	1.16E-07	0.00	5.30E-01 4.1	146+02	0,3			
2	9	13.3	9051.9	10862.2	12	17.3	11747.0	14096.4	4.3	36.4	0		3.64E-07		1.08E+00 7.6		0.8			
3	24	35.0	23838.1	28605.7	31	45.5	30935.8	37123.0	11.4	95.9	0		9.59E-07		2.86E+00 2.0		2.1			
4	1	1.8	1258.0	1509.6	2	2.4	1634.1	1960.9	0.6	410	0	5.82E-09	4.00E-08		6.77E-05 3.8		0.0			
5	8	12.5	8487.7	10185.3	11	16.2	11Ŏ24.9	13229.9	3.9	27.0	0	3.92E-08	2.70E-07	0.00	4.57E-04 2.5		0.0			
6	5	6.6	4502.1	5402.5	6	8.6	5847.9	7017.4	2.1	14.3	0	2.08E-08	1.43E-07	0.00	2.42E-04 1.3		0.0			
7	1	0.9	583.2	699.8	1	1.1	757.4	908.8	0.6	1.7	0	5.97E-09	1.75E-08	0.00	7.28E-02 2.1		0.0			
8	0	0.0	4.2	5.0	. 0	0.0	5.3	6.4	0.0	0.0	. 0	1.47E-12	2.57E-10	0.00	1.39E-04 9.8		0.0			
9	0	0.0	0.9	1.1	0	0.0	1.1	1.3	0.0	<b>0.0</b>	•. 0	2.98E-13	1.24E-10	0.00	6.45E-05 4.8	86E+00	0.0			
10	0	0.0	1.1	1.4	0	0.0	1.4	1.7	0.0	0.0	0	3.89E-13	1.62E-10		8.41E-05 6.3		0.0			
11	0	0.0	1.0	1.2	0	0.0	1.2	1.5	0.0	0.0	0	3.35E-13	1.39E-10	0.00	7.25E-05 5.4		0.0			
12	0	0.0	0.9	1.0	• 0	0.0	1.1	1.3	0.0	0. <u>0</u>	o	2.94E-13	1.22E-10	0.00	6.36E-05 4.7	79E+00	0.0			

.

1

. **4** 

٠

:

.

**'**•

:

TIME:	12:15 PM			1. Zeros	are "as rea	id"							02/01/94	11:46 AM	SHEET	16
				2. Multip	oly the airb	orne valu	es by the	e ft^3	CONTAMINA	TION READIN	NGS				-	
OFF SI	TE FIELD I	ATA		San	mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply veg.	values by
				3. Veg. value based on a 1 kilogram sample											No. of grams in	
AMBIENT RADIATION READINGS				4. ERRATI	C means cpm	to high	to be rel	liable				CONTAMINA	TION SAMPL	E RESULTS	-	•
		•							IODINE	PART.	VEGETAT'N					
	1 METER ABOVE SURFACE				6" ABOVE S	URFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE PARTIC	TLD
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VEG	DOSE
	Dose Rate	e Dose Rate	LUD-19	HP-210	Dose Rate	Dose Rate	e LUD-19	HP-210	HP-210	HP-210	HP-210					
SAMPLE		OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	Cpm	SAMPLE	SAMPLE	contact				•	
1	2	3.4	2311.3	2773.5	3	4.4	2991.8	3590.1	1.2	13.8	0	1.19E-08	1.38E-07	0.00	8.76E-01 7.62E+0	2 0.4
2	10	15.4	10462.4	12554.9	14	19.9	13563.6	16276.4	5.2	52.1	0	5.18E-08	5.21E-07		2.38E+00 1.86E+0	
3	28	40.5	27552.8	33063.4	36	52.5	35719.9	42863.9	13.6	137.1	0	1.36E-07	1.37E-06	0.01	6.28E+00 4.90E+0	3 2.9
· 4	1	2.1	1456.4	1747.6	. 2	2.8	1890.0	2268.0	0.7	ş.9	0	6.96E-09	5.86E-08	0.00	1.75E-01 1.24E+0	2 0.0
5	10	14.4	9826.0	11791.1	13	18.7	12751.6	15301.9	4.7	39.6	. 0	4.70E-08	3.96E-07	0.00	1.18E+00 8.35E+0	2 0.3
6	5	7.7	5211.9	6254.3	7	9.9	6763.7	8116.5	2.5	21.0	0	≫2.49E-08	2.10E-07	0.00	6.25E-01 4.43E+0	2 0.2
7	1	1.0	675.3	810.4	1	1.3	876.1	1051.3	1.0	2.9	0	1.00E-08	2.94E-08	0.00	2.52E-01 7.39E+0	1 0.0
8	0	0.0	0.9	1.1	. 0	0.0	1.0	1.2	0.0	• 0.0	0	2.68E-13	4.16E-11	0.00	1.83E-04 1.06E+0	1 0.0
9	0	0.0	2.2	2.7	0	0.0	2.8	3.4	0.0	0.0	• 0	7.78E-13	1.36E-10	0.00	7.35E-05 5.23E+0	0.0
10	0	0.0	2.9	3.5	0	0.0	3.7	4.4	0.0	0.0	0	1.01E-12	1.78E-10	0.00	9.58E-05 6.82E+0	0.0
11	0	0.0	2.5	3.0	0	0.0	3.2	3.8	0.0	0.0	0	8.74E-13	1.53E-10	0.00	8.25E-05 5.88E+0	0.0 *
12	0	0.0	2.2	2.6	. 0	0.0	2.8	3.4	0.0	0.0	0	7.67E-13	1.34E-10	0.00	7.24E-05 5.16E+0	0.0



TIME:	12:30 PM				are "as rea ly the airb		ies by the	e ft^3	CONTAMINA	TION READIN	NGS		02/01/94	11:46 AM	S	HEET	17		
OFF SI	OFF SITE FIELD DÀTA AMBIENT RADIATION READINGS				pled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE LABORATORY DATA 1. Multiply veg. values by							
					alue baséd	onalki	llogram sa	ample							No. of gr	-	•		
AMBIEN					C means cpm	to high	to be rel	liable				CONTAMINATION SAMPLE RESULTS							
									IODINE	PART.	VEGETAT'N								
	1 METER	ABOVE SURI	FACE		6" ABOVE S	URFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE	PARTIC	TLD		
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE		
	Dose Rate Dose Rate LUD-19			HP-210 Dose Rate Dose Rate LUD-19 H				HP-210	HP-210	HP-210	HP-210								
SAMPLE		OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem		
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact								
1	4	5.4	3706.6	4447.9	5	7.1	4800.1	5760.1	1.8	17.0	0	1.778-08	1.70E-07	0.00	1.23E+00 1	195+02	0.5		
. 2	10	15.3	10391.7	12470.1	13	19.8	13451.3	16141.5	5.3	62.2	0		6.22E-07		3.94E+00 3		1.4		
3	27	40.2	27366.6	32840.0	35	52.1	35424.0	42508.8	14.0	163.9	0		1.64E-06		1.04E+01 9		3.8		
4	2	2.5	1683.3	2020.0	2	3.2	2182.3	2618.7	0.8	8.4	0		8.38E-08	•	3.83E-01 3		0.1		
5	11	16.7	11357.1	13628.6	15	21.6	14723.6	17668.3	5.6	56.5	0	5.63E-08	5.65E-07		2.59E+00 2		0.6		
6	6	8.9	6024.1	7228.9	8	11.5	7809.7	9371.7	3.0	30.0	0	2.98E-08	3.00E-07		1.37E+00 1		0.3		
7	1	1.1	780.2	936.3	1	1.5	1011.3	1213.6	1.3	3.7	0	1.27E-08	3.73E-08	0.00	5.52E-01 1	.62E+02	0.0		
8	4	5.2	3540.7	4248.9	5	6.8	4599.2	5519.0	1.6	11.3	. 0	1.64E-08	1.13E-07		1.91E-04 1		0.0		
9	0	0.0	0.5	0.6	0	0.0	0.6	0.7	0.0	0.0	. 0	1.42E-13	2.21E-11	0.00	9.68E-05 5	.64E+00	0.0		
10	0	0.0	0.6	0.7	0	0.0	0.7	0.9	0.0	0.0	0	1.86E-13	2.88E-11	0.00	1.26E-04 7	.35E+00	0.0		
11	0	0.0	0.5	0.6	0	0.0	0.6	0.7	0.0	0.0	0	1.60E-13	2.48E-11	0.00	1.09E-04 6	.33E+00	0.0		
12	0	0.0	0.5	0.6	. 0	0.0	0.5	0.7	0.0	0.Q	0	1.40E-13	2.18E-11	0.00	9.54E-05 5	.56E+00	0.0		

TIME:	12:45 PM			1. Zeros	are "as rea	d"							02/01/94	11:46 AM	SHI	er ·	18	
				2. Multip	oly the airb	orne valu	es by th	e ft^3	CONTAMINA	ATION READIN	NGS .		,,,				10	
OFF SIT	TE FIELD D	DATA		San	mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE LABORATORY DATA 1. Multiply veg. values by						
				3. Veg. 1	value based	ona 1 k	ilogram s	ample							No. of gram	-	•	
AMBIENI	AMBIENT RADIATION READINGS				(C means cpm	to high	to be re	liable				CONTAMINA	TION SAMPLE	E RESULTS	5			
									IODINE	-PART.	VEGETAT'N							
	1 METER ABOVE SURFACE				6" ABOVE S	URFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE PARTIC	ARTIC	TLD	
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE	
		Dose Rate	•	HP-210	Dose Rate 1	Dose Rate	e LUD-19	HP-210	HP-210	HP-210	HP-210							
SAMPLE	CW	WO	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g p	Ci/g	mRem	
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact							
1	4	5.9	4021.5	4825.8	5	7.6	5203.9	6244.7	1.9	17.1	0	1.862-08	1.71E-07	0.00	1.76E+00 1.6	95+03	0.7	
2	17	24.5	16665.2	19998.3	22	31.7	21581.7	25898.1	7.9	76.6	0		7.66E-07		5.54E+00 5.2		2.0	
3	44	64.5	43888.0	52665.6	57	83.5	56835.5	68202.7	20.9	201.6	0		2.02E-06		1.46E+01 1.3	-	5.1	
4 .	2	2.5	1671.9	2006.3	2	3.2	2164.2	2597.0	0.9	10.0	0	8.57E-09	1.00E-07		6.34E-01 5.5		0.2	
5	11	16.6	11280.4	13536.5	15	21.5	14601.6	17521.9	5.8	67.6	0	5.78E-08	6.76E-07	0.00	4.27E+00 3.7	2E+03	1.2	
6	6	8.8	5983.4	7180.1	8	11.4	7745.0	9294.0	3.1	35.8	0	3.07E-08	3.58E-07		2.27E+00 1.9		0.6	
7	1	1.1	774.3	929.2	1	1.5	1002.3	1202.7	1.4	4.0	. 0	1.36E-08	4.04E-08	0.00	9.32E-01 2.7	4E+02	0.1	
8	4	6.0	4099.0	4918.8	5	7.8	5319.5	6383.3	2.0	16.5	0	1.96E-08	1.65E-07	0.00	4.91E-01 3.4		0.2	
9	2	2.8	1878.2	2253.9	2	3.6	2439.7	2927.6	0.9	6.0	0	8.68E-09	5.97E-08	0.00	1.01E-04 5.7	1E+00	0.0	
10	2	3.6	2448.7	2938.5	. 3	4.7	3180.7	3816.8	1.1	7.8	0	1.13E-08	7.78E-08	0.00	1.32E-04 7.4	4E+00	0.0	
11	2	3.1	2109.4	2531.3	3	4.0	2739.9	3287.9	1.0	6.7	0	9.75E-09	6.70E-08	0.00	1.14E-04 6.4	1E+00	0.0	
12	2	2.7	1850.7	2220.9	2	3.5	2404.0	2884.7	0.9	5.9	0	8.56E-09	5.88E-08	0.00	9.96E-05 5.6	2E+00	0.0	



#### ROBINSON EXERCISE MARCH 1994 OFFSITE RELEASE DATA

:

TIME:	01:00 PM				are "as rea bly the airb		ies by the	s ft^3	CONTRACTOR	TION READIN			02/01/94	11:47 AM	SHEET	19
OFF SI	TE FIELD D	ATA		San	npled. value based		-			MADE OUTSIE		OFF SITE	LABORATORY	DATA	<ol> <li>Multiply veg. va No. of grams in s</li> </ol>	
AMBIEN	r RADIATIO	N READINGS	5	4. ERRATI	C means cpm	to high	to be rel	liable				CONTAMINA	TION SAMPL	E RESULTS	Hot of gramb in a	ampre.
	1 METER	ABOVE SURE	FACE		6" ABOVE S	URFACE			IODINE AIRBORNE	-PART. AIRBORNE	VEGETAT'N SAMPLE	IODINE	PART	IODINE	IODINE PARTIC	TLD
	Dose Rate	Dose Rate	e LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	. HP-210	HP-210	HP-210	AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VEG	DOSE
SAMPLE	CW	OW ·	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	ငႃၣၮ	SAMPLE	SAMPLE	contact		,		perig perig	nikem
1	4	5.3	3612.0	4334.4	5	6.9	4666.1	5599.4	1.7	16.3	0	1.67E-08	1.63E-07	0.00	2.32E+00 2.20E+03	0.8
. 2	18	26.6	18081.2	21697.4	23	34.4	23397.1	28076.5	8.4	77.0	0	8.37E-08	7.70E-07	0.01	7.92E+00 7.59E+03	2.5
3	48	70.0	47616.8	57140.2	62	90.6	61616.4	73939.6	22.0	202.8	0	2.20E-07	2.03E-06	0.02	2.09E+01 2.00E+04	6.6
4.	3	3.9	2681.3	3217.6	3	5.1	3472.3	4166.8	1.3	12.3	0	1.28E-08	1.23E-07	0.00	8.91E-01 8.51E+02	0.2
5	18	26.6	18090.4	21708.5	23.	34.4	23427.3	28112.8	8.6	83.1	. 0	8.62E-08	8.31E-07	0.01	6.01E+00 5.74E+03	1.6
6	10	14.1	9595. <b>6</b>	11514.7	12	18.3	12426.4	14911.7	4.6	44.1	0	¥4.57E-08	4.41E-07	0.00	3.19E+00 3.05E+03	.0.8
7.	1	1.8	1240.6	1488.7	2	2.4	1606.9	1928.3	1.6	4.7	0	1,56E-08	4.65E-08	0.00	1.34E+00 3.95E+02	0.1
8	5	7.0	4737.7	5685.3	6	9.0	6142.1	7370.5	2.3	•23.6	0	2.35E-08	2.36E-07	0.00	1.08E+00 8.43E+02	0.3
9	2	3.2	2174.3	2609.2	3	4.1	2821.8	3386.1	1.0	8.8	• 0	1.04E-08	8.75E-08	0.00	2.61E-01 1.85E+02	0.1
10	3	4.2	2834.8	3401.8	4	5.4	3678.9	4414.6	1.4	<b>11.4</b>	0	1.35E-08	1.14E-07	0.00	3.40E-01 2.41E+02	0.1
11	2	3.6	2442.0	2930.3	3	4.7	3169.0	3802.8	1.2	9.8	0	1.17E-08	9.83E-08	0.00	2.93E-01 2.08E+02	0.1
12	2	3.1	2142.5	2571.0	. 3	4.1	2780.5	3336.5	1.0	8.6	0	1.02E-08	8.62E-08	0.00	2.57E-01 1.82E+02	0.1

· · · · ·

. •

.

1.

.

.

### ROBINSON EXERCISE MARCH 1994 OFFSITE RELEASE DATA

- -

----

.. ..

