

Tennessee Valley Authority, Post Office Box 2000, Spring City, Tennessee 37381-2000

June 25, 2014

10 CFR 50.4

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555-0001

> Watts Bar Nuclear Plant, Unit 2 NRC Docket No. 50-391

#### Subject: WATTS BAR NUCLEAR PLANT (WBN) UNIT 2 – PROBABILISTIC RISK ASSESSMENT (PRA) SUMMARY REPORT - INFORMATION PREVIOUSLY COMMITTED TO PROVIDE (TAC NO. ME3334)

#### References: 1. TVA letter dated February 9, 2010, Watts Bar Nuclear Plant (WBN) Unit 2 – Probabilistic Risk Assessment Individual Plant Examination Summary Report"

 TVA letter dated June 8, 2010, "Watts Bar Nuclear Plant (WBN) Unit 2

 Request for Additional Information Regarding Individual Plant Examination (TAC No. ME3334)"

The purpose of this letter is to provide information previously committed to in References 1 and 2 above. In Reference 1, TVA committed to confirming that the Unit 2 PRA model matches the as-built, as-operated plant. Enclosure 1 provides TVA Calculation MDN-000-999-2008-0151, R1, "WBN Probabilistic Risk Assessment – Summary Document," which satisfies this commitment. It should be noted that the calculation provided in Enclosure 1 contains icon links to other documents. These other documents are available, if needed, for NRC review at TVA's corporate offices.

Regarding the second commitment, in Reference 2, TVA committed to provide information regarding how the model and the peer review process addresses the items in the Regulatory Guide 1.200, Revision 2 tables related to internal events including internal flooding for which the NRC endorsed position included "Qualifications," that required response. Enclosure 2 provides the information required to satisfy this commitment.

U.S. Nuclear Regulatory Commission Page 2 June 25, 2014

There are no new commitments contained in this letter. If you have any questions, please contact me at (423) 365-2004.

I declare under penalty of perjury that the foregoing is true and correct. Executed on the 25<sup>th</sup> day of June, 2014.

Respectfully,

Gordon P. Arent

Director, Licensing Watts Bar

Enclosures:

- 1. WBN Probabilistic Risk Assessment Summary Document
- 2. Information Related to how the Model and the Peer Review Process Addressed the Items in the Regulatory Guide 1.200 Revision 2 Tables

cc (Enclosures):

U. S. Nuclear Regulatory Commission Region II Marquis One Tower 245 Peachtree Center Ave., NE Suite 1200 Atlanta, Georgia 30303-1257

NRC Resident Inspector Unit 1 Watts Bar Nuclear Plant 1260 Nuclear Plant Road Spring City, Tennessee 37381

NRC Resident Inspector Unit 2 Watts Bar Nuclear Plant 1260 Nuclear Plant Road Spring City, Tennessee 37381

#### ENCLOSURE 1 Tennessee Valley Authority Watts Bar Nuclear Plant, Unit 2 Docket No. 50-391

WBN Probabilistic Risk Assessment – Summary Document

# NPG CALCULATION COVERSHEET / CTS UPDATE

| Page  | 1 |
|-------|---|
| i ugo |   |

| REV 0 EDMS/RIM                       | <u> IS NO.</u>                                 |                        |                        | S TYPE:                  |                         | EDMS T                                | PE:                        | EDMS ACCESSION NO (N/A for REV. 0) |             |                           |                         |                    |     |   |
|--------------------------------------|------------------------------------------------|------------------------|------------------------|--------------------------|-------------------------|---------------------------------------|----------------------------|------------------------------------|-------------|---------------------------|-------------------------|--------------------|-----|---|
| T71 101118 811                       |                                                |                        | Ca                     | lculation                | CAL                     | CULATIONS                             | (NUCLEAR)                  |                                    | •           | <u> </u>                  | 2                       | 1 9                | 2 1 | ß |
| Calc Title:                          |                                                |                        |                        |                          |                         |                                       |                            |                                    |             |                           |                         |                    |     |   |
|                                      | WB                                             | N Pro                  | babili                 | stic Ris                 | k Ass                   | essment                               | - Summa                    | ary Docu                           | ment        |                           |                         |                    |     |   |
|                                      | ORG                                            | PL                     | ANT                    | BRANC                    | H                       | N                                     | UMBER                      |                                    | CUR RE      | v                         | N                       | EW RE              | ΞV  |   |
| CALC ID                              | NUC                                            | N                      | /BN                    | MEB                      | мс                      | N-000-999-2                           | 008-0151                   |                                    | 000         |                           |                         | 001                |     |   |
| CTS UPDATE ON<br>(Verifier and Appro | LY 🗋<br>oval Signature                         | s Not Red              | quired)                |                          |                         | NO CTS C<br>(For calc re<br>required) | IANGES 🛛<br>vision, CTS ha | is been review                     | wed and no  | CTS c                     | hange                   | s                  |     |   |
| UNIT (check one)                     | SYSTE                                          | MS                     |                        |                          |                         | UNIC                                  | s                          |                                    |             |                           |                         |                    |     |   |
| 0 🖾, 1 🗔, 2 🛄, 3                     | 999                                            |                        |                        | x                        |                         | N/A                                   |                            |                                    |             |                           |                         |                    |     |   |
| <u>DCN.EDC.N/A</u><br>N/A            |                                                | <u>APPLIC</u><br>N/A   | ABLE DE                | SIGN DOC                 | UMENT(                  | <u>s)</u>                             |                            |                                    |             | CL                        | ASSIF                   |                    | ON  |   |
| QUALITY<br>RELATED?<br>Yes 🔲 No 🕅    | <u>SAFETY REL</u><br>(If yes, QR =<br>Yes [] N | ATED?<br>■ yes)<br>○ ⊠ | UNVE<br>ASSUI<br>Yes 🗋 | RIFIED<br>MPTION<br>No 🛛 | <u>Spe</u><br>And/oi    | CIAL REQUI<br>R LIMITING (<br>Yes   N | REMENTS<br>ONDITIONS?      | DESIGN<br>ATTAC<br>Yes             | No X        | SAR<br>ISFS<br>AFE<br>Yes | VTS a<br>SI SAF<br>ECTE | nd/or<br>VCoC<br>D |     |   |
| CALCULATION NL<br>Name: N/A          | JMBER REQU<br>Phone:                           | ESTOR                  |                        | PREF                     | P <u>aring d</u><br>Mei | DISCIPLINE<br>B                       | VERIFICAT                  | ON METHOD                          | NEW<br>ANAL |                           |                         | No                 |     |   |
| PREPARER (PRIN                       |                                                | SIGN)                  |                        |                          | DATE                    | CHECKER                               | (PRINT NAM                 | E AND SIGN                         | )           |                           | T                       | DAT                | E   |   |
| Jonathan D. Gore                     | Jonathai                                       | 20                     | n                      | 2/                       | 6/14                    | Bradley W.                            | Dolan J                    | ull w                              | Dh          |                           | z                       | /1/                | 4   |   |
| /ERIFIER (PRINT                      | NAME AND S                                     | ign)                   |                        |                          | DATE                    | APPROVA                               | (PRINT NAI                 | ME AND SIG                         | N)          |                           |                         | DAT                | E   |   |
| N/A                                  |                                                |                        |                        |                          |                         | Ching Gue                             | " Chi                      | . Guer                             | $\sim$      |                           | 2                       | /7/                | 14  |   |
| TATEMENT OF P                        | ROBLEM/ABS                                     | TRACT                  |                        |                          |                         |                                       |                            |                                    |             |                           |                         | <u> </u>           | 4   |   |
|                                      |                                                |                        |                        |                          |                         |                                       |                            |                                    |             |                           |                         |                    |     |   |
| bstract:                             |                                                |                        |                        |                          |                         |                                       |                            |                                    |             |                           |                         |                    |     |   |
| his calculation de                   | ocuments a s                                   | summar                 | y of the '             | WBN PRA                  |                         |                                       |                            |                                    |             |                           |                         |                    |     |   |
|                                      |                                                |                        |                        |                          |                         |                                       |                            |                                    |             |                           |                         |                    |     |   |
|                                      |                                                |                        |                        |                          |                         |                                       |                            |                                    |             |                           |                         |                    |     |   |
|                                      |                                                |                        |                        |                          |                         |                                       |                            |                                    |             |                           |                         |                    |     |   |
|                                      |                                                |                        |                        |                          |                         |                                       |                            |                                    |             |                           |                         |                    |     |   |
|                                      |                                                |                        |                        |                          |                         |                                       |                            |                                    |             |                           |                         |                    |     |   |
| MICROFICUE                           |                                                |                        |                        |                          |                         |                                       |                            |                                    |             |                           |                         |                    |     |   |
| MICROFICHE                           | EFICHE                                         | Yes 📋                  | No 🕅                   | FICHE N                  | IUMBER(                 | S)                                    |                            |                                    |             |                           |                         |                    |     |   |

#### NPG CALCULATION COVERSHEET / CTS UPDATE

|               |                |               |              |               |                   |            |             | I             | Page       | 2          |
|---------------|----------------|---------------|--------------|---------------|-------------------|------------|-------------|---------------|------------|------------|
|               | <u>ORG</u>     | <u>PLANT</u>  | BRANCH       |               | NUMB              | ER         |             | <u>REV</u>    | ] -        |            |
| 2             | NUC            | WBN           | MEB          | MDN-000-9     | 999-2008-01       | 151        |             | 001           |            |            |
| BUILDIN       | G              | ROOM          | ELEVATION    |               | COORD/A           | ZIM        |             | <u>FIRM</u>   | <u>M</u>   |            |
| CATEGORIE     | S              |               |              |               |                   |            |             |               |            |            |
|               |                |               | KEYW         | ORDS (A-      | add, D-d          | elete)     |             |               |            |            |
| ACTION        | KEYWORD        |               |              |               | A/D               | KEYV       | /ORD        |               |            |            |
| <u>(A/D)</u>  |                |               |              |               |                   |            |             |               |            |            |
|               |                |               |              |               |                   |            |             |               |            |            |
|               |                |               |              |               |                   |            |             |               |            |            |
|               |                |               |              |               |                   |            |             |               |            |            |
|               |                |               | CROSS-REI    | FERENCE       | S (A-add          | . D-del    | ete)        |               |            |            |
| ACTION        | XREF           | XREF          | XREF         |               | <u> </u>          | , <u> </u> | REF         |               |            | XREF       |
| (A/D)         | CODE           | PLANT         | TYPE         |               |                   | NL         | IMBER       |               |            | REV        |
|               |                |               |              |               | n - Maratali Inda |            |             |               |            |            |
|               | -              |               |              |               |                   |            |             |               |            |            |
|               |                |               |              |               |                   |            |             |               |            | _          |
|               |                |               |              |               |                   |            |             |               |            |            |
|               |                |               |              |               |                   |            |             |               |            |            |
|               | _              |               |              |               |                   |            |             |               |            |            |
|               |                |               |              |               |                   |            |             |               |            | _          |
|               |                |               |              |               |                   |            |             |               |            | _          |
|               |                |               |              |               |                   |            |             |               |            |            |
|               |                |               |              |               |                   |            |             |               |            |            |
|               | +              |               |              |               |                   |            |             |               |            |            |
|               |                |               |              |               |                   |            |             |               |            |            |
|               | _              |               |              |               |                   |            |             |               |            |            |
|               |                |               |              |               | ·                 |            |             |               |            |            |
|               |                |               |              |               |                   |            |             |               |            |            |
| CTS ONLY L    | JPDATES:       |               |              |               |                   |            |             |               |            |            |
| Following are | e required onl | y when making | keyword/cros | s reference ( | CTS updates       | and pag    | e 1 of forn | n NEDP-2-1 is | not inclue | ded:       |
|               |                |               |              |               |                   |            |             |               |            |            |
| PRE           | PARER (PRI     | NT NAME AND   | SIGN)        | DA            | TE                | CHECKE     | ER (PRINT   | NAME AND S    | ign)       | DATE       |
| PREPARER      | PHONE NO.      |               |              | EDMS A        | CCESSION          | NO.        |             |               |            |            |
| TVA 40532     |                |               |              | Page          | 2 of 2            |            |             | NED           | P-2-1 [10  | -31-2011]] |

|                 | NPG CALCULATION RECORD OF REVISION                                                                                                                               |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calculatio      | on Identifier: MDN-000-999-2008-0151                                                                                                                             |
| Title           | WBN Probabilistic Risk Assessment - Summary Document                                                                                                             |
| Revision<br>No. | DESCRIPTION OF REVISION                                                                                                                                          |
| 000             | Initial Issue                                                                                                                                                    |
|                 | The Safety Analysis Report (SAR) has been reviewed by <u>/s/ Carla A. Borrelli (11/16/10)</u> and this revision of the calculation does not affect the SAR.      |
|                 | The Tech Specs have been reviewed and have been determined to not be affected.                                                                                   |
|                 | Total Number of Pages = 383                                                                                                                                      |
| 001             | Summary Notebook updated to reflect the update model information.                                                                                                |
|                 | The Safety Analysis Report (SAR) has been reviewed by $\frac{\sqrt{2}}{\sqrt{2}} = \frac{2/2}{14}$ and this revision of the calculation does not affect the SAR. |
|                 | The Tech Specs have been reviewed and have been determined to not be affected.                                                                                   |
|                 | Total Number of Pages = 295                                                                                                                                      |
|                 |                                                                                                                                                                  |
|                 |                                                                                                                                                                  |
|                 |                                                                                                                                                                  |
|                 |                                                                                                                                                                  |
|                 |                                                                                                                                                                  |

TVA 40709 [10-2008]

NEDP-2-2 [10-20-2008]

|                  | NPG CALCULATION TABLE OF CONTENTS                           |    |  |  |  |  |
|------------------|-------------------------------------------------------------|----|--|--|--|--|
| Calculation Ider | ntifier: MDN-000-999-2008-0151 Revision: 001                |    |  |  |  |  |
|                  | TABLE OF CONTENTS                                           |    |  |  |  |  |
| SECTION          | SECTION TITLE PAGE                                          |    |  |  |  |  |
| NPG Calcul       | ation Coversheet / CTS Update                               | 1  |  |  |  |  |
| NPG Calcul       | ation Record Of Revision                                    | 3  |  |  |  |  |
| NPG Calcul       | ation Table Of Contents                                     | 4  |  |  |  |  |
| NPG Comp         | uter Input File Storage Information Sheet                   | 9  |  |  |  |  |
| 1.0 Pur          | pose                                                        | 10 |  |  |  |  |
| 2.0 Ref          | erences and Acronyms                                        | 10 |  |  |  |  |
| 2.1              | References                                                  | 10 |  |  |  |  |
| 2.2              | Acronyms                                                    | 13 |  |  |  |  |
| 3.0 Des          | ign Input                                                   | 15 |  |  |  |  |
| 4.0 Ass          | sumptions                                                   | 15 |  |  |  |  |
| 5.0 Spe          | cial Requirements/Limiting Conditions                       | 15 |  |  |  |  |
| 6.0 Cor          | nputations and Analyses                                     | 15 |  |  |  |  |
| 6.1              | Model Development                                           |    |  |  |  |  |
| 6.1.1            | Initiating Events                                           | 15 |  |  |  |  |
| 6.1.2            | Accident Sequences Analysis                                 | 17 |  |  |  |  |
| 6.1.3            | Success Criteria                                            |    |  |  |  |  |
| 6.1.4            | Systems Analysis                                            | 19 |  |  |  |  |
| 6.1.5            | Data Analysis                                               |    |  |  |  |  |
| 6.1.6            | Human Reliability Analysis                                  |    |  |  |  |  |
| 6.1.7            | Internal Flooding                                           | 22 |  |  |  |  |
| 6.1.8            | Large Early Release Frequency Analysis                      |    |  |  |  |  |
| 6.1.9            | Quantification                                              |    |  |  |  |  |
| 6.1.10           | Maintenance & Update/Configuration Control (MU)             |    |  |  |  |  |
| 6.1.11           | Software                                                    |    |  |  |  |  |
| 6.1.12           | Resolution of F&Os from Peer Review of the RISKMAN R4 Model | 25 |  |  |  |  |
| 6.1.13           | Resolution of F&Os from Peer Review of the CAFTA R0 model   | 25 |  |  |  |  |
| 6.1.14           | Major Changes from Riskman R4 model to the CAFTA R0 model   |    |  |  |  |  |
| 6.2              | Results                                                     |    |  |  |  |  |
| 6.2.1            | Core Damage Frequency                                       |    |  |  |  |  |
| 6.2.2            | Large Early Release Frequency                               |    |  |  |  |  |
| 7.0 Sup          | oporting Graphics                                           | 31 |  |  |  |  |

|           | NPG CALCULATION                                             | TABLE OF CON                            | TENTS  |
|-----------|-------------------------------------------------------------|-----------------------------------------|--------|
| Calculat  | on Identifier: MDN-000-999-2008-0151                        | Revision: 001                           |        |
|           | TABLE OF                                                    | CONTENTS                                | •      |
| SECTIC    | יוד אי                                                      | ſLE                                     | PAGE   |
| 7.1       | Tables                                                      |                                         |        |
| 7.2       | Figures                                                     |                                         |        |
| 8.0       | Conclusion                                                  |                                         |        |
| Аррен     | ndix A – Resolution of F&Os                                 |                                         |        |
| Аррен     | ndix B – Documentation of Model                             | of Record                               |        |
| Аррен     | ndix C – Importance Reports                                 |                                         |        |
|           |                                                             | hlan                                    |        |
| Table 1   | Initiating Evonts                                           | idies                                   | 31     |
| Table 2   | - Summary of WBN Initiating Event Evide                     | nce                                     |        |
| Table 3   | - Initiating Event Prior and Posterior Dist                 | ributions                               |        |
| Table 4   | Comparison of Initiating Event Frequenc                     | ies                                     |        |
| Table 5   | – Plant Damage States                                       |                                         |        |
| Table 6   | <ul> <li>Initiating Event Linkage to Accident Se</li> </ul> | quence Event Tre                        | ees 54 |
| Table 7   | Success Criteria for LLOCA                                  | •<br>•••••••                            |        |
| Table 8   | Success Criteria for MLOCA                                  |                                         |        |
| Table 9   | Success Criteria for SLOCA                                  |                                         |        |
| Table 10  | ) Success Criteria for SLOCAV                               |                                         |        |
| Table 11  | I Success Criteria for SSBI                                 |                                         |        |
| Table 12  | 2 Success Criteria for SSBO                                 |                                         |        |
| Table 13  | 3 Success Criteria for GTRAN                                |                                         | 71     |
| Table 14  | I Success Criteria for SGTR                                 |                                         |        |
| Table 1   | 5 Success Criteria for ATWS                                 |                                         |        |
| Table 16  | 6 Success Criteria for ISLOCA                               | ••••••••••••••••••••••••••••••••••••••• |        |
| Table 1   | - Success Criteria Comparison: LLOCA                        | A                                       |        |
| Table 10  | S – Success Criteria Comparison: MLOCA                      | A                                       |        |
| Table 1   | ) – Success Criteria Comparison: SLOC/                      | ¬<br>\V                                 |        |
| Table 2   | – Success Criteria Comparison: Transi                       | ent                                     | 87     |
| Table 22  | 2 – Success Criteria Comparison:                            | SGTR                                    |        |
| Table 23  | 8 – MAAP Runs                                               |                                         |        |
| Table 24  | I – Comparison of RCP Seal Leaks                            |                                         |        |
| Table 2   | 5 Probabilities of RCP Seal Leaks                           |                                         |        |
| Table 26  | 6 Time to HPR                                               |                                         | 100    |
| Table 27  | 7 Time to LPR                                               |                                         |        |
| Table 28  | 3 HRA Support Timings                                       |                                         |        |
| Table 29  | 9 WBN PRA System Notebooks                                  |                                         |        |
| Table 30  | J – Component Failure Rates                                 |                                         |        |
| I able 3' | I – Component Failure Rate Comparison                       |                                         |        |
| Table 32  | 2 Unavailability Kesülts                                    |                                         |        |
| Table 3   | Unavailability Comparison                                   | iahlae                                  |        |
|           | common cause Groups and MGL Var                             | Iavics                                  |        |

| NPG CALCULATION TABLE OF CONTENTS                 |                                         |                                    |  |  |  |  |
|---------------------------------------------------|-----------------------------------------|------------------------------------|--|--|--|--|
| Calculation Identifier: MDN-000-999-2008-0151     | Revision: 001                           |                                    |  |  |  |  |
| TABLE OF                                          | CONTENTS                                |                                    |  |  |  |  |
| SECTION TIT                                       | LE                                      | PAGE                               |  |  |  |  |
| Table 35 Comparison of MGL Variables              | Due la el 1944                          | 123                                |  |  |  |  |
| Table 36 Summary of Pre-Initiator Actions and     | Probabilities                           |                                    |  |  |  |  |
| Table 37 Summary of Post-Initiator Actions and    | I Probabilities                         |                                    |  |  |  |  |
| Table 38 Summary of Flooding Recovery Actio       | ns and Probabilit                       | les                                |  |  |  |  |
| Table 40 Summary of Flood Sources Analyzed        | in IE-DDA                               |                                    |  |  |  |  |
| Table 41 Sample Propagation Path Calculation      |                                         |                                    |  |  |  |  |
| Table 42 Qualitative Screening Assessment of      | Flooding Source                         | s. Auxiliary Building 142          |  |  |  |  |
| Table 43 Qualitative Screening Assessment of      | Flooding Sources                        | s. Control Building                |  |  |  |  |
| Table 44 Qualitative Screening Assessment of      | Flooding Sources                        | s. Diesel Generator Building . 142 |  |  |  |  |
| Table 45 Qualitative Screening Assessment of      | Flooding Source                         | s, Intake Pumping Station 142      |  |  |  |  |
| Table 46 Qualitative Screening Assessment of      | Flooding Source                         | s, Turbine Building                |  |  |  |  |
| Table 47 (Not Used)                               |                                         |                                    |  |  |  |  |
| Table 48 (Not Used)                               |                                         |                                    |  |  |  |  |
| Table 49 (Not Used)                               |                                         |                                    |  |  |  |  |
| Table 50 Sample Internal Flooding Walkdown D      | ata Sheet                               |                                    |  |  |  |  |
| Table 51 - Listing and Description of WBN PRA N   | odel Files                              |                                    |  |  |  |  |
| Table 52 - Listing and Description of Software Us | ed for WBN PRA                          |                                    |  |  |  |  |
| Table 53 – (Not Used)                             | ••••••                                  |                                    |  |  |  |  |
| Table 54 - Summary of CDF and LERF                |                                         |                                    |  |  |  |  |
| Table 55 CDF Results By Accident Sequence to      | or Unit 1                               |                                    |  |  |  |  |
| Table 56 Breakdown of CDF Cutsets in Each Fre     | equency Range, U                        | Init 2 151                         |  |  |  |  |
| Table 57 – Top 100 Cutsets for Unit 1 CDF         |                                         |                                    |  |  |  |  |
| Table 50 - TOP TOU Cutsets for Unit 2 CDF         | •••••••••••••••••••••••••               |                                    |  |  |  |  |
| Table 59 CDF By Initiator for Onit T              | •••••••••••••••••••••••••••             |                                    |  |  |  |  |
| Table 61 CDF By Initiator for Unit 2              |                                         |                                    |  |  |  |  |
| Table 62 Unit 1 System Importance for CDF, F-V    | / > 0.5%                                | 159                                |  |  |  |  |
| Table 63 Unit 1 System Importance for CDF, RA     | W > 2                                   | 160                                |  |  |  |  |
| Table 64 Unit 2 System Importance for CDF. F-V    | / > 0.5%                                |                                    |  |  |  |  |
| Table 65 Unit 2 System Importance for CDF, RA     | W > 2                                   |                                    |  |  |  |  |
| Table 66 Unit 1 Component Importance for CDF      | , F-V > 0.5%                            |                                    |  |  |  |  |
| Table 67 Unit 1 Component Importance for CDF      | , RAW > 2                               |                                    |  |  |  |  |
| Table 68 Unit 2 Component Importance for CDF      | , F-V > 0.5%                            |                                    |  |  |  |  |
| Table 69 Unit 2 Component Importance for CDF      | , RAW > 2                               |                                    |  |  |  |  |
| Table 70 Unit 1 HRA CDF Importance F-V >0.5%      | )                                       | 179                                |  |  |  |  |
| Table 71 Unit 1 HRA CDF Importance RAW >2         | ••••••••••••••••••••••••••••••••••••••• |                                    |  |  |  |  |
| Table 72 Unit 2 HRA CDF Importance F-V >0.5%      |                                         |                                    |  |  |  |  |
| Table 73 Unit 2 HRA CDF Importance RAW > 2        |                                         |                                    |  |  |  |  |
| Table 74 Unit 1 Basic Event CDF Importance F-     | v >0.5%                                 |                                    |  |  |  |  |
| Table 75 Unit 1 Basic Event CDF Importance R/     | AVV > 2                                 |                                    |  |  |  |  |
| Table 70 Unit 2 Basic Event CDF Importance F-     | v 20.3%                                 |                                    |  |  |  |  |
| Table 78 Unit 2 Dasic Event CDF Importance R/     | 4VV > Z                                 |                                    |  |  |  |  |
| Table 70 Unit 1 Test and Maintenance CDF Imp      | ordance $P = V \ge 0.5$                 | 70                                 |  |  |  |  |
| Table 80 Unit 2 Test and Maintenance CDF Imp      | ortance EV >0 F                         |                                    |  |  |  |  |
| Table 81 Unit 2 Test and Maintenance CDF Imp      | ortance PAW > 2                         | 219<br>ววก                         |  |  |  |  |
| Table 82 LERF By Accident Sequence for Unit *     |                                         |                                    |  |  |  |  |
|                                                   | • • • • • • • • • • • • • • • • • • • • |                                    |  |  |  |  |

| Page: 7 |
|---------|
|---------|

| NPG CALCULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TABLE OF CON                                                                                                                           | TENTS                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Calculation Identifier: MDN-000-999-2008-0151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Revision: 001                                                                                                                          |                                                                           |
| TABLE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CONTENTS                                                                                                                               |                                                                           |
| SECTION TIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LE                                                                                                                                     | PAGE                                                                      |
| Table 83 Breakdown of LERF Cutsets in Each FiTable 84 Top 100 Cutsets for Unit 1 LERFTable 85 Top 100 Cutsets for Unit 2 LERFTable 86 (Not Used)Table 87 (Not Used)Table 88: (Not Used)Table 88: (Not Used)Table 89: (Not Used)Table 90: (Not Used)Table 91 LERF By Initiator for Unit 1Table 92 Unit 1 LERF ComparisonTable 93 LERF By Initiator for Unit 2Table 93 LERF By Initiator for Unit 2Table 94 Unit 1 System Importance for LERF, FTable 95 Unit 1 System Importance for LERF, RTable 96 Unit 2 System Importance for LERF, RTable 97 Unit 2 Component Importance for LERTable 100 Unit 2 Component Importance for LERTable 101 Unit 2 Component Importance for LERTable 102 Unit 1 HRA LERF Importance F-V >0.Table 103 Unit 2 HRA LERF Importance RAW >Table 105 Unit 2 HRA LERF Importance RAW >Table 105 Unit 2 Basic Event LERF ImportanceTable 106 Unit 2 Basic Event LERF Importance | requency Range,<br>-V > 0.5%<br>-W > 2<br>AW > 2<br>-V > 0.5%<br>AW > 2<br>-V > 0.5%<br>AW > 2<br>-V > 0.5%<br>AW > 2<br>-V > 0.5%<br> | Unit 2                                                                    |
| Table 109 Unit 2 Basic Event LERF Importance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RAW > 2                                                                                                                                |                                                                           |
| Table 110 Unit 1 Test and Maintenance LERF In           Table 111 Unit 1 Test and Maintenance LERF In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nportance RAW >                                                                                                                        | > 2                                                                       |
| Table 112 Unit 2 Test and Maintenance LERF In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nportance F-V >0                                                                                                                       | .5%                                                                       |
| Table 113 Unit 2 Test and Maintenance LERF In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nportance RAW >                                                                                                                        | > 2                                                                       |
| Fic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ures                                                                                                                                   |                                                                           |
| Figure 1 - LLOCA Event Tree<br>Figure 2 - MLOCA Event Tree<br>Figure 3 - SLOCA Event Tree<br>Figure 4 - SLOCAV Event Tree<br>Figure 5 - SSBI Event Tree<br>Figure 6 - SSBO Event Tree<br>Figure 7 - GTRAN Event Tree<br>Figure 8 - SGTR Event Tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | jui 65                                                                                                                                 | 260<br>261<br>262<br>263<br>263<br>264<br>265<br>265<br>266<br>266<br>267 |
| Figure 3 - SLOCA Event Tree<br>Figure 4 - SLOCAV Event Tree<br>Figure 5 - SSBI Event Tree<br>Figure 6 - SSBO Event Tree<br>Figure 7 - GTRAN Event Tree<br>Figure 8 - SGTR Event Tree<br>Figure 9 - ATWS Event Tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                        | 261<br>262<br>263<br>264<br>264<br>265<br>266<br>266<br>267<br>268        |

Figure 10 - ISLOCA Event Tree269Figure 11 - Major Phases and Tasks of IF-PRA270Figure 12 -- Sample Propagation Path Diagram271Figure 13 -- Unit 1 Flooding CDF272Figure 14 -- Unit 1 Flooding LERF273

| NPG CALCULATION TABLE OF CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                                                                                   |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|
| Calculation Identifier: MDN-000-999-2008-0151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Revision: 001                    |                                                                                   |  |  |  |  |  |
| TABLE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONTENTS                         |                                                                                   |  |  |  |  |  |
| SECTION TIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LE                               | PAGE                                                                              |  |  |  |  |  |
| Figure 15 Unit 2 Flooding CDF<br>Figure 16 Unit 2 Flooding LERF<br>Figure 17 Containment Event Tree<br>Figure 18 - Industry Comparison of CDF<br>Figure 19 - Unit 1 CDF Uncertainty Plot<br>Figure 20 - Unit 2 CDF Uncertainty Plot<br>Figure 21 - Unit 1 CDF Initiator Distribution<br>Figure 22 - Unit 2 CDF Initiator Distribution<br>Figure 23 - LERF Comparison with Westinghouse<br>Figure 24 - LERF Comparison with Westinghouse<br>Figure 25 - Unit 1 LERF Uncertainty Plot<br>Figure 27 - Unit 1 LERF Uncertainty Plot<br>Figure 28 - Unit 2 LERF Phenomena Distribution<br>Figure 29 - Unit 1 LERF Phenomena Distribution<br>Figure 30 - Unit 2 LERF PDS Distribution<br>Figure 31 - Unit 1 LERF Initiator Contributions<br>Figure 32 - Unit 2 LERF Initiator Contributions | 4-loop Plants<br>Ice Condenser C | 274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>281<br>282<br>ontainments |  |  |  |  |  |

TVA 40710 [10-2008]

NEDP-2-3 [10-20-2008]

|                                                       | NPG COMPL<br>STORAGE INF                                   | JTER INPUT F                         | ILE<br>HEET                                     |                                            |
|-------------------------------------------------------|------------------------------------------------------------|--------------------------------------|-------------------------------------------------|--------------------------------------------|
| Document MDN-000                                      | -999-2008-0151                                             | Rev. 001                             | Plant: WBN                                      |                                            |
| Subject:                                              |                                                            |                                      |                                                 |                                            |
| Probabilistic Risk Asses                              | sment - Summary Docume                                     | nt                                   |                                                 |                                            |
|                                                       |                                                            |                                      |                                                 |                                            |
| Electronic storage                                    | of the input files for this ca                             | culation is not                      | required. Comment                               | S:                                         |
|                                                       |                                                            |                                      |                                                 |                                            |
| Input files for this c<br>provided below for<br>use.) | alculation have been store<br>each input file. (Any retrie | d electronically<br>ved file require | and sufficient ident<br>s re-verification of it | ifying information is<br>s contents before |
| Electronic files are stored in                        | n Filekeeper.                                              |                                      |                                                 |                                            |
| File Name: WBN_Summar                                 | y_Files_Rev.1.zip                                          |                                      |                                                 |                                            |
| Document Identifier: 3231                             | 97                                                         |                                      |                                                 |                                            |
|                                                       |                                                            |                                      |                                                 |                                            |
|                                                       |                                                            |                                      |                                                 |                                            |
|                                                       |                                                            |                                      |                                                 |                                            |
|                                                       |                                                            |                                      |                                                 |                                            |
|                                                       |                                                            |                                      |                                                 |                                            |
|                                                       |                                                            |                                      |                                                 |                                            |
|                                                       |                                                            |                                      |                                                 |                                            |
|                                                       |                                                            |                                      |                                                 |                                            |
|                                                       |                                                            |                                      |                                                 |                                            |
|                                                       |                                                            |                                      |                                                 |                                            |
|                                                       |                                                            |                                      |                                                 |                                            |
| Microfiche/eFiche                                     |                                                            |                                      |                                                 |                                            |
|                                                       |                                                            |                                      |                                                 |                                            |
| TVA 40533 [10 2009]                                   |                                                            |                                      |                                                 | NEDB 2 4 140 20 2000                       |

| Calculation | No. <b>MDN-000-999-2008-0151</b> | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>10</b> |
|-------------|----------------------------------|-----------------|-------------------|-----------------|
| Subject:    | WBN PROBABILISTIC RISK A         | SSESSME         | NT – SUMMARY      |                 |

#### 1.0 Purpose

This calculation documents the summary of the results Watts Bar Nuclear Plant (WBN) Units 1 and 2 PRA model.

