Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title: Filtering Strategies Rulemaking and Order EA-13-109 Public Meeting

Docket Number: (n/a)

Location: Rockville, Maryland

Date: Wednesday, June 18, 2014

Work Order No.: NRC-867

Pages 1-276

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	OFFICE OF NUCLEAR REACTOR REGULATION
4	+ + + + +
5	FILTERING STRATEGIES RULEMAKING AND ORDER EA-13-109
6	PUBLIC MEETING
7	+ + + + +
8	WEDNESDAY,
9	JUNE 18, 2014
10	+ + + + +
11	The meeting was convened at the Nuclear
12	Regulatory Commission, Two White Flint North, Room
13	T2B3, 11545 Rockville Pike, Rockville, Maryland, at
14	9:00 a.m., Aaron Szabo, project manager, presiding.
15	PRESENT:
16	TIM McGINTY, NRC, Director, Division of Safety
17	Systems, NRR
18	AARON SZABO, NRC, NRR
19	PHIL AMWAY, Exelon Corporation
20	RAJ AULUCK, NRC, NRR
21	JONATHAN BARR, NRC
22	RANDY BUNT, Southern Nuclear
23	JAMES CHANG, NRC, Office of Research
24	ROBERT DENNIG, NRC, NRR
25	HOSSEIN ESMAILI, NRC, Office of Research

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

		2
1	PATRICK FALLON, DTE Energy	
2	ED FULLER, NRC, Office of Research	
3	JEFF GABER, ERIN Engineering	
4	RAO KARIPINENI, NRC, NRR	
5	STEVEN KRAFT, Nuclear Energy Institute	
6	DOUG TRUE, ERIN Engineering	
7	MARTY STUTZKE, NRC, Office of Research	
8	RANDY SULLIVAN, NRC	
9	SHAYNE TENACE, Exelon Corporation	
10	RICK WACHOWIAK, EPRI	
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

		3
1	C-O-N-T-E-N-T-S	
2		PAGE
3	Welcome, introductions and logistics	4
4	Presentation and Discussion on detailed	
5	Cost Estimates	61
6	Discussion on Qualitative Factors	111
7	Presentation and Discussion on Event Tree	
8	And MAAP Analysis	124
9	Presentation and Discussion on Event Tree	
10	and MELCOR Analysis	174
11	General Comments/Discussion	
12	Closing Remarks	275
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
	NEAL R. GROSS	

	4
1	PROCEEDINGS
2	9:03 a.m.
3	MR. McGINTY: Good Morning. Thanks to all
4	members of the working group, the industry, the staff,
5	the participating members of the public as well. There
6	have been already many meetings and a lot of progress
7	made in this area over the course of the past year or
8	so.
9	We're looking forward to a productive day
10	and a half of meetings at this point. Just yesterday
11	at the Commission meeting for the Operating Reactor's
12	Business Line, the Chairman inquired directly of Tara,
13	about the fruitfulness of the exchange information that
14	we're having with the industry in this regard.
15	Tara did mention that in response to our
16	move to be more formal in some of our exchanges of
17	information, that detailed cost information was
18	provided back on March 30th or 31st. And we look
19	forward to continuing to receive information with
20	respect to the non-proprietary versions of major
21	assumptions and plant specific information that was
22	requested by letter by us.
23	This day and a half meeting of course is key
24	to that. I understand that today that we'll be
25	discussing the filtering strategies, rule making,

(202) 234-4433

	5
1	focusing on the preliminary MELCOR and MAAP analyses and
2	the event trees. And tomorrow, I believe industry will
3	be presenting concepts, deliverables, and milestones
4	for the phase two of the order.
5	So once again, I really want to thank all
6	of the participants and look forward to a productive
7	meeting.
8	MR. SZABO: Hi, this is Aaron Szabo, the
9	Project Manager for this rule making. A couple of quick
10	administrative things. First if you're on the line,
11	please make sure your phone is muted.
12	Telecommunications in the room we happen to be in today
13	is very good. So we will pick up everything.
14	I also want to mention the speakers do pick
15	up a lot, so please make sure that you omit your sidebar
16	conversations as this might get picked up. Just so that
17	you know, anything you might not have wanted to say to
18	the public might end up being heard by everyone.
19	As Tim mentioned, this is a day and a half
20	meeting. If you can move to the next slide Fred. The
21	purpose of this day and a half meeting is to first we're
22	going to discuss the detailed cost estimate information
23	as provided by NEI on May 31st. They're going to be
24	providing a presentation on that later this morning.
25	And then we're going to spend most of the

(202) 234-4433

	6
1	day discussing the PRA event trees and accident
2	analysis. That's going to start with a presentation by
3	industry after the detailed cost estimate. And then
4	we'll follow that up with the NRC presentation.
5	And then as Tim mentioned, tomorrow there's
6	going to be a presentation by industry on the concept,
7	deliverables and milestones for EA-13-109 Phase Two.
8	And then either the end of today or the end of tomorrow's
9	half day, depending on how we're running on time, we're
10	just going to provide some additional thoughts on
11	qualitative factors and where things are in relation to
12	that. On to the next slide.
13	And since here's the agenda, the day one,
14	we've mentioned that industry is going to present, we're
15	going to have some breaks, lunch. And then I have it
16	that I don't know if we're going to finish the
17	industry presentation in the morning. We'll try to
18	keep you guys until 2:00 today. Just that we will at
19	least have three hours, almost three hours for the NRC
20	presentation.
21	But of course, you know, I know you guys
22	love this topic. So if you're here until 8:00 you know,
23	while the rest of us might leave, you guys can stay and
24	talk.
25	Moving on to the next slide. Just the
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	7
1	second day agenda, which as I mentioned is the industry
2	presentation. And then some comments and conclusions.
3	Next slide.
4	This is a Category 2 public meeting.
5	Comments during presentation should be only on the
6	material being presented. We do have some spots for
7	general public comments at the end of the morning and
8	afternoon, and kind of throughout.
9	Also to note, this meeting is being
10	transcribed. I will try to mention this as much as
11	possible. Specifically those four on the phone, please
12	make sure to state your name clearly so that we can make
13	sure that it's properly transcribed.
14	This is just some restatement of the
15	teleconference number and the webinar information.
16	And the actual ML number where this presentation the
17	NRC presentation can be found is in ML 14168A as in
18	apple, 251. And I'm in the midst of putting the
19	industry presentation material into ADAMS as well.
20	Next slide.
21	At this point I would just like to go around
22	the room, state our names, and please make sure to speak
23	into the microphone, especially for those in the
24	audience. And then after that, I would like to go to
25	the bridge line for people to introduce themselves.

(202) 234-4433

	8
1	However, I also ask the people on the
2	telephone, please send me an email at
3	aaron.szabo@nrc.gov just letting me know that you
4	attend, just to make sure that I can the meeting
5	summary reflects that.
6	So at this point, I'm going to we'll go
7	around the room.
8	(Introduction of Participants)
9	MR. SZABO: If the people in room one
10	introduce themselves. If not, you can just introduce
11	yourselves at the time. Anyone on the phone?
12	(Introduction of Telephone Participants)
13	MR. SZABO: Great.
14	MR. KRAFT: Can I just make an observation.
15	Steve Kraft.
16	MR. SZABO: Sure.
17	MR. KRAFT: The people on the phone, other
18	than the gentleman from Certrec, are on our task force.
19	MR. SZABO: Okay.
20	MR. KRAFT: So they should be in the
21	Category Two aspect of the meeting. I would expect they
22	could speak up.
23	MR. SZABO: Okay.
24	MR. KRAFT: Thank you.
25	MR. SZABO: Sounds good. But as I said,
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	9
1	please send me an email. Also I would probably, likely,
2	horribly misspell your name. So thank you for that.
3	On to the next slide. This is just a list
4	of meeting summaries and other related documents. To
5	note, there's a June 12 teleconference between ERIN
6	Engineering and the Office of Research. We're in the
7	midst of just developing a summary for that. We'll be
8	just Research will be discussing as well as I believe.
9	Jeff you mentioned you'd also kind of be
10	talking about, just mentioning what do you guys mention
11	there as things come up. As Tim mentioned, on May 31st,
12	NEI responded to an NRC letter earlier in May on the
13	detailed cost estimates. There were some issues with
14	the pdf and ADAMS accepting it. So I'm working through
15	that to try to get it through.
16	MR. KRAFT: Have you sorted that out yet,
17	or?
18	MR. SZABO: No.
19	MR. KRAFT: Now have you heard from Joseph
20	Creed from Iowa?
21	MR. SZABO: I had words from.
22	MR. KRAFT: Okay, so that's in flight.
23	Sounds good.
24	MR. SZABO: And yes, I will have that in the
25	meeting summary, just what that ML number is for

(202) 234-4433

	10
1	everyone. And then just moving on to slide eight.
2	That's just, I like to have a list of everything that
3	we've done. It's just easier for people to find.
4	And then slide nine is more of meetings.
5	As you can see we've had quite a few public meetings and
6	interactions. On to slide ten, that's just my contact
7	information. At this time we'd like to open it up for
8	any opening comments that anyone would like to give.
9	MR. KRAFT: Yes, thank you Aaron. Steven
10	Kraft from the Nuclear Energy Institute. It is
11	traditional in the industry to begin meetings with a
12	safety minute. I would like to point out that
13	Montgomery County, Maryland, just issued a heat
14	advisory.
15	It is supposed to be in the mid 90s, with
16	a 55 percent humidity, which is a prescription for not
17	good things if you have any heart related illnesses,
18	asthma, or if you are elderly like myself and need to
19	take care. So please if you go outside, appropriate
20	precautions.
21	We appreciate the meeting. Tim thank you
22	for the introduction, catching us all up. We have been
23	trying to be responsive to the data request. And we do
24	greatly appreciate the formality. I think it helped us
25	a lot with that.

(202) 234-4433

	11
1	We did send in on May 31 as Aaron noted, the
2	cost estimate. And my sincere apologies, it was not in
3	quite the right pdf. Who knew there were different pdf
4	formats. Okay?
5	These are mysteries beyond my ken, so we are
6	getting it into the proper format to be able to post it.
7	Apparently there are people at NEI that fully understand
8	how to do this. It all happens in the background. And
9	who would have thought.
10	At any rate, so our first presentation this
11	morning, which I will turn to Phil Amway to lead. Just
12	a note about one procedural thing. And Shayne Tenace
13	who introduced himself sitting over here, was the author
14	of the cost estimate. So we asked him to join us today
15	for the purpose of questions and details.
16	Understanding it was a what do I call it?
17	An account of work that well the former
18	Constellation, now Exelon, folks at Nine Mile Point were
19	kind enough to do on behalf of the industry. And so they
20	have the greatest knowledge of how this was done.
21	And then this afternoon, we will turn over
22	to ERIN Engineering, EPRI, for the discussion. If
23	you're research people, and as we discussed tomorrow
24	morning. We scheduled it that way because there is the
25	joint steering committee meeting tomorrow afternoon,

(202) 234-4433

	12
1	and it's a matter of who's in the building at what time.
2	It was more of scheduling of these of the content of
3	the meeting.
4	Lastly, we note that there's a break at 2:30
5	in the afternoon. A few of us request that we stick to
6	that break. Because I have to leave to take a call.
7	Randy has to depart. Maybe others. So let's do our
8	best to if we stick to one time period, let's stick
9	to that one.
10	With that, any other opening remarks from
11	the industry side? I'm seeing none. All right, Phil
12	over to you.
13	MR. AMWAY: Okay. Sorry, as Fred moves the
14	slide. They're all in the file on the desk top. I just
15	have one more administrative thing to mention. And
16	it's about the formality of the requests.
17	We did receive some concerns from OMB about
18	Paperwork Reduction Act issues. Our attorneys are
19	currently talking to their attorneys and trying to
20	resolve any possible concerns. However for the sake of
21	completeness and to ensure that there is issues, we are
22	issuing the Paperwork Reduction Act within the FRM which
23	should be coming out Friday.
24	It may not be until next week. But there
25	will be a similar Paperwork Reduction Act type Federal
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	13
1	Register Notice.
2	MR. KRAFT: Well we are all for reducing
3	paperwork burden, and I'm not quite sure what that
4	entails for us. Probably nothing. That's something
5	you have to abide by.
6	But we did attempt to go about collecting
7	that data with the least burden possible on our members
8	through a variety of different data collection methods
9	and use of existing data. Use of the existing NRC data.
10	So I think we have got it down to the point where it's
11	a minimum burden on us.
12	MR. SZABO: I just warn people, I'm sure
13	you guys will, if you hear something let me know, or see
14	something coming up, just to be aware.
15	MR. KRAFT: Thank you.
16	MR. SZABO: Thank you.
17	MR. AMWAY: All right, I'm ready to begin.
18	This is Phil Amway, Exelon Corporation. And what I'll
19	be doing is going through the PowerPoint presentation
20	for the cost estimate we've performed. The PowerPoint
21	is based on the submittal we made on May 31st.
22	So on the first slide, the cost estimate,
23	the things I'm going to cover today, the objectives of
24	doing the cost estimate. Some of the details of the
25	cost estimating process in terms of consideration to

(202) 234-4433

	14
1	scope of the cost estimate and assumptions.
2	We want to go through some of the
3	non-hardware items and cost estimate. You know those
4	costs being a substantial portion of the total cost of
5	installation.
6	We'll review some of the plant to plant cost
7	variability that we considered in the estimate process.
8	And then we will look at the cost summary which is the
9	actual dollars and cents for each of the line items that
10	comprise that cost estimate.
11	And a time for questions. I don't want to
12	imply that you know, if you've got questions on the
13	slides as we go through, please stop me. And we'll go
14	through those at the time. But I just want to make sure
15	in closing that that's an opportunity for any remaining
16	questions.
17	Next slide, cost estimate objectives. The
18	process that we used to develop the cost estimate are
19	based on you know standard licensee processes for
20	performing cost estimates. These are similar type cost
21	estimates that we've already done for phase one of the
22	ACBS order implementation.
23	The 049 of spent fuel core level
24	instrumentations. Where we have a requirement or we
25	have a desire to modify the plant, the first step in

(202) 234-4433

	15
1	there is to come up with a conceptual cost estimate, what
2	we call a Rev 0, which tries to identify all the known
3	cost that would go into that modification of the plant
4	for use in business planning purposes.
5	To develop this estimate, we tried to stay
6	away from a site specific application. We're looking
7	at this as an industry wide cost estimate. You look for
8	input from the various representative plants that are
9	involved in Mark I/Mark II containments. And we did
10	receive input from about two thirds of the Mark I and
11	Mark II plants.
12	And so we think we have a fairly good
13	representative sample across the industry of what the
14	expected cost would be. At the same time, it's a
15	representative cost estimate, we did not try to
16	establish a high and a low estimate. It's what we would
17	expect the greatest majority of the plants to fall
18	within.
19	It built on the cost estimate information
20	that was already provided at the September 19, 2013
21	meeting. And then again on April 30, 2014, this year.
22	And as I said this cost estimate presentation is really
23	based on the submittal we made on May 31, 2014. Next
24	slide please.
25	The cost estimating considerations. As I

(202) 234-4433

stated, we used our typical licensee process for doing cost estimates. And that process is based on generally accepted project management cost estimating estimates to develop the cost estimate.

It's the same process used to estimate other projects. As I noted, we had the other orders and I don't want to leave you with the thought that we do it differently for regulatory required orders verses you know, the plant decided to implement an extended power upgrade for instance. We would do the same type of Rev 0 cost estimate, looking at all the factors that feed into that total cost of a project.

13 Consider the current conceptual stage of the project, we did a 50 percent contingency to the total 14 15 overall cost estimate. That falls within the range, if 16 you look in the details, of the cost estimate paper we 17 The range of accuracy is anywhere between sent in. minus 25 percent to plus 75 percent. We used 50 percent 18 19 as a median based on you know, what we would really expect to find out when we did the individual line item 20 21 cost estimates.

There's no contingency built into those. But as you'll see as we go through this presentation, there are numerous assumptions that we made to develop the cost estimate. And as we get into the design

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5

6

7

8

9

10

11

12

	17
1	details and the guidance that we actually have to use
2	to implement whatever the requirement is, we are going
3	to have a much better understanding as we go forward what
4	the actual costs will be.
5	As I stated, the baseline elements of the
6	cost estimate do not include contingency. We wanted to
7	make it clear in this cost estimate what we expect to
8	be, I'll say the bare bones cost to do the modifications
9	would be, versus what we're actually putting in in
10	dollars for contingency.
11	And in closing on this slide, it is the same
12	basis we use for other business decision making and
13	financial planning for a four or five year budget
14	planning process for the plant. Next slide please.
15	Cost estimating scope. As was requested,
16	we had three major cost structures in here. One looked
17	at the cost of severe accident water addition. Another
18	one for the small filters and one for the large filters.
19	And what that really pairs up with is we've
20	done several rule making analysis scenarios. We've
21	seen it in past public meetings. We refer to those as
22	scenarios 2 Alpha through Delta, 3 Alpha through Delta,
23	which is the water addition analysis. And we've done
24	them both to the RPV and to the containment.
25	For the small filters, that's aligned with

(202) 234-4433

	18
1	a rule making analysis scenario 4 Alpha and 4 Bravo.
2	And for large filters, that would be associated with
3	rule making analysis scenarios 5 Alpha and 5 Bravo.
4	These are incremental cost estimates. So
5	it does not include anything, and I'll summarize
6	anything that we are already committed to do under
7	either Order 13-109 or the FLEX orders, since there's
8	some ties in here, and we'll look at for water addition,
9	we'll go over in the next few days.
10	Anything we're already committed to do from
11	other regulatory requirements are not in this estimate.
12	It's only those costs in addition to those particular
13	items which are Deltas from where we're at today versus
14	where the rule making is headed, for either the water
15	addition or filters.
16	That's correct. And that's a good
17	clarification for the Order, it's 13-109, page one, the
18	wet valve vent portion. It does include installation
19	and commissioning costs. And the commissioning costs
20	would include things like your initial training for the
21	systems that are installed or modifications and also the
22	initial procedures.
23	It does not include things like ongoing
24	pre-qualification training, procedure maintenance
25	going forward. Maintenance to the additional
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON D.C. 20005 2701 (202) 224 4422

	19
1	components that are added to the plant. And does not
2	include decommissioning costs.
3	The basic reason for that is not something
4	we typically do in a Rev 0 type budgetary estimate. And
5	I had realized that was part of the information request.
6	If that's something that's desired in the future, we'll
7	have to work out the details of what that need would be,
8	so we can you know, strategize to figure out how we would
9	come up with an appropriate estimate to cover those
10	particular items.
11	Next slide, slide six. Cost estimating
12	assumptions. Modifications to a single water addition
13	source accessible for a severe accident conditions.
14	And what we're looking at there is you know, mechanical
15	modifications to those systems.
16	We all have injection points to the RPV that
17	we're looking at putting in for Order 49. Some of those
18	existing systems would require entry into the reactor
19	building to make hose connections, et cetera. Those
20	connections may or may not be accessible during severe
21	accident conditions, so that's one of the things we
22	would be looking at, is what would it take to make that
23	injection point accessible during severe accident
24	conditions.
25	So that's the first two bullets there. If

(202) 234-4433

we went down, the load of the filter installation, we assume that filter would be installed at grade level as opposed to having to excavate and put the filter underground or conversely having to elevate the filter. There are some plants that have minimal available space to actually be able to put a filter and may have to consider an elevated filter above something else. For this estimate we had estimated it would accepted to put at grade level.

For the small filter and these details for the small/large filters are based on some preliminary discussions with vendors that can provide a filter. The small being a seven foot diameter, 20 foot height, 20 tons total just for the filter. And for the large filter, it's 15 feet in diameter, 30 feet in height and 60 tons.

We would expect to have to provide some concrete shielding around the filter itself. And we assumed a three foot height density concrete shielding structure to enclose the actual filter.

21 We that the qualification assume 22 requirements for the filter portion of the system would meet the same requirements as Order 13-109. 23 We also assumed that the filter would have to include an 24 25 inerting system for hydrogen control. And that we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 1 would have to put a bypass around the filter to support anticipatory venting. 2 3 The reason for that is the filter, any 4 filter we would put in would create some back pressure on the vent system, which would interfere with the 5 pre-core damage flex scenarios where we'd want to use 6 7 RCIC and maintain the containment type material below the point which RCIC would be expected to run. 8 We also assumed that the filter would have 9 to include a make up system where the K heat was. 10 And the inventory that's lost in the filter would have to 11 12 be able to provide a makeup source for that. On the next slide, continuing this cost 13 estimate assumptions. We assume that it includes valve 14 15 position, effluent pressure, water level in the filter 16 and additional radiation monitoring instruments. In the next slide, in the filter make up 17 pump, that is different than what we would use for the 18 19 water addition strategies. This would be specifically for being able to make up to the filter to make up for 20 21 inventory loss in the water contained in the filter. 22 What the cost estimate does not include in 23 the assumptions, is the separate local control building just for the filter controls. Containment parameter 24 instrumentation, we're assuming that the existing 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	containment perimeter instrumentation would be
2	acceptable for the purposes of the filter.
3	Any portable generators, we did not include
4	costs for those items. Or for portable pumps for water
5	addition. And I have a parenthetical, the RPV and
6	containment, that is a different pump from what I noted
7	for the filter make up pump. We also did not include
8	any cost estimate for any e-tracing that may be required
9	for northern climates.
10	The next slide is not hardware items
11	included in the cost estimate. That includes project
12	management and oversight of the project controls.
13	Installation support, engineering, installation
14	equipment.
15	And what I'm talking about there is any
16	heavy equipment needed for excavation cranes, lifting
17	and ranking equipment, typically we would rent for this
18	type of installation. Scaffold and labor, tools and
19	consumables, laser scanning to confirm pipe routing,
20	and the contingency costs. Well, contingency on the
21	overall costs. Not just on these items.
22	Next slide, Plant to plant cost
23	variability. Just to recap the cost estimate is based
24	on the most likely installation details, based on the
25	input we received from like I said, about two thirds of

(202) 234-4433

	23
1	the impacted plants.
2	The range of cost certainly vary from plant
3	to plant. Some of those examples, you know I talked
4	about the footprint that the actual filter shield
5	building would take up. Some plants may be able to put
6	that relatively close to the reactor building.
7	Other plants are not going to have that
8	option. They're going to have to locate that at a
9	potentially significant distance aware from the reactor
10	building, which is going to impact their costs,
11	particularly in terms of total length of piping they
12	need. Number of fittings and valves in the system.
13	Pipe support, and the additional engineering that would
14	go along with those longer piping runs.
15	For the particular shield building that we
16	select used to house the external filter, there's some
17	variability in terms of the seismic design requirements
18	for that structure and the wind missile protection.
19	And it's important to put in there the wind missile
20	protection.
21	One of the things that we're finding out for
22	like the FLEX storage buildings, not the same, but a
23	similar concept, concrete constructed building. It's
24	the wind loading and the wind generated missile loads
25	that tend to define the thickness requirements of the

(202) 234-4433

(202) 234-4433

	24
1	concrete and the structural requirements for that type
2	of structure, that tend to drive the costs.
3	The design of the HCVS system being
4	installed is per the Order 13-109. And what I mean
5	there is the routing of the piping to meet the order and
6	to get to the required release point for the HCVS system,
7	may not be the same as if you had to put a filter in the
8	system, may require a different piping routing.
9	Okay, so all the stations right now are
10	looking at installing their HCVS systems to meet the
11	requirements in the Order. And obviously they're going
12	to do that in the most efficient manner possible to get
13	those pipe route. So that may be impacted if a filter
14	is added at a later date.
15	And the design of the water and electrical
16	infrastructure being used are installed per NRC Order
17	12-49. You know for plants that are close to a reactor
18	building that exit the length of additional hard pipe
19	needed, might be shorter then another plant. So
20	there's definitely some variability there.
21	As well as the electrical infrastructure.
22	Most plants will be using portable generating equipment
23	that's located away from the HCVS piping and may not be
24	you know, much of a concern from the radiological
25	aspects. Other plants may be closer and would have to

(202) 234-4433

(202) 234-4433

	25
1	look to modify that connection point.
2	The next slide is the cost summary. And
3	this is cut and paste directly out of the submittal that
4	was made on the 30th. But then this shows for all those
5	different line items that I went through on the previous
6	slides, what the dollar values are associated with that.
7	And if you see the bottom line here, the
8	total with 50 percent contingency added, that is what
9	we are recommending as input into the cost estimate.
10	It's what we would include for what we would expect the
11	cost to be for installation of either the severe
12	accident water injection, water addition, the small
13	filter with the makeup, and the large filter with the
14	make up.
15	Both the small and large filters include
16	the costs for the water addition, because right now our
17	analysis is showing to make the filters a successful,
18	possible successful outcome, you would still need a
19	water addition source. So we have included that as a
20	separate cost. But you can see the line item in there
21	is severe accident capable injection. And the cost
22	associated with those.
23	MR. KRAFT: Before you go to questions, a
24	couple of observations. We were asked in the previous
25	discussions about stand alone filter. Okay. You can

(202) 234-4433

	26
1	take the injection costs and simply deduct it.
2	It's not exactly one for one because there
3	are certain engineering costs, higher/lower portions.
4	You think within the size of the estimate and with the
5	contingency, that you're good enough on that one. And
6	I don't think it's worth anyone's time to try to refine
7	a separate stand alone filter estimate. It would be
8	within the ballpark and you're fine.
9	Secondly, I want to bring to your attention
10	on filter the line item filter vendor where we have
11	you know, in the far right column at \$13 million figure.
12	Recall the ACRS meeting where we talked about
13	SECY-12-0157 when it was in draft review at HRS. But
14	we questioned the use of the \$15 million number that you
15	had and there were these other costs that were missing.
16	And I recall that I made a statement from
17	the floor to the ACRS along those lines. And this is
18	the demonstration of that. I asked Shayne to
19	purposefully call out the filter by itself, that \$13 is
20	equivalent to the \$15, within you know, the ballpark
21	that I was thinking.
22	These are the other costs that I meant.
23	And no disregard, no disrespect for our vendors. They
24	can't know these internal costs. They try, they talk
25	to the prospective client, they try to understand. But

(202) 234-4433

	27
1	at the end of the day, it's the utility that understands
2	their own costs.
3	For example, and it's not included in here,
4	it's all part of the variability, is if some plant in
5	order to comply with the filter requirement, if there
6	ever was one, might say I can keep it in the building.
7	Or I have to move things around.
8	Or I can put it in a separate building
9	outside, or I don't have room for that. Those are cost
10	members just as much as they try to understand the walk
11	down.
12	So I just wanted to point out that was
13	this is the embodiment of that comment. And the reason
14	that we knew that the \$15 million, we had not done these
15	estimates, but experience, we are very experienced in
16	the industry of looking at estimates and saying okay,
17	what does it turn into our cost.
18	And so if your gut feel told us it was a lot
19	higher number. And it was there was a reference in
20	the final SECY to, the exact number was like \$45 million.
21	It was at least noted that it was there. And I just
22	wanted to go ahead and point that.
23	MR. AMWAY: Right, and to Steve's point,
24	there on the water additions costs being included in the
25	small/large filters. You'll see we didn't take the

(202) 234-4433

	28
1	total cost estimate you know, if it was a stand alone
2	item, and transition that directly into the small or
3	large filters.
4	Because we do acknowledge that there would
5	be some economies of scale in terms of the engineering
6	and the project management of doing those things
7	concurrently that would reduce the cost. So you'll see
8	that you know, that's why they're different there in
9	each of those items.
10	MR. KRAFT: That would be cost measures.
11	MR. AMWAY: Yep.
12	MR. SZABO: So just to dig in a little bit,
13	this is Aaron Szabo. So that filters came from the
14	vendor? Those numbers?
15	MR. TENACE: There were multiple vendors
16	that were polled. And there was a range. It's
17	actually in the document that was submitted, there's as
18	footnote. There was a range of values provided to
19	different vendors, between \$10 and \$15 million.
20	And so that's why \$13 was selected. Not
21	knowing which vendor would be selected and vetted to the
22	process in terms of you know, again one vendor versus
23	the another.
24	MR. SZABO: Right.
25	MR. TENACE: And those were arranged
	NFAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	29
1	similar as there was for
2	MR. KRAFT: Right. That was Shayne Tenace
3	by the way. And also not knowing in an individual case,
4	as we pointed out in our letter, this is a generic
5	estimate that binds no particular utility. So faced
6	with the need to comply with the requirement if there
7	ever was one, then the utility begins doing its own
8	preliminary designs. And produces a request for
9	proposal.
10	What might be in that varies from utility
11	to utility. There are different philosophies as to how
12	you can administer to the location. Or there are
13	different ways you do radiation protection. And those
14	things result in different requirements for vendors
15	that would vary from utility to utility.
16	There are large fleets of standards. And
17	each fleet has its own. It's all within the ballpark
18	of what they may be shade one way or another. But Shayne
19	tried to kind of level all that out by doing it the way
20	he did.
21	MR. SZABO: Understanding this is an order
22	of magnitude estimate, and based on what you kind of
23	provided us, minus 25 plus 75 rate, why are you
24	recommending that we go with the 50 percent contingency
25	as our mean instead of using the actual number and then

(202) 234-4433

	30
1	putting a low and a high on the minus/plus well and
2	understanding that the 50 percent is industry practice,
3	but?
4	MR. TENACE: Well I can use that. The last
5	25 again Shayne Tenace. The last 25 plus 75 is the
6	range of uncertainties that you'd see from say the
7	American Association of Cost Engineering. I've been
8	doing major projects for a number of years. And I've
9	seen precisely one project out of a hundred that's ever
10	been less than the phase zero estimate.
11	Where I've seen many that were in the 50 to
12	even 100 percent based upon the unknown unknowns. So
13	that's really the recommendation. And that's where you
14	know, typically is I would go from a phase zero to a phase
15	one. And I'd take that 50 percent, and identify
16	specific risk items, you know and apply contingency for
17	that.
18	But based upon you know, the experience
19	base, and what we've done in the industry, that's where
20	we ended up with the recommendation for 50 percent.
21	MR. FULLER: This is Ed Fuller from the
22	Office of Research. Your slide six, you mentioned as
23	one of the assumptions, a three foot high density
24	concrete shielding. Is that around the building where
25	the filter is? Or does it also include piping that goes

(202) 234-4433

	31
1	between the containment and the building?
2	MR. TENACE: The three foot thick again
3	Shayne Tenace. The three foot thick shielding is
4	around the filter building. Part of the assumption
5	relative to the piping, and this is one of the unknowns,
6	that I didn't have a good feel for, for the routing.
7	The assumption was that we may be able to
8	route the piping in a way that either blocks behind the
9	building from where it exits the reactor building. Or
10	we may be able to have a beneficial you know, shielding
11	just from the shield you know, from the filter building
12	itself. So
13	MR. FULLER: Yes, but shielding to protect
14	people that might be in the yard.
15	MR. TENACE: It's again, you know
16	depending upon the location, if you look at the, well
17	actually since you don't have the 11 page document that
18	I was provided. You'd see that the piping length of say
19	for a small filter was 210 feet of pipe. That would
20	assume that filter was located pretty close to next to
21	the reactor building.
22	So the assumption was that you could do it
23	a breach right near there to where again, you wouldn't
24	be exposing the piping, because you'd be using the
25	nuclear reactor building, or the filter building as a

(202) 234-4433

	32
1	shield in between folks in the yard. Again, that's one
2	of those things that would tend to drive cost up. And
3	
4	MR. FULLER: Well let me just explain why
5	I'm concerned. I'm not just concerned about what would
6	be going on during the accident. I'm concerned about
7	what you would do in the long term after you established
8	your safe, stable state. And when and how you protect
9	and/or dispose of the fission product inventory invaded
10	into the filter building.
11	For example, would you want to try to pump
12	it back into the containment? Or would you want to come
13	in and remove it somehow, or decontaminate to the extent
14	you can and then remove it?
15	In any case, you need to protect the workers
16	from high dose radiation.
17	MR. KRAFT: No question, Ed. The few
18	designs that I've seen, some have a drain that goes back
19	into the suppression pool, for that purpose. Which
20	doesn't mean that you under up with an uncontaminated
21	filter. But you get a lot of it to move back.
22	Some of it has to be cleared out within
23	every 24 hours. I mean there's all vendors will tell
24	you different things from their designs.
25	I think what you're asking about is first

(202) 234-4433

	33
1	covered in the contingency. Because there are things
2	we don't know about. And also carbon variability
3	because it varies from plant to plant to plant to plant
4	to plant.
5	And lastly, a lot of what you're asking
6	about is recovery.
7	MR. FULLER: Yes, exactly.
8	MR. KRAFT: Right, well these all the
9	post-Fukushima work we're familiar with, does not
10	include the carbon reactions. Carbon will come if we
11	have to. Because you don't know what you're going to
12	face.
13	MR. FULLER: But I'm just suggesting maybe
14	you want to plan ahead with these consignment systems.
15	MR. KRAFT: Well I'm sure we will. I'm
16	sure we absolutely will. But that doesn't
17	MR. FULLER: And by the way, you might ask
18	people who work at the Ric in Hanford, pumping
19	radioactive sludge is not exactly an easy job.
20	MR. KRAFT: Well, it's one of the reasons
21	we don't want to move it out of containment in the first
22	place, Ed. I mean understand, you've got one. You
23	know what you've got.
24	MR. FULLER: Okay. Absolutely.
25	MR. KRAFT: Okay, so let's bend that topic
	NFAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	34
1	into design criteria if we ever have to come up with
2	guidance for a filter. That's the best place to put it
3	with the recognition that it will increase costs.
4	So in a cost estimates, you guys want to put
5	an entry in for that, we're fine.
6	MR. SZABO: So I guess going back to like
7	SECY-12-0157, the basis for our estimate for generally
8	from European design costs you know, costs we were
9	provided, and basically kind of inflating them, very
10	generically with the CPI understanding that's not. I
11	guess if you can get into some explanation as to why that
12	would why we're still talking about a factor of two
13	difference you know.
14	I mean understanding this is an order of
15	magnitude estimate. And you know.
16	MR. TENACE: Sure and on the things
17	again, this is Shayne Tenace. One of the things we
18	looked at, we looked at the Swedish design, and there
19	was a range of costs from 1988, where it was between \$9
20	and \$13 million. And I decided to look just at
21	escalation. I actually came up with numbers between
22	\$31 and \$44 million.
23	Another difference is, as you know, as
24	we've progressed through the years, our standards in the
25	industry in a number of ways has gone up. As that has

(202) 234-4433

	35
1	occurred, it makes it it's a lot harder to get the
2	quality force and to get the work done.
3	I mean even in the last 20 years I've seen
4	that progression. And this is significant impact on
5	installation costs.
6	And one of the other things I'd noticed, and
7	there was some deviation as I looked and compared the
8	Swedish design and say the Liebstadt design, is the
9	location of the buildings and where you make a little
10	bit to install. I'm not familiar with that with
11	everyone, but one of the key inputs that I asked the
12	Science Board, was their location and how close they
13	could get.
14	And looking at the building locations and
15	then also looking at the potential impact on the
16	foundations, there is one of the European plants that
17	have any didn't have any shielding. I don't
18	remember. The Swedish design had a building. The
19	Liebstadt design I believe, they talked them into two
20	buildings.
21	Certainly under today's standards, I
22	couldn't see that being acceptable. So looking at a
23	combination of those things, you know obviously
24	escalation, increased costs and design features, that's
25	where I see the order too.