-

TIME:	01:15 PM			1. Zeros	are "as rea	ıd"							02/01/94	11:47 AM		SHEET	20
				2. Multip	ply the airb	orne val	ues by the	e ft^3	CONTAMINA	TION READIN	IGS						20
OFF SI	TE FIELD D	ATA		San	mpled.				READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multipl	y veq. va	alues by
				3. Veg. \	value based	on a 1 k	ilogram sa	ample							-	rams in s	-
AMBIEN	T RADIATIO	N READINGS	5	4. ERRATI	IC means cpm	n to high	to be re	liable				CONTAMINA	TION SAMPL	E RESULTS			
									IODINE	-PART.	VEGETAT'N						
	1 METER	ABOVE SURI	ACE		6" ABOVE S	URFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE	PARTIC	TLD
												AIRBORNE	AIRBORNE	SURFACE	VEGETAT	VEG	DOSE
		Dose Rate		HP-210	Dose Rate	Dose Rate	e LUD-19	HP-210	HP-210	HP-210	HP-210						
SAMPLE		OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	. mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact						
1	2	3.1	2132.2	2558.6	3	4.0	2737.8	3285.4	1.1	13.9	0	1.05E-08	1.39E-07	0.00	2.82E+00	2.695+03	0.9
2	16	23.9	16239.9	19487.9	21	30.8	20979.3	25175.2	7.5	73.3	. 0	7.49E-08	7.33E-07		1.04E+01		2.8
3	43	62.9	42767.8	51321.4	55	81.2	55249.2	66299.0	19.7	193.2	· 0	1.97E-07	1.93E-06		2.75E+01		7.4
4 ·	3	4.3	2909.1	3490.9	4	5.5	3764.4	4517.3	1.3	12.4	. 0	1.35E-08	1.24E-07	•	1.27E+00		0.3
5	20	28.9	19627.4	23552.9	- 25	37.3	25398.0	30477.6	9.1	83.6	0	9.09E-08	8.36E-07	0.01	8.60E+00	8.24E+03	1.9
6	10	15.3	10410.8	12493.0	13	19.8	13471.7	16166.0	4.8	44.3	0	<b>%4.82E-08</b>	4.43E-07	0.00	4.56E+00	4.37E+03	1.0
7	. 1	2.0	1345.7	1614.9	2	2.6	1741.8	2090.2	1.8	5.4	0	1.80E-08	5.39E-08	0.00	1.81E+00	5.35E+02	0.1
° 8	5	6.9	4705.7	5646.9	6	9.0	6091.2	7309.4	2.4	28.2	0	2.41E-08	2.82E-07	0.00	1.78E+00	1.55E+03	0.4
9	3	3.7	2513.2	3015.8	3	4.8	3250.1	3909.7	1.2	12.5	0	1.24E-08	1.25E~07	0.00	5.72E-01	4.47E+02	0.1
10	3	4.8	3276.5	3931.9	4	6.2	4247.8	5097.3	1.6	16.3	0	1.62E-08	1.63E-07	0.00	7.46E-01	5.83E+02	0.1
11	3	4.1	2822.5	3387.0	4	5.4	3659.1	4390.9	1.4	14.0	0	1.40E-08	1.40E-07	0.00	6.43E-01	5.02E+02	0.1
12	2	3.6	2476.4	2971.7	3	4.7	3210.4	3852.5	1.2	12.3	0	1.23E-08	1.23E-07	0.00	5.64E-01	4.41E+02	0.1

:

TIME:	01:30 PM			1. Zeros	are "as rea	d"				•						-
					ly the airb		es by th	· ***3 .	CONTRACTOR				02/01/94	11:47 AM	SHEE	r 21
OFF ST	TE FIELD D	ата			mpled.	orne vart	les by th	eits		TION READIN						
					•		_		READINGS	MADE OUTSI	DE PLUME	OFF SITE	LABORATORY	DATA	1. Multiply ve	g. values by
			_		value based			-							No. of grams	in sample.
AMBIEN	r RADIATIC	N READING	5	4. ERRATI	C means cpm	to high	to be re	liable				CONTAMINA	TION SAMPL	E RESULTS		
									IODINE	PART.	VEGETAT'N					
	1 METER	ABOVE SUR	FACE		6" ABOVE S	URFACE			AIRBORNE	AIRBORNE	SAMPLE	IODINE	PART	IODINE	IODINE PAR	TIC TLD
												AIRBORNE	AIRBORNE	SURFACE		EG DOSE
	Dose Rate	Dose Rate	e LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	HP-210	HP-210	HP-210					10 D03E
SAMPLE	CW	OW	D/R	C/R	CW	OW	D/R	C/R	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pC	i/g mRem
POINT	mR/hr	mR/hr	uR/hr	cpm	mR/hr	mR/hr	uR/hr	cpm	SAMPLE	SAMPLE	contact		,	<b>, _</b>		
1	2	2.7	1816.5	2179.8	2			0705 0								
2	10	14.1	9586.5			3.4	2322.4	2786.9	1.0	15.0	0	9.51E-09	1.50E-07	0.00	3.14E+00 3.11	E+03 1.4
					12	18.1		14771.3	4.7	62.5	0	4.74E-08	6.25E-07	0.01	1.27E+01 1.21	E+04 7.1
3	25		25246.2		32	47.7	32417.0	38900.4	12.5	164.6	0	1.25E-07	1.65E-06	0.03	3.34E+01 3.19	E+04 18.8
4	3	3.8	2612.9	3135.4	3	5.0	3375.4	4050.5	1.2	11.8	0	1.21E-08	1.18E-07	0.00	1.68E+00 1.59	E+03 1.1
5	18	25.9	17628.7	21154.4	23	33.5	22773.4	27328.1	8.1	79.6	0	8.13E-08	7.96E-07	0.01	1.13E+01 1.07	E+04 7.1
6	9	13.7	9350.6	11220.8	12	17.8	12079.5	14495.5	4.3	42.2	0	¥.31E-08	4.22E-07	0.01	6.00E+00 5.70	E+03 3.8
7	1	1.8	1208.8	1450.5	2	2.3	1561.9	1874.3	1.9	5.7	0	1.89E-08	5.69E-08		2.35E+00 6.96	
8	8	11.1	7546.6	9055.9	10	14.4	9772.9	11727.5	3.6	34.7	0	3.60E-08	3.47E-07		2.51E+00 2.40	
9	2	3.7	2496.2	2995.4	3	4.7	3231.1	3877.4	1.3	15.0	. 0		1.50E-07		9.46E-01 8.22	
10	3	4.8	3254.4	3905.3	4	6.2	4212.6	5055.1	1.7	19.5	0		1.95E-07		1.23E+00 1.07	
11	3	4.1	2803.4	3364.1	4	5.3	3628.8	4354.6	1.4	16.8	0	1.44E-08			1.06E+00 9.24	
12	2	3.6	2459.7	2951.6	3	4.7	3183.8	3820.6	1.3	14.7	0	1.26E-08			9.32E-01 8.10	

.

,

ROBINSON EXERCISE MARCH 1994 OFFSITE RELEASE DATA

SAMPLE POINT:

01

SAMPLE PO			TION REAL						•								
			SURFACE	JINGS	<					ATION REAL			-SITE LABOR				
	1 ME1	ER ABUVE	SURFACE		6" ABOVE	SURFACE			READINGS	MADE OUT	SIDE PLUME	CONT	AMINATION S	SAMPLE RES	ULTS		
	Dose Ratel	ose Rate	LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	IODINE	PART.	VEGETAT'N	IODINE	PART.	IODINE	IODINE	PARTIC	TLD
DRILL	CW	OW	D/R	C/R	CW	OW	D/R	C/R	AIRBORNE	AIRBORNE	SAMPLE	AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
TIME	mR/hr	mR/hr	uR/hr	cpm				cpm	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
08:30 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	. 0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.	005+00	• 0.0
08:45 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0		0.00E+00	0.00	0.00E+00 0.		0.0
09:00 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	. 0		0.00E+00	0.00	0.00E+00 0.		0.0
09:15 AM	0	0.0	0.0	0.1	0	0.0	0.1	0.1	0.0	0.0	0	6.65E-14	9.95E-11	0.00	0.00E+00 0		0.0
09:30 AM	0	0.0	0.1	0.1	0	0.0	0.1	0.1	0.0	0.0	0	1.23E-13		0.00	1.99E-06 2.		0.0
09:45 AM	0	0.0	0.1	0.2	0	0.0	0.2	0.2	0.0	0.0	0	1.62E-13	2.43E-10	0.00	5.67E-06 8.		0.0
10:00 AM	0	0.0	0.2	0.3	0	0.0	0.2	0.3	0.0	0.0	0	2.27E-13	3.40E-10	0.00	1.05E-05 1,		0.0
10:15 AM	0	0.0	2.9	3.5	. 0	0.0	3.7	4.5	0.0	0.04	0	9.57E-13	4.54E-10	0.00	1.74E-05 2.	.60E+00	0.0
10:30 AM	0	0.0	1.4	1.7	0	0.0	1.8	2.2	0.0	0.0	. 0	4.56E-13	1.79E-10	0.00	4.61E-05 3.	.96E+00	0.0
10:45 AM	0	0.0	0.8	1.0	0	0.0	1.0	1.2	0.0	0.0	0	2.76E-13	1.15E-10	0.00	5.97E-05 4.	.50E+00	0.0
11:00 AM	0	0.0	2.1	2.5	0	0.0	2.6	3.1	0.0	0.0	. 0	7.21E-13	1.26E-10	0.00	6.80E-05 4.	.84E+00	0.0
11:15 AM	0	0.0	Q.4	0.5	• 0	0.0	0.5	0.6	0.0	. <b>0</b> . 0	0	1.32E-13	2.04E-11	0.00	8.96E-05 5.	.22E+00	0.0
11:30 AM	2	2.6	1739.1	2086.9	2	3.3	2258.9	2710.7	0.8	5.5	• 0	8.04E-09	5.53E-08	0.00	9.36E-05 5.	.28E+00	0.0
11:45 AM	2	3.0	2013.3	2415.9	3	3.8	2612.7	3135.3	1.0	8.1	0	9.62E-09	8.10E-08	0.00	2.41E-01 1.	.71E+02	0.1
12:00 PM	2	3.4	2327.0	2792.4	3	4.4	3016.8	3620.1	1.2	11.6	0	1.15E-08	1.16E-07	0.00	5.30E-01 4.	.14E+02	0.3
12:15 PM	2	3.4	2311.3	2773.5	3	4.4	2991.8	3590.1	1.2	13.8	. 0	1.19E-08	1.38E-07	0.00	8.76E-01 7.	62E+02	0.4
12:30 PM	. 4	5.4	3706.6	4447.9	5	7.1	4800.1	5760.1	1.8	17.0	0	1.77E-08	1.70E-07	0.00	1.23E+00 1.	18E+03	0.5
12:45 PM	4	5.9	4021.5	4825.8	5	7.6	5203.9	6244.7	.1.9	17.1	0	1.86E-08	1.71E-07	0.00	1.76E+00 1.	69E+03	0.7
01:00 PM	4	5.3	3612.0	4334.4	5	6.9	4666.1	5599.4	1.7	16.3	0	1.67E-08	1.63E-07	0.00	2.32E+00 2.	20E+03	0.8
01:15 PM	2	3.1	2132.2	2558.6	• 3	4.0	2737.8	3285.4	1.1	13.9	0	1.05E-08	1.39E-07	0.00	2.82E+00 2.	69E+03	0.9
01:30 PM	2	2.7	1816.5	2179.8	• 2	3.4	2322.4	2786.9	1.0	15.0	0	9.51E-09	1.50E-07	0.00	3.14E+00 3.	11E+03	1.4

-

.

.

.

•

#### SAMPLE POINT: 02

	AMB I	ENT RADIA	ATION REAL	DINGS					CONTAMIN	ATION REAL	DINGS	OFF	-SITE LABOR	ATORY DAT	'A	
	1 ME	TER ABOVI	E SURFACE		6" ABOVE	SURFACE					SIDE PLUME		MINATION S		-	
	Dose Rate	Dose Rate	e LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	IODINE	PART.	VEGETAT'N	IODINE	PART.	IODINE	IODINE PARTIC	TLD
DRILL	CW	0W	D/R	C/R	CW	OM ·	D/R	C/R	AIRBORNE	AIRBORNE	SAMPLE	AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VEG	DOSE
TIMB	mR/hr	mR/hr	uR/hr	cpm				cpm	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem
08:30 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	. 0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
08:45 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
09:00 AM	0	0.0	0.0	0.0	· 0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
09:15 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
09:30 AM	0	0.0	0.2	0.2	0	0.0	0.2	0.3	0.0	0.0	0	2.99E-13	4.47E-10	0.00	0.00E+00 0.00E+00	0.0
09:45 AM	0	0.0	0.4	0.5	0	0.0	0.5	0.6	0.0	0.1	0	5.51E-13	8.25E-10	0.00	8.97E-06 1.34E+00	0.0
10:00 AM	0	0.0	0.6	0.8	0	0.0	0.7	0.9	0.0	0.1	· 0	7.30E-13	1.09E-09	0.00	2.55E-05 3.82E+00	0.0
10:15 AM	0	0.0	0.9	1.1	0	0.0	1.1	1.3	0.0	0.2	0	1.02E-12	1.53E-09	0.00	4.74E-05 7.10E+00	0.0
10:30 AM	0	0.0	13.1	15.7	0	0.0	16.8	20.1	0.0	0.2	0	4.30E-12	2.04E-09	0.00	7.81E-05 1.17E+01	0.0
10:45 AM	0	0.0	6.4	7.7	0	0.0	8.1	9.7	0.0	0.1	0	2.05E-12	8.05E-10	0.00	2.07E-04 1.78E+01	0.0
11:00 AM	0	0.0	3.7	4.4	0	0.0	4.5	5.4	0.0	0.1	ο	1.24E-12	5.17E-10	0.00	2.69E-04 2.02E+01	0.0
11:15 AM	0	0.0	9.3	11.1	0	0.0	11.8	14.2	0.0	0.1	. 0	3.24E-12	5.67E-10	0.00	3.06E-04 2.18E+01	0.0
11:30 AM	0	0.0	2.0	2.4	0	0.0	2.3	2.8	0.0	. 0.0	o	5.93E-13	9.19E-11	0.00	4.03E-04 2.35E+01	0.0
11:45 AM	8	11.5	7819.1	9382.9	10	14.9	10156.4	12187.6	3.6	24.8	o	3.61E-08	2.48E-07	0.00	4.21E-04 2.38E+01	0.0
12:00 PM	9	13.3	9051.9	10862.2	12	17.3	11747.0	14096.4	4.3	36.4	0	4.33E-08	3.64E-07	0.00	1.08E+00 7.69E+02	0.8
12:15 PM	10	15.4	10462.4	12554.9	14	19.9	13563.6	16276.4	5.2	52.1	. 0	5.18E-08	5.21E-07	0.00	2.38E+00 1.86E+03	1.1
12:30 PM	10	15.3	10391.7	12470.1	13	19.8	13451.3	16141.5	5.3	62.2	0	5.33E-08	6.22E-07	0.00	3.94E+00 3.42E+03	1.4
12:45 PM	17	24.5	16665.2	19998.3	22	31.7	21581.7	25898.1	7.9	76.6	0	7.94E-08	7.66E-07	0.01	5.54E+00 5.29E+03	2.0
01:00 PM	18	26.6	18081.2	21697.4	23	34.4	23397.1	28076.5	8.4	77.0	0	8.37E-08	7.70E-07	0.01	7.92E+00 7.59E+03	2.5
01:15 PM	16	23.9	16239.9	19487.9	21	30.8	20979.3	25175.2	7.5	73.3	0	7.49E-08	7.33E-07	0.01	1.04E+01 9.90E+03	2.8
01:30 PM	10	14.1	9586.5	11503.8	12	18.1	12309.4	14771.3	4.7	62.5	0	4.74E-08	6.25E-07		1.27E+01 1.21E+04	7.1

.

#### SAMPLE POINT: 03

		IENT RADIA		DINGS	6" ABOVE	SURFACE				NATION REAL	DINGS SIDE PLUME		-SITE LABOR AMINATION S				
DRILL TIME	Dose Rat CW mR/hr	eDose Rate OW mR/hr	e LUD-19 D/R uR/hr	HP-210 C/R cpm	Dose Rate	Dose Rate OW	EUD-19 D/R	HP-210 C/R cpm	IODINE AIRBORNE cpm/cfm	PART. AIRBORNE cpm/cfm	VEGETAT'N SAMPLE mR/hr	IODINE AIRBORNE ùCi/cc	PART. AIRBORNE uCi/cc	IODINE SURFACE uCi/m^2	IODINE VEGETAT'N pCi/g	PARTIC VEG pCi/g	TLD DOSE mRem
08:30 AM 08:45 AM 09:00 AM	1 0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0		0.00E+00 0.00E+00 0.00E+00	0.00	0.00E+00 0 0.00E+00 0	.00E+00	0.0
09:15 AM 09:30 AM 09:45 AM	I 0	0.0	0.0 0.5 1.1	0.0	0 0 0	0.0 0.0 0.0	0.0 0.6 1.3	0.0 0.8 1.6	0.0	0.0	0	0.00E+00 7.87E-13	0.00E+00 1.18E-09	0.00 0.00 0.00	0.00E+00 0 0.00E+00 0 0.00E+00 0	.00E+00 .00E+00	0.0 0.0 0.0
10:00 AM 10:15 AM 10:30 AM	i 0 I 0	0.0	1.7 2.5 34.4	2.0 3.0 41.2	0 0 0	0.0 0.0 0.1	2.0 2.9 44.2	2.3 3.5 53.0	0.0 0.0 0.0	0.2 0.3 0.4	0 0 0	1.45E-12 1.92E-12 2.69E-12	2.88E-09 4.03E-09		2.36E-05 3 6.71E-05 1 1.25E-04 1	.01E+01 .87E+01	0.0 0.0 0.0
10:45 AM 11:00 AM 11:15 AM	0 1 0	0.0	16.9 9.7 24.4	20.3 11.6 29.3	0 0 0	0.0 0.0	21.4 11.9	25.7 14.3	0.0 0.0 0.0	0.5 0.2 0.1	0 0 0	1.13E-11 5.40E-12 3.27E-12	2.12E-09 1.36E-09	0.00	2.06E-04 3 5.45E-04 4 7.07E-04 5	.69E+01 .33E+01	0.0 0.0 0.0
11:15 AM 11:45 AM 12:00 PM	0 21	0.0	5.2 20591.6 23838.1	6.2 24709.9	0	0.0 0.0 39.3	31.1 6.0 26746.9	37.3 7.3 32096.2	0.0 0.0 9.5	0.1 0.0 65.4	0 0 0	8.53E-12 1.56E-12 9.52E-08	2.42E-10 6.54E-07		8.05E-04 5 1.06E-03 6 1.11E-03 6	.18E+01 .26E+01	0.0 0.0 0.0
12:00 PM 12:15 PM 12:30 PM 12:45 PM	28 27	40.5 40.2	27552.8 27366.6	33063.4 32840.0	31 36 35	45.5 52.5 52.1		42863.9 42508.8	11.4 13.6 14.0	95.9 137.1 163.9	. 0 0	1.14E-07 1.36E-07 1.40E-07	1.37E-06 1.64E-06		2.86E+00 2 6.28E+00 4 1.04E+01 9	.90E+03 .02E+03	2.1 2.9 
01:00 PM 01:15 PM 01:30 PM	44 48 43 25	70.0 62.9	43888.0 47616.8 42767.8 25246.2	51321.4	57 62 55 32	83.5 90.6 81.2 47.7	56835.5 61616.4 55249.2 32417.0	73939.6 66299.0	20.9 22.0 19.7 12.5	201.6 202.8 193.2 164.6	0 0 0 0	2.09E-07 2.20E-07 1.97E-07 1.25E-07	2.03E-06 1.93E-06	0.02 0.03	1.46E+01 1 2.09E+01 2 2.75E+01 2 3.34E+01 3	.00E+04 . .61E+04	5.1 6.6 7.4 18.8

