

# APPENDIX 2.7-L

# **Class V UIC Application**

# **UIC PERMIT APPLICATION**

# **Class V Non-Hazardous Injection Wells**

Powertech (USA) Inc.

**Dewey-Burdock Project** 

**Custer and Fall River Counties, South Dakota** 

# EPA Permit # TBD

March 2010

# **Table of Contents**

| 1.0 | PERMIT APPLICATION AND INTRODUCTION                                                            | 1-1  |
|-----|------------------------------------------------------------------------------------------------|------|
| 2.0 | USEPA FORM 7520-6 PERMIT APPLICATION ATTACHMENTS                                               | 2-1  |
| 2.A | AREA OF REVIEW METHODS                                                                         | 2-1  |
|     | Critical Pressure Rise                                                                         | 2-2  |
|     | Cone-of-Influence                                                                              | 2-4  |
| 2.B | MAPS OF WELLS IN AREA AND AREA OF REVIEW                                                       | 2-10 |
|     | Topographic Map                                                                                | 2-10 |
|     | Artificial Penetrations                                                                        | 2-10 |
|     | Property Ownership and Public Notice                                                           | 2-11 |
| 2.C | CORRECTIVE ACTION PLAN AND WELL DATA                                                           | 2-12 |
|     | Corrective Action                                                                              | 2-12 |
|     | Water Wells within AORs                                                                        | 2-12 |
|     | Area of Review Oil and Gas Well Data                                                           | 2-13 |
| 2.D | MAPS AND CROSS SECTIONS OF USDWs                                                               | 2-14 |
| 2.E | NAME AND DEPTH OF USDWs                                                                        | 2-17 |
| 2.F | MAPS AND CROSS SECTIONS OF GEOLOGIC STRUCTURE                                                  | 2-18 |
|     | Precambrian and Cambrian Units (Lower Confining Zone and Injection Zone)                       | 2-23 |
|     | Devonian - Mississippian Unit (Upper Confining Zone)                                           | 2-24 |
|     | Pennsylvanian – Permian Units (Lower Confining Zone, Injection Zone, and Upper Confining Zone) | 2-24 |
|     | Structural Geology and Faulting                                                                | 2-25 |
|     | Seismic Activity                                                                               | 2-25 |
| 2.G | GEOLOGIC DATA ON INJECTION AND CONFINING ZONES                                                 | 2-26 |
| 2.H | OPERATING DATA                                                                                 | 2-27 |
|     | Maximum Injection Pressure                                                                     | 2-27 |
|     | Average Rates, Volumes and Pressures                                                           | 2-27 |

|     | Annulus Pressure                                                   | 2-27 |
|-----|--------------------------------------------------------------------|------|
|     | Nature of Annulus Fluid                                            | 2-27 |
|     | Injectate Characteristics                                          | 2-28 |
| 2.1 | FORMATION TESTING PROGRAM                                          | 2-29 |
| 2.J | STIMULATION PROGRAM                                                | 2-31 |
| 2.K | INJECTION PROCEDURES                                               | 2-32 |
|     | Surface Facility Description                                       | 2-32 |
|     | Injection Procedures                                               | 2-32 |
|     | Well Operating Procedures, Alarms and Annulus Pressure Maintenance | 2-32 |
| 2.L | CONSTRUCTION PROCEDURES                                            | 2-35 |
|     | Nature of Annulus Fluid                                            | 2-37 |
| 2.M | CONSTRUCTION DETAILS                                               | 2-38 |
|     | Subsurface Well Construction Details                               | 2-38 |
|     | Surface Well Construction Details                                  | 2-38 |
|     | Annulus Monitoring System                                          | 2-38 |
|     | Mechanical Integrity                                               | 2-39 |
| 2.N | CHANGES IN INJECTED FLUID                                          | 2-40 |
| 2.0 | PLANS FOR WELL FAILURES                                            | 2-41 |
| 2.P | MONITORING PROGRAM                                                 | 2-42 |
|     | Mechanical Integrity and Periodic Testing                          | 2-42 |
|     | Continuous and Operational Monitoring                              | 2-43 |
|     | Annulus and Injection Pressure                                     | 2-44 |
|     | Injection Rate and Volume                                          | 2-44 |
|     | Annulus Tank Levels                                                | 2-44 |
|     | Waste Characterization and Analysis                                | 2-44 |
| 2.Q | PLUGGING AND ABANDONMENT PLAN                                      | 2-45 |

|     | Post-Closure Care Requirements | 2-46 |
|-----|--------------------------------|------|
| 2.R | NECESSARY RESOURCES            | 2-48 |
| 2.S | AQUIFER EXEMPTIONS             | 2-49 |
| 2.T | EXISTING EPA PERMITS           | 2-50 |
| 2.U | DESCRIPTION OF BUSINESS        | 2-51 |

.

#### TABLES

- TABLE A-1 CRITICAL PRESSURE RISE SITE 1
- TABLE A-2 CRITICAL PRESSURE RISE SITE 2
- TABLE A-3 CALCULATED PRESSURE RISE vs. DISTANCE MINNELUSA
- TABLE A-4 CALCULATED PRESSURE RISE vs. DISTANCE DEADWOOD
- TABLE A-5 RADIUS OF FLUID DISPLACEMENT CALCULATION MINNELUSA
- TABLE A-6 RADIUS OF FLUID DISPLACEMENT CALCULATION DEADWOOD
- TABLE C-1 KNOWN WATER WELLS WITHIN CLASS V PERMIT AREA
- TABLE C-2 OIL AND GAS WELLS WITHIN PROJECT AREA
- TABLE D-1 LOCAL WATER QUALITY DATA MADISON FORMATION
- TABLE D-2 LOCAL WATER QUALITY DATA MINNELUSA FORMATION
- TABLE D-3 LOCAL WATER QUALITY DATA UNKPAPA/SUNDANCE FORMATION
- TABLE D-4 LOCAL WATER QUALITY DATA INYAN KARA GROUP (LAKOTA AND FALLRIVER FORMATIONS)
- TABLE F-1 STRATIGRAPHIC SECTION BLACK HILLS AREA, SOUTH DAKOTA
- TABLE F-2
   PROPOSED DEWEY-BURDOCK WELLS PROJECTED FORMATION DEPTH

   SUMMARY
   SUMMARY
- TABLE H-1 MAXIMUM INJECTION PRESSURE FOR DEWEY-BURDOCK DISPOSAL WELLS
- TABLE H-2 OPERATING, MONITORING, AND REPORTING REQUIREMENTS FOR DEWEY-BURDOCK DISPOSAL WELLS
- TABLE H-3 EXAMPLE ANALYSIS OF INJECTATE FROM TYPICAL ISL PROJECT
- TABLE L-1 SUBSURFACE WELL CONSTRUCTION DETAILS
- TABLE L-2 LIST OF PROPOSED LOGS DEWEY-BURDOCK DISPOSAL WELLS
- TABLE Q-1 PLUGGING AND ABANDONMENT COST ESTIMATE

## FIGURES

| FIGURE 1    | SITE LOCATION MAP                                              |
|-------------|----------------------------------------------------------------|
| FIGURE A-1  | AREA OF INTEREST SHOWING LOCATION OF TYPE LOGS                 |
| FIGURE A-2  | TYPE LOG #1                                                    |
| FIGURE A-3  | TYPE LOG #2                                                    |
| FIGURE A-4  | TYPE LOG #3                                                    |
| FIGURE A-5  | CRITICAL PRESSURE RISE SCHEMATIC                               |
| FIGURE A-6  | CONE-OF-INFLUENCE - MINNELUSA FORMATION                        |
| FIGURE A-7  | CONE-OF-INFLUENCE - DEADWOOD FORMATION                         |
| FIGURE B-1  | TOPOGRAPHIC MAP OF PROJECT AREA                                |
| FIGURE B-2  | WATER WELLS WITHIN AORS, ROFDS, AND COIS - MINNELUSA FORMATION |
| FIGURE B-2a | WATER WELLS WITHIN AORS, ROFDS, AND COIS - DEADWOOD FORMATION  |
| FIGURE B-2b | CLASS V PERMIT AREA SHOWING AORs                               |
| FIGURE B-2c | WATER WELLS WITHIN CLASS V PERMIT AREA                         |
| FIGURE B-3  | SURFACE OWNERSHIP                                              |
| FIGURE B-4  | MINERAL OWNERSHIP                                              |
| FIGURE D-1  | DISTRIBUTION OF HYDROGEOLOGIC UNITS - BLACK HILLS AREA         |
| FIGURE D-2  | GENERALIZED EAST-WEST CROSS-SECTION - BLACK HILLS UPLIFT       |
| FIGURE D-3  | GENERAL DIRECTION OF GROUNDWATER FLOW (PALEOZOIC UNITS)        |
| FIGURE D-4  | REGIONAL GROUNDWATER FLOW (LOWER PALEOZOIC)                    |
| FIGURE D-5  | ISOPACH MAP – DEADWOOD FORMATION                               |
| FIGURE D-6  | REGIONAL GROUNDWATER FLOW (UPPER PALEOZOIC)                    |
| FIGURE D-7  | DISSOLVED SOLIDS CONCENTRATION (UPPER PALEOZOIC)               |
| FIGURE D-8  | STRUCTURE CONTOUR MAP - MADISON FORMATION                      |

- FIGURE D-9 ISOPACH MAP MADISON FORMATION
- FIGURE D-10 POTENTIOMETRIC SURFACE MAP MADISON FORMATION
- FIGURE D-11 TDS CONCENTRATION MINNELUSA FORMATION
- FIGURE D-12 STRUCTURE CONTOUR MAP MINNELUSA FORMATION
- FIGURE D-13 ISOPACH MAP MINNELUSA FORMATION
- FIGURE D-14 POTENTIOMETRIC SURFACE MAP MINNELUSA FORMATION
- FIGURE D-14a POTENTIOMETRIC SURFACE MAP UNKPAPA AQUIFER
- FIGURE D-15 STRUCTURE CONTOUR MAP INYAN KARA GROUP
- FIGURE D-16 ISOPACH MAP CHILSON MEMBER (INYAN KARA GROUP)
- FIGURE D-17 ISOPACH MAP FUSON MEMBER (INYAN KARA GROUP)
- FIGURE D-18 ISOPACH MAP FALL RIVER FORMATION (INYAN KARA GROUP)
- FIGURE D-19 POTENTIOMETRIC SURFACE MAP INYAN KARA AQUIFER
- FIGURE D-20 HYDROGEOLOGIC CROSS-SECTION LOCATION MAP
- FIGURE D-21 CROSS-SECTION A-A'
- FIGURE D-22 CROSS-SECTION B-B'
- FIGURE F-1 REGIONAL GEOLOGIC STRUCTURE MAP
- FIGURE F-2 STRUCTURE CONTOUR MAP PRECAMBRIAN
- FIGURE F-3 SEISMICITY OF SOUTH DAKOTA
- FIGURE F-4 PEAK GROUND ACCELERATION MAP
- FIGURE K-1 SURFACE INJECTION PROCESS AND INSTRUMENTATION
- FIGURE M-1 PROPOSED WELL SCHEMATIC DW NO. 1
- FIGURE M-2 PROPOSED WELL SCHEMATIC DW NO. 2
- FIGURE M-3 PROPOSED WELL SCHEMATIC DW NO. 3
- FIGURE M-4 PROPOSED WELL SCHEMATIC DW NO. 4
- FIGURE M-5 PROPOSED WELLHEAD (TREE) SCHEMATIC

UIC Permit Application Powertech (USA) Inc. March 2010

### APPENDICES

APPENDIX A DENR LETTER APPENDIX B OIL AND GAS WELLS PLUGGING RECORDS APPENDIX C ELECTRONIC COPY OF PERMIT APPLICATION APPENDIX D HISTORICAL PHOTO, CITY OF EDGEMONT WATER WELL

#### **USEPA PERMIT FORMS**

FORM 7520-6 PROPOSED WELLS UIC PERMIT APPLICATION FORM 7520-14 PROPOSED WELLS PLUGGING AND ABANDONMENT

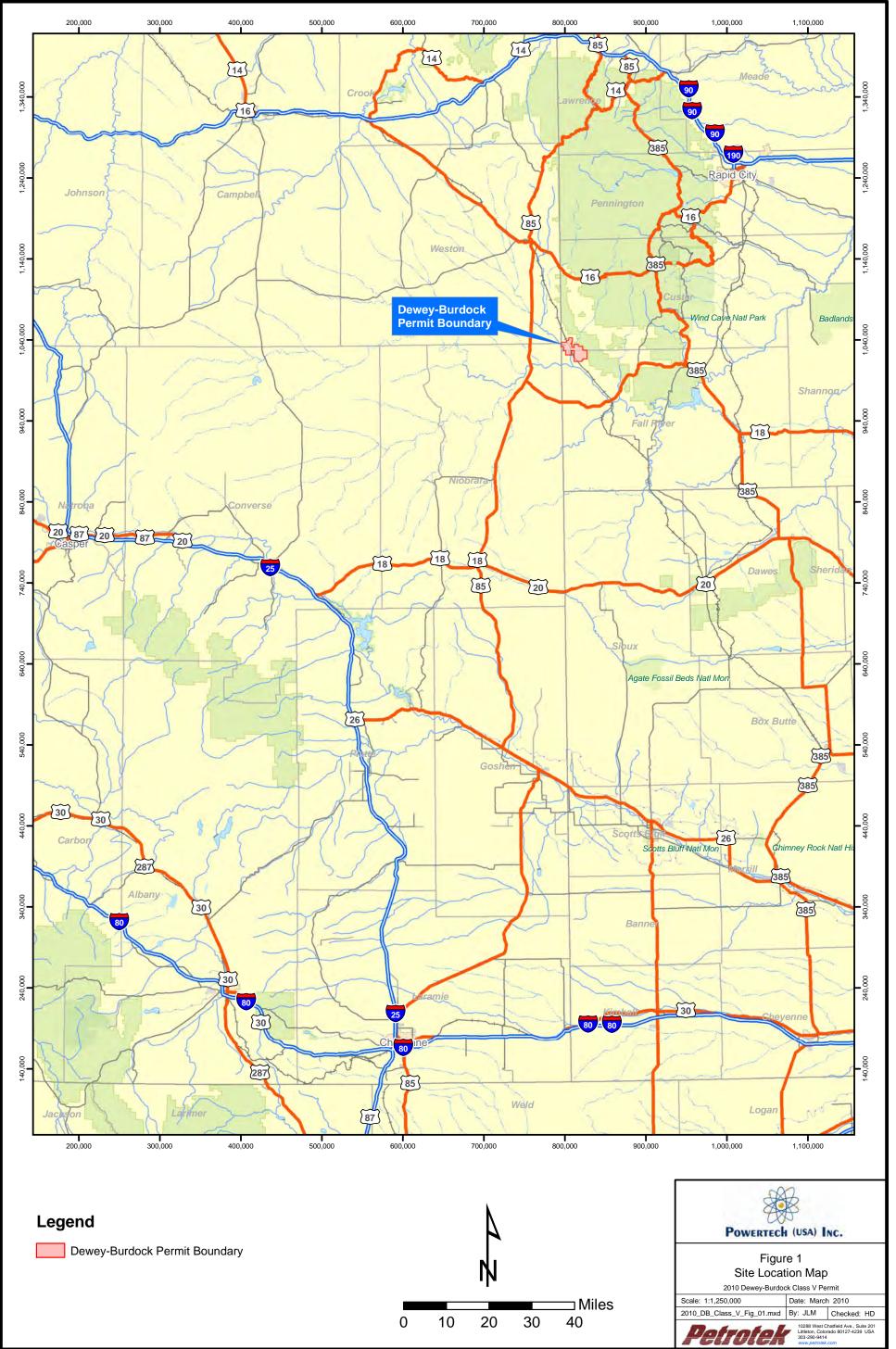
## 1.0 PERMIT APPLICATION AND INTRODUCTION

Through the submittal of this application, Powertech (USA) Inc. [Powertech], requests an Area Permit and authorization from the US Environmental Protection Agency (USEPA) to install and operate four to eight non-hazardous Class V disposal wells located at the Dewey-Burdock Project, pursuant to the applicable Underground Injection Control (UIC) regulations. The number of wells is to be determined and is dependent upon well capacity. Powertech requests authorization to inject a total of 300 gallons per minute (gpm) in a maximum of eight Class V disposal wells. These wells are to be located in Custer and Fall River Counties, South Dakota, within the limits of the proposed Class V permit area within the Dewey-Burdock Project boundary. Proposed locations for the first four wells are shown on Figure B-2. The Project is located approximately 13 miles north-northwest of Edgemont, South Dakota, and straddles the area between northern Fall River and southern Custer County line. The project boundary encompasses approximately 10,580 acres (4,282 ha) of mostly private land on either side of County Road 6463 and includes portions of Sections 1-5, 10-12, 14 and 15, Township 7 South, Range 1 East and Sections 20, 21, 27, 28, 29 and 30-35, Township 6 South, Range 1 East. Approximately 240 acres (~2%) (97.1 ha) are under the control of the Bureau of Land Management (BLM) located in portions of Sections 3, 10, 11, and 12. A map identifying the general project location is included as Figure 1.

A completed copy of USEPA UIC 7520-6, "Underground Injection Control Permit Application" for the wells is included in this application, and required attachments to this form are also included in this document. In this application, the initial four planned wells are referred to individually as Dewey-Burdock Disposal Well Nos. 1, 2, 3, and 4, (DW Nos. 1, 2, 3, and 4) or collectively with additional disposal wells as the Dewey-Burdock Disposal Wells. All depths discussed in this application are below ground surface (bgs) unless otherwise noted.

The proposed Powertech facility in South Dakota will operate between four and eight Class V Non-Hazardous Disposal Wells for underground injection of fluids from an in-situ leach (ISL) uranium mining project. Fresh water aquifers in the vicinity of the wells are to be protected by casing and cement. Injected fluids will be delivered to the Minnelusa and Deadwood Formations in separate wells under positive pressure injection through tubing and a packer. The wells are to have one cemented long string protective casing extending into the injection interval. The wellbores are to be perforated completions within the injection interval. The annulus area between the protective casings and injection tubing strings will be filled with inhibited fresh water. Annulus pressure will be continuously monitored to detect any potential leaks in the tubing or casing strings and annulus pressures will be maintained at more than 100 psi above the tubing pressure.