(202) 234-4433
	36
1	MR. SZABO: All right, so this I'm trying
2	to visualize, this the assumptions is that the
3	assumption for this would be that the filter is next to
4	the building?
5	MR. TENACE: That's cor well, for the
6	for example the small filter, and it will help once you,
7	I don't know if you've been in to look at the informal
8	document, but once it's close to that is there's three
9	pages where the assumptions from where they're at.
10	But also material quantities, it shows what
11	the number of values slack was, which gives you insight
12	into it in the range. But for this cost, it's kind of
13	close and next to the building.
14	MR. SZABO: And I guess one of the comments
15	we got from the Europeans was whether an additional
16	penetration point would be necessary. Is one of your
17	into the containment. They said that the one that
18	we looked at, they did not need it, and they actually
19	said had we have needed to add an additional
20	penetration, it would have skyrocketed costs.
21	And so I was wondering in your assumptions,
22	are you guys assuming that? Or are you guys assuming
23	that you have existing an existing unused penetration
24	for it?
25	MR. TENACE: Unused penetration.

(202) 234-4433

	37
1	MR. KRAFT: Well you have the vent line, in
2	Mark I the vent lines are already there. So that
3	penetration. The one penetration you'd have to find or
4	make, and I agree with you, you walk through what's
5	required to penetrate the containment, it's remarkable
6	what you have to do.
7	The question Ed raised though, I talked
8	about the one design I saw that had flow back into it,
9	you'd need a penetration for that. So you're right
10	Aaron.
11	The other thing I would just observe, and
12	I'm certainly no expert in international finance, but
13	you're talking to utilities in Europe who are financed
14	entirely differently. They're largely owned by
15	governments, even though it doesn't quite look that way
16	sometimes.
17	They have a you know it's possible that
18	they do estimating on somewhat different basis because
19	their accounting systems can be different. I really
20	don't know.
21	But I agree with Shayne, I recall when the
22	group from NRC staff that did the research in Europe.
23	They went to Europe and looked around, I don't know what
24	you'd want to call that. They made a public
25	presentation, the number I recall was like \$50 million

(202) 234-4433

	38
1	in 1988 dollars.
2	Well it's a simple matter of applying an
3	escalation formula to get your ballpark. And you hit
4	\$44 million. So I think from that standpoint, I was
5	comfortable in thinking well it can't be that far off
6	these days. And not to mention all the factors that
7	Shayne just raised.
8	MR. KARIPINENI: This is Rao. Shayne did
9	you make any attempt to contact any Canadian
10	installations for more recent?
11	MR. TENACE: No, I ran out of time. I had
12	planned to, but I did not get an opportunity.
13	MR. KARIPINENI: That would be more
14	representative of what's happening. At least in North
15	America, if we had some numbers from them too.
16	MR. KRAFT: Well yes and no Rao, I mean
17	their containment systems are completely different.
18	MR. KARIPINENI: You want to just make an
19	effort to look at. You're looking at 1988 and
20	estimating versus looking at two years back and then
21	escalate that and see what happens is what I mean.
22	MR. TENACE: Well, I can tell you that I did
23	talk with some folks from TEPCO. And looking at their
24	conceptual designs, and they were now obviously
25	that's in Japan where you know, costs are higher at the

(202) 234-4433

	39
1	construction rate. They were mentioning \$100 million
2	per train there. Now that includes you know, their vent
3	system and the exhaust system.
4	You're talking a \$100 million per train
5	versus \$50, I think it goes a little higher. I tried
6	not I created a you know, a bottoms up first, and then
7	did a sandy check comparison as opposed to trying to fit
8	a model.
9	MR. BUNT: Randy Bunt, those figures here
10	that's not in this estimate, is this would be a
11	capital addition for many plants. And a capital
12	addition will carry overhead. It will carry cost of
13	money. All those things would make this number even
14	higher.
15	And again, as was mentioned, the 50 percent
16	goes to what Dr. Fuller was talking about, and the
17	difference in penetrations. All that is unknowns that
18	are the variabilities.
19	That's at our site we at our plants
20	we use a 50 percent in our conceptual design estimates.
21	And then reduce it down to like a 35 percent contingency
22	and walk it down as we get closer to the finalized design
23	process.
24	And typically, the number continues to keep
25	going up, even though you're dropping the contingency
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	40
1	number. That's the way our nuclear projects typically
2	run.
3	MR. AMWAY: Yes, that's they eventually
4	come down to it.
5	MR. KRAFT: This was explained in our
6	letter where we describe how the utilities use this kind
7	of estimate for exact use comparison. Every major
8	corporation, and I hope small ones, maintain strategic
9	risk profiles. Not an NRC requirement, but it's
10	something that they do obviously at the corporate level.
11	And you know, the fact that there might be a filter
12	requirement is a strategic risk for those plants. And
13	they are carrying something on their risk profiles.
14	And this is the kind of estimate they would look at for
15	doing that. So that's what we were comfortable in
16	thinking. This is the sort of estimate that would be
17	comparable to the what would be used.
18	MR. SZABO: And before I go on to some of
19	to some cost questions I have, I just want to touch
20	on that a little, the decommissioning costs. We are
21	going to put, because we understand it's a non-zero
22	number. So we are required to assign something to it.
23	Of course we'll be talking with our
24	technical staff in relation to what kind of once
25	again, at the regulatory basis stage, if we decide to

(202) 234-4433

	41
1	even well even the water injection, or any of the
2	requirements, what type of maintenance or course
3	incremental maintenance there would be.
4	Understanding that might be rather minimal
5	like especially for like an external water injection
6	point. Considering you know, the inspections might be
7	while we already have the inspectors doing everything
8	else, so it might just be a couple more hours of
9	inspection. You know, that understanding that.
10	And then the decommissioning costs,
11	understanding that if you don't use this
12	MR. KRAFT: Decommissioning costs are
13	handled as I've learned, different ways. Everyone has
14	to have a decommissioning estimate, if for no other
15	reason I mean it goes into your risk profile. But if
16	for no other reason to meet decommissioning role.
17	And what typically has happened and those
18	estimates were done, and then you create percentage
19	adder. And every time you do a capital addition, you
20	don't separately estimate decommissioning that
21	addition. You take a factor based upon your gross
22	estimate and just kind of add it on.
23	Some companies embed that in these costs.
24	Some companies add them on. You know the accounting
25	books in the end, it's buried.

(202) 234-4433

	42
1	So what I think we can do here is make a
2	commitment to you to say okay, we'll give you a
3	percentage that you could use Randy to come up with
4	something for me.
5	MR. BUNT: Yes. I mean we've got this
6	is Randy Bunt. We've got one that we use that
7	encompasses all of the accounting dollars, the cost of
8	money, the overhead, the decommissioning, all those
9	features when we put into our accounting system once we
10	get the engineering estimate.
11	So the engineering estimate would be the
12	\$54 million. Then you put into the accounting system
13	and it would put it in which years are you projecting.
14	And then based on what the estimate is for escalation,
15	for overheads, for all the things embed in there.
16	The one thing that we don't do even in that
17	process though, is we don't put in post-use
18	decommissioning for this type of system. Now for a
19	normal system it would be post-use. For a system that's
20	going to be running and operating.
21	But for this one, we don't we would never
22	put anything in assuming that this was a contaminated
23	used filter from a severe accident standpoint. So
24	that's we don't have that cost anywhere in our system
25	or any estimate on how to do that piece.

(202) 234-4433

	43
1	MR. SZABO: Yes, I was I've done some
2	initial thinking about that also. My previous position
3	here was heavily involved in decommissioning funding.
4	I'm trying to think about how to best go through that.
5	About what type of levels of radiation we would have
6	post use. And whether there's some sort of we have
7	waste burial numbers.
8	I'm trying to think of some a way to
9	quantify, understanding it's a non-zero number.
10	MR. BUNT: On an application there, is we
11	have done chemical decoms. All the BWRs have done that.
12	It would be much more complicated than that. But at
13	least we give a baseline to start from. Some of the
14	decom costs. Especially early on.
15	And we could share some of that experience
16	from chemical decoms. Of the research piping or those
17	type things over the years, as to what the costs would.
18	Spent fuel pool clean ups and all. And it's not going
19	to be a one for one, but at least give some basis on where
20	that number can be.
21	MR. SZABO: Do you guys help with standards
22	you're cleaning up?
23	MR. BUNT: Correct.
24	MR. KRAFT: Well the disposal standard is
25	different than standard from continuing to operate the

	44
1	plant where you want to go to cleaner levels for the sake
2	of radiation control in the plant. So those are all
3	good first order kind of estimates.
4	It would be interesting to see what kind of
5	number you come up with to compare to the magnitude of
6	this number because that would tell you how important
7	it is.
8	MR. SZABO: Yes. It might be negligible.
9	It you know, like I said I think O&M off the top of my
10	head, is probably negligible. But you know, it's still
11	a cost, so we would at least would.
12	MR. KRAFT: Well a lot of that depends on
13	what requirements NRC, if you have a filter, what are
14	the requirements? Is there stuff in the maintenance
15	rule for example?
16	MR. SZABO: Well that's what I'm saying.
17	It's I've built that into the assumptions that I'm
18	making within the cost estimate. And we would discuss
19	that as to whether those costs. And I have discussed
20	that with my group as to whether those are legitimate
21	where of course only at the req basis stage, without
22	having all the guidance and rule, or anything like that,
23	where we'd be.
24	MR. KRAFT: And right now we don't see the
25	filter based on the technology that I'm aware of. And
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	45
1	I mean other people that there's any exotic type product
2	in there that's going to be extremely exorbitant and has
3	to be replaced at a short lift time period.
4	There are things that have to be replaced
5	and replenished. But chemicals and all but they're
6	not like palladium percentages and another element like
7	some of the zinc injection type stuff for noble kin that
8	are extremely expensive that we know of today.
9	Not that technology's not going to change
10	in the next few years. That that becomes the most
11	beneficial product. And then that may become a factor,
12	but we don't anticipate that at this time.
13	MR. SZABO: Good. We'll get down to this
14	cost question. And this came up, like I think I want
15	to say with your original cost estimates that were
16	provided. Which had a I once again, going off the top
17	of my head, like for instance the external water
18	injection into the RPV.
19	I think you said there was as low a
20	basically a zero cost for some because they had already
21	done it as part of FLEX.
22	MR. KRAFT: Well I don't want to
23	MR. SZABO: I think not zero, but there you
24	know, much less than for instance the \$3.7 million here.
25	And I guess I didn't know if that was my other question

(202) 234-4433

	46
1	was is that an outlier? Or is that a hey, we surveyed
2	two-thirds of them, half of them have this, you know,
3	just trying getting into that.
4	Especially in the difference between a
5	requirement to go into water injection of the RPV versus
6	water injection to the drywell, whether there is a you
7	know, if there is some you know if it's some and
8	it also shows for beneficial load at a drywell.
9	However the cost is zero for almost
10	everybody for the RPV, and the benefit isn't that much.
11	You know that might change it.
12	MR. AMWAY: Well one of the nice things is
13	it's I mean our analysis is showing that RPV injection
14	is marginally preferable to the containment. But the
15	you know, as far as water addition that we did under
16	Order 49, is the RPV. I mean there's P5B that says you
17	have to have a containment injection point, but the dots
18	in between there and where we want to go is bigger then
19	it is from Order 49 with RPV infections and where we want
20	to go.
21	MR. BUNT: And we haven't done a survey
22	yet. But based on conversations an involvement with
23	the industry, I would say anyone that would have a zero
24	or a negligible cost, would be an extreme outlier.
25	MR. SZABO: Yes.

(202) 234-4433

	47
1	MR. BUNT: Most people will have to do
2	something because the assumption is that you have time
3	availability under FLEX to be able to do multiple
4	actions. They're not prioritized in a critical nature
5	that they're done as fast as you can get them done, that
6	would eliminate more operator actions.
7	Whereas this would be more if that was
8	the case, then this would be a more negligible cost.
9	But right now, most of the FLEX actions or most of the
10	FLEX connection points are after you've used installed
11	equipment for a period of time, such as batteries, such
12	as RCIC, et cetera. And those give you a time line to
13	be able to do and to have more personnel available to
14	do actions.
15	So FLEX was not geared or set up to be as
16	hard piped that a zero cost would drive you to.
17	MR. SZABO: And I guess my other question
18	would be, this is coming from something I heard second
19	hand of one plant, and this was pre-piping for if a
20	filter is going to be built, basically they decided that

in fulfilling EA-13-109, they were going to pre-pipe

just in case -- you know, just as a -- for the regulatory

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

let's have it pre-piped just in case.

I guess they did their analysis and said look,

Is that -- is that once again, the one plant

(202) 234-4433

risk.

21

22

23

24

25

	48
1	that I heard of, is that an outlier?
2	
3	MR. BUNT: What I've heard is that one
4	plant, if it's the same plant I heard about, turned away
5	from that idea now. I want to say down to the cost of
6	everything else.
7	MR. SZABO: Oh, okay.
8	MR. BUNT: It was again, when they were
9	doing these type of cost estimating, they were laying
10	out all the different options available to them. And
11	then looking at the nominal \$100 piece of pipe, was not
12	going to be \$100 addition by the time you added all the
13	other inherent cost in it.
14	And when you went and looked at the benefit
15	and the cost to it, is in the unknowns, unknown about
16	what that connection would be, it was decided that they
17	weren't going to do it that way. I know of no one that's
18	doing that currently. Not to say there aren't any.
19	But I don't know of any. I don't, know Shayne?
20	MR. TENACE: I don't know of anybody. If
21	you looked at again, the assumption would be of it's
22	happening outside of the reactor building. I did not
23	find anybody that committed to doing that under the FLEX
24	order.
25	But one was where there was a significant
ļ	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	49
1	range. And certainly when presented the initial \$2.5,
2	you know, based on before contingency, you know there
3	was some give and where others said we're pretty adamant
4	that that number should be larger, shows that the plan
5	based upon some of the plants it could be less.
6	I think the \$2.5 before contingency, the
7	\$2.7 represents a median value for the majority. You
8	know again, as Phil said, not expected to be the lowest
9	nor the highest. But there would be more than that in
10	the estimates.
11	MR. SZABO: Could you speak into your
12	microphone.
13	MR. FALLON: Yes, Pat Fallon from DTE. We
14	might be the outlier. But we wire hard piping from
15	outside the building to inside the building to RHR. But
16	it doesn't relieve us, operator actions on the first
17	floor reactor building.
18	So we still have actions, no matter what.
19	And there's just I can't think of any way that you
20	could have somebody go outside your secondary
21	containment and not have valve protection inside,
22	protect the secondary containment and function that you
23	have to have. And you're going to have to send people
24	down into the reactor building to operate those.
25	So there is no escape for anybody from the

(202) 234-4433

	50
1	severe accident aspects of operation.
2	MR. BUNT: I think what was said was when
3	we get to a severe accident condition, that the intent
4	is to design, if we have to design a system to not require
5	heroic actions. But it's going to be an uncomfortable
6	day. People are going to pick up those. People are
7	going to be hot and sweaty. They're going to be in
8	places that you'd rather them not be, under conditions
9	they'd rather not be in.
10	But the intent is that we don't want them
11	to be in heroic activity that they have to do. But it's
12	not going to be a good day.
13	MR. SZABO: Okay, and thank you for all of
14	this. By the way, I wanted to thank you for the
15	submittal. It was very detailed.
16	My last question is actually on, my test
17	question was what was the cost for modifying guidance,
18	if we were to put a filter in. This doesn't need to be
19	necessarily addressed today, but let's get somebody
20	that we consider when we're doing our analysis.
21	And I know you mentioned onsite training.
22	But is, from my understanding, is part of that as well
23	as guidance. I don't know if the guidance change is
24	just on site, or is it also at
25	MR. TENACE: It was not at the BWR street

(202) 234-4433

	51
1	level. It was at the site and so
2	MR. KRAFT: So you're asking about like if
3	you had a requirement, how would we modify, for better
4	or worse, NEI 13M2, and the comparable ownership
5	documents. Now you would be on these, and if you wanted
6	a cost estimate.
7	I have no idea how to cost that. I don't
8	know what the hourly rates are, I mean how do we come
9	up with that estimate?
10	MR. BUNT: We did not include in here, the
11	cost for REV 10 and APG stag cost for if you're running
12	for your type activity to go forward. Type activity
13	here. We did not include those institutional costs.
14	EPRI to run another set of analysis, because this is now
15	possibly something else that you want to include in a
16	basis document.
17	Those type of industrial or institutional
18	cost across the fleet have not been tried to be
19	incorporated in here. This is strictly to incorporate
20	what has been provided.
21	MR. SZABO: So I guess my question is for
22	the training then, or the guidance development and
23	training. Is the assumption that there would be a base
24	document so you know, from my understanding is you
25	know, you take the ownership document and they do apply

(202) 234-4433

	52
1	it
2	MR. TENACE: You'd modify it for a static
3	change that we'd then forward. And I would expect for
4	something like this, that ties into severe action water
5	addition and management more than the filter. The
6	filter itself I think can be a site specific or a
7	guidance change.
8	MR. BUNT: Right, but there's a Rev
9	MR. TENACE: There would be an industrial
10	level document.
11	MR. BUNT: There's going to be an industry
12	level document that will address it and how to bring it
13	in, how to incorporate it in. I would envision that
14	type of topic is I would say is not included in here.
15	But it would be included in how that got changed at the
16	plant site.
17	This number is nowhere near the number that
18	it would be if you included the hours that the people
19	are going to spend training. This is the development
20	of the training. And the giving of the training. This
21	is not all the crews going through the training to be
22	qualified. This would be incremental and to supplement
23	something else.
24	So it wouldn't be considered an incremental
25	cost. Because we would offset something else in their
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

training. But there is real cost associated with that. But there's something else that didn't get training in that cycle because we're not going to train them how to operate a filter or how to run a filter. We're going to train mechanics on how to do the works code, the INC techs.

That is not included in that 175 number that's up there for procedures and training. That's really the development and the cost of the training people, to give the training and to establish it. Not for the people to attend the training.

MR. FALLON: It'll be on the cost anyway, 13 and it's something you're going to be doing on a continuing basis. An operations expense.

MR. SZABO: Yes, I was looking more the you know, as a part of the implementation cost. I mean we might consider that. You can even theoretically call that break guide development if you really want to. In relation to the well it might not be your industry wide you know, your new owners group doc -- you could just say that it might not be that for the reg guide, but some, you know, I'm trying to insure that we're just -- or if we're not making sure that, I'm just characterizing that problem.

> MR. BUNT: That's not in here. Yes, that

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

6

7

8

9

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

	54
1	would be above and beyond what's in here.
2	MR. SZABO: Excellent, thank you. Fred
3	Schofer looks like he had some questions.
4	MR. SCHOFER: This is Fred Schofer. I
5	have a couple of questions just on the project duration
6	for each of these alternatives. That we expect what,
7	a one to three year time frame to implement these?
8	MR. TENACE: The assumption is that the
9	severe action water addition was approximately one
10	cycle, 18 months. Whereas both the small and large
11	filter were three year duration.
12	MR. SCHOFER: Okay. And would these
13	require outages to implement?
14	MR. TENACE: I do not believe that would
15	require well the severe action water addition, you
16	may have to tie in during an outage. I don't believe
17	based upon the guidance that we're having for an event,
18	the availability and duration for the final tie in's I
19	don't think that you would need an outage for the
20	filters.
21	MR. SCHOFER: And would the sever action
22	cable injection, which would require the outage, would
23	you expect that an outage would have to be extended
24	because of it? Or would it be able to be performed
25	within you know, the standard is 15, 20 day time frame?

(202) 234-4433

	55
1	MR. TENACE: I would probably get back to
2	you on the information on that, since the tie in to the
3	next outage is part of our FLEX going into the RHR
4	system. And our windows in an outage for RHR are
5	probably like 10 days or less, for developing a time line
6	to do that at DTE were our time is
7	MR. BUNT: This is Randy Bunt. Typically
8	for our sites, if you're going to do this as a fast track
9	project where you want to do it in one cycle, it probably
10	is going to impact your outage duration.
11	If you're going to do this as a five year
12	window where you've got time to plan it and you can move
13	other work around and find the right window to put it
14	in, then I would say this type of tie in typically would
15	not impact your outage, or drive your outage plan. Just
16	in general terms.
17	So if we're going to try to do this in a
18	really quick, fast track method, then I'd say it
19	probably is going to impact it, especially because
20	you're looking at the duel trains, type of
21	functionality. And trying to find the right window to
22	do those tie in's and to do those functional testing.
23	And it's probably a 50/50 chance on whether
24	the large filter would require an outage depending on
25	what your post-maintenance functional tests would be,

(202) 234-4433

	56
1	and where you had your tie ins. We would try very hard
2	not to make it an outage activity like Shayne mentioned.
3	But then again, it could end up being that's
4	the best place from both industrial and inter-safety to
5	do that. To get a functional designation.
6	MR. AMWAY: And I'll just add to that,
7	typically the way we structure our outages is you know,
8	you have divisional maintenance windows. And one
9	outage will have a major window for DIV 1. And then the
10	next outage you would rotate that, and your major
11	divisional window would be DIV 2.
12	So you know, like Randy said, if it's fast
13	track and you need to go in DIV 2, but it's not DIV 2's
14	turn, that's where you might look at having to extend
15	the outage for it. But if it was a you know, multi
16	outage type situation, then you would put the actual
17	modifications that require outage during that
18	Division's major work scope. That's the way you should
19	manage that.
20	MR. SCHOFER: And I imagine that I should
21	assume that it wasn't included in the cost estimate
22	either? That would be another adder.
23	MR. AMWAY: Now it was assumed that there
24	would no outage extension due to this work activity.
25	Because that's been another line item we would have
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	57
1	added. Because it would have been a significant player
2	in the numbers.
3	MR. SZABO: Does anyone else have any
4	questions? Well, why don't we take a just a 15 minute
5	break, come back at 25.
6	MR. AMWAY: Aaron, just before we go on
7	break, just in closing, it looks like we've taken an
8	action for the industry to provide a percentage of
9	decommissioning cost. And that's the only action that
10	I can take out of here. Is there any
11	MR. SZABO: The only just, that would be
12	for both non-use and use. And I know use would be
13	based on some chemical
14	MR. AMWAY: We'll have to put our heads
15	together on that use.
16	MR. SZABO: Yes.
17	MR. BUNT: And give you we'll definitely
18	give you the one for non-use decommissioning. Because
19	that's pretty straight forward. And we may want to
20	prefer to have a phone call or something with you to talk
21	about brain storming. Where would we go get the
22	information and what type of information would you
23	rather see. As opposed to just giving you a rock, and
24	it not being anywhere close to what you need.
25	MR. SZABO: I don't yes. I don't see

(202) 234-4433

	58
1	that being a huge cost issue.
2	MR. FALLON: But Aaron, you did want us to
3	capture the full O&M cost of designs, right?
4	MR. SZABO: Yes, that would be the other
5	thing, is the O&M costs.
6	MR. FALLON: That would include any
7	training,
8	MR. SZABO: Yes.
9	MR. FALLON: Examples, any other stuff.
10	MR. SZABO: As well as when it kind of when
11	it would occur. So if you're talking about immediate
12	training, immediate you know, like years, because we
13	have to discount how just because we are required to
14	discount back when the training would occur. Or any O&M
15	costs would occur is helpful.
16	Which is also why the decommissioning cost
17	is kind of a huge thing, since that gets shot 40 years
18	or to
19	MR. BUNT: 20 to 40, depending on the plan.
20	MR. SZABO: Yes, so. All right, so yes,
21	let's let's just make it 10:30 now. And if you're
22	a guest and need any escorts, please find someone with
23	a badge.
24	(Whereupon, the above-entitled matter went
25	off the record at 10:12 a.m. and resumed at 10:28 a.m.)
ļ	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	59
1	MR. SZABO: All right, so now we'll begin
2	the industry presentation. Just make sure to introduce
3	yourself before you start.
4	MR. KRAFT: So before we do Jeff and Rick.
5	Jeff Gaber from ERIN and Rick Wachowiak from EPRI and
6	Doug True from ERIN, we'll largely view this
7	presentation. I think the rest of us might have some
8	comments.
9	We went over them yesterday. We tried not
10	to set the world record for number of slides in a deck.
11	We'll leave that to but one thing that one thing
12	I think you'll see here, there's some innovative ways
13	to present the data that I thought were quite
14	interesting.
15	We're not finished meeting Aaron, but I
16	would like to engage across the table at some point,
17	perhaps maybe later in the summer, maybe the meeting in
18	September, on how do we get to the end? What steps are
19	being taken? And the reason for that is we want to
20	identify where the gaps are and then how we can help
21	provide info for those gaps.
22	That's what I'm not seeing a big enough
23	a complete enough picture, right. And I'm not asking
24	for it now. I'm just think at some point, maybe it's
25	education on my part as to how these processes go. So

(202) 234-4433

	60
1	I just put that out there for your consideration.
2	MR. SZABO: All right, sounds good. All
3	right.
4	MR. KRAFT: Okay, over to you guys.
5	MR. WACHOWIAK: Okay, this is Rick
6	WACHOWIAK from EPRI. We're going to go through the
7	status of where we are on our analysis at this point in
8	time. Doug's going to present probably most of what's
9	in the package.
10	Just want to make sure that when we get to
11	the results, everybody realizes that these are
12	preliminary results. We're still tweaking our input
13	and making things more consistent.
14	So we don't expect big changes to what we
15	have here. But there may be some small changes in the
16	final output. And it certainly will be more complete
17	because we only have a couple of the alternatives to
18	present in detail today.
19	So with that, Doug?
20	MR. TRUE: Okay. Yes, this slide actually
21	Jeff Gaber actually presented in the last meeting.
22	Just to remind everybody that everything sort of started
23	with SECY-12-0157, went to add FLEX credit in it, and
24	we're trying to do our best to align with our assumptions
25	of yours. And as we see places where we've got some

(202) 234-4433

	61
1	differences, we're trying to bring back information to
2	make sure that we get aligned.
3	And one I want to talk about one particular
4	subject there too, the we're trying to make sure that
5	we've done an explicit analysis of all the scenarios.
6	In the analysis I'm going to go through kind of how we
7	set that up to be able to do it.
8	And then we're looking not just at risk
9	numbers, and outside consequences, but also events in
10	depth considerations. Ultimately, the EPRI work is
11	going to lead into industry work on cost benefit
12	analysis. The EPRI work is going to stop short of
13	actually doing the cost benefit analysis. Just focus
14	on the basically the benefit side of the analysis.
15	But we're trying to do this in a manner that
16	investigates not only our base case set of assumptions,
17	but also sensitive in our assumptions from
18	phenomenological, probabilistic as well as plant to
19	plant variability.
20	So this is a very ambitious project. We
21	started thinking about what our ultimate product looks
22	like. And this is going to be a monster of a report.
23	MR. KRAFT: Doug, could I interject. Doug
24	mentioned where the EPRI work is largely likely going
25	to end. We have to talk internally about NEI then

(202) 234-4433

	62
1	picking up the results of the EPRI work. And preparing
2	a short cost benefit analysis. There's a line between
3	regulatory and R&D work, and that's where the line is.
4	I don't expect that to challenge in some to
5	the EPRI document obviously. But it's not like we're
6	not going to plan on giving your our thoughts on that
7	It's that where the EPRI work ends and where the NEI work
8	begins, and you know, because we've got three
9	organizations involved. We're got EPRI, the owners
10	group and then NEI.
11	And we have our swim lanes and we try to stay
12	in them. Just so you know.
13	MR. TRUE: So we've got the owners group
14	doing the cost information, which changes present, talk
15	to you about and Phil. EPRI doing the reaction analysis
16	and the benefit analysis. And that comes together,
17	then NEI combines it.
18	MR. SZABO: Sorry, I don't want to
19	interrupt too much. Are you does anybody not know
20	the answer yet? Is NEI planning to any non-quantified
21	analysis within their cost benefit analysis? Or is it
22	going to be purely just a quantitative analysis?
23	MR. KRAFT: I don't think we've gotten to
24	that point yet.
25	MR. SZABO: Oh, that's fine.

(202) 234-4433

	63
1	MR. KRAFT: No, no, no. You're raising an
2	excellent point. But I happen to have about the use of
3	qualitative factors, we'll have to do some thinking
4	about that.
5	MR. TRUE: The EPRI report will present
6	information on the events in depth as we've
7	characterized it. And other metrics that fits into the
8	NEI. And we're anxious to hear about what your guys
9	thoughts are on this qualitative factors too.
10	MR. KRAFT: Yes, I will
11	MR. TRUE: And we're going to watch I
12	didn't attend physically attend the meeting, but I
13	called into the meeting on that. So we're trying to
14	keep tabs so we know that we're providing the right
15	information.
16	MR. KRAFT: On the qualitative?
17	MR. TRUE: Yes.
18	MR. KRAFT: Well I personally had to miss
19	that meeting. I think you were paying attention to it.
20	I am mindful of the paragraph in our letter from January
21	25, 2013 where we talked about what we believe to be the
22	appropriate use of qualitative factors. And I think
23	that we would be obligated to kind of stick with that
24	notion.
25	And we I'd like to be intellectually

(202) 234-4433

	64
1	honest in the work we do, so.
2	MR. SZABO: Okay, I just wanted to make
3	sure.
4	MR. TRUE: And the and in recommending
5	to you, but the intention as I understand it is that the
6	EPRI report would be a public report. So it will be
7	available to everyone.
8	Okay. I put this slide together in
9	preparation for this meeting for a number of reasons.
10	One is to sort of lay out for people who haven't been
11	watching, listening to this, how we're actually going
12	about this analysis. And then also to kind of bring in
13	some of the Mark II approaches that we're going to take.
14	So basically in a lot of our discussions,
15	we focus on the core damage event tree, the action and
16	progression of entry. But the way we set this up is we
17	basically have a completely coupled analysis. So the
18	core damage event tree feeds scenarios to the accident
19	progression of entry, which identifies those scenarios.
20	Those are tied into MAAP runs. The MAAP
21	runs are tied into MACCS runs. So every scenario
22	through core damage event tree, through an accident
23	progression of entry, actually gets its own MAAP
24	analysis and MACCS analysis that then ties into our
25	the EPRI benefit model, which would look at the

(202) 234-4433

65 1 probabilistic results as well as the deterministic 2 results and turn that into dollars. 3 Basically any other non-compliance type 4 benefits. 5 MR. FULLER: And just a quickie is this MAAP benefit model developed yet? 6 7 MR. TRUE: Yes. Except for we're waiting on the conclusion of the WinMACCS delivery to EPRI. 8 So we have preliminary WinMACCS results. We're waiting to 9 get the EPRI functional on WinMACCS so we can actually 10 11 have it all functioning. 12 MR. FULLER: The conclusion of -- I thought 13 that was done already. MR. WACHOWIAK: Not done yet. Not done. 14 15 We have information that the code was going to be 16 delivered today. 17 MR. FULLER: Today? 18 MR. WACHOWIAK: Today. 19 MR. FULLER: Okay. Is Jon Barr going to carry it over to you? 20 21 MR. WACHOWIAK: I don't know what the 22 method of delivery is. We've done some preliminary 23 MR. TRUE: 24 work, but EPRI, we've gotten a lot of benefit, tremendous amount of benefit that EPRI's high powered 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	66
1	computer, being able to run these. It runs very
2	quickly. And so getting WinMACCS to them so we can do
3	this. And this couple of form is central to our
4	approach.
5	So I have a preliminary benefit model.
6	We're still today going to talk in terms of relative
7	results. Because we want to wait until we have official
8	runs to show the absolute values of those results.
9	But this process basically is functioning
10	right now. And it's kind of coupled together for them.
11	But Jeff and his guys have figured out to actually
12	automate this whole process. So we go right for a MAAP
13	run into the MACCS analysis.
14	And so and in the alternative, we made
15	in feedback changes into the APET, or MAAP runs, or MACCS
16	runs, depending upon what alternative we're looking at.
17	And then some of this instead of parameters, we'll do
18	the same things where we'll change either a MAAP or a
19	probabilistic input. Some of those will even also
20	effect the core damage event tree.
21	So it's a basically we've done it all in
22	linked Excel spreadsheets. And then the MAAP and MACCS
23	data just gets pulled in the form of spreadsheet results
24	that allows us to very quickly re-quantify. So if Jeff
25	gets a new set of MAAP runs, all I've got to do is past

(202) 234-4433

	67
1	those into the Excel spreadsheets and we get answers
2	back, essentially instantaneously.
3	So on the Mark II side, we're just beginning
4	to turn our attention towards that. We're doing
5	basically two parallel analysis. As we have discussed
6	previously, maybe quite a bit previously, the Mark II's
7	and severe accident conditions, some of them have a
8	certain susceptibility to severe accident damage to the
9	interface between the drywell and the wetwell airspace,
10	which can create a bypass condition.
11	And so we're going to have a we're
12	setting up a model, and I'll explain a little bit about
13	how it's set up, that's going to look at a case where
14	we don't have bypass protection, we just have bypass
15	occurring when the at the right point in the scenario.
16	And then we're looking at another, which
17	essentially amounts to an alternative where if plants
18	can install some protection for that bypass threat, then
19	we don't have a bypass and we see what the results look
20	like with that.
21	So it's sort of an alternative. But in the
22	Mark II space, it's a binary thing. So it's either we
23	have a bypass or we don't have the bypass
24	susceptibility. And so we're creating two kind of
25	parallel analysis to proceed with that.

(202) 234-4433

	68
1	Anyway, that's this is the basic
2	framework that we're proceeding down. And like I said,
3	it's functional so far. Next please.
4	Alternatives, this slide we keep tweaking
5	every meeting. Based on some of the discussions we had
6	in the form meeting we had two weeks ago, we added two
7	new scenarios which we have not analyzed yet, to look
8	at a passively actuated drywell filter, which I think
9	is akin to the analysis you guys are doing in Option 6.
10	MR. SZABO: I think we're calling it 6,
11	yes.
12	MR. TRUE: Yes, it's 6 for you guys. Maybe
13	and that's a better way for us to do this, is you call
14	it 6. We didn't know you were going to call it 6, but
15	I think that's a good way to a good way to break it
16	out. And I think I also did a little bit of renumbering
17	just to make logical in the fours and fives. So that
18	the two is A, alpha, and three is Bravo.
19	I think when Jeff presented it we had it
20	backward, the other way around. Just in the long term
21	it seemed to make more sense to put the lower number with
22	the earlier letter. So I don't think there's a lot of
23	news there. Next slide.
24	This is one thing I think we need to have
25	some conversation on. Because we need to get aligned
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

on our thinking on this. It has to do with the deployment of the portable equipment. We've had a lot of conversations in the previous meetings about FLEX and the OIPs and the time lines that are provided in those documents. That explain the capabilities that the plants are going to put in place as part of implementing EA-12-049.

But those time lines were set up for a compliance basis essentially to meet NEI 1206. And so the deployment schedules that are laid out in those OIPs 11 are based on providing a time line that gives them margin to when that equipment is needed. And it's not actually 13 based on a best estimate deployment time, depending on what the plant conditions would be.

So the example is that for the referenced plants that we've been using for the Mark I, that the pump deployment -- portable pump deployment begins at around six hours and the OIP says it will be completed around 12 hours.