:

SAMPLE P		04 ENT RADIA	TION READ	TNGS													
		TER ABOVE			6* ABOVE S	URFACE				MADE OUT	DINGS SIDE PLUME		-SITE LABOR				
	Dose Rate	Dose Rate	LUD-19	HP-210	Dose Rate D	ose Rate	LUD-19	HP-210	IODINE	PART.	VEGETAT'N	IODINE	PART.	IODINE	IODINE P	ARTIC	TLD
DRILL	CW	OW	D/R	C/R	CW	OW	D/R	C/R	AIRBORNE	AIRBORNE	SAMPLE	AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
TIME	mR/hr	mR/hr	uR/hr	cpm				cpm	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g j	pCi/g	mRem
08:30 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0.	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.4	00E+00	0.0
08:45 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.0	•	0.0
09:00 AM	0	0.0	0.0	0.0	· 0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.0	00E+00	0.0
09:15 AM	0	0.0	0.0	0.0	0	. 0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.0	00E+00	0.0
09:30 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.0	00E+00	0.0
. 09:45 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	4.81E-14	7.20E-11	0.00	0.00E+00 0.0	00E+00	0.0
10:00 AM	0	0.0	0.1	0.1	0	0.0	0.1	0.1	0.0	0.0	0	8.86E-14	1.33E-10	0.00	1.44E-06 2.1	L6E-01	0.0
10:15 AM	0	0.0	0.1	0.1	0	0.0	0.1	0.1	0.0	0.0	0	1.18E-13	1.76E-10	0.00	4.10E-06 6.1	L4E-01	0.0
10:30 AM	0	0.0	0.2	0.2	0	0.0	0.2	0.2	0.0	0:0	. 0	1.64E-13	2.46E-10	0.00	7.63E-06 1.1	L4E+00	0.0
10:45 AM	0	0.0	2.1	2.5	0	0.0	2.7	3.2	0.0	. 0.0	0	6.92E-13	3.29E-10	0.00	1.26E-05 1.8	38E+00	0.0
11:00 AM	0	0.0	1.0	1.2	0	0.0	1.3	1.6	0.0	0.0	0	3.30E-13	1.29E-10	0.00	3.33E-05 2.8	37E+00	0.0
11:15 AM	0	0.0	0.6	· 0.7	0	0.0	0.7	0.9	0.0	0.0	0	2.00E-13	8.32E-11	0.00	4.32E-05 3.2	25E+00	0.0
11:30 ÅM	0	0.0	1.5	1.8	0	0.0	1.9	2.3	0.0	0.0	0	5.21E-13	9.13E-11	0.00	4.92E-05 3.5	50E+00	0.0
11:45 AM	0	0.0	0.3	0.4	0	0.0	0.4	0.4	0.0	0.0	0	9.53E-14	1.48E-11	0.00	6.48E-05 3.7	78E+00	0.0
12:00 PM	1	1.8	1258.0	1509.6	2	2.4	1634.1	1960.9	0.6	4.0	0	5.82E-09	4.00E-08	0.00	6.77E-05 3.8	32E+00	0.0
12:15 PM	1	2.1	1456.4	1747.6	2	2.8	1890.0	2268.0	0.7	5.9	. o	6.96E-09	5.86E-08	0.00	1.75E-01 1.2	24E+02	0.0
12:30 PM	2	2.5	1683.3	2020.0	2	3.2	2182.3	2618.7	0.8	8.4	o	8.34E-09	8.38E-08	0.00	3.83E-01 3.0	0E+02	0.1
12:45 PM	2	2.5	1671.9	2006.3	2	3.2	2164.2	2597.0	0.9	10.0	0	8.57E-09	1.00E-07	0.00	6.34E-01 5.5	1E+02	0.2
01:00 PM	3	3.9	2681.3	3217.6	3	5.1	3472.3	4166.8	1.3	12.3	0	1.28E-08	1.23E-07	0.00	8.91E-01 8.5		0.2
01:15 PM	3	4.3	2909.1	3490.9	4	5.5	3764.4	4517.3	1.3	12.4	0	1.35E-08	1.24E-07	0.00	1.27E+00 1.2		0.3
01:30 PM	3	3.8	2612.9	3135.4	3	5.0	3375.4	4050.5	1.2	11.8	0	1.21E-08	1.18E-07		1.68E+00 1.5		1.1

#### SAMPLE POINT: 05

:

.

		ENT RADIA TER ABOVE	TION REAL SURFACE	DINGS	6" ABOVE	SURFACE				ATION REAL MADE OUT:	DINGS SIDE PLUME		-SITE LABOR AMINATION S				
	Dose Rate	Dose Rate	LUD-19	HP-210	Dose Rate	Dose Rate	2 LUD-19	HP-210	IODINE	PART.	VEGETAT'N	IODINE	PART.	IODINE	IODINE	PARTIC	TLD
DRILL	CW	OW	D/R	C/R	CW	OW	D/R	C/R	AIRBORNE	AIRBORNE	SAMPLE	AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
TIME	mR/hr	mR/hr	uR/hr	cpm				cpm	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
08:30 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 (	0.00E+00	0.0
08:45 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 (		0.0
09:00 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 (		0.0
09:15 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 (		0.0
09:30 AM	0	0,0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	. 0	0.00E+00	0.00E+00	0.00	0.00E+00 (		0.0
09:45 AM	0	0.0	0.2	0.3	0	0.0	0.3	0.3	0.0	0.0	0	3.24E-13	4.86E-10	0.00	0.00E+00 (	0.00E+00	. 0.0
10:00 AM	0	0.0	0.5	0.5	0	0.0	0.5	0.7	0.0	0.1	· 0	5.98E-13	8.95E-10	0.00	9.73E-06 1	L.46E+00	0.0
10:15 AM	0	0.0	0.7	0.8	0	0.0	0.8	1.0	0.0	0.1	0	7.93E-13	1.19E-09	0.00	2.77E-05 4	1.14E+00	0.0
10:30 AM	0	0.0	1.0	1.2	0	0.0	1.2	i.4	0.0	0.2	0	1.11E-12	1.66E-09	0.00	5.15E-05 7	7.70E+00	0.0
10:45 AM	0	0.0	14.2	17.0	0	0.0	18.2	21.8	0.0	0.2	0	4.67E-12	2.22E-09	0.00	8.47E-05 1	L.27E+01	0.0
11:00 AM	0	0.0	7.0	8.4	0	0.0	8.8	10.6	0.0	0.1	0	2.23E-12	8.74E-10	0.00	2.25E-04 1	.93E+01	0.0
11:15 AM	· 0	0.0	4.0	4.8	0	0.0	4.9	5.9	0.0	0.1	0	1.35E-12	5.61E-10	0.00	2.92E-04 2	2.20E+01	0.0
11:30 AM	0	0.0	10.1	12.1	0	0.0	12.8	15.4	0.0	0.1	0	3.52E-12	6.16E-10	0.00	3.32E-04 2	2.36E+01	0.0
11:45 AM	0	0.0	2.1	2.6	0	0.0	2.5	3.0	0.0	0.0	0	6.43E-13	9.98E-11	0.00	4.38E-04 2	2.55E+01	0.0
12:00 PM	8	12.5	8487.7	10185.3	11	16.2	11024.9	13229.9	3.9	27.0	o	3.92E-08	2.70E-07	0.00	4.57E-04 2	.58E+01	0.0
12:15 PM	10	14.4	9826.0	11791.1	13	18.7	12751.6	15301.9	4.7	39.6	o	4.70E-08	3.96E-07	0.00	1.18E+00 8	35E+02	0.3
12:30 PM	11	16.7	11357.1	13628.6	15	21.6	14723.6	17668.3	5.6	56.5	ò	5.63E-08	5.65E-07	0.00	2.59E+00 2	.02E+03	0.6
12:45 PM	11	16.6	11280.4	13536.5	15	21.5	14601.6	17521.9	5.8	67.6	0	5.78E-08	6.76E-07	0.00	4.27E+00 3	.72E+03	1.2
01:00 PM	18	26.6	18090.4	21708.5	23	34.4	23427.3	28112.8	8.6	83.1	0	8.62E-08	8.31E-07	• 0.01	6.01E+00 5	.74E+03	1.6
01:15 PM	20	28.9	19627.4	23552.9	25	37.3	25398.0	30477.6	9.1	83.6	0	9.09E-08	8.36E-07	0.01	8.60E+00 8	.24E+03	1.9
01:30 PM	18	25.9	17628.7	21154.4	23	33.5	22773.4	27328.1	8.1	79.6	0	8.13E-08	7.96E-07	0.01	1.13E+01 1	.07E+04	7.1

:

SAMPLE P	DINT:	06							÷	•				•			
	AMBI	ENT RADI	ATION REAL	DINGS					CONTAMIN	ATION REAL	DINGS	OFF	-SITE LABOR	ATORY DAT	'A		
	1 ME	TER ABOVI	SURFACE		6" ABOVE S	URFACE					SIDE PLUME		AMINATION S				
	Dose Rate	Dose Rate	e LUD-19	HP-210	Dose Rate D	ose Rate	e LUD-19	HP-210	IODINE	PART.	VEGETAT'N	IODINE	PART.	IODINE	IODINE	PARTIC	TLD
DRILL	CW	OW	D/R	C/R	CW	OW	D/R	C/R	AIRBORNE	AIRBORNE		AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
TIME	mR/hr	mR/hr	uR/hr	cpm				cpm	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
08:30 AM	o	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	005+00	0.0
08:45 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00		0.00	0.00E+00 0		0.0
09:00 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00		0.00	0.00E+00 0		0.0
09:15 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00		0.00	0.00E+00 0	-	0.0
09:30 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00		0.00	0.00E+00 0		0.0
09:45 AM	0	0.0	0.1	0.1	0	0.0	0.1	0.2	0.0	0.0	0	1.72E-13	2.58E-10	0.00	0.00E+00 0		0.0
10:00 AM	0	. 0.0	0.2	0.3	0	0.0	0.3	0.3	0.0	0.0	0	3.17E-13	4.75E-10	0.00	5.16E-06 7	.73E-01	0.0
10:15 AM	0	0.0	0.4	0.4	0	0.0	0.4	0.5	0.0	0.1	0	4.21E-13	6.30E-10	0.00	1.47E-05 2	.20E+00	0.0
10:30 AM	0	0.0	0.5	0.7	0	0.0	0.6	0.8	0.0	0.1	0	5.88E-13	8.81E-10	0.00	2.73E-05 4	.09E+00	0.0
10:45 AM	0	0.0	7.5	9.0	0	0.0	9.7	11.6	0.0	0.1	0	2.48E-12	1.18E-09	0.00	4.49E-05 6	.73E+00	0.0
11:00 AM	0	0.0	3.7	4.4	0	0.0	4.7	5.6	0.0	0.0	0	1.18E-12	4.63E-10	0.00	1.19E-04 1	.03E+01	0.0
11:15 AM	0	0.0	2.1	2.5	0	0.0	2.6	3.1	0.0	0.0	0	7.15E-13	2.98E-10	0.00	1.55E-04 1	.16E+01	0.0
11:30 AM	0	0.0	5.3	6.4	0	0.0	6.8	8.2	0.0	0.0	. 0	1.87E-12	3.27E-10	0.00	1.76E-04 1	.25E+01	0.0
11:45 AM	0	0.0	1.1	1.4	0	0.0	. 1.3	1.6	0.0	0.0	0	3.41E-13	5.29E-11	0.00	2.32E-04 1	.35E+01	0.0
12:00 PM	5	6.6	4502.1	5402.5	6	8.6	5847.9	7017.4	2.1	14.3	0	2.08E-08	1.43E-07	0.00	2.42E-04 1	.37E+01	0.0
12:15 PM	5	7.7	5211.9	6254.3	7	9.9	6763.7	8116.5	2.5	21.0	. 0	2.49E-08	2.10E-07	0.00	6.25E-01 4	.43E+02	0.2
12:30 PM	6	8.9	6024.1	7228.9	8	11.5	7809.7	9371.7	3.0	.30.0	0	2.98E-08	3.00E-07	0.00	1.37E+00 1	.07E+03	0.3
12:45 PM	6	8.8	5983.4	7180.1	8	11.4	7745.0	9294.0	3.1	35.8	0	3.07E-08	3.58E-07	0.00	2.27E+00 1	.97E+03	0.6
01:00 PM	10	14.1	9595.6	11514.7	12	18.3	12426.4	14911.7	4.6	44.1	0	4.57E-08	4.41E-07	0.00	3.19E+00 3	.05E+03	0.8
01:15 PM	10	15.3	10410.8	12493.0	13	19.8	13471.7	16166.0	4.8	44.3	0	4.82E-08	4.43E-07	0.00	4.56E+00 4	.37E+03	1.0
01:30 PM	9	13.7	9350.6	11220.8	12	17.8	12079.5	14495.5	4.3	42.2	0	4.31E-08	4.22E-07	0.01	6.00E+00 5	.70E+03	3.8

.

.

#### SAMPLE POINT: 07

:

	AMBI	ENT RADIA	TION REAL	DINGS					CONTAMIN	ATION REAL	DINGS	OFF	-SITE LABOR	ATORY DAT	'A		
	1 ME	TER ABOVE	SURFACE		6" ABOVE	SURFACE			READINGS	MADE OUT	SIDE PLUME		AMINATION S				
	Dose Rate	Dose Rate	LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	Iodine	PART.	VEGETAT'N	IODINE	PART.	IODINE	IODINE	PARTIC	TLD
DRILL	CW	`OW	D/R	C/R	CW	OW	D/R	C/R	AIRBORNE	AIRBORNE	SAMPLE	AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
TIME	mR/hr	mR/hr	uR/hr	cpm				cpm	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
08:30 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 (	0.00E+00	0.0
08:45 AM	0	0.0	0.0	.0.0	0	0.0	0.0	0.0	0.0	0.0	o	0.00E+00	0.00E+00	0.00	0.00E+00 (		0.0
09:00 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00		0.00	0.00E+00 (		0.0
09:15 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	. 0	0.00E+00	0.00E+00	0.00	0.00E+00 (		0.0
09:30 AM	0	0.0	0.0	0.0	. 0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 (		0.0
09:45 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0		0.00E+00	0.00	0.00E+00 (		0.0
10:00 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 (		0.0
10:15 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 (		0.0
10:30 AM	0	0.0	0.0	0.0	0	0.0	0.1	0.1	0.0	. 0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 (		0.0
10:45 AM	0	0.0	0.9	1.1	0	0.0	1.2	1.4	0.0	0.0	0	2.15E-13	2.41E-11	0.00	0.00E+00 (		0.0
11:00 AM	0	0.0	0.4	0.5	0	0.0	0.6	0.7	0.0	0.0	0	1.29E-13		0.00	6.44E-06 7		0.0
11:15 AM	0	0.0	0.2	0.3	0	0.0	0.3	0.3	0.0	0.0	0	8 15E-14		0.00	1.03E-05 1		0.0
11:30 AM	0	0.0	0.6	0.8	0	0.0	0.8	1.0	0.0	0.0	0	4.76E-14	3.97E-12	0.00	1.28E-05 1		0.0
11:45 AM	0	0.0	0.9	1.0	0	0.0	0.9	1.1	0.2	0.7	0	2.43E-09			1.42E-05 1		0.0
12:00 PM	1	0.9	583.2	699.8	1	1.1	757.4	908.8	0.6	1.7	0	5.97E-09		0.00	7.28E-02 2		0.0
12:15 PM	1	1.0	675.3	810.4	1	1.3	876.1	1051.3	1.0	2.9	0	1.00E-08		0.00	2.52E-01 7		0.0
12:30 PM	1	1.1	780.2	936.3	1	1.5	1011.3	1213.6	1.3	3.7	, 0	1.27E-08			5.52E-01 1		0.0
12:45 PM	1	1.1	774.3	929.2	1	1.5	1002.3	1202.7	1.4	4.0	0	1.36E-08	4.04E-08	0.00	9.32E-01 2		0.1
01:00 PM	1	1.8	1240.6	1488.7	2	2.4	1606.9	1928.3	1.6	4.7	0	1.56E-08			1.34E+00 3		0.1
01:15 PM	1	2.0	1345.7	1614.9	2	2.6	1741.8	2090.2	1.8	5.4	0	1.80E-08			1.81E+00 5		0.1
01:30 PM	1	1.8	1208.8	1450.5	2	2.3	1561.9	1874.3	1.9	5.7	0	1.89E-08			2.35E+00 6		0.5