As part of the conversion of the WBN PRA from a RISKMAN platform to a CAFTA platform, the analyses supporting the PRA were completely redone. All documentation for the Internal Events (ASME/ANS RA-Sa–2009 Part 2, Reference 1) and Internal Flooding (ASME/ANS RA-Sa–2009 Part 3, Reference 1) PRA has been upgraded to meet the requirements of Regulatory Guide 1.200 Rev. 2 (Reference 2). The WBN PRA now meets at least category 2 of the requirements of the ASME/ANS Standard and Regulatory Guide 1.200, R2, with respect to internal events. However, fire and external events such as seismic events, high winds, and external floods are not evaluated in the WBN model.

The original R0 CAFTA model has been updated to revision 1. This revision of the Summary Notebook documents the changes which were made.

#### 2.0 References and Acronyms

#### 2.1 References

- 1. ASME/ANS RA-Sa-2009, Addenda to ASME/ANS RA-S-2008, Standard for Level 1/Large Early Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications.
- 2. Regulatory Guide 1.200, An Approach for Determining the Technical Adequacy of Probabilistic Risk Assessment Results for Risk Informed Activities, Rev 2.
- 3. NEI 05-04, Process for Performing Internal Events PRA Peer Reviews using the ASME/ANS PRA Standard, Rev. 2.
- 4. EPRI-TR-1021086, Pipe Rupture Frequencies for Internal Flooding PRAs, Revision 2, November 2010
- 5. SPP-9.11, NPG Standard Programs and Processes, Probabilistic Risk Assessment (PRA) Program, Rev. 0.
- 6. NEDP-2, NPG Department Procedure, Design Calculation Process Control, Rev. 14.
- 7. NEDP-26, NPG Department Procedure, Probabilistic Risk Assessment (PRA), Rev. 2.

| Calculation N | No. MDN-000-999-2008-0151 | Rev: 001 | Plant: WBN Unit 0 | Page: <b>11</b> |
|---------------|---------------------------|----------|-------------------|-----------------|
| Subject:      | WBN PROBABILISTIC RISK A  | SSESSME  | NT – SUMMARY      |                 |

- 8. NUREG/CR-6928, U.S. Nuclear Regulatory Commission, Industry-Average Performance for Components and Initiating Events at U.S. Commercial Nuclear Power Plants, February 2007.
- 9. NUREG/CR-5497, Common-Cause Failure Parameter Estimations, October 1998.
- 10. Not used.
- 11. Regulatory Guide 1.174, "An Approach For Using Probabilistic Risk Assessment In Risk-Informed Decisions On Plant-Specific Changes To The Licensing Basis" November 2002.
- 12. Regulatory Guide 1.177, An Approach for Plant-Specific, Risk-Informed Decision-making: Technical Specifications, August 1998.
- LTR-RAM-II-09-084, RG 1.200 PRA Peer Review Against the ASME/ANS PRA Standard Requirements for the Watts Bar Nuclear Power Plant Probabilistic Risk Assessment, (B45 100125 001).
- 14. WCAP-16141, Rev 0, RCP Seal Leakage PRA Model Implementation Guidelines for Westinghouse PWRs.
- 15. CN-NUC-WBN-MEB-MDN-000-001-2008-0122, WBN Probabilistic Risk Assessment – Main Steam System, R1
- 16. CN-NUC-WBN-MEB-MDN-000-002-2008-0123, WBN Probabilistic Risk Assessment – Condensate and Feedwater System, R1
- 17. CN-NUC-WBN-MEB-MDN-000-003-2008-0124, WBN Probabilistic Risk Assessment – Auxiliary Feedwater System, R4
- 18. CN-NUC-WBN-MEB-MDN-000-003-2008-0125, WBN Probabilistic Risk Assessment – Steam Generator Isolation System, R0
- 19. CN-NUC-WBN-MEB-MDN-000-032-2008-0126, WBN Probabilistic Risk Assessment – Plant Compressed Air System, R1
- 20. CN-NUC-WBN-MEB-MDN-000-062-2008-0127, WBN Probabilistic Risk Assessment – Chemical and Volume Control System, R3
- 21. CN-NUC-WBN-MEB-MDN-000-062-2008-0128, WBN Probabilistic Risk Assessment – RCP Seal Injection and Thermal Barrier Cooling, R0
- 22. CN-NUC-WBN-MEB-MDN-000-063-2008-0129, WBN Probabilistic Risk Assessment – Safety Injection System, R0

| Calculation N | No. <b>MDN-000-999-2008-0151</b> | Rev: 001 | Plant: WBN Unit 0 | Page: <b>12</b> |
|---------------|----------------------------------|----------|-------------------|-----------------|
| Subject:      | WBN PROBABILISTIC RISK A         | SSESSME  | NT – SUMMARY      | •               |

- 23. CN-NUC-WBN-MEB-MDN-000-067-2008-0130, WBN Probabilistic Risk Assessment – Essential Raw Cooling Water System, R5
- 24. CN-NUC-WBN-MEB-MDN-000-068-2008-0131, WBN Probabilistic Risk Assessment – Pressurizer Power-Operated Relief Valves and Safety Valves System, R0
- 25. CN-NUC-WBN-MEB-MDN-000-070-2008-0132, WBN Probabilistic Risk Assessment – Component Cooling System, R2
- 26. CN-NUC-WBN-MEB-MDN-000-072-2008-0133, WBN Probabilistic Risk Assessment – Containment Spray System, R0
- 27. CN-NUC-WBN-MEB-MDN-000-074-2008-0134, WBN Probabilistic Risk Assessment – Residual Heat Removal System, R2
- 28. CN-NUC-WBN-MEB-MDN-000-099-2008-0135, WBN Probabilistic Risk Assessment – Reactor Protection System, R0
- 29. CN-NUC-WBN-MEB-MDN-000-099-2008-0136, WBN Probabilistic Risk Assessment – Engineered Safety Features Actuation System, R0
- 30. CN-NUC-WBN-MEB-MDN-000-999-2008-0137, WBN Probabilistic Risk Assessment – Electric Power System, R3
- 31. CN-NUC-WBN-MEB-MDN-000-999-2008-0138, WBN Probabilistic Risk Assessment – LOOP Non-Recovery Probabilities, R1
- 32. CN-NUC-WBN-MEB-MDN-000-999-2008-0139, WBN Probabilistic Risk Assessment – Containment System, R0
- 33. CN-NUC-WBN-MEB-MDN-000-999-2008-0140, WBN Probabilistic Risk Assessment – Initiating Events Analysis, R2
- 34. CN-NUC-WBN-MEB-MDN-000-999-2008-0141, WBN Probabilistic Risk Assessment – Accident Sequence Analysis, R1
- 35. CN-NUC-WBN-MEB-MDN-000-999-2008-0142, WBN Probabilistic Risk Assessment – Success Criteria, R3
- CN-NUC-WBN-MEB-MDN-000-999-2008-0143, WBN Probabilistic Risk Assessment – Systems Analysis Summary, R1
- 37. CN-NUC-WBN-MEB-MDN-000-999-2008-0144, WBN Probabilistic Risk Assessment – Human Reliability Analysis, R3

| Calculation N | No. MDN-000-999-2008-0151 | Rev: 001 | Plant: WBN Unit 0 | Page: <b>13</b> |
|---------------|---------------------------|----------|-------------------|-----------------|
| Subject:      | WBN PROBABILISTIC RISK A  | SSESSME  | NT – SUMMARY      |                 |

- 38. CN-NUC-WBN-MEB-MDN-000-999-2008-0145, WBN Probabilistic Risk Assessment Data Analysis, R4
- 39. CN-NUC-WBN-MEB-MDN-000-999-2008-0146, WBN Probabilistic Risk Assessment – Internal Flooding Analysis, R2
- 40. CN-NUC-WBN-MEB-MDN-000-999-2008-0148, WBN Probabilistic Risk Assessment – Level 2 (LERF) Analysis, R3
- 41. CN-NUC-WBN-MEB-MDN-000-999-2008-0149, WBN Probabilistic Risk Assessment – Loss of Offsite Power Frequency Analysis, R0
- 42. CN-NUC-WBN-MEB-MDN-000-999-2008-0150, WBN Probabilistic Risk Assessment – Interfacing Systems LOCA Analysis, R0
- 43. CN-NUC-WBN-MEB-MDN-000-999-2008-0153, WBN Probabilistic Risk Assessment – Thermal Hydraulics Analysis, Level I, R1
- 44. CN-NUC-WBN-MEB-MDN-000-999-2008-0147, WBN Probabilistic Risk Assessment Quantification, R4
- 45. CN-NUC-WBN-MEB-MDN-000-999-2009-0162, WBN Probabilistic Risk Assessment – Sensitivity and Uncertainty, R2

#### 2.2 Acronyms

The following acronyms are used in this document:

| AC    | _ | Alternating Current                       |
|-------|---|-------------------------------------------|
| ANS   | _ | American Nuclear Society                  |
| ASME  | _ | American Society of Mechanical Engineers  |
| ATWS  | _ | Anticipated Transient Without SCRAM       |
| CAFTA | _ | Computer Aided Fault Tree Analysis System |
| CCF   | _ | Common Cause Failure                      |
| CCF   | _ | Common Cause Failure                      |
| CCS   | _ | Component Cooling System                  |
| CCW   | _ | Condenser Circulating Water               |
| CDF   | _ | Core Damage Frequency                     |
| CET   | - | Containment Event Tree                    |
| CPNPP | _ | Comanche Peak Nuclear Power Plant         |
|       |   |                                           |

Calculation No. MDN-000-999-2008-0151 Rev: 0

# Subject: WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY

| DC     | _ | Direct Current                     |
|--------|---|------------------------------------|
| EDG    | _ | Emergency Diesel Generator         |
| EPRI   | _ | Electric Power Research Institute  |
| ERCW   | _ | Essential Raw Cooling Water        |
| F&O    | _ | Fact and Observation               |
| FMEA   | _ | Failure Modes and Effects Analysis |
| F-V    | _ | Fussell - Vesely                   |
| GTRAN  | _ | General Transient                  |
| HEP    | _ | Human Error Probability            |
| HFE    | _ | Human Failure Event                |
| HPFP   | _ | High Pressure Fire Protection      |
| HRA    | _ | Human Reliability Analysis         |
| IF     | _ | Internal Flooding                  |
| ISLOCA | - | Interfacing Systems LOCA           |
| LERF   | _ | Large Early Release Frequency      |
| LLOCA  | _ | Large LOCA                         |
| LOCA   | - | Loss of Coolant Accident           |
| LOOP   | _ | Loss of Offsite Power              |
| MAAP   | _ | Modular Accident Analysis Program  |
| MGL    | _ | Multiple Greek Letter              |
| MLOCA  | _ | Medium LOCA                        |
| MOR    | _ | Model of Record                    |
| NEI    | _ | Nuclear Energy Institute           |
| PRA    | _ | Probabilistic Risk Assessment      |
| RAW    | - | Risk Achievement Worth             |
| RCP    | _ | Reactor Coolant Pump               |
| RCW    | - | Raw Cooling Water                  |
| SGTR   | _ | Steam Generator Tube Rupture       |
| SLOCA  | - | Small LOCA                         |
| SLOCAV | _ | Very Small LOCA                    |
| SR     | - | Supporting Requirement             |

| Calculation No. | MDN-000-999-2008-0151     | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>15</b>                        |
|-----------------|---------------------------|-----------------|-------------------|----------------------------------------|
| Subject:        | WBN PROBABILISTIC RISK AS | SSESSME         | NT – SUMMARY      | •••••••••••••••••••••••••••••••••••••• |

| SSBI  | _ | Secondary Side Break Inside Containment  |
|-------|---|------------------------------------------|
| SSBO  | _ | Secondary Side Break Outside Containment |
| SSC   | _ | Structure, System, or Component          |
| T&M   | _ | Test and Maintenance                     |
| TLPCA |   | Total Loss of Plant Compressed Air       |
| TVA   | _ | Tennessee Valley Authority               |
| WBN   | _ | Watts Bar Nuclear                        |

### 3.0 Design Input

All inputs to this calculation are listed in section 2.1. The documentation requirements for the PRA are provided in Section 3.6 of NEDP-26 (Reference 7). Table 10 provides a listing and description of WBN PRA model files. Attachment B of this calculation documents the Model of Record (MOR).

#### 4.0 Assumptions

Assumptions used in the development and quantification of the WBN PRA are listed in the PRA model documentation (References 15 through 45).

The dual unit model was updated based on the as-built, as-operated configuration of the plant as of April 30, 2013. Significant modifications to Unit 2 intended for completion prior to unit startup were also included. It was assumed that no new significant modifications will be developed for unit 2 prior to startup.

#### 5.0 Special Requirements/Limiting Conditions

None

#### 6.0 Computations and Analyses

The following sections provide a summary of the changes that were made to the PRA since the last revision and a summary of the results of the PRA quantification.

#### 6.1 Model Development

#### 6.1.1 Initiating Events

The initiating event analysis has been updated to include current industry generic data. recent plant events and multi-unit initiators. The scope of this analysis included: 1) a review of all initiators in the RISKMAN model to ensure applicability, 2) resolution of previously identified problems, 3) a review of common initiators that could result in

| Calculation N | No. MDN-000-999-2008-0151 | Rev: 001 | Plant: WBN Unit 0 | Page: <b>16</b> |
|---------------|---------------------------|----------|-------------------|-----------------|
| Subject:      | WBN PROBABILISTIC RISK A  | SSESSME  | NT – SUMMARY      | *******         |

challenging both units, 4) the Bayesian updating of the initiating event frequency distributions, 5) the development of support system initiating event fault trees, and 6) the development of an updated Initiating Event Notebook (Reference 33) and a Loss of Offsite Power (LOOP) Frequency Notebook (Reference 41). Flooding initiating events are identified in the Internal Flooding Analysis Notebook (Reference 39). Interfacing LOCA initiating events are identified in the ISLOCA Frequency Notebook (Reference 42).

# 6.1.1.1 New Initiators

Table 1 provides a listing of all initiators in the 2-unit WBN PRA CAFTA model. Where applicable, the equivalent RISKMAN initiator identifier is also given in Table 1. No RISKMAN identifiers are listed for the new initiators that have no RISKMAN model equivalent. Note that the RISKMAN R4 model did not address unit 2. Internal flooding initiators were expanded from 6 to 133. Interfacing System LOCA initiators were expanded from 2 to 24. One new transient initiator, Total Loss of Plant Compressed Air (TLPCA), was added.

No new initiators were identified for the Revision 1 CAFTA model.

# 6.1.1.2 Initiators Removed from the Model

No Initiators were removed from the model.

# 6.1.1.3 Updates to Support System Initiating Event Fault Trees

Support system initiating event fault trees were built for the following initiating events:

- Partial Loss of ERCW
- Total Loss of ERCW
- Loss of Train A CCS
- Total Loss of CCS
- Loss of 4 125V DC busses
- Loss of 8 120V AC busses

The support system initiator fault trees are described in detail in their system notebooks (References 23, 25, and 30). Models for the unit 2 AC and DC busses are new to the CAFTA R0 analysis.

The following model changes were made for Revision 001:

- AFW 1-51 (trip and throttle) valves added. Note that this could be considered to be subsumed in the TDAFWP but the valve was modeled separately at the request of the station Maintenance Rule / MSPI coordinator, to facilitate data tracking and risk monitoring. Use of generic TDAFWP failure data as an input to the data evaluation may be slightly conservative as a result.
- RHR 74-12 and -24 (minimum flow) valves added
- Data updated

| Calculation | No. <b>MDN-000-999-2008-0151</b> | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: 17 |
|-------------|----------------------------------|-----------------|-------------------|----------|
| Subject:    | WBN PROBABILISTIC RISK A         | SSESSME         | NT - SUMMARY      |          |

- Logic for vital inverters and battery chargers enhanced (see Electric Power Notebook for details)
- DG ERCW supply valves changed from locked open to closed, required to open for DG success
- ERCW model enhancements (See ERCW notebook for details).
- CCS model enhancements (See CCS Notebook for details)
- Minor changes to HRA preinitiators (See HRA Notebook for details)
- Revised HRA dependency approach to retain individual HEPs in cutsets
- Added N2 supply to AFW LCVs and PCVs

# 6.1.1.4 Updates to IE Frequencies from Generic and Plant Specific Data

The generic initiating event frequencies used in the WBN PRA have been updated as described in Section 6.3.2 of the Initiating Events Notebook (Reference 33). The plant specific data used for the update is given in Table 2. The prior and posterior initiating event frequencies are provided in Table 3. Bayesian updating was not used to calculate the frequencies for flooding initiators or ISLOCA initiators.

# 6.1.1.5 Comparison of IE Frequencies

A comparison of initiating event frequencies between the Riskman R4 model and the CAFTA R0 model is provided in Table 4.

# 6.1.2 Accident Sequences Analysis

The level 1 accident sequence analysis models, chronologically (to the extent practical), the different possible progressions of events (i.e., accident sequences) that can occur from the start of the initiating event to either successful mitigation or core damage. The accident sequences account for the systems that are used (and available) and operator actions performed to mitigate the initiator based on the defined success criteria and plant operating procedures (e.g., plant emergency and abnormal operating instructions) and training. The availability of a system includes consideration of the functional, phenomenological, and operational dependencies and interfaces between the various systems and operator actions during the course of the accident progression. A set of plant damage states were defined to account for important conditions that may affect containment response and possible offsite releases after a severe accident event. These plant damage states, listed in Table 5, provide the interface between the Level 1 PRA models and the Level 2 PRA model. Licensed operators were interviewed as part of this process to ensure reasonable scenarios and corresponding conditions were modeled.

The accident sequences analysis was revised for the WBN PRA conversion from RISKMAN to CAFTA. The initiating events were grouped into classes that could be evaluated collectively. For each functional group of initiating events, an event tree model was developed that defines the possible plant responses, mitigating system functions, and operator actions that determine the event sequence progression.

A total of 10 event trees were developed for the WBN PRA:

Calculation No. **MDN-000-999-2008-0151** 

Rev: 001 | Plant: WBN Unit 0 | Page: 18

Subject: WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY

Faye.

- LLOCA Large LOCA
- MLOCA Medium LOCA
- SLOCA Small LOCA
- SLOCAV Very Small LOCA
- SSBI Secondary Side Break Inside Containment
- SSBO Secondary Side Break Outside Containment
- GTRAN General transient
- SGTR Steam Generator Tube Rupture
- ATWS Anticipated Transient Without SCRAM
- ISLOCA Interfacing Systems LOCA

These event trees are shown in Figures 1 through 10, respectively. Linking between the initiating events and the event trees is provided in Table 6.

Accident sequence models did not change in CAFTA model revision 1.

### 6.1.3 Success Criteria

The success criteria analysis was revised for the WBN PRA conversion from RISKMAN to CAFTA. Success criteria analysis determines the minimum requirements for each function (and ultimately the systems used to perform the functions) used to prevent core damage (or to mitigate a release) given an initiating event. The requirements defining the success criteria are based on acceptable engineering analyses that represent the design and operation of WBN. Functional success criteria are dependent on the initiator and the conditions created by the initiator. The computer codes used for developing the success criteria are validated and verified for both technical integrity and suitability to assess plant conditions for the reactor pressure, temperature, and flow range of interest, and the phenomena of interest. Calculations are performed by personnel who are qualified to perform the types of analyses of interest and are well trained in the use of the codes.

The objectives of the success criteria element are to define the plant-specific measures of success and failure that support the other technical elements of the PRA in such a way that overall success criteria are defined. Success criteria are defined for critical safety functions, supporting systems, structures, and components (SSCs) and operator actions necessary to support accident sequence development.

During risk model development, existing safety analyses were reviewed, and selected thermal hydraulic analyses were performed to establish realistic success criteria for the mitigating systems and operator actions that are modeled in the PRA. In some cases, conservative success criteria may be used to simplify the models or their supporting analyses when the degree of conservatism does not have an important impact on the overall PRA results.

The success criteria are documented in detail in the Success Criteria notebook (Reference 35). Tables 7 through 16 provide a summary of the success criteria for

| Calculation N | No. MDN-000-999-2008-0151 | Rev: 001 | Plant: WBN Unit 0 | Page: <b>19</b> |
|---------------|---------------------------|----------|-------------------|-----------------|
| Subject:      | WBN PROBABILISTIC RISK A  | SSESSME  | NT – SUMMARY      |                 |

each of the event trees. Tables 17 through 22 provide a comparison of success criteria between WBN PRA and the Comanche Peak Nuclear Power Plant (CPNPP) PRA.

# 6.1.3.1 Summary of Success Criteria Changes

Based on a review of the documentation for the RISKMAN model, there were no significant changes in the success criteria previously used for the WBN PRA. No changes to success criteria were made for CAFTA model revision 1.

# 6.1.3.2 MAAP Analyses

All thermal hydraulics calculations used as the basis for the success criteria were updated (or re-run) and documented in the Thermal Hydraulics Notebook (Reference 34). Table 23 provides a listing of MAAP runs. The sensitivity of core damage timing with respect to the size of RCP seal leakage is shown in Table 24. Table 25 provides the conditional probability of various size RCP seal leaks, taken from WCAP 16141 (Reference 14). Table 26 and Table 27 provide the sensitivity of timing to high pressure and low pressure recirculation for a variety of conditions and LOCA sizes.

In addition, MAAP runs were executed to determine the sequence timing for the Human Reliability Analysis (HRA). A summary of these results is provided in Table 28.

# 6.1.4 Systems Analysis

All systems that are required for accident mitigation and those systems supporting accident mitigating systems have been re-analyzed as part of the conversion from RISKMAN to CAFTA. Each system notebook is documented in a separate calculation, References 15 through 32, as listed in Table 29. The analysis for the Raw Cooling Water (RCW) System is documented in an appendix to the ERCW System notebook (Reference 23), and the analysis for the Condenser Circulating Water (CCW) System and Condenser Vacuum System is documented in an appendix to the Condensate and Feedwater System Notebook (Reference 16); these are new system analyses. There are two calculations pertinent to Electric Power, the system analysis (Reference 30), and the Electric Power Recovery Notebook (Reference 31). The System Summary Notebook, (Reference 36) provides information common to the system analyses, such as model naming conventions, notebook format and content requirements and generic system assumptions.

### 6.1.4.1 Walkdowns

Each system modeled in the PRA was walked down by a group of PRA analysts to evaluate

- Component location and operational status;
- Environmental considerations such as heat sources, ventilation, and steam/humidity sources;
- Considerations for manual operation; and
- Physical characteristics of the room/area.

| Calculation I | No. <b>MDN-000-999-2008-0151</b> | Rev: 001 | Plant: WBN Unit 0 | Page: 20 |
|---------------|----------------------------------|----------|-------------------|----------|
| Subject:      | WBN PROBABILISTIC RISK A         | SSESSME  | NT – SUMMARY      | •        |

The walkdowns are documented in Appendix A of the individual system notebooks.

# 6.1.4.2 System Engineer Review and Interviews

Each system notebook was reviewed by the responsible system engineer(s). Subsequently, the PRA analysts interviewed the system engineers. The purpose of the interview is as follows:

- Ensure system modeling in the PRA is consistent with the as-built, as-operated plant (SY-A4)
- Ensure potential initiating events have not been overlooked (IE-A6)
- Ensure system operating experience is properly considered and documented in the PRA (IE, DA)

The interviews are documented in Attachment A of each system notebook.

# 6.1.4.3 Design Changes Impacting PRA

The new CAFTA model included system engineer review and operator interviews to ensure that it was developed to reflect the as-built, as-operated plant. Future revisions of this document will included a discussion of design changes that require changes to the model.

The following model changes were made for Revision 001:

- AFW 1-51 (trip and throttle) valves added. Note that this could be considered to be subsumed in the TDAFWP but the valve was modeled separately at the request of the station Maintenance Rule / MSPI coordinator, to facilitate data tracking and risk monitoring. Use of generic TDAFWP failure data as an input to the data evaluation may be slightly conservative as a result.
- RHR 74-12 and -24 (minimum flow) valves added
- DG ERCW supply valves changed from locked open to closed, required to open for DG success
- Revised HRA dependency approach to retain individual HEPs in cutsets

# 6.1.5 Data Analysis

The objectives of the data analysis are to provide estimates of the parameters used to determine the probabilities of the basic events representing equipment failures and unavailabilities modeled in the PRA. Such parameters include the following:

- Failure rates
- Unavailability due to test and maintenance
- Common Cause Failure (CCF) Multiple Greek Letter (MGL) parameters.

The data analysis is documented in the Data Analysis Notebook (Reference 39).

| Calculation No | . MDN-000-999-2008-0151   | Rev: 001 | Plant: WBN Unit 0 | Page: <b>21</b> |
|----------------|---------------------------|----------|-------------------|-----------------|
| Subject:       | WBN PROBABILISTIC RISK AS | SSESSME  | NT – SUMMARY      |                 |

# 6.1.5.1 Unreliability Data

The unreliability (or failure rate) data are based on generic industry data that has undergone Bayesian updating with plant specific data. Plant specific data for the period 1/1/2003 to 4/30/2013 was evaluated and used as input to the Bayesian analysis. A screening process was implemented to determine whether the generic, updated, or plant specific data should be used for the analysis. Table 30 provides a listing of failure data for which plant specific failure data was collected. Table 31 provides a comparison of failure data between the RISKMAN R4 model and the CAFTA R0 model. For Revision 1 of the CAFTA model, data was updated through 4/30/2011. Revision 1 represents an incremental change from Revision 0, therefore comparison tables between revisions are not required.

# 6.1.5.2 Unavailability Data

The unavailability data is based on plant-specific data collected in support of the Maintenance Rule or derived from other plant records, generic industry data, or estimates from plant personnel such as system engineers or operations staff. Plant specific data is the preferred method for determining unavailability since it represents historical equipment unavailability. Plant maintenance unavailability data is based on the same time period as the failure data, 1/1/2003 to 4/30/2013. Generic industry data from NUREG/CR-6928 (Reference 8) was used for components for which no plant specific data was available. If no plant specific or generic industry data were available, estimates from plant personnel such as system engineers or operations staff were used. Table 32 provides a listing of unavailability data for which plant specific data was collected. Table 33 provides a comparison of unavailability parameters between the RISKMAN R4 model and the CAFTA R0 model. Revision 1 of the CAFTA model represents an incremental change from Revision 0, therefore comparison tables between these revisions are not required.

# 6.1.5.3 Common Cause Data

Components of similar manufacture and functions are subject to CCF. Common cause failure can result in failure of a system when identical, non-diverse, and active components are used to provide redundancy. Failure of two or more components in a common cause group can occur if they are of the same design, perform the same function, share the same installation and maintenance procedures, and are located in the same location or environment.

In the conversion of the WBN PRA from a RISKMAN model to a CAFTA model, the Multiple Greek Letter (MGL) methodology, described in NUREG/CR-5485, was retained. MGL factors were assigned to each CCF group and CAFTA automatically calculated the probability of the CCF basic events using equations based on the group size and the number of failed components. In a few instances, such as for system models to determine initiating event frequencies, specific basic events were inserted into the fault tree model to capture CCF probabilities.

| Calculation N | lo. <b>MDN-000-999-2008-0151</b> | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>22</b> |
|---------------|----------------------------------|-----------------|-------------------|-----------------|
| Subject:      | WBN PROBABILISTIC RISK AS        | SSESSME         | NT – SUMMARY      |                 |

The CCF probabilities for the WBN PRA were conservatively calculated assuming that all testing is performed on a non-staggered testing. The MGL factors were converted from alpha values provided in WCAP-16672-P via formulas provided in NUREG/CR-5485. This is a different data source than used for the RISKMAN R4 model. In addition, no Bayesian updating of MGL factors was performed. Table 34 provides a list of CCF groups and associated MGL factors. Table 35 provides a comparison of MGL factors between the CAFTA R0 model and the RISKMAN R4 model.

The common cause analysis is documented in the Data Analysis Notebook (Reference 38).

# 6.1.6 Human Reliability Analysis

The purpose of the HRA is to identify human interactions that play a role in the accident sequences, and to provide an estimate of the probabilities for failure events corresponding to those interactions. This analysis includes pre-initiators and post initiators. The HRA for the WBN PRA was revised and is documented in Reference 37. Table 36 provides a list of the pre-initiator Human Failure Events (HFEs) and associated probabilities. Table 37 provides a list of the post-initiator HFEs. Table 38 provides a list of the post-initiator HFEs. Table 38 provides a list of the post-initiator HFEs associated with recovery from flooding events. Table 39 provides a summary comparison of Human Error Probabilities (HEPs) between the CAFTA R0 model and the RISKMAN R4 model. Revision 1 of the CAFTA model represents an incremental change from Revision 0, therefore comparison tables between these revisions are not required.

### 6.1.7 Internal Flooding

The internal flooding (IF) analysis for the WBN PRA was updated based on the new flood frequencies provided in EPRI-TR-1021086 (Reference 4), and is documented in the Internal Flooding Analysis Notebook, Reference 39. That calculation documents the development and application of the internal flooding analysis consistent with the guidance provided in the ASME PRA Standard RA-Sa-2009 (Reference 1).The scope of the flooding events covered includes all floods originating within the plant boundary. It does not include floods resulting from external events (e.g., weather, offsite events such as upstream dam rupture, etc.).

The IF-PRA methodology is organized into two major phases, as shown in Figure 11. In the first phase of IF-PRA, Qualitative Analysis, the information that is needed for the IF-PRA is collected and the initial qualitative analysis tasks are performed. There are four key tasks that are completed in this phase; (Task 1) identification of flood areas and SSCs, (Task 2) identification of flood sources, (Task 3) performance of a plant walkdown, and (Task 4) completion of a qualitative screening evaluation of plant locations.

In the second phase of IF-PRA, plant locations which have not been screened out are addressed in six separate tasks that comprise the quantitative evaluation phase of IF-PRA. These tasks are organized around the key steps in defining flood scenarios and quantifying their impacts in the PRA model in terms of their contributions to CDF and

| Calculation No. MDN-000-999-2008-0151 | Rev: 001 | Plant: WBN Unit 0 | Page: 23 |
|---------------------------------------|----------|-------------------|----------|
|                                       |          |                   |          |

Subject: WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY

LERF. These steps include (Task 5) the definition of flood scenarios in terms of (Task 6) flood initiating events, (Task 7) the consequences of the flood on SSCs, (Task 8) human actions to mitigate the consequences of the flood and to control the plant, and (Task 9) the interfacing of the flood scenario with the PRA event tree/fault tree logic. Once the scenarios have been properly characterized, this phase also addresses (Task 10) the quantification of the flood initiating event frequency, CDF, and LERF.

