

Protecting People and the Environment

Near-term Task Force Recommendation 2.1 Seismic Hazard Evaluation

Southern

June 26, 2014

References for Meeting

- Licensee Presentation Slides ML14176B239
- NRC Presentation Slides ML14177A086
- Public Meeting Agenda ML14169A437
- Meeting Feedback Form (request from mfb@nrc.gov)
- May 9, 2014, NRC letter regarding Seismic Screening and Prioritization Results for central and eastern US Licensees (ML14111A147)
- May 21, 2014, NRC memo providing preliminary staff ground motion response spectra for central and eastern Licensees (ML14136A126)
- Meeting Summary to be issued within 30-day

Meeting Introduction

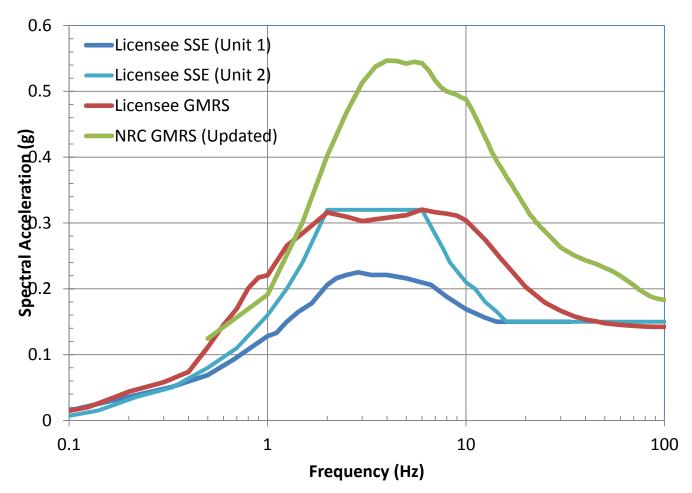
<u>Purpose</u>: support information exchange and begin dialog to have common understanding of the causes of the primary differences between the preliminary NRC and licensee seismic hazard results <u>Background</u>: NRC and licensee seismic hazard require resolution to support a final seismic screening decision and to support related follow-on submittals

Outcomes:

- Begin NRC and licensee resolution to support regulatory decisions and development of seismic risk evaluations, as appropriate
- Establish resolution path, including timelines and identification of potential information needs

Look-ahead: Potential Next Steps

- NRC will consider the meeting information
- Potential paths:
 - Licensee submits supplemental information based on public meeting dialog
 - NRC staff issues a request for information
 - Licensee sends a revision or supplement to the seismic hazard report
- NRC completes screening review and issues the final screening determination letter


Hatch Units Nuclear Plant

Sarah Tabatabai Office of Research June 26, 2014

Screening

- Screens in: Expedited Approach, Seismic Risk, High Frequency, SFP Evaluations
- Prioritization Group: 2

Stratigraphy

ERA	PERIOD	Еросн	GEOLOGIC UNIT	APPROX. THICKNESS (FT)	LITHOLOGIC DESCRIPTION
CENOZOIC	QUATERNARY	HOLOCENE	ALLUVIUM	55+	SAND AND GRAVEL; CARBONACEOUS SILTY CLAY.
		PLEISTOCENE - PLIOCENE (?) MIOCENE	BRANDYWINE FM	10+	CROSS-BEDDED SAND AND GRAVEL WITH HEMATITE CONCRETIONS.
	TERTIARY		HAWTHORN FM	300+	PHOSPHATIC, FINE TO COARSE SAND; SANDY, CALCAREOUS CLAY; ARKOSIC, CROSS BEDDED SAND AND GRAVEL; OCCASIONAL PYRITE.
			TAMPA FM	160	SANDY TO CLAYEY, PHOSPHATIC, FOSSILIFEROUS . IMESTONE: PARTLY DOLOMITIZED.
		OLIGOCENE	UNDIFFEREN- TIATED	120	MASSIVE, CALCITIZED, FOSSILIFEROUS LIMESTONE.
		EOCENE	OCALA FM (JACKSON GP)	280	MASSIVE, CRYSTALLINE, FOSSILIFEROUS LIMESTONE.
				610	SANDY, PHOSPHATIC, DOLOMITIC LIMESTONE; ABUNDANT GLAUCONITE AND FOSSILS.
			FM FM TALLA- HATTA FM	160	GLAUCONITIC, CALCAREOUS SAND AND THIN, FOSSILIFEROUS MARL LAYERS.
			WILCOX GP	90	CARBONACEOUS, MICACEOUS, SILTY, FOSSILIFEROUS MARL; OCCASIONAL GLAUCONITIC SAND LAYERS.
		PALEOCENE	CLAYTON FM	315	MASSIVE, CRYSTALLINE LIMESTONE; INTERBEDDED WITH CARBONACEOUS, MICACEOUS, GLAUCONITIC MARLY SAND.
MESOZOIC	CRETACEOUS	GULFIAN	POST- TUSCALOOSA DEPOSITS	955	COQUINOID, PHOSPHATIC SAND; CARBONACEOUS, FOSSILIFEROUS, GLAUCONITIC MARL; OCCASIONAL PYRITE.
			TUSCALOOSA FM	910	FINE GRAINED TO ARKOSIC, CARBONACEOUS, FOSSILIFEROUS, MICACEOUS SAND AND CLAY.
		COMANCHEAN	UNDIFFEREN-	115	SANDY, MICACEOUS CLAY; ARKOSIC SAND.
	TRIASSIC (7)		UNDIFFEREN- TIATED		ARKOSIC SANDSTONE; BASALT OR DIABASE.