SAMPLE	POINT:	08

			TION REAL	DINGS					CONTAMIN	NATION REAL	DINGS	OFF	-SITE LABOR	ATORY DAT	'A	
	1 ME	TER ABOVE	SURFACE		6" ABOVE	SURFACE			READINGS	MADE OUT	SIDE PLUME	CONT	AMINATION S	SAMPLE RES	ULTS	
	Dose Rate	Dose Rate	LUD-19	HP-210	Dose Rate	Dose Rate	LUD-19	HP-210	IODINE	PART.	VEGETAT'N	IODINE	PART.	IODINE	IODINE PARTIC	TLD
DRILL	CW	OW	D/R	C/R	CW	OW	D/R	C/R	AIRBORNE	AIRBORNE		AIRBORNE		SURFACE	VEGETAT'N VEG	DOSE
TIME	mR/hr	mR/hr	uR/hr	cpm				cpm	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem
08:30 AM	o	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
08:45 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	. 0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
09:00 AM	0	0.0	0.0	0.0	0	. 0.0	0.0	0.0	0.0	0.0	0		0.00E+00	0.00	0.00E+00 0.00E+00	0.0
09:15 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
09:30 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00		0.00	0,00E+00 0.00E+00	0.0
09:45 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0		0.00E+00	0.00	0.00E+00 0.00E+00	0.0
10:00 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0		0.00E+00	0.00	0.00E+00 0.00E+00	0.0
10:15 AM	0	0.0	0.1	0.1	0	0.0	0.1	0.1	0.0	0.04	0	1.35E-13		0.00	0.00E+00 0.00E+00	0.0
10:30 AM	0	0.0	0.2	0.2	0	0.0	0.2	0.3	0.0	0.0	. 0	2.49E-13		0.00	4.06E-06 6.08E-01	0.0
10:45 AM	0	0.0	0.3	0.3	0	0.0	0.3	0.4	0.0	0.0	. 0	3.31E-13			1.15E-05 1.73E+00	0.0
11:00 AM	0	0.0	0.4	0.5	0	0.0	0.5	0.6	0.0	0.1	o	4.63E-13		0.00	2.15E-05 3.21E+00	0.0
11:15 AM	0	0.0	5.9	7.1	. 0	0.0	7.6	9.1	0.0	0.1	· · 0	1.95E-12		0.00	3.54E-05 5.29E+00	0.0
11:30 AM	0	0.0	2.9	3.5	0	0.0	3.7	4.4	0.0	0.0	• 0	9.28E-13		0.00	9.38E-05 8.07E+00	0.0
11:45 AM	0	0.0	1.7	2.0	0	0.0	2.1	2.5	0.0	0.0	0	5.62E-13			1.22E-04 9.16E+00	0.0
12:00 PM	0	0.0	4.2	5.0	0	0.0	5.3	6.4	0.0	0.0	0	1.47E-12			1.39E-04 9.86E+00	0.0
12:15 PM	0	0.0	0.9	1.1	• 0	0.0	1.0	1.2	0.0	0.0	0	2.68E-13			1.83E-04 1.06E+01	0.0
12:30 PM	4	5.2	3540.7	4248.9	5	6.8	4599.2	5519.0	1.6	11.3	0	1.64E-08			1.91E-04 1.08E+01	0.0
12:45 PM	4	6.0	4099.0	4918.8	5	7.8	5319.5	6383.3	2.0	16.5	0	1.96E-08			4.91E-01 3.48E+02	0.2
01:00 PM	5	7.0	4737.7	5685.3	6	9.0	6142.1	7370.5	2.3	23.6	0	2.35E-08			1.08E+00 8.43E+02	0.2
01:15 PM	5	6.9	4705.7	5646.9	6	9.0	6091.2	7309.4	2.4	28.2	0	2.41E-08			1.78E+00 1.55E+03	0.4
01:30 PM	8	11.1	7546.6	9055.9	<b>'•</b> 10	14.4	9772.9	11727.5	3.6	34.7	0	3.60E-08			2.51E+00 2.40E+03	1.6

#### SAMPLE POINT: 09

		ENT RADIA TER ABOVE	TION READ	DINGS	6" AB	ove s	URFACE				NATION REA 5 MADE OUT	DINGS . SIDE PLUME		-SITE LABOR AMINATION S				
	Dose Rate	Dose Rate	LUD-19	HP-210	Dose R	ate D	ose Rate	LUD-19	HP-210	IODINE	PART.	VEGETAT'N	IODINE	PART.	IODINE	IODINE	PARTIC	TLD
DRILL	CW	WO	D/R	C/R	CW		OW	D/R	C/R	AIRBORNE	AIRBORNE	SAMPLE	AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
TIME	mR/hr	mR/hr	uR/hr	cpm					cpm	, cpm/cfm	.cpm/cfm	mR/hr	úCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
08:30 AM	o	0.0	0.0	0.0		0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0
08:45 AM	0	0.0	0.0	0.0		0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0
09:00 AM	0	0.0	0.0	0.0		0.	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0
09:15 AM	0	0.0	0.0	0.0		0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0
09:30 AM	0	0 <u>,</u> 0	0.0	0.0		0	0.0	0.0	0.0	0.0	0,0	0	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0
09:45 AM	0	0.0	0.0	0.0		0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0
10:00 AM	0	0.0	0.0	0.0		0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0
10:15 AM	0	0.0	0.0	0.0		0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00	0.00E+00	0.0
10:30 AM	0	0.0	0.0	0.1		0	0.0	0.1	0.1	0.0	0.0	0	7.18E-14	1.07E-10	0.00	0.00E+00	0.00E+00	0.0
10:45 AM	0	0.0	0.1	0.1		0	0.0	0.1	0.1	0.0	0.0	. 0	1.32E-13	1.98E-10	0.00	2.15E-06	3.22E-01	0.0
11:00 AM	0	0.0	0.2	0.2		0	0.0	0.2	0.2	0.0	0.0	0	1.75E-13	2.63E-10	0.00	6.12E-06	9.17E-01	0.0
11:15 AM	0	0.0	0.2	0.3		0	0.0	0.3	0.3	0.0	δ.ο	0	2.45E-13	3.67E-10	0.00	1.14E-05	1.70E+00	0.0
11:30 AM	0	0.0	3.1	3.8		0	0.0	4.0	4.8	0.0	0.0	• 0	1.03E-12	4.91E-10	0.00	1.88E-05 :	2.81E+00	0.0
11:45 AM	0	0.0	1.5	1.8		0	.0.0	1.9	2.3	0.0	0.0	0	4.92E-13	1.93E-10	0.00	4.97E-05 4	4.28E+00	0.0
12:00 PM	0	0.0	0.9	1.1		0	0.0	1.1	1.3	0.0	0.0	0	2.98E-13	1.24E-10	0.00	6.45E-05 4	4.86E+00	0.0
12:15 PM	0	0.0	2.2	2.7	•	0	0.0	2.8	3.4	0.0	0.0	. 0	7.78E-13	1.36E-10	0.00	7.35E-05	5.23E+00	0.0
12:30 PM	0	0.0	0.5	0.6		0	0.0	0.6	0.7	0.0	. 0.0	0	1.42E-13	2.21E-11	0.00	9.68E-05 5	5.64E+00	0.0
12:45 PM	2	2.8	1878.2	2253.9		2	3.6	2439.7	2927.6	0.9	6.0	0	8.68E-09	5.97E-08	0.00	1.01E-04 5	5.71E+00	0.0
01:00 PM	2	3.2	2174.3	2609.2		3	4.1	2821.8	3386.1	1.0	8.8	0	1.04E-08	8.75E-08	0.00	2.61E-01 1	L.85E+02 .	0.1
01:15 PM	3	3.7	2513.2	3015.8		3	4.8	3258.1	3909.7	1.2	12.5	0	1.24E-08	1.25E-07	0.00	5.72E-01 4	.47E+02	0.1
01:30 PM	2	3.7	2496.2	2995.4		3	4.7	3231.1	3877.4	1.3	15.0	0	1.28E-08	1.50E-07	0.00	9.46E-01 8	3.22E+02	0.8

#### SAMPLE POINT: 10

		ENT RADIA		DINGS					CONTAMIN	ATION REAL	DINGS	OFF	-SITE LABOR	ATORY DAT	'A		
	1 ME	TER ABOVE	SURFACE		6" ABOVE :	SURFACE			READINGS	MADE OUTS	SIDE PLUME	CONT	AMINATION S	AMPLE RES	ULTS		
	Dose Rate	Dose Rate	LUD-19	HP-210	Dose Rate I	Dose Rate	LUD-19	HP-210	IODINE	PART.	VEGETAT'N	IODINE	PART.	IODINE	IODINE	PARTIC	TLD
DRILL	CW	OW	D/R	C/R	CW	OW	D/R	C/R	AIRBORNE	AÌRBORNE	SAMPLE	AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N	VEG	DOSE
TIME	mR/hr	mR/hr	uR/hr	cpm		٠		cpm	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g	pCi/g	mRem
08:30 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
08:45 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	0.00E+00	0.0
09:00 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0		0.0
09:15 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	0.00E+00	0.0
09:30 AM	0	0,0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0		0.0
09:45 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
10:00 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0		0.0
10:15 AM	0	0.0	0.0	0.0	0	0.0	, 0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	0.00E+00	0.0
10:30 AM	0	0.0	0.1	0.1	0	0.0	0.1	0.1	0.0	0.0	· 0	9.36E-14	1.40E-10	0.00	0.00E+00 0	.00E+00	0.0
10:45 AM	0	0.0	0.1	0.2	0	0.0	0.2	0.2	0.0	0.0	0	1.73E-13	2.58E-10	0.00	2.81E-06 4		0.0
11:00 AM	0	0.0	0.2	0.2	0	. 0.0	0.2	0.3	0.0	0.0	0	2.29E-13	3.42E-10	0.00	7.98E-06 1	.20E+00	0.0
11:15 AM	_ <b>0</b>	0.0	Q.3	0.4	0	0.0	0.3	0.4	0.0	0.0	0	3.20E-13	4.79E-10	0.00	1.48E-05 2	2.22E+00	0.0
11:30 AM	0	0.0	4.1	4.9	0	0.0	5.3	6.3	0.0	0.1	o	1.35E-12	6.40E-10	0.00	2.44E-05 3	.66E+00	0.0
11:45 AM	0	0.0	2.0	2.4	0	0.0	2.5	3.1	0.0	0.0	o	6.42E-13	2.52E-10	0.00	6.49E-05 5	.58E+00	0.0
12:00 PM	0	0.0	1.1	1.4	0	0.0	1.4	1.7	0.0	0.0	0	3.89E-13	1.62E-10	0.00	8.41E-05 6	.34E+00	0.0
12:15 PM	0	0.0	2.9	3.5	0	0.0	3.7	4.4	0.0	0.0	. 0	1.01E-12	1.78E-10	0.00	9.58E-05 6		0.0
12:30 PM	0	0.0	0.6	0.7	0	0.0	0.7	0.9	0.0	0.0	0	1.86E-13	2.88E-11	0.00	1.26E-04 7		0.0
12:45 PM	2	3.6	2448.7	2938.5	3	4.7	3180.7	3816.8	1.1	7.8	o	1.13E-08	7.78E-08	0.00	1.32E-04 7	.44E+00	0.0
01:00 PM	3	4.2	2834.8	3401.8	4	5.4	3678.9	4414.6	1.4	11.4	0	1.35E-08	1.14E-07	0.00	3.40E-01 2	.41E+02	0.1
01:15 PM	3	4.8	3276.5	3931.9	4	6.2	4247.8	5097.3	1.6	16.3	0	1.62E-08	1.63E-07	0.00	7.46E-01 5	.83E+02	0.1
01:30 PM	3	4.8	3254.4	3905.3	4	6.2	4212.6	5055.1	1.7	19.5	0	1.67E-08	1.95E-07	0.00	1.23E+00 1	.07E+03	1.0

.

#### SAMPLE POINT: 11

		ENT RADIA TER ABOVE		INGS						ATION REAL			-SITE LABOR			
	IME	IER ABUVE	SURFACE		6" ABOVE S	SURFACE			READINGS	MADE OUT	SIDE PLUME	CONT	AMINATION S	SAMPLE RES	ULTS	
	Dose Rate	Dose Rate	LUD-19	HP-210	Dose Rate D	ose Rate	LUD-19	HP-210	IODINE	PART.	VEGETAT'N	IODINE	PART.	IODINE	IODINE PARTIC	TLD
DRILL	CW	OW	D/R	C/R	CW	OW	D/R	C/R	AIRBORNE	AIRBORNE	SAMPLE	AIRBORNE	AIRBORNE	SURFACE	VEGETAT'N VEG	DOSE
TIME	mR/hr	mR/hr	uR/hr	cpm				cpm	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uCi/m^2	pCi/g pCi/g	mRem
08:30 AM	Ö	0.0	0.0	0.0	o	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
08:45 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
09:00 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
09:15 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
09:30 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	. 0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	. 0.0
09:45 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	. 0.0
10:00 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	· o	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
10:15 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0.00E+00	0.0
10:30 AM	0	0.0	0.1	0.1	0	0.0	0.1	0.1	0.0	0.0	0	8.06E-14	1.21E-10	0.00	0.00E+00 0.00E+00	0.0
10:45 AM	0	0.0	0.1	0.1	0	0.0	0.1	0.2	0.0	0.0	0	1.49E-13	2.23E-10	0.00	2.42E-06 3.62E-01	0.0
11:00 AM	0	0.0	0.2	0.2	0	0.0	0.2	0.2	0.0	0.0	0	1.97E-13	2.95E-10	0.00	6.88E-06 1.03E+00	0.0
11:15 AM	0	0.0	0.3	0.3	0	0.0	0.3	0.4	0.0	0.0	0	2.76E-13	4.13E-10	0.00	1.28E-05 1.91E+00	0.0
11:30 AM	0	0.0	3.5	4.2	0	0.0	4.5	5.4	0.0	0.1	0	1.16E-12	5.51E-10	0.00	2.11E-05 3.15E+00	0.0
11:45 AM	0	0.0	1.7	2.1	0	0.0	2.2	2.6	0.0	0.0	0	5.53E-13	2.17E-10	0.00	5.59E-05 4.81E+00	0.0
12:00 PM	0	0.0	1.0	1.2	0	0.0	1.2	1.5	0.0	0.0	0	3.35E-13	1.39E-10	0.00	7.25E-05 5.46E+00	0.0
12:15 PM	0	0.0	2.5	3.0	0	0.0	3.2	3.8	0.0	0.0	. 0	8.74E-13	1.53E-10	0.00	8.25E-05 5.88E+00	0.0
12:30 PM	0	0.0	0.5	0.6	. 0	0.0	0.6	0.7	0.0	0.0	0	1.60E-13	2.48E-11	0.00	1.09E-04 6.33E+00	0.0
12:45 PM	2	3.1	2109.4	2531.3	3	4.0	2739.9	3287.9	1.0	6.7	0	9.75E-09	6.70E-08	0.00	1.14E-04 6.41E+00	0.0
01:00 PM	2	3.6	2442.0	2930.3	3	4.7	3169.0	3802.8	1.2	9.8	0	1.17E-08	9.83E-08	0.00	2.93E-01 2.08E+02	0.1
01:15 PM	3	4.1	2822.5	3387.0	4	5.4	3659.1	4390.9	1.4	14.0	0	1.40E-08	1.40E-07	0.00	6.43E-01 5.02E+02	0.1
01:30 PM	3	4.1	2803.4	3364.1	4	5.3	3628.8	4354.6	1.4	16.8	0	1.44E-08	1.68E-07	0.00	1.06E+00 9.24E+02	0.9

SAMPLE	POINT:	12	

:

		ENT RADIA TER ABOVE		DINGS	6" ABOVE	SURFACE				MADE OUT	DINGS SIDE PLUME		-SITE LABOR	•			
DRILL	Dose Rate CW	OW	D/R	HP-210 C/R	Dose Rate CW	Dose Rate OW	LUD-19 D/R	HP-210 C/R	IODINE AIRBORNE	PART. AIRBORNE	VEGETAT'N SAMPLE	IODINE AIRBORNE	PART. AIRBORNE	IODINE SURFACE	IODINE VEGETAT'N	PARTIC VEG	TLD DOSE
TIME	mR/hr	mR/hr	uR/hr	cpm				cpm	cpm/cfm	cpm/cfm	mR/hr	uCi/cc	uCi/cc	uC1/m^2	pCi/g	pCi/g	mRem
08:30 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	.0.0	Ó.O	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	00E+00	0.0
08:45 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	00E+00	0.0
09:00 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0		0.0
09:15 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0		0.0
09:30 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
09:45 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0		0.0
10:00 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
10:15 AM	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.9	0	0.00E+00	0.00E+00	0.00	0.00E+00 0	.00E+00	0.0
10:30 AM	0	0.0	0.0	0.1	0	0.0	0.1	0.1	0.0	0.0	0	7.07E-14	1.06E-10	0.00	0.00E+00 0	.00E+00	0.0
10:45 AM	0	0.0	0.1	0.1	0	0.0	0.1	0.1	0.0	0.0	0	1.30E-13	1.95E-10	0.00	2.12E-06 3		0.0
11:00 AM	0	0.0	0.1	0.2	0	0.0	0.2	0.2	0.0	0.0	0	1.73E-13	2.59E-10	0.00	6.03E-06 9	.03E-01	0.0
11:15 AM	0	0.0	0.2	0.3	. 0	0.0	0.3	0.3	0.0	0.0	· 0	2.42E-13	3.62E-10	0.00	1.12E-05 1		0.0
11:30 AM	0	0.0	3.1	3.7	. 0	0.0	4.0	4.8	0.0	0.0	. 0	1.02E-12	4.83E-10	0.00	1.85E-05 2		0.0
11:45 AM	0	0.0	1.5	1.8	0	0.0	1.9	2.3	0.0	οĺο	• 0	4.85E-13	1.91E-10	0.00	4.90E-05 4	.22E+00	0.0
12:00 PM	0	0.0	0.9	1.0	0	0.0	1.1	1.3	0.0	0.0	0	2.94E-13	1.22E-10	0.00	6.36E-05 4	.79E+00	0.0
12:15 PM	0	0.0	2.2	2.6	. 0	0.0	2.8	3.4	0.0	0.0	o	7.67E-13	1.34E-10	0.00	7.24E-05 5	.16E+00	0.0
12:30 PM	0	0.0	0.5	0.6	0	0.0	0.5	0.7	0.0	0.0	0	1.40E-13	2.18E-11	0.00	9.54E-05 5	.56E+00	0.0
12:45 PM	2	2.7	1850.7	2220.9	2	3.5	2404.0	2884.7	0.9	5.9	0	8.56E-09	5.88E-08	0.00	9.96E-05 5	.62E+00	0.0
01:00 PM	2	3.1	2142.5	2571.0	3	4.1	2780.5	3336.5	1.0	8.6	0	1.02E-08	8.62E-08	0.00	2.57E-01 1	.82E+02	0.1
01:15 PM	2	3.6	2476.4	2971.7	3	4.7	3210.4	3852.5	1.2	12.3	0	1.23E-08	1.23E-07	0.00	5.64E-01 4	.41E+02	0.1
01:30 PM	2	3.6	2459.7	2951.6	' <b>•</b> 3	4.7	3183.8	3820.6	1.3	14.7	0	1.26E-08	1.47E-07	0.00	9.32E-01 8	.10E+02	0.8

)

### CAROLINA POWER AND LIGHT COMPANY ROBINSON NUCLEAR PROJECT DEPARTMENT

1993 DEFERRED EXERCISE

# 3.5 DAMAGE CONTROL MISSIONS

CON-94-0222 RNPD-94-03-R0

#### DAMAGE CONTROL MISSION INDEX

MISS	SION DESCRIPTION	APPROX	TIME
#	1 "A" CHARGING PUMP FIRE	0846	HRS
#:	2 LOSS OF DEDICATED SHUTDOWN (DS) BUS	0853	HRS
. #	3 INVESTIGATE "A" CHARGING PUMP	0908	HRS
#4	4 INVESTIGATE HVS 1	0926	HRS
#	5 SPURIOUS TURBINE TRIP	1007	HRS
#6	6 ATWS INVESTIGATION	1007	HRS
#7	7 STEAM DUMP VALVES FAILURE	1008	HRS
#8	STUCK S/G "A" PORV	1012	HRS
#9	INVESTIGATE LPMS ALARM	1116	HRS
#1	0 INVESTIGATE TURNING GEAR	1210	HRS

#### #11 PASS

CON-94-0222 RNPD-94-03-R0

••

3.5-INDEX

2

### DAMAGE CONTROL MISSION # 1:

TITLE: "A" Charging Pump Fire

<u>Narrative Description</u> - Due to an internal electrical fault, the "A" Charging Pump motor catches fire (internal short, breakdown of insulation).