That's because that pump isn't needed until 20 21 well after 12 hours as a suppression pool make up source. 22 Not a necessarily an RPV make up source or a drywell spray or drywell injection source. 23

So that time line, and you can understand 24 25 from a licensee's perspective, when they lay out that

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

12

14

15

16

17

18

19

70
time line, they're going to be measured against that
time line. They want to set that up so that's a safe
a time line as possible, to give them margin to be able
to meet this.
MR. FULLER: Excuse me, Doug, this is Ed
Fuller. Given that particular time line, and given the
kinds of scenarios that we're looking at in this
particular rulemaking activity, one other important
time in the time line is that they estimate that with
load shedding, this is the same plant. With load
shedding, one could expect the batteries to be completed
in five and a half hours and by that time you need to
have a battery recharger ready.
Okay, and down here at your bottom bullet,
you say accelerated deployment can be completed within
four hours. So if you're going into it if you have
any lap and you're going along, and you're doing your
control depressurization and then keeping the pressure
between 200 and 400 psi, you would also do anticipatory
venting in this same plant at about 4.8 hours. Which
is about eight psig, if when you do a MAAP run, that's
what you get is eight psig.
So it would seem to me that until batteries

24 are depleted, they wouldn't necessarily be rushing to 25 deploy the portable pump.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	MR. TRUE: Assuming RCIC's right.
2	MR. FULLER: Hum?
3	MR. TRUE: Assuming RCIC's right.
4	MR. FULLER: Yes. The assumption that
5	RCIC's running and if you get to battery depletion,
6	that's one reason to fail RCIC. So they would have to
7	start running like hell to change their direction to
8	instead of getting ready to perhaps make up suppression
9	pool water later. And then all of a sudden they would
10	have to focus on getting drywell flooding set up, or in
11	vessel injection set up.
12	MR. BUNT: But they're going to work hard to
13	this is Randy Bunt They're going to work hard to get
14	that diesel connected to get the battery charger running
15	so they don't lose their batteries. And that's why the
16	others are lower for our thing.
17	MR. FULLER: Yes, the only thing about it
18	but yes, I understand, but for some reason they don't
19	do it. You have to look at the time line and say if you
20	follow the time line that's laid out, you're not going
21	have core damage. And that's the success path that this
22	particular plant has laid out for itself.
23	MR. BUNT: But if you lose the batteries at
24	five and half hours and that's when you lose RCIC, then
25	at that point, you would then take all effort to get your

(202) 234-4433
	72
1	pump up and running within a two to four hour window,
2	not at 12 hours. Because it's going to then become a
3	high priority because you longer have an injector
4	source.
5	MR. FULLER: Yes, well you're getting to my
6	point.
7	MR. BUNT: Okay.
8	MR. FULLER: My point is that you're going
9	to have to change your strategy and divert from the
10	original time line because you're not going to be taking
11	that suppression pool water right away anymore. So now
12	the question is how do you justify an assumption that
13	you could do this accelerated deployment.
14	MR. AMWAY: This is Phil Amway. And just
15	from my previous experience being a licensed SRO and
16	going through these types of things in a training
17	environment. If you get to a point where RCIC failed,
18	the first things is the anticipatory venting override
19	no longer applies because the whole purpose of that is
20	to prolong RCIC.
21	So if I no longer had that, I would
22	terminate my plan and then complete the automatic
23	depressurization. Because with no injection source,
24	now I'm challenging adequate core cooling. And the
25	procedures are going to have me complete the

(202) 234-4433

	73
1	depressurization, which is going to take you know, the
2	focus of the operators to try to control a band of 200
3	to 400 pounds.
4	Now the SRVs are just open, the vessel's
5	depressurized. And then going to divert resources into
6	hooking up the portable injection pump for RPV make up.
7	MR. FULLER: Yes, but at the same time, if
8	you're if you haven't been able to continue your DC
9	power operation, those SRVs are going to close. And
10	you'll repressurize the vessel.
11	MR. TRUE: I think the main message here is
12	that this is very scenario dependent. Extremely
13	scenario dependent.
14	MR. FULLER: Yes, that's exactly right.
15	MR. TRUE: And the way the plant operators
16	are going to respond is going to be a function of what
17	tools they have at their disposal, and how their
18	procedures would have them implement things.
19	So what our main message here was that you
20	can't take the 12 hour deployment time as the first time
21	that you ever have the pump available. It may under
22	certain circumstances, you could move that way forward,
23	if that's the only option that the operators have,
24	they're going to deploy it.
25	And well, I'm just stating, what we did in

(202) 234-4433

1	our analysis was that we assumed that within four hours
2	of loss of RCIC, they would be able to get that pump up
3	and running. The plant people say we could probably do
4	it faster than that.

And I think the owners group is working on some information to help explain that. Maybe it's only two to four hours. But I'm thinking, and one of the reason I wanted to bring this up is I think we need to know what you would need to help you do your analysis so that you -- we have a consistent set of assumptions here.

MR. CHANG: Okay, this is James Chang. From the perspective, I'm looking for when the decision is made and then how long does it take to perform the action? For a reference, plan that ELAP was declared at one hour.

And then at the one hour they stopped decision making to deploy the FLEX generator. And then the generator was connected to the PC valve in fifth hour. So that take four hours for that action.

21 MR. BUNT: No. That's an incorrect 22 They're allowed to have four hours because assumption. 23 their batteries lasted five and a half. That's the disconnect here is that it didn't take four hours to do 24 25 They had five and a half hours before they needed it.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

	75
1	the battery.
2	MR. CHANG: Okay, so let that's I need
3	from you, so what how long does it take to connect
4	the generator that's using. And then from the pump,
5	that's the first time that the decision was made at the
6	sixth hour. And to me it's the connect ready at 12 hour.
7	So to me it takes six hours to deploy the portable pump.
8	And when the decision's made, that's at
9	that's six hours. That's something that I still don't
10	know.
11	MR. AMWAY: the other thing I want to bring
12	out too right, is that integrated plan was written that
13	the first thing they were going to go after is hooking
14	up the generator to recharge the batteries. And then
15	the FLEX pump, because for the time line, that's the way
16	it went.
17	If I lose RCIC back here, well then that
18	priority shifts. You know I got battery power for a
19	while. I'm going to bring back the portable injection
20	pump and prioritize that ahead of the generator if I have
21	no injection source.
22	MR. KRAFT: But the FLEX strip, what's that
23	called the FLEX I'm sorry, guidance, whatever it is.
24	What do the conductors call them, FSG? Is that going
25	to have those kinds of?

(202) 234-4433

	76
1	MR. AMWAY: Well let's remember, it's at
2	the base, right. So the symptoms will drive me to do
3	that. You know if I've got low water level, then my
4	actions are to establish an injection source and
5	reservoir water level.
6	If I've got high pressure, my actions are
7	going to drive me to do something to bring down reactor
8	pressure. I mean they're just set up that way that
9	that's the way it works. If a symptom arises that says
10	now this is the top priority, then the resources and the
11	equipment are re-prioritized to match what that symptom
12	required.
13	MR. CHANGE: So this priority is being
14	judged by the operator, based on their experience and
15	training.
16	MR. AMWAY: That's right. And that's you
17	know, something that you typically routinely train on.
18	MR. TRUE: Based on the EOPs, not just
19	judgment. The EOPs guide you to if you don't have
20	RCIC, then you go with the alternative list of injection
21	sources. And on that list the portable pump.
22	MR. FULLER: Well one of the things that I
23	was leading to but didn't quite get to is, in book level
24	logic, and you guys are all exactly correct as well.
25	You come up with the insight that if things go wrong and

(202) 234-4433

	77
1	you can't divert core damage, a large fraction of the
2	time, that's going to happen with batteries depleted and
3	RCIC failing beyond let's say four hours, okay. Maybe
4	five, six, seven, eight, ten hours.
5	And that so you are looking at a series
6	of cases, some of which you will keep repressurize the
7	vessel, and some of which you won't repressurize the
8	vessel, but this particular regime is as far as I can
9	tell, one that's not been properly appreciate by either
10	the industry or the NRC staff so far.
11	MR. TRUE: Why?
12	MR. FULLER: Because we were up until now
13	too tied into the assumptions made for doing the MAAP
14	and MELCOR analysis.
15	MR. TRUE: I want to
16	MR. FULLER: And now not so much on the time
17	line. And now you're discussing, and this is great.
18	MR. TRUE: Yes, I guess I was wondering why
19	you felt the industry was not aware of that?
20	MR. FULLER: Well because it seemed to me
21	from the discussions we had even last week, or week
22	before last at the drop in meeting, that you had things
23	going to hell in a hand basket most likely in the first
24	four hours.
25	MR. TRUE: We had a good chunk of it going

(202) 234-4433

	78
1	to that. And I'm going to explain.
2	MR. FULLER: And I'm saying, there are
3	something to that, but there is more to getting into
4	trouble after four hours and before well before six
5	hours.
6	MR. TRUE: There's a portion from that too,
7	yes.
8	MR. FULLER: Okay, that's good to hear.
9	MR. TRUE: And in the cases where you
10	didn't deploy FLEX and get power, DC power re-energized,
11	you wouldn't be able to depressurize manually
12	depressurize, vessel wouldn't repressurize.
13	There's some chance it might, an SRV might
14	stick open, there's a chance you'll have a pressure
15	melt. And all of those things are accounted for I think
16	in the analysis framework that we put together. And I'm
17	sure it's in Marty's from what we have seen so far.
18	So I think the thing that has not been clear
19	is this deployment timing. We've been accounting for
20	it. And I realized after we had our drop in that we
21	weren't accounting for it the same way I think you are.
22	And that's why and so I'm back to my question is what
23	do we need to give you to help you understand account
24	for this.
25	And James you said you wanted criteria for

(202) 234-4433

	79
1	the decision to deploy. And then how long it takes once
2	that's something that.
3	MR. AMWAY: We'll look into that. Now I
4	want to make sure it's clear, it's not like we're
5	restricted to doing any one particular task at a time.
6	The actions that we would take to load shed to preserve
7	the DC power is something that we do today under standard
8	station blackout.
9	And we're not going to wait an hour before
10	we decide okay, it's time to go shed loads. That
11	happens as soon as you know you're in you know, the old
12	fashioned station blackout. And those activities
13	should be largely done by the time you declare ELAP.
14	So to extend the you know, the typically
15	battery coping time from four hours to five and a half
16	or whatever the number is in the OIP, you should be able
17	to accomplish that within that first hour or so of that
18	from T-zero. And we're not trying to jamb all of that
19	up together at the same time we're trying to hook up a
20	portable injection pump.
21	MR. TRUE: Okay, so what we owe you
22	MR. SZABO: I have a list.
23	MR. TRUE: Okay, we owe you that. I think
24	that's a good one to get ourselves aligned on.
25	Jim you said something about original

(202) 234-4433

	80
1	response scenario. This might be a good time to touch
2	on that.
3	MR. CHANG: Yes, in the NEI 12-06 talks
4	about it, Osaka crewmen arrived 24 hours. By the time
5	say that 24 hours when stuff occurred, and stopped
6	leaking, that's issuance like on reference it didn't
7	happen that way, for 24 hours equipment arrived. But
8	if that should not be the request for equipment start
9	and then it takes 24 hours to arrive.
10	MR. AMWAY: The time zero for that clock to
11	start is when the RRC is notified by the plant's point
12	of contact that the equipment is needed. Which is
13	typically a declaration of ELAP.
14	When can be anywhere from 45 minutes to an
15	hour and 15 depending on the plant site. But also, it
16	has through evaluations and table topping, it's very
17	likely that most plants will get equipment before the
18	first before 24 hours. 24 hours is the extended, the
19	last time period that you have to be able to get it by
20	24 hours.
21	So many plants will get it ahead of 24
22	hours.
23	MR. CHANG: Yes, this like 95 percent
24	confidence that you will be able to within 24 hours
25	that you will be able to get equipment in. So ELAP,
	NEAL R. GROSS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	81
1	again, is that the current ELAP is the indicator to
2	call for the outside equipment.
3	MR. AMWAY: Correct. But outside
4	equipment for most plants, off site equipment is only
5	an extension of the need to continue on with their
6	existing equipment that's on site. That they already
7	have redundancy to.
8	So every sites going to have plus one sets
9	of equipment on site. So they have a spare on site.
10	And then only and then typically the regional
11	response center is providing equipment to extend the
12	duration of that equipment in case it fails. Not to
13	replace it and require you to go do something different
14	at 24 hours.
15	And many plants that time that they would
16	ever get to the point where they would want to come off
17	any and they got with their own site equipment is going
18	to be much greater than 72 hours.
19	MR. TRUE: Especially the BWRs.
20	MR. AMWAY: Yes, especially the BWRs.
21	There's not a different piece of equipment that's going
22	to change any of the functionality. The pressure pump
23	that's on site, the generator's on site. All those for
24	Mark I's and II's are capable of extending out for an
25	extremely long period of time.

(202) 234-4433

	82
1	And like I said, every site already has that
2	redundancy of that on site. And then the off site
3	becomes an additional redundancy as well as other units
4	that are similar that are at a further away distance that
5	can provide equipment too.
6	MR. CHANG: An additional question that
7	any of the sites that lease the equipment providing a
8	table top was one that had two sets. One set was
9	delivered to within 24 hours, have access greater than
10	24 hours. Is that particular reason for these two sets
11	of assets?
12	MR. AMWAY: Well the further clarification
13	on that is that each site is going to have an individual
14	site response plan that is going to define the equipment
15	delivery requirements for that site. And they'll say
16	we need, you know, these pieces of equipment within 24
17	hours. We need these between 24 and 72. And then we
18	need these pieces beyond 72.
19	So there's further definition to that based
20	on the individual plant needs that's in those site
21	response plants.
22	MR. BUNT: An example of that would be that
23	there's a particular plant that wants water
24	purification equipment. But they don't need it until
25	like hour 42. So that's going to be something that

(202) 234-4433

	83
1	comes from a regional response center. It's going to
2	be required to be on site at hour 30 or so, so it's
3	available to be up and running by hour 42.
4	As a typical type example. That's not
5	I'm going to say that's a type of equipment that would
6	be in that second column that's not at 24 hour piece of
7	equipment.
8	MR. KRAFT: But just to put that in
9	perspective. So after they exhaust a source of pure
10	water for injection, they don't have to inject non-pure
11	water? If somehow, that portable SKID never shows up,
12	they're not going to stop injecting. They'll just take
13	the risk of injecting non-pure water.
14	That's really the essence of the backup
15	nature of what's at the national response centers. And
16	I wouldn't call them national response centers.
17	MR.BUNT: And that example is not for a BWR
18	either. No BWR is looking at water purification as a
19	regional response center, or a national response center
20	piece of equipment.
21	So that was one that came to mind first.
22	That was a good example of something that somebody
23	needed at that time period. That's what most BWRs,
24	regional or national response center equipment is
25	needed post 72. And it's really not even needed then.

(202) 234-4433

	84
1	It's just to have a back up in case something else
2	they have multiple failures.
3	MR. TRUE: And that they can begin to
4	enable recovery.
5	MR. BUNT: Correct, give them more
6	options.
7	MR. CHANG: Do you mind answering another
8	question related to this. In the actual, this I would
9	assume this is a seismic event that was a point 17
10	maximum saturation rates. In the so NEI 12-06 was
11	saying that this caused the severely damaged, it was not
12	specific.
13	So to me that assumed that the non-seismic
14	as one structure would be severely damaged. And that
15	included what is referenced including the downstream
16	bend. In the NEI 12-06, section 3213 initial
17	condition, item four it say this. No more access to the
18	ultimate heat sink is lost. But the water inventory in
19	the ultimate heat sink remains a variable and robust
20	piping connected to the current heat sink footprint
21	system, the making cast.
22	To me that's a big fail. That's ultimate
23	heat sink in this reservoir will be gone. But here the
24	12-06, assume that the water's still there.
25	MR. TRUE: When we take our next break, at
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	85
1	lunchtime I guess, I'll find the place in 12-06 that says
2	a non-seismically robust downstream dam is to be assumed
3	fail. I know it's in there, I wrote the document. I
4	just got to find the section that clarifies it.
5	But I'm sure it's in there. So I'll find
6	it's not in section 3. I'm pretty sure it's in
7	section 5. But I'll find that reference for you.
8	MR. BUNT: But the way sites address that
9	they basically are not taking credit for their installed
10	intake type structure pumps and all. And I know several
11	plants are planning floating suction items that go out
12	further into the water give them some flexibility on how
13	far away from the normal water supply, the water may have
14	diverted to.
15	Even though it's not a requirement in
16	12-06, there was some consideration when people were
17	designing and installing, or purchasing their equipment
18	to be able to have that variability in their suction
19	sources. To be able to say that the water may be in a
20	different configuration as a lessons learned.
21	MR. STUTZKE: Yes, this is Marty Stutzke.
22	One of the things I'll throw out is the staff is
23	considering opening a generic issue on downstream, down
24	failure. Independent of some things like this.
25	MR. TRUE: Yes, that's why I put it in FLEX,

(202) 234-4433

	86
1	because that's been a topic we talked about
2	post-Fukushima. So I need to I'll find that and when
3	we come back this afternoon I can point you to it. Okay,
4	anything else on deployment or operator actions?
5	Okay, Mark II, APET. This is a little bit
6	of a non sequitur for the day, but I wanted to kind of
7	just explain to you briefly how we're approaching this.
8	And what I did on this slide was I took the Mark I APET
9	description that Jeff presented in previous meetings,
10	and basically changed it to be the way we would
11	characterize the Mark II.
12	So we don't have a line of melt through
13	issue, so that goes away as an early containment failure
14	mode. But we did add steam explosions as a
15	consideration. I know you had question I think in one
16	of the requests for information on steam explosions.
17	So we're putting that in to the early
18	containment failure. And then the molten core concrete
19	action scenario that we put in the Mark I isn't as
20	relevant. So we're basically going to use that branch
21	point of the entry and replace it with the suppression
22	able bypass question. It's a bypass for non-incident.
23	Like I said it's a binary on/off analysis that says we
24	protected or we didn't protect that bypass condition.
25	So it doesn't change the entry structure at

(202) 234-4433

	87
1	all, it just changes basically what Jeff's Jeff's
2	MAAP analysis are going to use as inputs to the MAAP
3	analysis. And it allows us to keep the same structure
4	through the process.
5	The next slide just shows on the APET, what
6	the change is. It's not very readable. If it would be
7	helpful, we can email you a pdf of the actual APET so
8	you can see it.
9	MR. FULLER: Excuse me Doug. Because my
10	eyes are so weak and I don't have my magnifying glass
11	with me, can you read me what the top event of the only
12	change.
13	MR. TRUE: It says DW-WW, drywell-wetwell
14	interface intact. So the upgrade would be the bypass
15	is avoided, the down branch is the bypass occurs.
16	MR. FULLER: Thank you.
17	MR. TRUE: Okay, so that this next
18	slide, Jeff basically presented. I'm going to go and
19	it's the full result of our core damage with event tree
20	highlighted in yellow. A handful of them, they're
21	actually summarized on the next slide.
22	And it may be that can we have the next
23	slide. So this is what we found were the major
24	contributors. And probably merits some discussion.
25	We have some slides that help try and explain all of this

(202) 234-4433

	88
1	some more following.
2	But basically the break down of ours is that
3	we end up with RCIC failing early, which is anytime
4	between zero and four hours in over two-thirds of the
5	cases. There's a split on whether or not the operators
6	would emergency depressurize the vessel, or whether
7	that they do depressurize the vessel, that is the
8	difference between those first two scenarios.
9	In cases where DC is lost, or there is some
10	other significant infrastructure impact, the operators
11	wouldn't. And then there's of course the human error
12	probability associated with to pressurization. But
13	basically those are all early failures of RCIC.
14	Let me go to the next slide. And this slide
15	we actually used in the drop in to help explain some
16	of this. And so we wanted to put it on the record here
17	in this meeting. This is basically a plot that shows
18	the RCIC probability of failure versus time. Where the
19	left tracts this as RCIC failure probability and the
20	right axis is over the first four hours.
21	And we broke it basically into three
22	regions. The first bottom region there are failures
23	that are induced by the external hazard that basically
24	lead to an infrastructure damage or loss of DC. And I
25	pulled that out of RASP Handbook on Limiting Seismic

(202) 234-4433

(202) 234-4433

	89
1	Fragility for Electrical Components.
2	Basically something that goes beyond the
3	FLEX assumptions of the infrastructure remains intact
4	and says okay, we had a condition that was bad enough
5	that that infrastructure is not intact. And that
6	becomes basically a constant through the whole
7	analysis.
8	So those are scenarios that are not going
9	to be recovered by any means throughout the analysis.
10	We realized that's an assumption, and so as one of our
11	sensitivities, we're going to look at well what if that
12	goes away, how does it change our vision of what the
13	how the scenarios play out. But it's basically the
14	condition where we don't have the ability to deploy
15	equipment the way we would intend to.
16	The next the middle band there is RCIC
17	itself. It's the first increment at time zero is RCIC
18	pump itself fails to start. Or it's in the maintenance
19	condition at the time the event occurs. That's a couple
20	of percent contribution.
21	And then consistent with NUREG CR 6928, we
22	have the RCIC fail to run probability, which is a little
23	bit higher in the first hour. And as we get an
24	inflection point there right at that arrow, one hour.
25	And then it's a very slow increase. It

(202) 234-4433

	90
1	actually does increase between one hour and four hours,
2	which you can't really make it out on this graph, as the
3	probability of failure to continue to run accumulates.
4	The upper kind of pink region is step up and
5	relief valve contribution. And what we did there was
6	Jeff ran a series of MAAP runs to determine how many
7	times an SRV cycles during the first hour. And then
8	after the operator takes control and begins manually
9	cycling the SRVs at the lower pressure, how what the
10	frequency is over the continuing hours.
11	And then we took the NUREG 6928 failure
12	probability for an SRV fail to re-close, given it's been
13	opened. And basically we just multiplied times the
14	number of cycles.
15	And so in the first hour there are more
16	cycles. And as the operator takes control and reduced
17	pressure in the RPV, the rate of cycling goes down, drops
18	by the factor of three in our analysis. And what the
19	MAAP results said was that we got like 50 cycles in the
20	first hour and then another 50 cycles in the next
21	subsequent three hours.
22	MR. FULLER: Excuse me Doug. This is Ed
23	Fuller again. As you may be aware, we use as one of the
24	RCIC failure modes, excessive suppression core
25	temperature. And we use 230F, but people have said we

(202) 234-4433

	91
1	only could expect RCIC to run for quite a bit higher
2	temperatures for that. Have you considered that
3	failure mode at all in any of this?
4	MR. TRUE: We are we look at that. We
5	monitor the suppression able temperature. But the
6	temperature we're using is 240 degrees based on the work
7	that the owners group has done. And Jeff will have to
8	give you the details. But we haven't seen cases where
9	we've exceeded 240, as long as anticipatory venting
10	occurs.
11	If we don't have anticipatory venting, then
12	we lose it on high suppression able temperature.
13	That's part of our core damage event tree structure
14	explicitly.
15	MR. GABER: I actually think we might
16	this is Jeff Gaber. We might get a small contribution
17	from only drywell venting. Because if you recall, our
18	drywell vent is smaller than our wetwell event. And If
19	I remember, I can confirm this, but I'm pretty sure that
20	some of those cases where the wetwell vent fails to
21	operate, and we use the drywell vent, we may exceed the
22	240 in that one. But not until many hours into it.
23	MR. ESMAILI: One question. When you're
24	running the 240, do you run the RCIC for the full
25	coming from the suppression, for the full 16 hours, or

(202) 234-4433

	92
1	does it fail at some point?
2	MR. GABER: We can run it for we'll get
3	to 16 hours in our counts. And I think Ed, correct me,
4	you get to 12 or something, or 11?
5	MR. FULLER: Well it depends on when you do
6	the anticipatory venting. The sooner you do the
7	anticipatory venting, the better off you are. And if
8	you do it at 15 psi, then it's shorter, yes.
9	MR. GABER: So we normally get to the 12
10	or to the 16. Again, with the wetwell vent, the early
11	wetwell the anticipatory venting through the wetwell
12	path as we define.
13	MR. FULLER: And I've also done
14	calculations to show that you're worse of if you're
15	trying to vent through the drywell then through the
16	wetwell. You get to higher temperatures sooner trying
17	to vent through the drywell.
18	MR. TRUE: So just to kind of close out this
19	figure, so about half of the failure probability of RCIC
20	is at times zero, going back you want to go back.
21	About half of the failure total probability in the first
22	four hours occurs times zero. About a quarter of it
23	occurs during that first hour. Forward one please.
24	When with the SRV cycling. And then the other quarter
25	occurs over the remaining four three hours.

(202) 234-4433

	93
1	And so those failure probabilities are what
2	leads to the frequency that goes with those first two
3	scenarios that we talked about. Let's go forward to the
4	next one just briefly.
5	This is something that while the industry
6	POA folks were confounded by when we first started
7	talking about the result. They were like no, but we
8	know from our PRAs that long term core damage and the
9	station blackout is the dominant contributor.
10	And which is true if you don't look at
11	conditions where you've credited FLEX. So this is
12	basically a cartoon that basically says look, if you
13	assume you have an ELAP, this is an input condition.
14	You have no DC power and you look at a PRA. What you're
15	going to find is about 85 or so 90 percent of the
16	scenarios, are late core damage scenarios.
17	That's because there's a relatively small
18	probability that RCIC fails. And eventually in an
19	ELAP, you're going to get some core damage because you
20	don't have any options.
21	Once we add FLEX, then FLEX only reduces
22	those longer scenarios because it can't be deployed
23	necessarily in time to responds to those early RCIC
24	failures. So what happens is your perspective on
25	what's contributing completely changes when you've

(202) 234-4433

	94
1	taken account for FLEX's impact on core damage.
2	And now we have a picture here on the right
3	hand side where the majority of our core damage
4	scenarios in our results are the earlier RCIC failures
5	and a smaller fraction are coming from the longer term
6	failures.
7	So if we go back now Raj, a couple of slides
8	to that other breakdown, yes. That's why my
9	explanation for why we see this characteristic of, we've
10	got a majority of our scenarios are the early cases.
11	And the longer term scenarios contribute a smaller
12	amount.
13	Once we turn to the longer term scenarios,
14	the next largest contributor is we didn't get FLEX
15	deployed at the time we expected to have it deployed.
16	We didn't get the DC in place. We didn't get the
17	portable pump in place at the four-ish hour when we
18	needed to make that transition off of the batteries and
19	on to other capabilities.
20	And then we have some longer term
21	contributors due to failure to anticipatory vent
22	properly. And failure to control vessel pressure and
23	those kind of things.
24	And so that's kind of an English
25	explanation for why we believe our results are coming
	NEAL R. GROSS

(202) 234-4433

	95
1	out the way they are. That the benefit you get from
2	FLEX, suppresses the long term scenarios.
3	And then the biggest issue is do I get FLEX
4	deployed early? Because if I don't, then I'm you
5	know when I'm expected to, then I'm in trouble. And
6	then beyond that, it's only the operator managing the
7	scenario. Once you've got the resources deployed and
8	it's all about just the operator continuing to respond.
9	So those are the that's the way this 99
10	percent of our core damage breaks down. Any questions
11	on that? Because I think there was in our last
12	meeting when I wasn't here, there was some confusion
13	about why we ended up with the results that we did.
14	MR. FULLER: It makes sense to me.
15	MR. TRUE: Okay. And then we go to the
16	next one. This chart unfortunately in the last
17	meeting, I had kind of short-cutted and didn't break out
18	the timing very well.
19	This one sort of takes that RCIC failure
20	probability thing and breaks it on the right hand side,
21	the three slices of RCIC unavailable at time zero, RCIC
22	fails in the first hour, RCIC fails in the fourth hour.
23	And then the other transitions.
24	So this is another way of looking at the
25	timing of the loss of core cooling. So it's just
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	96
1	another. And then this slide, as Jeff presented last
2	time. It's just it gives you a little different cut
3	through that same data to say what's going on in the
4	background?
5	How much of this is loss of infrastructure
6	and how much of it is installed equipment didn't work
7	to enable FLEX to be successful? How much of it comes
8	from human errors associated with deploying FLEX? How
9	much came from the FLEX equipment itself not working
10	when we demanded it?
11	So and I did break the human errors into
12	cases where we had limited time and not limited time.
13	I was a little surprised in that it's not doesn't seem
14	that our results to be totally time driven. It's a
15	little bit of a judgement on how you count for time
16	impacts. But that's just another characterization of
17	the contributors.
18	MR. SZABO: Your percentages are still
19	above 100 by the way.
20	MR. TRUE: We can all thank PowerPoint for
21	that. I guess I'll add a I didn't know you had made
22	that comment before. It would have added a significant
23	figure so we get back down under 100.
24	Oh, yeah, we're over 100 we're way over
25	100.
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	97
1	MR. SZABO: Make sure it's not decimal
2	points, it's the closest number available.
3	MR. TRUE: That's interesting. I wonder
4	how that got. I'm going to draw, because those labels
5	are automatically generated. Okay, so we'll fix that.
6	Sorry about that.
7	APET results is an eye chart, not something
8	you can really track. This is the base case.
9	Basically it's a dry case, so it's pretty uninteresting.
10	Another thing Jeff run through this before. We do get
11	some fraction of SRV seizure events. Both of them are
12	dry.
13	There's a small fraction where we credited
14	deployment of the FLEX equipment in that time window,
15	where RCIC ran for awhile. But eventually failed and
16	before we could get everything fully deployed. So we
17	got core damage when we got RCIC there or got FLEX
18	equipment there in time to mitigate. And then the
19	release pathway in almost all minor matters.
20	I think from the discussion we had a couple
21	of weeks ago, that is relatively consistent from what
22	you guys have seen in your analysis. So we go to the
23	next slide.
24	This just is the results for the
25	alternative 2A, 2 Alpha. And then most of the rest of
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	98
1	this, we're going to talk about alternative 2 Alpha as
2	our focus for the results. So I just put this in there.
3	I think we presented this last time.
4	I want to go to the next slide first so we
5	can spend some time with this. As we were progressing
6	down this path, one of the things that occurred to us
7	was that the SRM had talked in terms of when you look
8	at alternatives, you need to look at dominance
9	contributors. Dominance or accident scenarios I think
10	is the actual term that the SRM uses.
11	And we haven't had any conversation about
12	what's dominant and want's not dominant. And we looked
13	at our results, in particular for alternate 2A to see
14	well what makes sense for in terms of characterizing
15	something as dominant? And what we've done in this
16	further in this presentation is focus on the individual
17	APET instincts that contributed more than about a half
18	a percent.
19	And if you just to tie that back to this
20	alt 2A condition, if we looked at, that brings in 29
21	unique APET instincts, which is a combination of core
22	damage event, and APET. There's a total of 507 possible
23	outcomes. 29 of those are brought in. And those 29
24	scenarios cover about 90 percent of the core damage
25	frequency. So it's 90 percent of the total of

(202) 234-4433

	99
1	frequency.
2	We looked to using one percent, which
3	initially we felt was more really dominant. But it only
4	bought in about 80 percent of the total. And so we felt
5	like going a little bit lower, made some sense in order
6	to capture the 90 percent of the core damage frequency.
7	So there are a couple of ways we could
8	proceed. You guys I'm sure aren't ready to talk about
9	this. But I think as we look at other APETS, we're going
10	to get different answers. There's going to be
11	different number scenarios, we're going to get
12	different scenarios that contributed.
13	But philosophically I thought it might be
14	worthwhile to have some conversation about whether this
15	kind of thinking, this both a scenario contribution as
16	well as a cumulative contribution of the total results,
17	is the right way to look at it. Or we want to another
18	way to do it would be to set an absolute threshold and
19	say you know, we're not going to look anything less than
20	ten to the minus X. We're not going to look at anything
21	you know, we're going to not consider dominant anything
22	less than the frequency of ten to the minus X.
23	We explicitly analyze every single
24	scenario, so it doesn't matter to us where we draw the
25	line. But I think I guess I'd just be interested in

(202) 234-4433

	100
1	if you have had any thoughts about how this dominant
2	notion gets considered. And whether a severe accident
3	scenario means the same thing to you? Is it really an
4	APET core damage end state, or is it a plant damage
5	state? Or is it a release state? Or any any
6	thinking on this?
7	MR. STUTZKE: This is Marty Stutzke. How
8	has this been gearing on the pump release category
9	frequency?
10	MR. TRUE: Well the problem I have with
11	that, I mean I understand why that is an option. From
12	how that is that within that release category, there
13	could be a whole bunch you could have in vessel
14	retention as well as
15	MR. STUTZKE: Exactly.
16	MR. TRUE: As well as ex-vessel retention.
17	I mean you get a mish mash of scenarios that in terms
18	of decision making don't always aren't always obvious
19	how to make those decisions. So it's
20	MR. STUTZKE: You know the challenges in
21	our event tree structure we see, if I remember right,
22	139 realized plant damage sites out of a possible sweep.
23	And throwing that against the 84 pay cut sequences in
24	the tree, leaves you
25	MR. TRUE: Right, do the math.

(202) 234-4433

	101
1	MR. STUTZKE: Yeah, with this enormously
2	big metrics.
3	MR. TRUE: Yeah, I like
4	MR. STUTZKE: It's easy enough to
5	highlight them like you've done in here. And it's like
6	I wonder what that means. You know, but it's too much
7	information.
8	MR. TRUE: it's too much information,
9	which is why we wanted to narrow it down to a more modest
10	set of actual scenarios so that you can get your head
11	around what's this reaction response look like. What
12	kind of timing does the operator need to have? What
13	kind of capabilities do we need to have for mitigation?
14	And we felt like 29 was probably at the high
15	end of what we'd really like. And we probably would
16	really like more like 12. But we wanted you know a
17	context for decision making and communication to the
18	industry on what the key insights were.
19	So anyway, I know I'm springing this on you
20	here. Maybe it's something we can talk through at as
21	future time.
22	MR. GABER: I guess kind of leaning more in
23	Marty's direction maybe, clearly the 29 could be bid
24	from a consequence or from a source term perspective.
25	So it could likely collapse down into 12 or some number

(202) 234-4433

	102
1	like that We just like you said, we don't do that,
2	we don't have to do it. But it could be done I'm sure.
3	MR. WACHOWIAK: We'll be collapsing them
4	down to some things, but they're not release categories,
5	they're attributes of what's going on with those
6	scenarios. So we'll have that later.
7	MR. STUTZKE: I need to collapse at the
8	match up with the MELCOR MACCS runs.
9	MR. GABER: Right.
10	MR. ESMAILI: And when you said arrest
11	exits with tension, you only mean new line of melt,
12	right?
13	MR. TRUE: Yes. I was just picking at
14	Marty's terminology, which I love to do in the afternoon
15	presentation.
16	MR. SZABO: Why don't we present in the
17	afternoon. Maybe we'll cycle back to this and
18	determine whether I mean I will come to something
19	today. But maybe it will be better after we pick up
20	yes. But you just threw it out there. Yes.
21	MR. TRUE: I'm throwing it out there, this
22	is kind of the way we're thinking about it. We're
23	thinking it's one of those things where we should try
24	to find some kind of alignment on it. We're looking at
25	something that's dominant that you're not, or vice

(202) 234-4433

	103
1	versa. That's not helpful as we go forward.
2	So that's why I specifically bring into
3	this is to say okay, this is what we're thinking, let's
4	talk about it. And we can go forward.
5	Well this next one, next couple, we don't
6	need to spend time on they're both eye charts in terms
7	of details, but the first one, go back Raj. The first
8	one I just highlighted in pink the ones that met the
9	criteria. And so it shows you that it's a matrix of core
10	damage instinct and APET instinct that match up.
11	MR. WACHOWIAK: One interesting thing here
12	is if you do get your magnifying glass, there's a whole
13	lot of zeroes on that chart.
14	MR. TRUE: Or less than zeroes.
15	MR. WACHOWIAK: Less than zero point zero.
16	Yes, they just don't make, so.
17	MR. TRUE: Or a few that are actually zero
18	too. At least in the way we quantified. I'm sure
19	there's a probability. But okay, and then the next
20	slide is important because it's going to come back
21	it's going to have to key basically for some subsequent
22	slides we're going to present.
23	This is the 29 scenarios that ended up being
24	in our dominant category, sorted in decreasing order of
25	likelihood. So from most likely to least likely.