Relevant administrative data regarding the permit are summarized as follows.


| Applicant:        | Powertech (USA) Inc.                                     |
|-------------------|----------------------------------------------------------|
| State:            | South Dakota                                             |
| Counties:         | Custer and Fall River                                    |
| Facility Address: | 310 2 <sup>nd</sup> Avenue                               |
| -                 | Edgemont, SD 57735                                       |
| Mailing Address:  | 5575 DTC Parkway, Suite 140, Greenwood Village, CO 80111 |
|                   | : Site 1: NE ¼ of NW ¼ of SW ¼ of Section 2, T7S, R1E    |
|                   | DW No. 1: Lat: -103.971938654 Long: 43.469772181         |
|                   | DW No. 2: Lat: -103.971859557 Long: 43.4696483743        |
|                   | Site 2: SE ¼ of NW ¼ of SW ¼ of Section 29, T6S, R1E     |
|                   | DW No. 3: Lat: -104.031570321 Long: 43.4971737527        |
|                   | DW No. 4: Lat: -104.031436264 Long: 43.4970792287        |
|                   |                                                          |
|                   |                                                          |
|                   |                                                          |

UIC Permit Application Powertech (USA) Inc. March 2010

| Location of Additional Wells:<br>USEPA ID Nos.: | To be determined<br>Dewey-Burdock Disposal Well Nos. 1, 2, 3, 4, and additional<br>wells- TBD |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Contact:                                        | Mr. Richard Blubaugh, Vice President                                                          |