Site Geologic Column (Source: FSAR Figure 2.5-8, Rev. 19)

Control Point

NRC

SSE Control Point El. 129 ft

Submittal

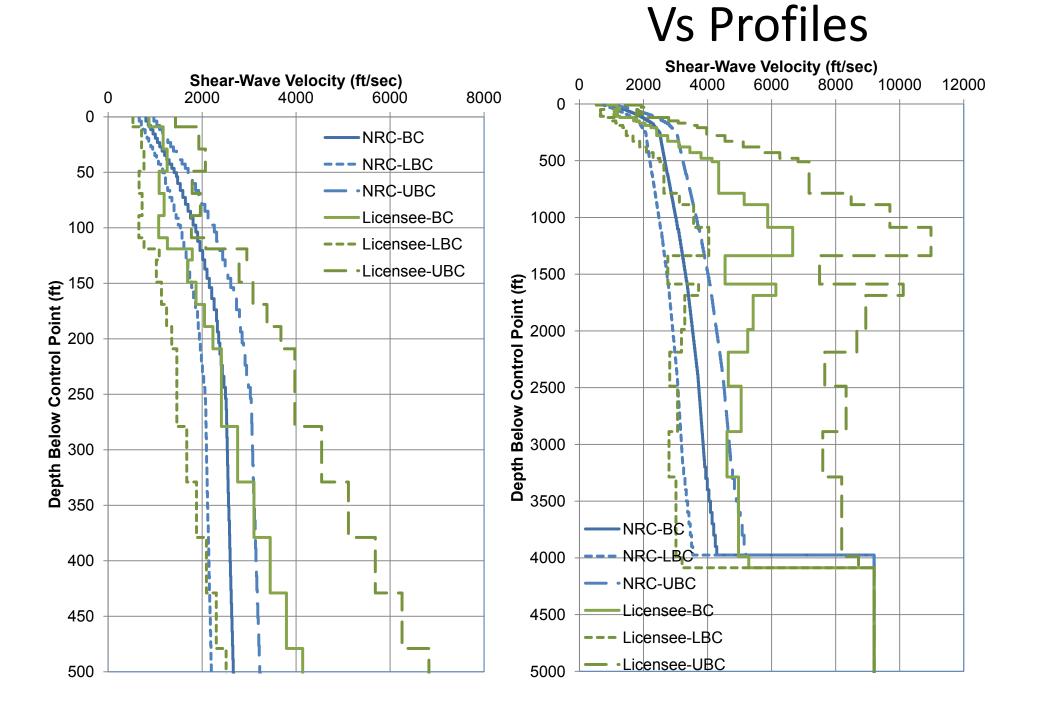
SSE Control Point El. 129 ft

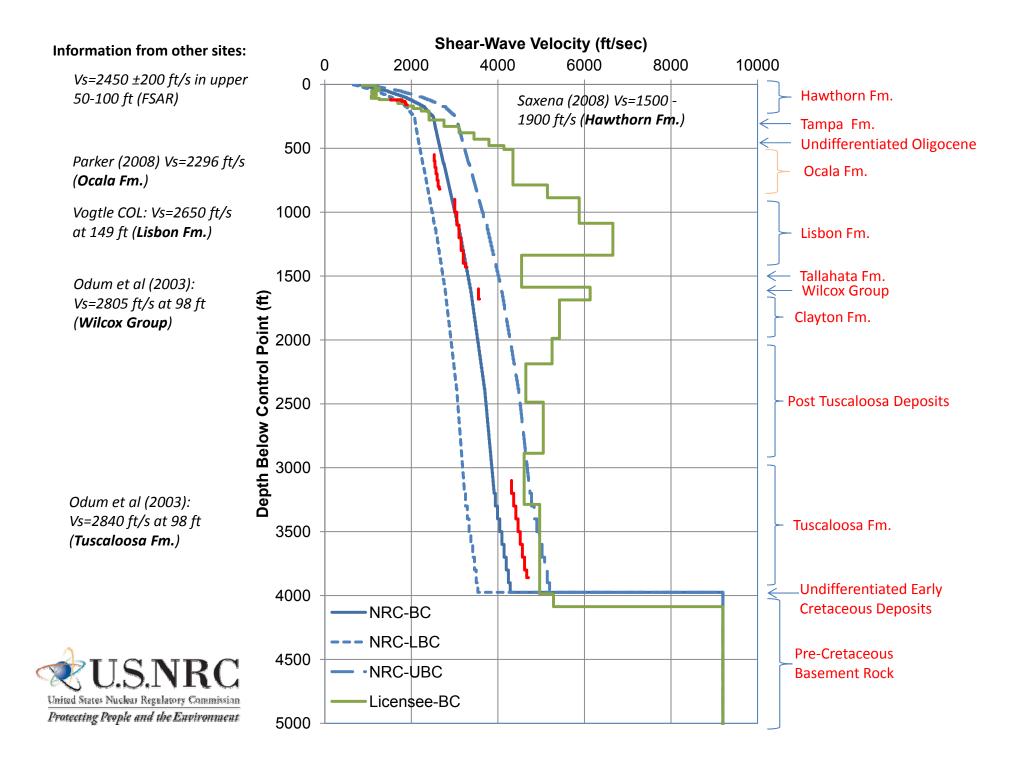
Vs Profile Development

<u>NRC</u>

Template velocity profile for Vs=400 m/s (1312 ft/sec) from SPID used for entire profile. Template velocity profile supported by Vs data found in the literature

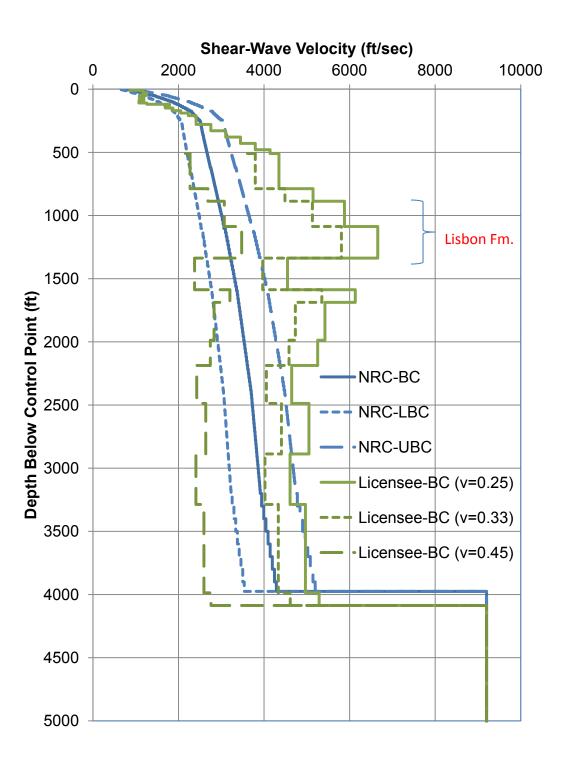
<u>Submittal</u>


ISFSI data used to develop near surface Vs profile (i.e. to a depth of 229 ft). Deeper portions of the profile (i.e. below a depth of 509 ft) were developed with nearby oil well exploration (Vp) data



Epistemic Uncertainty in Vs Profiles <u>NRC</u> <u>Submittal</u>

Applied a scale factor of 1.2 to the base case profile for development of the upper and lower case profiles


Applied a scale factor of 1.57 to the base case profile for development of the upper and lower case profiles

An average Poisson's ratio of 0.43 is reported for the Lisbon Formation at the Farley site

Aleatory Uncertainty in Vs Profiles <u>NRC</u> <u>Submittal</u>

60 Randomizations Using USGS "B" Site Conditions

 σ_{ln} = 0.25 Upper 50 ft.

 σ_{ln} = 0.15 Below 50 ft.

30 Randomizations Using USGS "B", "C", and "D" Site Conditions for the Upper-Range, Median, and Lower-Range Profiles, Respectively

 σ_{ln} = 0.25 Upper 90 ft.

 σ_{ln} = 0.15 Below 90 ft.