(202) 234-4433

	104
1	And so the top one is that CD-019 APET 15,
2	which was about 19 percent down to CD-017 APET 1, which
3	was about half a percent.
4	MR. WACHOWIAK: And this was for two way
5	alternative two ways.
6	MR. TRUE: This was just for alternative
7	2A. This list
8	MR WACHOWIAK: Well 2A and the five one
9	that you're going to be four that you're going to be
10	talking about later. They're the same. But we could
11	get some reorganization of these when we go into
12	different alternatives.
13	MR. TRUE: You absolutely will. Because
14	like 3A, also we're not injecting into the vessel, we're
15	not going to have IVRs. So anyway, this is important
16	because as you look at some of the subsequent results
17	Jeff's going to present, these description are to tell
18	you what that result ties to. So it's your roadmap to
19	the subsequent one.
20	The next one is a new tool that we came up
21	with in preparation of this. One of the challenges in
22	this whole thing is that there is a lot of data. And
23	we're looking for a way that can kind of try to
24	communicate what all's going on in here.
25	Kind of all of the points I've been making

(202) 234-4433

	103
1	in the past set of slides here. Building up to the
2	result that says, okay, what are our important core
3	damage of entry states? And basically the way this
4	works is that once we get to core damage, it's the same
5	basic set of probabilities all the way across. It's
6	just a matter of where it's going.
7	So the width of the bar in each column is
8	the fraction that's being contributed by that entity,
9	whatever it is that we're looking at. So on the left
10	hand side, you see the CD-019 is the top contributor.

hand side, you see the CD-019 is the top contributor. It's one of the largest of the fractions. It ties into an early RCIC failure. That's just the nature of the sequence, we just tagged it. Along with CD-020 as being an early RCIC failure whereas 017 is an early failure to implement FLEX. And the others tie to a late implementation of FLEX.

Those can then be related in general terms to core damage timing, just another set of information you can get out of that. And then each of those feed into different APET instincts. And you can see kind of based on the widths of the paths, which ones are contributing the most to which APET instinct.

And then finally on the far right hand side, what the outcome looks like in terms of the release pathway. Whether it's through the wetwell vent,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

11

11

12

13

14

15

16

	106
1	through the due to over pressure failure of
2	containment, or use of the drywell vent or liner melt
3	through.
4	And while there's a lot of data there, we
5	think this kind of gives you a way to look at individual
6	interim states that we've never really had before. And
7	provides a pretty good visual. And we can even, when
8	we get to the benefit side of things, we can even extend
9	this to look at it in you know what's contributing most
10	to outside consequences. What's contributing most to
11	averted costs. I mean all those things can be tied into
12	this.
13	And you know, so but we did one with all of
14	the results. And we added all the core damage scenarios
15	and all the APETS. And it's pretty busy. It's you
16	get the same basic message from it, but it's pretty busy.
17	So folks down on the dominant ones actually helped us
18	be able to get a little bit better focus on it.
19	So anyway, we're going to try and do this
20	for each of our result cases as a way to readily get
21	access to what's driving the results. Because some of
22	our sensitivities are going to vary, even the CDT
23	proportions too. And we'll see how that effects the
24	output on the far side.
25	So anyway, it's just a tool I found on the

(202) 234-4433

	107
1	internet and you just have to feed the data the right
2	way to it and it will.
3	MR. STUTZKE: It kind of looks like a map
4	of the Capital Beltway when you think about it.
5	MR. FULLER: Yes, I was going to say, did
6	you use Google Maps for this?
7	MR. KRAFT: Actually what utilizes it is
8	the methodology for predicting the outcome of the world
9	cup. I spent a good deal of time yesterday in our
10	pre-meeting doing it. If you want to know the answers
11	come see me later.
12	MR. TRUE: There is some truth to that.
13	But there's a widget on the internet about predicting
14	who's going to win that led me to a thought of wow, this
15	would be a way to present the report, so.
16	But the next one is a different slice
17	through this, that I think will also carry forward.
18	Which is basically a point up chart, which just means
19	it's a sorted list of contributors.
20	It's basically those same core damage
21	scenarios that were in the mostly unreadable table
22	previously, now sorted in decreasing frequency. And
23	but then we've identified them by color in the bar, which
24	ones are what release mode.
25	So the first blue bar there is the first

(202) 234-4433
	108
1	line of melt. Then way over to the right we end up with
2	some relatively small contributions from over pressure
3	failure and a drywell event. In this case, this is
4	where the wetwell vent failed and the operator was the
5	first to use the drywell vent as a release pathway.
6	So it's another way to kind of communicate
7	some of the results that are coming out of this. And
8	speaking of results. Jeff I think you're up.
9	MR. SZABO: So I guess the question is do
10	we want to stop now for lunch?
11	MR. KRAFT: That's not a bad idea.
12	MR. SZABO: The other option, I just want
13	to put it out there, just because Steve I think you said
14	you and a bunch of other people might be
15	MR. KRAFT: Leaving at 2:30.
16	MR. SZABO: Leaving. I just wanted to
17	say, do you want our initial thoughts of we can do
18	our initial thoughts on qualitative factors in the next
19	20 minutes. We can save it or save it for trying to
20	put it in.
21	MR. KRAFT: That's not a bad idea.
22	MR. SZABO: Because it's just more a very
23	high level discussion.
24	MR. KRAFT: Then let's get the discussion
25	on that.
	NFAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

109 1 MR. SZABO: It's just a reiteration of what was said in the public meeting the qualitative factors. 2 3 So I'm going to start out with some of the less -- this 4 is Aaron Szabo by the way. Some of the lessons learned 5 from SECY 12-0157. I'd say that in relation to describing what the qualitative factors were, we did a 6 rather -- there was a rather extensive discussion of 7 each qualitative factor. 8 I think one of the places where we could 9 have enhanced our discussion was how does qualitative 10 factors relate to the quantitative information? 11 There 12 was not much discussion there and really I think that 13 was one of the issues with some communication issues and some maybe misunderstanding. Or really trying to 14 15 interpret how much -- how the staff did really judge 16 qualitative factors within that paper. 17 Therefore, the idea for right now for at least first thoughts for qualitative factors, the use 18 19 of them, within this rule making is that we would use some more -- we would use some enhanced tools that would 20 21 help relate the quantitative information with the 22 qualitative factors. This is of course assuming 23 that the commission does not provide us any explicit direction 24 25 from the qualitative factors paper that's going up this

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

month I think to the commission? This month or next month to the commission. That would say something very different. For instance if they came out and said we don't want you to ever use qualitative factors for cost benefit, you know, very for impact cost analysis again. Clearly our rule making would not have a discussion on that.

Assuming it does not come out that way, some 8 of the tools we're looking at using, which were 9 discussed in the public meeting, one -- which we use 10 11 enclosure one was the break-even analysis, the idea 12 would be even more to enhance that more user breaking analysis to go into some further discussion as to how 13 to really apply that within the situation. How the 14 15 commission would apply that. How members of the public 16 could apply that.

One of the other major thoughts that we had, which was -- is using a Kepner-Tregoe decision matrix type tool, where one could say that we had a very basic form of that with the SECY-12-0157 within at least the qualitative factor we had, with the regulatory announcements, it was high, medium, low. There was no weighting as to how important each one was.

I think in the interim one it might have been pluses or minuses or check marks, or something like

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	111
1	check marks okay, is that what we ended up with. But
2	you know, there was no weighting immolation of them.
3	Much less a weighting in relation to the quantitative
4	information.
5	There were overlaps, like we had defense in
6	depth, and uncertainties, they weren't necessarily
7	independent of each other. So there was the question
8	as to how to treat them.
9	So the idea would be to develop a decision
10	matrix, which we would go through significant public
11	interaction with, to try and provide at least for
12	information purposes, some sort of comparison, some
13	weighting, as to kind of how the staff is evaluating
14	qualitative factors, one amongst each other as well as
15	how they relate to the quantitative information within
16	the analysis.
17	And we think that this would help enhance
18	not only the commission as decision makers, to know
19	where the staff was coming out if people internally or
20	externally have disagreements, they can say we think the
21	weighting should be different. If the commission has
22	a disagreement with how the recommendation the staff
23	recommendation, it helps them to more easily point that
24	out.
25	And while it's not providing an objective

(202) 234-4433

	112
1	analysis, it provides a more objective analysis, at
2	least in my opinion of how we're going about it. And
3	my goal is to at least at first establish weighting
4	before we do scoring among the alternative. And then
5	have a scoring based on that.
6	And just because one weight is greater than
7	the other, that of course does not necessarily mean the
8	staff would end up that necessary way. It would just
9	be used as for information purposes. And even more
10	important than necessarily even the scoring itself, is
11	the discussion that the staff is going to incorporate
12	with why we're weighting it one way or another and why
13	we would be scoring one way or another.
14	And I know that this type of analysis is
15	used in many other areas. When trying to put kind of
16	a quantitative number on qualitative information. I'm
17	picturing it, it's not going to be that kind of detail.
18	It's not going to be should this be weighted as, we'll
19	say it's a one through 50 band, it's not should this be
20	a 39 or a 40. It's more of should this be a 40 or a 10
21	type mentality.
22	So it's not going to be that exact precision
23	because of the amount of in my opinion, subjectivity as
24	well as the uncertainties around the whole thing. I
25	just don't think that that type of precision is

(202) 234-4433

	113
1	necessary at this time. Of course that might change.
2	But that's kind of the initial thought of
3	where we're going. You of course still do the full
4	quantitative analysis. Present all that quantitative
5	information. But this is how we were kind of thinking
6	at least at first, including qualitative factors within
7	this rule making at least.
8	MR. TRUE: So both break-even and the
9	Kepner-Tregoe weighted scoring kind of a scheme?
10	MR. SZABO: Yes. And then you know, I
11	don't think cost effectiveness really makes sense here.
12	It depends on kind of how we come out. I mean as
13	applicable cost effectiveness. I think maybe we might
14	if we're going to a DF, we can say what's the most cost
15	effective way to get to this DF I guess.
16	Assuming that I mean it could be thrown
17	in. I mean at this time I don't see how cost because
18	they're restrict enough. I don't know how we would
19	really be doing that. Maybe between a small filter and
20	a large filter you might be able to do a cost
21	effectiveness.
22	But as I said, that's kind of what we're
23	thinking right now.
24	MR. TRUE: So you're I shouldn't be the
25	only one talking at this right now.
	NEAL R. GROSSCOURT REPORTERS AND TRANSCRIBERS1323 RHODE ISLAND AVE., N.W.(202) 234-4433WASHINGTON, D.C. 20005-3701(202) 234-4433

MR. KRAFT: I'll relieve you of that responsibility. I have yet to study the outcome of that other meeting. And I think this is a far broader question for the industry, Doug that we need to chat with the industry leadership on.

I'll tell you my gut reaction to all this. And maybe because I'm just you know, getting to be elderly here. It all boils down to what people think you put the number for. Right, so all you're going, all these methodologies, while they might look as though they're distancing the decision for the decision maker.

In other words, quantitative is pretty clear. I mean you -- assumptions can drive quantitative. You can have you know, shenanigans with those as well. But let's assume that that's not happening okay. People who look at what you're doing in these qualitative areas, right, will always suspect that the individuals selecting the weighting, selecting the scoring, has an outcome in mind, and is selecting numbers to drive the outcome. You will never walk away from that.

And the reason you don't, is because human being are involved. And we learned decades ago, that decisions are not made in an ivory tower, based upon analysis that MBAs are taught to do. That's input to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

	115
1	a decision maker, who ultimately has to look at his or
2	her gut and say how do I you know, with all this
3	information, how do I now make a decision that makes
4	sense.
5	And the fact that you said just because the
6	scoring is high in a particular factor, doesn't mean the
7	staff would drive itself in that decision, tells me that
8	you understand that. That at some point, a judgment
9	gets made by someone somewhere empowered to make that
10	judgment.
11	And all this is doing I think is giving it
12	a patina of an analysis that has to be can only be,
13	I'm trying to think it out. But only the quality of
14	which is driven by the inputs. Much like quantitative
15	analysis to quality of the assumptions.
16	And so I think that's where we're going to
17	be looking very, very carefully at this. And I'm very
18	concerned about where this is going to go. Not just for
19	this decision, but you know we've got to think about the
20	broader, the other industry.
21	MR. SZABO: And one of the reasons for at
22	least trying to use this, I think we've thrown around
23	the word before, semi-quantitative analysis, is that
24	it's supposed to help drive the conversation, and help
25	that point to where there may be disagreements or

(202) 234-4433

	116
1	differences of views in relation to into what the
2	weight should be.
3	Because if you look at implicitly, I mean
4	SECY-12-0157, the staff recommendation was qualitative
5	factors outweigh the quantitative analysis. That's
6	essentially you know you can say that whatever the
7	weight might have been, the weight was greater for
8	qualitative then it was for the quantitative.
9	The idea of this is to try and help present
10	or explain the reasoning as to why the staff you know,
11	I'm just going to use SECY-12-0157, why the staff felt
12	that way, other than just a very long description of you
13	know, what the qualitative factors were trying to say
14	you know.
15	I mean because you get the question of let's
16	say these things cost a filter cost \$2 billion.
17	Where do we and that was something that was brought
18	up by the ACRS trainings meetings, as well as by others,
19	as to where would you stop. And this at least tries.
20	And it helps.
21	MR. KRAFT: Well if we go back to the NRC
22	work that we quoted in our letter of January, 2013 about
23	the use of this qualitative factors, we make the point
24	which was more or less quoted out of NRC guidance, is
25	that you use qualitative factors when the needle is

(202) 234-4433

	117
1	close enough to the decision that it pushes it over.
2	And our view wasn't in SECY-12-0157, you
3	really strained that question. So where I would be
4	interest in, and I you know, I'm not suggesting anything
5	being done or corrected here, but. So you have the
6	quantitative result that ends here. And you got to get
7	all the way over to you know some place further to the
8	right, and it's called to get a yes to the decision.
9	Okay, how much quantitative qualitative
10	factors works is the way we understood it is you've got
11	to be awfully close to start with. And then you see
12	whether it tips it over, okay. Now what you're going
13	to do is you're going to take a quantitative result, and
14	you're going to add to it these other methodologies that
15	have the appearance of being quantitative, and they're
16	not.
17	They are, even though they involve numbers,
18	because there's weighing and there's scoring, all of
19	this math involved. They are qualitative. They
20	shouldn't allow you to get a quantitative result closer
21	to an answer an then make some judgment that tips it
22	over. You following what I'm getting at? It's the
23	same test.
24	MR. SZABO: Yes, and I mean there is a
25	difficult in communication that comes with doing this.

(202) 234-4433

	118
1	But at least my opinion is that it's easier for us to
2	craft that image then trying to define what is close.
3	I mean it's actually what we're trying to do is define
4	what is close.
5	I mean it is a way to think about it. Is
6	you know, if you want to look at what the staff's
7	determination of close is using SECY-12-0157, they
8	would say with the large uncertainties, that an order
9	of magnitude or two is close. I mean that's kind of
10	implicitly stated.
11	But this at least would help to try and
12	define what is what that close is. Once again, this
13	is just initial ideas. Kind of just the thoughts of
14	where we're going, relevant to feedback. I mean
15	basically.
16	MR. TRUE: Two things. Is the SECY that's
17	going up, I know you're not or I think you're not
18	directly involved in that.
19	MR. SZABO: I know.
20	MR. TRUE: Oh, you are. Is that SECY going
21	to kind of outline at some level, how these processes
22	might be used by the staff and what they would look like.
23	Or is it going to be much higher level than that. I mean
24	what I'm trying to get at is in July, are we going to
25	get some more insight as to what you're thinking is on

(202) 234-4433

	119
1	this in writing?
2	MR. SZABO: Well our current guidance
3	allows for us to use these methodologies. They're just
4	not very prescriptive.
5	MR. TRUE: It's silent on it.
6	MR. SZABO: It's not very prescriptive on
7	it. Not prescriptive at all one could say. This paper
8	I don't see this paper going into the depth, the type
9	of details that you are talking about with specifically
10	how this would be applied. Or how it has, or
11	retroactively trying to apply this to something else.
12	You know, like the mock example or something.
13	So I don't know how I think there was a
14	you know whenever we do any options paper, there's
15	always a discussion of what's the narrative really
16	bearing down to something that the staff is merely
17	recommending where just the commission says don't do
18	that. Then we just waste a lot of staff resources.
19	MR. TRUE: So then, I'm just trying to get
20	an idea in the next couple of weeks, how much more we
21	would understand that. And the next things is I guess
22	you're what you're also saying is there going to be
23	some public interactions on this qualitative approach.
24	Is that something that's going to be coming in the later
25	summer, early fall kind of time frame?

(202) 234-4433

	120
1	MR. SZABO: Yes. So we've just started
2	kicking this around in the working group meeting like
3	a month or two ago. It was a very difficult thing.
4	We want to make sure we're aligned
5	vertically as well internally, as well as you know, we
6	don't want to go too far down this path as I said with
7	this SECY paper coming out. And when the commission
8	comes, I don't want us to have to spend four public
9	meetings, you know 30 hours going through this, and then
10	it turns out the commission said don't do it.
11	But the idea is that we would just be
12	discussing this in the future.
13	MR. TRUE: I think Steve said at some point
14	we're going to talk about schedule on how this all comes
15	together.
16	MR. SZABO: Yes.
17	MR. TRUE: But probably at that point, the
18	SECY's going to go up and be there for a long time. Just
19	wondering how that all fits into the schedule, so.
20	MR. SZABO: Okay, let's take a break for
21	lunch. And convene at 1:00.
22	(Whereupon, the above-entitled matter was
23	in lunch recess from 11:53 a.m. until 1:02 p.m.)
24	AFTERNOON SESSION
25	1:02 p.m.

(202) 234-4433

	121
1	MR. GABER: Okay. This is Jeff Gaber.
2	We're going to spend a little time talking about some
3	of the MAAP5 results. An you please make sure to mute
4	your phones if you're calling in please. Can you please
5	mute your phone. Thank you.
6	So we had some questions at the last meeting
7	the 30th, April 30th. And request to come back with
8	MAAP results. So here they are. Good luck reading it.
9	Actually you can you know, I'm sure you can expand this
10	and get into the details. I clearly am not planning to
11	go through each one of these cases.
12	But as Doug pointed out earlier, these are
13	the top 29 I'll call them. The end states that
14	represented greater than a .5 percent contribution to
15	all the end state frequencies. But I'll get into some
16	of the elements of these anyhow.
17	So if we go to the next chart. This is the
18	first thing I kind of wanted to demonstrate is the
19	importance of as Doug said earlier, the importance of
20	focusing in on some kind of subset of dominant
21	scenarios. If we just look, as we said, that each one
22	of our alternatives represents 507 unique end states.
23	That's a combination of the core damage and core damage
24	state time versus the entry information.
25	And so what I did here was just kind of

(202) 234-4433

	122
1	created a kind of dumb histogram. So all this is is
2	looking for example, the blue bars are just taking all
3	500 end states, looking at the overall decontamination
4	factor, and bending it in these bins. 1 to 10, 10 to
5	1,000, so on and so forth.
6	So if I do that, if I just bid all the
7	instincts without any consideration of frequency, I get
8	the blue bar distribution. And you can kind of see that
9	the kind of the large fraction of the DS are in the 10
10	to 1,000 range.
11	MR. FULLER: Excuse me Jeff, this is Ed
12	Fuller. Is your second set actually 10 to 100?
13	MR. GABER: Yes, I think so. Yep, good
14	catch.
15	MR. ESMAILI: Am I too late to ask a
16	question about the previous?
17	MR. GABER: Oh, the previous slide, no.
18	By all means.
19	MR. ESMAILI: This is just for
20	clarification. All the cases that you had no water.
21	MR. GABER: Yes.
22	MR. ESMAILI: You don't vent? Because it
23	just says
24	MR. GABER: Yes. Good comment. What I
25	did in that table, is it's not in order. Unfortunately,
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

123
we're going to show you some. They are the top 29 cases
scenarios. But I didn't put them in order. What I did
is I grouped the cases without water. So if you go back
to our APET, you find out that the down branch on the
water injection. This is the severe accident water.
The down branch, I just bend all of the down
branches together so we can see. And you'll see later,
kind of the significance in terms of the DF, in terms
of the temperatures, so I grouped them together. In
this case, they didn't involve venting in terms of the
dominant contributors, they didn't include venting.
Because without water, we go to liner melt through.
MR. ESMAILI: So then it's still you
still vent?
MR. GABER: It could be considered, but
liner melt through is the dominant release path.
MR. ESMAILI: Oh, okay.
MR. FULLER: Is this a noble gas breeder
reactor?
MR. GABER: Pardon me?
MR. FULLER: Is this a noble gas breeder
reactor?
MR. GABER: No.
MR. FULLER: A couple of these have noble
gas release fraction greater than one.
NEAL R. GROSS
COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	124
1	MR. GABER: Yeah. I thought I took those
2	wait a minute, I don't see oh, 1.01. Yes.
3	Actually
4	MR. WACHOWIAK: As I said at the beginning
5	of our presentation, these are preliminary results.
6	And we are still working on little anomalies like that.
7	Thanks for point that out. We'll figure that out.
8	That's probably some sort of rounding error somewhere.
9	We know what the problem is, it just needs to be fixed.
10	MR. GABER: So, again, the histogram with
11	the blue bars is just representing, and you can see
12	there, they're scaled by the fraction of scenarios in
13	each of those bins. So of the 507 for example, there
14	are 45 percent in the bin of a DF from 100 to 1,000.
15	That's all that is. It's not the greatest way to look
16	at your results obviously.
17	But if we then just plot on top of that,
18	what if we just look at the top 29 cases or the cases
19	end states greater than a half a percent, like Doug said
20	they represent around a 90 percent of total core damage.
21	You can see the distribution is fairly different. In
22	fact we're skewed much more towards the 100 and above
23	range in that case.
24	So the only point of putting this up is it's
25	important to focus on the dominant contributors. If
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	125
1	you don't do that, you can be misled. Okay, next chart.
2	So in this case, what we did is you can see
3	that we listed all of the top 29 end states in decreasing
4	frequencies. So the case on the left, which in this
5	case is CD-019, APET-015. That's going to be a case as
6	Doug explained earlier, that's one of our dominant
7	contributors where RCIC doesn't operate in the short
8	term.
9	It is a case where the operators did
10	successfully depressurize. So it's a low pressure
11	case. APET-015, I can't even remember what that one is.
12	There's so many. So is it an IVR? Yes, got you.
13	So, obviously the cases with in vessel
14	retention tend to we tend to see higher
15	decontaminations, because the fission products are
16	transported to the pool through the safety relief valve.
17	In this case they would be slightly different if it was
18	a main steamline break, which we do have some of those.
19	But they tend to be I think there's one or two on here.
20	And you can figure that out by looking at Doug's previous
21	chart that lists all the 29.
22	So I think there's one or two where we did
23	have main steamline. But the SRV seizure cases are
24	clearly the dominant cases. So you can see the DF's for
25	these in decreasing frequency. And we tagged the cases

(202) 234-4433

	126
1	with no water addition as we were talking before with
2	a red color.
3	And obviously in those cases, they
4	typically go to liner melt through. They have a much
5	lower decontamination factor because we bypass our vent
6	line. We bypass the wetwell vent which of course
7	provides scrubbing at a much higher DF.
8	You know looking at the left side there,
9	there's only a couple of the dominant cases that have
10	DF's less than 1,000, and they're in the range of 500
11	or 600. You see the third one and the seventh one I
12	guess are slightly and we could go look at the
13	details. You could see the details in the previous
14	table for that scenario.
15	Those are the ones if you remember, and if
16	remember back to the EPRI report, where we just put water
17	in those cases, I think we were just putting water
18	in containment. These are cases were we're actually
19	putting water in the RPV. But if you remember, we did
20	see about a factor of 2 RPV something like that increase
21	when we did the vent cycling.
22	So when we get around to analyzing the what
23	is it 3 Charlie, 2 Charlie, Bravo, or I forget which one.
24	But the other alternative where we actually cycle the
25	vent, we'll expect to see those go up.

(202) 234-4433

	127
1	But again, overall the blue lines fairly
2	significant DF's clearly in the range of 100 to 1,000
3	or more.
4	MR. ESMAILI: So this is only for RPV
5	injection. And you said that the drywell injection
6	you're expecting the same?
7	MR.GABER: It will be similar. It's like
8	Doug
9	MR. FULLER: There are going to be lower
10	DF's for the drywell levy. I done enough to know that.
11	MR. GABER: I think Doug mentioned
12	earlier, you know we see some events in here on the left
13	side at a high frequency, just as reading ahead at
14	Marty's slides, you get some of those in vessel
15	retention cases. Obviously we're going to see more of
16	those with invest without our source of water going
17	to the RPV. When we now make that reliable water to go
18	to containment, those will disappear and be replaced
19	with other ones.
20	MR. ESMAILI: And any time you get such a
21	benefit compared to the red line is because is it
22	dominated by re-vaporization, so when you inject water,
23	you're actually arresting re-vaporization so you can
24	have a way?
25	MR. GABER: I think it's two things. One
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	128
1	is don't forget, in the blue line cases, our preferred
2	path for the majority of the radionuclides is through
3	the wetwell. So we're getting pool scrubbing. I mean
4	even if the pool's saturated, you get DF's of what, 50
5	to 100.
6	MR. ESMAILI: Which is?
7	MR. GABER: The blue lines.
8	MR. ESMAILI: But you also get the same
9	thing in the red lines, right? You still go through
10	that.
11	MR. GABER: Prior to vessel breach.
12	MR. ESMAILI: Prior to vessel breach,
13	right.
14	MR. GABER: You're right. Good point.
15	But after vessel breach, we can continue that pathway
16	with water. And when we have the dry cases, we assume
17	that they progress pretty quickly to liner melt through.
18	One of the sensitivities, we'll talk later,
19	I think our last slide, is we're going to look at
20	potentially, some sensitivities on liner melt through
21	assumption.
22	The next slide I think Rao specifically was
23	interested I what kind of temperatures do we get in the
24	drywell for these scenarios. So again, we've got our
25	top contributors, or dominant contributors. And in

(202) 234-4433

129
decreasing frequency order, I put a little picture up
there to show what the color scheme is. The sphere of
the drywell is in blue. The cylindrical part next to
the biological shield in red. And the upper head area
in green.
What we also did on here is like we did
before. We couldn't quit do the magic with the colors.
But we tagged them with the scar to show that these are
the end states that had no water addition. In those
cases without water in the containment, we expect and
we get much higher temperatures in the drywell.
In fact you can see that the highest
temperatures that we get are in the sphere, which makes
sense because the core degree is on the floor. It's
going to heat up the spherical part first. And then the
heat will just transfer on up, all the way to the drywell
head.
There's mixing calculated in the code.
There's density driven flows that we're keeping track
of. But you can see the blue line, the sphere part is
always the hottest. These temperatures, I got to tell

c з you too, are max values. Sometimes a little bit confusing, or a little misleading to just look at a max value because you don't know what the duration is. Rick actually recommended that we think

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

about maybe providing, since the purpose of these temperatures is to get a handle on is there a challenge to the head, or to the drywell penetrations. We got ample heat sinks in the drywell that we could use to better represent that. The beauty of using the heat sinks, is they're a little bit less susceptible to these spikes that might happen in the gas volume.

But nonetheless, this first go around, I just kept track of the peak gas temperature. I flagged the one case there, you can see it's not the dominant case, but it's CD-019, APET-018. Again, that's a case with no RCIC. Vessel's at low pressure when we fail the vessel. APET-018 is again a case where we got SRV seizure, but we didn't have wetwell -- successful wetwell venting.

MR. FULLER: You did not?

17 We did. MR. GABER: We did. So you -- and again, I keep talking about wetwell venting. 18 I forget 19 to continue to explain that when we say it was wetwell venting, that means that was the preferred path. 20 But 21 as you guys know, when water level exceeds 21 feet, we 22 have to isolate that vent path, and then we switch over to the drywell. 23

24 So initially I should say it's wetwell 25 venting. But in all these cases, we can double check,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

	131
1	in fact you can see it in my table, I'm pretty sure that
2	the drywell vent did open up late.
3	And I think we've talked about this before,
4	and in fact I think Rick and I showed some of the release
5	plots, I think it was one of the from the EPRI report,
6	it was during one of the ACRS presentations, that when
7	the drywell vent opened up, typically what we see, is
8	there aren't a lot of airborne aerosols, and fission
9	products to be released. So that
10	MR. KARIPINENI: There are not?
11	MR. GABER: There are not. They are
12	relative contribution. Now the one exception to that
13	is if we would get later re-vaporization, obviously
14	having the drywell open, we'd expect to see a higher
15	release. With RPV injection, we tend not to see that
16	late re-vaporization.
17	That might be something, that as Ed I think
18	has seen. That we do the drywell injection, if there
19	are fission products remaining, or core material
20	remaining in the RPV long term, we'll likely see
21	temperatures high enough to cause re-vaporization and
22	a later release.
23	But we typically don't get that with these
24	cases. It's one of the advantages of injecting in the
25	RPV post core damage as you can reduce that pretty

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	132
1	significantly.
2	So just going Raj, to the next chart. I
3	just tried to elaborate a little bit more on what that
4	temperature looks like. This the sphere for that case.
5	Here in fact I think if you go back, you see that the
6	peak temperature was closer to 700. Interesting
7	things, when we plot in MAAP, we have limited data points
8	and a lot of times we'll miss a very short duration
9	spike.
10	We can go investigate that further if
11	needed. But you can see generally the temperatures
12	here remained below 600. Obviously below 600 for the
13	majority of the time, well below 600.
14	MR. ESMAILI: I have some questions.
15	Okay, so these are gas temperatures.
16	MR. GABER: Yes.
17	MR. ESMAILI: Do you model these
18	structures?
19	MR.GABER: We do. That's what I was just
20	saying. We do have the heat sinks. I think it might
21	be better to display those. Because it's more
22	indicative of what penetration
23	MR. ESMAILI: And with the leg of course,
24	right?
25	MR. GABER: And with the leg, yes.
	NEAL R. GROSS

(202) 234-4433

	133
1	MR. SZABO: Jeff, are you guys planning
2	got a time frame as when you would present this
3	information for I guess alternative 2C, when it's?
4	MR. GABER: I hope the next time we get
5	together. I would hope that we have all the
6	alternatives. Unless you say we're getting together
7	tomorrow. But yes.
8	MR. SZABO: Well because my understanding
9	from what, I think one of the things that Rao wanted was
10	you guys just wanted to see is when there is no drywell
11	you know others preferred wetwell to see what the
12	number. I don't want to speak for you Rao.
13	MR. KARIPINENI: Yes, that's right. We
14	asked for that also before. But I guess I'm not ready
15	to
16	MR. GABER: For the drywell objection
17	cases.
18	MR. KARIPINENI: Right, right.
19	MR. GABER: Yes, we actually have those
20	results. We didn't prepare, like Doug said, it's a lot
21	of data. But yes, we can definitely make that a
22	priority for the next time we get together.
23	We also think there's value in looking at
24	some of the obviously since we are also include filters
25	as a potential strategy, to start looking at those cases

(202) 234-4433

	134
1	as well to see what actually is the benefit from a
2	filter.
3	Because you know, much like some of the NRC
4	results, there are as you see, there are contributions
5	from cases that were water just didn't work. And in
6	those cases we get liner melt through. And they
7	obviously provide less benefit for an external filter,
8	because you end up bypassing the filter.
9	MR. SZABO: I might not have been clear. I
10	just wanted to clarify, because this ties also into the
11	order, like the phase two and the nexus between the two.
12	What I was what I meant was just the water management
13	idea. And what the temperatures are, and the drywell
14	gas temperatures in relation to that. I just wanted
15	management.
16	MR. GABER: Yes.
17	MR. SZABO: And that was what I think the
18	
19	MR. GABER: Yes, I mean it would be my
20	intent to have it's the one before this Raj. If you
21	go back just before it. One more, sorry, my mistake.
22	So it would be my intent to have one of these
23	for each revised alternative, okay.
24	MR. SZABO: I got you, okay.
25	MR. GABER: And Doug will find a way to make

(202) 234-4433

	135
1	his crazy chart where we can put them all on one for you.
2	MR. SZABO: I just wanted to make sure that
3	you know, next meeting, we're
4	MR. GABER: Yes, yes.
5	MR. FULLER: Excuse me Jeff. Something
6	about this I don't quite understand. Are we on this
7	chart?
8	MR. GABER: Yes, yes.
9	MR. FULLER: Oh, I was on age 27.
10	MR. GABER: 27. You're moving ahead to
11	hydrogen?
12	MR. FULLER: I thought that's where we
13	were.
14	MR. GABER: Just getting ready to do there.
15	MR. FULLER: Oh, okay.
16	MR. GABER: So that one. So
17	MR. FULLER: I'll let you explain it then.
18	MR. GABER: I'll just start it then, if I
19	don't answer the question, you can ask.
20	MR. KARIPINENI: I still have one question
21	to ask.
22	MR. GABER: Yes.
23	MR. KARIPINENI: You said there is some
24	cases where you have liner melt through even if water
25	enters. Did you say that?

```
(202) 234-4433
```

	136
1	MR. TRUE: No, I don't think we get that.
2	MR. GABER: I don't think it's probably
3	a non-zero probability, but I doubt if it's in the
4	MR. FULLER: Right Rao's asking what you
5	just said. But I heard something along this same line.
6	So I think maybe you misunderstood the question.
7	MR. WACHOWIAK: Say the question again.
8	MR. KARIPINENI: I thought I heard there is
9	a liner melt through for a even if water injection
10	for a case somewhere.
11	MR. WACHOWIAK: So our case, all 2A for
12	water injection says we've installed the option to put
13	in water injection. There are still cases where the
14	water injection fails in our event tree. Because it
15	didn't get hooked up in time, or because the pump failed.
16	So in those cases, there's no water, even though we
17	installed the system.
18	MR. KARIPINENI: Okay, got you. Thank
19	you. Okay. I was thinking water injection succeeded,
20	but the system
21	MR. WACHOWIAK: It's not typical one.
22	MR. TRUE: I think there's a tip in this for
23	you. So whatever vehicle this works in. With water
24	there's still a probability that you get liner melt
25	down.

(202) 234-4433

	137
1	MR. WACHOWIAK: When the water works. No
2	depressurization you don't get. But when the vessel
3	fails you get depressurization, so. It's a
4	probabilistic part that takes care of it.
5	MR. GABER: Okay, I'll move on to hydrogen.
6	Also, Rao at the last meeting on the 30th asked us about
7	hydrogen. I'm not sure if we gave you want you wanted,
8	but this was our first attempt. So what I did again,
9	I didn't unlike the last two few slides where I tried
10	to write things by frequency, I didn't do that here. So
11	you kind of have to go put your own frequencies on.
12	These are again the top 29 end states. But
13	I in this case, I grouped all the cases without water
14	on the left, and the cases with water on the right. And
15	when I say with water or without, I mean as identified
16	in the event tree.
17	So like Rick said even if because this
18	is defined as the two A cases, which is a reliable water
19	source, there is potentially some likelihood that that
20	doesn't operate. And those would be those left eight
21	cases.
22	So the left eight cases, and what I tried
23	to show on here, which it, okay, it's not cut off. The
24	blue lines are cases well what I did is I tallied up,
25	I summed up the integrated hydrogen flow through each

(202) 234-4433

of three release paths. One through the wetwell vent, which is red. The drywell vent which is blue. And then I basically lumped anything else that could get out of containment, liner melt through, drywell head, I think I even included normal leakage in there. I just lumped those together and calculated what the integrated hydrogen release would be.