Table 40 provides a summary of flooding sources. Table 41 and Figure 12 provide a sample propagation calculation. Tables 42 through 46 provide the results of the qualitative screening assessment. Table 47 provides a description and frequency of the internal flooding initiators. Table 48 provides a description of the effects of the flooding initiators. Table 49 provides a summary of the HEPs that were modified to accommodate the flooding analysis. Figures 13 through 16 provide a summary of the CDF and LERF results of the flooding analysis.

### 6.1.7.1 Walkdowns

Several plant walkdowns were performed to assess the plant for partitioning into flood zones, characterize the flood sources in each zone, examine the flow propagation paths between flood areas, and determine the susceptibility of PRA equipment to flood and spray effects. Table 50 provides a sample walkdown data sheet.

## 6.1.7.2 Raw Water Piping in the Auxiliary Building

Pipe failure frequencies calculated for risk significant raw water piping in the Auxiliary Building are based on leak-before-break methodology. It is assumed that WBN will implement a monitoring program for risk significant raw water piping in the Auxiliary Building similar to that employed at SQN.

# 6.1.8 Large Early Release Frequency Analysis

The Level 2 Analysis was revised as part of the conversion from a RISKMAN model to a CAFTA model, and is documented in Reference 40.

The Level 2 Analysis describes the process used to identify core damage sequences that could lead to large early fission product releases to the environment and therefore contribute to the WBN Large Early Release Frequency (LERF).

The LERF sequences are identified through the development of a containment event tree (CET). The Level 2 Analysis documents the development of the CET and the process used to quantify LERF using the CET; results of the LERF quantification are contained in the PRA Quantification Notebook (Reference 44). Table 23 provides a listing of MAAP runs.

The CET is shown in Figure 17. The structure of the CET has been formulated to include the following features for the assessment of LERF:

 to properly represent the time sequence of events and to divide the CET into major time periods;

| Calculation No. <b>MDN-000-999-2008-0151</b> | Rev: 001 | Plant: WBN Unit 0 | Page: <b>24</b> |
|----------------------------------------------|----------|-------------------|-----------------|
|                                              |          |                   |                 |

Subject: WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY

- to incorporate all important system, human and phenomenological occurrences including possible recovery;
- to maintain a simplified representation;
- to preserve the nature of the challenge throughout the analysis;
- to explicitly recognize the effect of postulated containment failure modes;
- to allow the identification of recovery and repair actions that can terminate or mitigate the progression of a severe accident; and
- to categorize the end-states of the resulting sequences into groups that can be assessed for their affect on public safety. This grouping has been simplified to meet Reg. Guide 1.174 requirements.

The CET end-states are as follows:

- INTACT an intact containment with no release to the environment
- BLERF Large early release via bypass of the containment
- ILERF Large early release via failure of isolation of the containment
- LLERF Large early release during low pressure sequences
- HLERF Large early release during high pressure sequences
- LATE late release
- BSERF Small early release via bypass of the containment
- ISERF Small early release via failure of isolation of containment
- SERF Small early release via recovery of AC power
- PI-SGTR Pressure induced steam generator tube rupture
- TI-SGTR Temperature induced steam generator tube rupture.

The Level 2 analysis interfaces with the Level 1 accident sequence analysis through the appropriate definition of a set of plant damage states. These states are the endpoints of the sequences in the Level 1 portion of the event trees and the initiating events for the CET.

### 6.1.9 Quantification

The WBN PRA CAFTA model was quantified after the conversion from a RISKMAN model. The Quantification is documented in Reference 44.

The input files used for the quantification are listed in Table 51 and are stored as zip files in Filekeeper. Refer to the computer storage information sheet of Reference 44 for file names and Filekeeper identification numbers.

# 6.1.10 Maintenance & Update/Configuration Control (MU)

The TVA process for controlling updates to the PRA is documented in TVA procedures SPP-9.11, "The Probabilistic Risk Assessment Program" and NEDP-26, "Probabilistic Risk Assessment".

SPP-9.11 (Reference 5) covers the management of PRA applications, periodic updates, and interdepartmental PRA documentation. This procedure provides definitions for PRA model update, PRA model application, and PRA evaluation. This procedure also defines

| Calculation No. <b>MDN-000-999-2008-0151</b>         |  | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>25</b> |
|------------------------------------------------------|--|-----------------|-------------------|-----------------|
| Subject: WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY |  |                 |                   | •               |

responsibilities of other departments such as operations and system engineering for review of the PRA.

NEDP-26 (Reference 7) describes the process used by the PRA staff to perform applications, model updates and PRA model maintenance and review. The terms PRA upgrade and maintenance are defined in the ASME standard (Reference 1). The procedure requires that updates be completed at least once every other fuel cycle (for the lead unit at multiunit sites) or sooner if estimated cumulative impact of plant configuration changes exceeds +/- 10% of CDF or LERF. Changes in PRA inputs or discovery of new information are evaluated to determine whether such information warrants PRA update. Items exceeding the above threshold are tracked in the Corrective Action Program. Changes that do not meet the threshold for immediate update are tracked in the PRA Model Open Items Database. PRA updates follow the guidelines established by the ASME Standard for a minimum of a Category II assessment.

NEDP-26 also defines the requirements for PRA documentation of the model of record (MOR) and PRA applications. The MOR is composed of the 1) PRA computer model and supporting documentation, 2) MAAP model and supporting documentation, and 3) other Supporting Computer Evaluation Tools (e.g., UNCERT, EPRI HRA Calculator, etc). The purpose of the PRA MOR is to provide a prescriptive method for quality, configuration, and documentation control. PRA applications and evaluations are referenced to a MOR and therefore the pedigree of PRA applications and evaluations is traceable and verifiable. NEDP-26 also specifies the requirements for independent review and periodic self assessments of the model.

After September 2008 all PRA notebooks modified will be converted to desirable calculations. The NEDP-2 (Reference 6) calculation process requires calculations to be prepared and independently checked and approved.

#### 6.1.11 Software

The software packages used in the WBN PRA quantification are listed in Table 52.

### 6.1.12 Resolution of F&Os from Peer Review of the RISKMAN R4 Model

The RISKMAN model R4 underwent a peer review by the Westinghouse (WOG) and received a total of 80 Facts and Observations (F&Os). The F&Os and current status are provided in Appendix A.

### 6.1.13 Resolution of F&Os from Peer Review of the CAFTA R0 model

The WBN Units 1 and 2 Internal Events PRA peer review was performed in November, 2009 at the TVA offices in Chattanooga, TN, using the process described in NEI 05-04 (Reference 3), the ASME PRA Standard (Reference 1), and Regulatory Guide 1.200 (Reference 2). A team of independent PRA experts from nuclear utility groups and PRA consulting organizations carried out these peer review certifications.

| Calculation No. MDN-000-999-2008-0151 | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: 26 |
|---------------------------------------|-----------------|-------------------|----------|
|                                       |                 |                   | 1        |

# Subject: WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY

The purpose of the peer review is to provide a method for establishing the technical adequacy of a PRA for the spectrum of potential risk-informed plant licensing applications for which the PRA may be used. The 2009 WBN PRA Peer Review provided a full-scope review of the technical elements of the internal events, at-power PRA, including internal flooding. The PRA was not reviewed for fires, external flooding, seismic, high winds, or other external events.

This intensive peer review involved over two person-months of engineering effort by the review team and provides a comprehensive assessment of the strengths and limitations of each element of the PRA model. The review team determined that the WBN PRA meets, at capability category II or greater, 258 of a total of 326 supporting requirements (SRs), with 9 SRs determined to be not applicable. Table 53 provides a summary of the assessment results. A total of 112 F&Os were generated, consisting of 50 findings and 62 suggestions. All finding-level F&Os were addressed to at least the requirements of capability category II; see related notebooks for details (i.e. For flooding F&Os, see the flooding notebook. For system F&Os, see the appropriate system notebook).

# 6.1.14 Major Changes from Riskman R4 model to the CAFTA R0 model

The WBN Unit 1 PRA R4 (operating via Riskman software) underwent substantial revision including a change to the CAFTA software suite. The revised model is referred to as the CAFTA R0 model. Major differences are listed below.

- Inclusion of unverified Unit 2 model
- Upgraded to address requirements of ASME/ANS RA-Sa-2009
- Processed to comply with requirements of TVA procedure NEDP-2 (engineering calculations)
- Upgraded flooding analysis approach
- Expansion of flooding initiating events from 6 to 133
- Expansion of ISLOCA initiating events from 2 to 24
- Addition of TLPCA initiating event
- Expanded CCF coverage

### 6.2 Results

### 6.2.1 Core Damage Frequency

Table 54 summarizes the CDF and LERF for each unit and the number of cutsets saved for each quantification. Table 55 provides a listing of the dominant accident sequences. Table 56 provides the distribution of core damage sequences across the frequency range. Figure 18 provides a comparison of WBN CDF with that of other Westinghouse plants. A listing of the top 100 cutsets is provided in Table 57 and Table 58 for unit 1 and unit 2, respectively.

| Calculation No | . MDN-000-999-2008-0151   | Rev: 001 | Plant: WBN Unit 0 | Page: 27   |
|----------------|---------------------------|----------|-------------------|------------|
| Subject:       | WBN PROBABILISTIC RISK AS | SSESSME  | NT – SUMMARY      | • <u> </u> |

# 6.2.1.1 Total CDF with Uncertainty Analysis

The CDF uncertainty analysis was performed using the UNCERT computer program. Plots showing the uncertainty distributions are provided in Figure 19 and Figure 20.

# 6.2.1.2 Initiator Contribution to CDF

The initiator contribution to CDF for each unit is shown graphically in

Figure 21 and Figure 22 and in tabular form in Table 59 and Table 61. Table 60 provides a comparison of initiator contributions to unit 1 CDF between the CAFTA R0 and RISKMAN R4 models.

# 6.2.1.3 System Importance to CDF

The importance of systems to CDF was calculated using the SYSIMP computer code. Table 62 provides the systems with a Fussell - Vesely (F-V) importance greater than 0.5% for Unit 1 CDF, sorted on F-V importance. Table 63 provides the systems with a Risk Achievement Worth greater than 2 for Unit 1 CDF, sorted on Risk Achievement Worth (RAW). Table 64 provides the systems with a F-V importance greater than 0.5% for Unit 2 CDF, sorted on F-V importance. Table 65 provides the systems with a RAW greater than 2 for Unit 2 CDF, sorted on RAW.

# 6.2.1.4 Component Importance to CDF

The importance of components to CDF was calculated using the SYSIMP computer code. Table 66 provides the components with a F-V importance greater than 0.5% for Unit 1 CDF, sorted on F-V importance. Table 67 provides the components with a RAW greater than 2 for Unit 1 CDF, sorted on RAW. Table 68 provides the components with a F-V importance greater than 0.5% for Unit 2 CDF, sorted on F-V importance. Table 69 provides the components with a RAW greater than 2 for Unit a RAW greater than 2 for Unit 2 CDF, sorted on RAW. Appendix C contains an Excel spreadsheet with a complete listing of component importance measures.

# 6.2.1.5 Operator Action Importance to CDF

The importance of operator actions to CDF was calculated using CAFTA and the CDF cutset files. Those operator actions with a F-V greater than 0.5% are listed in Table 70 and Table 72, for unit 1 and 2, respectively. Those operator actions with a RAW value greater than 2 are listed in Table 71 and Table 73, for unit 1 and 2, respectively.

# 6.2.1.6 Basic Event Importance to CDF

The importance of basic events to CDF was calculated using CAFTA and the CDF cutset files. Those basic events with a F-V greater than 0.5% are listed in Table 74 and Table 76, for unit 1 and 2, respectively. Those basic events with a RAW value greater than 2 are listed in Table 75 and Table 77, for unit 1 and 2, respectively. Appendix C contains an Excel spreadsheet with a complete listing of basic event importance measures.

| Calculation No | . MDN-000-999-2008-0151   | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: 28 |
|----------------|---------------------------|-----------------|-------------------|----------|
| Subject:       | WBN PROBABILISTIC RISK AS | SSESSME         | NT – SUMMARY      |          |

#### 6.2.1.7 Test and Maintenance Importance to CDF

The importance of Test and Maintenance (T&M) events to CDF was calculated using CAFTA and the CDF cutset files. T&M events with a F-V greater than 0.5% are listed in Table 78 and Table 80, for unit 1 and 2, respectively. T&M with a RAW value greater than 2 are listed in Table 79 and Table 81, for unit 1 and 2, respectively.

| Calculation No. MDN-000-999-2008-0151 |                          | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>29</b> |
|---------------------------------------|--------------------------|-----------------|-------------------|-----------------|
| Subject:                              | WBN PROBABILISTIC RISK A | SSESSME         | NT - SUMMARY      |                 |

## 6.2.2 Large Early Release Frequency

Table 54 summarizes the CDF and LERF for each unit and the number of cutsets saved for each quantification. Table 82 provides a listing of the dominant accident sequences. Table 83 provides the distribution of large early release sequences across the frequency range. Figure 23 provides a comparison of WBN LERF with that of other Westinghouse plants. Figure 24 provides a comparison of WBN LERF with that of other Westinghouse plants with ice condenser containments. A listing of the top 100 cutsets is provided in Table 84 and Table 85 for unit 1 and unit 2, respectively.

### 6.2.2.1 Total LERF Uncertainty Analysis

The LERF uncertainty analysis was performed using the UNCERT computer program. Plots showing the uncertainty distributions are provided in Figure 25 and Figure 26.

# 6.2.2.2 Phenomena Contribution to LERF

The phenomena contribution to LERF for each unit is shown graphically in Figure 27 and Figure 28 and in tabular form in Table 86 and Table 87.

# 6.2.2.3 PDS Contribution to LERF

The PDS contribution to LERF for each unit is shown graphically in Figure 29 and Figure 30 and in tabular form in Table 88 and Table 90. Table 89 provides the mapping between the PDSs of the level 1 analysis and the Bins of the level 2 analysis.

### 6.2.2.4 Initiator Contribution to LERF

The initiator contribution to LERF for each unit is shown graphically in Figure 31 and Figure 32 and in tabular form in Table 91 and Table 93. Table 92 provides a comparison of initiator contributions to LERF between the CAFTA R0 and RISKMAN R4 models. Revision 1 of the CAFTA model represents an incremental change from Revision 0, therefore comparison tables between these revisions are not required.

### 6.2.2.5 System Importance to LERF

Table 94 provides the systems with a F-V importance greater than 0.5% for unit 1 LERF, sorted on F-V importance. Table 95 provides the systems with a RAW greater than 2 for unit 1 LERF, sorted on RAW. Table 96 provides the systems with a F-V importance greater than 0.5% for unit 2 LERF, sorted on F-V importance. Table 97 provides the systems with a RAW greater than 2 for unit 2 LERF, sorted on RAW.

### 6.2.2.6 Component Importance to LERF

Table 98 provides the components with a F-V importance greater than 0.5% for unit 1 LERF, sorted on F-V importance. Table 99 provides the components with a RAW greater than 2 for unit 1 LERF, sorted on RAW. Table 100 provides the components with a F-V importance greater than 0.5% for unit 2 LERF, sorted on F-V importance.

| Calculation No | . MDN-000-999-2008-0151   | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>30</b> |
|----------------|---------------------------|-----------------|-------------------|-----------------|
| Subject:       | WBN PROBABILISTIC RISK AS | SSESSME         | NT – SUMMARY      |                 |

Table 101 provides the components with a RAW greater than 2 for Unit 2 LERF, sorted on RAW.

#### 6.2.2.7 Operator Action Importance to LERF

Those operator actions with a F-V greater than 0.5% are listed in Table 102 and Table 104, for unit 1 and 2, respectively. Those operator actions with a RAW value greater than 2 are listed in Table 103 and Table 105, for unit 1 and 2, respectively.

#### 6.2.2.8 Basic Event Importance to LERF

Those basic events with a F-V greater than 0.5% are listed in Table 106 and Table 108, for unit 1 and 2, respectively. Those basic events with a RAW value greater than 2 are listed in Table 107 and Table 109, for unit 1 and 2, respectively.

#### 6.2.2.9 Test and Maintenance Importance to LERF

Test and maintenance events with a F-V greater than 0.5% are listed in Table 110 and Table 112, for unit 1 and 2, respectively. Test and maintenance events with a RAW value greater than 2 are listed in Table 111 and Table 113, for unit 1 and 2, respectively.

| Calculation No. <b>MDN-000-999-2008-0151</b> | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>31</b> |
|----------------------------------------------|-----------------|-------------------|-----------------|
|                                              |                 |                   |                 |

# Subject: WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY

# 7.0 Supporting Graphics

# 7.1 Tables

|                   | Table 1 - Initiating Events                                                      |
|-------------------|----------------------------------------------------------------------------------|
| CAFTA IDENTIFIER  | DESCRIPTION                                                                      |
| %0FLAFW1          | Flood: Unit 1 AFW line break in general areas (and 737.0-A3)                     |
| %0FLAFW1692A6     | Flood: AFW line break in room 692.0-A6                                           |
| %0FLAFW1692A7     | Flood: AFW line break in room 692.0-A7                                           |
| %0FLAFW2          | Flood: Unit 1 AFW line break in general areas (and 737.0-A12)                    |
| %0FLAFW2692A25    | Flood: AFW line break in room 692.0-A25                                          |
| %0FLAFW2692A26    | Flood: AFW line break in room 692.0-A26                                          |
| %0FLAFW713A19     | Flood: AFW line break in room 713.0-A19                                          |
| %0FLAFW713A6      | Flood: AFW line break in room 713.0-A6                                           |
| %0FLAFW737A5      | Flood: AFW line break in room 737.0-A5                                           |
| %0FLAFW737A9      | Flood: AFW line break in room 737.0-A9                                           |
| %0FLCRDM1F        | Flood event: HPFP or RCW line break in room 782.0-A1                             |
| %0FLCRDM2F        | Flood event: HPFP or RCW line break in room 782.0-A3                             |
| %0FLCVCS1692A10   | Flood event induced by CVCS break in room 692.0-A10.                             |
| %0FLCVCS1692A9    | Flood event induced by CVCS break in room 692.0-A9.                              |
| %0FLCVCS1713A0    | Flood event induced by CVCS break in area 713.0-A0 (Unit 1)                      |
| %0FLCVCS1713A6    | Flood event induced by CVCS break in room 713.0-A6.                              |
| %0FLCVCS1757A10   | Flood event induced by CVCS break in area 757.0-A10                              |
| %0FLCVCS1PITS     | Flood event induced by Unit 1 CVCS break in sealed pits.                         |
| %0FLCVCS2692A22   | Flood event induced by CVCS break in room 692.0-A22.                             |
| %0FLCVCS2692A23   | Flood event induced by CVCS break in room 692.0-A23.                             |
| %0FLCVCS2713A0    | Flood event induced by CVCS break in area 713.0-A0 (Unit 2)                      |
| %0FLCVCS2713A19   | Flood event induced by CVCS break in room 713.0-A19.                             |
| %0FLCVCS2PITS     | Flood event induced by Unit 2 CVCS break in sealed pits.                         |
| %0FLDWS713A19     | Flood event induced by DWS line break in room 713.0-A19                          |
| %0FLDWS713A6      | Flood event induced by DWS line break in room 713.0-A6                           |
| %0FLDWSAB         | Flood event induced by DWS in the common areas of the Auxiliary Building (multip |
| %0FLERCW1AESFRCF  | Flood event induced by unisolated ERCW break associated with ESF room cooling tr |
| %0FLERCW1AESFRCMF | Major flood event induced by unisolated ERCW break associated with ESF room cool |
| %0FLERCW1BESFRCF  | Flood event induced by unisolated ERCW break associated with ESF room cooling tr |
| %0FLERCW1BESFRCMF | Major flood event induced by unisolated ERCW break associated with ESF room cool |

Rev: 001 Plant: WBN Unit 0 Page: 32 Calculation No. **MDN-000-999-2008-0151** Subject:

WBN PROBABILISTIC RISK ASSESSMENT - SUMMARY

| CAFTA IDENTIFIER   | DESCRIPTION                                                                         |
|--------------------|-------------------------------------------------------------------------------------|
| %0FLERCW2AESFRCF   | Flood event induced by unisolated ERCW break associated with ESF room cooling tr    |
| %0FLERCW2AESFRCMF  | Major flood event induced by unisolated ERCW break associated with ESF room cool    |
| %0FLERCW2BESFRCF   | Flood event induced by unisolated ERCW break associated with ESF room cooling tr    |
| %0FLERCW2BESFRCMF  | Major flood event induced by unisolated ERCW break associated<br>with ESF room cool |
| %0FLERCW692A25     | Flood: ERCW break - supply header 2A in room 692.0-A25.                             |
| %0FLERCW692A26F    | Flood event induced by ERCW line break: discharge header B (AFW<br>TD pump room)    |
| %0FLERCW692A26MF   | Major flood event induced by ERCW line break: discharge header B<br>(AFW TD pump ro |
| %0FLERCW692A6F     | Flood event induced by ERCW line break: discharge header A (AFW TD pump room)       |
| %0FLERCW692A6MF    | Major flood event induced by ERCW line break: discharge header A<br>(AFW TD pump ro |
| %0FLERCW692A7      | Flood: ERCW break - supply header 1B in room 692.0-A7.                              |
| %0FLERCW713A19     | Flood: ERCW break - supply header 2A in room 713.0-A19.                             |
| %0FLERCW713A28     | Flood: ERCW break - supply header 1B in room 713.0-A28.                             |
| %0FLERCW713A29     | Flood: ERCW break - supply header 2A in room 713.0-A29.                             |
| %0FLERCW713A6      | Flood: ERCW break - supply header 1B in room 713.0-A6.                              |
| %0FLERCW737A5      | Flood: ERCW break - supply header 1B in room 737.0-A5.                              |
| %0FLERCW737A9      | Flood: ERCW break - supply header 2A in room 737.0-A9.                              |
| %0FLERCWAB676F-1A  | Flood event induced by unisolated ERCW break at elevation 676' of<br>Auxiliary Buil |
| %0FLERCWAB676F-1B  | Flood event induced by unisolated ERCW break at elevation 676' of<br>Auxiliary Buil |
| %0FLERCWAB676F-2A  | Flood event induced by unisolated ERCW break at elevation 676' of<br>Auxiliary Buil |
| %0FLERCWAB676F-2B  | Flood event induced by unisolated ERCW break at elevation 676' of<br>Auxiliary Buil |
| %0FLERCWAB676MF-1A | Major flood event induced by unisolated ERCW break in room<br>676.0-A1 (ESF room co |
| %0FLERCWAB676MF-1B | Major flood event induced by unisolated ERCW break in room<br>676.0-A1 (ESF room co |
| %0FLERCWAB676MF-2A | Major flood event induced by unisolated ERCW break in room<br>676.0-A1 (ESF room co |
| %0FLERCWAB676MF-2B | Major flood event induced by unisolated ERCW break in room<br>676.0-A1 (ESF room co |

Calculation No. MDN-000-999-2008-0151

Rev: 001 Plant: WBN Unit 0 Page: 33

Subject:

# WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY

| CAFTA IDENTIFIER    | DESCRIPTION                                                                      |
|---------------------|----------------------------------------------------------------------------------|
| %0FLERCWCB          | Flood event induced by ERCW line break in Control Building.                      |
| %0FLERCWDISAF       | Flood event induced by ERCW line break: discharge header A                       |
| %0FLERCWDISAMF      | Major flood event induced by ERCW line break: discharge header A                 |
| %0FLERCWDISBF       | Flood event induced by ERCW line break: discharge header B                       |
| %0FLERCWDISBMF      | Major flood event induced by ERCW line break: discharge header E                 |
| %0FLERCWIPSA        | Flood event in ERCW Strainer room A                                              |
| %OFLERCWIPSB        | Flood event in ERCW Strainer room B                                              |
| %0FLHELB01A         | HELB: CVCS line break in 713.0-A28                                               |
| %0FLHELB01B         | HELB: CVCS line break in 713.0-A29                                               |
| %0FLHELB02A         | HELB: CVCS line break in 737.0-A7                                                |
| %0FLHELB02B         | HELB: CVCS line break in 737.0-A8                                                |
| %0FLHPFP692A25F     | Flood event induced by a HPFP line break in room 692.0-A25                       |
| %0FLHPFP692A7F      | Flood event induced by a HPFP line break in room 692.0-A7                        |
| %0FLHPFP737A5F      | Flood event induced by HPFP line break in room 737.0-A5                          |
| %0FLHPFP737A9F      | Flood event induced by HPFP line break in room 737.0-A9                          |
| %0FLHPFPAB713A1921F | Flood event induced by HPFP line break in room 713.0-A19 or 713.0-A21            |
| %0FLHPFPAB713A68F   | Flood event induced by HPFP line break in room 713.0-A6 or 713.0-<br>A8          |
| %0FLHPFPAB757A2     | Flood event induced by break of HPFP line in room 757.0-A2                       |
| %0FLHPFPAB757A21    | Flood event induced by break of HPFP line in room 757.0-A21                      |
| %0FLHPFPAB757A24    | Flood event induced by break of HPFP line in room 757.0-A24                      |
| %0FLHPFPAB757A5     | Flood event induced by break of HPFP line in room 757.0-A5                       |
| %0FLHPFPAB772A10    | Flood event induced by break of HPFP line in room 772.0-A10                      |
| %0FLHPFPAB772A7     | Flood event induced by break of HPFP line in room 772.0-A7                       |
| %OFLHPFPABF         | Flood event induced by HPFP in the common areas of the Auxiliary Building (multi |
| %OFLHPFPCB          | Flood event induced by a HPFP line break in the Control Building                 |
| %OFLHPFPIPS         | Flood event induced by a HPFP or RCW line break in room 711.0-E1                 |
| %0FLRCW737A5F       | Flood event induced by rupture of RCW lines in room 737.0-A5                     |
| %0FLRCW737A5MF      | Major flood event induced by rupture of RCW lines in room 737.0-<br>A5           |
| %0FLRCW737A9F       | Flood event induced by rupture of RCW lines in room 737.0-A9                     |
| %0FLRCW757A17       | Flood event induced by rupture of RCW line in room 757.0-A17                     |
| %0FLRCW757A9        | Flood event induced by rupture of RCW line in room 757.0-A9                      |
| %0FLRCW772A8        | Flood event induced by rupture of RCW line in room 772.0-A8                      |
| %0FLRCW772A9        | Flood event induced by rupture of RCW line in room 772.0-A9                      |
| %0FLRCWABF          | Flood event induced by RCW in the common areas of the Auxiliary                  |
Rev: 001 Plant: WBN Unit 0 Pa

Page: 34

Subject:

| CAFTA IDENTIFIER | DESCRIPTION                                                                        |
|------------------|------------------------------------------------------------------------------------|
|                  | Building (multip                                                                   |
| %0FLRCWABMF      | Major flood event induced by RCW in the common areas of the Auxiliary Building (   |
| %0FLRWST1692A7   | Flood event induced by break in the lines from RWST 1 in room 692.0-A7             |
| %0FLRWST1692A8   | Flood event induced by break in the lines from RWST 1 in rooms 692.0-A8 or 713.0   |
| %0FLRWST1713A28  | Flood: break in the lines from RWST 1 in room 713.0-A28                            |
| %0FLRWST1713HX   | Flood: rupture of the lines from RWST1 in any of the Unit 1 HX rooms at elevatio   |
| %0FLRWST1AB676   | Flood: Unisolated line break from RWST 1 - elevation 676' of<br>Auxiliary Building |
| %0FLRWST1AB692A1 | Flood event induced by rupture of RWST 1 header in room 692.0-<br>A1               |
| %OFLRWST1SIS     | Flood: SIS line break in any of the Unit 1 SIS pump room.                          |
| %0FLRWST2692A24  | Flood event induced by break in the lines from RWST 2 in rooms 692.0-A24 or 713.   |
| %0FLRWST2692A25  | Flood event induced by break in the lines from RWST 2 in room 692.0-A25            |
| %0FLRWST2713A29  | Flood: break in the lines from RWST 2 in room 713.0-A29                            |
| %0FLRWST2713HX   | Flood: rupture of the lines from RWST2 in any of the Unit 2 HX rooms at elevatio   |
| %0FLRWST2AB676   | Flood: unisolated line break from RWST 2 - elevation 676' of<br>Auxiliary Building |
| %0FLRWST2AB692A1 | Flood event induced by rupture of RWST 2 header in room 692.0-<br>A1               |
| %0FLRWST2SIS     | Flood: SIS line break in any of the Unit 2 SIS pump room.                          |
| %0FLTBCST1MF     | Major flood in the Turbine Building involving line break from CST1                 |
| %0FLTBCST2MF     | Major flood in the Turbine Building involving line break from CST2                 |
| %0FLTBMF         | Major flood in the Turbine Building                                                |
| %0FLTBSPRAY1-A-D | Spray event on 6.9kV board 1D and 2A                                               |
| %0FLTBSPRAY3     | Spray event on common board 205 B                                                  |
| %0FLTBSPRAY4     | Spray event on air compressor D and sequencer                                      |
| %0FLTBSPRAY5     | Spray event on dryers                                                              |
| %0LOSP-GR        | Loss of Offsite Power (Grid Related)                                               |
| %0LOSP-PC        | Loss of Offsite Power (Plant Centered)                                             |
| %0LOSP-WI        | Loss of Offsite Power (Weather Induced)                                            |
| %0TLERCW         | Total Loss of ERCW                                                                 |
| %0TLPCA          | Total Loss of Plant Compressed Air                                                 |

Rev: 001 Plant: WBN Unit 0

Page: 35

Subject:

|                  | Table 1 - Initiating Events                                                      |
|------------------|----------------------------------------------------------------------------------|
| CAFTA IDENTIFIER | DESCRIPTION                                                                      |
| %1CCS            | Total Loss of Component Cooling System Unit 1                                    |
| %1CCS1A          | Loss of Component Cooling System Train 1A                                        |
| %1CPEX           | Core Power Excursion                                                             |
| %1EX             | EXCESSIVE LOCA (VESSEL RUPTURE)                                                  |
| %1EXMFW          | Excessive Main Feedwater                                                         |
| %1FLCCS          | Flood event induced by CCS line break (Train A)                                  |
| %1FLCCS1AB692A7  | Flood: CCS line break in room 692.0-A7                                           |
| %1FLCCS713A28    | Flood: unisolated break in CCS line in room 713.0-A28                            |
| %1FLCCS737A5     | Flood: CCS line break in room 737.0-A5                                           |
| %1FLCCS757A13    | Flood event induced by CCS line break in room 757.0-A13 (Surge tank A).          |
| %1FLHELBAFW      | HELB scenario induced by MSS supply to AFW line break. Unit 1                    |
| %1FLRTIE         | Contribution to reactor trip initiating event frequency due to pipe breaks – Uni |
| %1FLTBSPRAY1-A-B | Spray event on Unit 1 6.9kV boards A and B                                       |
| %1FLTBSPRAY1-B-C | Spray event on Unit 1 6.9kV boards B and C                                       |
| %1FLTBSPRAY1-C-D | Spray event on Unit 1 6.9kV boards C and D                                       |
| %1FLTBSPRAY2A    | Spray event on U1 board 203A (480V TB)                                           |
| %1FLTBSPRAY2B    | Spray event on U1 board 203B (480V TB)                                           |
| %1FLTBSPRAY6     | Spray event on distribution board WBN-0-DPL -239-0001                            |
| %1IMSIV          | Inadvertent Closure of all MSIVs                                                 |
| %1ISI            | Inadvertent Safety Injection                                                     |
| %1ISL-IERWSTRHR  | ISLOCA RWST PIPING INITIATOR FLAG                                                |
| %1ISL-IEX107     | ISLOCA RHR Supply Line Initiator Flag                                            |
| %1ISL-IEX15      | ISL - LETDOWN LINE INITIATOR FLAG                                                |
| %1ISL-IEX17      | ISLOCA RHR HOT LEG INITIATOR FLAG                                                |
| %1ISL-IEX20A     | ISLOCA RHR COLD LEG INJECTION B Initiator Flag                                   |
| %1ISL-IEX20B     | ISLOCA RHR COLD LEG INJECTION A Initiator Flag                                   |
| %1ISL-IEX21      | ISLOCA SI HOT LEG B INITIATOR FLAG                                               |
| %1ISL-IEX32      | ISLOCA SI HOT LEG A INITIATOR FLAG                                               |
| %1ISL-IEX33      | ISLOCA SI COLD LEG INJECTION Initiator Flag                                      |
| %1ISL-RHRPMPSEAL | ISLOCA RHR PUMP SEAL INITIATOR FLAG                                              |
| %1ISL-SIPMPSEALA | ISLOCA SI PUMP SEAL A Initiator Flag                                             |
| %1ISL-SIPMPSEALB | ISLOCA SI PUMP SEAL B Initiator Flag                                             |
| %1LDAAC          | Loss of 120V AC Vital Instrument Board I                                         |
| %1LDBAC          | Loss of 120V AC Vital Instrument Board II                                        |
| %1LDCAC          | Loss of 120V AC Vital Instrument Board III                                       |
| %1LDDAC          | Loss of 120V AC Vital Instrument Board IV                                        |