OMB No. 2040-0042 Approval Expires 12/31/2011

| Second       Underground Injection Control         Permit Application       Implication         Collected under the submit y the Stab Dirkking       Implication         Dirke AL: Second Statistics       Implication         Base AL: Second Statistics       For Official Use Only         Permit Number       Weil ID       FinD3 Number         Implication approved       Date received       Permit Number       Weil ID         Implication approved       Date received       Permit Number       Weil ID       FinD3 Number         Implication approved       Date received       Permit Number       Weil ID       FinD3 Number         Implication approved       Date received       Permit Number       Weil ID       FinD4 Number         Implication approved       Date received       Permit Number       Weil ID       FinD4 Number         Implication approved       Date received       Permit Number       Weil ID       FinD4 Number         Implication       Convert Name       Powertch (USA) Inc.       Phone Number       (Dowert Name       Phone Number         Implication       State Address       State Address       State Address       (Dowert Name       Phone Number         Implication       One return       State Address       State Address       State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | United States Environmental Protect |                        |                                        |                                        |                               |                       |             | ection Ag                           | ency        | I. EPA                                 | ID Number                          |          |                                            |                                          |                              |                                       |                |                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------|----------------------------------------|----------------------------------------|-------------------------------|-----------------------|-------------|-------------------------------------|-------------|----------------------------------------|------------------------------------|----------|--------------------------------------------|------------------------------------------|------------------------------|---------------------------------------|----------------|-----------------------------|
| Contract and contractions get one State Disking       U         Read Attached Instructions Bions Stating<br>For Official Use Only         Application approved<br>mo       Date received<br>mo       Permit Number       Well 1D       FINDS Number         U. Overier Name and Address       Well 1D       FINDS Number       Phone Number         U. Overier Name and Address       Over Name<br>Powertech (USA) Inc.       Phone Number       Stet Address         Stret Address<br>STS DIC Parkway, Suite 140       (D3) 709-728       Stet Address       Stret Address       Stret Address         STS DIC Parkway, Suite 140       VO Operation       Stret Address       Stret Address       Stret Address         STS DIC Parkway, Suite 140       VO Operation       VL Legit Contact       VII. Stret Address       Stret Address         STS DIC Parkway, Suite 140       V. Operation       VL Legit Contact       VII. Stret Address       Stret Address         Viii. Well Status       Mamber of Proposed Wolls       Nanter of Proposed Wolls       Nanter of Proposed Wolls       Nanter of Proposed Wolls         A. Individual       B. Acea       Number of Vision address of Proposed Wolls       Name(to fision fision of fision or project(s)         A. Individual       B. Acea       Number of Proposed Wolls       Name(to fision fision or project(s)       - 8         A. Individual <td>•</td> <td></td> <td></td> <td></td> <td colspan="6">Underground Injection Control</td> <td>I</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>T/A</td> <td>с</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                   |                        |                                        |                                        | Underground Injection Control |                       |             |                                     |             |                                        | I                                  |          |                                            |                                          |                              |                                       | T/A            | с                           |
| Water Act. Sections 127, 122, 40 CFR 140         Reel Attached instructions Biefons Starling         For Official Use Only         Application approved       Date received         mo       day       year         mo       day       year         mo       day       year         Nomes Name       Well 1D       FINDS Number         Nomes Name       Online Name       McGreator Name         Powertoch (USA) Inc.       Online Name       Phone Number         Store Address       Online Name       Phone Number         Store Address       Online Name       Phone Number         Store Address       Online Name       Online Name         Store Address       Online Name       Store Address         Store Address       Phone Number       Store Address         Store Address       Store Address       Store Address         Store Address       Online       Store Address         Vill. Well Status       Online Started       Store Address         Operation       Store Address       Store Address         Vill. Well Status       Owner       Store Address         Operation       Store Address       Namber of Proposed Wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V                                   | EF/                    | •                                      |                                        | Permit Application            |                       |             |                                     |             |                                        |                                    |          |                                            |                                          |                              |                                       |                |                             |
| Read Attached Instructions Before Starting         For Official Use Only         Application approved<br>mo       Date received<br>mo       Permit Number       Well ID       FINDS Number         IL. Ornior Name and Address       Well ID       FINDS Number       Phone Number         Norman       Deverticed. (USA) Inc.       Phone Number       Street Address       Phone Number         Street Address       Orner Name<br>Powerticed. (USA) Inc.       Phone Number       Street Address       Commercial Facility       V. Deverticed. (USA) Inc.         Street Address       Street Address       Street Address       Commercial Facility       State       ZIP coDE         Street Address       State       ZIP coDE       State       ZIP coDE </th <th></th> <th></th> <th></th> <th></th> <th></th> <th colspan="7"></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>,</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                        |                                        |                                        |                               |                       |             |                                     |             |                                        |                                    |          |                                            |                                          |                              |                                       |                | ,                           |
| Application approved<br>mo       Date received<br>mo       Permit Number       Well ID       FINDS Number         IL. Overlar Name<br>Powertech (USA) Inc.       III. Operator Name and Address       III. Operator Name and Address         Powertech (USA) Inc.       Owner Name<br>Powertech (USA) Inc.       Phone Number<br>(303) 790-7528       III. Operator Name and Address         Street Address<br>S575 DTC Parkway, Suite 140       (303) 790-7528       Street Address<br>S575 DTC Parkway, Suite 140       Phone Number<br>(303) 790-7528         Cive<br>Greenwood Village       CO       Solt II       V. Owner Co       Street Address<br>S0111       VIII. Used States       VIII. Steet Address<br>S0111                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                        |                                        |                                        |                               |                       |             |                                     |             |                                        |                                    | tarting  |                                            |                                          |                              |                                       |                |                             |
| mo     day     year     Permit Number     Well ID     FINDS Number       IL     Owner Name     IL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                        |                                        |                                        |                               |                       |             |                                     | For Off     | icial Us                               | e Only                             |          |                                            |                                          |                              |                                       |                |                             |
| IL. Owner Name and Address     III. Operator Name and Address       Owner Name<br>Powertech (USA) Inc.     Owner Name<br>Powertech (USA) Inc.     Owner Name<br>Powertech (USA) Inc.       Street Address<br>S575 DTC Parkway, Suite I40     (303) 700-7528       Green wood Village     State     ZIP CODE<br>S575 DTC Parkway, Suite I40       M. Commercial Facility     V. Owner Shift     Vill SGC Code       M. Commercial Facility     V. Owner Shift     Vill Size (Mark *c')       M. Commercial Facility     V. Owner Shift     Size (Mark *c')       M. Commercial Facility     V. Owner Shift     Size (Mark *c')       M. Commercial Facility     V. Owner Shift     Size (Mark *c')       M. Commercial Facility     V. Owner Shift     Size (Mark *c')       M. Coss(e)     B. Area     Number of Existing Weils<br>0     Number of Proposed Weils<br>4 - 8     Number of Proposed Weils<br>Dewey-Burdock       A. Individual     B. Area     Number of type is Code *, * explain<br>Class V, permitted under 40 CFR 144.12     D. Number of weils per type (if area permit)<br>4 - 8       Vis. Size Deg Min<br>Soc D                                                                                                                                                                                                                                                                                                                         | Ар                                  | olication              | approv                                 | ved                                    | Dat                           | e receiv              | ved         | р                                   | ermit Nur   | nber                                   |                                    | Well I   | D                                          |                                          | FINDS Nu                     | mber                                  |                |                             |
| Owner Name<br>Powertech (USA) Inc.       Owner Name<br>Powertech (USA) Inc.         Street Address<br>SS75 DTC Parkway, Suite 140       (303) 790-7528         Giv<br>Greenwood Village       Street Address<br>SS75 DTC Parkway, Suite 140       (303) 790-7528         Giv<br>Greenwood Village       Street Address<br>SS75 DTC Parkway, Suite 140       (303) 790-7528         Giv<br>Greenwood Village       Street Address<br>SS75 DTC Parkway, Suite 140       (303) 790-7528         W       Commercial Facility       V. Ownership       VI. Legal Contact       VII. SIC Codes         W       Yes<br>No       Private<br>Federal       Owner       SIC: 1094<br>NAISC: 212291       SIC: 1094         M       Date Started<br>mo day year       B. Modification/Conversion       x       C. Proposed         VII. Well Status       (Mark *r* and specify if required)       Number of Existing Wells<br>0       Number of Proposed Wells       Name(s) of field(s) or project(s)<br>Dewey-Burdock         A       . A. Individual       B. Area       Number of Existing Wells<br>0       Number of Well (soe revirse)       Date Started<br>Dewey-Burdock         X. Class (a)       B. Type(s)       C. If class is "other" or Type of Well (soe revirse)       D. Number of wells per type (if area permit)         A       Individual       B. Area       Site Cove Type NMMI (see revirse)       D. Number of wells per type (if area permit)         Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mo                                  | da                     | у у                                    | ear                                    | mo                            | day                   | year        |                                     |             |                                        | _                                  |          |                                            |                                          |                              |                                       |                |                             |
| Owner Name<br>Powertech (USA) Inc.       Owner Name<br>Powertech (USA) Inc.         Street Address<br>SS75 DTC Parkway, Suite 140       (303) 790-7528         Giv<br>Greenwood Village       Street Address<br>SS75 DTC Parkway, Suite 140       (303) 790-7528         Giv<br>Greenwood Village       Street Address<br>SS75 DTC Parkway, Suite 140       (303) 790-7528         Giv<br>Greenwood Village       Street Address<br>SS75 DTC Parkway, Suite 140       (303) 790-7528         W       Commercial Facility       V. Ownership       VI. Legal Contact       VII. SIC Codes         W       Yes<br>No       Private<br>Federal       Owner       SIC: 1094<br>NAISC: 212291       SIC: 1094         M       Date Started<br>mo day year       B. Modification/Conversion       x       C. Proposed         VII. Well Status       (Mark *r* and specify if required)       Number of Existing Wells<br>0       Number of Proposed Wells       Name(s) of field(s) or project(s)<br>Dewey-Burdock         A       . A. Individual       B. Area       Number of Existing Wells<br>0       Number of Well (soe revirse)       Date Started<br>Dewey-Burdock         X. Class (a)       B. Type(s)       C. If class is "other" or Type of Well (soe revirse)       D. Number of wells per type (if area permit)         A       Individual       B. Area       Site Cove Type NMMI (see revirse)       D. Number of wells per type (if area permit)         Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                        |                                        |                                        |                               |                       |             |                                     |             |                                        | 3                                  |          |                                            |                                          |                              | 1.11.00. /                            |                |                             |
| Powertech (USA) Inc.     Powertech (USA) Inc.       Street Address<br>S575 DTC Parkway, Suite 140     Phone Number<br>(303 790-7528     Street Address<br>S575 DTC Parkway, Suite 140     Phone Number<br>(303 790-7528       City<br>Greenwood Village     CD     ZIP CODE<br>STS     City<br>Greenwood Village     State<br>Private     ZIP CODE<br>STS     City<br>City<br>City<br>Commercial Facility     V. Oxynership     VI. Legal Contact     VI. SIC Codes       M. Commercial Facility     V. Oxynership     VI. Legal Contact     VI. SIC Codes       M. Soc     Private<br>Federal     Owner     SIC: 1094<br>NAISC: 212291     SIC       VII. Well States     Mark * 7     Owner     SIC: 1094<br>NAISC: 212291     SIC       VII. Well States     Mark * 7     Owner     SIC: 1094<br>NAISC: 212291     SIC       VII. Well States     Mark * 7     Owner     SIC: 1094<br>NAISC: 212291     SIC       VII. Well States     Mark * 7     Owner     SIC: 1094<br>NAISC: 212291     SIC       VII. Well States     Mark * 7     SIC     Proposed     Develse       VII. Well States     Mark * 7     Owner     SIC     Owner       VII. Vold States     Number of Proposed Wells     Name(s) of field(s) or project(s)<br>Devey-Burdock     Devey-Burdock       VII. States     C. If class is "other" or typ is code * X, explain<br>Class V, permitted under 40 CFR 144.12     D. Number of wells per type (if area permi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                        |                                        | II. Ow                                 | mer Nam                       | e and /               | Address     | , in the second                     |             |                                        |                                    |          | III. Operator                              | Name ai                                  | nd Address                   | GDA S                                 |                |                             |
| Street Address       Prone Number<br>(303) 790-7528       Street Address       Prone Number<br>(303) 790-7528         Giv<br>Greenwood Village       State<br>CO       2/P CODE<br>80111       State<br>CO       2/P CODE<br>80111       State<br>CO       2/P CODE<br>80111         W. Commercial Facility       V. Ovinership       VL Legal Contact       VI. Sto Codes         W. Some<br>Prevalue       Prevalue       Cov<br>Prevalue       Store<br>Prevalue       Store<br>Prevalue       Store<br>Prevalue       VI. Evel Stores       Store<br>Prevalue       VI. Sto Codes         Mo       Prevalue       Cov<br>Prevalue       Mark ***       Store<br>Prevalue       Namber of Proposed Wells<br>Name() of field(s) or project(s)<br>Devery Burdock       Devery Burdock         A       Loss (se)<br>(enter code(s))       Cit class is "other" or type is code" x; explain<br>Class V, permitted under 40 CFR 144.12       D. Number of wells per type (if area permit)       No         Vil. Location of Well(s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                        | (USA)                                  | Inc.                                   |                               |                       |             |                                     |             |                                        |                                    | USA)     | Inc.                                       |                                          |                              |                                       |                |                             |
| S575 DTC Parkway, Suite 140     (303) 790-7528     S575 DTC Parkway, Suite 140     (303) 790-7528       Citv     State     Z IP CODE     City     State     Z IP CODE       Greenwood Village     VI. Sice Code     VII.     Sice Code     Sice Code       W Commercial Facility     V. Ownership     VI. Legal Contact     VII. Sice Codes       W Some     Private     Dete Started     Sice Code     Sice Code       Will. Well Status     (Mark **)     Sice Code     Sice Codes       VII. Well Status     (Mark **)     Sice Codes     Sice Codes       VII. Well Status     (Mark **)     Sice Codes     Sice Codes       VII. Well Status     (Mark **)     Sice Codes     Sice Codes       VII. Well Status     (Mark **)     Sice Codes     Sice Codes       VII. Well Status     (Mark **)     Sice Codes     Sice Codes       VII. Well Status     (Mark **)     Sice Codes     Sice Codes       VII. Status     (Mark **)     Sice Codes     Sice Codes       VII. Class and Type of Well     (See reversio)     Sice Codes     Devery-Burdock       A. Individual     B. Area     Number of Existing Wells     Number of Proposed     Devery-Burdock       V. Class and Type of Well     (See reversio)     C. H class is "Other" or type is code *," explain <td></td> <td></td> <td>· ,</td> <td>ine.</td> <td></td> <td></td> <td></td> <td>Pho</td> <td>ne Numbe</td> <td></td> <td></td> <td></td> <td>ine.</td> <td></td> <td></td> <td>Phone</td> <td>Numb</td> <td>er</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                        | · ,                                    | ine.                                   |                               |                       |             | Pho                                 | ne Numbe    |                                        |                                    |          | ine.                                       |                                          |                              | Phone                                 | Numb           | er                          |
| Greenwood Village     CO     80111     Greenwood Village     CO     80111       N. Gommercial Facility     V. Ownership     VI. Legal Contact     VII. SIC Codes       No     Private     Private     Owner     SIC: 1094<br>NAISC: 212291     SIC: 1094<br>NAISC: 212291       A     Operating     Date Started     Mork *z*     SIC: 1094<br>NAISC: 212291     SIC: 1094<br>NAISC: 212291       A     Modification/Conversion     starte     C. Proposed     SIC: 1094<br>NAISC: 21291     SIC: 1094<br>NAISC: 21291       A     Modification/Conversion     starte     C. Proposed     SIC: 1094<br>NAISC: 21291     SIC: 1094<br>NAISC: 21291       A     Individual     B. Area     Number of Existing Wells<br>0     Number of Proposed Wells<br>4 - 8     Name(s) of field(s) or project(s)<br>Dewey-Burdock       A. Individual     B. Type(s)     C. If class is "other" or type is code 'x," explain<br>(enter code(s))     C. If class is "other" or type is code 'x," explain<br>(lass V, permitted under 40 CFR 144, 12     D. Number of wells per type (if area permit)<br>4 - 8       VIL     Latitude     Longitude     Township and Range     Vill Nather bernets       VIL     Latitude     Longitude     Township and Range     Vill Nather bernets       Complete the following questions on a separate sheet(s) attachments A-U (sp 2-6) as appropriate. Attach maps where<br>reguired. List attachements by tetre which are arguincible and are indiving will he information submi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 557                                 | 5 DTC                  | Parkwa                                 | iy, Suite                              | 140                           |                       |             | (30                                 | 3) 790-7:   | 528 5                                  | 575 DTC I                          | Parkwa   | y, Suite 140                               |                                          |                              | (303)                                 | 790-7          | 528                         |
| W. Commercial Facility       V. Ownership       V. Legal Contact       Vil. SiC Codes         Weight Status       Private<br>Pederal<br>Other       Private<br>Pederal<br>Other       Private<br>Pederal<br>Other       Private<br>SIC: 1094<br>NAISC: 212291         Mark       Date Started<br>mo day year       B. Modification/Conversion       x       C. Proposed         Image: Started<br>mo day year       B. Modification/Conversion       x       C. Proposed         Image: Started<br>mo day year       Number of Existing Weils<br>0       Number of Proposed Weils<br>4 · 8       Nume(s) of field(s) or project(s)<br>Dewey-Burdock         A. Individual       B. Area       Number of Existing Weils<br>0       Number of Proposed Weils<br>4 · 8       Number of weils per type (if area permit)<br>4 · 8         Class(es)<br>(enter code(s))       E. Type(s)<br>(enter code(s))       C. If class is "other" or type is code "x," explain<br>Class V, permitted under 40 CFR 144.12       D. Number of weils per type (if area permit)<br>4 · 8         Vit. Location of Weil(s) or Approximate Center of Field or Project       X1. Indian Lands (Mark *r)<br>• No       Nu. Indian Lands (Mark *r)<br>• No         Using the the following questions on a separate sheet(s) and number accordingly; see instructions)       Image: No       X1. Indian Lands (Mark *r)<br>• No         Complete the following questions on a separate sheet(s) and number accordingly; see instructions)       Image: No       X1. Indian Lands (Mark *r)<br>• No         Complete the following questions on a                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                        |                                        |                                        |                               |                       |             |                                     |             |                                        | -                                  | V.11     |                                            |                                          |                              | 1                                     |                |                             |
| Yes       Yes       Yes       Yes       SIC: 1094         No       Image: Private Federal Other       Operator       SIC: 1094         NAISC: 212291       Image: Private Federal Other       VIII. Well Status (Mark *<*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **                                  | o se kladre na te te t | -                                      | r daulia hi ili ili ili                | -                             |                       | 100 M 100 M | r 2000 140 64000                    |             | contraction of the second second       | Product agence fields and Children | -        | ge                                         |                                          | Y T Arradianti Andre-        |                                       |                |                             |
| No       Pederal<br>Other       Operator       NAISC: 212291         VIII. Well Status       (Mark **7)       Image: Comparison       NAISC: 212291         Image: Comparison       Date Started<br>mo       B. Modification/Conversion       x       C. Proposed         Image: Comparison       Image: Comparison       Image: Comparison       x       C. Proposed         Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison         Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison         Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       Image: Comparison       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                            | V. Comr                | nercial                                | Facility                               |                               | - N                   | . Ownersi   | nip 🔬                               |             | VI. L                                  | egal Contac                        | t F      |                                            |                                          | VII. SIC Codes               |                                       |                |                             |
| Other       VII. Well Status (Mark *x*)         Image: Comparison of the state of                           | 30000000                            |                        |                                        |                                        |                               | ×                     | -           |                                     |             | ·                                      |                                    |          |                                            |                                          |                              |                                       |                |                             |
| VIII. Well Status       (Mark *x*)         A       Date Started<br>mo       B. Modification/Conversion       x       C. Proposed         Operating       X. Type of Permit Requested       (Mark *x* and specify if reguland)         Image: A. Individual       Image: B. Area       Number of Existing Wells<br>0       Number of Proposed Wells<br>4 - 8       Name(s) of field(s) or project(s)<br>Devey-Burdock         A. Class(es)       B. Type(s)       C. If class is "other" or type is code *x' explain<br>Class V, permitted under 40 CFR 144.12       D. Number of wells per type (if area permit)<br>4 - 8         Other       N/A       Class Complete the following questions of Well(s) or Approximate Center of Field or Project       XII. Indian Lands (Mark *2')         Latitude       Longitude       Township and Range       148 Sec       Feet From       Line         Yes       Sc       Sc       Sc       Twp       Range       148 Sec       Feet From       Line         Yes       Nin       Sc       Sc       Sc       Twp       Range       148 Sec       Feet From       Line       Yes       No         Yes       Sw       So       Ja       Sc       Sc       Twp       Range       148 Sec       Feet From       Line       Yes       No         Itatitude       Longitude       Township                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                   | No                     |                                        |                                        |                               | 2000                  | -           |                                     |             | 0                                      | perator                            |          | NAISC:                                     | 212291                                   |                              |                                       |                |                             |
| A       Date Started<br>mo       Date Started<br>day       Date Started<br>year       Date Started<br>mo       Date Started<br>day       Date Started<br>mo       Date Started<br>day       Date Started<br>mo       Date Started<br>day       Date Started<br>mo       Date Started<br>day       Date Started<br>mo       Date St                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                        | and a second                           | 01 20000 - 2000 Mic Lake & M*000000000 |                               | <u>.</u>              |             | 30-01-1 2 20070-000                 |             |                                        |                                    |          | 1                                          |                                          |                              | USA YOUR WORKING                      | 3998811 val -1 | bra I. 5                    |
| A       mo       day       year       b. module_attoin/conversion       I. b. Proposed         Operating       X. Type of Permit Requested       (Mark *x* and specify if required)       Name(s) of field(s) or project(s)         Image: A. Individual       Image: B. Area       Number of Existing Wells       Number of Proposed Wells       Name(s) of field(s) or project(s)         A. Individual       Image: B. Area       Number of Existing Wells       Number of Vell       Number of Well         A. Class(es)       B. Type(s)       C. If class is "other" or type is code 'x,' explain       D. Number of wells per type (if area permit)         (enter code(s))       Class V, permitted under 40 CFR 144.12       J. Number of wells per type (if area permit)         Image: A. Location of Well(s) or Approximate Center of Field or Project       XII. Indian Lands (Mark 'X')         Image: Algo and Algo and Algo and Algo and Algo and Algo and Range       Yes         Image: Algo and Algo and Algo and Algo and Algo and Algo and are included with your application.       Yes         Image: Algo and Alg                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                        | 것식                                     |                                        | - 14-22                       |                       |             |                                     | VIII. Well  | Status                                 | (Mark "x")                         | 57, 3    |                                            | a an |                              |                                       |                | ing i                       |
| Operating       X. Type of Permit Requested       (Mark *x* and specify if required)         A. Individual       B. Area       Number of Existing Wells       Number of Proposed Wells       Name(s) of field(s) or project(s)         0       X. Class and Type of Well       4 - 8       Dewey-Burdock         X. Class and Type of Well       (see reverse)         X. Class and Type of Well       D. Number of wells per type (if area permit)         (enter code(s))       C. If class is "other" or type is code "x," explain       D. Number of wells per type (if area permit)         X. Location of Well(s) or Approximate Center of Field or Project       XII. Indian Lands (Mark X?)         Latitude       Longitude       Township and Range         Yes       Yes         XII. Attachments         XII. Attachments         XII. Attachments         XII. Actachments         XIV. Certification         XIV. Certification         XIV. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | A                      |                                        |                                        |                               |                       |             |                                     | B. Modif    | fication/C                             | onversion                          |          | × C. F                                     | roposed                                  | t                            |                                       |                |                             |
| It. Type of Permit Requested       (Mark *x* and specify if required)         Image: A. Individual       Image: B. Area       Number of Existing Wells       Number of Proposed Wells       Dewey-Burdock         Image: A. Individual       Image: B. Area       0       Image: A-8       Dewey-Burdock         X. Class and Type of Well (see reverso)         X. Class(es)       B. Type(s)       C. If class is "other" or type is code 'x,' explain       D. Number of wells per type (if area permit)         (enter code(s))       (enter code(s))       C. If class is "other" or type is code 'x,' explain       D. Number of wells per type (if area permit)         Other       N/A       Class V, permitted under 40 CFR 144.12       D. Number of wells per type (if area permit)         XL Location of Well(s) or Approximate Center of Field or Project       XII. Indian Lands (Mark *Z)         XII. Location of Well(s) or Approximate Center of Field or Project       XII. Indian Lands (Mark *Z)         XII. Location of Well(s) or Approximate Center of Field or Project       XII. Indian Lands (Mark *Z)         Kill Latitude       Complute Township and Range         XII. Location of Well(s) or Approximate Center of Field or Project       XII. Indian Lands (Mark *Z)         Kill Latitude       Yes         Complete the following questions on a separa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     | Onerati                | na  -                                  | mo                                     | day                           | year                  | _           |                                     |             |                                        |                                    |          |                                            |                                          |                              |                                       |                |                             |
| A. Individual       Image: Section of Wells       Number of Existing Wells       Number of Proposed Wells       Name(s) of field(s) or project(s)         A. Class(es)       B. Type(s)       (enter code(s))       C. If class is "other" or type is code "x," explain       D. Number of wells per type (if area permit)         A. Class(es)       (enter code(s))       (enter code(s))       C. If class is "other" or type is code "x," explain       D. Number of wells per type (if area permit)         Other       N/A       Class V, permitted under 40 CFR 144.12       4 - 8         XI. Location of Well(s) or Approximate Center of Field or Project       XI. Indian Lands (Mark 'x')         Latitude       Longitude       Township and Range       Image: Sec Sec       Feet From       Image: Sec Sec       Yes         103       59       43       28       55       34       65       IE       SW       93.0       W       1403       S       Image: Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | operati                |                                        |                                        | 76.83.1.20-3                  |                       |             | and the second second second second |             | 1.119                                  | 20100 0XX1.45 8.30                 | 795      |                                            | minitada (mini: 5                        |                              |                                       | XXCPIU         |                             |
| A. Individual       Image: B. Area of the problem of th | -                                   |                        |                                        |                                        |                               |                       | IX. Type o  | f Permit                            | Requeste    | d (Mar                                 | k "x" and sp                       | ecify il | required)                                  |                                          |                              |                                       |                | ex m.colinii<br>P. ganaisin |
| X. Class and Type of Weil (see reverse)         A. Class(es)       B. Type(s)       C. If class is "other" or type is code 'x,' explain<br>(enter code(s))       D. Number of wells per type (if area permit)         (enter code(s))       (enter code(s))       Class V, permitted under 40 CFR 144.12       D. Number of wells per type (if area permit)         0ther       N/A       Class V, permitted under 40 CFR 144.12       4 - 8         XIL Location of Weil(s) or Approximate Center of Field or Project       Xil. Indian Lands (Mark 'x')         Latitude       Longitude       Township and Range       1/4 Sec       Feet From       Line       Feet From       Line       Yes         Latitude       Longitude       Township and Range       1/4 Sec       Feet From       Line       Feet From       Line       Feet From       Line       Feet From       Line       Feet From       Ves       Ves       No         XIII. Attachments         (Complete the following questions on a separate sheet(s) and number accordingly; see instructions)         For Classes I, III, III, (and other classes) complete and submit on a separate sheet(s) Attachments AU (pp 2-6) as appropriate. Attach maps where         XIV. Certification         I eertify under the penalty of law that I have personally examined and am familiar with the information, believe tha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30.004                              | A. Indiv               | idual                                  | (x)                                    | B. Area                       |                       | Numbe       | of Exis                             | ting Wells  | s Num                                  | ber of Prop                        | osed W   |                                            |                                          |                              | )                                     |                |                             |
| A. Class(es)<br>(enter code(s))       B. Type(s)<br>(enter code(s))       C. If class is "other" or type is code "x," explain<br>Class V, permitted under 40 CFR 144.12       D. Number of wells per type (if area permit)<br>4 - 8         Other       N/A       Class V, permitted under 40 CFR 144.12       4 - 8         XI. Location of Well(s) or Approximate Center of Field or Project       XII. Indian Lands (Mark 'x')         Latitude       Longitude       Township and Range       Image       Yes         Deg       Min       Sec       Deg       Min       Sec       Sec <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0</th> <th></th> <th></th> <th>4 - 8</th> <th>i</th> <th></th> <th>Dewey</th> <th>Burdoo</th> <th>ck</th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                        |                                        |                                        |                               |                       | 0           |                                     |             | 4 - 8                                  | i                                  |          | Dewey                                      | Burdoo                                   | ck                           |                                       |                |                             |
| A. Class(es)<br>(enter code(s))       B. Type(s)<br>(enter code(s))       C. If class is "other" or type is code "x," explain<br>Class V, permitted under 40 CFR 144.12       D. Number of wells per type (if area permit)<br>4 - 8         Other       N/A       Class V, permitted under 40 CFR 144.12       4 - 8         XI. Location of Well(s) or Approximate Center of Field or Project       XII. Indian Lands (Mark 'x')         Latitude       Longitude       Township and Range       Image       Yes         Deg       Min       Sec       Deg       Min       Sec       Sec <th></th> <th></th> <th>**************************************</th> <th></th> <th>States &amp; Origin States</th> <th>and the Stream in the</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>the some soul</th> <th>an a limit likk hit many som</th> <th>1. W. 2000 J. 27 900</th> <th>e nest t</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                        | ************************************** |                                        | States & Origin States        | and the Stream in the |             |                                     |             |                                        |                                    |          |                                            | the some soul                            | an a limit likk hit many som | 1. W. 2000 J. 27 900                  | e nest t       |                             |
| (enter code(s))       (enter code(s))       Class V, permitted under 40 CFR 144.12       4 - 8         Other       N/A       XI. Location of Well(s) or Approximate Center of Field or Project       XII. Indian Lands (Mark 'x')         Latitude       Longitude       Township and Range       Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                        | 23 C                                   |                                        | and the                       |                       |             | (ACH)                               |             | Contraction of the local design of the |                                    | erse)    |                                            |                                          |                              | 11172/00/12/2020<br>111722/00/12/2020 |                | 3.92                        |
| Other       N/A       XI. Location of Well(s) or Approximate Center of Field or Project       XII. Indian Lands (Mark 'x')         Latitude       Longitude       Township and Range       Image: Complete the following questions on a separate sheet(s) and number accordingly; see instructions)       Yes         Complete the following questions on a separate sheet(s) and number accordingly; see instructions)       XIII. Attachments       XIII. Attachments A-U (pp 2-6) as appropriate. Attach maps where required. List attachments by letter which are applicable and are included with your application.         XIV. Certification       XIV. Certification         Lectify under the penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. (Ref. 40 CFR 144.32)       B. Phone No. (Area Code and No.) (303) 790-7528         A. Name and Title       (Type or Print)       B. Phone No. (Area Code and No.) (303) 790-7528         C. Signature       Date Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                        |                                        |                                        |                               | .                     |             |                                     |             |                                        | •                                  |          | 2                                          | wells p                                  | er type (if area             | permit)                               |                |                             |
| XI. Location of Well(s) or Approximate Center of Field or Project       XII. Indian Lands (Mark 'x')         Latitude       Longitude       Township and Range       Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (en                                 | ter code               | e(S))                                  | (ente                                  | r code(s                      | <u>"</u>              | Class V, j  | permitte                            | d under 4   | 40 CFR                                 | 44.12                              |          | 4 - 8                                      |                                          |                              |                                       |                |                             |
| Latitude       Longitude       Township and Range       Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Othe                                | r                      |                                        | N/A                                    |                               |                       |             |                                     |             |                                        |                                    |          |                                            |                                          |                              |                                       |                |                             |
| Deg<br>103       Min<br>59       Sec<br>43       Deg<br>43       Min<br>43       Sec<br>28       Sec<br>55       Sec<br>34       Twp<br>6S       Range<br>1E       1/4 Sec<br>SW       Feet From<br>93.0       Line<br>W       Line<br>1403       Line<br>SW       Line<br>SW       Line<br>SW <thline<br>SW<th></th><th></th><th></th><th></th><th>XI. Locat</th><th>ion of</th><th>Well(s) or</th><th>Approxi</th><th>nate Cent</th><th>ter of Fiel</th><th>d or Project</th><th></th><th>- Cardina di Antonio<br/>Antonio di Antonio</th><th></th><th>XII. Indian</th><th>Lands (I</th><th>Mark '&gt;</th><th><b>d</b></th></thline<br>                                                                                                                                                                                                                                    |                                     |                        |                                        |                                        | XI. Locat                     | ion of                | Well(s) or  | Approxi                             | nate Cent   | ter of Fiel                            | d or Project                       |          | - Cardina di Antonio<br>Antonio di Antonio |                                          | XII. Indian                  | Lands (I                              | Mark '>        | <b>d</b>                    |
| Deg<br>103       Min<br>59       Sec<br>43       Deg<br>43       Min<br>28       Sec<br>55       Sec<br>34       Farmer<br>6S       Range<br>1E       1/4 Sec<br>SW       Feet From<br>93.0       Line<br>W       Line<br>1403       Line<br>SW       Line<br>1403       Line<br>SW       Line<br>1403       Line<br>SW       Line<br>SW       Line<br>1403       Line<br>SW       Line<br>1403 <thline<br>SW       Line<br/>SW</thline<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                   | Latitud                | le                                     |                                        | Longitu                       | de                    | T 7         | ownshi                              | and Rar     | nge                                    |                                    | 2000     | Commit a and a Kh                          |                                          | Yes                          | 2.60 - 4000000, XX 32007 X            |                |                             |
| XIII. Attachments         XIII. Attachments         (Complete the following questions on a separate sheet(s) and number accordingly; see instructions)         For Classes I, II, III, (and other classes) complete and submit on a separate sheet(s) Attachments AU (pp 2-6) as appropriate. Attach maps where required. List attachments by letter which are applicable and are included with your application.         XIV. Certification         I certify under the penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. (Ref. 40 CFR 144.32)         A. Name and Title (Type or Print)       B. Phone No. (Area Code and No.) (303) 790-7528         Richard Blubaugh, Vice President - Environmental       D. Date Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Deg                                 |                        |                                        | Deg                                    | Min                           |                       |             |                                     | -           |                                        |                                    |          |                                            |                                          | с.<br>                       |                                       |                |                             |
| (Complete the following questions on a separate sheet(s) and number accordingly; see instructions)         For Classes I, II, III, (and other classes) complete and submit on a separate sheet(s) Attachments AU (pp 2-6) as appropriate. Attach maps where required. List attachments by letter which are applicable and are included with your application.         I certify under the penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. (Ref. 40 CFR 144.32)         A. Name and Title (Type or Print)       B. Phone No. (Area Code and No.) (303) 790-7528         C. Signature       D. Date Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 103                                 | 59                     | 43                                     | 43                                     | 28                            | .55                   | . 34        | 6S                                  | 1E          | SW                                     | 93.0                               | W        | 1403                                       | S                                        |                              |                                       |                |                             |
| For Classes I, II, III, (and other classes) complete and submit on a separate sheet(s) Attachments AU (pp 2-6) as appropriate. Attach maps where required. List attachments by letter which are applicable and are included with your application.         XIV. Certification         I certify under the penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. (Ref. 40 CFR 144.32)         A. Name and Title (Type or Print)       B. Phone No. (Area Code and No.) (303) 790-7528         Richard Blubaugh, Vice President - Environmental       D. Date Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                        |                                        |                                        | N. 37                         |                       |             | in de tâniime terre -               | ×XIII.      | . Attachm                              | ents                               | NY ST    |                                            |                                          |                              |                                       |                | h de la com                 |
| required. List attachments by letter which are applicable and are included with your application.         XIV. Certification         I certify under the penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. (Ref. 40 CFR 144.32)         A. Name and Title (Type or Print)       B. Phone No. (Area Code and No.) (303) 790-7528         C. Signature       D. Date Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , ,                                 |                        |                                        |                                        |                               |                       |             |                                     |             |                                        |                                    |          |                                            |                                          |                              |                                       |                |                             |
| I certify under the penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. (Ref. 40 CFR 144.32)         A. Name and Title (Type or Print)       B. Phone No. (Area Code and No.) (303) 790-7528         C. Signature       D. Date Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                        | , , ,                                  |                                        |                               | • •                   |             |                                     | •           |                                        |                                    |          | J (pp 2-6) as a                            | ppropria                                 | ite. Attach ma               | ps where                              | e              |                             |
| I certify under the penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. (Ref. 40 CFR 144.32)         A. Name and Title (Type or Print)       B. Phone No. (Area Code and No.) (303) 790-7528         C. Signature       D. Date Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | thr & line                          | and the second second  | ( - day- continued in                  |                                        |                               |                       | £           | والمرد بالم                         | ÝŇ          | Cartific                               | ation                              | show-max |                                            |                                          |                              | : # tip                               | X              |                             |
| and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. (Ref. 40 CFR 144.32)         A. Name and Title (Type or Print)       B. Phone No. (Area Code and No.)         Richard Blubaugh, Vice President - Environmental       (303) 790-7528         C. Signature       D. Date Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                        | 3.363992                               |                                        | ar selonani esti estilla      |                       |             | 14.22                               | Kana ka Ali |                                        |                                    |          | minu and the first of the set              | this da                                  | aumont and a                 | There are a second                    | mante          |                             |
| A. Name and Title (Type or Print)       B. Phone No. (Area Code and No.)         Richard Blubaugh, Vice President - Environmental       (303) 790-7528         C. Signature       D. Date Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the accurate                    | nat, base<br>ate, and  | ed on m<br>comple                      | iy inquiry<br>ete. I am                | y of thos<br>aware ti         | e indiv               | iduals imn  | nediately                           | respons     | ible for o                             | btaining the                       | inform   | nation, I believ                           | e that th                                | he information               | is true,                              |                |                             |
| Richard Blubaugh, Vice President - Environmental       (303) 790-7528         C. Signature       D. Date Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                        | -                                      |                                        |                               |                       |             |                                     |             |                                        |                                    |          |                                            |                                          |                              | Code                                  | nd Mr          |                             |
| C. Signature D. Date Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                        | •                                      | • •                                    |                               | - Envir               | onmental    |                                     |             |                                        |                                    |          |                                            |                                          |                              | coue al                               | na 190.        | /                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                        | cuagii,                                | 7 100 11                               | -sident -                     | 2.1.11                |             |                                     |             |                                        |                                    |          |                                            | <u>`</u>                                 | ,                            |                                       |                |                             |
| EPA Form 7520-6 (Rev. 12-08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                        |                                        |                                        |                               |                       |             |                                     |             |                                        |                                    |          |                                            |                                          |                              |                                       |                |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA F                               | orm 752                | 20-6 (Re                               | v. 12-08)                              |                               |                       |             |                                     |             |                                        |                                    |          |                                            |                                          |                              |                                       |                |                             |