These are all over a 72 hour transient time that we were analyzing. And you can see on the left, the green color just indicates that that's a hydrogen term to the building, not through the vent. So that's going to clearly pose a challenge to the reactor building environment from a combustion perspective.

And those are the eight cases that didn't have successful water injection on the debris. They most likely ended in high temperature failure containment or most likely liner melt.

And then the right case, Ed I'll just state, 18 19 the right side are the cases with water. We prevent 20 liner melt through. We tend to prevent hiqh 21 temperature failure containment. We're dominated by 22 releases initially through the wetwell vent. That's why the red lines are all higher. 23

And then we do switch over to the drywell vent at 21 feet, then we now have a release path through

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

	139
1	the drywell vent. And I just totaled those up
2	separately. And you can see.
3	And the one case on the right there shows
4	some green, its' CD-019, APET-017. It's one of those
5	cases where both the wetwell vent and the drywell vent
6	probabilistically failed. And in that case, we fail on
7	an over pressure. We had water. So the temperatures
8	are okay. But we have to relieve pressure at some
9	point.
10	It relieves through the drywell and using
11	the SORCA kind of drywell hand release model. But that
12	is a release in green that's going directly to the
13	reactor building. It's not a lot as you can see. It's
14	not a lot of hydrogen, but it is going to the reactor
15	building.
16	MR. BUNT: Okay, just a quick question.
17	You cleared up what I was going to ask you for. But does
18	this include carbon monoxide?
19	MR. GABER: It does not right now. I just
20	used hydrogen.
21	MR. ESMAILI: Is there any way to figure
22	out from this slide that what is the amount of hydrogen
23	that is left in containment? Or we have to do a separate
24	guide for that?
25	MR. GABER: Separate graph, yes. Yes,

(202) 234-4433

	140
1	that's a good question. In these cases, the you know
2	there's hydrogen generated in two places. In vessel
3	during the core mount phase. And then ex-vessel, you
4	can see a slight, I won't say a huge difference in the
5	red and the green magnitudes. It looks like the greens
6	are around a little, 6,000 pounds or more, the reds are
7	4,000 pounds.
8	That difference is due to the cases with
9	water on the containment floor. We get less CCI. We
10	get less core concrete attack. So less hydrogen
11	ex-vessel.
12	In the model that we're running right now,
13	the MAAP502 model, even in the presence of water, we get
14	continued core concrete attack. We have as Doug showed
15	in our APET, we do have the capability to try to
16	distinguish between a scenario where water is more
17	effective at quenching the debris versus one where it's
18	less effective.
19	Perhaps the less effective would match up
20	closer to the melt core typical melt core analysis.
21	In the old MAAP4 days, if we put water on debris, we'd
22	normally quench it pretty quickly. With MAAP502, that
23	doesn't seem to happen quite as frequently. And we've
24	tried to look at some of the sensitivity parameters a
25	to see well what do we have to change to try to augment

(202) 234-4433

(202) 234-4433

	141
1	that cooling process?
2	Now as we've learned recently from work at
3	Argon, there's some new physics involved with core
4	concrete attack. And how these volcanoes or eruptions
5	are actually enhancing the cooled building the debris.
6	This is the latest work from Mitch Farmer.
7	And we're going to try to get if we can, you
8	know, and we're trying to represent that as an enhanced
9	cooling mode. We tend not to see big differences in
10	those branch points. So MAAP, MIM and MACCS.
11	MR. ESMAILI: Jeff, so you go to core. So
12	as far as in vessel hydrogen is concerned, at what point
13	do you start injecting? That the lower because we
14	assumed at low
15	MR. GABER: The same.
16	MR. ESMAILI: So you had the same in vessel
17	hydrogen regardless of with our without water, right?
18	MR. GABER: Exactly.
19	MR. ESMAILI: And so that's why we were
20	discussing this about you know how much hydrogen goes
21	out. Because you are going to vent before lower vent
22	failure anyways, right?
23	MR. GABER: No, not always. Some of these
24	cases, because they vent at vessel breach. They could
25	vent at the time of vessel breach.

(202) 234-4433

	142
1	MR. WACHOWIAK: Well, they tend to be a few
2	minutes after. Not long after, but
3	MR. ESMAILI: I think our results show that
4	we are going to you know, vent you know we would get
5	to that 60 pcpl before lower head failure. The point
6	is that you know once you are in the venting, you know,
7	what does it matter how much hydrogen goes out in terms
8	of you know, like if you want to look at you know, the
9	benefit of the drywell versus wetwell venting.
10	I think you should look at you know, from
11	the time core damage starts to the time you know, that's
12	what I was thinking, to the time that lower head failure,
13	which one is more effective in getting the hydrogen out.
14	Rather than looking at you know. Because right now we
15	don't do that water, you know this thing core concrete
16	interaction is occurring, and you know, things are going
17	out.
18	So I cannot decide whether wetwell venting
19	or drywell venting is has any benefit.
20	MR. GABER: So, just so I'm trying to
21	understand what you might want to look at in terms of
22	output. You seem interested in knowing how much of the
23	hydrogen generated in vessel gets transported out of
24	containments prior to vessel breach. Is that what your
25	focus is?

(202) 234-4433

	143
1	MR. KARIPINENI: Right. Let me ask a
2	little bit more. What we're thinking is when you close
3	the vent, just sometime before core melt down, whatever.
4	You have you still out to be the SRVs are still
5	relieving some hydrogen into the vent, into the
6	suppression pool.
7	MR. GABER: At what time?
8	MR. KARIPINENI: After you close the
9	wetwell.
10	MR. GABER: Okay.
11	MR. KARIPINENI: So you go into the
12	suppression pool, and you are pressurizing the pools,
13	and the vacuum breakers would re-use that hydrogen at
14	some point back into drywell. I would have a tendency
15	to go over that to the drywell. And then we're going
16	to go, it's going to say there now? Or for the rest of
17	the accident, it's going to be always filled with
18	hydrogen? Or at what point, how much is left there?
19	MR.GABER: Okay. So it sounds like there
20	could be some it sounds like this isn't really what
21	you wanted to see. You wanted to see the fraction of
22	hydrogen in containment as a function of time.
23	MR. KARIPINENI: But can you calculate
24	stratification? I mean you are setting up a
25	circulation inside the driver, right? So you probably

(202) 234-4433
	144
1	not getting stratification that you're making.
2	MR. GABER: The MAAP model will calculate
3	buoyancy driven flow. So as you say, with the vacuum
4	breakers open, introduce hydrogen, lighter gas into the
5	bottom, they'll be nesting.
6	MR. WACHOWIAK: We've got to set that it
7	will mix, but I think what he wants to see his how much
8	is kind of retained. Or reused.
9	MR. KARIPINENI: Do we have hydrogen
10	filled top coats in the drywell that are going to be
11	there for a long time.
12	MR. GABER: Okay.
13	MR. WACHOWIAK: We can set that up as a
14	supplemental.
15	MR. GABER: Yes, next time we'll work on
16	coming up with the fractions in the different locations.
17	In the drywells function of time. And it sounds like
18	that will be more meaningful to you.
19	MR. FULLER: This is Ed Fuller. You know I
20	think you could get pretty good handle on it because the
21	CCI production doesn't really start immediately. In
22	the MAAP calculation, you've got five contributions to
23	the hydrogen generation. And two of them are before a
24	vessel failure. One is at the time of vessel failure,
25	or two of them actually, at the time of vessel failure,

(202) 234-4433

	145
1	which are DCH and the when the jet is coming up.
2	The fifth one is from the CCI. So you can
3	look at the time from when the vessel fails until when
4	the CCI starts. And you can get a reasonably good
5	handle on how many kilograms of the hydrogen that were
6	actually produced in vessel in that vessel failure.
7	And then look to see what was released
8	during that period. You'll get a fairly good handle on
9	what Rao was asking for.
10	MR. GABER: Good. Understand. Okay, I
11	guess I'll turn it back to Doug if there aren't any other
12	questions on the MAAP results.
13	MR. TRUE: Okay, then the next set of
14	slides are the same slides that Jeff presented on April
15	30th. Only one minor tweak on them just for visibility
16	purposes. And we're bringing them back in case there
17	were residual questions that Jeff couldn't answer
18	because I wasn't here. So we don't need to spend a lot
19	of time going through these unless you want to talk about
20	them.
21	So let's go through these one at a time. So
22	this was our conditional continuing failure
23	probability. So you have a condition that's imposed at
24	the beginning of this, rather than nearly a 1.0, the
25	water addition brings that down in the .3'ish range,

(202) 234-4433

	146
1	almost independent of the scenario across all the
2	different alternatives that are included here. Next
3	one.
4	This one I had these little dash lines only to give
5	you a little bit better ability to see that there were
6	some differences across the results. This is IDF and
7	LCF risk across the cases. And so I put on the alternate
8	2 cases, I included one at each of on the blue bar,
9	and the red bar is for 2 Alpha, and then you can kind
10	of look across and see there are some differences, but
11	they're pretty small.
12	And the reason for that is that we got a trunk
13	that's all these liner melts that kind of occupy that
14	bottom part. And then we're talking about changes of
15	some amount of percentage to the release on the
16	remaining ones that are left. And there just isn't a
17	whole lot of wiggle room left there on the bars.
18	But it gives you a little bit of a perspective
19	on this. Next one.
20	MR. ESMAILI: Excuse me, just a question
21	Doug.
22	MR. TRUE: Yes.
23	MR. ESMAILI: This is an outside
24	consequences measure here. Now the question I have is
25	when you did your max calculations, if you of course

(202) 234-4433

	147
1	included all radionuclides, not just the cesium and
2	iodine, correct.
3	MR. TRUE: Correct, correct.
4	MR. ESMAILI: So a lot of the this is
5	coming from CCI, and it doesn't matter whether you had
6	in vessel injection or drywell play, particularly and
7	especially when Jeff just said that you get CCI for quite
8	a while, even after the water is put on.
9	If you were to translate this into a release
10	fraction to the environment, you take out the off site
11	consequences, do you have any feeling for what the
12	differential and the release fractions would be between
13	in vessel injection versus drywell flooding?
14	MR. TRUE: They really are a strong function
15	of the scenario I think. One of the reasons that the
16	2, the alternate 2s show lower releases then alternate
17	3s is because we get a big chunk in vessel retention and
18	we get really high DF's for those. So that's why you
19	see the 2s are lower than the 3s.
20	MR. ESMAILI: Okay, so that's really where I
21	was going.
22	MR. TRUE: And once it gets ex-vessel, I
23	don't think there's a huge difference in the release
24	fractions we see.
25	MR. FULLER: This I think starts will
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	148
1	probably start the discussion that we'll have some day
2	on the metrics that we are going to be using. And
3	whether they out to be tied to to what extent they
4	ought to be applied to release fraction, which more
5	directly relates to the filtering strategies themselves
6	versus off site consequences.
7	Because really the off sit consequences, a
8	lot of that is due to the radionuclides released in the
9	CCI.
10	MR. SZABO: This is Aaron Szabo.
11	MR. FULLER: But I'm talking about cerium and
12	barium, things like that.
13	MR. GABER: I guess and to some extent you can
14	see that on this chart when you go to the large filter
15	all the way to the right. And Doug drew the line there.
16	You can see there you know, it's not a huge difference,
17	but there is a Delta there. For the large filter, not
18	the small.
19	But for the large filter, those kinds of
20	radionuclides would be scrubbed in the large filter.
21	And you can see it's lower. But again, this is all
22	rolled up into the consequence analysis in the you know,
23	LCF and IEF.
24	MR. SZABO: This is Aaron. And this kind of
25	gets to what Steve mentioned earlier about the end game
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

1 if you want to call it that. You know we have these 2 performance criteria -- various performance criteria 3 that you know right now I think we have around four is 4 kind of what it was. It was like a DF, we had like this 5 50/54 HH, we have the mar -- what you guys were originally calling margin to the safety goal is kind of 6 7 what this is. And then you had the one earlier, the earlier slide, the conditional containment failure 8 probability. 9 10 I was wondering if you were planning to propose a preferred performance metric, or not only 11 12 criteria, but also a metric, or would you --13 I know at the very beginning of MR. KRAFT: 14 the discussions on the rule making, we did propose 15 those. And I quess we have to think about how we're 16 going to from our own work, how we're going to kind of 17 combine it all. 18 I will renew our request that you respond to 19 something that we asked you at the very, very beginning, 20 which was what's the goal of this rule making? We asked 21 you for a -- I don't know what we called it, a statement 22 of purpose, I forget what we called all those. You 23 proposed some. You know a lot of that drives thinking, right. 24 25 And it can help us thinking what the metric might be.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

149

	150
1	I just throw that out there because I'm not quite sure
2	how to answer the question.
3	MR. GABER: I think ultimately we can look at
4	those things. And we're trying to show a lot of that
5	data. But in my personal opinion is that ultimately we
6	do the cost benefit analysis.
7	And we calculate what the true benefit of
8	these different options is going to be. Because that
9	captures the off sit impact, which is really the goal.
10	Maybe that's not the end game, but that's one of our key
11	figure merits.
12	MR. SZABO: Yes, within the regulatory
13	analysis model, you do have the numeric value.
14	Essentially what I'm going to have to do is not only
15	compare ever alternative to each other, but also how
16	alternative how good it is against whatever
17	performance each of the various performance we're
18	looking at right now. Depending on once again, not
19	really, kind of you know the Mark II and the DF kind of
20	ended up with, the DF as well.
21	So it seemed like those were really similar
22	though they had different starting points, at least
23	initially when the initial talks, and I know we need to
24	circle back to that. But when we started getting to the
25	CCFP.

(202) 234-4433

	151
1	MR. KRAFT: I don't necessarily agree with
2	that. I think as I recall, we were trying to demonstrate
3	the relationship between where we were relative to the
4	QHO, and how that could be used to show how the DF
5	performed. They're not the same factor.
6	Am I getting this right? I don't recall us
7	saying that they were the same factor. Or that they
8	we were trying you all were focused on DF. And we
9	were focused on how far below the QHO. And we were
10	trying to show they related. That doesn't mean they're
11	the same factor.
12	MR. SZABO: Okay. I mean and if that is the
13	intent, I mean we I would at least like to hear what
14	the intent.
15	MR. KRAFT: It does to the question I asked
16	you before, how do we get to the
17	MR. SZABO: The resolution of what the
18	problem statement is. I mean
19	MR. KRAFT: Well then how do you get right,
20	and how do you get to solving a problem. I mean you know
21	you're told this is what success looks like.
22	MR. TRUE: Yes. I think we're still tracking
23	all of those same metrics that you mentioned. And so,
24	but we haven't finished. So we haven't gotten it all
25	pulled together into the picture we think it paints.

(202) 234-4433

	152
1	MR. SZABO: Okay.
2	MR. TRUE: I mean there's some early
3	indications for example, and I think you guys have seen
4	this in your MELCOR runs through that putting water in
5	the vessel, that might be even preferred in some
6	respects. Put water in the drywell, as other benefits.
7	MR. ESMAILI: Yes, I just want this is
8	very, very sensitive to the assumptions that we make.
9	When you actually start injecting into the vessel. I
10	think there is also going to change, I'm not sure how
11	much it changes in MAAP, probably somewhat. I know that
12	it's going to change in MELCOR, exactly when you start.
13	But not everything goes through this pressure
14	port. You still, you said have some material inside the
15	vessel that could re-vaporize. So you catch those
16	earlier, but not be able to arrest, you know, the amount
17	melt inside the
18	Yes, at some point it might be the RPV
19	injection would be better. The results that are
20	showing right now is that and we don't see that much
21	different either. In my cover, I will show you, is that
22	because it's very, very sensitive to a certain
23	assumptions that we have made.
24	So it's become very, very difficult to you
25	know, to come up with some numerical work.

(202) 234-4433

MR. TRUE: Yes, I think that coming down to a number is going to be difficult. We did work at this one point we had this idea of well let's compute some kind of frequency weighted DF. I will tell you don't bother. It doesn't work. Because the really high DF cases can really swamp out all the low DF cases. And it's completely misleading.

It would be great from the stand point of trying to demonstrate we get average high DF, but it's not meaningful, because the DF span over four or five orders of magnitude, and the frequency spans over maybe one order of magnitude or two. So you get these spikes that are not helpful in the overall frequency weighting.

You can look at it, but I think you will find the same thing I did. It doesn't give you a meaningful metric. So we're still looking at different ways with

MR. SZABO: Yes. No, that's fine, and you know, part --

20 MR. TRUE: And I think at some point we should 21 figure out how to.

22 MR. SZABO: Part of the reason why we held off 23 was because until we know what that sequences are and 24 map that all out, and try to figure out a performance 25 goal is to not necessarily kind of the cart before the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

	154
1	horse. So, but thank you.
2	MR. SULLIVAN: And Doug, if you don't mind,
3	from the back bench here, while we're talking about
4	metrics, this individual early fatality metric, I would
5	have to question that. I mean I believe I've seen the
6	scenarios you're working against. And this place is
7	evacuated by the time any kind of release happens. We
8	have a six hour evacuation time at this site.
9	MR. TRUE: We have core damage in an hour.
10	MR. SULLIVAN: Core damage, but what about
11	release?
12	MR. TRUE: Then release will be four or five
13	hours.
14	MR. WACHOWIAK: So these are relative
15	numbers here?
16	MR. SULLIVAN: I understand the relative
17	numbers. But it's a deterministic metric. And below
18	200 REM or so, you shouldn't even report it. Because
19	it doesn't exist. So I'm a little bit flummoxed that
20	you would use individual fatality at first off it
21	would be a very small number, which is very difficult
22	to do it relative to anything. And being
23	deterministic, there would be a cut off.
24	So unless we're delivering 200 REM or more to
25	somebody in the field, and that's got to be a very small

(202) 234-4433

	155
1	number of people, especially with an ongoing
2	evacuation, this is a very small number to actually
3	publish a metric on. I would submit to you for your
4	consideration.
5	MR. TRUE: I think that's a fair comment
6	then.
7	MR. ESMAILI: But these are based on the
8	results of consequence analysis that you've done?
9	MR. TRUE: Yes, MACCS
10	MR. ESMAILI: You've done MACCS already and
11	did you see individual?
12	MR. GABER: Yes, now this isn't for the
13	representative site. This is for a different site, and
14	again, we're still in the process. We did get the
15	we did get the Peach Bottom reference plant from SORCA,
16	but we still had the problem with getting a WinMACCS on
17	EPRI's computer.
18	MR. ESMAILI: Okay, so these are not
19	MR. GABER: So they haven't been rerun yet.
20	MR. WACHOWIAK: And I don't remember what the
21	absolute values are here on this, but you know, because
22	it's relative, going from base case to 2A, it's probably
23	like comparing 10 to the minus 9 and 4 times ten to the
24	minus 10. So, good luck with a very, very small.
25	MR. BUNT: Another point I was going to make

(202) 234-4433

	156
1	is that these curves, while they look like it's just a
2	reduction in two-thirds, it's still a large number
3	because you're going to put it on the chart, is this is
4	a large this is representation of a really, really,
5	really small number so far arranged.
6	MR. TRUE: and the only reason we included
7	it, was because we didn't have absolute results we could
8	present. And so we'll look at the absolute results when
9	we get them.
10	MR. GABER: Once you give us a copy of
11	WinMACCS, we'll be able to do these. I didn't put that
12	on the slide. But once we get a copy of WinMACCS that
13	we can run on EPRI's computer, we'll be able to bring
14	absolute values and deal with that.
15	MR. BARR: EPRI submitted a request for it
16	and the NRC approved it. It's in the process, I believe
17	the request was proved, a non-disclosure agreement was
18	signed. So I would say I think they probably would have
19	access, we'll need to download it and install it
20	probably a week or two ago. Was I wrong?
21	MR. WACHOWIAK: No, we were told it's going
22	to be today. We think we'll get all worked, out, it was
23	just kind of bumpy.
24	MR. TRUE: But it's been soon for a long time.
25	MR. GABER: But we'll get there. We clearly

(202) 234-4433

	157
1	don't I guess we don't expect the relative kind of
2	characterizations to be that. But at least it gives us
3	the ability to come and talk to you about specifics.
4	MR. TRUE: And these charts were originally
5	set up to sort of make the contrast on the value of water
6	versus all the other alternatives we've been talking
7	about. Not to draw final conclusions about the
8	decisions on two or three strategies. That's not it at
9	all. So we can keep going.
10	This one just over took the cases with
11	filters, and I don't think there's anything new here.
12	Just in principal focus in on those. Next one.
13	MR. GABER: One thing I was going to add, and
14	I don't know if you guys have done any calculations
15	considering the small and the large filter, but I did
16	just and hopefully at the next get together, we'll
17	be able to bring you more results for the filter cases.
18	But I did notice just kind of spot checking
19	the results for the small filter, that we did exceed the
20	aerosol loading in many of the cases in that case. I
21	think it was 30 kilograms or something, whatever you
22	gave us. But we have we provided it at the April
23	meeting.
24	We do see that that can be exceeded. The
25	large filter, I don't think I recall any of the cases

(202) 234-4433

	158
1	exceeding the threshold for aerosol loading.
2	MR. FULLER: Jeff, when you look at the
3	loading, you included all of the aerosol sources,
4	including non-radioactive, and including those from
5	CCI?
6	MR. GABER: Correct, yes.
7	MR. FULLER: Okay.
8	MR. GABER: there's a heat limit and a mass
9	limit.
10	MR. ESMAILI: Just one observation, because
11	you know looking at your releases, I don't think it's
12	any worse than SORCA releases. We know form SORCA what
13	the results were. So if you run so that the red might
14	disappear, I mean if you put it in an absolute, I don't
15	think it's going to be any worse then or so it's going
16	to go away. It's just you're trying to normalize very,
17	very small numbers.
18	MR. TRUE: Yes, that's it. Again, Jeff
19	presented this last time. It's just shows the
20	difference in why the 2 Alpha ends up with some
21	differences. The ultimate 2 because have the in vessel
22	retention cases in there. I think this is roughly
23	similar to what it looks Marty will present when we get
24	to it. If I ever get done.
25	So that's one chart we presented last time.

(202) 234-4433

	159
1	This just divides it up then further into what happens
2	ex-vessel. And then last. This is MACC, you know this
3	is heading us towards the benefits side of the
4	calculation where the benefit would be the differences
5	in the cases.
6	And again, when this is not a direct to the
7	plant, that's why we did it on a relative basis. Next
8	one. Yes, so where we're going from here. So we saw
9	once we get the WinMACCS thing worked out with EPRI and
10	NRC, then we're going to do the using the SORCA, Peach
11	Bottom WinMACCS text to write on all the scenarios.
12	I guess I'll just pause on this there was
13	some conversation about you guys potentially making
14	some other changes as far as this project, to the
15	WinMACCS model?
16	MR. GABER: Input, standard input.
17	MR. BARR: Yes, changes based on current, you
18	know models, best practices since SORCA, and on
19	currently available information.
20	MR. TRUE: Is that something that we could be
21	presented, so we would know what the Deltas are?
22	MR. BARR: Perhaps at the next public
23	meeting, if you guys would prefer.
24	MR. GABER: That would be good.
25	MR. TRUE: Yes, not now. I think that would

(202) 234-4433

	160
1	be helpful. And that way, we're going to proceed I
2	think with what we have. Assuming that unless you
3	tell us that there are significant Deltas you think in
4	the results, we'll proceed with what we have. You
5	think? Yes.
6	MR. GABER: The sooner the better.
7	MR. TRUE: I think we should proceed.
8	MR. GABER: Yes, I think we have to proceed.
9	MR. TRUE: And then if it turns out you give
10	us information that says that this was submitted
11	MR. GABER: Doug will show that we have a
12	couple sensitivities, dollars per person-REM averted,
13	things like that, that we're kind of aware of, that
14	there's some sensitivity to.
15	MR. SULLIVAN: The changes that I think we're
16	talking about, are based on the publically available DTE
17	from the reference site, which is shorter than the
18	ancient DTE that we used in SORCA. I guess it might be
19	easier for you to just load the SORCA data since the
20	cohorts and everything are powered. But it's the same
21	cohorts, just different travel times, due to a shorter
22	ETU if I'm not mistaken.
23	MR. TRUE: Yes, we just had heard there were
24	going to be some changes and didn't know what the nature
25	of them was.
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	161
1	MR. SULLIVAN: Yes, the new ETE is just
2	MR. GABER: For the reference, the level
3	three reference sites.
4	MR. SULLIVAN: No, not level three separate.
5	We're talking the reference site for this one. There's
6	a new evacuation time as to for every site that came in
7	December 12th.
8	MR. GABER: Okay, got you.
9	MR. SULLIVAN: Yes, December 12th. And this
10	site was a little late, but it's in and it's shorter then
11	what we had in SORCA. It's just the evacuation time
12	estimate, you know the travels of the population, et
13	cetera.
14	MR. GABER: Yes, if we could of you have
15	the we should have.
16	MR. TRUE: We can get it from the utility.
17	MR. BARR: It's publically available.
18	MR. SULLIVAN: It's a publically available
19	thing and but I mean you'd have to I mean you're
20	parsing the cohorts anyway. So it looks like you set
21	up the cohorts with the new evacuation time estimates.
22	MR. GABER: You think that's pretty much the
23	difference?
24	MR. BARR: Updated data bases like census,
25	land use, economic values. And some other small things
	NEAL R. GROSS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	162
1	like that. Things that are probably not worth getting
2	into right now. But maybe discuss a little more in the
3	future.
4	MR. GABER: Okay.
5	MR. TRUE: Okay. So then we're also going to
6	be starting in on the path on Mark II as I explained kind
7	of the way we're going to approach that. So we'll have
8	those results soon. We got a MAAP model set up for that.
9	Then we got all the ensuing analysis to do,
10	and I'll talk about those in just a second. But to get
11	to the bottom line in this slide, both literally and
12	figuratively, we shooting to have the analytical work
13	done by August. And then EPRI is going to what a
14	publication in the fall, and hope to have that report
15	publically available in December.
16	So if realizing that you guys are shooting
17	towards the end of the year to be done too. Probably
18	public meetings would be the best way for us to
19	communicate results before the publication of the
20	document. Which is why we're shooting for August.
21	MR. SZABO: and the way I this is Aaron.
22	The way I see this going forward is essentially that way
23	we would refer as appropriate to the document,
24	understanding that it wouldn't be final until probably
25	we'd be done with our whole for the draft regulatory

(202) 234-4433

	163
1	basis by the way. Which of course has its own comment
2	period.
3	And you know even though we're not required
4	to respond to comments, we would still consider
5	comments. We could you know, this would likely be
6	treated as one or whatever, I mean as final document
7	would be, and you know. But yes, this we'll make sure
8	we handle that.
9	MR. TRUE: So can you since I managed to
10	snare you in this trap, can you explain to me your
11	general schedule for completing your analysis, issuing
12	something for comment, and just remind me of those
13	milestones.
14	MR. SZABO: So pending commission approval,
15	we still have not gotten commission approval on our nine
16	month extension. Assuming that they approve that, the
17	draft regulatory basis would be December of this year.
18	We would then have a two month comment period, that takes
19	us to about February.
20	As I mentioned, we're not while we're not
21	required to respond to comments formally, we would still
22	consider them in fulfillment of the final regulatory
23	basis. We have an ACRS briefing, February I want to
24	say, tentatively. Or it might be more then tentative
25	these days, but, in February.

(202) 234-4433

	164
1	We would then be responding to comments,
2	still having public meetings and then I believe
3	September of next year, the exact dates are in the last
4	public meeting slides. But yes, September would have
5	the final regulatory basis, which is an information
6	paper, so it merely states the commission, how the staff
7	is moving forward to the proposed rule stage.
8	And then we would have one year to develop
9	that's when we would begin the development of the draft
10	regulatory guild. Initial proposed rule language,
11	preliminary proposed rule language and so forth.
12	MR. KRAFT: So in the original SRM Aaron,
13	wasn't there a point where the commission reserved for
14	itself whether or not you go beyond the regulatory
15	what they call the technical analysis stage? Am I right
16	about that?
17	MR. SZABO: No, it's merely an information
18	paper. Now the staff theoretically could say at the end
19	of the regulatory basis stage, the staff is stopping
20	this accounting, but that would probably need to be
21	another paper, if we said we were stopping the whole
22	process. But they did merely ask for an information
23	paper for the regulatory basis.
24	Now of course the commission can always
25	choose to turn that into an options paper after the fact.

(202) 234-4433

	165
1	MR. KRAFT: So you don't have to wait for them
2	to you don't have to wait for them to say that's fine,
3	now continue. You can continue without the commission
4	telling you to do so.
5	MR. SZABO: Yes.
6	MR. KRAFT: I'm not anticipating they would
7	stop you. I'm was just trying to remember what the
8	steps
9	MR. SZABO: Yes, no, it is an information
10	paper that would look very similar to an options paper,
11	except for it wouldn't happen, this is me, how I picture
12	this right now is and of course you guys would see
13	this in the draft Reg base as well. It would be here's
14	all the alternative options we've looked at. Here's
15	performance measures we looked at. Here's what we're
16	moving forward with.
17	Not we recommend to move forward. It would
18	be here's what we're moving forward with. And there
19	would be no formal recommendation. It's kind of how I
20	picture it right now. As me as my lowly staff member.
21	Of course I may be redirected, but.
22	MR. AMWAY: Let me ask one more time, the
23	proposed rule is September of '16. The final rule is
24	12 months after that?
25	MR. SZABO: December, 2017. Yes.

(202) 234-4433

	166
1	MR. KRAFT: That's all in the April 30th
2	slide.
3	MR. SZABO: Yes.
4	MR. KRAFT: Do you anticipate a problem with
5	commission approval on the changes scheduled?
6	MR. SZABO: No. I don't I mean I haven't
7	heard anything with any issues in relation to time. I
8	don't know why they we haven't received formal, it's
9	just
10	MR. KRAFT: Not something that they've
11	spoken to us about.
12	MR. SZABO: Yes, and then there's of course
13	if they didn't grant the extension, whether we can meet
14	the original dates even. Which I think the draft
15	regulatory basis would have had to have been out in
16	March, so.
17	MR. TRUE: Okay, let me give Marty his three
18	hours. So this last slide is sensitivity. And this is
19	for update of what we Jeff had shown before. We
20	continue to evolve this as we learn things and decide
21	we want to look into the sensitivities.
22	One thing that I did do here is I changed my
23	little bullet shape based on whether it was just a
24	probabilistic analysis, which is a check mark. Or
25	whether we actually have to do new MAAP and MACCs runs

(202) 234-4433

	167
1	to support that. So you can see most of them are going
2	to be more probabilistic.
3	And it doesn't mean that results aren't going
4	to change significantly because we pushed more
5	frequency down different pathways, you get different
6	answers and different dominant contributors. So you
7	know just to know what we're looking at.
8	And then I did have a question on cost benefit
9	sensitivities. We're looking at the 2,000, 4,000
10	person REM sensitivity. We'll do the discount rate
11	sensitivity is typically done. And I understand how
12	it's coming under replacement of power, but it doesn't
13	sound to me like that's going to be available in a form
14	to adopt for us to adopt, but you might be able to
15	adopt it.
16	But is there anything else on the cost benefit
17	side that you think would merit inclusion?
18	MR. SZABO: So the intent is to get the draft
19	of the dollar per person-REM update, and their price and
20	energy cost done by the end of this year. As we said
21	in the last open investment attempt.
22	MR. TRUE: Right.
23	MR. SZABO: And Another place where energy
24	costs, I'm pretty involved in with that, and it kind of
25	been through with this stuff. I'm trying to think.

(202) 234-4433

	168
1	Other sensitivities off the top of my head, we have the
2	one, I mean I'm just thinking about what we did in
3	SECY-12-0157.
4	MR. TRUE: I can look at that.
5	MR. SZABO: Yes. I mean you might just want
6	to look at the sensitivities were there.
7	MR. TRUE: Is that the analysis that you
8	think is lurking out there because of other ongoing
9	actions?
10	MR. SZABO: The appropriateness of some of
11	those sensitivities I'll leave up to whether you guys
12	wish to do those. You know, but we ran them just for
13	more complete information.
14	MR. TRUE: Okay.
15	MR. FULLER: This is Ed Fuller. I'm
16	intrigued by one of your phenomenological
17	sensitivities, namely the delay of drywell shell
18	failure. Are you going to be using MAAP503 to do that
19	particular calculation?
20	MR. GABER: No, we'll do it parametrically
21	with 502. Since we're not mechanistically calculating
22	that now, we can just parametrically look at the
23	sensitivity.
24	MR. FULLER: So you have some thoughts in
25	mind on how to do that I take it?
	NEAL R. GROSS

(202) 234-4433

	169
1	MR. GABER: Yes, some thoughts. I mean your
2	analysis provides the melt core analysis provides some
3	input to that because you can see we can see some of
4	the different
5	MR. FULLER: But it doesn't give the degree
6	of spreading though.
7	MR. SZABO: All right Steve, do you want to
8	just continue or do you guys want to do this topic?
9	Okay. But there's still a hard stop at 2:30.
10	MR. KRAFT: Well it's convenient for you all,
11	but at 2:30 I do have to go. But it would be good to
12	hear at least the beginning.
13	MR. SZABO: All right.
14	MR. ESMAILI: Okay, I am Hossein Esmaili, I'm
15	in charge of doing the MELCOR calculations. This is
16	just an update to the public meeting that we had at the
17	end of April. I presented you some results. I'm going
18	to show you more results. Basically fill in some of the
19	cases that was not done.
20	I think all of you know there is an option one,
21	you know we assumed that the vent is in place, you know
22	the RPV pressure control anticipatory venting, this is
23	all the initial and bound conditions that we all agreed
24	on. Back at the end of April we had options 2A, 2B, 2C,
25	this is RPV injection with vent cycling. B and C are

(202) 234-4433

170

vent cyclings.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

And what we added was option D, that we would travel, that the water, so it would not go above 21 inches. The results I showed you before was we would always go though from if you fill it up, it would go from wetwell vent into the drywell vent. So these are the cases to be added. Next slide.

The RPV injections, same assumptions 500 gpm, the injections at vessel breach we assume there's an option to inject prior to vessel breach. The results I'm going to show you, we didn't do that because we pretty much know that you know you're going to arrest the core in vessel.

Then the drywell injection. Again same thing, it's to containment sprays. This is flow rate control to prevent better venting, so at 500 gpm, you know once we get to 21 feet, that I would reduce it probably to somewhat less than 100 gpm so that the water does not go up.