Rev: 001 Plant: WBN Unit 0

Page: 36

Subject:

|                  | Table 1 - Initiating Events               |
|------------------|-------------------------------------------|
| CAFTA IDENTIFIER | DESCRIPTION                               |
| %1LLOCA-CL1      | LLOCA ON COLD LEG 1                       |
| %1LLOCA-CL2      | LLOCA ON COLD LEG 2                       |
| %1LLOCA-CL3      | LLOCA ON COLD LEG 3                       |
| %1LLOCA-CL4      | LLOCA ON COLD LEG 4                       |
| %1LOCV           | Loss of Condenser Vacuum                  |
| %1LRCP           | Loss of Primary Flow                      |
| %1LVBB1          | Loss of Battery Board 1                   |
| %1LVBB2          | Loss of Battery Board 2                   |
| %1MLOCA-CL1      | MLOCA ON COLD LEG 1                       |
| %1MLOCA-CL2      | MLOCA ON COLD LEG 2                       |
| %1MLOCA-CL3      | MLOCA ON COLD LEG 3                       |
| %1MLOCA-CL4      | MLOCA ON COLD LEG 4                       |
| %1MSIV           | Inadvertent Closure of 1 MSIV             |
| %1MSVO           | Steam Generator PORV Fails Open           |
| %1PLERCW         | Partial Loss of ERCW UNIT 1               |
| %1PLMFW          | Partial Loss of Main Feedwater            |
| %1RTIE           | Reactor Trip                              |
| %1SGTRSG1        | RUPTURED STEAM GENERATOR IS SG1           |
| %1SGTRSG2        | RUPTURED STEAM GENERATOR IS SG2           |
| %1SGTRSG3        | RUPTURED STEAM GENERATOR IS SG3           |
| %1SGTRSG4        | RUPTURED STEAM GENERATOR IS SG4           |
| %1SLOCA-CL1      | SLOCA ON COLD LEG 1                       |
| %1SLOCA-CL2      | SLOCA ON COLD LEG 2                       |
| %1SLOCA-CL3      | SLOCA ON COLD LEG 3                       |
| %1SLOCA-CL4      | SLOCA ON COLD LEG 4                       |
| %1SLOCAL         | Small LOCA Stuck Open Safety Relief Valve |
| %1SLOCAV         | VERY SMALL LOCA INITIATING EVENT          |
| %1SSBI-1         | SG1 IS THE FAULTED SG                     |
| %1SSBI-2         | SG2 IS THE FAULTED SG                     |
| %1SSBI-3         | SG3 IS THE FAULTED SG                     |
| %1SSBI-4         | SG4 IS THE FAULTED SG                     |
| %1SSBO-1         | SECONDARY BREAK OUTSIDE CONTAINMENT SG 1  |
| %1SSBO-2         | SECONDARY BREAK OUTSIDE CONTAINMENT SG 2  |
| %1SSBO-3         | SECONDARY BREAK OUTSIDE CONTAINMENT SG 3  |
| %1SSBO-4         | SECONDARY BREAK OUTSIDE CONTAINMENT SG 4  |
| %1TLMFW          | Total Loss of Main Feedwater              |
| %1TTIE           | Turbine Trip                              |

Rev: 001 Plant: WBN Unit 0

Page: 37

Subject:

| CAFTA IDENTIFIER | DESCRIPTION                                                                      |
|------------------|----------------------------------------------------------------------------------|
| %2CCS            | Total Loss of Component Cooling System Unit 2                                    |
| %2CCS2A          | Loss of Component Cooling System Train 2A                                        |
| %2CPEX           | Core Power Excursion                                                             |
| %2EX             | EXCESSIVE LOCA (VESSEL RUPTURE)                                                  |
| %2EXMFW          | Excessive Main Feedwater                                                         |
| %2FLCCS          | Flood event induced by CCS line break (Train B)                                  |
| %2FLCCS2AB692A25 | Flood event induced by CCS line break in room 692 0-A15                          |
| %2FLCCS713A29    | Flood: unisolated break in CCS line in room 713 0-A29                            |
| %2FLCCS737A9     | Flood: CCS line break in room 737.0-A9                                           |
| %2FLCCS757A13    | Flood event induced by CCS line break in room 757.0-A13 (Surge tank B).          |
| %2FLHELBAFW      | HELB scenario induced by MSS supply to AFW line break. Unit 2                    |
| %2FLRTIE         | Contribution to reactor trip initiating event frequency due to pipe breaks – Uni |
| %2FLTBSPRAY1-A-B | Spray event on Unit 2 6.9kV boards A and B                                       |
| %2FLTBSPRAY1-B-C | Spray event on Unit 2 6.9kV boards B and C                                       |
| %2FLTBSPRAY1-C-D | Spray event on Unit 2 6.9kV boards C and D                                       |
| %2FLTBSPRAY2B    | Spray event on U2 board 203B (480V TB)                                           |
| %2IMSIV          | Inadvertent Closure of all MSIVs                                                 |
| %2ISI            | Inadvertent Safety Injection                                                     |
| %2ISL-IERWSTRHR  | ISLOCA RWST PIPING INITIATOR FLAG                                                |
| %2ISL-IEX107     | ISLOCA RHR Supply Line Initiator Flag                                            |
| %2ISL-IEX15      | ISL - LETDOWN LINE INITIATOR FLAG                                                |
| %2ISL-IEX17      | ISLOCA RHR HOT LEG INITIATOR FLAG                                                |
| %2ISL-IEX20A     | ISLOCA RHR COLD LEG INJECTION B Initiator Flag                                   |
| %2ISL-IEX20B     | ISLOCA RHR COLD LEG INJECTION A Initiator Flag                                   |
| %2ISL-IEX21      | ISLOCA SI HOT LEG B INITIATOR FLAG                                               |
| %2ISL-IEX32      | ISLOCA SI HOT LEG A INITIATOR FLAG                                               |
| %2ISL-IEX33      | ISLOCA SI COLD LEG INJECTION Initiator Flag                                      |
| %2ISL-RHRPMPSEAL | ISLOCA RHR PUMP SEAL INITIATOR FLAG                                              |
| %2ISL-SIPMPSEALA | ISLOCA SI PUMP SEAL A Initiator Flag                                             |
| %2ISL-SIPMPSEALB | ISLOCA SI PUMP SEAL B Initiator Flag                                             |
| %2LDAAC          | Loss of 120V AC Vital Instrument Board I                                         |
| %2LDBAC          | Loss of 120V AC Vital Instrument Board II                                        |
| %2LDCAC          | Loss of 120V AC Vital Instrument Board III                                       |
| %2LDDAC          | Loss of 120V AC Vital Instrument Board IV                                        |
| %2LLOCA-CL1      | LLOCA ON COLD LEG 1                                                              |
| %2LLOCA-CL2      | LLOCA ON COLD LEG 2                                                              |

Rev: 001 Plant: WBN Unit 0 Pa

Subject:

WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY

| CAFTA IDENTIFIER | DESCRIPTION                               |  |  |  |  |  |
|------------------|-------------------------------------------|--|--|--|--|--|
| %2LLOCA-CL3      | LLOCA ON COLD LEG 3                       |  |  |  |  |  |
| %2LLOCA-CL4      | LLOCA ON COLD LEG 4                       |  |  |  |  |  |
| %2LOCV           | Loss of Condenser Vacuum                  |  |  |  |  |  |
| %2LRCP           | Loss of Primary Flow                      |  |  |  |  |  |
| %2LVBB3          | Loss of Battery Board 3                   |  |  |  |  |  |
| %2LVBB4          | Loss of Battery Board 4                   |  |  |  |  |  |
| %2MLOCA-CL1      | MLOCA ON COLD LEG 1                       |  |  |  |  |  |
| %2MLOCA-CL2      | MLOCA ON COLD LEG 2                       |  |  |  |  |  |
| %2MLOCA-CL3      | MLOCA ON COLD LEG 3                       |  |  |  |  |  |
| %2MLOCA-CL4      | MLOCA ON COLD LEG 4                       |  |  |  |  |  |
| %2MSIV           | Inadvertent Closure of 1 MSIV             |  |  |  |  |  |
| %2MSVO           | Steam Generator PORV Fails Open           |  |  |  |  |  |
| %2PLERCW         | Partial Loss of ERCW UNIT 1               |  |  |  |  |  |
| %2PLMFW          | Partial Loss of Main Feedwater            |  |  |  |  |  |
| %2RTIE           | Reactor Trip                              |  |  |  |  |  |
| %2SGTRSG1        | RUPTURED STEAM GENERATOR IS SG1           |  |  |  |  |  |
| %2SGTRSG2        | RUPTURED STEAM GENERATOR IS SG2           |  |  |  |  |  |
| %2SGTRSG3        | RUPTURED STEAM GENERATOR IS SG3           |  |  |  |  |  |
| %2SGTRSG4        | RUPTURED STEAM GENERATOR IS SG4           |  |  |  |  |  |
| %2SLOCA-CL1      | SLOCA ON COLD LEG 1                       |  |  |  |  |  |
| %2SLOCA-CL2      | SLOCA ON COLD LEG 2                       |  |  |  |  |  |
| %2SLOCA-CL3      | SLOCA ON COLD LEG 3                       |  |  |  |  |  |
| %2SLOCA-CL4      | SLOCA ON COLD LEG 4                       |  |  |  |  |  |
| %2SLOCAL         | Small LOCA Stuck Open Safety Relief Valve |  |  |  |  |  |
| %2SLOCAV         | VERY SMALL LOCA INITIATING EVENT          |  |  |  |  |  |
| %2SSBI-1         | SG1 IS THE FAULTED SG                     |  |  |  |  |  |
| %2SSBI-2         | SG2 IS THE FAULTED SG                     |  |  |  |  |  |
| %2SSBI-3         | SG3 IS THE FAULTED SG                     |  |  |  |  |  |
| %2SSBI-4         | SG4 IS THE FAULTED SG                     |  |  |  |  |  |
| %2SSBO-1         | SECONDARY BREAK OUTSIDE CONTAINMENT SG 1  |  |  |  |  |  |
| %2SSBO-2         | SECONDARY BREAK OUTSIDE CONTAINMENT SG 2  |  |  |  |  |  |
| %2SSBO-3         | SECONDARY BREAK OUTSIDE CONTAINMENT SG 3  |  |  |  |  |  |
| %2SSBO-4         | SECONDARY BREAK OUTSIDE CONTAINMENT SG 4  |  |  |  |  |  |
| %2TLMFW          | Total Loss of Main Feedwater              |  |  |  |  |  |
| %2TTIE           | Turbine Trip                              |  |  |  |  |  |

References: CAFTA R1 Database, IE Notebook

Rev: 001 Plant: WBN Unit 0 Page: 39

Subject:

| Initiator                    | WBN-1            |          |  |  |
|------------------------------|------------------|----------|--|--|
|                              | LER              | Events   |  |  |
| Reactor Trip (RTIE)          | LER 390-2004-02  | 1        |  |  |
|                              | LER 390-2004-01  | 1        |  |  |
|                              | LER 390-2008-002 | 1        |  |  |
|                              | LER 390-2010-03  | 1        |  |  |
| Total                        |                  | 4        |  |  |
|                              |                  |          |  |  |
| Turbine Trip (TTIE)          | LER 390-2006-04  | 1        |  |  |
|                              | LER 390-2006-05  | 1        |  |  |
|                              | LER 390-2003-03  | 1        |  |  |
|                              | LER 390-2003-01  | 1        |  |  |
|                              | LER 390-2008-004 | 1        |  |  |
|                              | LER 390-2010-01  | 1        |  |  |
| Fotal                        |                  | 6        |  |  |
| Total Loop of Main Foodwater |                  |          |  |  |
| (TLMFW)                      | LER 390-2010-02  | 1        |  |  |
| Total                        |                  | 1        |  |  |
| Total of all IEs             |                  | 11       |  |  |
|                              |                  |          |  |  |
|                              | Exposure Time    | 7.5 year |  |  |

| Calculation N                                        | lo. <b>MDN-000-999-2008-0151</b> | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>40</b> |  |  |  |
|------------------------------------------------------|----------------------------------|-----------------|-------------------|-----------------|--|--|--|
| Subject: WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY |                                  |                 |                   |                 |  |  |  |

**Table 3 - Initiating Event Prior and Posterior Distributions** Prior Posterior Initiator Variable Mean Error Mean Error **Initiator Description** Designator Name Distribution Factor Distribution Frequency Frequency Factor Loss of Offsite Power (Grid %0LOSP-GR Related) LOSP-GR 1.01E-02 -----------Loss of Offsite Power (Plant %0LOSP-PC Centered) LOSP-PC 8.12E-03 -------------Loss of Offsite Power %0LOSP-WI (Weather Induced) LOSP-WI 2.03E-03 -------------%0TLERCW Total Loss of ERCW ---6.78E-06 ------------Total Loss of Plant **Compressed Air** %0TLPCA TLPCA 9.81E-03 Lognormal 8.4 ------**Total Loss of Component** %1CCS **Cooling System Unit 1** 2.49E-04 ----------------Loss of Component Cooling %1CCS1A System Train 1A 7.99E-03 ---------------%1CPEX CPEX **Core Power Excursion** 3.29E-03 Lognormal 1.4 --------**EXCESSIVE LOCA (VESSEL** RUPTURE) %1EX 3.22E-08 Lognormal --10 -------**EXMFW** %1EXMFW **Excessive Main Feedwater** 2.96E-02 Lognormal 1.4 2.93E-02 Lognormal 1.4 Inadvertent Closure of all %1IMSIV MSIVs IMSIV 1.53E-02 Lognormal 1.3 --------

| Calculation No. <b>MDN-000-999-2008-0151</b> | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>41</b> |  |  |  |  |
|----------------------------------------------|-----------------|-------------------|-----------------|--|--|--|--|
|                                              |                 |                   |                 |  |  |  |  |

| Table 3 - Initiating Event Prior and Posterior Distributions |                                                   |                  |                   |              |                 |                   |              |                 |
|--------------------------------------------------------------|---------------------------------------------------|------------------|-------------------|--------------|-----------------|-------------------|--------------|-----------------|
|                                                              |                                                   | Variable<br>Name | Prior             |              |                 | Posterior         |              |                 |
| Initiator<br>Designator                                      | Initiator Description                             |                  | Mean<br>Frequency | Distribution | Error<br>Factor | Mean<br>Frequency | Distribution | Error<br>Factor |
| %1ISI                                                        | Inadvertent Safety Injection                      | ISI              | 1.65E-03          | Lognormal    | 1.4             |                   |              | <u></u>         |
| %1ISL-<br>IERWSTRHR                                          | ISLOCA RWST PIPING<br>INITIATOR FLAG              |                  | 1.56E-08          |              |                 |                   |              |                 |
| %1ISL-IEX107                                                 | ISLOCA RHR Supply Line<br>Initiator Flag          |                  | 1.38E-07          |              |                 |                   |              |                 |
| %1ISL-IEX15                                                  | ISL - LETDOWN LINE INITIATOR<br>FLAG              |                  | 4.37E-10          |              |                 |                   |              |                 |
| %1ISL-IEX17                                                  | ISLOCA RHR HOT LEG<br>INITIATOR FLAG              |                  | 1.78E-10          |              |                 |                   |              |                 |
| %1ISL-IEX20A                                                 | ISLOCA RHR COLD LEG<br>INJECTION B Initiator Flag |                  | 1.74E-08          |              |                 |                   |              |                 |
| %1ISL-IEX20B                                                 | ISLOCA RHR COLD LEG<br>INJECTION A Initiator Flag |                  | 1.74E-08          |              |                 |                   |              |                 |
| %1ISL-IEX21                                                  | ISLOCA SI HOT LEG B<br>INITIATOR FLAG             |                  | 2.12E-12          |              |                 |                   |              |                 |
| %1ISL-IEX32                                                  | ISLOCA SI HOT LEG A<br>INITIATOR FLAG             |                  | 2.12E-12          |              |                 |                   |              |                 |
| %1ISL-IEX33                                                  | ISLOCA SI COLD LEG<br>INJECTION Initiator Flag    |                  | 3.03E-09          |              |                 |                   |              |                 |

| Calculation No. <b>MDN-000-999-2008-0151</b> | Rev: 001 | Plant: WBN Unit 0 | Page: <b>42</b> |   |
|----------------------------------------------|----------|-------------------|-----------------|---|
|                                              |          |                   |                 | - |

| Table 3 - Initiating Event Prior and Posterior Distributions |                                               |                  |                   |              |                 |                   |              |                 |
|--------------------------------------------------------------|-----------------------------------------------|------------------|-------------------|--------------|-----------------|-------------------|--------------|-----------------|
| <u></u>                                                      |                                               |                  | Prior             |              |                 | Posterior         |              |                 |
| Initiator<br>Designator                                      | Initiator Description                         | Variable<br>Name | Mean<br>Frequency | Distribution | Error<br>Factor | Mean<br>Frequency | Distribution | Error<br>Factor |
| %1ISL-<br>RHRPMPSEAL                                         | ISLOCA RHR PUMP SEAL<br>INITIATOR FLAG        |                  | 9.19E-06          |              |                 |                   |              |                 |
| %1ISL-<br>SIPMPSEALA                                         | ISLOCA SI PUMP SEAL A<br>Initiator Flag       |                  | 1.30E-08          |              |                 |                   |              |                 |
| %1ISL-<br>SIPMPSEALB                                         | ISLOCA SI PUMP SEAL B<br>Initiator Flag       |                  | 1.30E-08          |              |                 |                   |              |                 |
| %1LDAAC                                                      | Loss of 120V AC Vital<br>Instrument Board I   |                  |                   |              |                 | 4.89E-03          |              |                 |
| %1LDBAC                                                      | Loss of 120V AC Vital<br>Instrument Board II  |                  |                   |              |                 | 4.89E-03          |              |                 |
| %1LDCAC                                                      | Loss of 120V AC Vital<br>Instrument Board III |                  |                   |              |                 | 4.89E-03          |              |                 |
| %1LDDAC                                                      | Loss of 120V AC Vital<br>Instrument Board IV  |                  |                   |              |                 | 4.89E-03          |              |                 |
| %1LLOCA-CL1                                                  | LLOCA ON COLD LEG 1                           | LLOCA/4          | 3.28E-07          | Lognormal    | 10.7            |                   |              |                 |
| %1LLOCA-CL2                                                  | LLOCA ON COLD LEG 2                           | LLOCA/4          | 3.28E-07          | Lognormal    | 10.7            |                   |              |                 |
| %1LLOCA-CL3                                                  | LLOCA ON COLD LEG 3                           | LLOCA/4          | 3.28E-07          | Lognormal    | 10.7            |                   |              |                 |
| %1LLOCA-CL4                                                  | LLOCA ON COLD LEG 4                           | LLOCA/4          | 3.28E-07          | Lognormal    | 10.7            |                   |              |                 |
| %1LOCV                                                       | Loss of Condenser Vacuum                      | LOCV             | 6.58E-02          | Lognormal    | 1.3             | 6.50E-02          | Lognormal    | 1.3             |
| %1LRCP                                                       | Loss of Primary Flow                          | LRCP             | 3.62E-02          | Lognormal    | 1.4             | 3.58E-02          | Lognormal    | 1.4             |

| Calculation | No. <b>MDN-000-999-2008-0151</b> | Rev: 001 | Plant: WBN Unit 0 | Page: <b>43</b> |  |
|-------------|----------------------------------|----------|-------------------|-----------------|--|
| Subject:    | WBN PROBABILISTIC RISK A         | SSESSME  | NT - SUMMARY      | •               |  |

Table 3 - Initiating Event Prior and Posterior Distributions Prior Posterior Initiator Variable Mean Error Mean Error Designator **Initiator Description** Distribution Name Frequency Factor Frequency Distribution Factor Loss of Battery Board 1 %1LVBB1 ------4.36E-03 ---------%1LVBB2 Loss of Battery Board 2 ---4.36E-03 -----------%1MLOCA-CL1 MLOCA ON COLD LEG 1 MLOCA/4 3.55E-06 Lognormal 10 --------%1MLOCA-CL2 **MLOCA ON COLD LEG 2** MLOCA/4 3.55E-06 Lognormal 10 --------%1MLOCA-CL3 **MLOCA ON COLD LEG 3** MLOCA/4 3.55E-06 Lognormal 10 -------%1MLOCA-CL4 **MLOCA ON COLD LEG 4** MLOCA/4 3.55E-06 Lognormal 10 ---------%1MSIV MSIV Inadvertent Closure of 1 MSIV 1.32E-01 Lognormal 1.4 --------**Steam Generator PORV Fails** %1MSVO Open **MSVO** 1.65E-03 Lognormal 1.4 --------%1PLERCW Partial Loss of ERCW UNIT 1 -----3.28E-03 ---------Partial Loss of Main %1PLMFW Feedwater PLMFW 1.35E-01 Lognormal 1.4 1.29E-01 Lognormal 1.4 %1RTIF **Reactor Trip** RTIE Lognormal 3.20E-01 1.4 3.27E-01 Lognormal 1.38 **RUPTURED STEAM** %1SGTRSG1 **GENERATOR IS SG1** SGTR/4 8.85E-04 Lognormal 8.4 -------**RUPTURED STEAM** SGTR/4 %1SGTRSG2 **GENERATOR IS SG2** 8.85E-04 Lognormal 8.4 ---------**RUPTURED STEAM** %1SGTRSG3 **GENERATOR IS SG3** SGTR/4 8.85E-04 Lognormal 8.4 ---------

| Calculation I | No. <b>MDN-000-999-2008-0151</b> | Rev: 001 | Plant: WBN Unit 0 | Page: <b>44</b> |
|---------------|----------------------------------|----------|-------------------|-----------------|
| Subject:      | WBN PROBABILISTIC RISK AS        | SSESSME  | NT – SUMMARY      |                 |

| Table 3 - Initiating Event Prior and Posterior Distributions |                                              |                  |                   |              |                 |                   |              |                 |
|--------------------------------------------------------------|----------------------------------------------|------------------|-------------------|--------------|-----------------|-------------------|--------------|-----------------|
|                                                              |                                              | T.               |                   | Prior        |                 |                   | Posterior    |                 |
| Initiator<br>Designator                                      | Initiator Description                        | Variable<br>Name | Mean<br>Frequency | Distribution | Error<br>Factor | Mean<br>Frequency | Distribution | Error<br>Factor |
| %1SGTRSG4                                                    | RUPTURED STEAM<br>GENERATOR IS SG4           | SGTR/4           | 8.85E-04          | Lognormal    | 8.4             | <u></u>           |              |                 |
| %1SLOCA-CL1                                                  | SLOCA ON COLD LEG 1                          | SLOCAN/4         | 1.29E-04          | Lognormal    | 8.4             |                   |              |                 |
| %1SLOCA-CL2                                                  | SLOCA ON COLD LEG 2                          | SLOCAN/4         | 1.29E-04          | Lognormal    | 8.4             |                   |              |                 |
| %1SLOCA-CL3                                                  | SLOCA ON COLD LEG 3                          | SLOCAN/4         | 1.29E-04          | Lognormal    | 8.4             |                   |              |                 |
| %1SLOCA-CL4                                                  | SLOCA ON COLD LEG 4                          | SLOCAN/4         | 1.29E-04          | Lognormal    | 8.4             |                   |              |                 |
| %1SLOCAL                                                     | Small LOCA Stuck Open Safety<br>Relief Valve | SLOCAL           | 2.88E-03          | Lognormal    | 8.4             |                   |              |                 |
| %1SLOCAV                                                     | VERY SMALL LOCA INITIATING<br>EVENT          | SLOCAV           | 3.82E-03          | Lognormal    | 8.4             |                   |              |                 |
| %1SSBI-1                                                     | SG1 IS THE FAULTED SG                        | SLBIC/4          | 2.50E-04          | Lognormal    | 31.62           |                   |              |                 |
| %1SSBI-2                                                     | SG2 IS THE FAULTED SG                        | SLBIC/4          | 2.50E-04          | Lognormal    | 31.62           |                   |              |                 |
| %1SSBI-3                                                     | SG3 IS THE FAULTED SG                        | SLBIC/4          | 2.50E-04          | Lognormal    | 31.62           |                   |              |                 |
| %1SSBI-4                                                     | SG4 IS THE FAULTED SG                        | SLBIC/4          | 2.50E-04          | Lognormal    | 31.62           |                   |              |                 |
| %1SSBO-1                                                     | SECONDARY BREAK OUTSIDE<br>CONTAINMENT SG 1  | SLBOC/4          | 2.50E-03          | Lognormal    | 1.84            |                   | <del></del>  |                 |
| %1SSBO-2                                                     | SECONDARY BREAK OUTSIDE<br>CONTAINMENT SG 2  | SLBOC/4          | 2.50E-03          | Lognormal    | 1.84            |                   |              |                 |

| Calculation I | No. <b>MDN-000-999-2008-0151</b> | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>45</b> |
|---------------|----------------------------------|-----------------|-------------------|-----------------|
| Subject:      | WBN PROBABILISTIC RISK A         | SSESSME         | NT – SUMMARY      | •               |

| Table 3 - Initiating Event Prior and Posterior Distributions |                                                  |                  |                   |              |                 |                   |              |                 |
|--------------------------------------------------------------|--------------------------------------------------|------------------|-------------------|--------------|-----------------|-------------------|--------------|-----------------|
|                                                              |                                                  |                  |                   | Prior        |                 |                   | Posterior    |                 |
| Initiator<br>Designator                                      | Initiator Description                            | Variable<br>Name | Mean<br>Frequency | Distribution | Error<br>Factor | Mean<br>Frequency | Distribution | Error<br>Factor |
| %1SSBO-3                                                     | SECONDARY BREAK OUTSIDE<br>CONTAINMENT SG 3      | SLBOC/4          | 2.50E-03          | Lognormal    | 1.84            |                   |              |                 |
| %1SSBO-4                                                     | SECONDARY BREAK OUTSIDE<br>CONTAINMENT SG 4      | SLBOC/4          | 2.50E-03          | Lognormal    | 1.84            |                   |              |                 |
| %1TLMFW                                                      | Total Loss of Main Feedwater                     | TLMFW            | 9.59E-02          | Lognormal    | 3.6             | 1.10E-01          | Lognormal    | 2.74            |
| %1TTIE                                                       | Turbine Trip                                     | ΤΤΙΕ             | 2.04E-01          | Lognormal    | 1.4             | 2.41E-01          | Lognormal    | 1.35            |
| %2CCS                                                        | Total Loss of Component<br>Cooling System Unit 2 |                  |                   |              |                 | 2.49E-04          |              |                 |
| %2CCS2A                                                      | Loss of Component Cooling<br>System Train 2A     |                  |                   |              |                 | 7.65E-03          |              |                 |
| %2CPEX                                                       | Core Power Excursion                             | CPEX             | 3.29E-03          | Lognormal    | 1.4             |                   |              |                 |
| %2EX                                                         | EXCESSIVE LOCA (VESSEL<br>RUPTURE)               | EX               | 3.22E-08          | Lognormal    | 10              |                   |              |                 |
| %2EXMFW                                                      | Excessive Main Feedwater                         | EXMFW            | 2.96E-02          | Lognormal    | 1.4             | 2.93E-02          | Lognormal    | 1.4             |
| %2IMSIV                                                      | Inadvertent Closure of all<br>MSIVs              | IMSIV            | 1.53E-02          | Lognormal    | 1.3             |                   |              |                 |
| %2ISI                                                        | Inadvertent Safety Injection                     | ISI              | 1.65E-03          | Lognormal    | 1.4             |                   |              |                 |
| %2ISL-<br>IERWSTRHR                                          | ISLOCA RWST PIPING<br>INITIATOR FLAG             |                  | 1.56E-08          |              |                 |                   |              |                 |

| Calculation | No. <b>MDN-000-999-2008-0151</b> | Rev: 001 | Plant: WBN Unit 0 | Page: <b>46</b> |
|-------------|----------------------------------|----------|-------------------|-----------------|
| Subject:    | WBN PROBABILISTIC RISK A         | SSESSME  | NT – SUMMARY      |                 |

|                         | Table 3 - Initiating Event Prior and Posterior Distributions |                  |                   |              |                 |                   |              |                 |  |
|-------------------------|--------------------------------------------------------------|------------------|-------------------|--------------|-----------------|-------------------|--------------|-----------------|--|
|                         |                                                              |                  |                   | Prior        |                 |                   | Posterior    |                 |  |
| Initiator<br>Designator | Initiator Description                                        | Variable<br>Name | Mean<br>Frequency | Distribution | Error<br>Factor | Mean<br>Frequency | Distribution | Error<br>Factor |  |
| %2ISL-IEX107            | ISLOCA RHR Supply Line<br>Initiator Flag                     |                  | 1.38E-07          |              |                 |                   |              | <u> </u>        |  |
| %2ISL-IEX15             | ISL - LETDOWN LINE INITIATOR<br>FLAG                         |                  | 4.37E-10          |              |                 |                   |              |                 |  |
| %2ISL-IEX17             | ISLOCA RHR HOT LEG<br>INITIATOR FLAG                         |                  | 1.78E-10          |              |                 |                   |              |                 |  |
| %2ISL-IEX20A            | ISLOCA RHR COLD LEG<br>INJECTION B Initiator Flag            |                  | 1.74E-08          |              |                 |                   |              |                 |  |
| %2ISL-IEX20B            | ISLOCA RHR COLD LEG<br>INJECTION A Initiator Flag            |                  | 1.74E-08          |              |                 |                   |              |                 |  |
| %2ISL-IEX21             | ISLOCA SI HOT LEG B<br>INITIATOR FLAG                        |                  | 2.12E-12          |              |                 |                   |              |                 |  |
| %2ISL-IEX32             | ISLOCA SI HOT LEG A<br>INITIATOR FLAG                        |                  | 2.12E-12          |              |                 |                   |              |                 |  |
| %2ISL-IEX33             | ISLOCA SI COLD LEG<br>INJECTION Initiator Flag               |                  | 3.03E-09          |              |                 |                   |              |                 |  |
| %2ISL-<br>RHRPMPSEAL    | ISLOCA RHR PUMP SEAL<br>INITIATOR FLAG                       |                  | 9.19E-06          |              |                 |                   |              |                 |  |
| %2ISL-<br>SIPMPSEALA    | ISLOCA SI PUMP SEAL A<br>Initiator Flag                      |                  | 1.30E-08          |              |                 |                   |              |                 |  |

| Calculation | No. <b>MDN-000-999-2008-0151</b> | Rev: 001 | Plant: WBN Unit 0 | Page: <b>47</b> |
|-------------|----------------------------------|----------|-------------------|-----------------|
| Subject:    | WBN PROBABILISTIC RISK A         | SSESSME  | NT - SUMMARY      | •               |