Epistemic Uncertainty in Shear Modulus and Damping Curves <u>NRC</u> <u>Submittal</u>

<u>M1</u> EPRI Soil: 0 – 276 ft EPRI Rock: 276 – 500 ft Linear & No Damping: > 500 ft

<u>M2</u>

Peninsular: 0 – 276 ft Linear & 1% Damping: 276 - 500 ft Linear & No Damping: > 500 ft <u>M1</u>

Av. of EPRI 50-120 ft & 120-250 ft: 0 – 129 ft Av. of EPRI 120-250 ft & 250-500 ft: 129 – 279 ft Idriss & Boulanger Weathered Rock Curves: 279 to 509 ft Linear & Kappa-Based Damping: > 500 ft

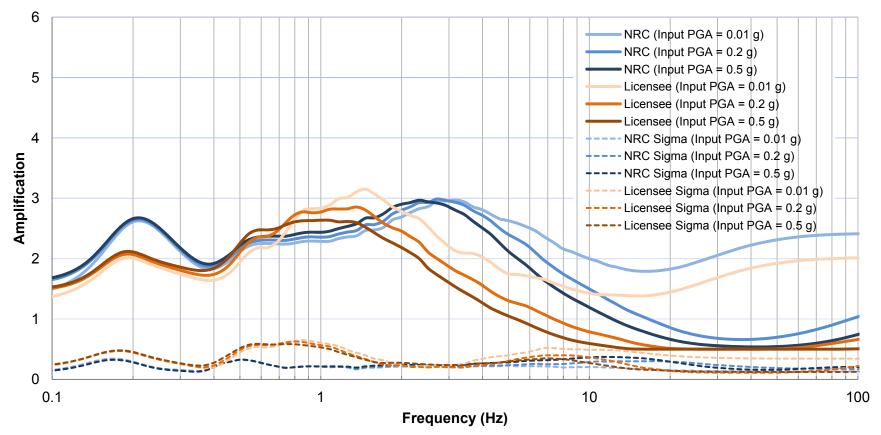
Kappa and Epistemic Uncertainty

<u>NRC</u>

Kappa was calculated for each base case profile using Q values from Campbell (2009). A σ_{In} =0.2 was applied to determine the range of kappas for each base case profile.

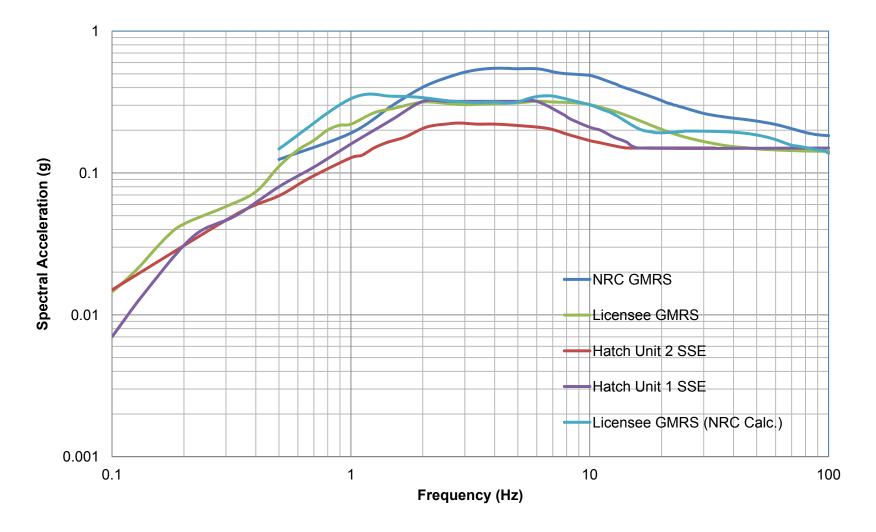
> Base Case Kappas LBC: 0.057¹ BC: 0.040 UBC: 0.030

Submittal


Calculated a kappa distribution² for each base case Vs profile based on a median kappa of 0.04 sec (i.e. a deep soil site) and a σ_{ln} =0.4

Kappa Distribution kL: 0.024 kM: 0.040 kU: 0.067

¹Imposed an upper limit of 0.04 sec based on the SPID Guidance ²Clarification needed



Amplification Functions

GMRS Comparison

Primary Differences

- Карра
 - Southern considered Hatch to be a deep soil site and used a median kappa of 0.04 sec, while the NRC placed an upper limit of 0.04 sec on kappa
 - Classification as a deep soil site inconsistent with Vs base cases
- Large differences in shear-wave velocities below a depth of approximately 500 ft due to an assumed Poisson's ratio