20 MELCOR considers initial break of build up of 21 water in the drywell phenomenal leakage. This actually 22 turns out to be important, because you know by the time 23 the lower head fails, you still have about you know, 24 between one and two feet of water inside the drywell. 25 So when you start injecting water at the time

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	171
1	of lower head failure, so you have some time. Because
2	you know so you don't get to a liner melt through because
3	of the existing water. So that is important. Next
4	slide.
5	They asked me to put this slide in, so I guess
6	everybody knows about the fission pathways here This
7	was another slide so we just you know MELCOR models
8	all of these things you know, transports for the RPV,
9	as it turns out main steamline, going thorough SRVs,
10	drywell and main vents, we do consider core containments
11	direction as you do.
12	The drywell head leakage, here the assumption
13	is that's because all of the cases are wetwell venting.
14	You know we assume that the drywell head starts leaking
15	about 700 Fahrenheit and just kept open, it's not, you
16	know it cannot close.
17	We do some we do have some cases,
18	especially main steamline break that the pressure is so
19	high that you you know that you also lift it based
20	on pressure because the pressure goes above 100 psi.
21	MR.GABER: Excuse, me is that with did you
22	say that's with venting?
23	MR. ESMAILI: Even with venting.
24	MR. GABER: Even with venting. Even your
25	main steamline ruptured?

(202) 234-4433

	172
1	MR. ESMAILI: The main steamline cases, even
2	with venting, it's not enough to relieve the pressure.
3	MR. GABER: So in those cases, you're using
4	the SORCA model that's kind of the pressure cooker, that
5	just releases
6	MR. ESMAILI: That model is there, but more
7	importantly, the model of exceeding 700 degree F is
8	there. So you always get at 700 degree F, so you don't
9	receive that. You just you know, you leave it open.
10	So we do have the liner melt through, we have
11	venting. There are I think a number of penetration
12	leaks through the containment and through the reactor
13	building, those are a model.
14	Bellows ruptures I think it's just something
15	that was postulated for the Fukushima, we are not
16	modeling that, so.
17	MR. GABER: Your other penetration leaks are
18	normal
19	MR. ESMAILI: Normal leakages, based on.
20	MR. GABER: Half percent per day stuff?
21	MR. ESMAILI: Yes, very little. Okay, so
22	here's
23	MR. KARIPINENI: The 700 degrees you're
24	about is gas temperature?
25	MR. ESMAILI: Gas temperature.
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	173
1	MR. KARIPINENI: And you have a structure
2	temperature also calculated in all of those cases,
3	right?
4	MR. ESMAILI: Right. We do and then we
5	provide that one. But the assumption's at 700 degrees
6	F, this is what we agreed on back in December, that 700
7	Degree F, we say that the seals are gone. And once the
8	seals are gone, we open the flow path from the upper
9	drywell head. I think it's about 21 feet square. And
10	it's just open.
11	MR. KRAFT: Excuse me, how rapidly does that
12	happen? Once you have the steamline rupture do you get
13	the lifting of the dome, how quickly does that occur?
14	MR. ESMAILI: It's almost immediate.
15	MR. KRAFT: Almost immediate. That's how I
16	would have thought that the violence of the
17	MR. ESMAILI: It's almost immediately that
18	you have a very hot it just fills up the upper head,
19	you know whatever is inside that steam dome is just going
20	to come out.
21	MR. GABER: I don't want to steal Marty's
22	thunder, but if looking ahead, which we all do, it looks
23	like those main steamline ruptures are lower frequency
24	cases.
25	MR. ESMAILI: Oh yes, okay, so this is what

(202) 234-4433

	174
1	I didn't say. I'm going to say that. The main
2	steamline break, you have to work very, very hard to get
3	a main steamline break in those cases.
4	So here I'm just showing you the matrix, and
5	looking at it it's really small, so I guess we are racing
6	to see who can produce the smallest 1,000 and put it on
7	the.
8	But so option one is that these are the cases
9	that have no water injection. Based on our discussion
10	back at the end of April, there was some discussion about
11	the anticipatory venting for 15 psig versus 5 psi they
12	have one sensitivity we did at 5 psi.
13	And so some of the differences between the
14	last public meeting is that for the cases where the RCIC
15	fails, we do not if the RCIC fails, we do not do
16	anticipatory venting. Whereas the results I showed you
17	before, there you know, even though the RCIC failed, we
18	did anticipatory venting.
19	But here in some of these calculations, I
20	don't do anticipatory venting if the RCIC fails. But
21	the whole purpose of that one was to.
22	And so some of the cases you see the B cases,
23	these are traveling cases. We do have sensitivity to
24	240 F. More results are actually in a back up slide.
25	Then we have a number of cases that you see
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	175
1	at the bottom that we assume basically either no RPV
2	pressure control and you the operator does not do
3	anything so that it's cycling at a set point. Or there
4	is some time about four hours of PRV pressure control.
5	And then in terms of RCIC, we have some cases
6	that the RCIC availabilities were four hours or 16
7	hours. It doesn't mean so for four hours, RCIC can run
8	for four hours. They cases that have 16 just means that
9	it's available. I'm not going to run it. But it's
10	mostly the cases are going to fail before 16 ours unless
11	it's a section for CSD.
12	Okay, so I think and then I changed that
13	band you know from 10 psi band for the one cycling cases
14	to 20. And we have two cases, I think it's maybe I
15	can look at this, at 49 and 50. I think it's 49 and 50
16	represent your CD-017 and 19 cases. So we just ran
17	those cases.
18	And you see, we have some internal
19	discussions. So we ran some additional cases assuming
20	that wetwell venting is not available. Now what
21	happens if you do drywell venting. Just wanted to see
22	you know, whatever type of result we were going to get.
23	MR. BUNT: Okay, this is Randy Bunt. Can we
24	go back, you said that you did not do anticipatory
25	venting for some things when you didn't have it. Are

(202) 234-4433

	NEAL R. GROSSCOURT REPORTERS AND TRANSCRIBERS1323 RHODE ISLAND AVE., N.W.(202) 234-4433WASHINGTON, D.C. 20005-3701(202) 234-4433
2.0	M. ESPATHI. How we do have the yes, that
25	MR ESMAILT. How we do have the yes that
2.4	that.
23	MR. BUNT: Yes, I just wanted to clarify
22	doesn't matter when you do it, it may be at half an hour.
21	MR.ESMAILI: You go right thought it. So it
20	MR. BUNT: You go right through it.
19	that it can
18	what happens is that this pressure build up is so rapidly
17	do it at psp that you see that much sensitivity, because
16	MR. ESMAILI: I have a sensitivity to it, we
15	pounds if the vessel's not breached yet.
14	practical sense, we vent early, we'll vent around 30
13	MR. BUNT: But some of those cases, in
12	psig so you do vent.
11	In all cases in all cases we get to 60 psi and at 60
10	MR. ESMAILI: That's right, that's right.
9	breached.
8	is venting ahead of the PCPL as long the vessel's not
7	the cases not doing an anticipatory venting. But there
6	vent because RCIC wouldn't be available and you reran
5	MR. BUNT: But you said you weren't going to
4	do vent. When we
3	MR.ESMAILI: No, no, we vent. We vent. We
2	
1	you not venting until you get to PCPL, or are you venting
	176

	177
1	is marked great number 6 I think.
2	MR. AMWAY: But what's the reason for having
3	pressure control for a period of four hours and then not?
4	MR. ESMAILI: I think this was we had
5	batteries on it for four hours.
6	MR. AMWAY: Oh, it's the batteries, okay.
7	MR. ESMAILI: Yes, most cases we assume the
8	you know, and the other reason is that again, this is
9	goes back to, I wanted to get a main steamline break.
10	If you go and do pressure control, if you have battery,
11	you're to drop to 200, 400 psi, you're not going to get
12	that main steamline break.
13	So we had to do calculations to show that
14	whether we get main steamline breakage, to see what the
15	margin is. And so some of those cases that well let's
16	go to the next, I will show you. The next slide.
17	So here are the releases. So I just
18	categorized in terms of the options. So what you see
19	is that you know, one is obviously no water injection.
20	So 2A you start injecting into the RPV. So in general
21	the releases are going down. And you go to the vent
22	cycling, vent cycling helps overall.
23	You know you get additional benefit from vent
24	cycling. But the number of cycles is excessive. I
25	don't know how many cycles you get, but we get a lot of

(202) 234-4433

	178
1	cycles when you do over the 32 hours.
2	The other thing is that you know, going from
3	PRV injection to driver injection, we don't see much of
4	an improvement. And this is because again, the
5	assumption is that no, we vent. No you get to the PCPL
6	about ten hours before we get to the lower head failure.
7	It takes a long time to get to the lower head failure.
8	So there is enough time for some of these
9	re-vaporization to take place before that. So by the
10	time you start actually injecting you know most of this
11	stuff has either gone out, or they have re-vaporized,
12	they have condensed on other parts of the vessel, you
13	know upper. So it's not having that much of a
14	influence.
15	MSRV cases, you see that I showed them that
16	they're of course the highest because you know MSRV
17	cases that the upper head fails, you get a hydrogen
18	explosion, you know, and that blows the panels open. So
19	you get a very large releases in some cases.
20	The main steamline break cases. When I the
21	cases that I ran before was as I said, you know you try
22	to keep the vessel pressurized. That's the only way you
23	can get that main steamline break. And even then, it's
24	very likely that you either are going to have to cycle
25	this thing so many times, you know, because our

(202) 234-4433

	179
1	assumption in the number of cycles is around 270 MSRV
2	cycle, this was the assumption that was used in SORCA.
3	And we are you know, you have to cycle a lot
4	of times before you get to the main steamline break.
5	What we did was that in one of the cases, in case two
6	from the previous slide, is that we tried to run MSRV
7	open, it still opened not full, but you know at 50
8	percent. Even then we couldn't get a main steamline
9	break.
10	So at some point I said that if we're not going
11	to get a main steamline break, let's just close it and
12	see what happens if you get a main steamline break. So
13	the probability of getting a main steamline break is
14	pretty low.
15	And you know
16	MR. GABER: Mr. Esmaili?
17	MR. ESMAILI: Yes?
18	MR. GABER: Question. What when we
19	tried to find a way to display all these results, you
20	know, we tried to list the releases, or the DF, or the
21	temperatures in order of dominant scenarios. I'm
22	struggling a little bit to make that connection between
23	these MELCOR results and what Marty's results show.
24	MS. ESMAILI: This all had a probability of
25	one. Because right now these are just the MELCOR

(202) 234-4433
	180
1	results. I think at some point Marty's going to talk
2	about each one of these.
3	MR. GABER: Which ones are used and okay.
4	MR. ESMAILI: Yes.
5	MR. GABER: How they're getting pulled, how
6	you select them.
7	MR. ESMAILI: Yes. We have a lot of
8	criticisms say oh, you're showing this. But the fact
9	is that these are just conditions where everything is
10	one. But in reality, they are you know.
11	MR. BUNT: I know you're doing a
12	representative plan here. But my experience in looking
13	at most of the plants is that their battery lives are
14	more in the eight hours or longer time period with a low
15	stripping and everything else that are being done.
16	So I mean we understand that the four is being
17	used for that. But many plants have much, much longer
18	than that. So I mean that needs to be factored in I
19	think the probability needs to be these other possibly.
20	The other thing, I think if I heard you right,
21	that you were saying that the injection was going to
22	start at 12 hours, the secondary injection? Are you
23	assuming that there's not secondary injection in those?
24	MR. ESMAILI: There's no injection no. All
25	of these cases, I wanted to get some release.

(202) 234-4433

	181
1	MR. BUNT: Okay.
2	MR. ESMAILI: If I started out. And then as
3	far as the batteries concerned, I don't care about how
4	much battery I have because as far as the calculations
5	are concerned, it just controls the SRV you know.
6	MR. BUNT: Right, well for four hours and
7	some of the stuff that you're driving to, I keep hearing
8	that that's driven because of the battery life. And
9	that's really not what we're really seeing at the plant
10	sites. Because the plant sites have a much longer
11	battery life than that.
12	So we understand that it's typical, but.
13	MR. ESMAILI: That's right, those are upsets
14	of the calculations, correct.
15	MR. FULLER: I believe, tell me if I'm wrong
16	Hossein, but most of the cases that he's done, have a
17	16 hour release.
18	MR. ESMAILI: We have 16 hours and then
19	MR. FULLER: And the battery continues to be
20	available.
21	MR. ESMAILI: Previous calculations
22	previous slide shows that it says availability of RPV
23	pressure control, and say 72 hours that means that I
24	have. Not that I'm going to use it, but I have it here.
25	MR. FULLER: The capability is there if

(202) 234-4433

	182
1	something fails.
2	MR. ESMAILI: Okay, so next slide. So the
3	next slide is how we right now are doing the calculations
4	for the Mark II. It's the same initial and boundary
5	conditions so whatever we learned from Mark I, they're
6	just putting into the Mark II analysis in terms of you
7	know, for head failure, you know RCIC operation, initial
8	boundary conditions.
9	Our Mark II model is somewhat more simplified
10	then the Mark I because the Mark I went through a lot
11	of you know number of years of you know, improvement.
12	But the Mark II has not achieved that. And we also
13	condensed our own matrix.
14	So we are not repeating all of these
15	calculations that I showed you before for Mark I. Just
16	showing you know where we saw important stuff. Because
17	some of these calculations show basically the same
18	release.
19	So these are about 12 of these calculations
20	that we are showing that right now we are going to be
21	trying to run and get results. So it's Mark II it's a
22	condensed version.
23	MR. GABER: A couple of questions on the Mark
24	II's. Are you is your representative Mark II account
25	for the potential bypass?

(202) 234-4433

	183
1	MR. ESMAILI: Uh
2	MR. GABER: Full bypass?
3	MR. ESMAILI: it does if there is it's
4	representative of a case is that if the drain line fails,
5	and I think once that the peak gets injected, I just have
6	to remember, there's some time delay between once the
7	peak gets injected and when does it go to the
8	MR. GABER: Bypass.
9	MR. ESMAILI: Yes.
10	MR. GABER: And then you're representing to
11	me that
12	MR. ESMAILI: I will have more information in
13	just a minute.
14	MR. GABER: Okay. Then another question
15	would be is your representative Mark II have water under
16	the pedestal?
17	MR. ESMAILI: No.
18	MR. GABER: It's dry?
19	MR. ESMAILI: Under the pedestal it's
20	MR. GABER: No, I mean in the wetwell part.
21	In the lower pedestal.
22	MR. ESMAILI: The lower pedestal, no water.
23	MR. GABER: No water. There's only one of
24	the Mark II's like that. Of the five.
25	MR. SZABO: You're still asking two

(202) 234-4433

	184
1	different questions.
2	MR. GABER: Oh, I am. Below the floor in
3	the pedestal, in the compartment before the floor,
4	within the wetwell.
5	MR. ESMAILI: Yes, within the wetwell, there
6	are a number of designs, and I think that the design that
7	we have does not have the water there.
8	MR. GABER: Okay. You're not going to show
9	your backup slide?
10	MR. ESMAILI: No, the backup slide is just
11	the numerical value up there, the slide that I showed
12	you, so it isn't necessary.
13	MR. SZABO: I guess why don't we just take a
14	break now. We'll come back at 2:35. Thank you.
15	(Whereupon, the above-entitled matter went
16	off the record at 2:22 p.m. and went back on at 2:37 p.m.)
17	MR. SZABO: All right, so we're now going to
18	continue with the NRC presentation. This is going to
19	be on the risk evaluation status, which Marty Stutzke
20	and James Chang are going to give.
21	MR. STUTZKE: Well, as usual, the PRA folks
22	get to talk late in the afternoon when everybody's kind
23	of sleepy. But I guess I'm getting used to maybe you
24	save the best part for the last part.
25	Anyway, next slide please. We'll talk about

(202) 234-4433

	185
1	where we are within the PRA and the actual risk
2	evaluation to date implied here about what needs to be
3	done by the end of the calendar year.
4	I would remind you that the purpose of the
5	risk evaluation itself is to look at changes in risk from
6	the various filtration and severe accident mitigation
7	strategies that we're talking about.
8	The reason why I point that out is that when
9	we did the original analysis, everything that was prior
10	to core damage was compressed under one of them, mainly
11	the calculated, the estimated frequency of core damage
12	crediting things like FLEX and stuff like that.
13	As a result of trying to do something more
14	detailed, there's now core damage event freeze that has
15	grown, probably it's the largest logic model I've ever
16	personally worked on before.
17	So anyway, I want to talk to you a little about
18	how I've estimated the ELAP frequencies, some of the
19	results and the assumptions and the ground rules that
20	have gone into developing the core damage event that
21	creates the CDETs as well as the accident progression
22	trees, the APETs.
23	Okay. So ELAP, as we all know, has been
24	defined as the frequency of station blackouts with the
25	duration that's longer than the coping time required by

(202) 234-4433

	186
1	the station blackout rule itself.
2	Right now there are two contributors
3	considered so called internal events. These are
4	plant-centered LOOPs, switchyard loops, grid related
5	and weather related LOOPs because weather related loops
6	could be things like tornados rolling over a
7	transmission corridor that causes the loss of offsite
8	power.
9	It does not include damage from the tornado,
10	for example, directly on the site, so no missiles, wind
11	loadings, things like that. Also, we've tried to
12	estimate seismic ELAP frequencies coming in.
13	And I'll talk to you in a little bit in a slide
14	or two about what's considered in there. What I'd like
15	to point out is that there are other types of external
16	events that we haven't included yet in the model.
17	And we may not include them at all, again,
18	things like high winds, tornados. Tornados are on my
19	mind because Nebraska sent out a couple of days ago like
20	that. I'll call them or characterize them as at the
21	edge of the current PRA state of practice.
22	People have done high wind risk analyses, not
23	only tornados but hurricanes as well, which includes
24	storm surge as well as the wind related effects. The
25	other types of external events identified in NEI 12-06

(202) 234-4433

	187
1	in extreme low temperatures, extreme high temperatures.
2	None of those are included numerically on the
3	model reg now. They could be significant. I've done
4	some work in estimating tornado induced core damage
5	frequencies using data, the latest tornado hazard model
6	from NUREG/CR-4461.
7	And, as you would expect, depending on where
8	your site's located, the tornado hazard is larger than
9	the seismic hazard, not surprising. So I point this
10	out. It's what PRA analysts call incompleteness on
11	certainty.
12	So you have a numerical result, but it's lower
13	than maybe it should be because you've just simply
14	omitted things out of the model. Aaron would call these
15	qualitative factors.
16	The other note that occurred to me right when
17	I was sending these slides off to Aaron is we've also
18	tended to fixate on the benefits of these filtration and
19	sphere accident mitigating strategies for accidents,
20	for ELAP related accidents.
21	But they may also be beneficial for other
22	types of accidents as well, and those are certainly not
23	in the model like that. Again, another source of
24	incompleteness on.
25	Now, I have to believe, having all this

(202) 234-4433

	188
1	equipment and procedures lined up, that if people feel
2	they're going to need it, they're going to use it.
3	MR. AMWAY: And to reemphasize that point, I
4	mean the way this will show up is the equipment will be
5	in a list of options that the operator has at his
6	disposal, that he's going to go down and order a
7	preference.
8	And if it's available he'll use it. If not,
9	he'll check it off, go down to the next item. So if that
10	piece of equipment comes up for a non-ELAP event, and
11	that's the next thing that's available, that's what
12	he'll go use.
13	MR. STUTZKE: Absolutely. I firmly believe
14	that. The plant won't go down without a fight.
15	MR. AMWAY: Right.
16	MR. STUTZKE: Okay. So ELAP frequencies
17	are, in fact, site-specific. There's three reasons
18	why. One is general plants have different SBO coping
19	duration, whether four hour sites are eight hour sites.
20	The number of onsite emergency AC sources
21	will affect the probability that you actually enter a
22	station blackout like this. And, of course, seismic
23	hazard is site specific as well.
24	I need to, in the analysis, update the use of
25	the latest seismic hazards that came in response to the
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	189
1	50.54(f) letters that went out on, net term task force
2	recommendation 2.1. I have that information.
3	I just haven't had a chance to pump it back
4	into the model. So we'll see that. In addition, okay,
5	the ELAP frequencies are considered, of course, random
6	equipment failures, common cause failures and various
7	seismic failures, so batteries, the diesels themselves
8	and of course offsite power wiped out.
9	MR. AMWAY: If I can just ask a question on
10	the seismic hazard roll update to NTTF 2.1 submittals,
11	also consider the fact that we, for plants that have the
12	GMRS that exceeds their SSC, they're going to do the
13	expedited seismic evaluation program and identify any
14	of those components in the mitigation strategies that
15	may be susceptible to failure in that range and
16	potentially upgrade those or select alternate paths.
17	MR. STUTZKE: Yes, I understand that right
18	now we're using seismic fragility information that's
19	generic. It comes from our RASP Handbook that the
20	senior reactor analyst used to do this.
21	Again, I'm fully aware that those hazard
22	estimates have a number of assumptions that are built
23	into them and hidden about the shape of the spectral
24	response and things like that, that may no longer be
25	valid like that.

(202) 234-4433

1 To do a full job, of course I'd like to have 2 a nice Level 3 seismic PRA for every one of the sites, and that isn't going to happen or schedule and monetary 3 4 concerns. So yes, I will be paying attention as the 5 information comes in and try my best to incorporate it and credit it. 6 7 But one of the things that I would point out here is in addition to a seismically induced ELAP, the 8 earthquake itself can fail other equipment in the plant 9 that we're interested in, notably the RCIC pump and the 10 DC switch gear itself, like that. 11 12 They all have comparable seismic 13 fragilities, and you can see the effect on the next slide, Slide 24, like that. So these are my estimates 14 15 from the internal hazards, the seismic ELAPs. 16 The last four columns are my seismic portion 17 of the sequences in the core damage event tree. So if you read across the top, it says DC is working and RCIC 18 19 short term is working. It means the earthquake did not fail RCIC or 20 21 DC power. And so you get those sorts of frequencies, 22 and that applies to Sequences 1 to 224 in the core damage event tree. 23 The next column there is DC is working but 24 25 RCIC short term has failed, and you see that's not nearly

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	191
1	as likely because the hazard and the fragilities being
2	the way they are.
3	And finally DC has failed but RCIC short term
4	is working and finally both have failed. So you can see
5	the different contributions that way. Yes, that's
6	probably all we need to see here.
7	MR. TRUE: For the internal hazard ELAP,
8	since you've defined that as longer than coping time,
9	did you credit offsite power recovery?
10	MR. STUTZKE: Yes. It does, in fact, credit
11	offsite power recovery. You begin to, in order to build
12	the correct probabilistic model there's a deviation
13	from what we were asked, but says assume it's externally
14	initiated and there's no chance of recovery.
15	But it's unreasonable to think that internal
16	events might be recovered
17	MR. TRUE: Right.
18	MR. STUTZKE: rapidly.
19	MR. TENACE: But the case of this chain
20	stands, the philosophy we see RCIC operating, was there
21	any subdifferentiation, whether that's the electrical
22	power infrastructure or just say, batteries associates
23	
24	MR. STUTZKE: Right now it's modeled rather
25	simplistically. It is, there's a switch peer failure
	NEAL R. GROSS

(202) 234-4433

	192
1	assuming they're all seismically coupled and the
2	battery failure's put in there.
3	So it is conservative in the sense, in other
4	words, it's possible to fail one of the DC switch gears
5	and the other would be perfectly fine in providing the
6	power that you need.
7	MR. FALLON: Yes, Marty, you got path valve
8	for the DC failure and RCIC, are you assuming a black
9	stir?
10	MR. STUTZKE: I'll get to that. In fact,
11	it's on the next slide. So the core damage event tree,
12	as I said, it's kind of grown from the one that we had
13	talked about a couple of meetings ago.
14	Right now, to jump to the bottom and correct
15	an error, right now the tree has 340 total sequences on
16	it, 340 of which 280 are core damage sequences. It
17	models use of the portable flex pump for suppression
18	pool make up as well as RPV injection like this.
19	There are worries about connecting the
20	emergency generator to recharge batteries when it's
21	needed to. There are, in fact, two core damage event
22	trees. One is for the so called, first venting the
23	case.
24	That's the one that we normally talk about
25	that says the wetwell is the preferred path. We
	NEAL R. GROSSCOURT REPORTERS AND TRANSCRIBERS1323 RHODE ISLAND AVE., N.W.(202) 234-4433WASHINGTON, D.C. 20005-3701(202) 234-4433

	193
1	understand that the wetwell could get flooded out in
2	which case there would be a transition to the drywell.
3	Alternatively, the wetwell vent may simply
4	fail to open on demand in which case they would be forced
5	to use drywell vent. The other case we have is a drywell
6	first case, nominally through a ruptured disk.
7	The tree considers reclosure of the
8	containment vents upon core damage. I believe that's
9	in accordance with the EPG SAGs. Extensive
10	consideration of local manual actions upon the loss of
11	DC power.
12	The reason why I'm interested in DC power is
13	that it affects the human reliability. I give credit
14	for things like RCIC blackstart and black run if DC power
15	fails. I understand the guys will run down to the room
16	and try to get the pump working.
17	They have to. Similarly, looking into the
18	EPG SAGs I give credit for local, manual SRV operation
19	to depressurize the reactor. They talk about sticking
20	your hands in and lifting the solar mark valves.
21	I'd have to think twice about that, but it's
22	in there, same way about local manual containment vent
23	operation. If you need to, go crank down on the
24	handwheel and get it open.
25	So those are in there, and again, the loss of

(202) 234-4433

1 DC power probabilistically is a conditioning event. Ιt changes the probability of human error like this. 2 3 Speaking about human error probabilities, right now I 4 have some preliminary values I've used to run through the model that say if it's a control room action, it's 5 6 set at 0.1. If it's outside of the control room, I set it 7 to 0.3. I understand those numbers are certainly for 8 the in control room action when DC power's available. 9 10 That's a pretty conservative number, okay, because operators routinely operate SRV's and depressurize 11 12 things. 13 Remember that the purpose of these is to help us focus our attention on what sequences we think are 14 15 more likely than others for the MELCOR. And these are

not the final numbers that James will be working on like that.

18 I would also point out there was a commission 19 meeting a couple of weeks ago about human reliability 20 in general, and the subject of filtered containment 21 venting came up.

22 And it's created all kinds of interesting 23 discussion among the staff about whether people can actually estimate these types of probabilities, so 24 forth and so on. 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

16

17

	195
1	The net result of that is James and I are going
2	to go have a chat with Commissioner Ostendorff later
3	this summer.
4	MR. CHANG: August.
5	MR. STUTZKE: August. Like that, we're
6	going to have a chat with the ACRS about these sorts of
7	issues.
8	MR. TRUE: Marty, any idea of order of
9	magnitude or rough guess, how many human errors you got,
10	you have in the model? I mean is it ten? Is it 50? Is
11	it
12	MR. STUTZKE: It's probably about ten.
13	MR. TRUE: Okay.
14	MR. STUTZKE: It doesn't have all the nuances
15	in it that it really
16	MR. TRUE: Yes, that's my
17	(Simultaneous speaking.)
18	MR. TRUE: I was trying to get a sense.
19	MR. SZABO: I do recommend everyone watch the
20	commission meeting that is available, the transcript if
21	you want to read it is available. But you can also watch
22	the video, especially the Q and A at the end between the
23	commission and the staff will help.
24	As I said, as Marty said, this rulemaking
25	actually came up a lot more than I wanted it to, so it

(202) 234-4433

	196
1	may help inform your thoughts for later, what might be
2	coming down the road.
3	MR. STUTZKE: So, as I said, the 280 core
4	damage sequences, realize that 139 plant damage states.
5	So we'll talk about the plant damage states again.
6	These haven't changed, but I guess I want to clarify the
7	evolution of this.
8	Basically, the plant damage states, let's go
9	to Slide 26. It's a five chunk for the five attributes
10	of the plant damage states. The first one gives you an
11	approximate time frame.
12	The second one gets you an approximate RPV
13	pressure, containment vent status, DC power status and
14	a FLEX pump status. The latter two are there because
15	they impact the accident progression of event tree
16	logic.
17	In other words, if I know the FLEX pump is
18	already mechanically broken, and its backup is
19	mechanically broken, it's not available post core
20	damage. It's that sort of thing like that.
21	As far as, let's work our way up, so, from the
22	bottom. So the FLEX pump status, it's either it's okay,
23	which means it's always working. It's mechanically
24	failed. The hardware's broken.
25	The operate didn't get it aligned in time to

(202) 234-4433

	197
1	avert core damage. That means there's a chance that it
2	gets recovered post core damage.
3	MR. BUNT: When you say hardware has failed,
4	that's both the N and the N plus 1?
5	MR. STUTZKE: Yes. The rationale here is if
6	the first pump breaks, you'll try to use the second one
7	to prevent the core damage from ever occurring like
8	that. So I know by the fact that core damage has
9	occurred, you used up your available resources, that
10	sort of thing.
11	DC power you have a long term, is an
12	indication that it's an unrecovered battery depletion
13	like this. And I realize the plants have various
14	amounts of battery depletion time.
15	We talked about four hours. It could be
16	eight hours, load stripping, different plants. For the
17	tree it doesn't matter. All I'm trying to distinguish
18	is did it go away because it was unrecovered as opposed
19	to the short term attribute, which means it was broken
20	at time zero and can't be fixed.
21	So the short term is really a seismic failure
22	of DC power, non-recoverable. If the long term is, it
23	worked during FLEX Phase 1. It didn't get working in
24	FLEX Phase 2, so I will allow some credit to try to get
25	DC power recovered post core damage.

(202) 234-4433

	198
1	MR. BUNT: And once again going back to the
2	EDM, there is EDM methods of restoring DC for SRV
3	operations. Were those considered?
4	MR. STUTZKE: In a broad sense, yes. A
5	containment vent status merely tells you which vent is
6	open, if any, at the time of core damage like this. RPV
7	pressure gives you a rough idea of whether the SRV is
8	cycling.
9	That's important because that's one of the
10	conditions necessary for main steamline creep rupture.
11	It tells you if you're medium pressure, which means
12	there's a 200 to 400 pound control bound to optimize RCIC
13	pump.
14	Or if I'm totally depressurized below the
15	FLEX pump at time of failure. Okay. Timing, and
16	you'll see I carefully put down zero to four hours, four
17	to 16, at 16. The original idea was this.
18	I got FLEX Phase 1, and I got FLEX Phase 2.
19	So I need a way to distinguish did I fail in Phase 1.
20	Or did I fail in Phase 2? So that was originally early
21	and late, that simple like this.
22	The MELCOR guys needed to know well, how long,
23	in order to run the simulation. Fine, we'll pick time
24	zero plus as an early failure, and we'll pick five, eight
25	hours, something for the longer term MELCOR time.

(202) 234-4433

	199
1	Thinking about it a little bit more we
2	realized there's a way to get in trouble if you don't
3	supply suppression pool make up. And those are much
4	longer sequences. So okay.
5	So I'll take the long term one, and we call
6	it middle term and redefine long term as suppression
7	pool make up failures. And that's all that's intended,
8	whether it's actually 16 hours, 23.
9	Again, it's immaterial in my concern. So the
10	obvious, if you notice, this thing moves around from
11	presentation to presentation.
12	MR. GABER: Hey Marty, a question on the
13	pressure. So, I know we talked about this. Maybe you
14	answered it before. If I have RCIC, and I'm controlling
15	at medium pressure, does your modeling account for if
16	I lose RCIC I depressurize?
17	MR. STUTZKE: Yes, it does. I can go back
18	and check that. It should be in the tree structure.
19	MR. GABER: Okay.
20	MR. AMWAY: The human reliability failures
21	that you were talking about in the control room, and you
22	mentioned something about pressure control. Is that
23	you start the depressurization, and you fail to
24	terminate it and end up losing RCIC? Or what types of
25	

(202) 234-4433

	200
1	MR. STUTZKE: That part of the logic is very
2	similar to EPRI's logic model. Those branches are
3	basically the same. So you have the case where you
4	depressurize, and you just don't turn it off.
5	And you turn off your RCIC pump as a result
6	of it. Or there's cases where, for example, in the
7	medium pressure, they want to get, they got the FLEX pump
8	hooked up and they forgot to get down below to shut it
9	off, so it's just running dead headed in the system for
10	whatever reason.
11	MR. ESMAILI: Do you do that, Jeff, in your
12	map calculation? Do you depressurize after RCIC fails?
13	MR. GABER: We do.
14	MR. TRUE: We have cases where we don't.
15	MR. STUTZKE: Yes, I may have one or two. I
16	need to go back and investigate, but I did look at it.
17	MR. ESMAILI: I think we have two cases
18	(Simultaneous speaking.)
19	MR. STUTZKE: Because what was triggering me
20	was the EOP that says it's the last resort, blow it down.
21	MR. AMWAY: On a RCIC failure, if that's your
22	last injection source that's what you're going to have
23	to do before you transition the
24	(Simultaneous speaking.)
25	MR. STUTZKE: Yes.