**Table 3 - Initiating Event Prior and Posterior Distributions** Prior Posterior Initiator Variable Mean Error Mean Error **Initiator Description** Designator Name Frequency Distribution Factor Frequency Distribution Factor %2ISL-**ISLOCA SI PUMP SEAL B** SIPMPSEALB Initiator Flag 1.30E-08 ---------------Loss of 120V AC Vital %2LDAAC Instrument Board I --4.89E-03 -------------Loss of 120V AC Vital %2LDBAC Instrument Board II --4.89E-03 ------------Loss of 120V AC Vital %2LDCAC Instrument Board III ---------4.89E-03 -----Loss of 120V AC Vital %2LDDAC Instrument Board IV 4.89E-03 -------------LLOCA ON COLD LEG 1 %2LLOCA-CL1 LLOCA/4 3.28E-07 Lognormal 10.7 --------%2LLOCA-CL2 LLOCA ON COLD LEG 2 LLOCA/4 3.28E-07 10.7 Lognormal --------%2LLOCA-CL3 LLOCA ON COLD LEG 3 LLOCA/4 10.7 3.28E-07 Lognormal -------LLOCA/4 %2LLOCA-CL4 LLOCA ON COLD LEG 4 3.28E-07 Lognormal 10.7 --------%2LOCV Loss of Condenser Vacuum LOCV 6.58E-02 1.3 Lognormal 6.50E-02 Lognormal 1.3 %2LRCP Loss of Primary Flow LRCP 3.62E-02 Lognormal 1.4 3.58E-02 Lognormal 1.4 Loss of Battery Board 3 %2LVBB3 --4.36E-03 -------------%2LVBB4 Loss of Battery Board 4 ---4.36E-03 -------------%2MLOCA-CL1 **MLOCA ON COLD LEG 1** MLOCA/4 3.55E-06 Lognormal 10 -------

Calculation No. MDN-000-999-2008-0151 Rev: 001 Plant: WBN Unit 0 Page: 48

| Table 3 - Initiating Event Prior and Posterior Distributions |                                    |                  |                   |              |                 |                   |              |                 |
|--------------------------------------------------------------|------------------------------------|------------------|-------------------|--------------|-----------------|-------------------|--------------|-----------------|
|                                                              |                                    |                  |                   | Prior        |                 |                   | Posterior    |                 |
| Initiator<br>Designator                                      | Initiator Description              | Variable<br>Name | Mean<br>Frequency | Distribution | Error<br>Factor | Mean<br>Frequency | Distribution | Error<br>Factor |
| %2MLOCA-CL2                                                  | MLOCA ON COLD LEG 2                | MLOCA/4          | 3.55E-06          | Lognormal    | 10              |                   |              |                 |
| %2MLOCA-CL3                                                  | MLOCA ON COLD LEG 3                | MLOCA/4          | 3.55E-06          | Lognormal    | 10              |                   |              |                 |
| %2MLOCA-CL4                                                  | MLOCA ON COLD LEG 4                | MLOCA/4          | 3.55E-06          | Lognormal    | 10              |                   |              |                 |
| %2MSIV                                                       | Inadvertent Closure of 1 MSIV      | MSIV             | 1.32E-01          | Lognormal    | 1.4             |                   |              |                 |
| %2MSVO                                                       | Steam Generator PORV Fails<br>Open | MSVO             | 1.65E-03          | Lognormal    | 1.4             |                   |              |                 |
| %2PLERCW                                                     | Partial Loss of ERCW UNIT 1        |                  |                   |              |                 | 3.26E-03          |              |                 |
| %2PLMFW                                                      | Partial Loss of Main<br>Feedwater  | PLMFW            | 1.35E-01          | Lognormal    | 1.4             | 1.29E-01          | Lognormal    | 1.4             |
| %2RTIE                                                       | Reactor Trip                       | RTIE             | 3.20E-01          | Lognormal    | 1.4             | 3.27E-01          | Lognormal    | 1.38            |
| %2SGTRSG1                                                    | RUPTURED STEAM<br>GENERATOR IS SG1 | SGTR/4           | 8.85E-04          | Lognormal    | 8.4             |                   |              |                 |
| %2SGTRSG2                                                    | RUPTURED STEAM<br>GENERATOR IS SG2 | SGTR/4           | 8.85E-04          | Lognormal    | 8.4             |                   |              |                 |
| %2SGTRSG3                                                    | RUPTURED STEAM<br>GENERATOR IS SG3 | SGTR/4           | 8.85E-04          | Lognormal    | 8.4             |                   |              |                 |
| %2SGTRSG4                                                    | RUPTURED STEAM<br>GENERATOR IS SG4 | SGTR/4           | 8.85E-04          | Lognormal    | 8.4             |                   |              |                 |
| %2SLOCA-CL1                                                  | SLOCA ON COLD LEG 1                | SLOCAN/4         | 1.29E-04          | Lognormal    | 8.4             |                   |              |                 |

Calculation No. MDN-000-999-2008-0151 Rev: 001 Plant: WBN Unit 0

Subject:

WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY

Page: 49

| Table 3 - Initiating Event Prior and Posterior Distributions |                                              |                  |                   |              |                 |                   |              |                 |
|--------------------------------------------------------------|----------------------------------------------|------------------|-------------------|--------------|-----------------|-------------------|--------------|-----------------|
|                                                              |                                              |                  |                   | Prior        |                 |                   | Posterior    |                 |
| Initiator<br>Designator                                      | Initiator Description                        | Variable<br>Name | Mean<br>Frequency | Distribution | Error<br>Factor | Mean<br>Frequency | Distribution | Error<br>Factor |
| %2SLOCA-CL2                                                  | SLOCA ON COLD LEG 2                          | SLOCAN/4         | 1.29E-04          | Lognormal    | 8.4             |                   |              |                 |
| %2SLOCA-CL3                                                  | SLOCA ON COLD LEG 3                          | SLOCAN/4         | 1.29E-04          | Lognormal    | 8.4             |                   |              |                 |
| %2SLOCA-CL4                                                  | SLOCA ON COLD LEG 4                          | SLOCAN/4         | 1.29E-04          | Lognormal    | 8.4             |                   |              |                 |
| %2SLOCAL                                                     | Small LOCA Stuck Open Safety<br>Relief Valve | SLOCAL           | 2.88E-03          | Lognormal    | 8.4             |                   |              |                 |
| %2SLOCAV                                                     | VERY SMALL LOCA INITIATING<br>EVENT          | SLOCAV           | 3.82E-03          | Lognormal    | 8.4             |                   |              |                 |
| %2SSBI-1                                                     | SG1 IS THE FAULTED SG                        | SLBIC/4          | 2.50E-04          | Lognormal    | 31.62           |                   |              |                 |
| %2SSBI-2                                                     | SG2 IS THE FAULTED SG                        | SLBIC/4          | 2.50E-04          | Lognormal    | 31.62           |                   |              |                 |
| %2SSBI-3                                                     | SG3 IS THE FAULTED SG                        | SLBIC/4          | 2.50E-04          | Lognormal    | 31.62           |                   |              |                 |
| %2SSBI-4                                                     | SG4 IS THE FAULTED SG                        | SLBIC/4          | 2.50E-04          | Lognormal    | 31.62           |                   |              |                 |
| %2SSBO-1                                                     | SECONDARY BREAK OUTSIDE<br>CONTAINMENT SG 1  | SLBOC/4          | 2.50E-03          | Lognormal    | 1.84            |                   |              |                 |
| %2SSBO-2                                                     | SECONDARY BREAK OUTSIDE<br>CONTAINMENT SG 2  | SLBOC/4          | 2.50E-03          | Lognormal    | 1.84            |                   |              |                 |
| %2SSBO-3                                                     | SECONDARY BREAK OUTSIDE<br>CONTAINMENT SG 3  | SLBOC/4          | 2.50E-03          | Lognormal    | 1.84            |                   |              |                 |
| %2SSBO-4                                                     | SECONDARY BREAK OUTSIDE<br>CONTAINMENT SG 4  | SLBOC/4          | 2.50E-03          | Lognormal    | 1.84            |                   |              |                 |

| Calculation No | . MDN-000-999-2008-0151  | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>50</b> |
|----------------|--------------------------|-----------------|-------------------|-----------------|
| Subject:       | WBN PROBABILISTIC RISK A | SSESSME         | NT – SUMMARY      |                 |

|                         |                              |                  |                   | Prior        |                 |                   | Posterior    |                 |
|-------------------------|------------------------------|------------------|-------------------|--------------|-----------------|-------------------|--------------|-----------------|
| Initiator<br>Designator | Initiator Description        | Variable<br>Name | Mean<br>Frequency | Distribution | Error<br>Factor | Mean<br>Frequency | Distribution | Error<br>Factor |
| %2TLMFW                 | Total Loss of Main Feedwater | TLMFW            | 9.59E-02          | Lognormal    | 3.6             | 1.10E-01          | Lognormal    | 2.74            |
| %2TTIE                  | Turbine Trip                 | TTIE             | 2.04E-01          | Lognormal    | 1.4             | 2.41E-01          | Lognormal    | 1.35            |

| Calculation No. MDN-000-999-2008-0151 | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>51</b> |
|---------------------------------------|-----------------|-------------------|-----------------|
|                                       |                 |                   |                 |

Subject:

| Initiating<br>Event | Description                             | WBN PRA<br>CAFTA<br>Revision 0 | WBN PRA<br>CAFTA<br>Revision 1 | Percentage<br>Change |  |
|---------------------|-----------------------------------------|--------------------------------|--------------------------------|----------------------|--|
| CCSTL               | Total Loss of CCS                       | 2.49E-04                       | 2.49E-04                       | 0%                   |  |
|                     | ISLOCAs, total                          | 9.41E-06                       | 9.41E-06                       | 0%                   |  |
|                     | Flooding, total                         | 2.26E-02                       | 2.26E-02                       | 0%                   |  |
| SLBIC               | Steam Line Break Inside<br>Containment  | 1.00E-03                       | 1.00E-03                       | 0%                   |  |
| ERCW1B              | Partial Loss of ERCW                    | 3.28E-03                       | 3.28E-03                       | 0%                   |  |
| ERCW2A              | Partial Loss of ERCW                    | 3.26E-03                       | 3.26E-03                       | 0%                   |  |
| SLBOC               | Steam Line Break Outside<br>Containment | 1.00E-02                       | 1.00E-02                       | 0%                   |  |
| CCSA                | Loss of CCS Train 1A                    | 7.99E-03                       | 7.99E-03                       | 0%                   |  |
| LVBBx               | Loss of Battery Board x                 | 4.36E-03                       | 4.36E-03                       | 0%                   |  |
| SLOCAN              | Small LOCA Non-Isolable                 | 5.20E-04                       | 5.14E-04                       | -1%                  |  |
| IMSIV               | Inadvertent Closure of all MSIVs        | 1.53E-02                       | 1.53E-02                       | 0%                   |  |
| TLMFW               | Total Loss of Main<br>Feedwater         | 7.01E-02                       | 1.10E-01                       | 57%                  |  |
| EXMFW               | Excessive Main Feedwater                | 3.95E-02                       | 2.93E-02                       | -26%                 |  |
| SLOCAV              | Very Small LOCA Non-<br>Isolable        | 3.88E-03                       | 3.82E-03                       | -2%                  |  |
| ISI                 | Inadvertent Safety Injection            | 1.03E-02                       | 1.65E-03                       | -84%                 |  |
| RTIE                | Reactor Trip                            | 2.85E-01                       | 3.40E-01                       | 19%                  |  |
| SGTR                | Steam Generator Tube<br>Rupture         | 3.54E-03                       | 3.54E-03                       | 0%                   |  |
| MLOCA               | Medium Break LOCA                       | 1.44E-05                       | 1.42E-05                       | -1%                  |  |
| LLOCA               | Large Break LOCA                        | 1.33E-06                       | 1.31E-06                       | -2%                  |  |
| LRCP                | Loss of 1 or More<br>RCS/Primary Flow   | 2.89E-02                       | 3.58E-02                       | 24%                  |  |
| PLMFW               | Partial Loss of Main<br>Feedwater       | 1.46E-01                       | 1.29E-01                       | -12%                 |  |

 Calculation No. MDN-000-999-2008-0151
 Rev: 001
 Plant: WBN Unit 0
 Page: 52

Subject:

WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY

| Initiating<br>Event            | Description                           | WBN PRA<br>CAFTA<br>Revision 0 | WBN PRA<br>CAFTA<br>Revision 1 | Percentage<br>Change |
|--------------------------------|---------------------------------------|--------------------------------|--------------------------------|----------------------|
| LOCV                           | Loss of Condenser Vacuum              | 6.53E-02                       | 6.50E-02                       | 0%                   |
| LOSP-xx                        | Loss of Offsite Power, total          | 2.03E-02                       | 2.03E-02                       | 0%                   |
| MSIV                           | Inadvertent Closure of One<br>MSIV    | 1.97E-02                       | 1.32E-02                       | -33%                 |
| CPEX                           | Core Power Excursion                  | 7.27E-03                       | 3.29E-03                       | -55%                 |
| ELOCA                          | Excessive LOCA                        | 1.00E-07                       | 3.22E-08                       | -68%                 |
| MSVO                           | Steam Generator PORV<br>Fails Open    | 8.55E-04                       | 1.65E-03                       | 93%                  |
| TTIE                           | Turbine Trip                          | 2.32E-01                       | 2.41E-01                       | 4%                   |
| U1_LDxAC                       | Loss of 120V AC Vital<br>Board x      | 4.89E-03                       | 4.89E-03                       | 0%                   |
| ERCWTL                         | Total Loss of ERCW                    | 6.78E-06                       | 6.78E-06                       | 0%                   |
| SLOCAL                         | Stuck Open Safety/Relief<br>Valve     | 2.88E-03                       | 2.88E-03                       | 0%                   |
| TLPCA                          | Total Loss of Plant<br>Compressed Air | 9.81E-03                       | 9.81E-03                       | 0%                   |
| Reference 33,<br>Reference 41, | Table 8-1, Table 9-1<br>Table 7-1     |                                |                                |                      |
| Reference 42,                  | Table 8-2                             |                                |                                |                      |

CAFTA Flooding IE Frequency from model

Revision 4 values from R4 IE Notebook

Rev: 001 Plant: WBN Unit 0 Page

Page: 53

Subject:

|             | Table 5 – Plant Damage States                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PDS         | Description                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| NHD         | Containment is not bypassed. There is no or small leakage from the RCS and it is at a high pressure at the time of core damage. There is no feedwater or auxiliary feedwater to the steam generators and the steam generators are dry at the time of core damage.                                                                                                                                 |  |  |  |  |
| NLD         | Containment is not bypassed. There is a medium or large LOCA from the RCS and it is at low or atmospheric pressure at the time of core damage. There is no feedwater or auxiliary feedwater to the steam generators and the steam generators are dry at the time of core damage.                                                                                                                  |  |  |  |  |
| NHW         | Containment is not bypassed. There is no or small leakage from the RCS and it is at a high pressure at the time of core damage. Feedwater or auxiliary feedwater is being supplied to the steam generators and the steam generator water level is at nominal level at the time of core damage.                                                                                                    |  |  |  |  |
| NLW         | Containment is not bypassed. There is a medium or large LOCA from the RCS and it is at low pressure at the time of core damage. Feedwater or auxiliary feedwater is being supplied to the steam generators and the steam generator water level is at nominal level at the time of core damage.                                                                                                    |  |  |  |  |
| BHD         | The containment is bypassed at the time of core damage (i.e., Steam Generator Tube Rupture (SGTR) or ISLOCA). There is no or small leakage from the RCS and it is at high or intermediate pressure (above the accumulator setpoint) at the time of core damage. There is no feedwater or auxiliary feedwater to the steam generators and the steam generators are dry at the time of core damage. |  |  |  |  |
| BLD         | The containment is bypassed at the time of core damage (i.e., SGTR or ISLOCA). There is a large leakage from the RCS or the RCS has been depressurized and it is at a low pressure at the time of core damage. There is no feedwater or auxiliary feedwater to the steam generators and the steam generators are dry at the time of core damage.                                                  |  |  |  |  |
| BHW         | The containment is bypassed at the time of core damage (i.e., SGTR or ISLOCA). There is no or small leakage from the RCS and it is at high/intermediate pressure at the time of core damage. Feedwater or auxiliary feedwater is being supplied to the steam generators and the steam generators are at nominal level at the time of core damage.                                                 |  |  |  |  |
| BLW         | The containment is bypassed at the time of core damage (i.e., SGTR or ISLOCA). There is large leakage from the RCS or the RCS has been depressurized and it is at a low pressure at the time of core damage. Feedwater or auxiliary feedwater is being supplied to the steam generators and the steam generators are at nominal level at the time of core damage.                                 |  |  |  |  |
| Reference 3 | 4, Table 6.3-1                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |

| Calculation No. MDN-000-999-2008-0151 | Rev: 001 | Plant: WBN Unit 0 |
|---------------------------------------|----------|-------------------|
|---------------------------------------|----------|-------------------|

Subject:

| Group                                | Category                                              | Initiator<br>Designator              | Core Damage |  |
|--------------------------------------|-------------------------------------------------------|--------------------------------------|-------------|--|
| Loss of Coolant                      | 1 Excessive LOCA (reactor vessel failure)             | %1EX                                 | NONE        |  |
|                                      | 2. Large LOCA (> 6-inch diameter)                     | %1LLOCA-                             | LLOCA       |  |
|                                      |                                                       | CL1,2,3,4                            |             |  |
|                                      | 3. Medium LOCA ( $\geq 2$ to $\leq 6$ -inch diameter) | %1MLOCA-<br>CI1.2.3.4                | MLOCA       |  |
|                                      | 4. Small LOCA (non-isolable)                          | %1SLOCA-<br>Cl1,2,3,4                | SLOCA       |  |
|                                      | 5. Small LOCA (isolable)                              | %1SLOCAL                             | SLOCA       |  |
|                                      | 6. Very Small LOCA (non-isolable)                     | %1SLOCAV                             | SLOCAV      |  |
|                                      | 7. Steam Generator Tube Rupture                       | %1SGTRSG1<br>.2.3.4                  | SGTR        |  |
|                                      | 8. Interfacing Systems LOCA — Large and Medium        | %1ISL-<br>IERWSTRHR,<br>%1ISL-IEXxxx | ISLOCA      |  |
|                                      | 9. Interfacing Systems LOCA — Small                   | %1ISL-<br>xxxPMPSEAL                 | ISLOCA      |  |
| Transients                           | 10. Reactor Trips                                     | %1RTIE                               | GTRAN       |  |
|                                      | 11. Core Power Excursion                              | %1CPEX                               | GTRAN       |  |
|                                      | 12. Turbine Trip                                      | %1TTIE                               | GTRAN       |  |
|                                      | 13. Inadvertent Safety Injection                      | %1ISI                                | GTRAN       |  |
|                                      | 14. Total Loss of All Main Feedwater                  | %1TLMFW                              | GTRAN       |  |
|                                      | 15. Partial Loss of Main Feedwater                    | %1PLMFW                              | GTRAN       |  |
|                                      | 16. Loss of Condenser Vacuum                          | %1LOCV                               | GTRAN       |  |
|                                      | 17. Excessive Feedwater                               | %1EXMFW                              | GTRAN       |  |
|                                      | 18. Inadvertent Closure of One MSIV                   | %1MSIV                               | GTRAN       |  |
|                                      | 19. Inadvertent Closure of All MSIVs                  | %1IMSIV                              | GTRAN       |  |
|                                      | 20. Loss of Primary Flow                              | %1LRCP                               | GTRAN       |  |
|                                      | 21. Steam Line Break Outside Containment              | %1SSBO-1,<br>2, 3, 4                 | SSBO        |  |
|                                      | 22. Steam Line Break Inside Containment               | %1SSBI-<br>1.2.3.4                   | SSBI        |  |
|                                      | 23. Inadvertent Opening of Main Steam Relief Valves   | %1MSVO                               | SSBO        |  |
|                                      | 24. Inadvertent Safety Injection                      | %1ISI                                | GTRAN       |  |
| Loss of Support<br>Initiating Events | 25. Loss of Offsite Power                             | %0LOSP-GR,<br>PC, WI                 | GTRAN       |  |
| -                                    | 26. Loss of 1-I Vital AC Instrument Board             | %1LDAAC,                             | GTRAN       |  |
|                                      | 27. Loss of 1-II Vital AC Instrument Board            | %1LDBAC                              | GTRAN       |  |
|                                      | 28. Loss of 1-III Vital AC Instrument Board           | %1LDCAC                              | GTRAN       |  |
|                                      | 29. Loss of 1-IV Vital AC Instrument Board            | %1LDDAC                              | GTRAN       |  |
|                                      | 30. Loss of Vital Battery Board I                     | %1LVBB1                              | GTRAN       |  |
|                                      | 31. Loss of Vital Battery Board II                    | %1LVBB2                              | GTRAN       |  |
|                                      | 32. Total Loss of CCS                                 | %1CCS                                | GTRAN       |  |
|                                      | 33. Loss of CCS Train A                               | %1CCS1A                              | GTRAN       |  |
|                                      | 34 Total Loss of ERCW                                 | %0TERCW                              | GTRAN       |  |

| Calculation N                                        | o. <b>MDN-000-999-2008-0151</b> | Rev: 001 | Plant: WBN Unit 0 | Page: 55 |
|------------------------------------------------------|---------------------------------|----------|-------------------|----------|
| Subject: WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY |                                 |          |                   |          |

|       |                                        | . ooquonoo Evon         |                           |
|-------|----------------------------------------|-------------------------|---------------------------|
| Group | Category                               | Initiator<br>Designator | Core Damage<br>Event Tree |
|       | 35. Loss of ERCW to Unit 1             | %1PLERCW                | GTRAN                     |
|       | 36. Total Loss of Plant Compressed Air | %0TLPCA                 | GTRAN                     |

| Calculation No | . MDN-000-999-2008-0151   | Rev: 001 | Plant: WBN Unit 0 | Page: <b>56</b> |
|----------------|---------------------------|----------|-------------------|-----------------|
| Subject:       | WBN PROBABILISTIC RISK AS | SSESSME  | NT – SUMMARY      |                 |

| Table 7 Success Criteria for LLOCA |                       |                                              |                                              |                                                                                |  |
|------------------------------------|-----------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------|--|
| Path Name                          | ACC                   | LP13                                         | LPR3                                         | LPH                                                                            |  |
| Mission Time                       | N/A                   | < 1 hour                                     | > 23 hours                                   | 24 hours                                                                       |  |
| LLOCA-001                          | 3 of 3 to intact legs | 1 of 2 RHR<br>pumps to 3 of 3<br>intact legs | 1 of 2 RHR<br>pumps to 1 of 2<br>intact legs | 1 of 2 RHR<br>pumps to 2 of 4<br>legs and 1 of 2<br>SI pumps to 2 of<br>4 legs |  |
| Reference 35,                      | Table 7.2-1           | <b>.</b>                                     |                                              | · · · · · · · · · · · · · · · · · · ·                                          |  |

| Calculation No | . MDN-000-999-2008-0151  | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>57</b> |
|----------------|--------------------------|-----------------|-------------------|-----------------|
| Subject:       | WBN PROBABILISTIC RISK A | SSESSME         | NT – SUMMARY      |                 |

|              | Table 8 Success Criteria for MLOCA            |                                                              |                                                                                                                         |                                                            |                                                                                         |                         |                                       |
|--------------|-----------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------|---------------------------------------|
| Path Name    | CVCS                                          | SI                                                           | HPR                                                                                                                     | AFW                                                        | AFW1                                                                                    | LPI                     | LPR                                   |
|              | < 1 hour <sup>1</sup>                         | < 1 hour <sup>1</sup>                                        | > 23 hours <sup>1</sup>                                                                                                 |                                                            |                                                                                         | 1 hour <sup>1</sup>     | 23 hours <sup>1</sup>                 |
| Mission Time | 6-16 hours <sup>2</sup>                       | 6-18 hours <sup>2</sup>                                      | 8-18 hours <sup>2</sup>                                                                                                 | 24 hours                                                   | N/A                                                                                     | 7-19 hours <sup>2</sup> | 5-17 hours <sup>2</sup>               |
| MLOCA-001    | 1 of 2 CVCS<br>pumps to 3 of<br>3 intact legs | N/A                                                          | 1 of 2 CVCS<br>pumps to 3 of 3<br>intact legs<br>supported by 1<br>of 2 RHR<br>pumps taking<br>suction from the<br>sump | N/A                                                        | N/A                                                                                     | N/A                     | N/A                                   |
| MLOCA-002    | 1 of 2 CVCS<br>pumps to 3 of<br>3 intact legs | N/A                                                          | FAILED                                                                                                                  | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 SG | Open 1 SG<br>PORV or 1<br>bank of steam<br>dumps within<br>15 minutes of<br>HPR failure | N/A                     | 1 of 2 RHR<br>pumps to 1 of 2<br>legs |
| MLOCA-006    | FAILED                                        | 1 of 2 Safety<br>Injection pumps<br>to 3 of 3 intact<br>legs | 1 of 2 SI pumps<br>to 3 of 3 intact<br>legs supported<br>by 1 of 2 RHR<br>pumps taking<br>suction from the<br>sump      | N/A                                                        | N/A                                                                                     | N/A                     | N/A                                   |

| Calculation No. MDN-000-999-2008-0151 | Rev: 001 | Plant: WBN Unit 0 | Page: <b>58</b> |
|---------------------------------------|----------|-------------------|-----------------|
|---------------------------------------|----------|-------------------|-----------------|

| Path Name    | CVCS                    | SI                                                           | HPR                     | AFW                                                        | AFW1                                                                                    | LPI                                          | LPR                                   |
|--------------|-------------------------|--------------------------------------------------------------|-------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|
|              | < 1 hour <sup>1</sup>   | < 1 hour <sup>1</sup>                                        | > 23 hours <sup>1</sup> |                                                            |                                                                                         | 1 hour <sup>1</sup>                          | 23 hours <sup>1</sup>                 |
| Mission Time | 6-16 hours <sup>2</sup> | 6-18 hours <sup>2</sup>                                      | 8-18 hours <sup>2</sup> | 24 hours                                                   | N/A                                                                                     | 7-19 hours <sup>2</sup>                      | 5-17 hours <sup>2</sup>               |
| MLOCA-007    | FAILED                  | 1 of 2 Safety<br>Injection pumps<br>to 3 of 3 intact<br>legs | FAILED                  | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 SG | Open 1 SG<br>PORV or 1<br>bank of steam<br>dumps within<br>15 minutes of<br>HPR failure | N/A                                          | 1 of 2 RHR<br>pumps to 1 of 2<br>legs |
|              | FAII FD                 | FAILED                                                       | N/A                     | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 SG | Open 1 SG<br>PORV or 1<br>bank of steam<br>dumps within<br>15 minutes of<br>initiator   | 1 of 2 RHR<br>pumps to 3 of 3<br>intact legs | 1 of 2 RHR<br>pumps to 1 of 2<br>legs |

| Calculation | No. <b>MDN-000-999-2008-0151</b> | Rev: 001 | Plant: WBN Unit 0 | Page: 59 |
|-------------|----------------------------------|----------|-------------------|----------|
| Subject:    | WBN PROBABILISTIC RISK           | ASSESSME | NT – SUMMARY      |          |

| Path Name    | CVCS                                                   | SI                    | AFW                                                  | AFW2 | BÉ            | HPR                                                                                                                                    | AFW3                                                                                                | LPI                      | LPR                                         | LTHR          | MUSL                   |
|--------------|--------------------------------------------------------|-----------------------|------------------------------------------------------|------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------|---------------|------------------------|
|              | < 1 hour <sup>1</sup> < 1 hour <sup>1</sup>            |                       |                                                      |      | al set 25 (). | > 23<br>hours <sup>1</sup>                                                                                                             |                                                                                                     | < 1<br>hour <sup>1</sup> | > 23<br>hours <sup>1</sup>                  |               |                        |
| Mission Time | 15<br>hours <sup>2</sup>                               | 14 hours <sup>2</sup> | 13 hours                                             | N/A  | N/A           | 9-10<br>hours <sup>2</sup>                                                                                                             | N/A                                                                                                 | 5<br>hours <sup>2</sup>  | 19<br>hours <sup>2</sup>                    | 11<br>hours   | 24 hours               |
| SLOCA-001    | 1 of 2<br>CVCS<br>pumps to<br>3 of 3<br>intact<br>legs | N/A                   | 1 of 2 MD AFW pumps or 1 of 1 TD AFW<br>pump to 1 SG | N/A  | N/A           | 1 of 2<br>CVCS<br>pumps to<br>3 of 3<br>intact legs<br>supported<br>by 1 of 2<br>RHR<br>pumps<br>taking<br>suction<br>from the<br>sump | N/A                                                                                                 | N/A                      | N/A                                         | CST<br>refill | N/A                    |
| SLOCA-003    | 1 of 2<br>CVCS<br>pumps to<br>3 of 3<br>intact<br>legs | N/A                   | 1 of 2 MD AFW pumps or 1 of 1 TD AFW<br>pump to 1 SG | N/A  | N/A           | FAILED                                                                                                                                 | Open 1<br>SG<br>PORV or<br>1 bank<br>of steam<br>dumps<br>within 30<br>minutes<br>of HPR<br>failure | N/A                      | 1 of 2<br>RHR<br>pumps<br>to 1 of<br>2 legs | CST<br>refill | N/A                    |
| SLOCA-006    | 1 of 2<br>CVCS<br>pumps to<br>3 of 3<br>intact<br>legs | N/A                   | 1 of 2 MD AFW pumps or 1 of 1 TD AFW pump to 1 SG    | N/A  | N/A           | FAILED                                                                                                                                 | FAILED                                                                                              | N/A                      | N/A                                         | N/A           | Transfer<br>Successful |

| Calculation I | No. <b>MDN-000-999-2008-0151</b> | Rev: 001 | Plant: WBN Unit 0 | Page: 60 |
|---------------|----------------------------------|----------|-------------------|----------|
| Cubicat       | MON DOODADILICTIC DICK A         | OOFOOME  |                   | -        |

|              |                                                        |                                                                       | Table 9 Succe                                        | ess Crite | eria for S                                                                                      | SLOCA                                                                                                                                  |                                                        |                          |                                             |               |          |
|--------------|--------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------|---------------------------------------------|---------------|----------|
| Path Name    | CVCS                                                   | SI                                                                    | AFW                                                  | AFW2      | BF                                                                                              | HPR                                                                                                                                    | AFW3                                                   | <u> </u>                 | LPR                                         | LTHR          | MUSL     |
|              | < 1 hour <sup>1</sup>                                  | < 1 hour <sup>1</sup>                                                 |                                                      |           |                                                                                                 | > 23<br>hours <sup>1</sup>                                                                                                             |                                                        | < 1<br>hour <sup>1</sup> | > 23<br>hours <sup>1</sup>                  |               |          |
| Mission Time | 15<br>hours <sup>2</sup>                               | 14 hours <sup>2</sup>                                                 | 13 hours                                             | N/A       | N/A                                                                                             | 9-10<br>hours <sup>2</sup>                                                                                                             | N/A                                                    | 5<br>hours <sup>2</sup>  | 19<br>hours <sup>2</sup>                    | 11<br>hours   | 24 hours |
| SLOCA-008    | 1 of 2<br>CVCS<br>pumps to<br>3 of 3<br>intact<br>legs | N/A                                                                   | FAILED                                               | N/A       | 1 of 2<br>CVCS<br>pumps<br>and open<br>1 PZR<br>PORV<br>within 30<br>minutes<br>of 26%<br>SG WR | 1 of 2<br>CVCS<br>pumps to<br>3 of 3<br>intact legs<br>supported<br>by 1 of 2<br>RHR<br>pumps<br>taking<br>suction<br>from the<br>sump | N/A                                                    | N/A                      | N/A                                         | N/A           | N/A      |
| SLOCA-011    | FAILED                                                 | 1 of 2<br>Safety<br>Injection<br>pumps to<br>3 of 3<br>intact<br>legs | 1 of 2 MD AFW pumps or 1 of 1 TD AFW<br>pump to 1 SG | N/A       | N/A                                                                                             | 1 of 2 Si<br>pumps to<br>3 of 3<br>intact legs<br>supported<br>by 1 of 2<br>RHR<br>pumps<br>taking<br>suction<br>from the<br>sump      | N/A                                                    | N/A                      | N/A                                         | CST<br>refill | N/A      |
| SLOCA-013    | FAILED                                                 | 1 of 2<br>Safety<br>Injection<br>pumps to<br>3 of 3<br>intact         | 1 of 2 MD AFW pumps or 1 of 1 TD AFW<br>pump to 1 SG | N/A       | N/A                                                                                             | FAILED                                                                                                                                 | Open 1<br>SG<br>PORV or<br>1 bank<br>of steam<br>dumps | N/A                      | 1 of 2<br>RHR<br>pumps<br>to 1 of<br>2 legs | CST<br>refill | N/A      |