### 2.0 USEPA FORM 7520-6 PERMIT APPLICATION ATTACHMENTS

### 2.A AREA OF REVIEW METHODS

Give the methods and, if appropriate, the calculations used to determine the size of the area of review (fixed radius or equation). The area of review shall be a fixed radius of ¼-mile from the well bore unless the use of an equation is approved in advance by the Director.

#### RESPONSE

In the meeting held on November 24, 2009, EPA Region 8 instructed Powertech to generally follow Class I standards and approach for this application. As such, the radius of investigation used in this permit request has been based on standard practices applied historically to Class I wells in Region 8. Under Section 146.6 of the UIC regulations (40CFR), the area of review (AOR) for a non-hazardous Class I injection well is defined as either the calculated zone of endangering influence or a fixed radius of not less than one-fourth mile.

The South Dakota Department of Environment and Natural Resources (DENR) has guidance for Class V wells but does not require separate state approval for Class V well installation. The guidelines for Class V wells are outlined in a letter received from DENR which is included as Appendix A.

The critical pressure rise, cone-of-influence (COI), radius of fluid displacement (ROFD) calculations for this permit application are based on the formation parameters derived from the correlation of three separate type logs. The location of these wells is shown on Figure A-1. Type Log #1 (Figure A-2) is from the Earl Darrow #1 (T7S, R1E, Sec 2) which penetrates the top of the Minnelusa and is located within the Dewey-Burdock Project boundary near the well locations of DW Nos. 1 and 2. Type Log #2 (Figure A-3) is from the Lance-Nelson Estate #1 (T7S, R1E, Sec 21) which penetrates the top of the Madison and is located just south of the project boundary. Type Log #3 (Figure A-4), from the #1 West Mule Creek (T39, R61W, Sec 2), penetrates to the top of the Precambrian and is located in eastern Wyoming to the southwest of the Project. This is the closest log available that penetrates the Deadwood Formation. Additionally, tops for shallow formations from the logs of various uranium exploration wells within the Project boundary were used in conjunction with the type logs to determine surface elevation and formation depths at each well site.

DW Nos. 1 and 2 target the Minnelusa and Deadwood Formations, respectively, and are located near the main plant site (Site 1). DW Nos. 3 and 4 target the Minnelusa and Deadwood, respectively, and will be located at Site 2. While formation parameters are expected to be similar at each site, formations are expected to occur at greater depth at Site 2 due to geologic structure. Separate critical pressure rise and COI calculations for the Minnelusa and Deadwood at each site are included in this application and are presented in Tables A-1 through A-4. In addition, ROFD calculations for the Minnelusa and Deadwood are presented in Tables A-5 and A-6, respectively.

Because the calculated ROFD and COI are significantly smaller than the statutory minimum, a fixed radius of 1,320' (1/4 mile) has been used for evaluation of all artificial penetrations for Class V injection into the Minnelusa Formation for DW Nos. 1 and 3. Based on COI calculations, a radius of 1,355' has been used for evaluation of all artificial penetrations for Class V injection into the Deadwood Formation for DW Nos. 2 and 4. The Class V permit area has been conservatively defined by applying the maximum calculated AOR of 1,355' as an offset from the Dewey-Burdock Project boundary and the oil and gas wells permitted within that boundary.

In the event that additional disposal wells are required to inject the requested 300 gpm, similar AORs are expected for subsequent Dewey-Burdock Disposal Wells located within the proposed Class V permit area. The input parameters used to calculate the AORs are based on formation parameters derived from limited data and will be verified during the drilling, testing, and completion process. If the input parameters that have been used are found to yield projections that are insufficiently conservative, the AORs will be recalculated.

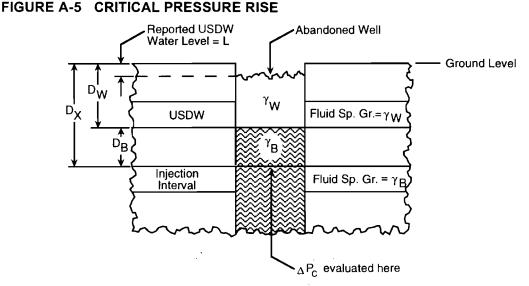
The COI for injection is defined as that area around a well within which increased injection zone pressures caused by injection could be sufficient to drive fluids into an underground source of drinking water (USDW). The pathway for this theoretical fluid movement is assumed to be a hypothetical, open abandoned well, which penetrates the confining zone for injection. Information used in the following calculations has been estimated from available geophysical well logs and will be verified through formation testing during the drilling process.

#### **Critical Pressure Rise**

For this permit application, three critical pressure rise calculations are required at each site. One is applied for the rise from the Minnelusa to the Unkpapa/Sundance, one for the rise from the Minnelusa to the Madison, and one for the rise from the Deadwood to the Madison.

To calculate the COI, a value must first be assigned for the pressure increase in the injection interval that would be sufficient to cause injection zone brine to rise in a hypothetical open pathway to the base of the lowermost USDW. This applies individually to the rise from the Minnelusa (injection zone) to the Unkpapa/Sundance (USDW) and for rise from the Deadwood (injection zone) to the Madison (USDW). The COI will also be applied to the transfer of injection zone brine from the base of the effective Minnelusa in a hypothetical open pathway down to the top of the Madison Formation. This critical pressure rise, Pc, is assigned as indicated in Figure A-5.

The pressure required at the top of the injection interval to support injection zone brine in the configuration indicated is, in psi units:


$$P = 0.433 [y_B D_B + y_w (D_w - L)]$$

where:  $D_B = D_x - D_w$ 

and the pressure rise is then:

$$Pc = 0.433 [y_BD_B + y_w(D_w-L)] - Po$$

where Po is the original, pre-injection value for pressure at the top of the injection interval expressed in psi units.



# MINNELUSA TO UNKPAPA/SUNDANCE AND MINNELUSA TO MADISON FOR DW NO. 1 –

SITE 1

#### Minnelusa - Unkpapa/Sundance

Original pressure in the Minnelusa has been calculated based on a depth to water of 1,415' above top of the Minnelusa from USGS potentiometric maps (Figure D-14, Driscoll et al., 2002). For the estimated top of the injection interval of 1,615' (See Response F, Table F-2), a gradient of 0.433 psi/ft \* 1.008 (SG of approximately 15,000 mg/l TDS brine) yields a pressure of 617.6 psi at the top of the Minnelusa (1,615'). The same gradient applied to the effective base of the Injection Zone at 2,205 yields a pressure 875.1 psi. The effective base refers to the lowermost zone of effective porosity in the Minnelusa that will be targeted for injection in DW No. 1 as discussed in Section 2.F of this document.

In assigning the critical pressure rise and calculating the cone-of-influence (Tables A-1 and A-3) at this site, the base of the overlying USDW, the Unkpapa/Sundance, is assigned as 920', as discussed in Response 2.D of this document. The potentiometric surface of Unkpapa/Sundance near the Dewey-Burdock Project is projected to be approximately 29 feet above ground surface (Figure D-14a, Powertech 2008). Therefore, in these calculations, it is assumed that the water table in the Unkpapa/Sundance is at approximately 589 feet above the top of the formation. The result is a calculated critical pressure rise for Minnelusa to Unkpapa/Sundance of 97.1 psi (Table A-1).

The values in Table A-1 were used in the pressure rise equation to compute the critical pressure rise for Minnelusa to Unkpapa/Sundance as follows:

or:

Pc = 97.1 psi

UIC Permit Application Powertech (USA) Inc. March 2010

#### Minnelusa - Madison

The top of the underlying USDW is the Madison Formation at 2,765' as discussed in Response 2.D of this document. Original pressure in the Madison has been calculated based on an artesian aquifer condition with a water level of approximately 200' above ground surface. This head is based on historical water well data for the City of Edgemont water wells completed in the Madison Formation (Appendix D). Based on an estimated shut-in pressure of 150 psi and a minimum surface elevation of 3,450', the potentiometric surface of the Madison at Edgemont is 3,745' (345' above ground surface). It is noted that surface elevation at Edgemont wells may be as high as 3,650'. Given the elevation increase of approximately 100' to 300' from Edgemont to the Dewey-Burdock Project, it is reasonable to assume a potentiometric level of approximately 3,900' AMSL (~200' above ground surface) at Dewey-Burdock. USGS potentiometric maps for this formation are regional and based on little (if any) local data (Figure D-10, Driscoll et al., 2002). The result is a calculated critical pressure rise for the Minnelusa to Madison of 165.6 psi (Table A-1). It is noted that formation parameters have been estimated from available data and will be verified through formation testing during the drilling process.

The values in Table A-1 were used in the pressure rise equation to compute the critical pressure rise for Minnelusa to top of Madison as follows:

Pc = 0.433[1.008(2,205-2,765) + 1.001(2,765-(-200))] - 875.1 psi

or:

Pc = 165.6 psi

#### **Cone-of-Influence**

Based on the calculated value for the critical pressure rise, the cone-of-influence can be calculated for DW No.1 over a ten-year period of injection. At DW No. 1 there is projected to be a 13.2' cone-of-influence for continuous injection at a rate of 75 gpm (2,571 bwpd) in the Minnelusa Formation (Table A-2). This is the value at which pressure at distance intersects the critical pressure rise of 97.1 psi from the Minnelusa to the Unkpapa/Sundance (Figure A-6). Since the critical pressure rise for the Minnelusa to the over-pressured Madison is never intersected, even at the well bore, there is no COI and no potential exists for contamination of the Madison. As such, the fixed radius of 1,320' (¼ mile) will be used for the Minnelusa Formation at Site 1. Pressure rise has been evaluated in an infinite acting reservoir with a line source well using the log-approximation of the radial flow diffusivity equation (Lee, 1982).

dP =  $-70.6 \text{ Bq}\mu/\text{kh} + \ln([1,688 \phi \mu c_t r^2/\text{kt}] - 2s)$ 

where the values listed in Table A-3 have been assigned based on site-specific information.

Calculations for pressure rise due to ten years of injection have been based on a rate of 75 gpm. Well capacities will be verified during the drilling, testing, and completion process.

#### MINNELUSA TO UNKPAPA/SUNDANCE AND MINNELUSA TO MADISON FOR DW NO. 3 --SITE 2

#### Minnelusa – Unkpapa/Sundance

Original pressure in the Minnelusa has been calculated based on a depth to water of 1,750' above the top of the Minnelusa from USGS potentiometric maps (Figure D-14, Driscoll et al., 2002). For the estimated top of the injection interval of 1,950' (See Response F, Table F-2), a gradient of 0.433

psi/ft \* 1.008 (SG of approximately 15,000 mg/I TDS brine) yields a pressure of 763.8 psi at the top of the Minnelusa. The same gradient applied to the effective base of the Injection Zone at 2,540 yields a pressure 1,021.3 psi. (Table A-2). The effective base refers to the lowermost porous zone that will be targeted for injection as discussed in Section 2.F of this document.

In assigning the critical pressure rise and calculating the cone-of-influence (Tables A-2 and A-3) at this site, the base of the overlying USDW, the Unkpapa/Sundance, is assigned as 1,255', as discussed in Response 2.D of this document. The lowest potentiometric surface near the Dewey-Burdock Project is projected to be approximately 29 feet above ground surface (Figure D-14a, Powertech 2008). Therefore, in these calculations, it is assumed that the water table in the Unkpapa/Sundance is at approximately 924' above the top of the formation. The result is a calculated critical pressure rise for Minnelusa to Unkpapa/Sundance of 96.1 psi (Table A-2).

The values in Table A-2 were used in the pressure rise equation to compute the critical pressure rise for Minnelusa to Unkpapa/Sundance as follows:

Pc = 0.433[1.008(1,950-1,255) + 1.001(1,255-(-29))] - 763.8 psi

or:

#### Minnelusa - Madison

The top of the underlying USDW is the Madison Formation at 3,100' as discussed in Response 2.D of this document. Original pressure in the Madison has been calculated based on an artesian aquifer condition with a water level of approximately 200' above ground surface. This head is based on historical water well data for the City of Edgemont water wells completed in the Madison Formation (Appendix D). Based on an estimated shut-in pressure of 150 psi and a minimum surface elevation of 3,450', the potentiometric surface of the Madison at Edgemont is 3,745' (345' above ground surface). It is noted that surface elevation at Edgemont wells may be as high as 3,650'. Given the elevation increase of approximately 100' to 300' from Edgemont to the Dewey-Burdock Project, it is reasonable to assume a potentiometric level of approximately 3,900' AMSL (~200' above ground surface) at Dewey-Burdock. USGS potentiometric maps for this formation are regional and based on little (if any) local data (Figure D-10, Driscoll et al., 2002). The result is a calculated critical pressure rise for the Minnelusa to Madison of 164.6 psi (Table A-2). It is noted that formation parameters have been estimated from available data and will be verified through formation testing during the drilling process.

The values in Table A-2 were used in the pressure rise equation to compute the critical pressure rise for Minnelusa to Madison as follows:

Pc = 0.433[1.008(2,540-3,100) + 1.001(3,100-(-200))] - 1.021.3 psi

or:

Pc = 164.6 psi

#### **Cone-of-Influence**

Based on the calculated value for the critical pressure rise, the cone-of-influence can be calculated for DW No. 3 over a ten-year period of injection. At DW No. 3, there is projected to be a 14.4' cone-of-influence for continuous injection at a rate of 75 gpm (2,571 bwpd) in the Minnelusa Formation (Table A-3). This is the value at which pressure at distance intersects the critical pressure rise of 96.1 psi from the Minnelusa to the Unkpapa/Sundance (Figure A-6). Since the critical pressure rise for the Minnelusa to the over-pressured Madison is never intersected, even at the well bore, there is

no COI and no potential exists for contamination of the Madison. As such, the fixed radius of 1,320' (1/4 mile) will be used. Pressure rise has been evaluated in an infinite acting reservoir with a line source well using the log-approximation of the radial flow diffusivity equation (Lee, 1982).

dP =  $-70.6 \text{ Bq}\mu/\text{kh} * \ln([1,688 \phi \mu c_t r^2/\text{kt}] - 2s)$ 

where the values listed in Table A-3 have been assigned based on site-specific information.

Calculations for pressure rise due to ten years of injection have been based on a rate of 75 gpm. Well capacities will be verified during the drilling, testing, and completion process.

#### DEADWOOD TO MADISON FOR DW NO. 2 - SITE 1

Original pressure in the Deadwood has been calculated based on an estimated formation fluid level of 2,900' above the top of the Deadwood. For the estimated top of the injection interval of 3,100' (See Response F, Table F-2), a gradient of 0.433 psi/ft \* 1.008 (SG of 15,000 mg/l TDS brine) yields a pressure of 1,265.7 psi at the top of the Deadwood.