<u>Indications</u> - Control Room receives 2 trains of fire alarms. Charging flow drops and alarm is received. Visible flames in Charging Pump Room on motor of "A" Charging Pump and large quantities of smoke. After initial Charging Pump loss, a 480V bus ground alarm is received in the Control Room to indicate possible problems with other pumps. Fire to last for 15 minutes after fire fighting begins, initial attempts with portable equipment to be unsuccessful. Visual indication of heat damage/sparks on "B" Charging Pump and Charging Pump Control Panel.

<u>Mockup Description</u> - Flames on "A" Charging Pump. Conditions in the area will be described by controller.

<u>Controller Requirements</u> - Requires 1 controller at the Charging Pump Room. Controller must be familiar with area and fire brigade procedures/methods. Controller will prevent actual equipment spraydown but will force players to "earn" responses. May need 1 HP Controller for RC/Personnel Protection concerns.

<u>Proposed Fix</u> - Extinguish fire. Remove pump from service, rack out breaker, to recover DS Bus.

Parts Needed - Smoke ejector for room.

Time to Repair - 1/2 hour.

Data Change of Fix - N/A

REFERENCE MESSAGES #3, A, 4, 5, 7, 8, 9, C

CON-94-0222 RNPD-94-03-R0

### DAMAGE CONTROL MISSION # 2:

TITLE: Loss of Dedicated Shutdown (DS) Bus

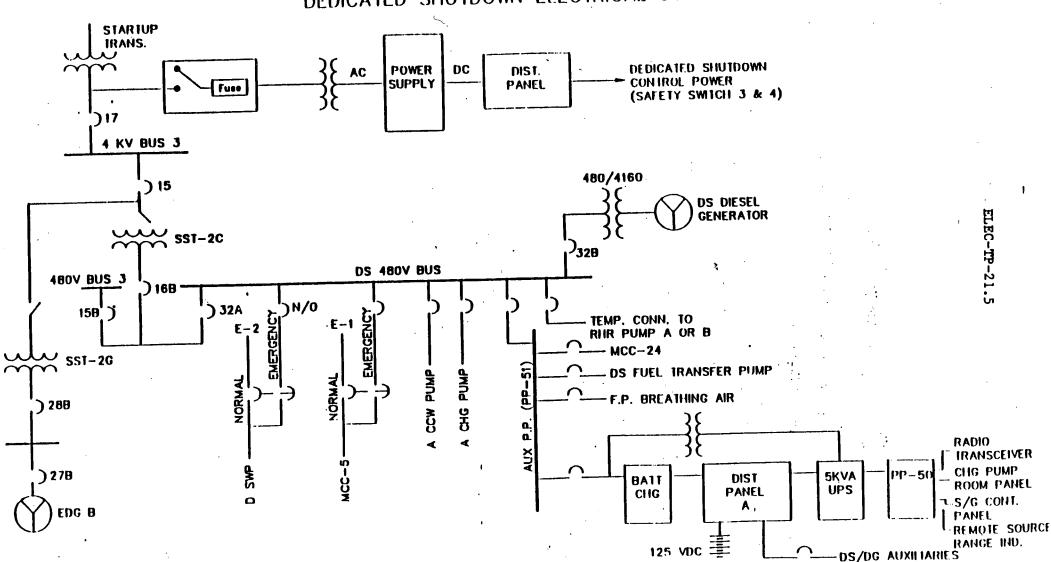
<u>Narrative Description</u> - The electrical short associated with the "A" Charging Pump motor fire results in an undervoltage (UV) condition on the DS Bus. The DS Bus breaker (52/32A) responds correctly to the UV, the "A" Charging pump breaker fails to trip, due to a faulty UV relay.

<u>Indications</u> - Control Room receives alarms associated with DS Bus undervoltage and subsequent trip of bus feeds. The "A" Charging Pump breaker fails to trip (remains closed).

<u>Mockup Description</u> - Large drawings of breaker cubicles and breaker schematics for I&C to use their test instruments on.

<u>Controller Requirements</u> - Requires 1 controller to cover both the DS bus tie breaker and the "A" Charging Pump breaker. Controller must be familiar with circuit breaker operations and associated electrical signals.

<u>Proposed Fix</u> - Manual opening and/or racking out of "A" Charging Pump breaker will clear the DS bus fault. DS tie breaker will then be able to be reclosed. Alternately, after the pump breaker is opened/racked out the DS Diesel may be started and breaker 52/32B closed.


<u>Parts Needed</u> - Undervoltage relay for "A" Charging Pump breaker, if desired to repair.

<u>Time to Repair</u> - Approximately 1 hour troubleshooting, 1/2 - 1 hour to rack breaker out. Final repair may be outside of exercise scope.

<u>Data Change of Fix</u> - Restores "A" Charging Pump (power supply from DS bus) and availability of DS Bus (on SPDS Sheets). Contact Lead Scenario Controller in Exercise Control Room.

REFERENCE MESSAGES #6, B

CON-94-0222 RNPD-94-03-R0 DEDICATED SHUTDOWN ELECTRICAL SYSTEM



3.5-2A

#### DAMAGE CONTROL MISSION # 3:

TITLE: Investigation of "A" Charging Pump

<u>Narrative Description</u> - Fire Alarm in Charging Room from "A" Charging Pump. Smoke and flames from "A" Charging Pump Motor. Failure of breaker to trip on undervoltage condition.

Indications - Meggar and Bridge test the "A" Charging Pump Motor.

<u>Mockup Description</u> - Mockup should be near DS Bus in 4KV Room. Large drawings of associated electrical schematics and breaker cubicle. Motor should meggar open from at least one winding to ground, bridge will show open winding.

<u>Controller Requirements</u> - 1 Controller (shared with Mission #2).

Proposed Fix - 'Repair motor at offsite shop.

Parts Needed - None supplied onsite.

<u>Time to Repair</u> - 48 Hours (Beyond exercise scope).

Data Change of Fix - None.

REFERENCE MESSAGE #10 AND MISSIONS #1 & #2

CON-94-0222 RNPD-94-03-R0

### DAMAGE CONTROL MISSION # 4:

TITLE: Failure of HVS 1

<u>Narrative Description</u> - Due to a series of breaks of the belts on HVS-1 a HVS trouble alarm is generated on the RTGB. The Relationship of HVS-1 and HVE-2 maintain the Auxiliary (Aux) building at a negative pressure. Although the Aux Building will maintain a negative pressure, the flow balance will be disrupted.

<u>Indication</u> - Broken belts are on the floor and the drive motor is running and is hot to touch. APP-010-A5 (HVS Trouble ) on the RTGB.

Mockup Description - N/A

<u>Controller Requirements</u> - One controller is required in the 2nd floor hallway in the HVS-1 Fan Room.

<u>Proposed Fix</u> - Obtain clearance, secure belts and simulate installation of the belts.

Parts Needed - Belts for HVS-1

<u>Time to Repair</u> - Approx 1 hour

Data Change of Fix - N/A

<u>Reference Message</u> - Simulator instructions

### DAMAGE CONTROL MISSION # 5:

<u>TITLE:</u> Spurious Turbine Trip

<u>Narrative Description</u> - During the power decrease made necessary by the steam generator tube leak, the turbine trips while at approximately 25% power. Trip is a turbine auto trip due to loss of EHC fluid at a reheat valve. The loss of fluid in the emergency trip header reduces EHC pressure which closes turbine stop valves. Cause of pressure loss is a broken fitting on EHC line to reheat valve.

<u>Indications</u> - Control Room receives turbine trip first out alarm and EHC reservoir low level alarms. 40-50 gallons of oil may be seen @ the spill site.

Mockup Description - Simulated spill of EHC fluid between Turbine and MSR.

<u>Controller Requirements</u> - Requires 1 controller familiar with chemical/oil spills. Requires 1 controller familiar with EHC lines/high pressure oil piping.

<u>Proposed Fix</u> - Secure EHC pumps. Investigate leak and repair EHC line/replace fitting. Clean up spill, refill EHC reservoir. This mission may not be repaired due to other priorities, but environmental issues must be addressed.

Parts Needed - New EHC piping/fitting.

<u>Time to Repair</u> - >4 Hours, may be outside of exercise scope.

Data Change of Fix - N/A

REFERENCE MESSAGES #15, 17, K, L

### DAMAGE CONTROL MISSION # 6:



TITLE: ATWS

<u>Narrative Description</u> - Following the spurious turbine trip, the associated automatic reactor trip does not occur. A manual trip from the RTGB is required to reduce power. This will be second alert condition in the scenario. Fault caused by P-7 logic failure.

<u>Indications</u> - Reactor trip breakers remain "red", reactor power is not reduced, "first out" for turbine trip is flashing.

Mockup Description - None

Controller Requirements - Requires 1 I&C controller.

Proposed Fix - Troubleshoot problem, identify failure.

Parts Needed -

<u>Time to Repair</u> - Play as actual,  $\approx$  2 Hours

Data Change of Fix - None

REFERENCE MESSAGE #15



CON-94-0222 RNPD-94-03-R0

### DAMAGE CONTROL MISSION # 7:

TITLE: Steam Dump Valves Failure

<u>Narrative Description</u> - Following the spurious turbine trip, the steam dump valves fail to open to control Tavg. Failure is due to failure of PSHH-1338 (Condenser Vacuum Interlock).

<u>Indications</u> - Control Room indications for steam dump valves indicate closed, Tavg increases, steam generator PORVs open.

<u>Mockup Description</u> - Drawing of steam dump control circuit for I&C to use their test instruments on. Drawings of PSHH-1338 and PSHH-1339 circuits also.

Controller Requirements - Requires 1 controller familiar with circuit functions.

<u>Proposed Fix</u> - Jumper PSHH-1338 contacts to restore steam dumps or replace Pressure Switch (PS) from stock.

<u>Parts Needed</u> - New PS or jumper. Jumper may require Temporary Modification or Engineering Evaluation.

Time to Repair - 1-2 Hours.

Data Change of Fix - No SPDS data change allowed if using "paper" scenario, must be OOS for at least 1 hour.

REFERENCE MESSAGE #16

#### DAMAGE CONTROL MISSION # 8:

TITLE: Stuck S/G "A" PORV

<u>Narrative Description</u> - Following turbine trip without steam dumps available, the valve opened properly but will not reclose later. High rad levels and much steam and noise exist in the area.

<u>Indications</u> - Lights on RTGB indicate valve has not fully closed. If repair party can get close enough, the valve appears to have a bent stem.

Mockup Description - Drawings of valve, instruction manual.

<u>Controller Requirements</u> - Observe and record mechanics attempts to repair. Do not allow valve to close.

Proposed Fix - Loosen packing, lubricate stem and cycle valve.

Parts Needed - Lubricant and brush, wrenches, pry bars, etc.

Time to Repair - OOS for duration of drill.

Data Change of Fix - None

**REFERENCE MESSAGES #19, 25** 



CON-94-0222 RNPD-94-03-R0

### DAMAGE CONTROL MISSION # 9:

#### TITLE: Investigate LPMS Alarm

<u>Narrative Description</u> - LPMS Annunciator Alarm received in Control Room. When the STA arrives at the LPMS panel he will find indications that loose parts have occurred at both the bottom and top of the Reactor Vessel. Upon checking the various displays he will find that loose parts impacts are still occurring in the Reactor Vessel.

Indications - Annunciator Alarm in Control Room and local alarm on LPMS Panel.

Mockup Description - Typed displayed messages as follows:

When the STA or alternate responds to the LPMS cabinet in the Rod Control Room they will find displayed on the LPMS screen that Channels 752 - Reactor Vessel lower and 750 - Reactor Vessel Upper Channels have had events.

When the channels displays are requested they will note that impacts occurred on bottom of Reactor Vessel and 1 minute later impacts occurred at top of Reactor Vessel. The number and force of the impacts is less at the top than at the bottom, indicating parts may have broken up and some may be trapped in the core.

The displays will indicate that no additional impacts are occurring in either the RV bottom or top.

# **DAMAGE CONTROL MISSION # 9:** (Continued)

If the STA checks the other channels, he will note that impacts were seen the previous day on S/G "B" primary at 2300 hours. This is information unrelated to the real event ("red herring) but will be explained as normal spurious indication that may be induced by changes in RCS lineup. These types of LPMS indications often occur. Since only one impact occurred above the alarm limit, it did not alarm the system.

If the STA displays the other active channels, he will find that impacts have occurred on Channel 754 S/G "A" primary side. The impacts occurred after those in the Reactor Vessel Upper and show that the debris may have traveled into S/G "A". The impacts are below the alarm setpoint, so no alarm was received.

The debris could work its way back into the Reactor Vessel lower area but by the time it traveled through the S/G and back it could be small enough not to register as impacts. It could however lodge in the core and cause additional fuel failures due to debris wear.

<u>Controller Requirements</u> - 1 Controller familiar with the LPMS.

<u>Proposed Fix</u> - Report findings to Control Room. Get printout of displays for future use or by others. Arrange for a tape of events to be forwarded to Westinghouse for analysis.

<u>Parts Needed</u> - None. If decision to make recording, will need new tape for the recorder.

<u>Time to Repair</u> - Approximately 10 to 20 minutes to check displays and acquire data.

Data Change of Fix - None.

**REFERENCE MESSAGE # 26** 

CON-94-0222 RNPD-94-03-R0

#### CONTROL ROOM AUXILIARY ANNUNCIATOR PANEL

	·	·····									
CHANNEL A	ICCM SYSTEM MALFUNCT CHANNEL B 2	LPMS ALARM	SG BLOWDOWN/WET LAYUP TROUBLE 4	POLISHER TROUBLE	PA SYS CIR BKR TRIPPED 6	7	INST A/C "C" TROUBLE 8	INST A/C "C" TRIP 9	10	11	12
SPENT FUEL PIT HI TEMP 13	SPENT FUEL PIT HI LVL 14	lo lvi.	NEUTRON FLUX Monitor Trouble Channel A	CHANNEL B	BATTERY "C" UNDER- VOLTAGE 18	BATTERY "C" GROUND DETECTION 19	20	21			N2 HEADER PRESSURE HIGH/LOW
CONT'L RM	EATTERY ROOM TEMPERATURE HI/LO 26		N. SERVICE VTR. STRAINER PIT LEVEL HI-	S. SERVICE WTR STRAINER PIT LEVEL HI-	RCS LOOP 2 STANDPIPE LEVEL LOW		ICCH TEMP HIGH 32				24
25	20	27	28	29	30	31		33	34	35	36
ERFIS ALARN 37			VTR. STRAINER PIT LEVEL HI 40		STANDPIPE LEVEL LOW '						
49	38			53	42 TURBINE BLDG SW ISOLATED 54	A RHR PIT HI-HI Water Level	8 RHR PIT HI-HI Water Level	- ·		<u>47</u> 59	
		<u>_</u>		65		LEVEL	HI WATER Level	69	70	71	72
61	62					· · · · · · · · · · · · · · · · · · ·	1		82	83	84
73	74								94	95	96
85	86					1	· · · · · · · · · · · · · · · · · · ·			107	108
97	98	99			102	1		105		119	108
109	110	111	112			1	1	117	118		120
121	122	123	124	125		1	1		130	131	
133	134	135	136	. 137	138	139	140	141	142	143	144

:

	LOCN: RVL MAX AMPL: CH #: 752 AVG AMPL: SETP: 2.0 MAX RATE: #>SP: 8 AVG RATE: # <sp: 64="" elswr:<br="" ev=""># EV PERIODS (MIN):</sp:>	2.3 1.2 7 7.2 30 8	•
	LOCN: RVU MAX AMPL: CH #: 750 AVG AMPL: SETP: 2.0 MAX RATE: #>SP: 4 AVG RATE: # <sp: 26="" elswr:<br="" ev=""># EV PERIODS (MIN):</sp:>	0.8 10	TIME: 11:30:18 M EVENT TIMES FIRST:11:17:00
	LOCN: SG2 MAX AMPL: CH #: 756 AVG AMPL: SETP: 1.0 MAX RATE: #>SP: 1 AVG RATE: # <sp: 2="" elswr:<br="" ev=""># EV PERIODS (MIN):</sp:>	1.1 0 1 0 0 1	DATE: 11/20/91 TIME: 11:32:16 Y EVENT TIMES FIRST:23:00:01 LAST: 23:02:00 AMPL: 0.1
)	LOCN: SG1 MAX AMPL: CH #: 754 AVG AMPL: SETP: 3.0 MAX RATE: #>SP: 0 AVG RATE: # <sp: 6="" elswr:<br="" ev=""># EV PERIODS (MIN):</sp:>	0.4 0.2 0 2 0 1	DATE: 11/20/91 TIME: 11:34:00 M EVENT TIMES FIRST:11:20:00 LAST: 11:29:00 AMPL: 0.1

۰.