| Calculation No. MDN-000-999-2008-0151 | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>61</b> |
|---------------------------------------|-----------------|-------------------|-----------------|
|                                       |                 |                   |                 |

| Path Name    | CVCS                     | SI                                                                    | AFW                                                  | AFW2                                                                           | BF                                                                                                              | HPR                                                                                                                               | AFW3                                      | LPI                                                   | LPR                                         | LTHR          | MUSL                   |
|--------------|--------------------------|-----------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|---------------------------------------------|---------------|------------------------|
|              | < 1 hour <sup>1</sup>    | < 1 hour <sup>1</sup>                                                 |                                                      |                                                                                |                                                                                                                 | > 23<br>hours <sup>1</sup>                                                                                                        |                                           | < 1<br>hour <sup>1</sup>                              | > 23<br>hours <sup>1</sup>                  |               |                        |
| Mission Time | 15<br>hours <sup>2</sup> | 14 hours <sup>2</sup>                                                 | 13 hours                                             | N/A                                                                            | N/A                                                                                                             | 9-10<br>hours <sup>2</sup>                                                                                                        | N/A                                       | 5<br>hours <sup>2</sup>                               | 19<br>hours <sup>2</sup>                    | 11<br>hours   | 24 hours               |
|              |                          | legs                                                                  |                                                      |                                                                                | 1                                                                                                               |                                                                                                                                   | within 30<br>minutes<br>of HPR<br>failure |                                                       |                                             |               |                        |
| SLOCA-016    | FAILED                   | 1 of 2<br>Safety<br>Injection<br>pumps to<br>3 of 3<br>intact<br>legs | 1 of 2 MD AFW pumps or 1 of 1 TD AFW<br>pump to 1 SG | N/A                                                                            | N/A                                                                                                             | FAILED                                                                                                                            | FAILED                                    | N/A                                                   | N/A                                         | N/A           | Transfer<br>Successful |
| SLOCA-018    | FAILED                   | 1 of 2<br>Safety<br>Injection<br>pumps to<br>3 of 3<br>intact<br>legs | FAILED                                               | N/A                                                                            | 1 of 2<br>Safety<br>Injection<br>pumps<br>and open<br>2 PZR<br>PORVs<br>within 25<br>minutes<br>of 26%<br>SG WR | 1 of 2 SI<br>pumps to<br>3 of 3<br>intact legs<br>supported<br>by 1 of 2<br>RHR<br>pumps<br>taking<br>suction<br>from the<br>sump | N/A                                       | N/A                                                   | N/A                                         | N/A           | N/A                    |
| SLOCA-021    | FAILED                   | FAILED                                                                | 1 of 2 MD AFW pumps or 1 of 1 TD AFW<br>pump to 1 SG | Open 1<br>SG<br>PORV<br>or 1 bank<br>of steam<br>dumps<br>within 60<br>minutos | N/A                                                                                                             | N/A                                                                                                                               | N/A                                       | 1 of 2<br>RHR<br>pumps<br>to 3 of<br>3 intact<br>legs | 1 of 2<br>RHR<br>pumps<br>to 1 of<br>2 legs | CST<br>refill | N/A                    |

| Calculation No. MDN-000-999-2008-0151 | Rev: 001 | Plant: WBN Unit 0 | Page: <b>62</b> |  |  |  |  |  |  |  |
|---------------------------------------|----------|-------------------|-----------------|--|--|--|--|--|--|--|
|                                       |          |                   |                 |  |  |  |  |  |  |  |

| Path Name    | CVCS                                              | SI                    | AFW       | AFW2            | BF     | HPR                        | AFW3                        | LPI                      | LPR                        | LTHR        | MUSL     |
|--------------|---------------------------------------------------|-----------------------|-----------|-----------------|--------|----------------------------|-----------------------------|--------------------------|----------------------------|-------------|----------|
| Mission Time | < 1 hour <sup>1</sup><br>15<br>hours <sup>2</sup> | < 1 hour <sup>1</sup> | ndi Kiran |                 | n ning | > 23<br>hours <sup>1</sup> |                             | < 1<br>hour <sup>1</sup> | > 23<br>hours <sup>1</sup> |             |          |
|              |                                                   | 14 hours <sup>2</sup> | 13 hours  | N/A             | N/A    | 9-10<br>hours <sup>2</sup> | N/A                         | 5<br>hours <sup>2</sup>  | 19<br>hours <sup>2</sup>   | 11<br>hours | 24 hours |
| ****         |                                                   |                       |           | of<br>initiator |        |                            | <u>ANAN MUSICAL MALA, A</u> |                          |                            |             |          |
|              |                                                   |                       |           |                 |        |                            |                             |                          |                            |             |          |

| Calculation | No. <b>MDN-000-999-2008-0151</b> | Rev: 001 | Plant: WBN Unit 0 | Page: 63 |
|-------------|----------------------------------|----------|-------------------|----------|
| Subject:    | WBN PROBABILISTIC RISK           | ASSESSME | NT – SUMMARY      |          |

|              | AFW .                                                   | LTHR       | CVCS                                   | SI                                                    | BF                                                                                 | HPR                                                                                                         |
|--------------|---------------------------------------------------------|------------|----------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Mission Time | 15 hours                                                | 9 hours    | 3.5 hours <sup>1</sup>                 | 18 hours                                              | N/A                                                                                | 6-10 hours <sup>1</sup>                                                                                     |
| SLOCAV-001   | 1 of 2 MD AFW<br>pumps or 1 of 1 TD<br>AFW pump to 1 SG | CST refill | N/A                                    | N/A                                                   | N/A                                                                                | N/A                                                                                                         |
| SLOCAV-002   | 1 of 2 MD AFW<br>pumps or 1 of 1 TD<br>AFW pump to 1 SG | FAILED     | 1 of 2 CVCS<br>pumps to 4 of 4<br>legs | N/A                                                   | 1 of 2 CVCS pumps, 1<br>PZR PORV within 15<br>minutes of 26% SG<br>WR              | 1 of 2 CVCS pumps to 4 of 4<br>intact legs supported by 1 of<br>2 RHR pumps taking suction<br>from the sump |
| SLOCAV-005   | 1 of 2 MD AFW<br>pumps or 1 of 1 TD<br>AFW pump to 1 SG | FAILED     | FAILED                                 | 1 of 2 Safety<br>Injection<br>pumps to 4 of 4<br>legs | 1 of 2 Safety Injection<br>pumps, 2 PZR PORVs<br>within 10 minutes of<br>26% SG WR | 1 of 2 SI pumps to 4 of 4<br>intact legs supported by 1 of<br>2 RHR pumps taking suction<br>from the sump   |
| SLOCAV-009   | FAILED                                                  | N/A        | 1 of 2 CVCS<br>pumps to 4 of 4<br>legs | N/A                                                   | 1 of 2 CVCS pumps, 1<br>PZR PORV within 15<br>minutes of 26% SG<br>WR              | 1 of 2 CVCS pumps to 4 of 4<br>intact legs supported by 1 of<br>2 RHR pumps taking suction<br>from the sump |
| SLOCAV-012   | FAILED                                                  | N/A        | FAILED                                 | 1 of 2 Safety<br>Injection<br>pumps to 4 of 4<br>legs | 1 of 2 Safety Injection<br>pumps, 2 PZR PORVs<br>within 10 minutes of<br>26% SG WR | 1 of 2 SI pumps to 4 of 4<br>intact legs supported by 1 of<br>2 RHR pumps taking suction<br>from the sump   |
|              |                                                         |            | 1                                      |                                                       |                                                                                    |                                                                                                             |

| Calculation No. | MDN-000-999-2008-0151    | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: 64 | _ |
|-----------------|--------------------------|-----------------|-------------------|----------|---|
| Subject:        | WBN PROBABILISTIC RISK A | SSESSME         | NT – SUMMARY      | •        |   |

|              |                                           |         |                                                                  | Table 11                                                                 | Success C                                      | riteria f       | or SSB        |                                                                               |                                                                          |                                                                                                                   |
|--------------|-------------------------------------------|---------|------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|-----------------|---------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Path Name    | CVCS                                      | SI      | AFW                                                              | ISOLI                                                                    | SSI                                            | PR              | LTHR          | RSI                                                                           | BF                                                                       | HPR                                                                                                               |
| Mission Time | < 1 hour                                  | <1 hour | 8 hours                                                          | N/A                                                                      | N/A                                            | N/A             | 16<br>hours   | N/A                                                                           | N/A                                                                      | > 23 hours                                                                                                        |
| SSBI-001     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4 legs | N/A     | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG    | Successful<br>Isolation of<br>faulted SG OF 3<br>of 4 non-faulted<br>SGs | Within 1 hour<br>of pressurizer<br>level 32 ft | PORV<br>reseats | CST<br>refill | N/A                                                                           | N/A                                                                      | N/A                                                                                                               |
| SSBI-002     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4 legs | N/A     | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG    | Successful<br>Isolation of<br>faulted SG Or 3<br>of 4 non-faulted<br>SGs | Within 1 hour<br>of pressurizer<br>level 32 ft | PORV<br>reseats | FAILED        | Successful SI<br>system<br>reinitiation within<br>9 hours of CST<br>depletion | 1 of 2 CVCS<br>pumps, 1 PZR<br>PORV within 15<br>minutes of 26%<br>SG WR | 1 of 2 CVCS pumps<br>to 4 of 4 intact legs<br>supported by 1 of 2<br>RHR pumps taking<br>suction from the<br>sump |
| SSBI-006     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4 legs | N/A     | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG SG | Successful<br>Isolation of<br>faulted SG Or 3<br>of 4 non-faulted<br>SGs | Within 1 hour<br>of pressurizer<br>level 32 ft | FAILED          | N/A           | Successful SI<br>system<br>reinitiation within<br>9 hours of CST<br>depletion | N/A                                                                      | 1 of 2 CVCS pumps<br>to 4 of 4 intact legs<br>supported by 1 of 2<br>RHR pumps taking<br>suction from the<br>sump |
| SSBI-009     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4 legs | N/A     | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG    | Successful<br>Isolation of<br>faulted SG Or 3<br>of 4 non-faulted<br>SGs | FAILED                                         | N/A             | N/A           | N/A                                                                           | N/A                                                                      | 1 of 2 CVCS pumps<br>to 4 of 4 intact legs<br>supported by 1 of 2<br>RHR pumps taking<br>suction from the<br>sump |
| SSBI-011     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4 legs | N/A     | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG    | FAILED                                                                   | N/A                                            | N/A             | CST<br>refill | N/A                                                                           | N/A                                                                      | N/A                                                                                                               |

Rev: 001 Plant: WBN Unit 0 Page: 65

|              | Table 11 – Success Criteria for SSBI      |                                      |                                                               |                                                                          |                                                |                 |               |                                                                               |                                                                                          |                                                                                                                   |
|--------------|-------------------------------------------|--------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|-----------------|---------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Path Name    | CVCS                                      | SI                                   | AFW                                                           | ISOLI                                                                    | SSI                                            | PR              | LTHR          | RSI                                                                           | BF                                                                                       | HPR                                                                                                               |
| Mission Time | < 1 hour                                  | <1 hour                              | 8 hours                                                       | N/A                                                                      | N/A                                            | N/A             | 16<br>hours   | N/A                                                                           | N/A                                                                                      | > 23 hours                                                                                                        |
| SSBI-012     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4 legs | N/A                                  | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | FAILED                                                                   | N/A                                            | N/A             | FAILED        | N/A                                                                           | 1 of 2 CVCS<br>pumps, 1 PZR<br>PORV within 15<br>minutes of 26%<br>SG WR                 | 1 of 2 CVCS pumps<br>to 4 of 4 intact legs<br>supported by 1 of 2<br>RHR pumps taking<br>suction from the<br>sump |
| SSBI-015     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4 legs | N/A                                  | FAILED                                                        | FAILED                                                                   | N/A                                            | N/A             | N/A           | N/A                                                                           | 1 of 2 CVCS<br>pumps, 1 PZR<br>PORV within 15<br>minutes of 26%<br>SG WR                 | 1 of 2 CVCS pumps<br>to 4 of 4 intact legs<br>supported by 1 of 2<br>RHR pumps taking<br>suction from the<br>sump |
| SSBI-018     | FAILED                                    | 1 of 2 SI<br>pumps to<br>4 of 4 legs | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | Successful<br>Isolation of<br>faulted SG Or 3<br>of 4 non-faulted<br>SGs | Within 1 hour<br>of pressurizer<br>level 32 ft | PORV<br>reseats | CST<br>refill | N/A                                                                           | N/A                                                                                      | N/A                                                                                                               |
| SSBI-019     | FAILED                                    | 1 of 2 SI<br>pumps to<br>4 of 4 legs | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | Successful<br>Isolation of<br>faulted SG Or 3<br>of 4 non-faulted<br>SGs | Within 1 hour<br>of pressurizer<br>level 32 ft | PORV<br>reseats | FAILED        | Successful SI<br>system<br>reinitiation within<br>9 hours of CST<br>depletion | 1 of 2 Safety<br>Injection pumps,<br>2 PZR PORVs<br>within 30<br>minutes of 26%<br>SG WR | 1 of 2 SI pumps to 4<br>of 4 intact legs<br>supported by 1 of 2<br>RHR pumps taking<br>suction from the<br>sump   |
| SSBI-023     | FAILED                                    | 1 of 2 SI<br>pumps to<br>4 of 4 legs | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | Successful<br>Isolation of<br>faulted SG Or 3<br>of 4 non-faulted<br>SGs | Within 1 hour<br>of pressurizer<br>level 32 ft | FAILED          | N/A           | Successful SI<br>system<br>reinitiation within<br>9 hours of CST<br>depletion | N/A                                                                                      | 1 of 2 SI pumps to 4<br>of 4 intact legs<br>supported by 1 of 2<br>RHR pumps taking<br>suction from the<br>sump   |

| Calculation No. MDN-000-999-2008-0151 | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>66</b> |
|---------------------------------------|-----------------|-------------------|-----------------|
|                                       |                 |                   | 1               |

|               |                           |                                      |                                                               | Table 11                                                                 | Success C | <b>riteria</b> 1 | for SSB       |     |                                                                                          |                                                                                                                 |
|---------------|---------------------------|--------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|-----------|------------------|---------------|-----|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Path Name     | CVCS                      | SI                                   | AFW                                                           | ISOLI                                                                    | SSI       | PR               | LTHR          | RSI | BF                                                                                       | HPR                                                                                                             |
| Mission Time  | < 1 hour                  | <1 hour                              | 8 hours                                                       | N/A                                                                      | N/A       | N/A              | 16<br>hours   |     | N/A                                                                                      | > 23 hours                                                                                                      |
| SSBI-026      | FAILED                    | 1 of 2 SI<br>pumps to<br>4 of 4 legs | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | Successful<br>Isolation of<br>faulted SG Or 3<br>of 4 non-faulted<br>SGs | FAILED    | N/A              | N/A           | N/A | N/A                                                                                      | 1 of 2 SI pumps to 4<br>of 4 intact legs<br>supported by 1 of 2<br>RHR pumps taking<br>suction from the<br>sump |
| SSBI-028      | FAILED                    | 1 of 2 SI<br>pumps to<br>4 of 4 legs | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | FAILED                                                                   | N/A       | N/A              | CST<br>refill | N/A | N/A                                                                                      | N/A                                                                                                             |
| SSBI-029      | FAILED                    | 1 of 2 SI<br>pumps to<br>4 of 4 legs | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | FAILED                                                                   | N/A       | N/A              | FAILED        | N/A | 1 of 2 Safety<br>Injection pumps,<br>2 PZR PORVs<br>within 30<br>minutes of 26%<br>SG WR | 1 of 2 SI pumps to 4<br>of 4 intact legs<br>supported by 1 of 2<br>RHR pumps taking<br>suction from the<br>sump |
| SSBI-032      | FAILED                    | 1 of 2 SI<br>pumps to<br>4 of 4 legs | FAILED                                                        | FAILED                                                                   | N/A       | N/A              | N/A           | N/A | 1 of 2 Safety<br>Injection pumps,<br>2 PZR PORVs<br>within 30<br>minutes of 26%<br>SG WR | 1 of 2 SI pumps to 4<br>of 4 intact legs<br>supported by 1 of 2<br>RHR pumps taking<br>suction from the<br>sump |
| SSBI-035      | FAILED                    | FAILED                               | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | Successful<br>Isolation of<br>faulted SG Or 3<br>of 4 non-faulted<br>SGs | N/A       | N/A              | CST<br>refill | N/A | N/A                                                                                      | N/A                                                                                                             |
| Reference 35, | Reference 35, Table 7.6-1 |                                      |                                                               |                                                                          |           |                  |               |     |                                                                                          |                                                                                                                 |

| Calculation No. MDN-000-999-2008-0151 | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>67</b> |
|---------------------------------------|-----------------|-------------------|-----------------|
|                                       |                 |                   | 1               |

|                 | Table 12 – Success Criteria for SSBO   |         |                                                               |                                                   |                                                |                 |            |                                                                               |                                                                             |                                                                                                                         |
|-----------------|----------------------------------------|---------|---------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|-----------------|------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Path Name       | CVCS                                   | SI      | AFW                                                           | ISOLO                                             | SSI                                            | PR              | LTHR       | RSI                                                                           | BF                                                                          | HPR                                                                                                                     |
| Mission<br>Time | 6 hours                                | 6 hours | 8 hours                                                       | N/A                                               | N/A                                            | N/A             | 16 hours   | N/A                                                                           | N/A                                                                         | 18 hours                                                                                                                |
| SSBO-001        | 1 of 2 CVCS<br>pumps to 4<br>of 4 legs | N/A     | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | Successful<br>Isolation all<br>non-faulted<br>SGs | Within 1 hour<br>of pressurizer<br>level 32 ft | PORV<br>reseats | CST refill | N/A                                                                           | N/A                                                                         | N/A                                                                                                                     |
| SSBO-002        | 1 of 2 CVCS<br>pumps to 4<br>of 4 legs | N/A     | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | Successful<br>Isolation all<br>non-faulted<br>SGs | Within 1 hour<br>of pressurizer<br>level 32 ft | PORV<br>reseats | FAILED     | Successful SI<br>system<br>reinitiation within<br>9 hours of CST<br>depletion | 1 of 2 CVCS<br>pumps, 1<br>PZR PORV<br>within 15<br>minutes of<br>26% SG WR | 1 of 2 CVCS<br>pumps to 4 of 4<br>intact legs<br>supported by 1<br>of 2 RHR<br>pumps taking<br>suction from<br>the sump |
| SSBO-006        | 1 of 2 CVCS<br>pumps to 4<br>of 4 legs | N/A     | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | Successful<br>Isolation all<br>non-faulted<br>SGs | Within 1 hour<br>of pressurizer<br>level 32 ft | FAILED          | N/A        | Successful SI<br>system<br>reinitiation within<br>9 hours of CST<br>depletion | N/A                                                                         | 1 of 2 CVCS<br>pumps to 4 of 4<br>intact legs<br>supported by 1<br>of 2 RHR<br>pumps taking<br>suction from<br>the sump |
| SSBO-009        | 1 of 2 CVCS<br>pumps to 4<br>of 4 legs | N/A     | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | Successful<br>Isolation all<br>non-faulted<br>SGs | FAILED                                         | N/A             | N/A        | N/A                                                                           | N/A                                                                         | 1 of 2 CVCS<br>pumps to 4 of 4<br>intact legs<br>supported by 1<br>of 2 RHR<br>pumps taking<br>suction from<br>the sump |

| Calculation No. MDN-000-999-2008-0151 | Rev: 001 | Plant: WBN Unit 0 | Page: <b>68</b> |
|---------------------------------------|----------|-------------------|-----------------|
|                                       |          |                   | 1               |

|                 | Table 12 Success Criteria for SSBO     |                                      |                                                               |                                                   |                                                |                 |            |                                                                               |                                                                                             |                                                                                                                         |
|-----------------|----------------------------------------|--------------------------------------|---------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|-----------------|------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Path Name       | cvcs                                   | SI                                   | AFW                                                           | ISOLO                                             | SSI                                            | PR              | LTHR       | RSI                                                                           | BF                                                                                          | HPR                                                                                                                     |
| Mission<br>Time | 6 hours                                | 6 hours                              | 8 hours                                                       | N/A                                               | N/A                                            | N/A             | 16 hours   | N/A                                                                           | N/A                                                                                         | 18 hours                                                                                                                |
| SSBO-011        | 1 of 2 CVCS<br>pumps to 4<br>of 4 legs | N/A                                  | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | FAILED                                            | N/A                                            | N/A             | CST refill | N/A                                                                           | N/A                                                                                         | N/A                                                                                                                     |
| SSBO-012        | 1 of 2 CVCS<br>pumps to 4<br>of 4 legs | N/A                                  | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | FAILED                                            | N/A                                            | N/A             | FAILED     | N/A                                                                           | 1 of 2 CVCS<br>pumps, 1<br>PZR PORV<br>within 15<br>minutes of<br>26% SG WR                 | 1 of 2 CVCS<br>pumps to 4 of 4<br>intact legs<br>supported by 1<br>of 2 RHR<br>pumps taking<br>suction from<br>the sump |
| SSBO-015        | 1 of 2 CVCS<br>pumps to 4<br>of 4 legs | N/A                                  | FAILED                                                        | FAILED                                            | N/A                                            | N/A             | N/A        | N/A                                                                           | 1 of 2 CVCS<br>pumps, 1<br>PZR PORV<br>within 15<br>minutes of<br>26% SG WR                 | 1 of 2 CVCS<br>pumps to 4 of 4<br>intact legs<br>supported by 1<br>of 2 RHR<br>pumps taking<br>suction from<br>the sump |
| SSBO-018        | FAILED                                 | 1 of 2 SI<br>pumps to 4<br>of 4 legs | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | Successful<br>Isolation all<br>non-faulted<br>SGs | Within 1 hour<br>of pressurizer<br>level 32 ft | PORV<br>reseats | CST refill | N/A                                                                           | N/A                                                                                         | N/A                                                                                                                     |
| SSBO-019        | FAILED                                 | 1 of 2 SI<br>pumps to 4<br>of 4 legs | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | Successful<br>Isolation all<br>non-faulted<br>SGs | Within 1 hour<br>of pressurizer<br>level 32 ft | PORV<br>reseats | FAILED     | Successful SI<br>system<br>reinitiation within<br>9 hours of CST<br>depletion | 1 of 2 Safety<br>Injection<br>pumps, 2<br>PZR PORVs<br>within 30<br>minutes of<br>26% SG WR | 1 of 2 SI pumps<br>to 4 of 4 intact<br>legs supported<br>by 1 of 2 RHR<br>pumps taking<br>suction from<br>the sump      |

| Calculation No. MDN-000-999-2008-0151 | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: 69 |
|---------------------------------------|-----------------|-------------------|----------|
|                                       |                 |                   |          |

|                 | Table 12 – Success Criteria for SSBO |                                      |                                                               |                                                   |                                                |        |            |                                                                               |                                                                                             |                                                                                                                    |
|-----------------|--------------------------------------|--------------------------------------|---------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|--------|------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Path Name       | CVCS                                 | SI                                   | AFW                                                           | ISOLO                                             | SSI                                            | PR     | LTHR       | RSI                                                                           | BF                                                                                          | HPR                                                                                                                |
| Mission<br>Time | 6 hours                              | 6 hours                              | 8 hours                                                       | N/A                                               | N/A                                            | N/A    | 16 hours   | N/A                                                                           | N/A                                                                                         | 18 hours                                                                                                           |
| SSBO-023        | FAILED                               | 1 of 2 SI<br>pumps to 4<br>of 4 legs | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | Successful<br>Isolation all<br>non-faulted<br>SGs | Within 1 hour<br>of pressurizer<br>level 32 ft | FAILED | N/A        | Successful SI<br>system<br>reinitiation within<br>9 hours of CST<br>depletion | N/A                                                                                         | 1 of 2 SI pumps<br>to 4 of 4 intact<br>legs supported<br>by 1 of 2 RHR<br>pumps taking<br>suction from<br>the sump |
| SSBO-026        | FAILED                               | 1 of 2 SI<br>pumps to 4<br>of 4 legs | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | Successful<br>Isolation all<br>non-faulted<br>SGs | FAILED                                         | N/A    | N/A        | N/A                                                                           | N/A                                                                                         | 1 of 2 SI pumps<br>to 4 of 4 intact<br>legs supported<br>by 1 of 2 RHR<br>pumps taking<br>suction from<br>the sump |
| SSBO-028        | FAILED                               | 1 of 2 SI<br>pumps to 4<br>of 4 legs | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | FAILED                                            | N/A                                            | N/A    | CST refill | N/A                                                                           | N/A                                                                                         | N/A                                                                                                                |
| SSBO-029        | FAILED                               | 1 of 2 SI<br>pumps to 4<br>of 4 legs | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | FAILED                                            | N/A                                            | N/A    | FAILED     | N/A                                                                           | 1 of 2 Safety<br>Injection<br>pumps, 2<br>PZR PORVs<br>within 30<br>minutes of<br>26% SG WR | 1 of 2 SI pumps<br>to 4 of 4 intact<br>legs supported<br>by 1 of 2 RHR<br>pumps taking<br>suction from<br>the sump |
| SSBO-032        | FAILED                               | 1 of 2 SI<br>pumps to 4<br>of 4 legs | FAILED                                                        | FAILED                                            | N/A                                            | N/A    | N/A        | N/A                                                                           | 1 of 2 Safety<br>Injection<br>pumps, 2<br>PZR PORVs<br>within 30<br>minutes of<br>26% SG WR | 1 of 2 SI pumps<br>to 4 of 4 intact<br>legs supported<br>by 1 of 2 RHR<br>pumps taking<br>suction from<br>the sump |
| Calculation N | No. MDN-000-999-2008-0151 | Rev: 001 | Plant: WBN Unit 0 | Page: <b>70</b> |
|---------------|---------------------------|----------|-------------------|-----------------|
| Subject:      | WBN PROBABILISTIC RISK A  | SSESSME  | NT – SUMMARY      |                 |

| Table 12 Success Criteria for SSBO |             |         |                                                               |                                                   |     |     |            |     |     |          |  |
|------------------------------------|-------------|---------|---------------------------------------------------------------|---------------------------------------------------|-----|-----|------------|-----|-----|----------|--|
| Path Name                          | CVCS        | SI      | AFW                                                           | ISOLO                                             | SSI | PR  | LTHR       | RSI | BF  | HPR      |  |
| Mission<br>Time                    | 6 hours     | 6 hours | 8 hours                                                       | N/A                                               | N/A | N/A | 16 hours   | N/A | N/A | 18 hours |  |
| SSBO-035                           | FAILED      | FAILED  | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | Successful<br>Isolation all<br>non-faulted<br>SGs | N/A | N/A | CST refill | N/A | N/A | N/A      |  |
| Reference 35,                      | Table 7.7-1 | I       |                                                               | I                                                 |     |     | <b>I</b>   |     | L   |          |  |

| Calculation No. MDN-000-999-2008-0151 | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>71</b> |
|---------------------------------------|-----------------|-------------------|-----------------|
|---------------------------------------|-----------------|-------------------|-----------------|

|                                         | Table 13 Success Criteria for GTRAN                     |               |                                        |                                      |                                                                                    |                                                                                                             |  |  |  |  |  |  |
|-----------------------------------------|---------------------------------------------------------|---------------|----------------------------------------|--------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Path Name                               | AFW                                                     | LTHR          | CVCS                                   | SI                                   | BF                                                                                 | HPR                                                                                                         |  |  |  |  |  |  |
| Mission Time                            | 10 hours                                                | 14<br>hours   | < 1 hour                               | < I hour                             | NA                                                                                 | >23 hours                                                                                                   |  |  |  |  |  |  |
| GTRAN-001                               | 1 of 2 MD AFW<br>pumps or 1 of 1 TD<br>AFW pump to 1 SG | CST<br>refill | N/A                                    | N/A                                  | N/A                                                                                | N/A                                                                                                         |  |  |  |  |  |  |
| GTRAN-002                               | 1 of 2 MD AFW<br>pumps or 1 of 1 TD<br>AFW pump to 1 SG | FAILED        | 1 of 2 CVCS<br>pumps to 4 of<br>4 legs | N/A                                  | 1 of 2 CVCS pumps, 1<br>PZR PORV within 10<br>minutes of 26% SG WR                 | 1 of 2 CVCS pumps to 4 of 4<br>intact legs supported by 1 of 2<br>RHR pumps taking suction from<br>the sump |  |  |  |  |  |  |
| GTRAN-005                               | 1 of 2 MD AFW<br>pumps or 1 of 1 TD<br>AFW pump to 1 SG | FAILED        | FAILED                                 | 1 of 2 SI<br>pumps to 4<br>of 4 legs | 1 of 2 Safety Injection<br>pumps, 2 PZR PORVs<br>within 10 minutes of 26%<br>SG WR | 1 of 2 SI pumps to 4 of 4 intact<br>legs supported by 1 of 2 RHR<br>pumps taking suction from the<br>sump   |  |  |  |  |  |  |
| GTRAN-009                               | FAILED                                                  | N/A           | 1 of 2 CVCS<br>pumps to 4 of<br>4 legs | N/A                                  | 1 of 2 CVCS pumps, 1<br>PZR PORV within 10<br>minutes of 26% SG WR                 | 1 of 2 CVCS pumps to 4 of 4<br>intact legs supported by 1 of 2<br>RHR pumps taking suction from<br>the sump |  |  |  |  |  |  |
| GTRAN-012                               | FAILED                                                  | N/A           | N/A                                    | 1 of 2 SI<br>pumps to 4<br>of 4 legs | 1 of 2 Safety Injection<br>pumps, 2 PZR PORVs<br>within 10 minutes of 26%<br>SG WR | 1 of 2 SI pumps to 4 of 4 intact<br>legs supported by 1 of 2 RHR<br>pumps taking suction from the<br>sump   |  |  |  |  |  |  |
| Reference 35.                           | Reference 35 Table 7 8-1                                |               |                                        |                                      |                                                                                    |                                                                                                             |  |  |  |  |  |  |
| · - · - · · · · · · · · · · · · · · · · |                                                         |               |                                        |                                      |                                                                                    |                                                                                                             |  |  |  |  |  |  |

| Calculation N | o. <b>MDN-000-999-2008-0151</b> | Rev: 001 | Plant: WBN Unit 0 | Page: 72 |
|---------------|---------------------------------|----------|-------------------|----------|
| Subject:      | WBN PROBABILISTIC RISK A        | SSESSME  | NT – SUMMARY      | ••••     |

|              | Table 14 Success Criteria for SGTR           |          |                                                                          |                                                                |                                                                                       |     |                                                |                |                                                    |          |               |  |  |
|--------------|----------------------------------------------|----------|--------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|-----|------------------------------------------------|----------------|----------------------------------------------------|----------|---------------|--|--|
| Path Name    | cvcs                                         | SI       | AFW                                                                      | SL                                                             | AFW5                                                                                  | BF  | SSI                                            | RWST           | RHR                                                | RECIRC   | LTHR          |  |  |
| Mission Time | 36 hours                                     | 36 hours | 12 hours                                                                 | N/A                                                            | N/A                                                                                   | N/A | N/A                                            | 18<br>hours    | 36 hours                                           | 33 hours | 24<br>hours   |  |  |
| SGTR-001     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4<br>legs | N/A      | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | Isolate<br>ruptured<br>SG within<br>15 minutes<br>of initiator | Open 1 SG<br>PORV or 1<br>bank of steam<br>dumps within<br>25 minutes of<br>initiator | N/A | Within 1 hour<br>of pressurizer<br>level 32 ft | N/A            | 1 of 2<br>RHR<br>pumps to<br>2 of 2<br>intact legs | N/A      | N/A           |  |  |
| SGTR-002     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4<br>legs | N/A      | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | Isolate<br>ruptured<br>SG within<br>15 minutes<br>of initiator | Open 1 SG<br>PORV or 1<br>bank of steam<br>dumps within<br>25 minutes of<br>initiator | N/A | Within 1 hour<br>of pressurizer<br>level 32 ft | N/A            | FAILED                                             | N/A      | CST<br>refill |  |  |
| SGTR-004     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4<br>legs | N/A      | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | Isolate<br>ruptured<br>SG within<br>15 minutes<br>of initiator | Open 1 SG<br>PORV or 1<br>bank of steam<br>dumps within<br>25 minutes of<br>initiator | N/A | FAILED                                         | RWST<br>refill | N/A                                                | N/A      | N/A           |  |  |
| SGTR-005     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4<br>legs | N/A      | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | Isolate<br>ruptured<br>SG within<br>15 minutes<br>of initiator | Open 1 SG<br>PORV or 1<br>bank of steam<br>dumps within<br>25 minutes of<br>initiator | N/A | FAILED                                         | FAILED         | N/A                                                | N/A      | CST<br>refill |  |  |
| SGTR-007     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4<br>legs | N/A      | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | Isolate<br>ruptured<br>SG within<br>15 minutes<br>of initiator | FAILED                                                                                | N/A | N/A                                            | RWST<br>refill | N/A                                                | N/A      | N/A           |  |  |

| Calculation No. MDN-000-999-2008-0151 | Rev: 001 | Plant: WBN Unit 0 | Page: 73 |
|---------------------------------------|----------|-------------------|----------|
|---------------------------------------|----------|-------------------|----------|

|              | Table 14 Success Criteria for SGTR           |                                         |                                                                          |                                                                |                                                                                       |                                                                      |                                                |                |                                                    |                                                                                                                      |               |  |  |
|--------------|----------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|----------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------|--|--|
| Path Name    | CVCS                                         | SI                                      | AFW                                                                      | SL                                                             | AFW5                                                                                  | BF                                                                   | SSI                                            | RWST           | RHR                                                | RECIRC                                                                                                               | LTHR          |  |  |
| Mission Time | 36 hours                                     | 36 hours                                | 12 hours                                                                 | N/A                                                            | N/A                                                                                   | N/A                                                                  | N/A                                            | 18<br>hours    | 36 hours                                           | 33 hours                                                                                                             | 24<br>hours   |  |  |
| SGTR-008     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4<br>legs | N/A                                     | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | Isolate<br>ruptured<br>SG within<br>15 minutes<br>of initiator | FAILED                                                                                | N/A                                                                  | N/A                                            | FAILED         | N/A                                                | N/A                                                                                                                  | CST<br>refill |  |  |
| SGTR-010     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4<br>legs | N/A                                     | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | FAILED                                                         | N/A                                                                                   | N/A                                                                  | N/A                                            | RWST<br>refill | N/A                                                | N/A                                                                                                                  | N/A           |  |  |
| SGTR-011     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4<br>legs | N/A                                     | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | FAILED                                                         | N/A                                                                                   | N/A                                                                  | N/A                                            | FAILED         | N/A                                                | N/A                                                                                                                  | CST<br>refill |  |  |
| SGTR-013     | 1 of 2<br>CVCS<br>pumps to<br>4 of 4<br>legs | N/A                                     | FAILED                                                                   | N/A                                                            | N/A                                                                                   | 1 of 2 CVCS<br>pumps, 1 PZR<br>PORV within 1<br>hour of 26%<br>SG WR | N/A                                            | N/A            | N/A                                                | 1 of 2 CVCS<br>pumps to 4 of 4<br>intact legs<br>supported by 1 of<br>2 RHR pumps<br>taking suction from<br>the sump | N/A           |  |  |
| SGTR-016     | N/A                                          | 1 of 2 SI<br>pumps to<br>4 of 4<br>legs | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | Isolate<br>ruptured<br>SG within<br>15 minutes<br>of initiator | Open 1 SG<br>PORV or 1<br>bank of steam<br>dumps within<br>25 minutes of<br>initiator | N/A                                                                  | Within 1 hour<br>of pressurizer<br>level 32 ft | N/A            | 1 of 2<br>RHR<br>pumps to<br>2 of 2<br>intact legs | N/A                                                                                                                  | N/A           |  |  |