In assigning the critical pressure rise and calculating the cone-of-influence (Tables A-1 and A-4) at this site, the base of the overlying USDW, the Madison Formation, is assigned as 3,060', as discussed in Response 2.D of this document. Original pressure in the Madison has been calculated based on an artesian aquifer condition with a water level of approximately 200' above ground surface. This head is based on historical water well data for the City of Edgemont water wells completed in the Madison Formation (Appendix D). Based on an estimated shut-in pressure of 150 psi and a minimum surface elevation of 3,450', the potentiometric surface of the Madison at Edgemont is 3,745' (345' above ground surface). It is noted that surface elevation at Edgemont wells may be as high as 3,650'. Given the elevation increase of approximately 100' to 300' from Edgemont to the Dewey-Burdock Project, it is reasonable to assume a potentiometric level of approximately 3,900' AMSL (~200' above ground surface) at Dewey-Burdock. USGS potentiometric maps for this formation are regional and based on little (if any) local data (Figure D-10, Driscoll et al., 2002). The result is a calculated critical pressure rise for the Minnelusa to Madison of 164.7 psi (Table A-1). It is noted that formation parameters have been estimated from available data and will be verified through formation testing during the drilling process.

The values in Table A-1 were used in the pressure rise equation to compute the critical pressure rise for Deadwood to Madison as follows:

Pc = 0.433[1.008(3,100-3,060) + 1.001(3,060-(-200))] - 1,265.7 psi

or:

Pc = 164.7 psi

#### **Cone-of-Influence**

Based on the calculated value for the critical pressure rise, the cone-of-influence can be calculated for the DW No. 2 over a ten-year period of injection. At DW No. 2, there is projected to be a 1,210' cone-of-influence for continuous injection at a rate of 75 gpm (2,571 bwpd) in the Deadwood Formation (Table A-4). This is the value at which pressure at distance intersects the critical pressure rise of 164.7 psi from the Deadwood to the Madison (Figure A-7). Pressure rise has been evaluated in an infinite acting reservoir with a line source well using the log-approximation of the radial flow diffusivity equation (Lee, 1982).

dP =  $-70.6 \text{ Bq}\mu/\text{kh} \cdot \ln([1,688 \phi \mu c_t r^2/\text{kt}] - 2s)$ 

where the values listed in Table A-4 have been assigned based on site-specific information.

Calculations for pressure rise due to ten years of injection have been based on a rate of 75 gpm. Well capacities will be verified during the drilling, testing, and completion process.

#### DEADWOOD TO MADISON FOR DW NO. 4 – SITE 2

Original pressure in the Deadwood has been calculated based on an estimated formation fluid level of 3,235' above the top of the Deadwood. For the estimated top of the injection interval of 3,435' (See Response F), a gradient of 0.433 psi/ft \* 1.008 (SG of 15,000 mg/I TDS brine) yields a pressure of 1,412.0 psi at the top of the Deadwood.

In assigning the critical pressure rise and calculating the cone-of-influence (Tables A-2 and a-4) at this site, the base of the overlying USDW, the Madison Formation, is assigned as 3,395', as discussed in Response 2.D of this document. Original pressure in the Madison has been calculated based on an artesian aquifer condition with a water level of approximately 200' above ground surface. This head is based on historical water well data for the City of Edgemont water wells completed in the Madison Formation (Appendix D). Based on an estimated shut-in pressure of 150 psi and a minimum surface elevation of 3,450', the potentiometric surface of the Madison at Edgemont is 3,745' (345' above ground surface). It is noted that surface elevation at Edgemont wells may be as high as 3,650'. Given the elevation increase of approximately 100' to 300' from Edgemont to the Dewey-Burdock Project, it is reasonable to assume a potentiometric level of approximately 3,900' AMSL (~200' above ground surface) at Dewey-Burdock. USGS potentiometric maps for this formation are regional and based on little (if any) local data (Figure D-10, Driscoll et al., 2002). The result is a calculated critical pressure rise for the Minnelusa to Madison of 163.7 psi (Table A-2). It is noted that formation parameters have been estimated from available data and will be verified through formation testing during the drilling process.

The values in Table A-2 were used in the pressure rise equation to compute the critical pressure rise for Deadwood to Madison as follows:

Pc = 0.433[1.008(3,435-3,395) + 1.001(3,395-(-200))] - 1,412.0 psi

or:

Pc = 163.7 psi

#### Cone-of-Influence

Based on the calculated value for the critical pressure rise, the cone-of-influence can be calculated for the DW No. 2 over a ten-year period of injection. At DW No. 4, there is projected to be a 1,242' cone-of-influence for continuous injection at a rate of 75 gpm (2,571 bwpd) in the Deadwood Formation (Table A-4). This is the value at which pressure at distance intersects the critical pressure rise of 163.7 psi from the Deadwood to the Madison (Figure A-7). Pressure rise has been evaluated in an infinite acting reservoir with a line source well using the log-approximation of the radial flow diffusivity equation (Lee, 1982).

dP =  $-70.6 \text{ Bq}\mu/\text{kh} \cdot \ln([1,688 \phi \mu c_t r^2/\text{kt}] - 2s)$ 

where the values listed in Table A-4 have been assigned based on site-specific information.

Calculations for pressure rise due to ten years of injection have been based on a rate of 75 gpm. Well capacities will be verified during the drilling, testing, and completion process.

#### **Radius of Fluid Displacement**

#### <u>Minnelusa</u>

The same formation parameters for each formation that were used in the COI calculations were used to calculate the ROFD. Using a porosity of 21% and an effective thickness of 164', the calculated ROFD is 698' after 10 years of constant rate injection at 75 gpm. The effect of an estimated hydraulic gradient of 10 ft/mile alters the maximum ROFD by 8.12' which yields a total calculated ROFD of approximately 706' (Table A-5). The ROFD in the Minnelusa is presented on Figure B-2.

#### **Deadwood**

Using a porosity of 11% and an effective thickness of 85', the calculated ROFD is 1,339' after 10 years of constant rate injection at 75 gpm. The effect of an estimated hydraulic gradient of 10 ft/mile alters the maximum ROFD by 15.50' which yields a total calculated ROFD of approximately 1,355' (Table A-6). The ROFD in the Deadwood is presented on Figure B-2a.

#### **Final AORs**

The calculated COIs for DW Nos. 1, 2, 3, and 4 are 13.2', 1,210', 14.4', and 1,242', respectively. The distances for DW Nos. 1 and 3 are less than the calculated ROFDs for the Minnelusa (706') and less than a fixed radius of 1⁄4 mile or 1,320'. As such, a radius of 1,320' has been used for evaluation of all artificial penetrations for Class V injection into the Minnelusa Formation for DW No. 1 and DW No. 3 (Figure B-2).

The calculated COIs for DW Nos. 2 and 4 are less than the calculated ROFDs for the Deadwood (1,355') and greater than a fixed radius of 1⁄4 mile or 1,320'. As such, a radius of 1,355' has been used for DW No. 2 and DW No. 4 for evaluation of all artificial penetrations for Class V injection into the Deadwood Formation (Figure B-2a). Figure B-2b presents the final AORs of the four planned wells relative to the Class V permit area and oil and gas wells near the project. The Class V permit area is defined conservatively by applying the maximum calculated AOR of 1,355' as an offset from the Dewey-Burdock Project boundary and the oil and gas wells permitted within that boundary.

The input parameters used to calculate the AORs are based on formation parameters derived from limited data and will be verified during the drilling, testing, and completion process. If the input parameters that have been used are found to yield projections that are insufficiently conservative, the AORs will be recalculated.

#### Pressure Rise at the Dewey Fault

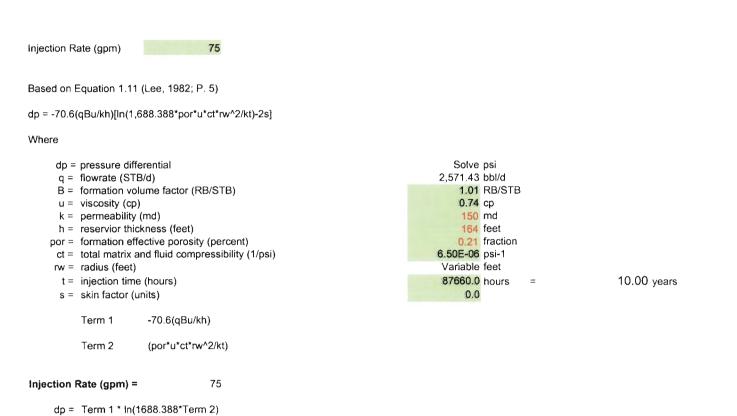
The Dewey Fault shown on Figure B-2b is located in excess of 4,000' to the northwest of the nearest corner of the proposed Class V permit area. While some authors have mapped it as dipping to the southeast, it is shown at the same location relative to the Dewey-Burdock Project at surface and at depth (Figures D-1, D-8, D-10, D-14, and D-15). As such, it is more likely a near vertical fault in proximity to the site. The pressure rise at a distance of 4,000' due to injection in the Minnelusa would be approximately 34 psi. This is less than the calculated critical pressure rise of 96.1 psi (Minnelusa to Unkpapa/Sundance) and 164.6 psi (Minnelusa to Madison). The pressure rise at a distance of 4,000' due to injection into the Deadwood would be approximately 119 psi. This is less than the calculated critical pressure rise at a distance of the calculated critical pressure rise of 163.7 psi necessary to transmit fluid from the Deadwood to the Madison along any hypothetical open pathway. It can thus be concluded that the Dewey Fault could not act as a conduit for fluid to rise to a USDW due to injection into the Minnelusa or

Deadwood in the vicinity of the proposed Class V permit area.

. · . ,

#### **TABLE A-1 Critical Pressure Rise - Site 1**

| Pc=0.433()          | YbDb+Yw(Dw-L))-Po   | Inj. Zone<br>DTW | Yb       | Confining<br>Zone Db | SG of<br>USDW<br>Yw | Top Inj.<br>Zone<br>Dx | Base/Top<br>Inj. Zone<br>Dw | DTW<br>L    | Inj. Zone<br>Po |
|---------------------|---------------------|------------------|----------|----------------------|---------------------|------------------------|-----------------------------|-------------|-----------------|
|                     |                     | (ft;bgs)         | (Inj. Z) | (feet; bgs)          | (USDW)              | (feet; bgs)            | (feet; bgs)                 | (feet; bgs) | (psi)           |
| Minnelusa           | to Unkpapa/Sundance | 200              | 1.008    | 695                  | 1.001               | 1615                   | 920                         | -29         | 617.6           |
| Pc =                | 97.1 psi            |                  |          |                      |                     |                        |                             |             |                 |
| Minnelusa           | to Madison          | 200              | 1.008    | -560                 | 1.001               | 2205                   | 2765                        | -200        | 875.1           |
| Pc =                | 165.6 psi           |                  |          |                      |                     |                        |                             |             |                 |
| Deadwood to Madison |                     | 200              | 1.008    | 40                   | 1.001               | 3100                   | 3060                        | -200        | 1,265.7         |
| Pc =                | 164.7 psi           |                  |          |                      |                     |                        |                             |             |                 |


Po calculated based on a depth to water of 1,400' above top of Minnelusa; fluid gradient of Minnelusa and Deadwood = 0.433 psi/ft x 1.008 (SG)

#### TABLE A-2 Critical Pressure Rise - Site 2

| Pc=0.433(YbDb+Yw(Dw-L))-Po |                          |            | Inj. Zone<br>DTW<br>(ft;bgs) | Yb<br>(Inj. Z) | Confining<br>Zone<br>Db<br>(feet; bgs) | SG of<br>USDW<br>Yw<br>(USDW) | Zone<br>Dx | Base/Top<br>Inj. Zone<br>Dw<br>(feet; bgs) | USDW<br>DTW<br>L<br>(feet; bgs) | Inj. Zone<br>Po<br>(psi) |
|----------------------------|--------------------------|------------|------------------------------|----------------|----------------------------------------|-------------------------------|------------|--------------------------------------------|---------------------------------|--------------------------|
| Minnelues                  | te Unknon                |            |                              | 1 000          | 005                                    | 1.001                         | 1050       | 4055                                       |                                 | 702.0                    |
| Minneiusa                  | а <u>to Unкрар</u> а<br> | a/Sundance | 200                          | 1.008          | 695                                    | 1.001                         | 1950       | 1255                                       | -29                             | 763.8                    |
| Pc =                       | 96.1                     | psi        |                              |                |                                        |                               |            |                                            |                                 |                          |
| Minnelusa                  | to Madisor               | n          | 200                          | 1.008          | -560                                   | 1.001                         | 2540       | 3100                                       | -200                            | 1,021.3                  |
| Pc =                       | 164.6                    | psi        |                              |                |                                        |                               |            |                                            |                                 |                          |
| Deadwood to Madison        |                          | 200        | 1.008                        | 40             | 1.001                                  | 3435                          | 3395       | -200                                       | 1,412.0                         |                          |
| Pc =                       | 163.7                    | psi        |                              |                |                                        |                               |            |                                            |                                 |                          |

Po calculated based on a depth to water of 1,400' above top of Minnelusa; fluid gradient of Minnelusa and Deadwood = 0.433 psi/ft x 1.008 (SG)

#### TABLE A-3 Calculated Pressure Rise vs. Distance (Diffusivity Equation) - Minnelusa Formation

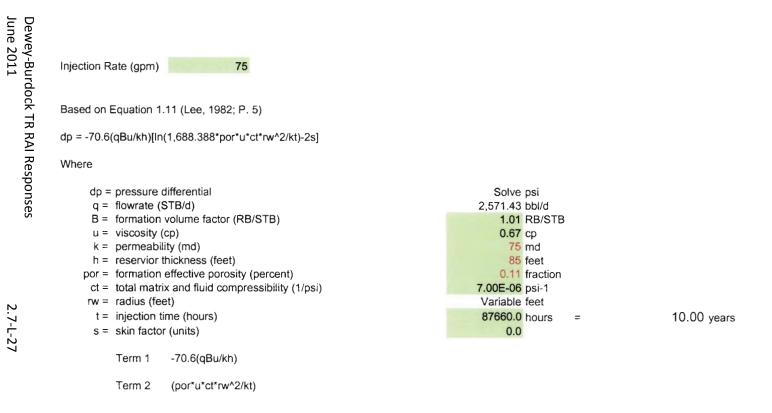


|         | Radius  |          |              |                    | dp    |                                                             |
|---------|---------|----------|--------------|--------------------|-------|-------------------------------------------------------------|
|         | (代)     | Term 1   | Tarm 2       | [ln (term 2) - 2s] | (psi) |                                                             |
| rw      | 0.26042 | -5.51566 | 5.2098E-15   | -25.45671          | 140.4 | Minn-Madison NO COI At 165.6 (DW No. 1) or 164.6 (DW No. 3) |
| no skin | 0.5     | -5.51566 | 1.920/5E-1,4 | -24.15208          | 133.2 |                                                             |
|         | 1       | -5.51566 | 7.6820E-14   | -22.76579          | 125.6 |                                                             |
|         | 5       | -5.51566 | 1.9205E-12   | -19.54691          | 107.8 |                                                             |
|         | 13.2    | -5.51566 | 1.3385E-11   | -17.60535          | 97.1  | Minn-Unkpapa/Sundance Pc=97.1 psi (DW No. 1)                |
|         | 14.4    | -5.51566 | 1.5929E-11   | -17.43133          | 96.1  | Minn-Unkpapa/Sundance Pc=96.1 psi (DW No. 3)                |
|         | 22.6    | -5.51566 | 3.9236E-11   | -16.52989          | 91.2  |                                                             |
|         | 25      | -5.51566 | 4.8012E-11   | -16.32804          | 90.1  |                                                             |
|         | 35      | -5.51566 | 9.4104E-11   | -15.65509          | 86.3  |                                                             |
|         | 48.5    | -5.51566 | 1.8070E-10   | -15.00266          | 82.7  |                                                             |
|         | 50.5    | -5.51566 | 1.9591E-10   | -14.92184          | 82.3  |                                                             |
|         | 75      | -5.51566 | 4.3211E-10   | -14.13081          | 77.9  |                                                             |

| 100          | -5.51566             | 7.6820E-10               | -13.55545            | 74.8         |
|--------------|----------------------|--------------------------|----------------------|--------------|
| 125          | -5.51566             | 1.2003E-09               | -13.10916            | 72.3         |
| 150          | -5.51566             | 1.7284E-09               | -12.74452            | 70.3         |
| 172          | -5.51566             | 2.2726E-09               | -12.47080            | 68.8         |
| 200          | -5.51566             | 3.0728E-09               | -12.16915            | 67.1         |
| 225          | -5.51566             | 3.8890E-09               | -11.93359            | 65.8         |
| 250          | -5.51566             | 4.8012E-09               | -11.72287            | 64.7         |
| 275          | -5.51566             | 5.8095E-09               | -11.53225            | 63.6         |
| 300          | -5.51566             | 6.9138E-09               | -11.35822            | 62.6         |
| 325          | -5.51566             | 8.1141E-09               | -11.19814            | 61.8         |
| 350          | -5.51566             | 9.4104E-09               | -11.04992            | 60.9         |
| 375          | -5.51566             | 1.0803E-08               | -10.91194            | 60.2         |
| 400          | -5.51566             | 1.2291E-08               | -10.78286            | 59.5         |
| 425          | -5.51566             | 1.3876E-08               | -10.66161            | 58.8         |
| 450          | -5.51566             | 1.5556E-08               | -10.54729            | 58.2         |
| 500          | -5.51566             | 1.9205E-08               | -10.33657            | 57.0         |
| 625          | -5.51566             | 3.0008E-08               | -9.89028             | 54.6         |
| 750          | -5.51566             | 4.3211E-08               | -9.52564             | 52.5         |
| 1000         | -5.51566             | 7.6820E-08               | -8.95028             | 49.4         |
| 1250         | -5.51566             | 1.2003E-07               | -8.50399             | 46.9         |
| 1500         | -5.51566             | 1.7284E-07               | -8.13935             | 44.9         |
| 1830         | -5.51566             | 2.5726E-07               | -7.74165             | 42.7         |
| 2020         | -5.51566             | 3.1345E-07               | -7.54408             | 41.6         |
| 2250         | -5.51566             | 3.8890E-07               | -7.32842             | 40.4         |
| 2400         | -5.51566             | 4.4248E-07               | -7.19934             | 39.7         |
| 3000         | -5.51566             | 6.9138E-07               | -6.75305             | 37.2         |
| 3500         | -5.51566             | 9.4104E-07               | -6.44475             | 35.5         |
| 4000         | -5.51566             | 1.2291E-06               | -6.17769             | 34.1         |
| 4500         | -5.51566             | 1.5556E-06               | -5.94212             | 32.8         |
| 5280         | -5.51566             | 2.1416E-06               | -5.62243             | 31.0         |
| 6000         | -5.51566             | 2.7655E-06               | -5.36676             | 29.6         |
| 6600         | -5.51566             | 3.3463E-06               | -5.17614             | 28.5         |
| 6700         | -5.51566             | 3.4484E-06               | -5.14606             | 28.4         |
| 6800         | -5.51566<br>-5.51566 | 3.5521E-06               | -5.11643             | 28.2         |
| 6900<br>7000 | -5.51566             | 3.6574E-06<br>3.7642E-06 | -5.08723             | 28.1         |
| 7000         | -5.51566             | 3.7642E-06<br>3.8725E-06 | -5.05846             | 27.9         |
| 7200         | -5.51566             | 3.9823E-06               | -5.03009<br>-5.00212 | 27.7<br>27.6 |
| 7300         | -5.51566             | 3.9823E-06<br>4.0937E-06 | -5.00212<br>-4.97453 | 27.0         |
| 7400         | -5.51566             | 4.2066E-06               | -4.94732             | 27.4         |
| 7400         | -5.51566             | 4.3211E-06               | -4.92047             | 27.3         |
| 7600         | -5.51566             | 4.3211E-06<br>4.4371E-06 | -4.89398             | 27.1         |
| 7700         | -5.51566             | 4.5546E-06               | -4.86784             | 26.8         |
| 7800         | -5.51566             | 4.6737E-06               | -4.84203             | 26.7         |
| 7900         | -5.51566             | 4.7943E-06               | -4.81655             | 26.7         |
| 8000         | -5.51566             | 4.9164E-06               | -4.79139             | 26.4         |
| 0000         | -0.01000             | -1.3104L-00              | -4.19139             | 20.4         |