.-

ف ALARA "EVENTS HAVE OCCURED ON THESE CHANNELS" ALAAM 752 750 CPU ..... " ENTER CHANNEL # TO BE DISPLAYED" MOONY OFTICH Ê. GLAAR TAPE MAR ALA 10 2 3 14.44 . YES 0 ON-OF The 110 0.001 4 NO ENTER AUDIO OPE TEST

3.5-9C

ALAPM DISABLED ALAPMA INHIBITED		ן נ	CH #: SETP: #>SP: # <sp:< th=""><th>75 2. 8 64</th><th></th><th>E: 7.2 R: 30</th><th>DATE: 11 TIME: 11 M EVENT FIRST:11 LAST: 11 AMPL: C</th><th>:28:15 TIMES :16:00 :26:00</th><th>ALARM CPU FAILED</th></sp:<>	75 2. 8 64		E: 7.2 R: 30	DATE: 11 TIME: 11 M EVENT FIRST:11 LAST: 11 AMPL: C	:28:15 TIMES :16:00 :26:00	ALARM CPU FAILED
	7 4 1 YES NO		9 9 3		CALERCAY				ALARM MESET POWER ON-OFF

•

•

3.5-9D

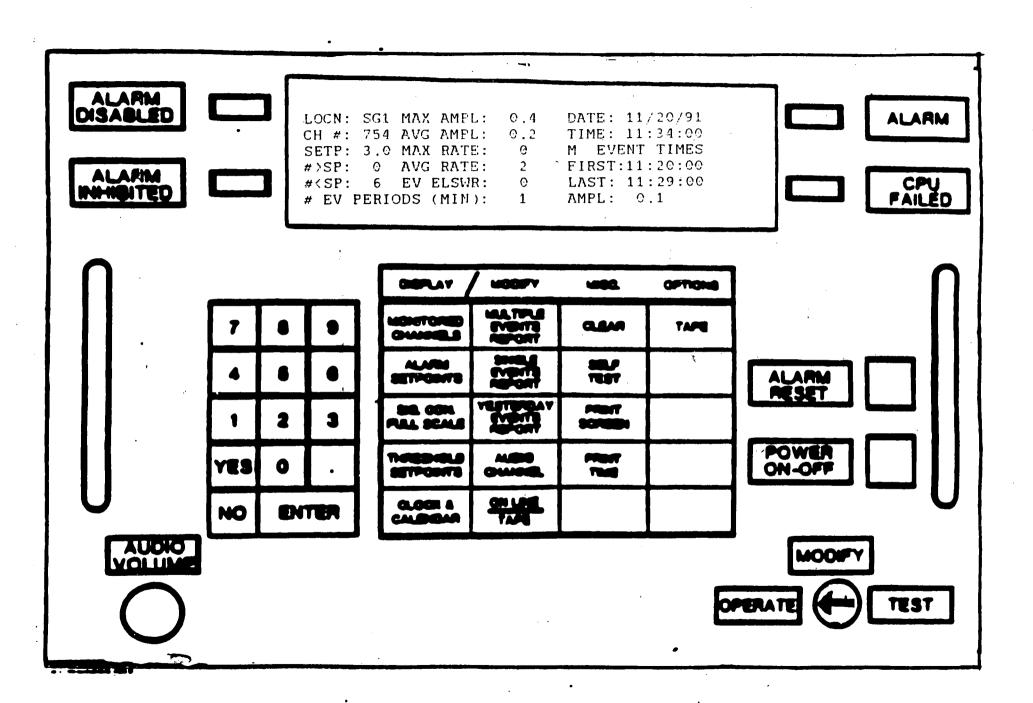
ALARM DISAGLED		ם ביו	LOCN: CH #: SETF: #>SP: # <sp: # EV</sp: 	750 AVG AM 2.0 MAX RA 4 AVG RA	FL: 0.8 TE: 10 TE: 5 WR: 72	DATE: 1 TIME: 1 M EVEN FIRST:1 LAST: 1 AMPL: 0	1:30:18 T TIMES 1:17:00 1:27:10	
	7 4 1 YES NO	8 2 0	9 9 3	CHERLAY WONTONED OWNERLS ALARD SETTODITS SEL COM PAL SCALE THREDHELS SETTODITS CLOCK & CALENDAR	MODELY MAATEL SMEAT METAL METAL METAL METAL METAL METAL METAL METAL			ALARNI ALARNI ALESET MESSET MOVER ON-OFF

.

٠

.

.


٠

3.5-9E

5

ALARM DISABLED ALARM INHIBITED		ן ק ק	LOCN CH # SETP #>SP # <sp # EV</sp 	: 756 AVG A : 1.0 MAX R : 1 AVG R	MFL: 0 ATE: 1 ATE: 0 .SWR: 0	TIME: Y EVE FIRST:	11/20/91 11:32:16 NT TIMES 23:00:01 23:02:00 0.1		
	7 4 1 YES NO		9 9 3	CHERCAY MONITORED CHUNNELS ALAR SETPONTS SEL COR PAL SCALE SETPONTS CLOCK & CALEGAR	NORMY NATELS ENDER STORE STORE STORE STORE ALCONE STORE			ALARMA AESET	

3.5-9F



3.5-9G

### **DAMAGE CONTROL MISSION # 10:**

#### TITLE: INVESTIGATE TURNING GEAR PROBLEM

<u>Narrative Description</u> - During the power decrease mae necessary by the steam generator tube leak, the turbine will trip. From approx. 1007 until approx 1115 the turbine will coast down. After approx one hour (approx 1210) the chain will break causing the turning gear to stop. This problem will need to be addressed to prevent damage to the turbine shaft.

<u>Indications</u> - the following RTGB indications will be seen APP-008-D2, Turning Gear Motor Trip, and APP-009-F2 Turbine at Zero Speed .

Mockup Description - No mock up will be available

<u>Controller Requirements</u> - Requires 1 controller at the Turning Gear on the turbine deck. Controller must be familiar with area and mechanical procedures/methods. Controller will prevent actual equipment manipulation but will force players to "earn" responses. May need 1 HP Controller for RC/Personnel Protection concerns.

<u>Proposed Fix</u> - Repair chain and restart turning gear. Provide appropriate procedures and diagrams if needed.

Parts Needed - procedures, chain or repair links, and tools

<u>Time to Repair</u> - 1 1/2 hour.

Data Change of Fix - N/A

REFERENCE MESSAGES

÷.

## DAMAGE CONTROL MISSION # 11

TITLE: Sample RCS from the PASS

NARRATIVE DESCRIPTION: During a plant transient, OPS will require RCS sample results. This will provide an isotopic to determine fuel damage.

<u>INDICATION</u>: Chemistry will receive request for isotopic results from the Reactor Coolant System. These request may come at various times during the exercise.

<u>MOCK UP DESCRIPTION</u>: There will be no mock up available due to the availability of the PASS panel. Pulling of a demineralized water sample will determined by the status of the plant at the time of the annual exercise.

<u>CONTROLLER REQUIREMENTS</u>: One Health Physics controller and if possible a chemistry controller

<u>PROPOSED FIX</u>: Sample results are in the controller packets and may be given 30 to 45 minutes after completion of the sample has been pulled.

÷

PARTS NEEDED: PASS procedures

TIME TO REPAIR: N/A

DATA CHANGE OF FIX: N/A

**REFERENCE MESSAGE**:

#### CAROLINA POWER AND LIGHT COMPANY ROBINSON NUCLEAR PROJECT DEPARTMENT

## 1993 DEFERRED EMERGENCY PREPAREDNESS EXERCISE

4.0 CONTROLLERS' INSTRUCTIONS

CON-94-0222 RNPD-94-03-R0

#### INSTRUCTIONS FOR CONTROLLERS

- 1. Personnel are assigned as controllers or evaluators at the key function areas to monitor and control the exercise. In addition, they will accompany Radiological Monitoring Teams, Plant Health Physics Personnel, and Emergency Repair, and Fire Emergency Teams.
- 2. The in-plant controllers will be coordinated by the Lead Scenario Controller. He/she will be responsible for the overall control of the scenario. If unable to reach the Lead Scenario Controller, contact any Lead Controller.
- 3. Message forms and simulated control room data will be used to initiate, modify, and complete the events comprising the overall scenario. Selected controllers will use the messages to initiate the scenario events and to trigger responses from the involved emergency response organizations. Each controller will have copies of the messages controlling the portion of the scenario for which he/she is responsible.

Two kinds of messages will be used:

#### Control

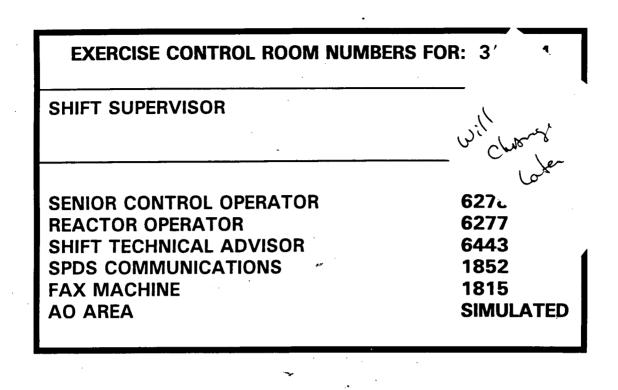
Messages used as a primary means of implementing scenario events by announcing or placing an event in effect by hypothetical conditions resulting from previous actions.

#### <u>Contingency</u>

Messages used with the approval of the Lead Scenario Controller in order to maintain the scenario plan continuity or schedule. Control messages will be presented to the designated exercise participant at the time specified in the event schedule. The controller should follow up with an explanation of the message and answer questions to ensure that the participant understands the message.

Controllers will <u>not</u> provide information to the participants regarding scenario development or resolution of problem areas encountered. The participants are expected to obtain information through their own organization and exercise their own judgement in determining response actions and resolving problems.

4. Note that the scenario events are hypothetical. Any portion of the scenario depicting Plant system operational transients are simulated events. No control room actions or reactions involving operation of Plant systems or affecting generation capability will be initiated. All scenario messages will be prefixed and suffixed with the words "THIS IS AN DRILL/EXERCISE MESSAGE." Controllers stationed at areas vital to maintaining generating capability should be especially aware and take extra precautions in issuing messages or giving instructions regarding the scenario events.


CON-94-0222 RNPD-94-03-R0

- 5. Required controllers have the time-related Plant and radiological parameters of the exercise scenario. This information shall be issued to the appropriate exercise participants.
- 6. Some exercise participants may insist that certain parts of the scenario are unrealistic. The controllers and evaluators have the authority, with the approval from the Lead controllers, to clarify any questions regarding scenario validity. In some cases, it may be necessary to exercise specific instructions to preserve the continuity and objective of the exercise. Instructions however, should be made in such a manner so as <u>NOT TO PROMPT</u> players to make a specific response.
- 7. Prior to exercise commencement, all telecommunications should be tested to ensure satisfactory communications between the Lead Controllers and all other controllers.
- 8. Controllers will commence their assignments at assembly locations for players that they are to observe or as directed by the Lead Controllers.
- 9. Players are not allowed to introduce problems or events into the exercise or its scenario. Free play however, should be encouraged wherever possible, so long as the players actions do not affect the overall scenario or the reaching of objectives of the exercise. when free play occurs, the Lead Controller or Exercise Director should be informed and have final authority to decide if such actions are consistent with overall exercise objectives.

## CONTROLLER/EVALUATOR TELEPHONES will chores

CONTROLLER NETWORK FOR:	3/30/94
CONTROL ROOM TECHNICAL SUPPORT CENTER EMERGENCY OPERATIONS CENTER OPERATIONAL SUPPORT CENTER	RADIO RADIO RADIO RADIO
OTHER CONTROLLER TELEPHONES:	
CONTROL ROOM TECHNICAL SUPPORT CENTER EMERGENCY OPERATIONS FACILITY CORPORATE METEOROLOGY (Caronet) CORPORATE COMMUNICATIONS (Caronet) NRC CONTROLLER (Caronet)	1519 5045 5051

EXERCISE PHONE NUMBERS



STATE/COUNTY Selective Signalling.....USE PER PROCEDURE STATE/COUNTY Decision Line....USE PER PROCEDURE STATE/COUNTY TELECOPIERS.....DO NOT USE PROCEDURE ERDS.....DO NOT USE NRC FTS 2000....DO NOT USE NRC OPERATIONS CENTER..... NRC HPN LINE...... NRC TELECOPIER..... CORPORATE COMMUNICATIONS.....USE PER PROCEDURE OTHER......Give Message to Nearest Controller

**REMEMBER:** 

"This is a Drill Message"

EXERCISE PHONE NUMBERS

EXERCISE CONTROL ROOM N	UMBERS FOR: 3/30/94
OSC LEADER	5034
Mechanical Planner Electrical Planner Damage Control Team Leader Mechanical Supervisor Electrical Supervisor E&RC Supervisor ALARA Supervisor OSC Administrative Assistant E&RC Team Leader RWP Status Board Chemistry Desk	5013 5014 5015 5018 5019 5020 5023 5026 5027 5028 5033

# **REMEMBER:** "This is a Drill Message"

#### CAROLINA POWER AND LIGHT COMPANY ROBINSON NUCLEAR PROJECT DEPARTMENT

1993 DEFERRED EMERGENCY PREPAREDNESS EXERCISE

5.0 EVALUATORS' INSTRUCTIONS

CON-94-0222 RNPD-94-03-R0

#### A. INSTRUCTIONS FOR EVALUATORS

- 1. Know the overall Controller/Evaluator Organization.
- 2. Identify the players by name and function.
- 3. Identify yourself at all times to all players. Wear identification as provided (controller/evaluator badges or arm bands).
- 4. Identify the phone (or radio for field teams) you will use to maintain communications with Lead Controllers.
- 5. Position yourself to maximize your effectiveness in issuing messages and observing the players.
- 6. Be sure you understand the players' scenario script and the master scenario.
- 7. If acting as a Controller/Evaluator, keep the play on schedule by checking your timeline.
- 8. If acting as a Controller/Evaluator, issue the message on time. Make sure the players understand it.

9. If acting as a Controller/Evaluator, remember to call the Lead Controller to report on status of players' actions if off schedule or if in doubt about what to do. Call for advice if players depart significantly from the scenario script.

- 10. Allow the players reasonable flexibility to perform their functions and demonstrate their skill, knowledge, and initiative.
- 11. Identify any non CP&L evaluators. Make sure they are aware of all your actions and those of the players.
- 12. Make notes on good and bad points of players' actions, the strengths and weaknesses, and areas for improvements.
- 13. Attend the post-exercise critique session to provide your comments and recommendations to the Lead Controller.
- 14. Identify the players' leaders. Work with them as appropriate.
- 15. If a real emergency occurs and this affects the players, call off your portion of the exercise and notify the Lead. Scenario Controller immediately.
- 16. Be at your post at least 30 minutes prior to any player action commencement.

17. Any non-CP&L evaluators will work through the Exercise Director or the Lead Scenario Controller. This is essential for the success of the exercise.

67

18. Controllers and evaluators do not have to follow the radiation exposure control practices appropriate for the <u>simulated</u> radiation levels. However, the players <u>must</u> follow the radiation protection rules. Controllers and evaluators will be exempt from accountability and have access to all areas.

#### GENERAL "DON'TS" FOR EVALUATORS

- 1. Don't leave your post at key times.
- 2. Don't prompt the players to take action.
- 3. Don't coach the players.
- 4. Don't criticize the players' actions during the play.
- 5. Don't forget to call the Lead Controller to seek advice or help as necessary.
- 6. Don't allow the media/other external influences to distract the players. No interviews with players are allowed.
- 7. Don't allow simulation when equipment and facilities are available except for causing flow discharge of fire extinguishers, etc.

#### *** NOTE ***

All participants will comply with radiation exposure control practices for actual conditions existing at the plant at the time of the exercise.