Rev: 001 Plant: WBN Unit 0 Page: 74

|              | Table 14 Success Criteria for SGTR |                                         |                                                                          |                                                                |                                                                                       |     |                                                |                |          |          |               |  |  |
|--------------|------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|-----|------------------------------------------------|----------------|----------|----------|---------------|--|--|
| Path Name    | CVCS                               | SI                                      | AFW                                                                      | SL                                                             | AFW5                                                                                  | BF  | SSI -                                          | RWST           | RHR      | RECIRC   |               |  |  |
| Mission Time | 36 hours                           | 36 hours                                | 12 hours                                                                 | N/A                                                            | N/A                                                                                   | N/A | N/A                                            | 18<br>hours    | 36 hours | 33 hours | 24<br>hours   |  |  |
| SGTR-017     | N/A                                | 1 of 2 SI<br>pumps to<br>4 of 4<br>legs | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | Isolate<br>ruptured<br>SG within<br>15 minutes<br>of initiator | Open 1 SG<br>PORV or 1<br>bank of steam<br>dumps within<br>25 minutes of<br>initiator | N/A | Within 1 hour<br>of pressurizer<br>level 32 ft | N/A            | FAILED   | N/A      | CST<br>refill |  |  |
| SGTR-019     | N/A                                | 1 of 2 SI<br>pumps to<br>4 of 4<br>legs | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | Isolate<br>ruptured<br>SG within<br>15 minutes<br>of initiator | Open 1 SG<br>PORV or 1<br>bank of steam<br>dumps within<br>25 minutes of<br>initiator | N/A | FAILED                                         | RWST<br>refill | N/A      | N/A      | N/A           |  |  |
| SGTR-020     | N/A                                | 1 of 2 SI<br>pumps to<br>4 of 4<br>legs | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | Isolate<br>ruptured<br>SG within<br>15 minutes<br>of initiator | Open 1 SG<br>PORV or 1<br>bank of steam<br>dumps within<br>25 minutes of<br>initiator | N/A | FAILED                                         | FAILED         | N/A      | N/A      | CST<br>refill |  |  |
| SGTR-022     | N/A                                | 1 of 2 SI<br>pumps to<br>4 of 4<br>legs | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | Isolate<br>ruptured<br>SG within<br>15 minutes<br>of initiator | FAILED                                                                                | N/A | N/A                                            | RWST<br>refill | N/A      | N/A      | N/A           |  |  |
| SGTR-023     | N/A                                | 1 of 2 SI<br>pumps to<br>4 of 4<br>legs | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | Isolate<br>ruptured<br>SG within<br>15 minutes<br>of initiator | FAILED                                                                                | N/A | N/A                                            | FAILED         | N/A      | N/A      | CST<br>refill |  |  |
| SGTR-025     | N/A                                | 1 of 2 SI<br>pumps to<br>4 of 4<br>legs | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | FAILED                                                         | N/A                                                                                   | N/A | N/A                                            | RWST<br>refill | N/A      | N/A      | N/A           |  |  |

| Calculation No. MDN-000-999-2008-0151 | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>75</b> |
|---------------------------------------|-----------------|-------------------|-----------------|
|                                       |                 |                   |                 |

|               | Table 14 Success Criteria for SGTR |                                         |                                                                          |                                                                |                                                                                       |                                                                                       |     |             |                                                    |                                                                                                                 |               |  |
|---------------|------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----|-------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|--|
| Path Name     | CVCS                               | SI                                      | AFW                                                                      | SL                                                             | AFW5                                                                                  | BF                                                                                    | SSI | RWST        | RHR                                                | RECIRC                                                                                                          | LTHR          |  |
| Mission Time  | 36 hours                           | 36 hours                                | 12 hours                                                                 | N/A                                                            | N/A                                                                                   | N/A.                                                                                  | N/A | 18<br>hours | 36 hours                                           | 33 hours                                                                                                        | 24<br>hours   |  |
| SGTR-026      | N/A                                | 1 of 2 SI<br>pumps to<br>4 of 4<br>legs | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | FAILED                                                         | N/A                                                                                   | N/A                                                                                   | N/A | N/A         | N/A                                                | N/A                                                                                                             | CST<br>refill |  |
| SGTR-028      | N/A                                | 1 of 2 SI<br>pumps to<br>4 of 4<br>legs | FAILED                                                                   | N/A                                                            | N/A                                                                                   | 1 of 2 Safety<br>Injection<br>pumps, 2 PZR<br>PORVs within<br>30 minutes of<br>FR-H.1 | N/A | N/A         | N/A                                                | 1 of 2 SI pumps to<br>4 of 4 intact legs<br>supported by 1 of<br>2 RHR pumps<br>taking suction from<br>the sump | N/A           |  |
| SGTR-031      | FAILED                             | FAILED                                  | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | Isolate<br>ruptured<br>SG within<br>15 minutes<br>of initiator | Open 1 SG<br>PORV or 1<br>bank of steam<br>dumps within<br>25 minutes of<br>initiator | N/A                                                                                   | N/A | N/A         | 1 of 2<br>RHR<br>pumps to<br>2 of 2<br>intact legs | N/A                                                                                                             | N/A           |  |
| SOTE 022      |                                    |                                         | 1 of 2 MD AFW<br>pumps or 1 of 1<br>TD AFW pump<br>to 1 unaffected<br>SG | Isolate<br>ruptured<br>SG within<br>15 minutes                 | Open 1 SG<br>PORV or 1<br>bank of steam<br>dumps within<br>25 minutes of              | NIA                                                                                   |     |             |                                                    |                                                                                                                 | CST           |  |
| Reference 35, | Table 7.9-1                        |                                         |                                                                          |                                                                | Initiator                                                                             | N/A                                                                                   | N/A | N/A         |                                                    | N/A                                                                                                             |               |  |

| Calculation I | No. <b>MDN-000-999-2008-0151</b> | Rev: 001 | Plant: WBN Unit 0 | Page: 76 |
|---------------|----------------------------------|----------|-------------------|----------|
| Subject:      | WBN PROBABILISTIC RISK A         | SSESSME  | NT – SUMMARY      |          |

|              | Table 15 Success Criteria for ATWS |                     |                                                                   |                                                                                          |                                                                          |                                     |               |
|--------------|------------------------------------|---------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|---------------|
| Path Name    | MRI                                | AM                  | AF100                                                             | AF50                                                                                     | SR                                                                       | LTS                                 | LTHR          |
| Mission Time | N/A                                | N/A                 | AFW pumps must<br>be available and<br>injecting for 24<br>hours   | AFW pumps must be<br>available and injecting<br>for 24 hours                             | N/A                                                                      | 1 hour                              | 24<br>hours   |
| ATWS-001     | Rod insertion is successful        | AMSAC is successful | 2 of 2 MD AFW<br>pumps and 1 of 1<br>TD AFW pump to 4<br>of 4 SGs | N/A                                                                                      | 3 of 3 pressurizer<br>safety valves and<br>required pressurizer<br>PORVs | Successful<br>Emergency<br>Boration | N/A           |
| ATWS-002     | Rod insertion is successful        | AMSAC is successful | 2 of 2 MD AFW<br>pumps and 1 of 1<br>TD AFW pump to 4<br>of 4 SGs | N/A                                                                                      | 3 of 3 pressurizer<br>safety valves and<br>required pressurizer<br>PORVs | FAILED                              | CST<br>refill |
| ATWS-005     | Rod insertion is successful        | AMSAC is successful | FAILED                                                            | 2 of 2 MD AFW or 1 of 1<br>TD AFW or 1 of 2 MD<br>AFW and 1 of 1 TD<br>AFW to 4 of 4 SGs | 3 of 3 pressurizer<br>safety valves and<br>required pressurizer<br>PORVs | Successful<br>Emergency<br>Boration | N/A           |
| ATWS-006     | Rod insertion is successful        | AMSAC is successful | FAILED                                                            | 2 of 2 MD AFW or 1 of 1<br>TD AFW or 1 of 2 MD<br>AFW and 1 of 1 TD<br>AFW to 4 of 4 SGs | 3 of 3 pressurizer<br>safety valves and<br>required pressurizer<br>PORVs | FAILED                              | CST<br>refill |
| ATWS-011     | FAILED                             | AMSAC is successful | 2 of 2 MD AFW<br>pumps and 1 of 1<br>TD AFW pump to 4<br>of 4 SGs | N/A                                                                                      | 3 of 3 pressurizer<br>safety valves and<br>required pressurizer<br>PORVs | Successful<br>Emergency<br>Boration | N/A           |

Calculation No. **MDN-000-999-2008-0151** Rev: 0

Rev: 001 Plant: WBN Unit 0 Page: 77

|               |              |                     | Table 15 Suc                                                      | cess Criteria for ATW                                                                    | S                                                                        |                                     |               |
|---------------|--------------|---------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|---------------|
| Path Name     | MRI          | AM                  | AF100                                                             | AF50                                                                                     | SR                                                                       | LTS                                 | LTHR          |
| Mission Time  | N/A          | N/A                 | AFW pumps must<br>be available and<br>injecting for 24<br>hours   | AFW pumps must be<br>available and injecting<br>for 24 hours                             | N/A                                                                      | 1 hour                              | 24<br>hours   |
| ATWS-012      | FAILED       | AMSAC is successful | 2 of 2 MD AFW<br>pumps and 1 of 1<br>TD AFW pump to 4<br>of 4 SGs | N/A                                                                                      | 3 of 3 pressurizer<br>safety valves and<br>required pressurizer<br>PORVs | FAILED                              | CST<br>refill |
| ATWS-015      | FAILED       | AMSAC is successful | FAILED                                                            | 2 of 2 MD AFW or 1 of 1<br>TD AFW or 1 of 2 MD<br>AFW and 1 of 1 TD<br>AFW to 4 of 4 SGs | 3 of 3 pressurizer<br>safety valves and<br>required pressurizer<br>PORVs | Successful<br>Emergency<br>Boration | N/A           |
| ATWS-016      | FAILED       | AMSAC is successful | FAILED                                                            | 2 of 2 MD AFW or 1 of 1<br>TD AFW or 1 of 2 MD<br>AFW and 1 of 1 TD<br>AFW to 4 of 4 SGs | 3 of 3 pressurizer<br>safety valves and<br>required pressurizer<br>PORVs | FAILED                              | CST<br>refill |
| Reference 35, | Table 7.10-1 | ·                   | ·                                                                 | 4                                                                                        |                                                                          |                                     |               |

| Calculation N | lo. <b>MDN-000-999-2008-0151</b>                     | Rev: 001 | Plant: WBN Unit 0 | Page: 78 |  |  |
|---------------|------------------------------------------------------|----------|-------------------|----------|--|--|
| Subject:      | Subject: WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY |          |                   |          |  |  |

|                 | Table 16 Success Criteria for ISLOCA   |          |                |                                                               |            |                                                                             |                                                             |             |
|-----------------|----------------------------------------|----------|----------------|---------------------------------------------------------------|------------|-----------------------------------------------------------------------------|-------------------------------------------------------------|-------------|
| Path Name       | CVCS                                   | SI       | STL            | AFW                                                           | LTHR       | BF                                                                          | HPR                                                         | RWST        |
| Mission<br>Time | 24 hours                               | 24 hours | N/A            | 12 hours                                                      | 12 hours   | N/A                                                                         | 18 hours                                                    | 24 hours    |
| ISLM-001        | 1 of 2 CVCS<br>pumps to 4 of<br>4 legs | N/A      | Path Isolation | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | CST refill | N/A                                                                         | N/A                                                         | N/A         |
| ISLM-002        | 1 of 2 CVCS<br>pumps to 4 of<br>4 legs | N/A      | Path Isolation | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | FAILED     | 1 of 2 CVCS<br>pumps, 1<br>PZR PORV<br>within 15<br>minutes of<br>26% SG WR | 1 of 2 CVCS<br>pumps, 1 of 2<br>RHR pumps<br>to 4 of 4 legs | N/A         |
| ISLM-005        | 1 of 2 CVCS<br>pumps to 4 of<br>4 legs | N/A      | Path Isolation | FAILED                                                        | N/A        | 1 of 2 CVCS<br>pumps, 1<br>PZR PORV<br>within 15<br>minutes of<br>26% SG WR | 1 of 2 CVCS<br>pumps, 1 of 2<br>RHR pumps<br>to 4 of 4 legs | N/A         |
| ISLM-008        | 1 of 2 CVCS<br>pumps to 4 of<br>4 legs | N/A      | FAILED         | FAILED                                                        | N/A        | N/A                                                                         | N/A                                                         | RWST refill |

| Calculation No. <b>MDN-000-999-2008-0151</b> | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>79</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------|-----------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              |                 |                   | and the second se |

| Path Name       | CVCS     | SI                                   | STL            | AFW                                                           | LTHR       | BF                                                                                          | HPR                                                                        | RWST       |
|-----------------|----------|--------------------------------------|----------------|---------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------|
| Mission<br>Time | 24 hours | 24 hours                             | N/A            | 12 hours                                                      | 12 hours   | N/A                                                                                         | 18 hours                                                                   | 24 hours   |
| ISLM-010        | FAILED   | 1 of 2 SI<br>pumps to 4 of<br>4 legs | Path Isolation | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | CST refill | N/A                                                                                         | N/A                                                                        | N/A        |
| ISLM-011        | FAILED   | 1 of 2 SI<br>pumps to 4 of<br>4 legs | Path Isolation | 1 of 2 MD<br>AFW pumps<br>or 1 of 1 TD<br>AFW pump to<br>1 SG | FAILED     | 1 of 2 Safety<br>Injection<br>pumps, 2<br>PZR PORVs<br>within 30<br>minutes of<br>26% SG WR | 1 of 2 Safety<br>Injection<br>pumps, 1 of 2<br>RHR pumps<br>to 4 of 4 legs | N/A        |
| ISLM-014        | FAILED   | 1 of 2 SI<br>pumps to 4 of<br>4 legs | Path Isolation | FAILED                                                        | N/A        | 1 of 2 Safety<br>Injection<br>pumps, 2<br>PZR PORVs<br>within 30<br>minutes of<br>26% SG WR | 1 of 2 Safety<br>Injection<br>pumps, 1 of 2<br>RHR pumps<br>to 4 of 4 legs | N/A        |
| ISLM-017        | FAILED   | 1 of 2 SI<br>pumps to 4 of<br>4 legs | FAILED         | FAILED                                                        | N/A        | N/A                                                                                         | N/A                                                                        | RWST refil |

Rev: 001 Plant: WBN Unit 0

Page: 80

|                                        | Table 17 – Success Criteria Comparison: LLOCA |                                                                          |                                                                                                                                                                                                                                     |  |  |  |
|----------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                        | CPNPP                                         | WBN                                                                      | Delta                                                                                                                                                                                                                               |  |  |  |
| Accumulators                           | 2 of 4 accumulators to 2<br>of 4 cold legs    | 3 of 3 accumulators to 3<br>of 3 intact cold legs                        | MAAP 4.0.5 analysis<br>cannot determine the<br>success of<br>accumulators in break<br>sizes greater than 10<br>inches. Therefore, the<br>success criteria must be<br>determined from the<br>UFSAR (Section 15.4 of<br>Reference 3). |  |  |  |
| Low Pressure Injection                 | 1 of 2 RHR pumps to 1<br>of 4 cold legs       | 1 of 2 RHR pumps to 3<br>of 3 intact cold legs                           | The results cannot<br>justify 1 of 4 loops<br>based on flow balancing<br>that limits flow through a<br>single loop.                                                                                                                 |  |  |  |
| Cold Leg Low Pressure<br>Recirculation | 1 of 2 RHR pumps to 1<br>of 4 cold legs       | 1 of 2 RHR pumps to 1<br>of 2 intact cold legs                           | During recirculation<br>mode, the RHR pumps<br>can only discharge to 2<br>RCS legs.                                                                                                                                                 |  |  |  |
| Hot Leg Low Pressure<br>Recirculation  | 1 of 2 RHR trains or 1 of<br>2 SI trains      | 1 of 2 RHR pumps to 2<br>of 4 legs and 1 of 2 SI<br>pumps to 2 of 4 legs | The WBN success<br>criteria is correct per<br>Reference 2.                                                                                                                                                                          |  |  |  |
| Reference 35, Appendix E               | 3                                             |                                                                          |                                                                                                                                                                                                                                     |  |  |  |

Rev: 001 Plant: WBN Unit 0 Pa

Page: 81

| I.a.                                                        | Die 10 - Success Chiler                                                                          |                                                                                        | <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | CPNPP                                                                                            | WBN                                                                                    | Delta                                                                                                                                                                                                                                                                                                                                                                                                             |
| AFW                                                         | 1 of 2 MD AFW pumps<br>or 1 TD AFW pump to 1<br>of 4 SGs                                         | 1 of 2 MD AFW pumps<br>or 1 TD AFW pump to 1<br>of 4 SGs                               | No delta.                                                                                                                                                                                                                                                                                                                                                                                                         |
| High pressure injection<br>(CCPs)                           | 1 of 2 centrifugal<br>charging pumps to 1 of<br>4 cold legs                                      | 1 of 2 CVCS to 3 of 3 cold legs                                                        | The results cannot<br>justify 1 of 4 loops<br>based on flow balancing<br>that limits flow through<br>a single loop.                                                                                                                                                                                                                                                                                               |
| High pressure injection<br>(SIPs)                           | 1 of 2 Safety Injection<br>Pumps to 1 of 4 cold<br>legs                                          | 1 of 2 SI pumps to 3 of<br>3 cold legs                                                 | The results cannot<br>justify 1 of 4 loops<br>based on flow balancing<br>that limits flow through<br>a single loop.                                                                                                                                                                                                                                                                                               |
| Secondary<br>depressurization and<br>Secondary heat removal | 1 of 4 Atmospheric<br>Relief Valves or 1 of 3<br>Banks of Steam Dump<br>Valves                   | 1 of 4 SG PORVs or 1<br>Bank of Steam Dumps                                            | No delta.                                                                                                                                                                                                                                                                                                                                                                                                         |
| Accumulator Injection                                       | 2 of 4 Accumulators to 2 of 4 cold legs                                                          | Not credited                                                                           | The accumulators are<br>not credited in this<br>model.                                                                                                                                                                                                                                                                                                                                                            |
| Low pressure injection                                      | 1 of 2 RHR pumps to 1<br>of 4 cold legs                                                          | 1 of 2 RHR pumps to 3<br>of 3 cold legs                                                | The results cannot<br>justify 1 of 4 loops<br>based on flow balancing<br>that limits flow through<br>a single loop.                                                                                                                                                                                                                                                                                               |
| Cold leg low pressure recirculation                         | 1 of 2 RHR trains from<br>the containment sump<br>to 1 of 4 cold legs                            | 1 of 2 RHR pumps<br>taking suction from the<br>containment sump to 1<br>of 2 cold legs | During recirculation<br>mode, the RHR pumps<br>can only discharge to 2<br>RCS legs.                                                                                                                                                                                                                                                                                                                               |
| Hot leg low pressure<br>recirculation                       | 1 of 2 RHR trains in hot<br>leg recirculation from<br>the containment sump<br>to 1 of 4 hot legs | Not required                                                                           | Hot leg recirculation is<br>not required for<br>MLOCAs because the<br>water in the core does<br>not deplete to the levels<br>of a LLOCA. LLOCAs<br>require hot leg<br>recirculation because<br>the water leaves the<br>core very rapidly and<br>the boron concentration<br>may reach its solubility<br>limits very quickly.<br>However with a<br>MLOCA, the water in<br>the core does not<br>evacuate as quickly. |

 Calculation No. MDN-000-999-2008-0151
 Rev: 001
 Plant: WBN Unit 0
 Page: 82

Subject:

|                                | Table 18 – Success Criteria Comparison: MLOCA                                           |                                                                        |                                                                                                                                               |  |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                | CPNPP                                                                                   | WBN                                                                    | Delta                                                                                                                                         |  |  |  |
| Long term cooling              | 1 of 2 RHR trains to 1 of<br>4 cold legs taking<br>suction from the<br>containment sump | Credited via low<br>pressure recirculation                             | No delta.                                                                                                                                     |  |  |  |
| High pressure<br>recirculation | No information                                                                          | 1 of 2 CVCS pumps or<br>1 of 2 SI pumps aligned<br>to 1 of 2 RHR pumps | For a MLOCA, high<br>pressure recirculation is<br>required (and gives<br>success) when only the<br>high pressure ECCS<br>pumps are available. |  |  |  |
|                                |                                                                                         |                                                                        |                                                                                                                                               |  |  |  |
| Reference 35, Appendi          | хB                                                                                      |                                                                        |                                                                                                                                               |  |  |  |

Rev: 001 Plant: WBN Unit 0 Pa

Page: 83

|                                                             | CPNPP                                                                                                                                                                                                                                                                                                                                 | WBN                                                                                                                                                                                                                                            | Delta                                                                                                                            |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Auxiliary Feedwater                                         | 1 of 2 MD pumps or 1<br>TD pump to 1 of 4 SGs                                                                                                                                                                                                                                                                                         | 1 of 2 MD pumps or 1<br>TD pump to 1 of 4 SGs                                                                                                                                                                                                  | No delta.                                                                                                                        |
| High pressure injection (CCPs)                              | 1 of 2 centrifugal<br>charging pumps to 1 of<br>4 cold legs                                                                                                                                                                                                                                                                           | 1 of 2 CVCS to 3 of 3<br>cold legs                                                                                                                                                                                                             | The results cannot<br>justify 1 of 4 loops<br>based on flow balancing<br>that limits flow through<br>a single loop.              |
| High pressure injection<br>(SIPs)                           | 1 of 2 Safety Injection<br>Pumps to 1 of 4 cold<br>legs                                                                                                                                                                                                                                                                               | 1 of 2 SI pumps to 3 of<br>3 cold legs                                                                                                                                                                                                         | The results cannol<br>justify 1 of 4 loops<br>based on flow balancing<br>that limits flow through<br>a single loop.              |
| Secondary<br>Depressurization and<br>Secondary Heat Removal | 1 of 4 Atmospheric<br>Relief Valves or 1 of 3<br>Banks of Steam Dumps<br>Valves                                                                                                                                                                                                                                                       | 1 of 4 SG PORVs or 1<br>Bank of Steam Dumps                                                                                                                                                                                                    | No delta.                                                                                                                        |
| Bleed and Feed                                              | 1 CCP and 1 SIP and 1<br>PZR PORV                                                                                                                                                                                                                                                                                                     | 1 of 2 CVCS pumps<br>and 1 PZR PORV or 1<br>of 2 SI pumps and 2<br>PZR PORVs                                                                                                                                                                   | The CPNPP success<br>criteria is based on<br>conservative licensing<br>basis analysis. WBN is<br>based on realistic<br>analysis. |
| Accumulator injection                                       | 2 of 4 accumulators to 1<br>of 4 cold legs                                                                                                                                                                                                                                                                                            | Not credited                                                                                                                                                                                                                                   | The accumulators are<br>not credited in this<br>model.                                                                           |
| Low pressure injection                                      | 1 of 2 RHR pumps to 1<br>of 4 cold legs                                                                                                                                                                                                                                                                                               | 1 of 2 RHR pumps to 3<br>of 3 cold legs                                                                                                                                                                                                        | The results cannot<br>justify 1 of 4 loops<br>based on flow balancing<br>that limits flow through<br>a single loop.              |
| High pressure cold leg<br>recirculation                     | 1 of 2 CCP to 1 of 4<br>cold legs and 1 of 2<br>RHR trains taking<br>suction from the<br>containment sumps and<br>providing suction flow to<br>the available CCP 1 of<br>2 SIPs to 1 of 4 cold<br>legs and 1 of 2 RHR<br>trains taking suction<br>from the containment<br>sumps and providing<br>suction flow to the<br>available SIP | 1 of 2 CVCS pumps to<br>3 of 3 cold legs aligned<br>to 1 of 2 RHR pumps<br>taking suction from the<br>containment sump<br>1 of 2 SI pumps to 1 of<br>4 cold legs aligned to 1<br>of 2 RHR pumps taking<br>suction from the<br>containment sump | The results cannot<br>justify 1 of 4 loops<br>based on flow balancing<br>that limits flow through<br>a single loop.              |
| Low pressure cold leg recirculation                         | 1 of 2 RHR trains to 1 of<br>4 cold legs taking<br>suction from the<br>containment sump                                                                                                                                                                                                                                               | 1 of 2 RHR pumps<br>taking suction from the<br>containment sump<br>delivering to 2 of 2 cold<br>legs                                                                                                                                           | During recirculation<br>mode, the RHR pumps<br>can only discharge to 2<br>RCS legs.                                              |

| Calculation No. MDN-000-999-2008-0151 | Rev: 001 | Plant: WBN Unit 0 | Page: <b>84</b> |
|---------------------------------------|----------|-------------------|-----------------|
|---------------------------------------|----------|-------------------|-----------------|

Subject:

| N                   | Delta     |
|---------------------|-----------|
| via low<br>culation | No delta. |
|                     |           |
|                     |           |

Rev: 001 Plant: WBN Unit 0 Page

Page: 85

| Table 20 – Success Criteria Comparison: SLOCAV              |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                |                                                                                                                                                                   |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                             | CPNPP                                                                                                                                                                                                                                                                                                                                  | WBN                                                                                                                                                                                                                                            | Delta                                                                                                                                                             |  |
| Main Feedwater                                              | 1 of 2 main feedwater<br>pumps to 1 of 4 SGs                                                                                                                                                                                                                                                                                           | Not credited                                                                                                                                                                                                                                   | Main feedwater is not<br>credited in this analysis.<br>Given a reactor trip (the<br>first node in SLOCAV<br>Event Tree), the main<br>feedwater will<br>terminate. |  |
| Auxiliary Feedwater                                         | 1 of 2 MD AFW pumps<br>or 1 TD AFW pump to 1<br>of 4 SGs                                                                                                                                                                                                                                                                               | 1 of 2 MD AFW pumps<br>or 1 TD pump to 1 of 4 No delta.<br>SGs                                                                                                                                                                                 |                                                                                                                                                                   |  |
| High pressure injection<br>(CCPs)                           | 1 of 2 centrifugal<br>charging pumps to 1 of<br>4 cold legs                                                                                                                                                                                                                                                                            | 1 of 2 CVCS pumps to<br>4 of 4 cold legs                                                                                                                                                                                                       | The results cannot<br>justify 1 of 4 loops<br>based on flow<br>balancing that limits<br>flow through a single<br>loop.                                            |  |
| High pressure injection (SIPs)                              | 1 of 2 safety injection<br>pumps to 1 of 4 cold<br>legs                                                                                                                                                                                                                                                                                | Not credited                                                                                                                                                                                                                                   | This analysis models<br>normal charging and<br>ECCS charging.                                                                                                     |  |
| Secondary<br>Depressurization and<br>Secondary Heat Removal | 1 of 4 Atmospheric<br>Relief Valves or 1 of 3<br>banks of Steam Dump<br>Valves                                                                                                                                                                                                                                                         | 1 of 4 SG PORVs or 1<br>Bank of Steam Dumps                                                                                                                                                                                                    | No delta.                                                                                                                                                         |  |
| Bleed and Feed                                              | 1 CCP and 1 SIP and 1<br>PORV or 2 CCPs and 1<br>PORV                                                                                                                                                                                                                                                                                  | 1 of 2 CVCS pumps<br>and 1 PZR PORV or 1<br>of 2 SI pumps and 2<br>PZR PORVs                                                                                                                                                                   | umps The CPNPP success<br>' or 1 criteria is based or<br>and 2 conservative licensing<br>basis analysis. WBN is<br>based on realistic<br>analysis                 |  |
| Low pressure injection                                      | 1 of 2 RHR pumps to 1<br>of 4 cold legs                                                                                                                                                                                                                                                                                                | 1 of 2 RHR pumps to 4<br>of 4 cold legs<br>based<br>flow through a                                                                                                                                                                             |                                                                                                                                                                   |  |
| High pressure cold leg<br>recirculation                     | 1 of 2 CCPs to 1 of 4<br>cold legs and 1 of 2<br>RHR trains taking<br>suction from the<br>containment sumps and<br>providing suction flow to<br>the available CCP<br>1 of 2 SIPs to 1 of 4<br>cold legs and 1 of 2<br>RHR trains taking<br>suction from the<br>containment sumps and<br>providing suction flow to<br>the available SIP | 1 of 2 CVCS pumps to<br>4 of 4 cold legs aligned<br>to 1 of 2 RHR pumps<br>taking suction from the<br>containment sump<br>1 of 2 SI pumps to 4 of<br>4 cold legs aligned to 1<br>of 2 RHR pumps taking<br>suction from the<br>containment sump | The results cannot<br>justify 1 of 4 loops<br>based on flow<br>balancing that limits<br>flow through a single<br>loop.                                            |  |