EPA Class V UIC Application March 2010

#### TABLE A-3 Calculated Pressure Rise vs. Distance (Diffusivity Equation) - Minnelusa Formation


2.7-L-26

Appendix 2.7-L

| 8100  | -5.51566 | 5.0401E-06 | -4.76655 | 26.3 |
|-------|----------|------------|----------|------|
| 8200  | -5.51566 | 5.1653E-06 | -4.74201 | 26.2 |
| 8300  | -5.51566 | 5.2921E-06 | -4.71777 | 26.0 |
| 8400  | -5.51566 | 5.4204E-06 | -4.69381 | 25.9 |
| 8500  | -5.51566 | 5.5502E-06 | -4.67015 | 25.8 |
| 9000  | -5.51566 | 6.2224E-06 | -4.55583 | 25.1 |
| 10000 | -5.51566 | 7.6820E-06 | -4.34511 | 24.0 |
| 10560 | -5.51566 | 8.5664E-06 | -4.23613 | 23.4 |
| 11000 | -5.51566 | 9.2952E-06 | -4.15449 | 22.9 |

EPA Class V UIC Application March 2010

#### TABLE A-4 Calculated Pressure Rise vs. Distance (Diffusivity Equation) - Deadwood Formation



#### Injection Rate (gpm)

dp = Term 1 \* in(1688.388\*Term 2)

75

|         | Radius  |           |            |                    | dp    |
|---------|---------|-----------|------------|--------------------|-------|
|         | (ft)    | Term 1    | Term 2     | [in (term 2) - 2s] | (psi) |
| rw      | 0.26042 | -19.27060 | 5.3217E-15 | -25.43545          | 490.2 |
| no skin | 0.5     | -19.27060 | 1.9617E-14 | -24.13083          | 465.0 |
|         | 1       | -19.27060 | 7.8470E-14 | -22.74453          | 438.3 |
|         | 5       | -19.27060 | 1.9617E-12 | -19.52566          | 376.3 |
|         | 10      | -19.27060 | 7.8470E-12 | -18.13936          | 349.6 |
|         | 15      | -19.27060 | 1.7656E-11 | -17.32843          | 333.9 |
|         | 22.6    | -19.27060 | 4.0079E-11 | -16.50863          | 318.1 |
|         | 25      | -19.27060 | 4.9044E-11 | -16.30678          | 314.2 |
|         | 35      | -19.27060 | 9.6126E-11 | -15.63384          | 301.3 |

Appendix 2.7-L

| 48.5                                                                                                                                                                                                                                                                               | -19.27060                                                                                                                                                                                                                                                                                  | 1.8458E-10                                                                                                                                                                                                                                                             | -14.98140                                                                                                                                                                                                                        | 288.7                                                                                                                                                                                                                                                                                          |                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 50.5                                                                                                                                                                                                                                                                               | -19.27060                                                                                                                                                                                                                                                                                  | 2.0012E-10                                                                                                                                                                                                                                                             | -14.90059                                                                                                                                                                                                                        | 287.1                                                                                                                                                                                                                                                                                          |                                                                                        |
| 75                                                                                                                                                                                                                                                                                 | -19.27060                                                                                                                                                                                                                                                                                  | 4.4139E-10                                                                                                                                                                                                                                                             | -14.10956                                                                                                                                                                                                                        | 271.9                                                                                                                                                                                                                                                                                          |                                                                                        |
| 100                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 7.8470E-10                                                                                                                                                                                                                                                             | -13.53419                                                                                                                                                                                                                        | 260.8                                                                                                                                                                                                                                                                                          |                                                                                        |
| 125                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 1.2261E-09                                                                                                                                                                                                                                                             | -13.08790                                                                                                                                                                                                                        | 252.2                                                                                                                                                                                                                                                                                          |                                                                                        |
| 150                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 1.7656E-09                                                                                                                                                                                                                                                             | -12.72326                                                                                                                                                                                                                        | 245.2                                                                                                                                                                                                                                                                                          |                                                                                        |
| 172                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 2.3215E-09                                                                                                                                                                                                                                                             | -12.44954                                                                                                                                                                                                                        | 239.9                                                                                                                                                                                                                                                                                          |                                                                                        |
| 200                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 3.1388E-09                                                                                                                                                                                                                                                             | -12.14790                                                                                                                                                                                                                        | 234.1                                                                                                                                                                                                                                                                                          |                                                                                        |
| 225                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 3.9725E-09                                                                                                                                                                                                                                                             | -11.91233                                                                                                                                                                                                                        | 229.6                                                                                                                                                                                                                                                                                          |                                                                                        |
| 250                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 4.9044E-09                                                                                                                                                                                                                                                             | -11.70161                                                                                                                                                                                                                        | 225.5                                                                                                                                                                                                                                                                                          |                                                                                        |
| 275                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 5.9343E-09                                                                                                                                                                                                                                                             | -11.51099                                                                                                                                                                                                                        | 221.8                                                                                                                                                                                                                                                                                          |                                                                                        |
| 300                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 7.0623E-09                                                                                                                                                                                                                                                             | -11.33697                                                                                                                                                                                                                        | 218.5                                                                                                                                                                                                                                                                                          |                                                                                        |
| 325                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 8.2884E-09                                                                                                                                                                                                                                                             | -11.17688                                                                                                                                                                                                                        | 215.4                                                                                                                                                                                                                                                                                          |                                                                                        |
| 350                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 9.6126E-09                                                                                                                                                                                                                                                             | -11.02867                                                                                                                                                                                                                        | 212.5                                                                                                                                                                                                                                                                                          |                                                                                        |
| 375                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 1.1035E-08                                                                                                                                                                                                                                                             | -10.89068                                                                                                                                                                                                                        | 209.9                                                                                                                                                                                                                                                                                          |                                                                                        |
| 400                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 1.2555E-08                                                                                                                                                                                                                                                             | -10.76160                                                                                                                                                                                                                        | 207.4                                                                                                                                                                                                                                                                                          |                                                                                        |
| 425                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 1.4174E-08                                                                                                                                                                                                                                                             | -10.64035                                                                                                                                                                                                                        | 205.0                                                                                                                                                                                                                                                                                          |                                                                                        |
| 450                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 1.5890E-08                                                                                                                                                                                                                                                             | -10.52604                                                                                                                                                                                                                        | 202.8                                                                                                                                                                                                                                                                                          |                                                                                        |
| 500                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 1.9617E-08                                                                                                                                                                                                                                                             | -10.31532                                                                                                                                                                                                                        | 198.8                                                                                                                                                                                                                                                                                          |                                                                                        |
| 625                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 3.0652E-08                                                                                                                                                                                                                                                             | -9.86903                                                                                                                                                                                                                         | 190.2                                                                                                                                                                                                                                                                                          |                                                                                        |
| 715                                                                                                                                                                                                                                                                                | -19.27060                                                                                                                                                                                                                                                                                  | 4.0116E-08                                                                                                                                                                                                                                                             | -9.59997                                                                                                                                                                                                                         | 185.0                                                                                                                                                                                                                                                                                          |                                                                                        |
| 1000                                                                                                                                                                                                                                                                               | 40.07000                                                                                                                                                                                                                                                                                   | 7 0 4 7 0 7 0 0                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                |                                                                                        |
| 1000                                                                                                                                                                                                                                                                               | -19.27060                                                                                                                                                                                                                                                                                  | 7.8470E-08                                                                                                                                                                                                                                                             | -8.92902                                                                                                                                                                                                                         | 172.1                                                                                                                                                                                                                                                                                          |                                                                                        |
| 1210                                                                                                                                                                                                                                                                               | -19.27060                                                                                                                                                                                                                                                                                  | 1.1489E-07                                                                                                                                                                                                                                                             | -8.92902<br>-8.54778                                                                                                                                                                                                             | 164.7                                                                                                                                                                                                                                                                                          | Deadwood-Madison Pc=164.7 psi at DW No. 2                                              |
| 1210<br>1242                                                                                                                                                                                                                                                                       | -19.27060<br>-19.27060                                                                                                                                                                                                                                                                     | 1.1489E-07<br>1.2104E-07                                                                                                                                                                                                                                               | -8.54778<br>-8.49558                                                                                                                                                                                                             | 164.7<br>163.7                                                                                                                                                                                                                                                                                 | Deadwood-Madison Pc=164.7 psi at DW No. 2<br>Deadwood-Madison Pc=163.7 psi at DW No. 4 |
| 1210<br>1242<br>1750                                                                                                                                                                                                                                                               | -19.27060<br>-19.27060<br>-19.27060                                                                                                                                                                                                                                                        | 1.1489E-07<br>1.2104E-07<br>2.4031E-07                                                                                                                                                                                                                                 | -8.54778<br>-8.49558<br>-7.80979                                                                                                                                                                                                 | <b>164.7</b><br><b>163.7</b><br>150.5                                                                                                                                                                                                                                                          |                                                                                        |
| 1210<br>1242<br>1750<br>2000                                                                                                                                                                                                                                                       | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060                                                                                                                                                                                                                                           | 1.1489E-07<br>1.2104E-07<br>2.4031E-07<br>3.1388E-07                                                                                                                                                                                                                   | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273                                                                                                                                                                                     | <b>164.7</b><br><b>163.7</b><br>150.5<br>145.4                                                                                                                                                                                                                                                 |                                                                                        |
| <b>1210</b><br><b>1242</b><br>1750<br>2000<br>2124                                                                                                                                                                                                                                 | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060                                                                                                                                                                                                                              | 1.1489E-07<br>1.2104E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07                                                                                                                                                                                                     | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242                                                                                                                                                                         | <b>164.7</b><br><b>163.7</b><br>150.5<br>145.4<br>143.0                                                                                                                                                                                                                                        |                                                                                        |
| 1210<br>1242<br>1750<br>2000<br>2124<br>2180                                                                                                                                                                                                                                       | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060                                                                                                                                                                                                                 | 1.1489E-07<br>1.2104E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07<br>3.7292E-07                                                                                                                                                                                       | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242<br>-7.37037                                                                                                                                                             | <b>164.7</b><br><b>163.7</b><br>150.5<br>145.4<br>143.0<br>142.0                                                                                                                                                                                                                               |                                                                                        |
| 1210<br>1242<br>1750<br>2000<br>2124<br>2180<br>3000                                                                                                                                                                                                                               | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060                                                                                                                                                                                                    | 1.1489E-07<br>1.2104E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07<br>3.7292E-07<br>7.0623E-07                                                                                                                                                                         | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242<br>-7.37037<br>-6.73180                                                                                                                                                 | <b>164.7</b><br><b>163.7</b><br>150.5<br>145.4<br>143.0<br>142.0<br>129.7                                                                                                                                                                                                                      |                                                                                        |
| 1210<br>1242<br>1750<br>2000<br>2124<br>2180<br>3000<br>3500                                                                                                                                                                                                                       | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060                                                                                                                                                                                       | 1.1489E-07<br>1.2104E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07<br>3.7292E-07<br>7.0623E-07<br>9.6126E-07                                                                                                                                                           | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242<br>-7.37037<br>-6.73180<br>-6.42350                                                                                                                                     | <b>164.7</b><br><b>163.7</b><br>150.5<br>145.4<br>143.0<br>142.0<br>129.7<br>123.8                                                                                                                                                                                                             |                                                                                        |
| 1210<br>1242<br>1750<br>2000<br>2124<br>2180<br>3000<br>3500<br>4000                                                                                                                                                                                                               | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060                                                                                                                                                                          | 1.1489E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07<br>3.7292E-07<br>7.0623E-07<br>9.6126E-07<br>1.2555E-06                                                                                                                                                           | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242<br>-7.37037<br>-6.73180<br>-6.42350<br>-6.15643                                                                                                                         | <b>164.7</b><br><b>163.7</b><br>150.5<br>145.4<br>143.0<br>142.0<br>129.7<br>123.8<br>118.6                                                                                                                                                                                                    |                                                                                        |
| 1210<br>1242<br>1750<br>2000<br>2124<br>2180<br>3000<br>3500<br>4000<br>4500                                                                                                                                                                                                       | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060                                                                                                                                                             | 1.1489E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07<br>3.7292E-07<br>7.0623E-07<br>9.6126E-07<br>1.2555E-06<br>1.5890E-06                                                                                                                                             | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242<br>-7.37037<br>-6.73180<br>-6.42350<br>-6.15643<br>-5.92087                                                                                                             | <b>164.7</b><br><b>163.7</b><br>150.5<br>145.4<br>143.0<br>142.0<br>129.7<br>123.8<br>118.6<br>114.1                                                                                                                                                                                           |                                                                                        |
| 1210<br>1242<br>1750<br>2000<br>2124<br>2180<br>3000<br>3500<br>4000<br>4500<br>5280                                                                                                                                                                                               | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060                                                                                                                                                | 1.1489E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07<br>3.7292E-07<br>7.0623E-07<br>9.6126E-07<br>1.2555E-06<br>1.5890E-06<br>2.1876E-06                                                                                                                               | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242<br>-7.37037<br>-6.73180<br>-6.42350<br>-6.15643<br>-5.92087<br>-5.60117                                                                                                 | <b>164.7</b><br><b>163.7</b><br>150.5<br>145.4<br>143.0<br>142.0<br>129.7<br>123.8<br>118.6<br>114.1<br>107.9                                                                                                                                                                                  |                                                                                        |
| 1210<br>1242<br>1750<br>2000<br>2124<br>2180<br>3000<br>3500<br>4000<br>4500<br>5280<br>6000                                                                                                                                                                                       | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060                                                                                                                                   | 1.1489E-07<br>1.2104E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07<br>3.7292E-07<br>7.0623E-07<br>9.6126E-07<br>1.2555E-06<br>1.5890E-06<br>2.1876E-06<br>2.8249E-06                                                                                                   | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242<br>-7.37037<br>-6.73180<br>-6.42350<br>-6.15643<br>-5.92087<br>-5.60117<br>-5.34550                                                                                     | 164.7           163.7           150.5           145.4           143.0           142.0           129.7           123.8           118.6           114.1           107.9           103.0                                                                                                          |                                                                                        |
| 1210<br>1242<br>1750<br>2000<br>2124<br>2180<br>3000<br>3500<br>4000<br>4500<br>5280<br>6000<br>6600                                                                                                                                                                               | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060                                                                                                                      | 1.1489E-07<br>1.2104E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07<br>3.7292E-07<br>7.0623E-07<br>9.6126E-07<br>1.2555E-06<br>1.5890E-06<br>2.1876E-06<br>2.8249E-06<br>3.4181E-06                                                                                     | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242<br>-7.37037<br>-6.73180<br>-6.42350<br>-6.15643<br>-5.92087<br>-5.60117<br>-5.34550<br>-5.15488                                                                         | 164.7           163.7           150.5           145.4           143.0           142.0           129.7           123.8           118.6           114.1           107.9           103.0           99.3                                                                                           |                                                                                        |
| 1210           1242           1750           2000           2124           2180           3000           3500           4000           4500           5280           6000           6600           6700                                                                            | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060                                                                                                         | 1.1489E-07<br>1.2104E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07<br>3.7292E-07<br>7.0623E-07<br>9.6126E-07<br>1.2555E-06<br>1.5890E-06<br>2.1876E-06<br>2.8249E-06<br>3.4181E-06<br>3.5225E-06                                                                       | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242<br>-7.37037<br>-6.73180<br>-6.42350<br>-6.15643<br>-5.92087<br>-5.60117<br>-5.34550<br>-5.15488<br>-5.12481                                                             | 164.7           163.7           150.5           145.4           143.0           142.0           129.7           123.8           118.6           114.1           107.9           103.0           99.3           98.8                                                                            |                                                                                        |
| 1210           1242           1750           2000           2124           2180           3000           3500           4000           4500           5280           6000           6600           6700           6800                                                             | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060                                                                                            | 1.1489E-07<br>1.2104E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07<br>3.7292E-07<br>7.0623E-07<br>9.6126E-07<br>1.2555E-06<br>1.5890E-06<br>2.1876E-06<br>2.8249E-06<br>3.4181E-06<br>3.5225E-06<br>3.6284E-06                                                         | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242<br>-7.37037<br>-6.73180<br>-6.42350<br>-6.15643<br>-5.92087<br>-5.60117<br>-5.34550<br>-5.15488<br>-5.12481<br>-5.09518                                                 | 164.7           163.7           150.5           145.4           143.0           142.0           129.7           123.8           118.6           114.1           107.9           103.0           99.3           98.8           98.2                                                             |                                                                                        |
| 1210           1242           1750           2000           2124           2180           3000           3500           4000           4500           5280           6000           6600           6700           6800           6900                                              | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060                                                                  | 1.1489E-07<br>1.2104E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07<br>3.7292E-07<br>7.0623E-07<br>9.6126E-07<br>1.2555E-06<br>1.5890E-06<br>2.1876E-06<br>2.8249E-06<br>3.4181E-06<br>3.5225E-06<br>3.6284E-06<br>3.7359E-06                                           | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242<br>-7.37037<br>-6.73180<br>-6.42350<br>-6.15643<br>-5.92087<br>-5.60117<br>-5.34550<br>-5.15488<br>-5.12481<br>-5.09518<br>-5.06598                                     | 164.7           163.7           150.5           145.4           143.0           142.0           129.7           123.8           118.6           114.1           107.9           103.0           99.3           98.8           98.2           97.6                                              |                                                                                        |
| 1210           1242           1750           2000           2124           2180           3000           3500           4000           4500           5280           6000           6600           6700           6800           6900           7000                               | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060                                                     | 1.1489E-07<br>1.2104E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07<br>3.7292E-07<br>7.0623E-07<br>9.6126E-07<br>1.2555E-06<br>1.5890E-06<br>2.1876E-06<br>2.8249E-06<br>3.4181E-06<br>3.5225E-06<br>3.6284E-06<br>3.7359E-06<br>3.8450E-06                             | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242<br>-7.37037<br>-6.73180<br>-6.42350<br>-6.15643<br>-5.92087<br>-5.60117<br>-5.34550<br>-5.15488<br>-5.12481<br>-5.09518<br>-5.06598<br>-5.03720                         | 164.7         163.7         150.5         145.4         143.0         142.0         129.7         123.8         118.6         114.1         107.9         103.0         99.3         98.8         98.2         97.6         97.1                                                               |                                                                                        |
| 1210           1242           1750           2000           2124           2180           3000           3500           4000           4500           5280           6000           6600           6700           6800           6900           7000           7100                | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060                           | 1.1489E-07<br>1.2104E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07<br>3.7292E-07<br>7.0623E-07<br>9.6126E-07<br>1.2555E-06<br>1.5890E-06<br>2.1876E-06<br>2.8249E-06<br>3.4181E-06<br>3.5225E-06<br>3.6284E-06<br>3.7359E-06<br>3.8450E-06<br>3.9557E-06               | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242<br>-7.37037<br>-6.73180<br>-6.42350<br>-6.15643<br>-5.92087<br>-5.60117<br>-5.34550<br>-5.15488<br>-5.12481<br>-5.09518<br>-5.06598<br>-5.03720<br>-5.00883             | 164.7         163.7         150.5         145.4         143.0         142.0         129.7         123.8         118.6         114.1         107.9         103.0         99.3         98.8         98.2         97.6         97.1         96.5                                                  |                                                                                        |
| 1210           1242           1750           2000           2124           2180           3000           3500           4000           4500           5280           6000           6600           6700           6800           6900           7000           7100           7200 | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060 | 1.1489E-07<br>1.2104E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07<br>3.7292E-07<br>7.0623E-07<br>9.6126E-07<br>1.2555E-06<br>1.5890E-06<br>2.1876E-06<br>2.8249E-06<br>3.4181E-06<br>3.5225E-06<br>3.6284E-06<br>3.7359E-06<br>3.8450E-06<br>3.9557E-06<br>4.0679E-06 | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242<br>-7.37037<br>-6.73180<br>-6.42350<br>-6.15643<br>-5.92087<br>-5.60117<br>-5.34550<br>-5.15488<br>-5.12481<br>-5.09518<br>-5.06598<br>-5.03720<br>-5.00883<br>-4.98086 | 164.7           163.7           150.5           145.4           143.0           142.0           129.7           123.8           118.6           114.1           107.9           103.0           99.3           98.8           98.2           97.6           97.1           96.5           96.0 |                                                                                        |
| 1210           1242           1750           2000           2124           2180           3000           3500           4000           4500           5280           6000           6600           6700           6800           6900           7000           7100                | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060                           | 1.1489E-07<br>1.2104E-07<br>2.4031E-07<br>3.1388E-07<br>3.5401E-07<br>3.7292E-07<br>7.0623E-07<br>9.6126E-07<br>1.2555E-06<br>1.5890E-06<br>2.1876E-06<br>2.8249E-06<br>3.4181E-06<br>3.5225E-06<br>3.6284E-06<br>3.7359E-06<br>3.8450E-06<br>3.9557E-06               | -8.54778<br>-8.49558<br>-7.80979<br>-7.54273<br>-7.42242<br>-7.37037<br>-6.73180<br>-6.42350<br>-6.15643<br>-5.92087<br>-5.60117<br>-5.34550<br>-5.15488<br>-5.12481<br>-5.09518<br>-5.06598<br>-5.03720<br>-5.00883             | 164.7           163.7           150.5           145.4           143.0           142.0           129.7           123.8           118.6           114.1           107.9           103.0           99.3           98.8           98.2           97.6           97.1           96.5                |                                                                                        |