(202) 234-4433

	201
1	MR. FULLER: There is one thing though if
2	RCIC fails because battery depleted, you'll
3	repressurize. Marty says he credits the possibility of
4	manually opening up an SRV. But I don't know what the
5	chances are you're actually going to do that.
6	MR. STUTZKE: 0.3.
7	MR. FULLER: All right. The thing is if you
8	don't do that, and you go to core damage at high
9	pressure, the whole issue, but on the other hand you're
10	able to make the connection to inject into the vessel.
11	Then you're dead headed until it
12	depressurizes. And that would most likely occur from
13	a failure of an SRV, probably at high temperature
14	seizure. So you give yourself a chance for injection,
15	which in this case probably would happen around the time
16	or even slightly after significant relocation of core
17	debris into the lower head.
18	So, it could be sooner, too, or stochastic
19	failure of an SRV. So there is a certain probability
20	of being able to avert vessel failure although you have
21	core damage.
22	MR. GABER: It shows in your results, like it
23	does in ours.
24	MR. WACHOWIAK: But you have to remember,
25	when RCIC quits, just because it quits doesn't mean
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	202
1	you're immediately uncovering the core. There's time
2	between.
3	MR. FULLER: No, there is time, probably an
4	hour or two, whatever.
5	(Simultaneous speaking.)
6	MR. FULLER: You run this thing with MAAP
7	though, MAAP says as soon as you deplete the battery you
8	pause RCIC.
9	MR. WACHOWIAK: And then you start losing
10	water.
11	MR. FALLON: I just have one. This is Pat
12	Fallon. The SRVs, by their characteristics, if you're
13	manually depressurizing, they will cut off at 50 pounds
14	if you're in manual mode.
15	They won't stay open at 50 pounds, and RCIC
16	can run as low as, by design, 150 pounds, so I you have
17	a 100 pound difference in there. If the SRV closes,
18	loss of driving pressure through the mechanism by
19	itself, you'll get some repressurization on that.
20	MR. GABER: Right. That's what I'm talking
21	about.
22	MR. FALLON: Yes, this operator mechanism
23	will over depressurize and killing RCIC may be
24	temporary. We may get it back and may go back and forth.
25	MR. GABER: Right.
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	203
1	MR. FALLON: Is that covered in the analysis?
2	MR. STUTZKE: Not right now.
3	MR. FALLON: Okay.
4	MR. STUTZKE: But I don't think it's a big
5	contributor of what we're seeing.
6	MR. FALLON: It would be a couple hundred
7	gallons.
8	MR. STUTZKE: So Slide 27 lists the
9	MR. CHANG: Earlier you said the loss of the
10	injection, loss of RCIC that were not vent containment.
11	But they are both still will bend to the containment when
12	you reach through the containment pressure.
13	MR. GABER: Yes, it's just the anticipatory
14	venting won't, is no longer required once RCICs
15	finished.
16	MR. AMWAY: Or allowed.
17	MR. GABER: Or allowed.
18	MR. AMWAY: As soon as you no longer have RCIC
19	has a viable injection source, you lose that permission
20	and the override to do something.
21	MR. ESMAILI: Can I say something?
22	MR. AMWAY: Yes.
23	MR. ESMAILI: Anticipatory venting is not
24	that bad even though when you lose RCIC because if you
25	can, before we made some calculations that show that we

(202) 234-4433

	204
1	shouldn't because we lose RCIC. But we still get
2	anticipatory venting.
3	Generally, we find out that the releases are
4	smaller, and the reason is that because you're starting
5	from a smaller base pressure. And so you're releasing.
6	For two hours you have been venting.
7	I know that it's not, but I'm just saying that
8	there is some benefit even when you lose RCIC. There
9	is some benefit to doing some pre-core damage venting
10	because you are reducing your base pressure, which
11	affects when you are going to do the venting.
12	So there is some natural processes that can
13	reduce that. It is important in that respect.
14	MR. WACHOWIAK: And you might find that you
15	won't fail the drywell on the main steamline if you do
16	that venting first.
17	MR. ESMAILI: Yes, so it is, it's not only for
18	prolonging RCIC, but there is some other benefits.
19	MR. GABER: The updated technical basis
20	report, which is not reflected completely in the EPG SAG
21	rep three because it was coming out at the same time,
22	I think, does say that.
23	It does give some guidance to reduce,
24	maintain pressure. I think it says below a couple
25	atmospheres in anticipation of core damage and dynamics

(202) 234-4433

	205
1	that occur in core damage.
2	Again, I don't think that's been completely
3	factored in yet, into the
4	MR. ESMAILI: It can reclose upon entry to
5	core damage.
6	MR. GABER: Yes.
7	MR. ESMAILI: So you're still doing core
8	damage venting, but it's just going to be out there
9	probably
10	MR. GABER: By some margin.
11	MR. ESMAILI: by some margin, yes.
12	MR. STUTZKE: Okay, so Slide 27 shows the
13	significant plant damage states, significant in the PRA
14	sense. So I just drew the line at 95 percent like that.
15	One of the things that you'll notice is that there's only
16	a few of the larger sequences like this.
17	Then you rapidly get down to 1 percent,
18	something like this. It pretty well flattens out in the
19	risk profile.
20	MR. WACHOWIAK: If you cut it at half a
21	percent, you get 31. You got 29.
22	MR. STUTZKE: There's always uncertainty.
23	MR. WACHOWIAK: Just trying to compare these
24	results to yours shows pretty reasonable agreement.
25	MR. TRUE: And you have a little bit lower

(202) 234-4433

	206
1	early contribution or quite a bit lower early
2	contribution.
3	MR. STUTZKE: Right.
4	MR. TRUE: I think some of that is because of
5	your screening value is on AGPs, which will tend to make
6	bigger failures more likely. But what I was just trying
7	to look at was whether your, because there should be two
8	contributors to the early failures in the way you set
9	up your model.
10	One is RCIC failing, or three contributors,
11	RCIC failing, safety relief valve and the DC induced by
12	seismic. And those are only totaling out to about 3
13	percent of the total.
14	Just seems a little low to me as compared to
15	our 70 percent. But yes, I think overall you were in
16	the same ballpark other than that. I think some of
17	that's because your later ones are of a higher
18	likelihood.
19	MR. STUTZKE: No. They're higher because of
20	the turning
21	(Simultaneous speaking.)
22	MR. STUTZKE: preliminary values.
23	MR. TRUE: Yes.
24	MR. FULLER: Another interesting
25	observation is that with respect to DC power status, you
	NEAL R. GROSS

(202) 234-4433

	207
1	add up all the frequencies or the contributions, rather,
2	43 percent of all of these have a long term DC power
3	status, which means battery depletion late.
4	And 45 percent or so have the okay DC power
5	status, which is getting more into long term RCIC
6	failure or perhaps the chance of no core damage at all.
7	So this whole DC power status is really important to pay
8	attention to.
9	MR. FALLON: Marty, just a question.
10	MR. STUTZKE: Yes.
11	MR. FALLON: I noted that on the 42, 14 of
12	these cases have an operator's fail to align FLEX prior
13	to core damage. Is that because you used the 12 hour
14	alignment time?
15	MR. STUTZKE: No, it's just merely, that
16	comes in at the 0.3 failure probability. That's what
17	drives it.
18	MR. FALLON: So it's a combination of
19	operator and time.
20	MR. STUTZKE: Right.
21	MR. FALLON: Not just
22	MR. STUTZKE: It's all operator.
23	MR. FALLON: Okay.
24	MR. STUTZKE: At this stage of the game, the
25	HRA model is crude when you pick a preliminary number
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	208
1	like this. Looking at additional core damage
2	probabilities on Slide 28 they break down like this.
3	You're running somewhere between, FLEX is
4	buying you a two thirds reduction or so. It's very
5	comparable to what you guys were calculating out of your
6	model. And then you see some slight variations,
7	probably not enough to worry about.
8	The other thing I would draw your attention
9	to, as you see roughly an order of magnitude spread
10	between the minimum and the maximum for the different
11	plants. Again, that's driven strictly by the ELAP
12	frequencies going.
13	At this part of the analysis, rather than to
14	propagate each plant individually through the APET,
15	which would have been an enormous amount of effort.
16	MR. GABER: You need Doug's graph and program
17	for that.
18	MR. STUTZKE: Yes.
19	MR. SZABO: And also it just occurred to me.
20	MR. STUTZKE: It's not the first time I've
21	generated a PRA so complicated I couldn't understand the
22	result. You begin to border on it, so at that point in
23	time what I did was take an average overall the plants.
24	It's a simple arithmetic average to calculate
25	plant damage, late frequencies, and those are what got

(202) 234-4433

	209
1	propagated into the APET, a simple variation. Okay, so
2	Slide 29 on the APET development itself.
3	Now that we're into the two core damage event
4	trees, we have to have four accident progression event
5	trees. And they're broken down into whether we are
6	considering RPV injection post-accident or drywell
7	injection post-accident and/or the wetwell first or the
8	drywell first strategy.
9	So to be specific, there's an APET that says
10	RPV injection post-accident and wetwell first running,
11	that sort of thing. Again, extensive consideration of
12	local manual operator actions if DC's not available, the
13	SRV operation, the containment venting operation.
14	The same sets of preliminary estimates for
15	the human error probabilities, 0.1 and 0.3, depending
16	on in control room or out of control room. I should also
17	point out, these numbers are very consistent with what
18	we're using in our site level tree project for the Level
19	2 portion right now.
20	In a Level 2 PRA we're doing for our site wide
21	study. Basically we have three numbers, 0.1, 0.5 and
22	0.9, and those are true screening numbers. So we're not
23	too far out of that.
24	Of course the branch probabilities depend on
25	the specific plant damage state that's input to the
	NEAL R. GROSS

(202) 234-4433

	210
1	model. That's the whole point of it. Those are
2	conditional on it. There's a total of 72 sequences in
3	the accident progression event tree.
4	And the number of release categories you get,
5	of course, depends on what analysis option. There are
6	large numbers of sequences that just zero out depending
7	on what you're talking about. So it makes sense like
8	that.
9	As far as the release categories and Slide
10	Number 30, I'm using the same scheme that I understand
11	you guys are using, so there's three attributes
12	indicating the mode of reactor vessel pressurization.
13	Whether that's coming through an SRV, that's
14	either the operator opened it or failed open, stuck
15	open, reactor pressure vessels at high pressure cycling
16	or it depressurizing because of the main streamline
17	creep option.
18	Containment vent status, these are a little
19	bit perhaps different than yours. I wanted to isolate
20	the status of the vent from where the core debris
21	actually was. It's always been a pet peeve of mind in
22	Level 2 PRA.
23	In reality, you can have multiple containment
24	failure mechanisms. You can have a vent that's open and
25	a liner melt-through. You can have an over
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	211
1	pressurization and an in-vessel retention like this.
2	And so I wanted to try to get at that a little
3	bit and distinguish them. So I would call the second
4	one, the containment vent status realizing the third one
5	is the actual over-pressurization failure.
6	The core debris location, that's either in
7	the vessel itself, in the drywell itself or not retained
8	at all so the liner melt-through sort of phase.
9	MR. GABER: Hey Marty, the containment vent
10	status, so I guess the question is at what time because
11	what we would call wetwell venting are actually earlier
12	wetwell venting and then followed by a late drywell
13	vent.
14	Is your drywell more your drywell first kind
15	of representation?
16	MR. STUTZKE: My drywells are drywells
17	first.
18	MR. GABER: Okay. So they all go in that
19	bin?
20	MR. STUTZKE: Right, and when the wetwell
21	vent has failed.
22	MR. TRUE: But, and then likewise on your
23	wetwell vent that could actually be in the direction of
24	that event you're opening the drywell.
25	MR. STUTZKE: That's correct.

(202) 234-4433

	212
1	MR. TRUE: Okay.
2	MR. GABER: So your drywell-first case that
3	you run, will there be, maybe this is what you just
4	asked, could there be a component where that didn't work
5	and you manually open the wetwell?
6	MR. STUTZKE: I'm back in the wetwell journey
7	again.
8	MR. GABER: Which we all treat that, we look
9	at drywell first. But we might think about, no we can't
10	because asked this last.
11	MR. TRUE: We have to restructure it.
12	We have a way of doing that. We'll probably push the
13	regular fanning mill until
14	MR. GABER: Overpressure.
15	MR. STUTZKE: Okay, Slide 41, which is my
16	contribution to illegible slides.
17	MR. GABER: Yes, you win. This will do me no
18	good here.
19	MR. STUTZKE: Yes, it's hard enough to read
20	when it's printed on a large piece of paper, but the
21	intent here is to show at least my understanding of what
22	the different analysis options or alternatives mean.
23	I'm certain the slides will be available so
24	people can print them out and blow them up and
25	MR. SZABO: Yes, in case you want the ML

(202) 234-4433

	213
1	number again, it's ML 14168A251.
2	MR. TRUE: Are those print to a page or full
3	size?
4	MR. SZABO: It's a PDF, so you can
5	MR. STUTZKE: You can blow them up.
6	MR. SZABO: make it larger on the screen.
7	MR. TRUE: Is it printed two to a page or
8	MR. SZABO: Well you can print it however you
9	want. That's just the electronic version. It's just
10	an electronic PDF. No, they are not printed two to a
11	page.
12	MR. TRUE: Okay.
13	MR. SZABO: Yes, I realize it could be that
14	problem. No, they're not. They're one a page. Yes.
15	MR. TRUE: One slide per page?
16	MR. SZABO: Yes.
17	MR. TRUE: Great.
18	MR. STUTZKE: The reason why I was trying to
19	make a point out of all this was that I found myself
20	terribly confused as people would discuss options and
21	alternatives and cases and things like this.
22	So let me try to point out the source of my
23	confusions. We have SECY paper 12-0157, which was
24	original discussion of containment venting. So we have
25	the options in 12-0157.

(202) 234-4433

	214
1	And Option 2 basically says don't consider
2	filtering strategies like that, so that's kind of our
3	regulatory analysis option in case alternative one.
4	That's the do nothing. It's what you guys call
5	Alternative 1.
6	So Option 2 is now one. Then we have the
7	Option 3 cases which says think about drywell venting.
8	So those would correspond to the drywell-first cases in
9	all cases. We'll talk about that, and those are down
10	at the bottom of the table.
11	And the bulk of the options are these
12	performance based criteria of wetwell-first that would
13	include anticipatory venting that's needed, includes
14	vent cycling, includes its water management.
15	All of those seem to fall under SECY paper
16	Option 4 despite the fact that we have called them
17	alternative options 2A, 2B, 2C, et cetera, et cetera.
18	So this was my attempt to try to sort them all together.
19	And then on top of it, I'd been going through
20	the various view graphs that Ed and Hossein and Jeff had
21	provided to make certain I understand what was
22	anticipatory venting.
23	Oh, that means open at 15 pounds and leave it
24	open, right. And then we get these discussions. No,
25	well maybe it's 5 pounds, so things like that. Again,

(202) 234-4433

	215
1	reclosure, the post-accident injection pathways fall
2	down to either the Option 2s or straight to the reactor
3	pressure vessel or to the drywell like this.
4	In addition, the measure may not include the
5	so-called water management strategy. And water
6	management is to prevent flooding the drywell out, so
7	you can always vent, or excuse me, the wetwell out.
8	So you can always vent through there. So
9	when I finally did this, and I put this in front of the
10	mirror while I brushed my teeth every night I came to
11	realize there was a pattern.
12	Okay. So when we talk about options 2A and
13	3A, we're talking about let the FLEX pump run and open
14	the vent, period, whereas Option 2B says let the FLEX
15	pump run and cycle the vent.
16	Option 2C says cycle the vent and water
17	management on the FLEX pump and 2D is, oh water
18	management but no vent cycling, which isn't the way I
19	would've laid them out, but I understand the
20	evolutionary nature of how these options grew.
21	So it finally began to make some sense that
22	way. Now, down at the bottom, what I think's important
23	is we have the SECY paper Options 3, which I have labeled
24	6A, 6B and 6C.
25	It's late enough in the afternoon. A couple

(202) 234-4433
	216
1	of days ago, these were called Larry, Moe and Curly just
2	to try to keep them straight. But the 6A is a passive
3	vent, so it's a drywell-first.
4	It says when that passive vent blows, leave
5	it alone. Keep it open all the time and flow the
6	drywell, nothing more. So it's enough to try to
7	minimize the amount of operator action.
8	6B and 6C say no, we're going to continue
9	anticipatory venting, which of course has to be a
10	wetwell-first strategy like this. Then once we get to
11	the point of core damage, think about drywell flow like
12	this in either a passive case or a manual case might
13	come.
14	MR. TRUE: So 6A, we still have the ability
15	to vent and do anticipatory venting?
16	MR. STUTZKE: No, it's a drywell first, so
17	it's just a passive disk.
18	MR. TRUE: So all vent pathways go through
19	the filter, and it only opens on high pressure?
20	MR. STUTZKE: Right.
21	MR. TRUE: So you have to feed that all the
22	way back into your core damage event tree?
23	MR. STUTZKE: Yes. It's why I had to draw
24	the second
25	MR. TRUE: I get it.

	217
1	MR. KARIPINENI: We are doing the analysis
2	that way, but it was true. It would be anticipatory
3	venting eventually coming off in that case.
4	MR. TRUE: Is that B and C?
5	MR. STUTZKE: That's B and C.
6	MR. KARIPINENI: Well, for the drywell-first
7	only case also our plan is to have an anticipatory
8	venting line but if you eliminate that and reduce the
9	possibility of additional operating venues, we are
10	doing that case. What comes out of it, the analysis?
11	MR. AMWAY: So in that case you're assuming
12	then after RCIC fails, the operator has to close that
13	vent line or the bypass around the
14	MR. KARIPINENI: That is true.
15	MR. TRUE: That's for B and C.
16	MR. KARIPINENI: For B and C we are, but I'm
17	saying 6A and A we are doing assumes that only a drywell
18	vent first when they pass through rupture disk failure,
19	rupture disk operations.
20	But in the back of our mind we're still thinking
21	on that analysis, if it ever comes to that, we should
22	have it, anticipatory venting line, a separate line.
23	So you would always have that feature. And
24	if you can continue to operate those valves, even after
25	post-accident, you could operate it that way. You never

(202) 234-4433

	218
1	may have to open the the reactor just may never have
2	to open.
3	But if those valves, if you close them at the
4	time before the onset of the accident and they never
5	reopen, you got this feature. But the analysis is only
6	being done, drywell-first with no other operation
7	actions.
8	MR. TRUE: Why are you analyzing something
9	you don't intend to actually install?
10	MR. KARIPINENI: I was trying to see is there
11	really a benefit.
12	MR. ESMAILI: These are the cases of 50, 51,
13	52, 53 that we do drywell venting. This is trying to
14	answer some of the questions, is that we go to 15 PSIG.
15	We vent. And we never close the vent. So this is going
16	to core damage, vent and keep the vent open. You cannot
17	close the vent.
18	MR. GABER: Will those cases pretty much
19	ignore all of the EPG SAG Rev 3 updates?
20	MR. KARIPINENI: You are still a pretty
21	flexible state of thinking. If you have anticipatory
22	venting line, you still can't always close it at the
23	onset to the accident.
24	And the purpose the rupture disk if you can't
25	reopen that line, this was automatically going to
	NEAL R. GROSS
	(202) 234-4433 (202) 234-4433 (202) 234-4433 (202) 234-4433 (202) 234-4433 (202) 234-4433

	219
1	venting this way, but the design partial. We start at
2	design partial plus some margin. Some just going to be
3	natural, just drywell the analysis.
4	MR. GABER: I guess I was, well I think, what
5	I questioned, Doug was asking what kind of core damage
6	gets you to these events. I mean will you not control
7	pressure when RCIC operates such that when you hit HCTL
8	you blow down and potentially lose RCIC.
9	Will you lose RCIC on high pool temperature?
10	Just curious to how that's going, what kind of core
11	damage will feed those.
12	MR. KARIPINENI: We need to feed FLEX.
13	MR. GABER: That's what I was kind of asking
14	if they have none of the EPG.
15	MR. TRUE: You don't have anticipatory
16	venting. You fade the FLEX. So your core entry is
17	going to go up. You'll have undermined the order
18	MR. KARIPINENI: That is true, yes.
19	MR. TRUE: Seems like an ill-advised option,
20	but
21	MR. KARIPINENI: The way the analysis is
22	being done if you don't open that anticipated vent it
23	looks like an ill-advised
24	(Simultaneous speaking.)
25	MR. KARIPINENI: Right. But what we are

(202) 234-4433

	220
1	trying to think in our mind is actually if you don't do
2	any anticipatory venting which is like you're saying,
3	you put that line.
4	You're not saying anticipatory venting, the
5	line being open when you want it to open, for instance.
6	What happens then? How does this play out?
7	MR. TRUE: So is 6B the case when you have the
8	bypass and the passive rupture disk, Marty?
9	MR. STUTZKE: Yes, so 6B's the case where you
10	are anticipatory venting through the wetwell to the time
11	of core damage in which case the vent gets closed for
12	the APG.
13	MR. TRUE: Okay. So you do have the logical
14	case?
15	MR. SZABO: I think A
16	MR. GABER: B is that case.
17	MR. STUTZKE: Yes.
18	MR. SZABO: I think A is more of just a, for
19	completeness which just checked this and make sure, once
20	again
21	MR. GABER: It's crazy.
22	MR. SZABO: Make sure it's crazy, okay.
23	It's just to hey, if we're evaluating these, let's check
24	to see that just in case who knows.
25	At first glance, everyone might say hey, that
ļ	NEAL R. GROSSCOURT REPORTERS AND TRANSCRIBERS1323 RHODE ISLAND AVE., N.W.(202) 234-4433WASHINGTON, D.C. 20005-3701(202) 234-4433

	221
1	looks like a terrible idea. And then it, I don't want
2	us to never run it and then we get a situation who knows,
3	five, ten years ago for some reason someone ran this and
4	said why did you guys never run this.
5	It turns out this is the greatest thing ever.
6	I'm not saying that's how it's going to end up. I'm just
7	saying for completeness.
8	MR. GABER: What's C then?
9	MR. STUTZKE: C is a manual drywell vent
10	versus the passive rupture disk.
11	MR. GABER: So it's an anticipatory vent,
12	wetwell mainly drywell.
13	MR. STUTZKE: And then drywell first.
14	MR. GABER: Yes, that's what it says right
15	here. Good. Thanks.
16	MR. STUTZKE: Yes, the reason why I did that,
17	and one of the things that I threw around but I guess
18	these guys all noticed is the passive rupture disk may
19	not buy you the reliability you think it does because
20	there are manual valves in the way. It could be
21	misaligned.
22	MR. TRUE: Well, you've got to shut valves in
23	order to enable the passive one to work on the other.
24	So, our fearless leader is gone, but it seems like we
25	should do these three cases, too, just for parallel

(202) 234-4433

	222
1	purposes.
2	MR. WACHOWIAK: Well, I don't know about all
3	three of them, but at least the last two.
4	MR. TRUE: We have the last two on my list.
5	MR. STUTZKE: The last two are what you have,
6	so now we're getting nomenclature.
7	MR. GABER: We'll change it.
8	MR. SZABO: I'll send it out after this.
9	I'll take an action item. That'll just, I'll talk to
10	my group, and we'll just send an email to Steve saying
11	hey, if you guys are okay with this, let's go with these
12	as our options.
13	And, for instance, I know you guys switched
14	the, what Mary's calling 4-3A and 4-2A. He switched
15	those around, and that made sense to us. We were just
16	following what you guys did. So yes, I mean we'll
17	MR. TRUE: At this point we should make this
18	decision soon, but I wouldn't even be opposed to moving
19	2C and 3C to 2D and 3D, which to me makes more sense.
20	But it's the, B is controlled venting.
21	C is water management and D is both because
22	right now we have both as a C. If you want to reorder
23	them, that's fine. We should do it soon so I can just
24	keep my files straight.
25	MR. STUTZKE: Me, too. I'm content this

	223
1	way. It's like I said, I memorized this.
2	MR.GABER: Why don't we adopt this? That's
3	probably easier.
4	MR. TRUE: That's fine. You tell us what you
5	want and
6	(Simultaneous speaking.)
7	MR. TRUE: All I'm doing is opening the door.
8	If you want to reorder anything else, that's fine, too.
9	We should decide because we're about to launch a whole
10	bunch more analyses here.
11	MR. WACHOWIAK: It'll be harder to do.
12	MR. TRUE: It gets exponentially harder as we
13	go forward.
14	MR. STUTZKE: If you end up fiddling with it,
15	if you're like me, you mess it up a few times.
16	MR. TRUE: Yes.
17	MR. WACHOWIAK: We might get an error if that
18	happens.
19	MR. TRUE: Okay.
20	MR. STUTZKE: Just like I had a mislabeling
21	problem when I knew the cases should generate identical
22	results, and I didn't. And it's like is there a bug in
23	the model? No. I just mislabeled it.
24	MR. AMWAY: 30 percent chance of error.
25	MR. TRUE: That's right.

(202) 234-4433

	224
1	MR. STUTZKE: Tell me about it. Okay. So
2	flipping to Slide 32, I've estimated three sequence
3	frequencies for all of the 16 analysis options that were
4	shown before here. And I want to point out, I did that.
5	And let's say a way to minimize the amount of
6	effort, so we have Option 1. We have Option 2A, which
7	is also a surrogate for 2B, 2C and 2D because the only
8	thing that changes, it became an error.
9	So when I'm doing vent cycling and/or water
10	management and given my preliminary screening numbers,
11	it's no reason to run separate cases. If you wanted me
12	to, I could copy the file three times and be done with
13	it.
14	Same thing for Options 4-2A and 5-2A. That
15	doesn't change the event tree structure. Those are the
16	filtering cases, and that's a MELCOR MACCS thing when
17	they reduce it.
18	So similarly for Option 3A, then becomes the
19	surrogate for the other ones at this level of analysis.
20	MR. TRUE: I think we actually, at this
21	point, have been using the same human error
22	probabilities for 2A and 3A, figuring that water is
23	water and
24	MR. STUTZKE: Yes, it doesn't matter whether
25	you hook it up to the

(202) 234-4433

	225
1	MR. TRUE: Jeff gives a differ MAAP result,
2	and then whether we get in-vessel retention or not
3	changes of course.
4	MR. STUTZKE: Sure, it all makes perfect
5	sense
6	MR. TRUE: Okay.
7	MR. STUTZKE: like that, but anyway, so
8	before I show you another set of numbers that's probably
9	not legible, I'll show you some graphs.
10	Okay. So the first one tries to show you a
11	breakdown by the location of core debris so the solid
12	black is liner melt-through.
13	The ex-vessel retention, so it's somewhere in
14	the drywell but no liner melt-through and then finally
15	the in-vessel retention for the various options.
16	To our logic, the base case always results in
17	a liner melt-through because there's no post-accident
18	injection of any kind. 2A is the post-accident RPV
19	injection.
20	And so you see a substantial chance of
21	in-vessel retention like this given that you don't
22	retain an in-vessel though additional possibilities
23	such you probably go through the liner. You won't
24	capture it in time to retain it inside the drywell
25	itself.

(202) 234-4433

	226
1	MR. TRUE: Marty, yes, that's not
2	intuitively obvious, especially for your guys' cases
3	where you have a time delay to liner failure.
4	MR. STUTZKE: It all has to do with the
5	conditional probability.
6	MR. TRUE: If you have the water all lined up,
7	and you just didn't get it there in time to prevent
8	vessel failure
9	MR. STUTZKE: Let me check. I'll flag that.
10	MR. TRUE: I would more have expected those
11	to be kind of equal, like 50/50, that you kept it
12	in-vessel versus ex-vessel. I don't know what our
13	MR. STUTZKE: Let me check that out. I
14	understand the concern. For the other cases, 3A, 6A,
15	6B, 6C these are all drywell injection cases. So again,
16	you're not seeing a chance of in-vessel retention.
17	MR. WACHOWIAK: So in your ex-vessel
18	retention, you can still have containment failure, or
19	is all of your containment failure modes over pressure,
20	over temperature, liner melt-through
21	MR. GABER: Or venting?
22	MR. STUTZKE: It could be venting even though
23	I'm retained in vessel.
24	MR. GABER: In-vessel or ex-vessel? I'm
25	looking at the 2A bar, that liner melt-through. Are
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	227
1	they really all a liner melt-through, or is that all your
2	containment modes lumped together into one?
3	MR. STUTZKE: It's all lumped together.
4	I'll show you the breakdown.
5	MR. GABER: So that's the same that we have,
6	just unlocked.
7	MR. STUTZKE: In other words, you can't tell
8	on this graph of this melt-through. So many of them are
9	vented versus over pressurization failures.
10	MR. GABER: Right, because they're smeared
11	together.
12	MR. STUTZKE: That's the next slide. I'll
13	show you that. These are just by the venting status,
14	so if you compare the slides on Picture Number 33 and
15	34 and you look at SA, it says there's a good chance that
16	you're going to be vented to the wetwell and retained
17	in-vessel.
18	If there's some chance you'll be vented
19	through the wetwell and have a liner melt-through as
20	well. I'll actually show you the breakdown in a couple
21	slides here.
22	MR. TRUE: Just on the human errors, I
23	realize they're all preliminary, so this is sort of a
24	nonsensical question. But so I can interpret your
25	results here, when the operator, when the wetwell vent
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

228 1 failed because the operator failed to open it and then you had to go to the drywell vent, you treat dependence 2 in that, or did you just put another 0.1? 3 4 MR. STUTZKE: Right now it's just another 0.1. 5 That explains it. MR. TRUE: Okay. Okav. 6 7 Obviously there would be, when James gets done, there's going to dependence. 8 MR. STUTZKE: Oh yes. 9 10 I qet it. I understand. MR. TRUE: That. 11 helps me understand some of the results you present 12 next. 13 MR. STUTZKE: Okay. So the next series of slides are some detailed numerical results. 14 This is 15 for Option 1. Again, it lists just by release category 16 frequency, so I haven't done the work done by the 17 specific core damage sequence that's contributing to 18 the specific APET sequence. 19 These are just all rolled up like that. But you can see most of the release category, most of the 20 21 frequencies concentrate in а very few release 22 categories here. 23 The point I was trying to make earlier is the upper right hand table here that shows you which percent 24 25 of the total are broken down by the location of the core

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	229
1	debris as well as containment failure button.
2	So, for example, in this case you get 85
3	percent are liner melt-through, and the wetwell vent is
4	open. Then down in depressurization modes by whether
5	it's safety relief valve, the higher pressure melt
6	scenario or may seem like pre-pressure.
7	We talked earlier today. We're not seeing
8	much contribution from the steamline creep rupture
9	here. It's not too surprising. Okay Option 2A in
10	Slide 36 shows you the same format of the result. It
11	reflects the actual option like this.
12	Again, you can see liner melt-through has
13	been substantially reduced. We do have the in-vessel
14	retention pretty good, and I wrote down your comment
15	about why is the ex-vessel retention higher than this.
16	MR. GABER: So, Marty on this so the, what
17	you're calling liner melt at 49 percent total, if I go
18	back to your bar chart, does that really mean that most
19	of those were not liner melt, they were wetwell venting?
20	MR. TRUE: They're delayed. Delayed liner
21	melt, they would open the wetwell vent because they hit
22	PC fill first.
23	MR. GABER: I see. Okay. So it did have a
24	liner melt late, but an early dominated then 34, Slide
25	34 says it's 80 percent wetwell vented before liner
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	230
1	melt. Is that how I interpret that? Okay.
2	MR. TRUE: You need
3	(Simultaneous speaking.)
4	MR. STUTZKE: I'll get the link from you.
5	This upper right table kind of tells the story.
6	MR. TRUE: Yes.
7	MR. STUTZKE: As compared to the pure bar
8	graphs. I call them bar graphs, you know, management
9	education tools. I like the two way table, personally,
10	on Slide 30. Okay.
11	So we have these other cases here. We won't,
12	at the risk of straining people's eyes, go into them
13	unless there are specific questions, considered
14	preliminary results for 6A, B and C there.
15	MR. TRUE: Yes, that was on, could we do 3A
16	for just a second?
17	MR. STUTZKE: Sure.
18	MR. TRUE: On 3A we've got 64 percent chance
19	of liner melt, whatever else is going on. In 2A you had
20	a 50 percent chance. For some reason in the 3A case
21	you're less likely to prevent line melt. It seems not
22	obvious to me.
23	MR. STUTZKE: Yes, and I think it's a
24	reflection of the question you had posed earlier is why
25	don't we see more ex-vessel retention scenario.

(202) 234-4433

	231
1	Because the implication is it took all of the in-vessel
2	retention scenarios that were possible in case Option
3	2A because we were injecting into the reactor vessel.
4	Now we're injecting into the drywell, and
5	that's not possible. But it's almost as if it threw it
6	all into liner melt as opposed to giving some credit for
7	retention instead of drywell.
8	MR. TRUE: Yes.
9	MR. STUTZKE: I see your point, and I need to
10	drill down on that.
11	MR. TRUE: Right. And then that carries
12	over into 6A.
13	MR. STUTZKE: Sure.
14	MR. TRUE: And it a little bit, too, for the
15	same reason. But I did notice that the EVR grand total
16	value, upper right most is actually lower than the 3A.
17	MR. STUTZKE: A little.
18	MR. TRUE: Yes, and that just seemed like
19	that should be the same. Then when I went to B, your
20	6B and C, they're more like the 3A. It looks like
21	there's something else going on in there.
22	MR. STUTZKE: Yes.
23	MR. TRUE: Those are like 36 to ten and that's
24	pretty much the same as what you got.
25	MR. STUTZKE: Yes, I see your concern.

	232
1	MR. TRUE: Yes. I don't think it's a big
2	deal, but just something to
3	MR. STUTZKE: No, it needs to be logically
4	consistent.
5	MR. GABER: Are you guys going to, and maybe
6	this is more for Hossein. Are you going to look at any
7	sensitivity to the liner melt assumption because the
8	SORCA analysis pretty much had most scenarios go to
9	earlier liner melt, where with the changes you've made
10	in the SECY and now with the rulemaking analysis, they
11	seem significantly delayed?
12	Are you going to look into that?
13	MR. ESMAILI: We don't have minor
14	melt-through. MELCOR shows we don't have liner
15	melt-through for the cases where there's water. So
16	that's the, I think I discussed this with Marty.
17	I'm trying to understand. It doesn't matter
18	how many times I ask this. So when Marty says that
19	there's liner melt-through it's because there is no
20	injection. There's no water.
21	It doesn't mean 2A doesn't mean that there's
22	water in there. At some point you don't have water in
23	there. The MELCOR calculations show as long as you have
24	water, whether it's pre-existing water and then you come
25	in a little bit later with, you don't have liner

(202) 234-4433

	233
1	melt-through.
2	None of the cases I have water it shows liner
3	melt-through, and this is consistent with the Mark I
4	study that shows that the probabilities is going into
5	the -5 I think or -4, I can't remember.
6	MR. FALLON: So you're still using the
7	condition that you have the reset CLV?
8	MR. ESMAILI: That's right.
9	MR. FALLON: Two to three to four hours,
10	whatever.
11	MR. GABER: But what he's saying is that
12	unless he has continued water, he'll get liner melt.
13	MR. FALLON: Right. So it's pre-existing on
14	the floor after the override.
15	MR. ESMAILI: In one of the cases that we did,
16	okay let me go back to it. Actually, I don't get, even
17	though one of the cases that we did that originally we
18	just didn't want to, we stopped FLEX injection.
19	We stopped injection. At some point when the
20	water level reached 21 feet. Even then, it takes some
21	time for the debris to heat up and start moving again.
22	But it's not enough to cause it to spread all the way
23	to the liner.
24	It heats up. It moves a little bit further,
25	but it doesn't stay further. If you have some water,
	NEAL R. GROSS

(202) 234-4433

	234
1	and you can cool it for some time, you're not going to
2	get liner melt-through. So none of the cases with water
3	would get liner melt-through.
4	MR. FALLON: So we're assuming that leakage
5	for the recirc is vetted out. Is that what we're
6	assuming?
7	MR. ESMAILI: No, the leakage from the circ
8	is there because we start injecting at the time of lower
9	head failure. I haven't run the calculation.
10	MR. TRUE: I mean it's there before that.
11	MR. ESMAILI: Yes, it's before that. So by
12	the time lower head fails, by the time you start
13	injection, you have about one to two feet of water.
14	That's going to keep it until you start, once
15	you, had I not, I don't know if we didn't have the
16	existing water and start injecting right at the time
17	that the core debris got, I don't know whether it's going
18	to make it all the way to there, but it helps that the
19	existing water helps not to
20	MR. TRUE: That's because most of your cases
21	ran RCIC for at least four hours, and most of them are
22	at 16 hours or until you reach
23	MR. ESMAILI: Enough time to build up enough
24	water
25	MR. TRUE: For the earlier failures in the
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	235
1	first zero to four hours, it wouldn't be a lot of water
2	necessarily.
3	MR. FALLON: I mean the number we were given
4	for the
5	MR. ESMAILI: Actually, I think
6	MR. FALLON: 200 gallons an hour into the
7	drywell floor.
8	MR. TRUE: That's all.
9	MR. FALLON: And 200 gallons an hour going to
10	the drywell floor will actually get seven inches of the
11	drywell floor in the first hour. So once you've run out
12	of RCIC, you're dumping water back into the
13	MR. ESMAILI: Yes, let me look at some of the
14	cases that I don't have RCIC running. RCIC failed at
15	time zero. Even though RCIC fails at time zero you
16	still have water from the reactor itself that's coming.
17	MR. MCGINTY: It's still condensing on the
18	drywell floor.
19	MR. ESMAILI: Right. And it's just a matter
20	of 500 gpm can build up relatively quickly to the lip
21	of the
22	MR. GABER: I guess I want to talk about the
23	no injection cases. I'd like
24	MR. ESMAILI: No water injection you're
25	going to get liner failure.
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	236
1	MR. GABER: Okay. So my question is if you
2	have no liner, if you have no water injection, I
3	understand you'll get liner eventually. The question
4	is how long will that take.
5	MR. ESMAILI: It takes about, from the time,
6	maybe six, seven hours. So it takes, you have one to
7	two feet of water, lower head failed about 24 hours and
8	you don't get to liner failure until about 31 or 32
9	hours.
10	MR. GABER: Wait a minute. So I guess where
11	I thought Doug was trying to go, that, I understand
12	that's what you get when RCIC runs for a long period of
13	time.
14	For the case with RCIC running, not running,
15	either lost at zero, you have the two cases. Would you
16	still get that six to seven hour delay for liner melt?
17	MR. ESMAILI: I actually don't get liner
18	failure in those cases because, as I said
19	MR. GABER: They had water.
20	MR. ESMAILI: Because they have water. I
21	don't have that case if you don't have water.
22	MR. GABER: I understand.
23	MR. ESMAILI: You either have pre-existing
24	where you start injecting. 500 gpm's a lot of water,
25	too.