Rev: 001 Plant: WBN Unit 0

Page: 86

Subject:

| Tab                                 | le 20 – Success Criteri                                                                                                                      | a Comparison: SLOCA                                                                                  | AV<br>Za                                                                            |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
| CPNPP WBN Delta                     |                                                                                                                                              |                                                                                                      |                                                                                     |  |  |  |
| Low pressure cold leg recirculation | 1 of 2 RHR trains to 1<br>of 4 cold legs taking<br>suction from the<br>containment sump and<br>providing flow to the<br>available CCP or SIP | 1 of 2 RHR pumps<br>taking suction from the<br>containment sump<br>delivering to 2 of 2 cold<br>legs | During recirculation<br>mode, the RHR pumps<br>can only discharge to 2<br>RCS legs. |  |  |  |
| Long term RHR shutdown cooling      | 1 of 2 RHR trains to 1<br>of 4 cold legs taking<br>suction from the<br>containment sump                                                      | Credited via low<br>pressure recirculation                                                           | No delta.                                                                           |  |  |  |
|                                     |                                                                                                                                              |                                                                                                      |                                                                                     |  |  |  |
| Reference 35, Appendix B            |                                                                                                                                              |                                                                                                      |                                                                                     |  |  |  |

Rev: 001 Plant: WBN Unit 0

Page: 87

Subject:

| Table 21 – Success Criteria Comparison: Transient |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                |                                                                                                                                                                  |  |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                   | CPNPP                                                                                                                                                                                                                                                                                                                                  | WBN                                                                                                                                                                                                                                            | Delta                                                                                                                                                            |  |
| Main Feedwater                                    | 1 of 2 main feedwater<br>pumps to 1 of 4 SGs                                                                                                                                                                                                                                                                                           | Not credited                                                                                                                                                                                                                                   | Main feedwater is not<br>credited in this analysis.<br>Given a reactor trip (the<br>first node in GTRAN<br>Event Tree), the main<br>feedwater will<br>terminate. |  |
| Auxiliary Feedwater                               | 1 of 2 MD AFW pumps<br>or 1 TD AFW pump to 1<br>of 4 SGs                                                                                                                                                                                                                                                                               | 1 MD AFW pump or 1<br>TD pump to 1 of 4 SGs                                                                                                                                                                                                    | No delta.                                                                                                                                                        |  |
| Condensate                                        | 1 of 2 condensate<br>pumps to 1 of 4 SGs                                                                                                                                                                                                                                                                                               | Not credited Condensate pumps<br>not credited in<br>model                                                                                                                                                                                      |                                                                                                                                                                  |  |
| High pressure injection (CCPs)                    | 1 of 2 centrifugal<br>charging pumps to 1 of<br>4 cold legs                                                                                                                                                                                                                                                                            | Not credited                                                                                                                                                                                                                                   | This analysis does not<br>credit high pressure<br>injection.                                                                                                     |  |
| High pressure injection (SIPs)                    | 1 of 2 safety injection<br>pumps to 1 of 4 cold<br>legs                                                                                                                                                                                                                                                                                | Not credited                                                                                                                                                                                                                                   | This analysis does not<br>credit high pressure<br>injection.                                                                                                     |  |
| Secondary<br>depressurization and<br>heat removal | 1 of 3 AFW pumps<br>(1TDAFW or 1 of 2<br>MDAFW) or 1 of 2<br>MFW pumps to 1 of 4<br>Steam Generators                                                                                                                                                                                                                                   | 1 of 2 MD AFW pumps<br>or 1 TD pump to 1 of 4<br>SGs                                                                                                                                                                                           | No delta.                                                                                                                                                        |  |
| Bleed and Feed                                    | 1 centrifugal charging<br>pump (CCP) and 1<br>safety injection pump<br>(SIP) and 1 PORV or 2<br>CCPs and 1 PORV                                                                                                                                                                                                                        | 1 of 2 CVCS pumps<br>and 1 PZR PORV or 1<br>of 2 SI pumps and 2<br>PZR PORVs                                                                                                                                                                   | The CPNPP success<br>criteria is based on<br>conservative licensing<br>basis analysis. WBN is<br>based on realistic<br>analysis.                                 |  |
| High pressure<br>recirculation                    | 1 of 2 CCPs to 1 of 4<br>cold legs and 1 of 2<br>RHR trains taking<br>suction from the<br>containment sumps and<br>providing suction flow to<br>the available CCP<br>1 of 2 SIPs to 1 of 4<br>cold legs and 1 of 2<br>RHR trains taking<br>suction from the<br>containment sumps and<br>providing suction flow to<br>the available SIP | 1 of 2 CVCS pumps to<br>4 of 4 cold legs aligned<br>to 1 of 2 RHR pumps<br>taking suction from the<br>containment sump<br>1 of 2 SI pumps to 4 of<br>4 cold legs aligned to 1<br>of 2 RHR pumps taking<br>suction from the<br>containment sump | The results cannot<br>justify 1 of 4 loops<br>based on flow<br>balancing that limits<br>flow through a single<br>loop.                                           |  |

Rev: 001 | Plant: WBN Unit 0 | Page: 88

Subject:

|                                   | CPNPP                                                                                                                                                   | WBN                               | Delta                                                           |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------|--|
| Low pressure recirculation        | 1 of 2 RHR trains to 1<br>of 4 cold legs taking<br>suction from the<br>containment sump and<br>providing flow to the<br>available CCP or SIP            | Not credited                      | Low pressure<br>recirculation is not<br>credited in this model. |  |
| Long term RHR<br>shutdown cooling | 1 of 2 RHR trains to 1<br>of 4 cold legs taking<br>suction from the<br>containment sump and<br>providing suction flow to<br>the available CCP or<br>SIP | Credited via SGs or<br>normal RHR | Credit taken from<br>transition to normal<br>RHR cooling.       |  |

Rev: 001 Plant: WBN Unit 0 Pa

Page: 89

Subject:

| Table 22 – Success Criteria Comparison: SGTR      |                                                                                                                                                                                                                                 |                                                                                                                                |                                                                                                                                  |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
|                                                   | CPNPP                                                                                                                                                                                                                           | WBN                                                                                                                            | Delta                                                                                                                            |  |
| SG Isolation                                      | Isolate AFW and Main<br>Steam on the faulted<br>SG                                                                                                                                                                              | Operator Identifies and<br>isolates the ruptured<br>SG                                                                         | No delta.                                                                                                                        |  |
| Main Feedwater                                    | 1 of 2 main feedwater<br>pumps to 1 of 4 SGs                                                                                                                                                                                    | Not credited Main feedwate<br>credited in this<br>Given a reactor<br>first node in<br>Event Tree), t<br>feedwater<br>terminate |                                                                                                                                  |  |
| Auxiliary Feedwater                               | 1 of 2 MD AFW pumps<br>or 1 TD AFW pump to 1<br>of 4 SGs                                                                                                                                                                        | 1 of 2 MD AFW pumps<br>or 1 TD AFW to 1 of 3<br>unaffected SGs                                                                 | No delta.                                                                                                                        |  |
| Condensate                                        | 1 of 2 condensate<br>pumps to 1 of 4 SGs                                                                                                                                                                                        | Not credited                                                                                                                   | Condensate pumps are not credited in this model.                                                                                 |  |
| High pressure injection<br>(CCPs)                 | 1 of 2 centrifugal<br>charging pumps to 1 of<br>4 cold legs                                                                                                                                                                     | 1 of 2 CVCS pumps to<br>4 of 4 cold legs                                                                                       | The results cannot<br>justify 1 of 4 loops<br>based on flow<br>balancing that limits<br>flow through a single<br>loop.           |  |
| High pressure injection<br>(SIPs)                 | 1 of 2 Safety Injection<br>Pumps to 1 of 4 cold<br>legs                                                                                                                                                                         | 1 of 2 SI pumps to 4 of<br>4 cold legs                                                                                         | The results cannot<br>justify 1 of 4 loops<br>based on flow<br>balancing that limits<br>flow through a single<br>loop.           |  |
| Secondary<br>Depressurization and<br>Heat removal | 1 of 3 AFW pumps or 1<br>of 2 MFW pumps to 2<br>INTACT Steam<br>Generators and Steam<br>Relief with 2 of 4 ARVs<br>on INTACT Steam<br>Generators with<br>successful feedwater<br>makeup or 1 of 3 Banks<br>of Steam Dump valves | 1 of 2 MD AFW pumps<br>or 1 TD AFW pump to 1<br>of 3 intact SGs and 1 of<br>3 SG PORVs                                         | No credit taken for the steam dumps.                                                                                             |  |
| Bleed and Feed                                    | 1 CCP and 1 SIP and 1<br>PORV or 2 CCPs and 1<br>PORV                                                                                                                                                                           | 1 of 2 CVCS pumps<br>and 1 PZR PORV or 1<br>of 2 SI pumps and 2<br>PZR PORVs                                                   | The CPNPP success<br>criteria is based on<br>conservative licensing<br>basis analysis. WBN is<br>based on realistic<br>analysis. |  |

Calculation No. MDN-000-999-2008-0151 Rev: 001 Plant: WBN Unit 0

it 0 Page: 90

Subject:

|                                | CPNPP                                                                                                                                                                                                                                                                                                                                | WBN                                                                                                                                                                                                                                            | Delta                                                                                                                  |  |  |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
| High pressure<br>recirculation | 1 of 2 CCP to 1 of 4<br>cold legs and 1 of 2<br>RHR trains taking<br>suction from the<br>containment sumps and<br>providing suction flow<br>to the available CCP<br>1 of 2 SIP to 1 of 4 cold<br>legs and 1 of 2 RHR<br>trains taking suction<br>from the containment<br>sumps and providing<br>suction flow to the<br>available SIP | 1 of 2 CVCS pumps to<br>4 of 4 cold legs aligned<br>to 1 of 2 RHR pumps<br>taking suction from the<br>containment sump<br>1 of 2 SI pumps to 4 of<br>4 cold legs aligned to 1<br>of 2 RHR pumps taking<br>suction from the<br>containment sump | The results cannot<br>justify 1 of 4 loops<br>based on flow<br>balancing that limits<br>flow through a single<br>loop. |  |  |  |
| Low pressure<br>recirculation  | 1 of 2 RHR trains to 1<br>of 4 cold legs taking<br>suction from the<br>containment sump and<br>providing flow to the<br>available CCP or SIP                                                                                                                                                                                         | No credited.                                                                                                                                                                                                                                   | Low pressure recirculation is not credited in this model.                                                              |  |  |  |
| Long term RHR shutdown cooling | 1 of 2 RHR trains to 1<br>of 4 cold legs taking<br>suction from the<br>containment sump or 1<br>of 3 AFW pumps to 1 of<br>4 SGs with long term<br>suction from 1of 2<br>Station Service Water<br>supply lines                                                                                                                        | 1 of 2 RHR pumps<br>taking suction from the<br>hot leg and discharging<br>into the cold leg.                                                                                                                                                   | No delta.                                                                                                              |  |  |  |

| Calculation No. MDN-000-999-2008-0151 | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>91</b> |
|---------------------------------------|-----------------|-------------------|-----------------|
|                                       |                 |                   |                 |

| Table 23 – MAAP Runs |                                                                        |  |  |
|----------------------|------------------------------------------------------------------------|--|--|
| MAAP Run Identifier  | Description                                                            |  |  |
| BF_A                 | 3/8 inch equivalent break modeling success path SLOCA-008              |  |  |
| BF_B                 | 3/8 inch equivalent break modeling success path SLOCA-018              |  |  |
| BF_C                 | Bleed and Feed Requirements,                                           |  |  |
| BF_D                 | Bleed and Feed Requirements,                                           |  |  |
| BF_E                 | Bleed and Feed Requirements,                                           |  |  |
| BF_F                 | Bleed and Feed Requirements,                                           |  |  |
| BF_G                 | Bleed and Feed Requirements,                                           |  |  |
| GTRAN_C              | Models success path GTRAN-001                                          |  |  |
| GTRAN_C_4SG          | Reactor Trip at time zero with AFW delivered to 4 SG                   |  |  |
| GTRAN_D              | CST depletion time                                                     |  |  |
| ISLOCA_C             | Models success path ISLM-001                                           |  |  |
| ISLOCA_D             | Models success path ISLM-002                                           |  |  |
| ISLOCA_E             | Models success path ISLM-005                                           |  |  |
| ISLOCA_F             | Models success path ISLM-008                                           |  |  |
| ISLOCA_J             | Models success path ISLM-010                                           |  |  |
| ISLOCA_K             | Models success path ISLM-011                                           |  |  |
| ISLOCA_M             | Models success path ISLM-017                                           |  |  |
| L2-ARF6.inp          | Supports ARF model                                                     |  |  |
| L2-Basecasebf.inp    | SLOCA with delayed B&F. All systems available.                         |  |  |
| L2-CS2.inp           | SLOCA with loss of AFW, IC available.                                  |  |  |
| L2-CS4C.inp          | SLOCA with failed HPR, produces approximately 900 lbs H <sub>2</sub> . |  |  |
| L2-Ex-vessel.inp     | 6 inch LOCA with ex-vessel cooling is enabled.                         |  |  |
| L2-Ex-vessel1.inp    | 2 inch LOCA with ex-vessel cooling is enabled.                         |  |  |
| L2-Ex-vessel2.inp    | 6 inch LOCA with ex-vessel cooling is disabled.                        |  |  |
| L2-Ex-vessel3.inp    | 2 inch LOCA with ex-vessel cooling is disabled.                        |  |  |
| L2_GTRAN2.inp        | General Transient produces 550 lbs of H <sub>2</sub>                   |  |  |
|                      | General Transient with 15 v/o $H_2$ at vessel breach                   |  |  |
|                      | Containment peak pressure of 26.6 psia                                 |  |  |
| L2_GTRAN2c.inp       | General Transient with igniters available                              |  |  |

 Calculation No. MDN-000-999-2008-0151
 Rev: 001
 Plant: WBN Unit 0
 Page: 92

Subject:

|                     | Table 23 – MAAP Runs                                                                                      |
|---------------------|-----------------------------------------------------------------------------------------------------------|
| MAAP Run Identifier | Description                                                                                               |
|                     | Containment peak pressure of 45.5 psia                                                                    |
| L2_GTRAN2D.inp      | General Transient with 12 v/o H <sub>2</sub> at vessel breach                                             |
| L2-H2det.inp        | Supports ARF model                                                                                        |
| L2-HLCreep2.inp     | Supports ARF model                                                                                        |
| L2-HLCreep3.inp     | Supports ARF model                                                                                        |
|                     | Initial ice mass available with inlet doors unavailable.                                                  |
| L2-IC2.Inp          | SLOCA with loss of AFW; CS available.                                                                     |
| L2-IC_IDD4.inp      | Initial ice mass available with 4 intermediate deck doors.                                                |
| L2-IC_LID2.inp      | Initial ice mass available with 2 sets of lower inlet doors                                               |
| L2-IC_LID4.inp      | Initial ice mass available with 4 sets of lower inlet doors                                               |
| L2-IC_LID6.inp      | Initial ice mass available with 6 sets of lower inlet doors                                               |
| L2-IC_TDD4.inp      | Initial ice mass available with 4 top deck doors.                                                         |
| L2-IC_SC.inp        | Initial ice mass with 4 sets of lower inlet doors, 4 intermediate deck doors, and 4 top deck doors.       |
| L2-Igniter3A.inp    | Supports ARF model                                                                                        |
| L2_LLOCA2A.inp      | Supports ARF model                                                                                        |
| L2_LLOCA2B.inp      | Supports ARF model                                                                                        |
| L2_LLOCA4c.inp      | LLOCA with no ECCS mitigation.                                                                            |
| L2-RCP3.inp         | SBO conditions with 480 gpm RCP seal LOCA                                                                 |
| L2-RCP3b.inp        | SBO with RCP seal LOCA                                                                                    |
| L2-RCP6cc.inp       | RCP Seal LOCA at 480 gpm                                                                                  |
| L2_SBO.inp          | SBO produces approximately 500 lbs of H <sub>2</sub> . (Standard Parameters)                              |
|                     | Containment peak pressure of 51 psia                                                                      |
| L2-SBO5.inp         | SBO conditions that give DCH with any vessel failure                                                      |
| L2_SBO6.inp         | SBO conditions that give DCH with only creep vessel failure                                               |
|                     | SBO case without Seal Table failure modeled.                                                              |
|                     | SBO produces approximately 500 lbs H <sub>2</sub> .                                                       |
| L2_SBO11.inp        | Simultaneous HPME and $H_2$ burns. Produces highest containment pressure = 80 psia (Temp Spike = 900 °F). |
|                     | Containment peak pressure of 81 psia                                                                      |
| L2_SBO12.inp        | SBO case with Seal Table failure modeled.                                                                 |
| L2_SBO13.inp        | SBO with power recovery produces approximately 600 lb H <sub>2</sub>                                      |

Calculation No.MDN-000-999-2008-0151Rev: 001Plant:WBN Unit 0Page: 93Subject:WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY

| Table 23 – MAAP Runs                          |                                                          |  |  |
|-----------------------------------------------|----------------------------------------------------------|--|--|
| MAAP Run Identifier                           | Description                                              |  |  |
| an de an di linean an air tha Chine de China. | In-core H <sub>2</sub> generation of 570 lbs             |  |  |
| L2_SBOA_4ACC.inp                              | In-core H <sub>2</sub> generation of 533 lbs             |  |  |
|                                               | SBO with igniters available                              |  |  |
|                                               | Containment peak pressure of 51 psia                     |  |  |
| L2_SBOe.inp                                   | SBO produces approximately 560 lbs of H <sub>2</sub>     |  |  |
| L2-WB_SBO_1.inp                               | Supports ARF model                                       |  |  |
| LLOCA_A                                       | 6 inch equivalent break modeling success path LLOCA-001  |  |  |
| LLOCA_B                                       | 10 inch equivalent break modeling success path LLOCA-001 |  |  |
| LLOCA_E                                       | 6-inch mission time for LLOCA                            |  |  |
| LLOCA_F                                       | Minimum recirculation time; RWST depletion               |  |  |
| LLOCA_G                                       | Hot leg recirculation                                    |  |  |
| LLOCA_M                                       | Design Basis Accident modeling success path LLOCA-001    |  |  |
| MLOCA_A                                       | 6 inch equivalent break modeling success path MLOCA-001  |  |  |
| MLOCA_B                                       | 2 inch equivalent break modeling success path MLOCA-001  |  |  |
| MLOCA_C                                       | 6 inch equivalent break modeling success path MLOCA-006  |  |  |
| MLOCA_D                                       | 2 inch equivalent break modeling success path MLOCA-006  |  |  |
| MLOCA_E                                       | 2 inch equivalent break modeling success path MLOCA-007  |  |  |
| MLOCA_F                                       | Minimum recirculation time                               |  |  |
| MLOCA_G                                       | 6 inch equivalent break modeling success path MLOCA-007  |  |  |
| MLOCA_H                                       | 2 inch, LPR time with containment spray                  |  |  |
| MLOCA_J                                       | 2 inch equivalent break modeling success path MLOCA-011  |  |  |
| MLOCA_K                                       | 6 inch, LPR time with containment spray                  |  |  |
| MLOCA_L                                       | 6 inch equivalent break modeling success path MLOCA-011  |  |  |
| MLOCA_M                                       | 6 inch, LPR time with containment spray                  |  |  |
| MLOCA_N                                       | 2 inch, LPR time with containment spray                  |  |  |
| MLOCA_P                                       | 2 inch equivalent break modeling success path MLOCA-002  |  |  |
| MLOCA_Q                                       | 6 inch equivalent break modeling success path MLOCA-002  |  |  |
| MLOCA_R                                       | 2 inch, HPR time with containment spray                  |  |  |
| MLOCA_S                                       | 6 inch, HPR time with containment spray                  |  |  |
| MLOCA_T                                       | 2 inch, HPR time with containment spray                  |  |  |
| MLOCA_U                                       | 6 inch, HPR time with containment spray                  |  |  |

Rev: 001 | Plant: WBN Unit 0 | P

Subject:

| Table 23 – MAAP Runs |                                                                                                  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------|--|--|
| MAAP Run Identifier  | Description                                                                                      |  |  |
| MLOCA_V              | Operator fails to decrease RCS                                                                   |  |  |
| MS_A                 | Transient Bleed and Feed                                                                         |  |  |
| MS_B                 | Transient Bleed and Feed                                                                         |  |  |
| RCP_A.inp            | RCP seal leaks compared to LOCA                                                                  |  |  |
| RCP_B.inp            | RCP seal leaks compared to LOCA                                                                  |  |  |
| RCP_C.inp            | RCP seal leaks compared to LOCA                                                                  |  |  |
| RCP_D.inp            | RCP seal leaks compared to LOCA                                                                  |  |  |
| RCP_E.inp            | RCP seal leaks compared to LOCA                                                                  |  |  |
| RCP_F.inp            | RCP seal leaks compared to LOCA                                                                  |  |  |
| SBO_A                | Models AFW, 4 hr battery time, 21 gpm per pump seal LOCA, no AC power recovery                   |  |  |
| SBO_B                | Models AFW, 4 hr battery time, 182 gpm per pump seal LOCA, no AC power recovery                  |  |  |
| SBO_C                | Models AFW, 4 hr battery time, 480 gpm per pump seal LOCA, no AC power recovery                  |  |  |
| SBO_D                | Models AFW and RCS cooldown, 4 hr battery time, 21 gpm per pump seal LOCA, no AC power recovery  |  |  |
| SBO_E                | Models AFW and RCS cooldown, 4 hr battery time, 182 gpm per pump seal LOCA, no AC power recovery |  |  |
| SBO_F                | Models AFW and RCS cooldown, 4 hr battery time, 480 gpm per pump seal LOCA, no AC power recovery |  |  |
| SBO_G                | Models AFW and RCS cooldown, 8 hr battery time, 21 gpm per pump seal LOCA, no AC power recovery  |  |  |
| SBO_H                | Models AFW and RCS cooldown, 8 hr battery time, 182 gpm per pump seal LOCA, no AC power recovery |  |  |
| SBO_J                | Models 21 gpm per pump seal LOCA, no AC power recovery                                           |  |  |
| SBO_K                | Models 182 gpm per pump seal LOCA, no AC power recovery                                          |  |  |
| SBO_L                | Models 480 gpm per pump seal LOCA, no AC power recovery                                          |  |  |
| SBO_M                | Models AFW, 8 hr battery time, 21 gpm per pump seal LOCA, no AC power recovery                   |  |  |
| SBO_N                | Models AFW, 8 hr battery time, 182 gpm per pump seal LOCA, no AC power recovery                  |  |  |
| SBO_P                | Models AFW, 8 hr battery time, 480 gpm per pump seal LOCA, no AC power recovery                  |  |  |
| SBO_Q                | Models AFW and RCS cooldown, 8 hr battery time, 480 gpm per pump seal                            |  |  |

| Calculation N | No. <b>MDN-000-999-2008-0151</b> | Rev: 001 | Plant: WBN Unit 0 | Page: <b>95</b> |
|---------------|----------------------------------|----------|-------------------|-----------------|
| Subject:      | WBN PROBABILISTIC RISK A         | SSESSME  | NT – SUMMARY      |                 |

| Table 23 – MAAP Runs |                                                         |  |
|----------------------|---------------------------------------------------------|--|
| MAAP Run Identifier  | Description                                             |  |
|                      | LOCA, no AC power recovery                              |  |
| SGTR_A               | Charging pumps with AFW                                 |  |
| SGTR_AA              | Models success path SGTR-005                            |  |
| SGTR_AB              | Models success path SGTR-020                            |  |
| SGTR_AC              | Models success path SGTR-008                            |  |
| SGTR_AD              | Models success path SGTR-023                            |  |
| SGTR_AE              | Models success path SGTR-026                            |  |
| SGTR_B               | SI pump with AFW                                        |  |
| SGTR_C               | Charging pumps with no AFW                              |  |
| SGTR_E               | RCS depressurization                                    |  |
| SGTR_F               | CST depletion times                                     |  |
| SGTR_G               | CST depletion times                                     |  |
| SGTR_H               | Models success path SGTR-001                            |  |
| SGTR_K               | Models success path SGTR-013                            |  |
| SGTR_L               | SI pump with AFW                                        |  |
| SGTR_M               | Models success path SGTR-028                            |  |
| SGTR_N               | Models success path SGTR-004                            |  |
| SGTR_P               | RWST refill                                             |  |
| SGTR_Q               | Models success path SGTR-032                            |  |
| SGTR_R               | Models success path SGTR-016                            |  |
| SGTR_S               | Models success path SGTR-017                            |  |
| SGTR_T               | Models success path SGTR-019                            |  |
| SGTR_U               | Models success path SGTR-022                            |  |
| SGTR_V               | Models success path SGTR-025                            |  |
| SGTR_W               | Models success path SGTR-031                            |  |
| SGTR_X               | Models success path SGTR-010                            |  |
| SGTR_Y               | Models success path SGTR-007                            |  |
| SGTR_Z               | Models success path SGTR-002                            |  |
| SGTR27               | Models success path SGTR-011                            |  |
| SLB_A                | Pressurizer Overfill                                    |  |
| SLOCA_A              | 2 inch equivalent break modeling success path SLOCA-001 |  |

| Calculation No.                                      | MDN-000-999-2008-0151 | Rev: <b>001</b> | Plant: WBN Unit 0 | Page: <b>96</b> |
|------------------------------------------------------|-----------------------|-----------------|-------------------|-----------------|
| Subject: WBN PROBABILISTIC RISK ASSESSMENT – SUMMARY |                       |                 |                   |                 |

| Table 23 – MAAP Runs |                                                           |  |  |
|----------------------|-----------------------------------------------------------|--|--|
| MAAP Run Identifier  | Description                                               |  |  |
| SLOCA_B              | 3/8 inch equivalent break modeling success path SLOCA-001 |  |  |
| SLOCA_C              | 2 inch equivalent break modeling success path SLOCA-011   |  |  |
| SLOCA_D              | 3/8 inch equivalent break modeling success path SLOCA-011 |  |  |
| SLOCA_E              | 2 inch equivalent break modeling success path SLOCA-013   |  |  |
| SLOCA_ECS            | SLOCA with containment spray and LPR                      |  |  |
| SLOCA_F              | 3/8 inch equivalent break modeling success path SLOCA-013 |  |  |
| SLOCA_FCS            | SLOCA with containment spray and LPR                      |  |  |
| SLOCA_G              | 3/8 inch equivalent break modeling success path SLOCA-003 |  |  |
| SLOCA_GCS            | SLOCA with containment spray and LPR                      |  |  |
| SLOCA_H              | 2 inch equivalent break modeling success path SLOCA-003   |  |  |
| SLOCA_HCS            | SLOCA with containment spray and LPR                      |  |  |
| SLOCA_J              | CST depletion times with charging injection               |  |  |
| SLOCA_K              | CST depletion times with SI injection                     |  |  |
| SLOCA_L              | Recirculation switchover times                            |  |  |
| SLOCA_M              | 3/8 inch equivalent break modeling success path SLOCA-021 |  |  |
| SLOCA_MCS            | SLOCA with containment spray and LPR                      |  |  |
| SLOCA_N              | 2 inch equivalent break modeling success path SLOCA-021   |  |  |
| SLOCA_NCS            | SLOCA with containment spray and LPR                      |  |  |
| SLOCA_P              | 2 inch, no depressurization, core damage                  |  |  |
| SLOCA_Q              | 3/8 inch, no depressurization, core damage                |  |  |
| SLOCA_S              | Operator fails to depressurize RCS                        |  |  |
| SLOCA_T              | SLOCA with containment spray and HPR                      |  |  |
| SLOCA_U              | SLOCA with containment spray and HPR                      |  |  |
| SLOCA_V              | SLOCA with containment spray and HPR                      |  |  |
| SLOCA_W              | SLOCA with containment spray and HPR                      |  |  |
| SLOCA_X              | SLOCA with containment spray and HPR                      |  |  |
| SLOCA_Y              | Modeling success path SLOCA-006                           |  |  |
| SLOCA_Z              | Modeling success path SLOCA-016                           |  |  |
| SLOCAV_A             | Models success path SLOCAV-001                            |  |  |
| SLOCAV_B             | Models success path SLOCAV-005                            |  |  |
| SLOCAV_C             | Plant response, no operator actions modeled               |  |  |

 Calculation No. MDN-000-999-2008-0151
 Rev: 001
 Plant: WBN Unit 0
 Page: 97

Subject:

| Table 23 – MAAP Runs |                                             |  |  |
|----------------------|---------------------------------------------|--|--|
| MAAP Run Identifier  | Description                                 |  |  |
| SLOCAV_D             | Blocked SI signal                           |  |  |
| SLOCAV_E             | Long term cooling with RHR                  |  |  |
| SLOCAV_F             | Success with 1/8 inch equivalent break size |  |  |
| SLOCAV_G             | Success with 1/8 inch equivalent break size |  |  |
| SLOCAV_J             | Models success path SLOCAV-002              |  |  |
| SLOCAV_K             | Models success path SLOCAV-005              |  |  |
| SLOCAV_N             | Models success path SLOCAV-009              |  |  |
| SLOCAV_P             | Models success path SLOCAV-012              |  |  |
| SSBI-001             | Models success path SSBI-001                |  |  |
| SSBI-002             | Models success path SSBI-002                |  |  |
| SSBI-006             | Models success path SSBI-006                |  |  |
| SSBI-009             | Models success path SSBI-009                |  |  |
| SSBI-011             | Models success path SSBI-011                |  |  |
| SSBI-012             | Models success path SSBI-012                |  |  |
| SSBI-015             | Models success path SSBI-015                |  |  |
| SSBI-015A            | Charging pump bleed and feed                |  |  |
| SSBI-018             | Models success path SSBI-018                |  |  |
| SSBI-019             | Models success path SSBI-019                |  |  |
| SSBI-023             | Models success path SSBI-023                |  |  |
| SSBI-026             | Models success path SSBI-026                |  |  |
| SSBI-028             | Models success path SSBI-028                |  |  |
| SSBI-029             | Models success path SSBI-029                |  |  |
| SSBI-032             | Models success path SSBI-032                |  |  |
| SSBI-032A            | SI pump bleed and feed                      |  |  |
| SSBI-035             | Models success path SSBI-035                |  |  |
| SSBO-001             | Models success path SSBO-001                |  |  |
| SSBO-002             | Models success path SSBO-002                |  |  |
| SSBO-006             | Models success path SSBO-006                |  |  |
| SSBO-009             | Models success path SSBO-009                |  |  |
| SSBO-011             | Models success path SSBO-011                |  |  |
| SSBO-012             | Models success path SSBO-012                |  |  |