Dewey-Burdock TR RAI Responses June 2011

| -19.27060 | 4.4139E-06                                                                                                                                               | -4.89922                                                                                                                                                                                                                            | 04.4                                                                                                                                                                                                                                                                                                                                                            |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 1111002 00                                                                                                                                               | -4.09922                                                                                                                                                                                                                            | 94.4                                                                                                                                                                                                                                                                                                                                                            |
| -19.27060 | 4.5324E-06                                                                                                                                               | -4.87273                                                                                                                                                                                                                            | 93.9                                                                                                                                                                                                                                                                                                                                                            |
| -19.27060 | 4.6525E-06                                                                                                                                               | -4.84658                                                                                                                                                                                                                            | 93.4                                                                                                                                                                                                                                                                                                                                                            |
| -19.27060 | 4.7741E-06                                                                                                                                               | -4.82077                                                                                                                                                                                                                            | 92.9                                                                                                                                                                                                                                                                                                                                                            |
| -19.27060 | 4.8973E-06                                                                                                                                               | -4.79530                                                                                                                                                                                                                            | 92.4                                                                                                                                                                                                                                                                                                                                                            |
| -19.27060 | 5.0221E-06                                                                                                                                               | -4.77014                                                                                                                                                                                                                            | 91.9                                                                                                                                                                                                                                                                                                                                                            |
| -19.27060 | 5.1484E-06                                                                                                                                               | -4.74529                                                                                                                                                                                                                            | 91.4                                                                                                                                                                                                                                                                                                                                                            |
| -19.27060 | 5.2763E-06                                                                                                                                               | -4.72075                                                                                                                                                                                                                            | 91.0                                                                                                                                                                                                                                                                                                                                                            |
| -19.27060 | 5.4058E-06                                                                                                                                               | -4.69651                                                                                                                                                                                                                            | 90.5                                                                                                                                                                                                                                                                                                                                                            |
| -19.27060 | 5.5368E-06                                                                                                                                               | -4.67256                                                                                                                                                                                                                            | 90.0                                                                                                                                                                                                                                                                                                                                                            |
| -19.27060 | 5.6694E-06                                                                                                                                               | -4.64889                                                                                                                                                                                                                            | 89.6                                                                                                                                                                                                                                                                                                                                                            |
| -19.27060 | 6.3561E-06                                                                                                                                               | -4.53457                                                                                                                                                                                                                            | 87.4                                                                                                                                                                                                                                                                                                                                                            |
| -19.27060 | 7.8470E-06                                                                                                                                               | -4.32385                                                                                                                                                                                                                            | 83.3                                                                                                                                                                                                                                                                                                                                                            |
| -19.27060 | 8.7505E-06                                                                                                                                               | -4.21488                                                                                                                                                                                                                            | 81.2                                                                                                                                                                                                                                                                                                                                                            |
| -19.27060 | 9.4949E-06                                                                                                                                               | -4.13323                                                                                                                                                                                                                            | 79.6                                                                                                                                                                                                                                                                                                                                                            |
|           | -19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060<br>-19.27060 | -19.270604.6525E-06-19.270604.7741E-06-19.270604.8973E-06-19.270605.0221E-06-19.270605.1484E-06-19.270605.2763E-06-19.270605.368E-06-19.270605.5368E-06-19.270605.6694E-06-19.270606.3561E-06-19.270607.8470E-06-19.270608.7505E-06 | -19.270604.5324E-06-4.87273-19.270604.6525E-06-4.84658-19.270604.7741E-06-4.82077-19.270604.8973E-06-4.79530-19.270605.0221E-06-4.77014-19.270605.1484E-06-4.74529-19.270605.2763E-06-4.72075-19.270605.4058E-06-4.69651-19.270605.5368E-06-4.67256-19.270605.6694E-06-4.64889-19.270606.3561E-06-4.53457-19.270607.8470E-06-4.32385-19.270608.7505E-06-4.21488 |

| Porosity =            | 0.21   |
|-----------------------|--------|
| Formation Thickness = | 164 ft |
| Injection Rate =      | 75 gpm |

r = radius of fluid displacement Q = injection volume (ft<sup>3</sup>)

 $r = (Q/((pi)*h*porosity))^{0.5}$ 

Elapsed

| Time  | Qt         | r    | r       |
|-------|------------|------|---------|
| (yrs) | (ft3)      | (ft) | (miles) |
| 1     | 5,270,055  | 221  | 0.04    |
| 5     | 26,350,275 | 493  | 0.09    |
| 10    | 52,700,550 | 698  | 0.13    |

#### EFFECT OF REGIONAL HYDRAULIC GRADIENT

ASSUME: Regional gradient = 0.0001 ft/ft (10 ft/mile)

Linear velocity (vl):

vI = (KI)/porosity where I = hydraulic gradient K = 4.670 ft/d

Hyd. Gradient Displacement = (vl)\*(time)

|         |              | Hyd.   | Total       |
|---------|--------------|--------|-------------|
|         | Injection    | Grad.  | Fluid       |
| Elapsed | Displacement | Displ. | Displacment |
| Time    | Ri           | Rg     | Rt          |
| (yrs)   | (ft)         | (ft)   | (ft)        |
| 1       | 221          | 0.81   | 221.51      |
| 5       | 493          | 4.06   | 497.56      |
| 10      | 698          | 8.12   | 706.03      |

NOTE: The additional displacement due to the regional hydraulic gradient is independent of injection rate.

| Porosity =            | 0.11   |
|-----------------------|--------|
| Formation Thickness = | 85 ft  |
| Injection Rate =      | 75 gpm |

r = radius of fluid displacement Q = injection volume (ft<sup>3</sup>)

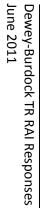
 $r = (Q/((pi)^{h*}porosity))^{0.5}$ 

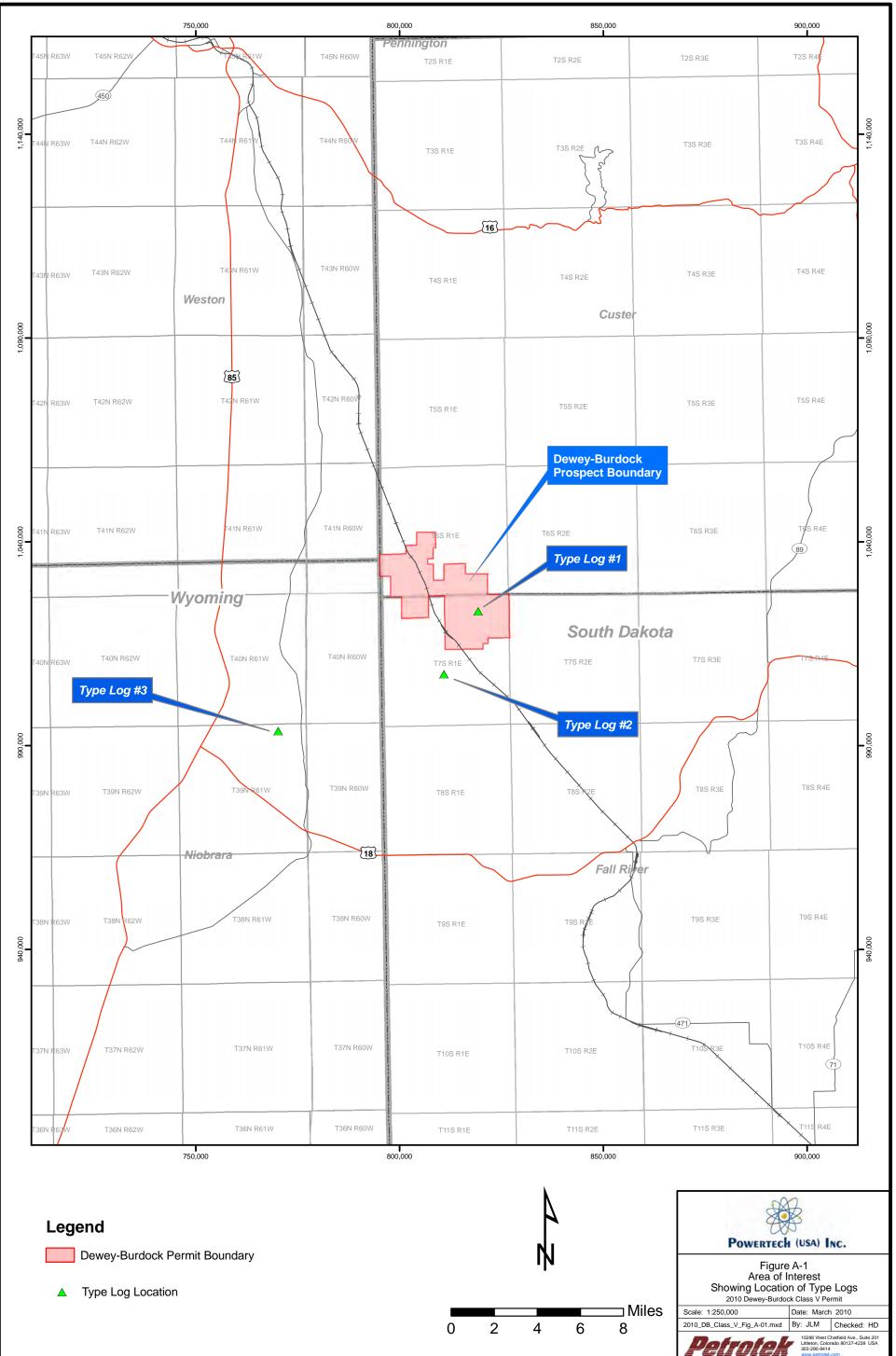
Elapsed

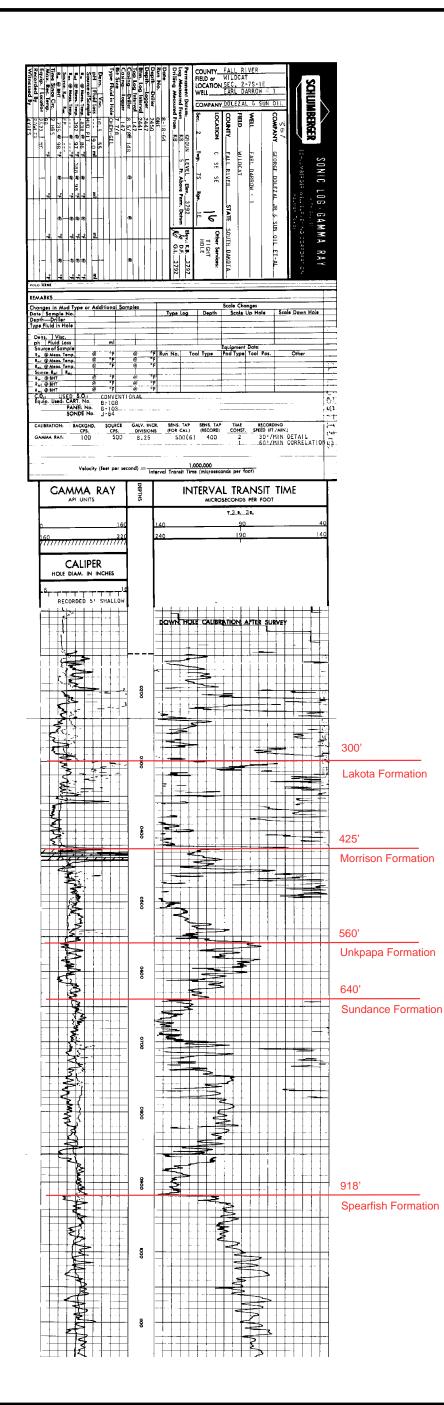
| Time  | Qt         | r    | r       |
|-------|------------|------|---------|
| (yrs) | (ft3)      | (ft) | (miles) |
| 1     | 5,270,055  | 424  | 0.08    |
| 5     | 26,350,275 | 947  | 0.18    |
| 10    | 52,700,550 | 1339 | 0.25    |

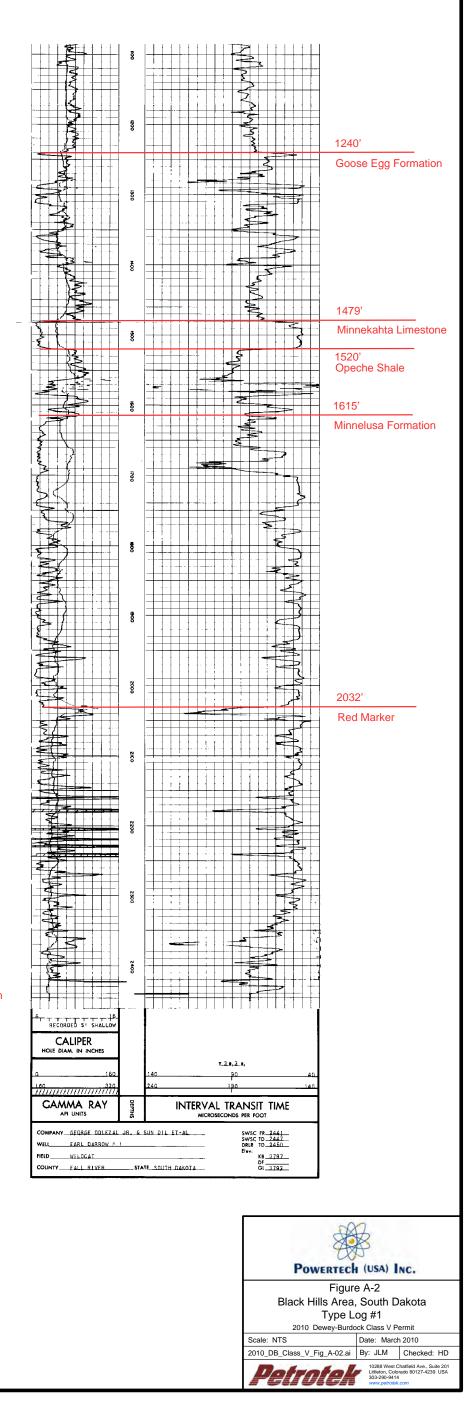
#### EFFECT OF REGIONAL HYDRAULIC GRADIENT