#### Critique Worksheets/Evaluation Checklists

In an effort to help evaluators, a set of "Evaluation Checklists" have been provided for reference in Section 5.0. Each evaluator may, if he/she chooses, utilize the checklists for their particular area of observation to assist in being sure that critical items for evaluation are not accidentally missed during the exercise. The Evaluation Checklists may be completed and returned to the Lead Exercise Evaluator upon completion of the critique process; however, this is optional.

Evaluators have been provided in Section 6.0 of this exercise plan, a "Controller's Log Sheet" which is to be used to record events which have been observed during the exercise. These sheets are to be used by both controllers and evaluators for the purpose of documenting times and events which have occurred so that upon conducting the critique, specific facts can be presented. It is important that the time of the event observed be recorded so that if those actions affect several emergency facilities, a coordinated review of the chronological sequence of events may be reconstructed during the critique.

Additionally, a "Exercise Critique Form" has been provided in Section 6.0 to summarize the observations which the evaluators have made during the exercise. In responding to the "Exercise Critique Form," only those strengths which are clearly outstanding need to be noted. In addition to noting the outstanding action, it is important to include (if possible) the name of the individual(s) observed so that recognition of their achievement may be included in the final critique report. Response to the "Drill Critique Form" is to include those observations which are deficiencies from the emergency plan, the implementing procedure, or the objectives for the exercise as stated in Section 2.0 of this exercise plan. It is very important that deficiencies be related <u>directly</u> to a specific item from the three mentioned documents. If possible, provide the exact procedure reference, plan reference, or exercise objective number with the noted deficiency and your recommendation for corrective action. Finally, your observations are an important part of the exercise critique since each controller/evaluator has been selected for their assignment based upon their background or experience in the particular function assigned. Observations allow the whole organization an opportunity for improvement and provide a viewpoint for future consideration, but must be listed differently than deficiencies so that proper consideration can be given. In responding to all three areas (strengths, deficiencies, and observations), additional sheets of paper may be attached to the "Exercise Critique Form" for completion of the evaluators' response.

It is required that by conclusion of the evaluators critique, the "Exercise Critique Form" and the "Controller's Log Sheets" can be returned to the Lead Evaluator or to the Lead Exercise Evaluator. Further comments or observations which an evaluator may wish to elaborate upon and document should be made in the form of a written report to the Chief Evaluator within 5 working days from the conclusion of the exercise. This written information should be further detail or observations which are not of a critical nature to the evaluation process, since two of the exercise objectives are to demonstrate the ability to conduct a post-exercise critique to determine areas requiring corrective actions.

CON-94-0222 RNPD-94-03-R0

## EVALUATION CHECKLISTS

CON-94-0222 RNPD-94-03-R0

-Control Room Controller-

		Yes	No	Not Observed
1.	Did the operators respond quickly to the initiating events and properly assess the situation?			
2.	Did the Control Room personnel take appropriate actions to mitigate the emergency condition in an expeditious manner?		·	
3.	Were appropriate abnormal conditions and emergency operations procedures used and periodically reviewed during the emergency situation?			
4.	Did the Shift Supervisor receive timely notification of the emergency condition?		<u> </u>	
5.	Were there sufficient measurable/observable indica- tions to recognize the Emergency Action Levels?			
6.	Were classifications of the emergency conditions timely and accurate?			
7.	Did Control Room personnel know when to refer to the emergency plan implementing procedures and which procedures to use?			
8.	Was the emergency classification upgraded or down- graded when appropriate?			
9.	Did the Shift Supervisor promptly assume control and authority?			
10.	Did the Shift Supervisor initiate the correct response actions to implement onsite and offsite assessment and protective response measures?	<del></del>		- <u> </u>
11.	Were such measures implemented in a prompt and well thought out manner?			
12.	If an emergency condition required corrective action in-plant, was a team assembled and briefed in a timely manner?			
13.	Did the Shift Supervisor practice efficient use of available personnel?			
14.	Was assistance requested from the appropriate emergency response organizations?			·

CON-94-0222 RNPD-94-03-R0

..

-Control Room Controller-

		Yes	No	Not <u>Observed</u>
15.	Were personnel aware of their emergency response roles and functions?			
16.	Did the Shift Supervisor review the simulated plant conditions and declare emergency classification(s) with the Site Emergency Coordinator upon his arrival at the TSC?			
17.	Were appropriate decision-making responsibilities transferred to the TSC upon its activation?			
18.	Were manpower and staffing requirements for protracted operations assessed?			
19.	Were notification procedures available and used for mobilizing onsite emergency response personnel and augmenting the emergency response staff?			<del></del>
20.	Were emergency response phone listings available, complete, and up-to-date?	<u></u>		
21.	Were initial and follow-up notification forms readily available and properly completed?		<del></del>	
22.	Did the Control Room communicators appear to understand and use the communications equipment and systems effectively?			
23.	Did Control Room personnel transmit data in a timely and knowledgeable manner?	·		
24.	Did the Control Room communicators use the statement, <b>"THIS IS A DRILL/EXERCISE MESSAGE,"</b> or a similar statement?			
25.	Were communications links checked?			
26.	Were all communication networks operational?			
27.	Were communications adequate to ensure that the flow of information was timely, effective, and efficient?			
28.	Were dedicated communication links with the TSC, EOF, and OSC available and used?		<u></u>	

CON-94-0222 RNPD-94-03-R0

۰.

#### -Control Room Controller-

				Not
	•	Yes	<u>No</u>	<u>Observed</u>
29.	Were general status announcements or periodic updates provided to Control Room personnel throughout the emergency?			
30.	Was the plant page-party system used to apprise emergency workers of changes in the status of the emergency situation?			
31.	Was there a proper flow of data between the TSC and the Control Room?			
32.	Were Control Room logs maintained?		<del></del>	
33.	Did operators obtain the appropriate information necessary to Support dose projection calculations?		. <u> </u>	
34.	Did operators obtain release rate and offsite dose assessment information from the appropriate radiological monitoring systems when required?			
35.	Was a calculator or computer immediately available for performing dose projection calculations?		<u> </u>	
36.	Were dose projection calculations performed efficiently and accurately?			
37.	Were emergency supplies and equipment, such as respirators and protective clothing available to Control Room personnel?			
38.	Was the ambient noise level in the Control Room acceptable?		<del></del>	
39.	Was access to the Control Room restricted to specific individuals?			
40.	Did personnel called in meet the criteria of Fitness for Duty (FFD) by completing the "FFD Determination Form"?			
41.	Was a post exercise players' critique held to evaluate Control Room performance?			·

CON-94-0222 RNPD-94-03-R0

۰.

		Yes	<u>No</u>	Not <u>Observed</u>
1.	Did the security organization initiate a search of the TSC in a timely manner?			
2.	Was the TSC incorporated into the protected area?			
3.	Were ERO personnel admitted into the TSC via the protected area in a timely manner?			
4.	Was the TSC setup initiated upon the declaration of an Alert?			
5.	Did emergency response personnel assigned to the TSC report in a timely manner?			
6.	Were TSC personnel aware of their assigned work areas?		<u></u>	
7.	Were TSC personnel familiar with their assigned duties and responsibilities?		<u></u>	<u> </u>
<b>8.</b>	Did applicable personnel in the TSC refer to and utilize their checklists?			
9.	Did TSC personnel have up-to-date phone listings for onsite and offsite contacts?			
10.	Was command control authority transferred from the Control Room to the TSC according to procedures?			
11.	Did communications contain the statement "THIS IS A DRILL/EXERCISE MESSAGE," or a similar statement?			
12.	Did the Site Emergency Coordinator formally accept the transfer of responsibilities from the Control Room?	.•.		
13.	Was the TSC formally declared "activated" by the Site Emergency Coordinator?			
14.	Were TSC personnel informed of the change of command?			

CON-94-0222 RNPD-94-03-R0

				Not
		Yes	<u>No</u>	<u>Observed</u>
15.	Did the Site Emergency Coordinator demonstrate the ability to maintain command control over all emergency response activities conducted from the TSC?			
16.	Were plant status briefings periodically conducted by the Site Emergency Coordinator?		<u> </u>	
17.	If necessary, did the Site Emergency Coordinator make offsite protective action recommendations in a proper and timely manner?			
18.	Were manpower and staffing requirements for protracted operations assessed?			
19.	Did TSC personnel demonstrate, if necessary, the ability to identify the need for outside assistance when station capabilities were exceeded?			
20.	Did TSC personnel demonstrate the ability to classify the emergency condition in a timely manner?			
21.	Did technical personnel demonstrate their ability to react to escalating emergency classification?			
22.	Did the TSC Accident Assessment Team demonstrate the ability to gather, assess, and disseminate information to help mitigate the emergency conditions?			
23.	Did the TSC staff adequately Support the Control Room staff's efforts to identify the cause of an incident, mitigate the consequences of that incident, and place the unit in a safe and stable conditions?			<u> </u>
24.	Did TSC personnel demonstrate the ability to respond to mitigating circumstances and properly de-escalate the emergency situation?			
·				

CON-94-0222 RNPD-94-03-R0

. .

.

		Yes	No	Not <u>Observed</u>
25.	Were the notification procedures available and used for mobilizing onsite emergency response personnel and augmenting the emergency response staff?			
26.	Were communication links established with other emergence response facilities in a timely manner?			
27.	Did TSC personnel properly communicate with: a. Control Room? b. OSC? c. EOF?			
28.	Did the Logistic Support Director notify the Emergency Security Team Leader of anticipated emergency vehicle access to the site necessary to Support emergency response activities?			
29.	Were necessary modifications to the security program coordinated with the Emergency Security Team Leader?		<u>a</u>	
30,	Were the periodic follow-up notifications conducted per procedure?			
31.	Were the initiating conditions or events posted on Plant Status Boards in a timely fashion?			
32.	Were the subsequent plant status reports posted in a timely manner?			
33.	Did the TSC have suitable communications with the field monitoring teams?	<u></u>		
34.	Were the initial radiological conditions ascertained in a timely manner?			
35.	Did the Dose Assessment Coordinator receive proper data to be able to assess radiological conditions (e.g., meteorological data and release rate data)?			
36.	Did the TSC receive prompt information regarding permanent and portable radiological monitoring results?			
CON-	94-0222			

RNPD-94-03-R0

••

		Yes	<u>No</u>	Not <u>Observed</u>
37.	Was effluent sampling information available?			
38.	Were the correct procedures and methods used for making dose projection calculations?			
39.	Were dose projections performed in a timely manner?	*		
40.	Was there a clear interface between the TSC staff and field monitoring teams?			
41.	Were the activities of the Onsite Survey Teams with those of the Radiological Monitoring Teams adequately coordinated?			
42.	Were habitability surveys initiated by the Radiation Monitor Director?			
43.	Was the TSC monitored for radiological hazards?			
44.	Did TSC personnel demonstrate the ability to properly define protective action recommendations?			. <u> </u>
45.	Did the TSC have sufficient protective equipment and supplies for the personnel assigned to the TSC?			
46.	Was the status of the TSC ventilation addressed?	<u> </u>		
47.	Were procedures available to, and used by, TSC personnel?			
48.	Were technical resources and other information, such as as-built drawings, maps, and emergency plan implementing procedures, readily available?			Re
49.	Was the operational and functional adequacy of the TSC demonstrated during the drill/exercise?			
50.	Was the ambient noise level in the TSC acceptable?			
51.	Did personnel called in to the TSC from offsite meet Fitness for Duty (FFD) criteria by completing the "FFD Determination Form"?			
52.	Was a post exercise players' critique held to evaluate TSC performance?			

CON-94-0222 RNPD-94-03-R0

- -

		<u>Yes</u>	<u>No</u>	Not <u>Observed</u>
1.	Was the Emergency Response Manager notified following the Notification of Unusual Event and Alert declarations?			
2.	Was the EOF activated in a timely manner?			
3.	Were EOF personnel aware of their assigned work areas?			_
4.	Was the EOF activated as prescribed in the emergency plan implementing procedures?			
5.	Were security controls exercised concerning personnel permitted access to the EOF?			
6.	Was there a clear and precise transfer of responsibility from the TSC staff to the EOF staff?			
7.	Did the Emergency Response Manager declare the EOF operational prior to accepting full responsibility for offsite activities?		<del></del>	
8.	Did the Emergency Response Manager maintain command control over the emergency response activities conducted from the EOF?			
9.	Was there a clear dissemination of authority and control in the EOF organization?			
10.	Did the EOF staff initiate and coordinate activities in an efficient and timely manner?			
11.	Were procedures available to, and used by, EOF personnel?			
12.	Did EOF personnel have up-to-date phone listings for onsite and offsite emergency contacts?		<u></u>	
13.	Were current plant status announcements and periodic updates made?	• <del>······</del>		
14.	Did communications contain the statement <b>"THIS</b> IS A DRILL/EXERCISE MESSAGE, " or a similar statement?			

CON-94-0222 RNPD-94-03-R0

		Yes	No	Not <u>Observed</u>
15.	Were appropriate EOF staff members aware of decisions regarding protective action recommendations for the general public and emergency workers within the 10-mile EPZ?			
16.	Did the EOF staff perform manpower projections to support protracted operations and notify the Administrative and Logistic Manager accordingly?			
17.	Did the EOF staff demonstrate the ability to obtain outside resources when station capabilities were exceeded?			- <u> </u>
18.	Were communicators correctly assigned and communication checks performed in a timely fashion?			
19.	Were dedicated communication links available and operational?			
20.	Were the communication links between the EOF and other locations, including mobile personnel, effective?			
21.	Following changes in the emergency classification level, were notifications made to the proper authorities when required?			
22.	Did the EOF staff inform and update the appropriate County, State, and Federal emergency response personnel in a timely manner?			
23.	Did EOF personnel demonstrate the ability to gather, assess, and disseminate information regarding the status of emergency conditions and the status of emergency response activities in a timely manner?			
24.	Did the EOF staff demonstrate the ability to Support the TSC staff's efforts to identify the cause of an incident, mitigate the consequences of that incident, and place the unit in a safe and stable condition?			
25.	Did the EOF staff demonstrate the ability to analyze current plant conditions and identify projected trends and potential consequences?			
	• · · · · · · · · · · · · · · · · · · ·			

CON-94-0222 RNPD-94-03-R0

...

				Not
		<u>Yes</u>	No	Observed
26.	Were there sufficient sources of technical expertise available and utilized?		. <u></u>	
27.	Were technical resources and other information such as as-built drawings, maps, and emergency plan implementing procedures, readily available?			
28.	Were procedures and other necessary documents used?			
29.	Did the EOF staff demonstrate the ability to utilize vendor and other outside resources to assist accident analysis and mitigation efforts where necessary?			
30.	Did the Radiological Control Manager demonstrate the ability to perform offsite dose assessment activities in a timely manner?			
31.	Did the EOF staff demonstrate the ability to perform timely assessments of offsite radiological conditions to support the formulation of protective action recommendations?			
32.	Was there an adequate flow of information between State and RNPD radiological assessment personnel regarding offsite radiological conditions?			
33.	Did the EOF staff effectively direct and coordinate the Radiological Monitoring Teams' activities?			
34.	Were the EOF radiological assessment personnel in frequent communication with the Radiological Monitoring Teams?			
35.	Did the Radiological Control Manager demonstrate the ability to coordinate the activities of the Radiological Monitoring Teams with those of the Onsite Survey Teams?			
36.	Were the emergency plan implementing procedures effectively used to provide adequate protection to station personnel and the general public?			<u> </u>

CON-94-0222 RNPD-94-03-R0

		Yes	No	Not Observed
37.	Was there good communication between EOF personnel, State, and Local authorities regarding the protective action recommendations?			
38.	Was the operational and functional adequacy of the EOF demonstrated?			
39.	Was the ambient noise level in the EOF acceptable?			
40.	Did the EOF have sufficient protective equipment and supplies for personnel stationed in the EOF?		<u> </u>	
41.	Did the EOF staff demonstrate, if appropriate, the ability to de-escalate the emergency response based on current plant conditions and projected trends?			<u> </u>
<b>42.</b>	Did the EOF staff remain involved through the de-escalation of the emergency situation?			
43.	Was the EOF staff able to identify and discuss appropriate reentry and recovery activities based on current or projected conditions?			
44.	Did personnel called in to the EOF from offsite meet Fitness for Duty (FFD) criteria by completing the "FFD Determination Form"?			
45.	Was a post exercise critique held to evaluate EOF performance?			

CON-94-0222 RNPD-94-03-R0 -Plant Monitoring Team Controller-

.

		Yes	<u>No</u>	Not <u>Observed</u>
1.	Did the team respond to, and prepare for, survey tasks in a timely manner?			
2.	<ul> <li>Did the team have the proper equipment?</li> <li>a. Dosimetry?</li> <li>b. Survey instruments?</li> <li>c. Maps?</li> <li>d. Protective clothing/respiratory protection equipment?</li> <li>e. Radio?</li> <li>f. Vehicle (if needed)?</li> <li>g. Sampling equipment?</li> </ul>			
3.	Prior to deployment, was the team adequately briefed regarding potential hazards and conditions?			<u>.</u>
4.	Prior to deployment, was a team leader identified?		<u></u>	
5.	Were the survey instruments and radios functionally checked prior to starting on the survey and were the instrument calibrations current?			
6.	Was personnel dosimetry available and issued to the team members?		<u></u>	
7.	Were teams supplied with appropriate high-range personnel dosimeters?			<u> </u>
8.	Were procedures followed while taking samples?			
9.	Were appropriate precautions taken in the handling and storing of any high-level samples?			
10.	Were samples collected in a timely manner?			
11.	Were samples analyzed within the required time limit?			
12.	Were emergency monitoring procedures available to, and used by, team personnel?			
13.	Were the capabilities in place for dealing with both heavily contaminated personnel and those individuals only slightly contaminated?			<u> </u>

CON-94-0222 RNPD-94-03-R0

۰.