(202) 234-4433

	237
1	One thing I want to make clear, Jeff, I mean
2	you asked me this one last time. There is, once the
3	debris gets to the liner, we just have a time. I mean
4	this is based on I don't know, ten or 15 minutes.
5	There's no mechanistic modeling because we
6	assume that it's hot enough to cause the liner to fail.
7	So we don't do heat transfer, but that's consistent.
8	MR. GABER: Again, do you think you'll look
9	at any sensitivities to that because as you're away, the
10	crosswalk that we did between MAAP and MELCOR and the
11	work that Argonne has done, we see a pretty significant
12	difference between the state of the core debris when it
13	exits the RPV between MELCOR and MAAP.
14	You're simplifying it. MAAP core debris
15	comes out with a lot more energy and a lot more heat that
16	makes the spreading more efficient where in the MELCOR
17	results, because of what's happening in the RPV your
18	material comes out of the vessel close to the melting
19	point and, as a result, doesn't spread. Will you look
20	at any
21	MR. ESMAILI: But SORCA showed that it
22	doesn't take, the long term station black out showed
23	that it doesn't take long to
24	MR. GABER: Spread.
25	MR. ESMAILI: spread and go to the liner

(202) 234-4433

	238
1	melt-through. So I don't feel I need to
2	MR. GABER: But early on you guys talked
3	about, maybe it wasn't you, but somebody told us that
4	they changed some of the parameters.
5	MR. ESMAILI: We did change some of the
6	parameters, but still
7	MR. GABER: Yes, the solids and liquid is
8	MR. ESMAILI: If we change the solids and
9	liquid temperatures, but again the debris is hot enough
10	to get to the liner. I'll look at that.
11	MR. GABER: Okay.
12	MR. ESMAILI: So right now I don't remember.
13	MR. TRUE: Before we turn this into James
14	MR. ESMAILI: Sorry, that's not the only
15	condition. If you have a massive relocation from the
16	core, which we do in most cases, there's enough heat for
17	this debris to just keep going also. So there are a
18	number of
19	MR. GABER: Even in the presence of water?
20	MR. ESMAILI: Even in, but the presence of
21	the water will stop that. The presence will cool it
22	sufficiently so it will not. We are trying to
23	(Simultaneous speaking.)
24	MR. GABER: I guess it's different than what
25	Theofanous did, right? I think it more represents what
ļ	NEAL R. GROSSCOURT REPORTERS AND TRANSCRIBERS1323 RHODE ISLAND AVE., N.W.(202) 234-4433WASHINGTON, D.C.20005-3701(202) 234-4433

	239
1	Argonne's done. And that is, again, if the debris comes
2	out with little super heat, and there's water on the
3	floor, it doesn't make it to the wall.
4	If it comes out with more energy, more
5	superheat, it will make it to the wall even if there's
6	water.
7	MR.ESMAILI: I just don't remember. It was
8	such a long.
9	MR. WACHOWIAK: But what Theo said was that
10	if there's water there, it will make into the wall but
11	it won't melt the wall.
12	MR. ESMAILI: Yes, I think you need two
13	scenarios. One was based on the MAAP actually
14	calculation, and the other one was the BWOSAR core
15	calculation that showed different.
16	BWOSAR shows mainly metallic coming out
17	initially and long term. But I think that the overall
18	conclusion was that if it's dry, you are going to fail
19	it regardless. If it's wet
20	MR. WACHOWIAK: What does dry mean though?
21	MR. ESMAILI: Means that there's no water.
22	MR. WACHOWIAK: No water is zero or no water
23	is five inches.
24	MR. TRUE: Or no continuing water.
25	MR. WACHOWIAK: Or no continuing water.
	NEAL R. GROSS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	240
1	MR. ESMAILI: I think his calculation was
2	based on the fact that dry for him was that there is no
3	water.
4	MR. WACHOWIAK: Who him?
5	MR. ESMAILI: Theofanous.
6	MR. WACHOWIAK: Theo considered two cases,
7	one where he had no water and one where he had nine inches
8	of water.
9	MR. ESMAILI: Okay. So no water or nine
10	inches of water, right, so the dry and wet, right.
11	MR. WACHOWIAK: Right, so anything in
12	between, we don't know. Yes, so 8.9 doesn't mean it's
13	going to fail. 8.9 inches doesn't mean the liner will
14	fail, and 0.1 inches doesn't mean it won't fail. You
15	just don't know. There's a transition between the two
16	that we don't
17	MR. ESMAILI: Again, I think you said it
18	best. As long as you have some water in there that can,
19	especially initially, that can actually cool it from the
20	top, it doesn't matter whether you have 9 inch or 18
21	inches.
22	MR. GABER: My only point was these are all
23	uncertainties. That was my only point.
24	MR. TRUE: I have one other MELCOR related
25	and probabilistic related question. Marty, do you
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	241
1	remember the number of SRV cycles you used on their RCIC
2	or however you handled that?
3	MR.STUTZKE: It varies. I want to say right
4	now they're screened at about 50.
5	MR. ESMAILI: We talked about this at the
6	last meeting . So right now you are predicting about 50
7	in the first hour and then another 50 the next. We are
8	predicting about 25 during the first and an additional
9	25 cycles later on, about half.
10	And actually when you look, I mean you see
11	from the previous slide, you see that we are citing about
12	maybe the open every half an hour. So we are modeling
13	the steam extraction from the steamlines.
14	It depends on how much pressure you have. So
15	some of the steam is coming out from the main steamline.
16	I mean I think it's about, at high pressure it's about
17	maybe about 4 kilograms per second.
18	And then it drops as the pressure goes down,
19	but you get substantial steam extraction from the
20	steamline. And so that could explain, but I think you
21	are modeling that, too. You're modeling the
22	MR. GABER: The question we asked during the
23	drop in is if you were throttling the steam extraction
24	to control the pump, or if you were using a bypass line
25	to control level.

(202) 234-4433

	242
1	And what we can do, we can do this offline.
2	What I suggest is that we find a way to communicate a
3	few details related. If we can just pick a simple
4	scenario one where RCIC runs for four hours with our
5	depressurization scheme, I think it was what, 20 minutes
6	or ten minutes between 800 and 1000.
7	I forget, Phil, what we assumed, but it's part
8	of our assumption in our base case. And we'll give you
9	the details of the extraction steam, the injection, the
10	amount injected, because this is simple.
11	This is just thermal hydraulic 101, and we
12	ought to be able to figure out why there's a factor of
13	two in the SRV because it does affect the failure.
14	MR. TRUE: It's a significant infraction in
15	large failures.
16	MR. ESMAILI: Or, since they're cycling the
17	SRVs, right, I mean that's another thing. You can
18	assume that we are, I think there about ten, 11 SRVs in
19	there.
20	MR. GABER: You only need one.
21	MR. AMWAY: But typically what you'll see is
22	you're going to only open one at a time, and you're going
23	to rotate through however many you can add.
24	MR. GABER: But again, I open two to get from
25	200 to, 400 to 200, it doesn't matter if I go from two

(202) 234-4433

(202) 234-4433

	243
1	or five, I'm going to relieve the same amount of steam.
2	MR. ESMAILI: That's right. All I'm saying
3	is that maybe we just decide to
4	MR. GABER: We can figure this out.
5	MR. SZABO: Yes, we'll take that offline.
6	We're coming for our favorite at 4:00. James will give
7	his presentation and wrap it up. And then we have
8	tomorrow morning as well.
9	MR. TRUE: Aren't we on schedule, or are we
10	not on schedule?
11	MR. SZABO: We're only two slides behind.
12	It's until 5:00. You're right. My mistake.
13	MR. TRUE: We're ahead.
14	MR. SZABO: Yes, we are. We're ahead.
15	MR. CHANG: What Marty talked about is the
16	initiating vent could be caused by the seismic or
17	weather incidents. So the HRA doing this need to be
18	more specific. So here it is assumed that the condition
19	is a seismic event. We have an assumption here. NEI
20	12-01 and 12-06 provide a very comprehensive
21	assumption.
22	We pretty much use these assumptions, and
23	then there is a set table is not explicitly that's in
24	my assumption I'll point out. That's including that
25	this morning we talked about the site-wide, what mean

(202) 234-4433

	244
1	the site-wide advantage.
2	That's now seismic, that's one. Seismic
3	will be severely damaging. The second is the offsite
4	equipment, coming to the sites, the timing. The other
5	one, too, is the staffing. In the NEI 12-06, Section
6	3213, they talk about what's this initiating event.
7	No additional event or failures assumed to
8	occur immediately or during the events including secure
9	the events. So, but this to me, where I can study this
10	thing, especially the first six hours, the study here
11	about using the emergency planning minimum seven.
12	On the reference trend there, the submittal
13	indicated there's two units in 23 positions, including
14	security staff. But there's eight position. That
15	could be one person has double head.
16	During the two position or the other plants
17	supporting, so the personnel could be as minimal as 15
18	people, so 15 to 23 people. This position there is the
19	fire brigade. So, to me, I'll assume that fire brigade
20	is doing the firefighting not included in the response
21	to the seismic events.
22	And then, in addition, I do not assume that
23	there's a personnel injury. So basically was this
24	position explain the fire brigade responding to the
25	seismic event. That's a standing assumption. That's

(202) 234-4433

ĺ	245
1	the only thing that I want to talk.
2	MR. AMWAY: So you're assuming that the fire
3	brigade, our number, my plant is five. I'm not sure
4	what it was at the reference plant. You're assuming
5	that the fire brigade cannot be used for the event
6	response?
7	MR. CHANG: Assuming that the fire brigade
8	will be occupied by firefighting, so this has become a
9	
10	MR. FALLON: I mean, it's kind of a catch-22.
11	The fire brigade is to fight a fire. They have to have
12	fire water and agent to put on it. They really don't,
13	so they can't really do a lot.
14	MR. AMWAY: If we adhere to the true
15	assumptions of the ELAP, at least for 12-06, I've got
16	no pumps that tie into the alternative heat sink. They
17	don't have fire water.
18	MR. CHANG: By water, these here this
19	reference plant is not also is the piping that this is
20	not seismic plus one, so I assume that fire systems are
21	gone.
22	MR. AMWAY: Well, the fire system's okay, but
23	you can't use any pump that's attached to the heat sink.
24	It's a base assumption of 12-06.
25	(Off microphone comment.)
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	246
1	MR. AMWAY: No, we did not.
2	MR. TRUE: He's in another space than 12-06.
3	He's saying probabilistically you could have a fire, or
4	you have a fire.
5	MR. FALLON: Yes, and then it's going to be
6	a value judgment.
7	MR. TRUE: How does the control room decide
8	about fire brigade doing something versus getting a
9	portable pump if you need it.
10	MR. AMWAY: Well, as far as your minimum
11	staffing goes, you can't have a fire brigade member also
12	doing plant operator functions, but I mean it doesn't
13	mean all they could do is just sit there and wait for
14	a fire.
15	I mean they can do other activities. It's
16	just if a fire event happens, then that is your
17	designated team to go respond to the fire. So this type
18	of event, if there were no fire, they would definitely
19	be employed to do whatever was needed to respond to the
20	event.
21	MR. FALLON: And the fire doesn't take them
22	out forever. Realistically, say the fire marshal was,
23	they respond within 15 minutes. If the fire's not out
24	in 15 minutes, they're calling for help because there's
25	nothing they can do to really put it out.

(202) 234-4433

	247
1	So they would be out of the equation for at
2	most between 35 and 45 minutes. Really they aren't
3	going to, you can't take five people and have them fight
4	a fire for five hours, just doesn't work.
5	It's not realistic. At the 30 minute point
6	after they've mustered and gone to the fire, if they
7	haven't put it out, they're calling for help from
8	somewhere else and backing away from the fire.
9	MR. TRUE: So would it be fair, just thinking
10	out loud. It's risky, but would it be fair to say that
11	by the time they declared the ELAP that those resources
12	would be back available?
13	MR. FALLON: Yes, I would think so.
14	MR. CHANG: Firefighter, they could be
15	available.
16	MR. FALLON: And either they put out the
17	fire, or they back away from it. One of the two is going
18	to probably happen. If they can put it out with a
19	portable extinguisher, which they do that.
20	MR. TRUE: Okay. That seems like a good way
21	to handle it. Experience has shown, just so guys know,
22	that in large earthquakes it's not uncommon to have a
23	fire.
24	MR. FALLON: I've been on the earthquake ride
25	at Universal Studios all the time.
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	248
1	MR. TRUE: Yes, Universal Studios has that.
2	MR. FALLON: One of the things, like you said
3	Doug it's, in an earthquake you have hydrogen and
4	coolant on the generator and the loose seal oil. You
5	get a fireball out of that pretty easily.
6	It's quick, and there's really not a lot you
7	can do about it at the fire brigade other than go look
8	at scorch marks and go back because it's all burned down.
9	MR. TRUE: Okay. All right, so I
10	understand.
11	MR. STUTZKE: I filled this in when we were
12	making the NRC working group like this just to confuse
13	people on PRA sensitivity analysis. And the basic
14	notion is here is as we change one of the inputs, we want
15	to see how the output varies like this.
16	So the example that I have here is for Option
17	3A, which is a drywell injection sort of option. And
18	I want to look at the sensitivity of the result and the
19	probability if the operator does not align the drywell
20	injection and the time.
21	And the figure of merit, which is the Y axis
22	because we don't yet have the MACCS calculations. I'm
23	looking at the fraction of the sequences that end up in
24	liner melt-through like this.
25	And in this case, I mean first of all you'll
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	249
1	see it's linear. There's reasons why it has to be
2	linear like this. The intent is to help you judge the
3	impact of the uncertainties on the inputs when you do
4	this.
5	In other words, when you do a sensitivity
6	study, deep down in your heart you hope to see a flat
7	line, that it's not sensitive, which means I don't need
8	to guess or hone in on the number on the X axis so well
9	because it doesn't change the answer like this.
10	The reality is though that the result you see
11	here is contingent on every other number that's put into
12	that analysis. So by only looking at them one by one,
13	you can easily be misled as to the pure impact of the
14	sensitivity.
15	In other words, if I said, suppose I want to
16	reduce all the human error failure probabilities by an
17	order of magnitude, you would see a much different
18	fraction like this.
19	But that's the basic idea. So I drew the red
20	dot. It's at the current screening value of 0.3 for the
21	Option 3A where you're getting about 64 percent of the
22	sequences going to liner melt-through.
23	And the interpretation is even if the
24	operator behaves perfectly, you get a 50 percent chance
25	of liner melt-through, so it's not super sensitive.
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	250
1	MR. FALLON: Yes, that's the operator
2	aligning the reactor with water. That discounts the
3	fact that the operator does nothing about the drywell
4	seal leakage things and puts the water in there.
5	MR. STUTZKE: Right, because it's treated
6	independently.
7	MR. FALLON: It's in the back. Okay. Good.
8	MR. STUTZKE: It's considered
9	independently, but it's representative of the sorts of
10	sensitivity studies that we'll probably need to
11	complete like this. Moving on to the bigger picture
12	MR. TRUE: Are you doing this all in Excel,
13	or are you doing it in
14	MR. STUTZKE: Excel.
15	MR. AMWAY: The failure probability at 30
16	percent, is there any consideration of that, whether the
17	operator has procedures and training on it versus
18	MR. STUTZKE: Yes, James, we'll properly
19	account for things like that.
20	MR. TRUE: The 30 percent is just a
21	placeholder, so the
22	(Simultaneous speaking.)
23	MR. SZABO: Doug, you presented something a
24	while back. Is that, I assume that, is that still where
25	you

(202) 234-4433

	251
1	MR. TRUE: I haven't changed anything.
2	MR. SZABO: Okay.
3	MR. TRUE: I'm going to do the same kind of
4	sensitivities. I don't know. I hadn't thought about
5	doing this format, but I was going to do some
6	sensitivities to look at what happens when you change
7	the linear rates.
8	I think I'm probably more going to go to make
9	them perfect. Making them always fail doesn't
10	MR. STUTZKE: It's the same thing.
11	MR. TRUE: It's not very meaningful.
12	MR. STUTZKE: I was afraid to speak in terms
13	of risk achievement work and risk reduction work.
14	MR. TRUE: It's essentially the same thing,
15	just not, if you always fail the different alternatives,
16	you could write out the base case.
17	MR. SZABO: Exactly.
18	MR. TRUE: Because the alternative fails.
19	So I was more thinking of maybe doubling their rate and
20	going to zero is my sort of bounds.
21	MR. SZABO: Yes, I just didn't know if there
22	was something, if you guys
23	MR. TRUE: I haven't changed anything. The
24	only thing I've changed since that first presentation
25	other than doing the other alternatives was I added the

(202) 234-4433
	252
1	SRV cycling failure probability. Other than that, it's
2	the same model we presented in September.
3	MR. STUTZKE: Okay. So the path forward,
4	and I guess the last bullet is what I want to focus in
5	on before we go. But yes, we had an earlier discussion
6	about the seismic hazards.
7	James is working hard on the detailed HRA.
8	Once I get that, I can look at the nuances of the
9	assumptions.
10	MR. FALLON: Marty, is there anything we can
11	help you guys with on the HRA, working the MAAP, things
12	like that?
13	MR. CHANG: The plan details, I'm not so
14	knowledgeable.
15	MR. FALLON: That's fine. You just let us
16	know what it is that will help you get a good number.
17	That's what we can do.
18	MR. TRUE: And our fearless leader, we can't
19	offer much, but should we have a segment in the next
20	public meeting or something? You can go over the
21	performance shaping factor inputs you'd like to get from
22	us or something. Is there something we can do to help
23	that?
24	MR. SZABO: Yes, I think that would just be,
25	yes
	NEAL R. GROSS

(202) 234-4433

	253
1	MR. TRUE: Because we've got operators here
2	who actually do this.
3	MR. SZABO: I think that a follow up to our,
4	and that was actually one of the questions I meant to
5	ask Steve was in their letter they mentioned some of the
6	dates for the other information.
7	And I think this ties in kind of to this major
8	assumptions thing, so I almost got to know what Steve
9	thought the scheduling would be for all of that. But
10	I figure at the next meeting it's kind of a follow up
11	action to that in the same nexus of that.
12	We can have that discussion. And we'll try
13	and put together some clarifying information from what
14	we sent to you to help facilitate that.
15	MR. FALLON: We can't ask you for miracles if
16	we don't agree to participate and help you.
17	MR. STUTZKE: The last bullet, I talked
18	before about sensitivity study, and I guess I need to
19	do some sort of uncertainty analysis. Excuse me. It
20	was not my intention to do a parametric uncertainty
21	analysis.
22	But that's where one normally puts
23	probability distributions around all these numbers and
24	Monte Carlo samples. And since we can't guess the basic
25	number, you won't believe the distribution parameters

(202) 234-4433

	254
1	anyway.
2	MR. TRUE: Yes, I have come to the same
3	conclusion.
4	MR. STUTZKE: It leaves me a little cold to
5	be able to do that. The other sorts of uncertainty is
6	modeling uncertainty. I don't think we'll do anything
7	in that area other than to treat it maybe with
8	sensitivity.
9	You asked Hossein about some of the cases, so
10	I think I'm going to pick your list and go through it,
11	see if that makes sort of sense. I pointed out early
12	in my talk about the incompleteness on certainty, sorts
13	of things that aren't quantified.
14	I called them unquantified benefits like
15	that, and I don't know how to poke holes at this point.
16	Probably Aaron will be doing certain sensitivity
17	uncertainty analysis, chat up the benefits by someone.
18	MR. SZABO: I'll try and do things that help
19	try and quantify what we did not necessarily quantify
20	in SECY 12-0157. Generally, the idea, at least in my
21	mind is at least a sensitivity trying to quantify more
22	this defense and depth idea, how exactly that'll be done
23	with still being realistic and still being determined.
24	But that's just a general idea. And the idea
25	is to try to capture as much currently non-quantified

(202) 234-4433

	255
1	data as possible. And those we can't quantify anyway,
2	of course, I mentioned the various techniques that we're
3	initially thinking about.
4	To just wrap up today, I'm just going to go
5	through the takeaways. I'll probably go through this
6	again tomorrow.
7	MR. TRUE: One last question.
8	MR. SZABO: Sure.
9	MR. TRUE: This was on Mark I. There's not,
10	as I understand it, is not a plan to do the same thing
11	for Mark IIs. Do you have any thoughts? You're not
12	looking at me, Marty.
13	I guess I'm looking at Aaron and Hossein.
14	How do you marry Hossein's new Mark II results to the
15	Mark I? Have you thought about how you're going to do
16	that? We're doing the whole thing explicitly, so
17	MR. SZABO: I think at this point we'll just,
18	we have to take that back and just, yes.
19	MR. TRUE: I figured that might be the case.
20	MR. STUTZKE: Question, you guys haven't
21	done any isolation
22	MR. TRUE: We have not. Actually, it's not
23	on my list. Well, it is sort of in a sense. We talked
24	about doing plant to plant variabilities. That's one
25	we would probably do an investigation on. I just can't

(202) 234-4433

	256
1	do every alternative and every scenario.
2	If we seem to be honing in on 2A and 6A or 6B
3	or whatever as kind of more interesting scenarios, then
4	we might just try to run those. That's what I'm
5	thinking. And that's a whole other map.
6	MR. GABER: Are they bounded by the early
7	RCIC cases? Maybe you could convince yourself that
8	they are.
9	MR. STUTZKE: I look at it two ways. It's a
10	lot of work for me to build probabilistic models for the
11	isolation at your plants, but they don't have a MELCOR
12	deck for it anyway. So, what have I gained this way?
13	Similarly, I could build a probabilistic for
14	a Mark II plant in a short time. I don't know much about
15	them. It's a steep learning curve at least for me, but
16	that may be some viable way to go about it.
17	MR. SZABO: We'll take that back and discuss
18	the best way forward.
19	MR. TRUE: What about, and another one on
20	MACCS. In the spent fuel pool, transfer spent fuel
21	pools because it's been done high, medium and, higher
22	population, medium population, lower population sites,
23	are you envisioning that as being part of this or just
24	going to stick to the reference plant?
25	MR. SZABO: We are planning to run

(202) 234-4433

	257
1	sensitivities in relation to MACCS, in relation to
2	population likely, highly likely that we're going stuff
3	with population densities potentially right now with
4	assumed evacuation percentages just to see how
5	sensitive some of the releases are.
6	Mostly, if you're talking about beyond design
7	basis accident, I think. Unfortunately, John's not
8	here. My understanding is it's 99.5 percent evacuation
9	by the time we, understand we're talking about a very
10	low probability, very large, very bad day for everyone
11	just as a sensitivity possibly looking at smaller, less
12	percentage.
13	It's an order of magnitude less but still a
14	significant, I'm not saying, those would not be our base
15	case. That would just be the sensitivity just to see
16	kind of how effective some of these strategies would be.
17	MR. TRUE: Another question I'm struggling
18	with, we're struggling with is when we're doing the
19	MACCS work, we're doing different Mark II MACCS calcs
20	than we are Mark I MACCS calcs.
21	MR. SZABO: So initially before when we did
22	not really have the time to develop the MELCOR for the
23	martin, which we ran the MELCOR for the Mark II, even
24	the slimmed down version based on our own schedule, the
25	idea is we weren't going to distinguish between, and

(202) 234-4433

	258
1	within MACCS either.
2	We would just do sensitivities based on not,
3	the path forward at least as of right now is to now
4	separate them so there will be Mark I based MACCS and
5	then a Mark II based MACCS.
6	MR. TRUE: We pick the ranges based on the
7	Mark II sites and the Mark I sites?
8	MR. SZABO: Yes, that would be the idea.
9	That's to my understanding right now. Unfortunately,
10	John's not here to verify that, but I'm pretty sure.
11	MR. WACHOWIAK: When are you going to do
12	that?
13	MR. SZABO: I believe some of the MACCS have
14	already been run in parallel with MELCOR when they're
15	being completed.
16	MR. WACHOWIAK: Mark II?
17	MR. SZABO: Oh, Mark II will be after we're
18	done running MELCOR. The dents are being built. It's
19	just the running the model itself.
20	MR. WACHOWIAK: So we need to get our hands
21	on that one, too.
22	MR. SZABO: Well, actually, look here for a
23	second. I'm not sure if the deck is built yet. I know
24	it is at least being built, and the goal is to have it
25	built by the time the Mark II is done.

(202) 234-4433

	259
1	MR. ESMAILI: You're talking about MACCS
2	input?
3	MR. WACHOWIAK: Yes.
4	MR.ESMAILI: Italked to John. I don't know
5	what state they are.
6	MR. WACHOWIAK: If we're going to be done in
7	August, and we need their input and they don't have it
8	done until September, that doesn't work.
9	MR. TRUE: We'll have to do something else.
10	We can link it to the MACCS two source terms, more the
11	site.
12	MR. WACHOWIAK: Yes, if they're changing the
13	site.
14	MR. SZABO: I can take that back as something
15	we will make sure that before the next public meeting,
16	which John will present that, that we have that answer
17	to you guys at least on the, if there's any other
18	comments, questions, I'll go to, oh, no I'm sorry.
19	I'll go through takeaways. Once again, I'll
20	probably repeat this tomorrow afternoon. The first
21	thing is anyone who in the industry side talks to Steve
22	tonight because I didn't get to ask him about the other
23	dates that they said, that we proposed in the letter to
24	them.
25	And you kind of responded back with if

(202) 234-4433

	260
1	industry feels like they can meet those dates, if not
2	what dates they think they could meet because I believe
3	I recall talking about there was some concern about
4	meeting all of the dates.
5	MR. TRUE: All the data.
6	MR. SZABO: Yes, and if we can just get a
7	plan, that's all I, a general plan.
8	MR. GABER: Can I ask a question that relates
9	heavily to that since I'm on the hook for one of those
10	three data tasks? The people that asked the questions
11	on the Mark II, I don't know if it was you or Ed, have
12	you, I would assume the answer's yes.
13	But have you looked at, we just started
14	finding that NUREG/CR-5623 had a lot of good information
15	in it that kind of categorizes, I mean it names all the
16	Mark II plants. It describes they shape and have you
17	guys reviewed that. And is it helpful to support the
18	Mark II work?
19	MR. KARIPINENI: Which NUREG is this?
20	MR. GABER: 5623. It's 1991, Cheryl Green
21	and company did a lot of work on kind of the preliminary
22	background work on looking at what might happen in the
23	Mark II.
24	MR. FULLER: I've taken a good look at that,
25	and it's quite helpful in terms of looking at, they are
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	261
1	just cartoons mind you.
2	But it gives you some idea of what kind of
3	pathways might be developing in bypass scenarios as well
4	as, I guess one possibility of bringing suppression pool
5	water and debris together.
6	But there are some things that are a little
7	bit confused here. So there might be some, if you start
8	with those, there probably would still be some specific
9	information that might be needed from the plant.
10	MR. GABER: That's my question. So if you
11	start with that, and maybe you already did this.
12	MR.FULLER: I don't think they did. I don't
13	know if anybody else saw that besides me.
14	MR.GABER: If you look at that, does it alter
15	the data request, and I think it was Number 3 or whatever
16	the question was because there were a lot of subparts
17	to that related to the Mark II design.
18	I'm just curious because if there something
19	in there that answers some of those questions, please
20	tell me before I go off and gather then data.
21	MR. SZABO: I'll take that back and get back
22	to you on that.
23	MR. GABER: Thanks,
24	MR. SZABO: The other takeaway first is
25	Steve's is how we get to the end game. I think now at
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 VVASHINGTON, D.C. 20005-3701 (202) 234-4433

	262
1	the level that we are, in our working group we've also,
2	we've started bringing back up the performance goals and
3	everything as I said.
4	I think we all kind of realized we need to run
5	the data and see kind of where things were going before
6	we can have a general idea of what general performance
7	goals and criteria really make sense.
8	And as we've seen, we've actually come up, the
9	industry's presented even new performance goals or
10	ideas for them at least right now. The second thing I
11	have, we mentioned this before, is the decon costs and
12	the O&M costs that industry is going to work on.
13	The next thing I had was the criteria. This
14	was the HRE question about the criteria for the decision
15	to deploy and the time to deploy. I believe that's
16	FLEX, some of the FLEX stuff.
17	We are also, for industry, the fraction of
18	hydrogen based on location. We have the, I just ask
19	that you guy let me know if the WinMACCS thing is not
20	coming in. I did not realize there was the delay. I
21	just haven't been in the loop.
22	MR. GABER: First things first, I mean John
23	did an awesome job with the input data, but we don't have
24	a code to run that data.
25	MR. SZABO: Okay.

	263
1	MR. GABER: That was the problem.
2	MR. SZABO: Can we help, or is that you guys?
3	MR. GABER: I think you've done enough.
4	MR. SZABO: Okay.
5	MR. GABER: If there's anything you can do to
6	follow up, I guess, but we thought that all the paperwork
7	was done. And it was just a matter of you sending the
8	code to us or giving us access to the code.
9	MR. SZABO: Okay. And I'll touch back with
10	my people to see if there's, make sure there's, and maybe
11	tomorrow you guys will have it.
12	MR. AMWAY: Just going back to the costs of
13	data that we presented
14	MR. SZABO: Yes.
15	MR. AMWAY: understand the O&M and
16	decommissioning pieces but with what we provided so far
17	that satisfies the rest of the information requests
18	related to cost estimates.
19	MR.SZABO: Yes. In my opinion, at least, it
20	does. When we end up doing this I don't see any other
21	concerns. I mean, as I said, as we go deeper into it,
22	we might have additional questions.
23	But at least in relation to the information
24	request, I think that was sufficient. I don't see any
25	major requests coming off the top of my head. As I said,

(202) 234-4433

	264	
1	the only thing, I didn't say this before, but we have	
2	different guidance on how we have to do costs and so	
3	forth.	
4	So there's no guarantee that we're just going	
5	to use your guy's number, of course. But our number	
6	will clearly be informed by what you provided us.	
7	I have, okay back to the takeaways. I have	
8	specific information on the Mark II on I Pass. No idea	
9	where that was.	
10	MR. GABER: That's not my new, did you look	
11	at the NUREG question?	
12	MR. SZABO: No.	
13	MR. GABER: It's different.	
14	MR. SZABO: That was, at the time I wrote	
15	study Mark II on bypass. I'll go back and figure that	
16	out by tomorrow.	
17	MR. GABER: We asked Hossein, I remember	
18	asking you how you were going to handle that.	
19	MR. ESMAILI: We are looking at, we have one	
20	input deck.	
21	MR. GABER: One plant.	
22	MR. ESMAILI: Yes, we have one plant, and	
23	depending on what we learn from there because as you	
24	said, there are differences between how the pedestal is,	
25	how far, how deep it goes. We cannot run.	

(202) 234-4433

	265
1	Maybe we can run some sensitivity by just
2	lowering the pedestal floor, but at this point, we are
3	just focusing on one plant and trying to have some
4	insights as to what happens.
5	I think, I don't know what, have you done any
6	MAAP calculations for the Mark II? Are the release
7	characteristics going to be that different from the Mark
8	Ι?
9	MR. GABER: If you bypass the suppression
10	pool in the early stages with the
11	(Simultaneous speaking.)
12	MR. ESMAILI: In the early stages, yes, but
13	do you bypass in the early stages? What happens?
14	MR. GABER: At vessel breach we do. Unless
15	it's a plant that doesn't have that, which there is one
16	of the Mark II's that doesn't have a drain, or if they,
17	like Doug showed, if we analyze that they protect the
18	penetration, then obviously that does a bypass.
19	But for the others, we would, at vessel
20	breach, we would create some sized hole between the
21	drywell and wetwell air space based on just the drain
22	line failure.
23	MR. SZABO: So, our takeaway was to go back
24	and check to see what we're going to do on that
25	MR. GABER: Okay.

(202) 234-4433

	266
1	MR. SZABO: on that issue. I'm going to
2	send an email list with what the final versions of the
3	alternatives are. I hope we don't get anymore.
4	MR. GABER: I hope so, too.
5	MR. SZABO: Marty's going to check the
6	breakdown by the core debris location for the 2A and
7	those various. We're going to offline, we're going to
8	discuss the SRV cycling number.
9	At the next meeting, we're going to have a
10	discussion that provides clarification on the
11	information necessary for HRA in the realm of the, our
12	second question on the major assumptions.
13	We are going to get back to you guys about how
14	we're mapping the Mark II as well as, and then the next
15	month we're going to have a presentation on MACCS at
16	least in general.
17	And I will give you guys an answer, hopefully
18	before then, on what we're doing for the Mark II and when
19	we'll finish that deck if it's not already. As I said,
20	I'm not sure.
21	The other thing to note is after Friday I will
22	out for three weeks, so Fred Schofer is going to be my
23	backup. That's F-R-E-D dot S-C-H-O-F-E-R at NRC.gov.
24	If you send me an email, you will also get this
25	information about that.

(202) 234-4433

	267	
1	And I will be out of the country without	
2	electronics, so there's really no way to reach me. But	
3	thank you very much everyone.	
4	MR. FULLER: Before you end, there's one	
5	other Mark II aspect that wasn't explicitly discussed,	
6	and that is for those cases where you get a lot of core	
7	debris on the diaphragm floor.	
8	What does that do to your water management	
9	strategies, if anything, relative to if you have the	
10	case, configuration that we are now having to do with	
11	the pedestal below the vessel and no way to get the	
12	debris to the diaphragm floor? I don't know if there	
13	are any surprises, but it's something to at least be	
14	looked at.	
15	MR. SZABO: We'll take that back.	
16	MR. FULLER: That is very important, by the	
17	way, because most of them are that way and not the way	
18	we're looking at it.	
19	MR. SZABO: Yes.	
20	MR. GABER: We have more to talk about on the	
21	Mark II?	
22	MR. SZABO: Yes.	
23	MR. GABER: Let's just leave it at that.	
24	MR. SZABO: Thank you for everyone, for those	
25	of you who are going to be here tomorrow morning, I look	

(202) 234-4433

	268		
1	forward to seeing you.		
2	Tomorrow's there's going to be a presentation		
3	by, I believe Maria Korsnick on the deliverables,		
4	content deliverables and milestones for the Phase II		
5	part of EA-13-109.		
6	That's only a half day. That is not in the		
7	same building as this meeting. It's in Three White		
8	Flint. The bridge line is going to remain the same.		
9	And as people have pointed out, the bridge		
10	line that was on the webinar was incorrect. However,		
11	the bridge line that's on the meeting notice as well as		
12	in the slides is correct.		
13	It's 888-807-8339. And the pass code is		
14	86834, and for those people on the webinar it is a		
15	different address. So make sure you're registering for		
16	the right one.		
17	MR. FULLER: Can you get that room number?		
18	MR. SZABO: And the room number is 9A28 in		
19	Three White Flint, but for the visitors you have to wait		
20	for us.		
21	MR. FULLER: Ninth floor?		
22	MR. SZABO: Yes, nine. I mean there's a,		
23	follow your escort, but 9 o'clock to 12:00.		
24	(Whereupon, the meeting in the		
25	above-entitled matter was concluded at 4:34 p.m.)		
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433		

	1
	2
	3
	4
	5
	6
	7
	8
	9
1	0
1	1
1	2
1	3
-	л