## -Plant Monitoring Team Controller-

		Yes	<u>No</u>	Not <u>Observed</u>
14.	Was respiratory protection equipment available and used while making the surveys?		<u> </u>	
15.	Were communications properly maintained?			
16.	Did communications contain the statement <b>"THIS</b> IS A DRILL/EXERCISE MESSAGE," or similar statement?			
17.	Upon return, was the team properly debriefed?		<u> </u>	
18.	Did personnel called in from offsite meet Fitness for Duty (FFD) criteria by completing the "FFD Determination Form"?	<del></del>		

CON-94-0222 RNPD-94-03-R0

. .

••

-Environmental Monitoring Teams Controller-

				Not
		<u>Yes</u>	<u>No</u>	<u>Observed</u>
1.	Did team members arrive at the staging area and			
	prepare themselves in a timely manner?			
2.	Was the team equipped with the following supplies:			
	a. Survey instruments?			
	b. Air samplers?	<u> </u>		
	c. Radio?			
	d. Maps?	<u> </u>		<u> </u>
	e. Protective clothing?			
	f. Respiratory protection equipment?	<u> </u>		
з.	With respect to the team's vehicle:			
	a. Was it fully gassed?			(
•	b. Were the keys readily available?		·	
	c. Was a release survey completed prior to			- <u>- , , , , , , , , , , , , , , , , , ,</u>
	deployment?			
4.	Prior to deployment, was a team leader identified?			
5.	Prior to deployment, did team many all a			
5.	Prior to deployment, did team personnel perform preoperational checks on the following equipment:			
	a. Radio?			
	b. Survey meters?		<u> </u>	
	c. Sampling equipment?		<u> </u>	
6.	Were the instruments calibrated within the current			
	calendar quarter or within the prescribed schedule?			
_				
7.	Was the team briefed prior to dispatch?			
8.	Was the mehicle managements to the test of the			
υ.	Was the vehicle properly designed or modified to			
	hold team members, and monitoring, protective, safety, and auxiliary equipment?			
	seres, and advirally edulyment;			- <u> </u>
9.	Were there enough team members to adequately			
	conduct survey and sampling activities?			
10.	and the second of the second of the second of the second s			
	adequate radio system that permitted unimpeded			
	transmission and reception of data and instructions?			
	Instructions?	<u> </u>		·

CON-94-0222 RNPD-94-03-R0 -Environmental Monitoring Teams Controller-

		Yes	No	Not Observed
11.	Did the EOF provide adequate instructions regarding what measurements were to be performed?			
12.	Did the radio communications contain the statement, "THIS IS A DRILL/EXERCISE MESSAGE," or a similar statement?			
. 13.	Were radio communications clear, concise, and accurate?			
14.	Were communications properly maintained?	<u> </u>		
15.	Did the Environmental Monitoring Coordinator exhibit good ALARA practices in directing team?		<u></u>	
16.	Was information transmitted to the EOF communicator in a timely manner?			
17.	Was the team kept apprised of the status of the emergency situation?			
18.	Were dose rate measurements taken to verify radiation levels while in transit to monitoring and/or sampling sites?			
19.	Was the team able to find the monitoring and/or sampling locations?			
20.	Did the team demonstrate a knowledge of proper survey and sampling techniques?			
21.	Did team personnel know how to operate and/or handle monitoring, sampling, and auxiliary equipment?			
22.	Were air samplers run for an appropriate time interval?			
23.	Were samples counted outside the plume?			
24.	Was the proper procedure used for field counting of airborne samples?			
25.	Were good sample handling techniques used to avoid cross-contamination?			

CON-94-0222 RNPD-94-03-R0

••

-Environmental Monitoring Teams Controller-

				Not
		Yes	<u>No</u>	<u>Observed</u>
26.	Was raw field data converted correctly to uCi/cc for both particulate and iodine airborne samples?			
27.	Were vehicle surveys performed periodically?			
28.	Was the team aware of sample drop location(s)?		. <u> </u>	
29.	Did the team members keep track of their individual exposure?	<u> </u>	<u></u>	
30.	Were pocket dosimeters checked on a regular basis?			
31.	Were data sheets properly filled out and maintained?		<del></del>	
32.	Were standby areas clearly identified to the team?			
33.	Were spare batteries available for portable radios?			
34.	Were backup instruments available in case of a failure of the primary instruments?			<u> </u>
35.	Were the team members and vehicle properly surveyed upon completion of their monitoring tasks?		<u> </u>	
36.	Were the team members debriefed upon their return?	<u></u>		
37.	Upon return, was equipment returned to its original status?			
38.	Did personnel called in to the OSC from offsite meet Fitness for Duty (FFD) criteria by completing the "FFD Determination Form"?			

CON-94-0222 RNPD-94-03-R0 -Operations Support Center (OSC) Controller-

	•			Not
		Yes	No	<u>Observed</u>
1.	Was the activation of the OSC at the ALERT level			
	initiated in a timely manner?	<u> </u>		
2.	Was the OSC facility log initiated in a timely manner?			
3.	Was the equipment set up and made ready in a timely manner?	<u></u>	e <del>n</del>	
	a. Telephones			
	b. Radios			
	c. Status Board			<u> </u>
	d. Emergency Equipment Kit		<u></u>	
	e. Plant Keys		-	
4.	Were communication checks and equipment		•	
	operability tests made?			
5.	Did communications contain the statement			
	"THIS IS A DRILL/KXERCISE MESSAGE, " or similar			
	statement?			
		·		
6.	Was the OSC Status Board manned in a timely			
0.	manner?			
-				
7.	Did the OSC Leader assume control and announce			
	the activation of the OSC?			
8.	Were status briefings provided to OSC personnel?			
9.	Was a manpower assessment completed?			
	•			
10.	Did the OSC demonstrate that round-the-clock			
	coverage was possible?			
	coverage was possible:			
. <b></b>	Were controls implemented at ingress areas?			
12.	Were visitors escorted to security egress?			
13.	Was there an orderly evacuation of all non-essential			
	personnel?			
14.	Was an adequate number of support personnel			
• •	available in the OSC?			
	avariante tu fue Abri			
	<b>1</b>			
15.				
	procedure?			

CON-94-0222 RNPD-94-03-R0

٠.

-Operations Support Center (OSC) Controller-

.

				Not
		Yes	<u>No</u>	Observed
16.	Was the OSC Leader informed of initiating conditions by the TSC staff?			
17.	Was equipment out-of-service identified and impact on the mission evaluated?			
18.	Were personnel qualification checked prior to mission dispatch?			
19.	Was there adequate information flow from the TSC concerning plant conditions and hazardous areas?			
20.	Were teams made ready and standing by in timely manner?			
21.	Were increased exposure requests initiated for team members prior to team deployment?			<u> </u>
22.	Was the OSC Leader aware of all EAL upgrades and reasons for changes?			
<b>23 .</b>	Did the OSC Leader demonstrate the ability to coordinate and control the teams both onsite and in-plant?			
24.	Was the OSC activated and placed in a state of readiness in accordance with procedures and the OSC H.P. Activation Task Status Board?			
25.	Did the team remain in a state of readiness until dispatched?			
26.	Were procedural responsibilities of teams and OSC staff correctly implemented?			
27.	Was the OSC Leader kept aware of current plant conditions from the TSC?	.••	<u></u>	
	• •			

CON-94-0222 RNPD-94-03-R0

-Operations Support Center (OSC) Controller-

				Not	
		<u>Yes</u>	<u>No</u>	<u>Observed</u>	
28.	Were in-plant teams made aware of routes, exposure rates, and hazards during briefings?	<u></u>			•
29.	Had personnel exposure projections been performed for in-plant team members prior to dispatch?				•
30.	Was adequate dosimetry of the appropriate type available for onsite and in-plant teams?	<del></del>			
31.	Were procedures followed properly for personnel evacuation to the relocation area?			· · · ·	
32.	Was each team properly debriefed upon return to the OSC?	. <u> </u>			•
33	Were the communication channels from the OSC to the TSC functioning properly?				
34.	Was a post exercise critique held to evaluate OSC performance?		<u></u>		•

CON-94-0222 RNPD-94-03-R0

۰.

5.0-23

.**

-Sample Teams (PASS) Controller-

		Yes	No	Not Observed
1.	Were the teams members selected, familiar with sample retrieval procedures and practices and			
	qualified for Health Physics requirements?	<u></u>		
2.	Was Health Physics coverage provided for sample retrieval assistance where radiation hazards existed?			<u> </u>
3.	Was the team given an adequate briefing on radiation hazards and contamination problems?			
4.	Was a team leader identified?		<u> </u>	
5.	Was a predetermined route established prior to departure and then used by the team?		<u>_</u>	
6.	Did the team have appropriate equipment?			
7.	Were operational checks performed on the equipment?	<u></u>		
8.	Did the team use good sample retrieval practices (Dosimetry, Surveys, etc.)?		<b></b>	
9.	Were team members familiar with equipment operation?			
10.	Were communications maintained?			
11.	Did communications contain the statement <b>THIS IS A DRILL/EXERCISE MESSAGE</b> or a similar . statement?		,	
12.	Were the procedures sufficient to provide acceptable and accurate results?			
13.	Did the lab technicians observe good lab practices (e.g., Hot sample shielding and disposal)?			
14.	Were the protective clothing requirements adequate?			
15.	Were good ALARA practices implemented?			

CON-94-0222 RNPD-94-03-R0

۰.

-Damage Control Team Controller-

		Yes	No	Not Observed
1.	Did the team members prepare themselves in a timely	160	NO	<u>ODServed</u>
	manner?		·	
2.	Was the team properly equipped?			
3.	Prior to deployment, was the team leader notified?			
<b>4.</b>	Was the team properly supported by E&RC personnel?		· <u> </u>	· · · · · · · · · · · · · · · · · · ·
5.	Was the team briefed prior to dispatch?			
6.	Were there enough team members to adequately do the job?			-
7.	Did the team have adequate communications (radio, near-work phone, etc.)?			
8.	Did the Damage Control Team Leader provide adequate instructions?			
<b>9</b> .	Were all team members qualified to do the type of work assigned?			- <u></u>
10.	Were communications properly maintained with the team?			
11.	Was the team kept apprised of the status of the emergency?			
12.	Were dose measurements taken for the team?		·	
13.	Did team personnel display proficiency in the use of their equipment?			
14.	Was the team able to find its work location?			·
15.	Was a predetermined route established and followed by the team?			
16.	Was the team properly debriefed upon their return to the OSC?			
17.	Did the team have the required tools to the work assigned?			
18.	Was equipment returned to its original status?			

CON-94-0222 RNPD-94-03-R0

..

### -Damage Control Team Controller-

		Yes	No	Not <u>Observed</u>
19. Was an Al	LARA review completed?			
20. Did team	members sign an RWP?	<u> </u>		
21. Did teams	s properly sign in/out of the OSC?		<del></del>	
	ignments of alternates done once teams the field?		<u> </u>	
23. Were ingr identifie	ress/egress pathways to work locations ed?			
24. Was a tea	am leader identified for éach team?	· · ·		

CON-94-0222 RNPD-94-03-R0

### CAROLINA POWER AND LIGHT COMPANY ROBINSON NUCLEAR PROJECT DEPARTMENT

## 1993 DEFERRED EXERCISE

:

### 6.0 <u>SUPPLEMENTARY MATERIAL</u>

CON-94-0222 RNPD-94-03-R0

..

PAGE OF	
---------	--

PLANT: <u>H. B. Robinson</u> FACILIT	Y OBSERVED:
DRILL/EXERCISE TYPE: Annual Exercis	e (Deferred from 1993)
CONTROLLER'S NAME:	DATE: <u>3 / 30 / 1994</u>

TIME:	OBSERVATION
	•
	*
	•
	· · · ·

CON-94-0222 RNPD-94-03-R0

٠.

PAGE	OF	

PLANT:	H.B. Robinson	FACILITY	OBSERVED:	<u></u>

DRILL/EXERCISE TYPE: <u>Annual Exercise</u> (Deferred from 1993)

CONTROLLER'S NAME: _____ DATE: _3 / 30 / 1994_

OBSERVATION TIME: . 1 • . , . ,

CON-94-0222 RNPD-94-03-R0

P	AGE	C	)F

PLANT: <u>H. B. Rob</u> :	inson FACILITY	Y OBSERVED:
DRILL/EXERCISE T	YPE: Annual Exercise	e (Deferred from 1993)

CONTROLLER'S NAME:

____ DATE: <u>3 / 30 / 1994</u>

TIME:	OBSERVATION
	**
	· · · · · · · · · · · · · · · · · · ·
	*
. ·	
· · · ·	
	· · · · · · · · · · · · · · · · · · ·
<u>, </u>	
· · · · · · · · · · · · · · · · · · ·	·

CON-94-0222 RNPD-94-03-R0

۰.

PAGE	OF	•
rage.	Or	

PLANT: <u>H. B. Robinson</u> FACILIT	Y OBSERVED:
DRILL/EXERCISE TYPE: <u>Annual Exercise</u>	e (Deferred from 1993)
CONTROLLER'S NAME:	DATE: <u>3 / 30 / 1994</u>

OBSERVATION TIME: ** . , ,

CON-94-0222 RNPD-94-03-R0

۰.

,

PAGE OF	
---------	--

PLANT:	H. B. Robinson	FACILITY	OBSERVED:	
--------	----------------	----------	-----------	--

DRILL/EXERCISE TYPE: <u>Annual Exercise (Deferred from 1993)</u>

TIME:	OBSERVATION
	·
	· · · · · · · · · · · · · · · · · · ·
	**
<u> </u>	
•	
·	
<u> </u>	

CON-94-0222 RNPD-94-03-R0

PAGE	OF
------	----

PLANT: <u>H. B. Robinson</u>	FACILITY	OBSERVED:	<u> </u>	
DRILL/EXERCISE TYPE:	Annual Exercise	(Deferred	from 1993)	
CONTROLLER'S NAME:			DATE: 3	/ 30 / 1994

OBSERVATION TIME: a a second . جو • , , •

CON-94-0222 RNPD-94-03-R0

۰.

PAGE	OF	

PLANT:	<u>H.</u>	В.	Robinson	FACILITY	OBSERVED:	
--------	-----------	----	----------	----------	-----------	--

DRILL/EXERCISE TYPE: <u>Annual Exercise (Deferred from 1993)</u>

CONTROLLER'S NAME: _____ DATE: _3 / 30 / 1994

OBSERVATION TIME: ** . . , . . ,

CON-94-0222 RNPD-94-03-R0

PAGE		OF	
PAGE	_	OF	

PLANT:1	I <u>.</u> B.	Robinson	F	ACILITY	OBSERVED:	·	
DRILL/EXE	RCIS	E TYPE:	Annual	Exercise	(Deferred	from	1993)

CONTROLLER'S NAME: ___

DATE: <u>3 / 30 / 1994</u>

TIME:	OBSERVATION	
• .		
· · · · · · · · · · · · · · · · · · ·	•	
	· · ·	

CON-94-0222 RNPD-94-03-R0

PAGE	OB	?
------	----	---

PLANT: H. B. Robinson FACILITY OBSERVED:

DRILL/EXERCISE TYPE: <u>Annual Exercise</u> (Deferred from 1993)

CONTROLLER'S NAME: _____ DATE: ____ DATE: ____ 1994

TIME:	OBSERVATION
	•
	~
	·
· · · ·	
	· · · · · · · · · · · · · · · · · · ·
	······
	·

CON-94-0222 RNPD-94-03-R0

PAGE		OF	
------	--	----	--

PLANT: __H. B. Robinson ___ FACILITY OBSERVED: _____

DRILL/EXERCISE TYPE: <u>Annual Exercise</u> (Deferred from 1993)

CONTROLLER'S NAME: _____ DATE: ____ DATE: _____ DATE: ______ DATE: _______ DATE: ________ DATE: _______ DATE: _______ DATE: ________ DATE: _______ DATE: ________ DATE: ________ DATE: ________ DATE: _________ DATE: _________ DATE: __________ DATE: _________ DATE: ______________ DATE: ____________ DATE: ___________ DATE: ____________ DATE: ___________D

TIME:	OBSERVATION			
	-			
· ···· <u>·</u>				
	· · ·			
	and the second			
· · · · ·				
· · · ·				
· · · · · · · · · · · · · · · · · · ·				
	-			

CON-94-0222 RNPD-94-03-R0

6.0 - 10

# **CAROLINA POWER & LIGHT COMPANY ROBINSON NUCLEAR PROJECT DEPARTMENT**

**EXERCISE CRITIOUE FORM** 

.....

EVALUATOR: _____ DATE: ____ 3 / 30 / 1994____

EVALUATION RESPONSIBILITY:

(Use additional sheets if required)

## **OBSERVED STRENGTHS:**

## **OBSERVED DEFICIENCIES:**

**EVALUATOR COMMENTS:** 



CON-94-0222 RNPD-94-03-R0

# CAROLINA POWER & LIGHT COMPANY ROBINSON NUCLEAR PROJECT DEPARTMENT

**EXERCISE CRITIQUE FORM** 

EVALUATOR:	DATE:3 / 30 / 199
EVALUATION RESPONSIBILITY:	
<u>.</u>	(Use additional sheets if required)
<b>OBSERVED STRENGTHS:</b>	
	·
· · · ·	e.
	•
······	• •
<b>OBSERVED DEFICIENCIES:</b>	
	·····
<b>EVALUATOR COMMENTS:</b>	
· .	
	•••
	······································

CON-94-0222 RNPD-94-03-R0