ASSUME: Regional gradient = 0.0001 ft/ft (10 ft/mile)


Linear velocity (vl):

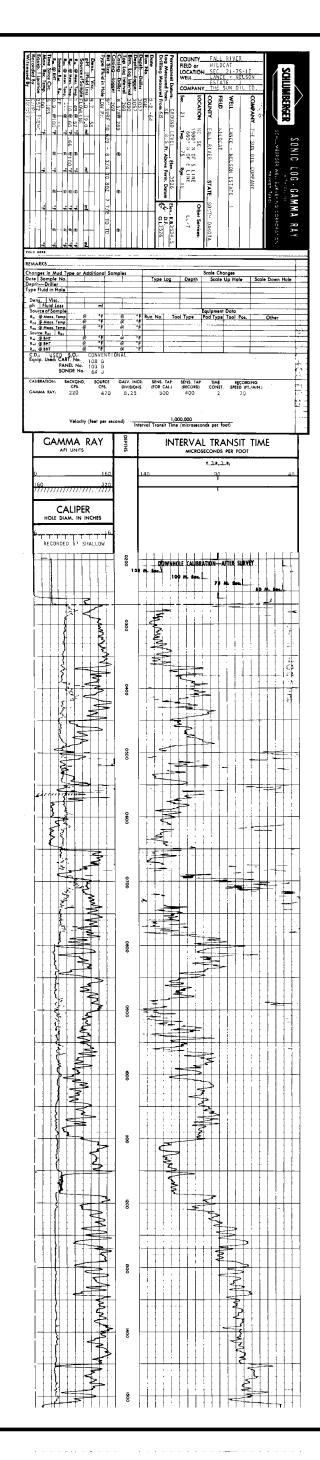

vl = (KI)/porosity where l = hydraulic gradient K = 4.670 ft/d

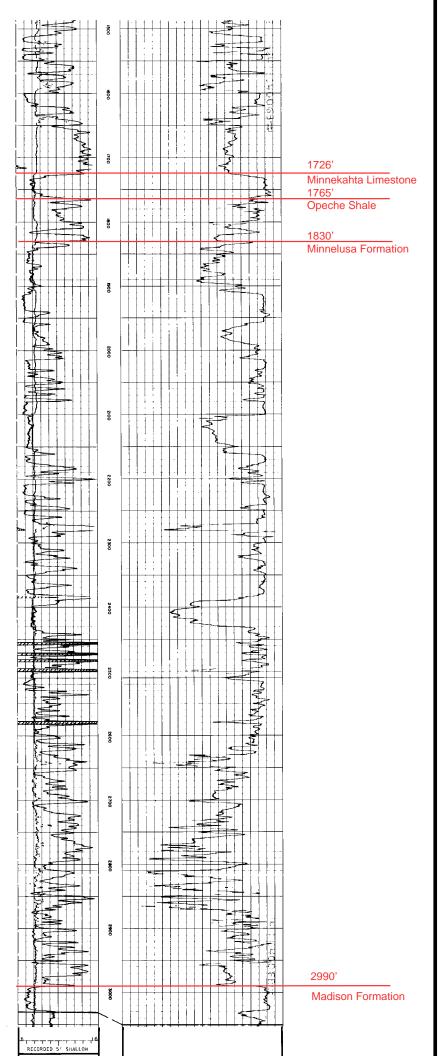

Hyd. Gradient Displacement = (vl)\*(time)


|         | Injection    | Hyd.<br>Grad. | Total<br>Fluid |
|---------|--------------|---------------|----------------|
| Elapsed | Displacement | Displ.        | Displacment    |
| Time    | Ri           | Rg            | Rt             |
| (yrs)   | (ft)         | (ft)          | (ft)           |
| 1       | 424          | 1.55          | 425.12         |
| 5       | 947          | 7.75          | 954.88         |
| 10      | 1339         | 15.50         | 1354.95        |

NOTE: The additional displacement due to the regional hydraulic gradient is independent of injection rate.



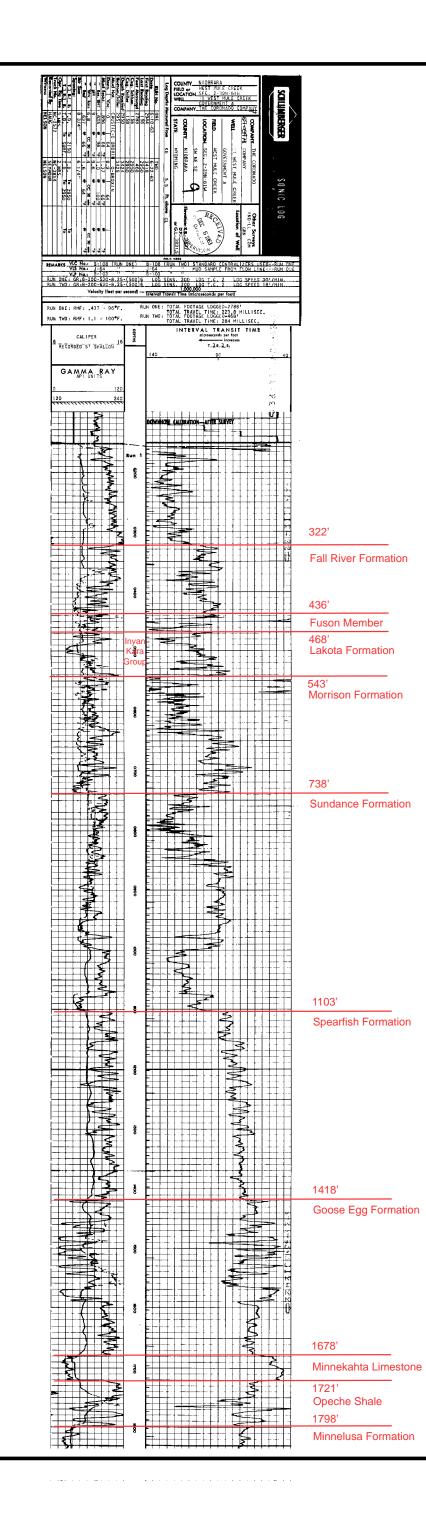


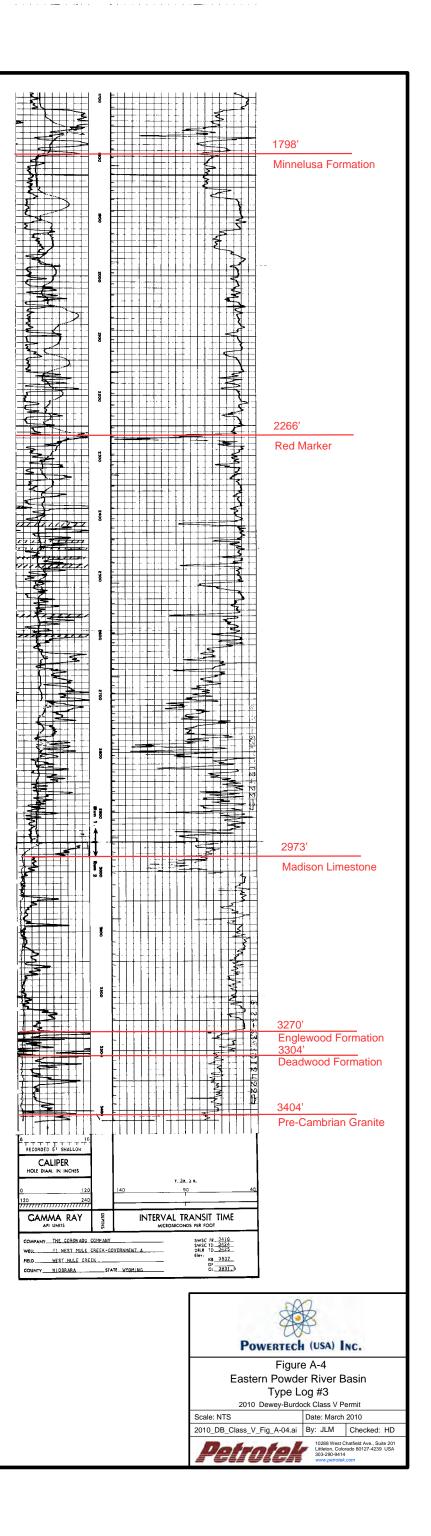







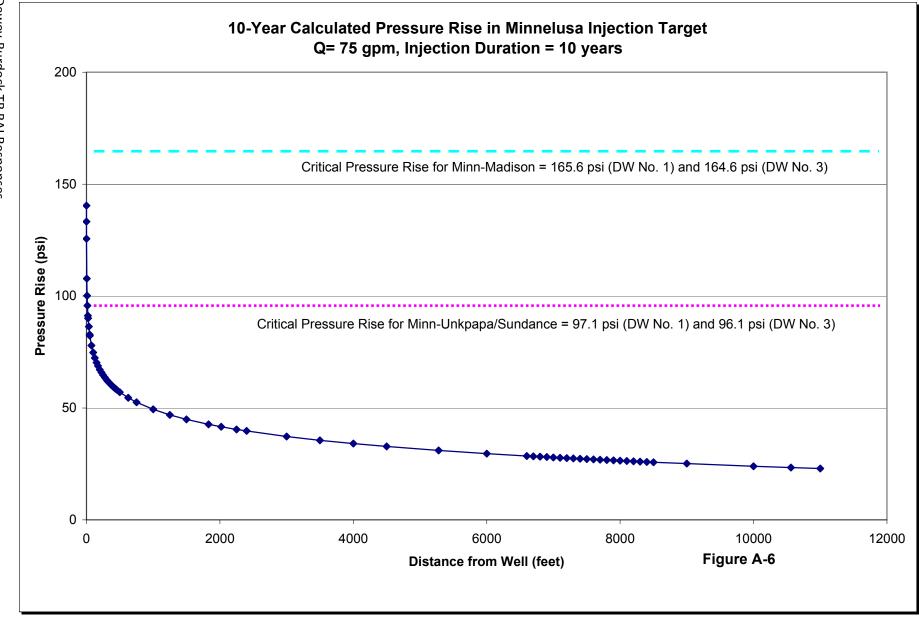


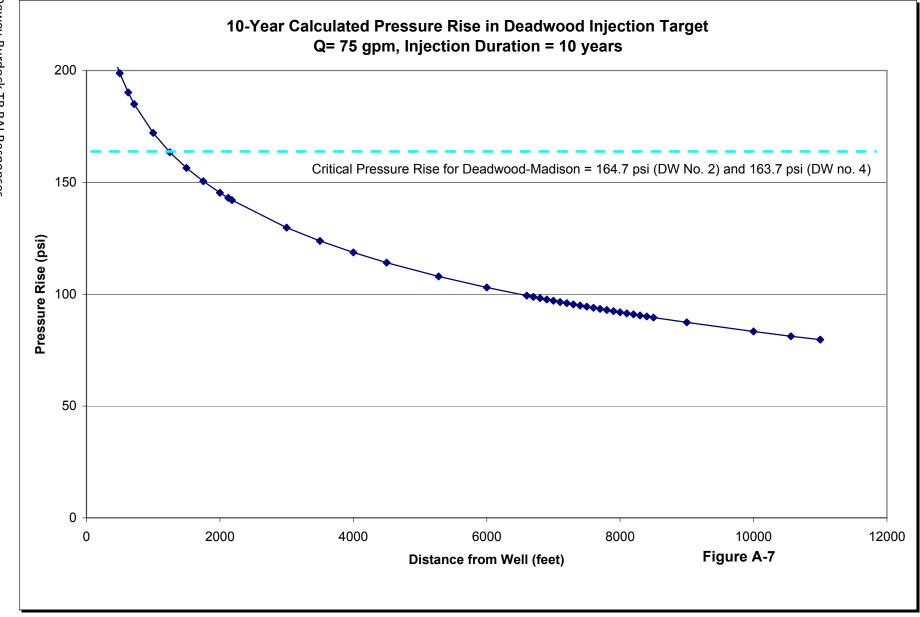






| CALIPER<br>HOLE DIAM. IN INCHES                                                     |        | 73.8, 38,<br>140 90 40                         |
|-------------------------------------------------------------------------------------|--------|------------------------------------------------|
| CAMMA RAY                                                                           | DEPTHS | INTERVAL TRANSIT TIME<br>MICROSECONDS PER FOOT |
| COMPANY THE SUN OIL CO<br>WELL LANCE-NELSON S<br>FIELD WILDCAT<br>COUNTY FALL RIVER | ESTATE | Elev: KB_3534_5<br>DF                          |








Class V UIC Application Powertech (USA), Inc.



Class V UIC Application Powertech (USA), Inc.



# 2.B MAPS OF WELLS IN AREA AND AREA OF REVIEW

Submit a topographic map, extending one mile beyond the property boundaries, showing the injection well(s) or project area for which a permit is sought and the applicable area of review. The map must show all intake and discharge structures and all hazardous waste, treatment, storage, or disposal facilities. If the application is for an area permit, the map should show the distribution manifold (if applicable) applying injection fluid to all wells in the area, including all system monitoring points. Within the area of review, the map must show the following:

The number, or name, and location of all producing well, injection well, abandoned well, dry holes, surface bodies of water, springs, mines (surface and subsurface), quarries, and other pertinent surface features, including residences and roads, and faults, if known or suspected. In addition, the map must identify those well, springs, other surface water bodies, and drinking water wells located within one-quarter mile of the facility property boundary. Only information of public record is required to be included on this map.

### RESPONSE

Maps based on available public records have been prepared and submitted in this Response as summaries of the required data.

### **Topographic Map**

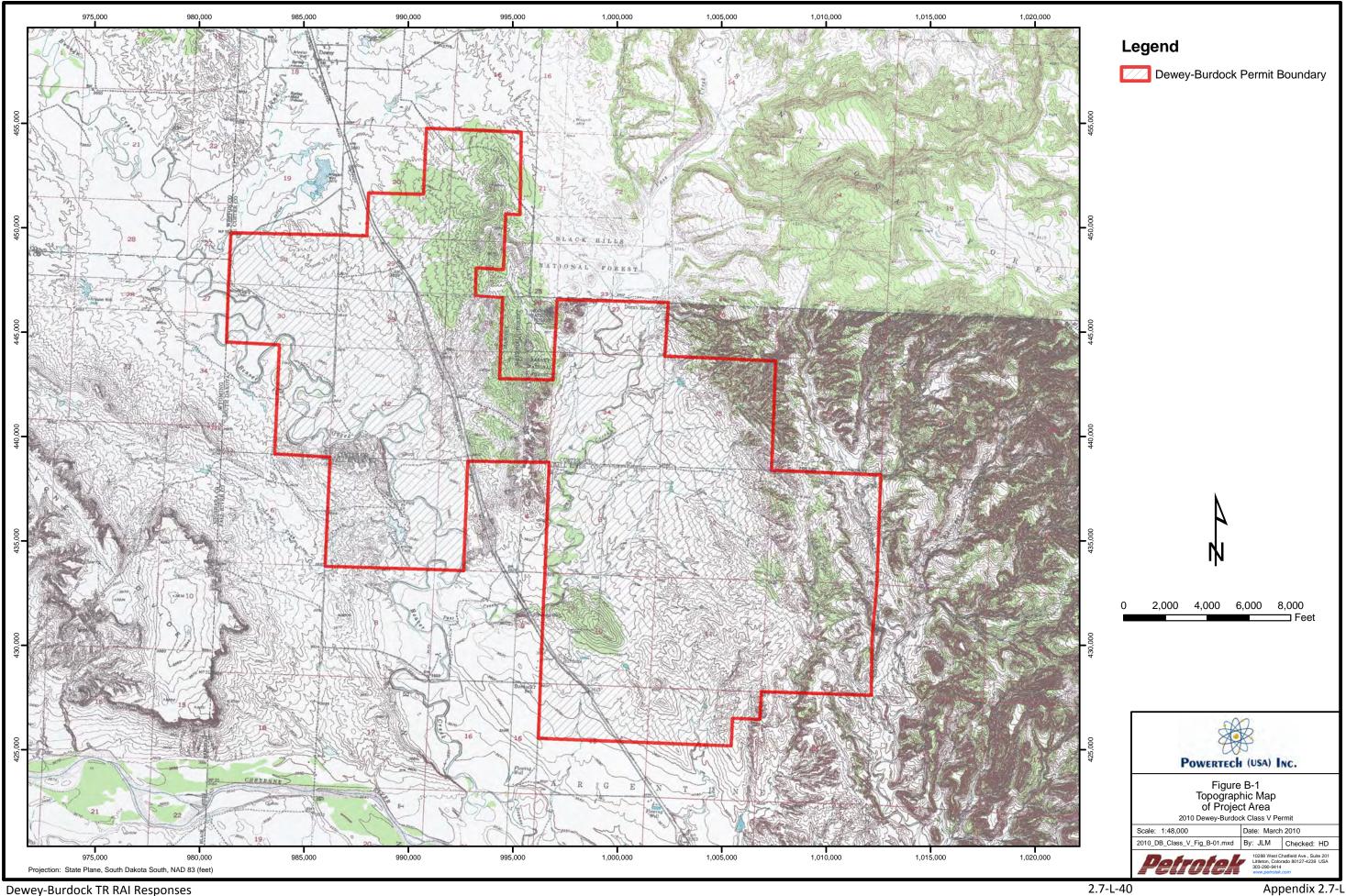
A copy of the USGS Topographic map available with the outline of the Dewey-Burdock Project boundary superimposed on the map is included as Figure B-1. In addition, the map shows the location of all known surface bodies of water, springs, mines, quarries, residencies and roads.

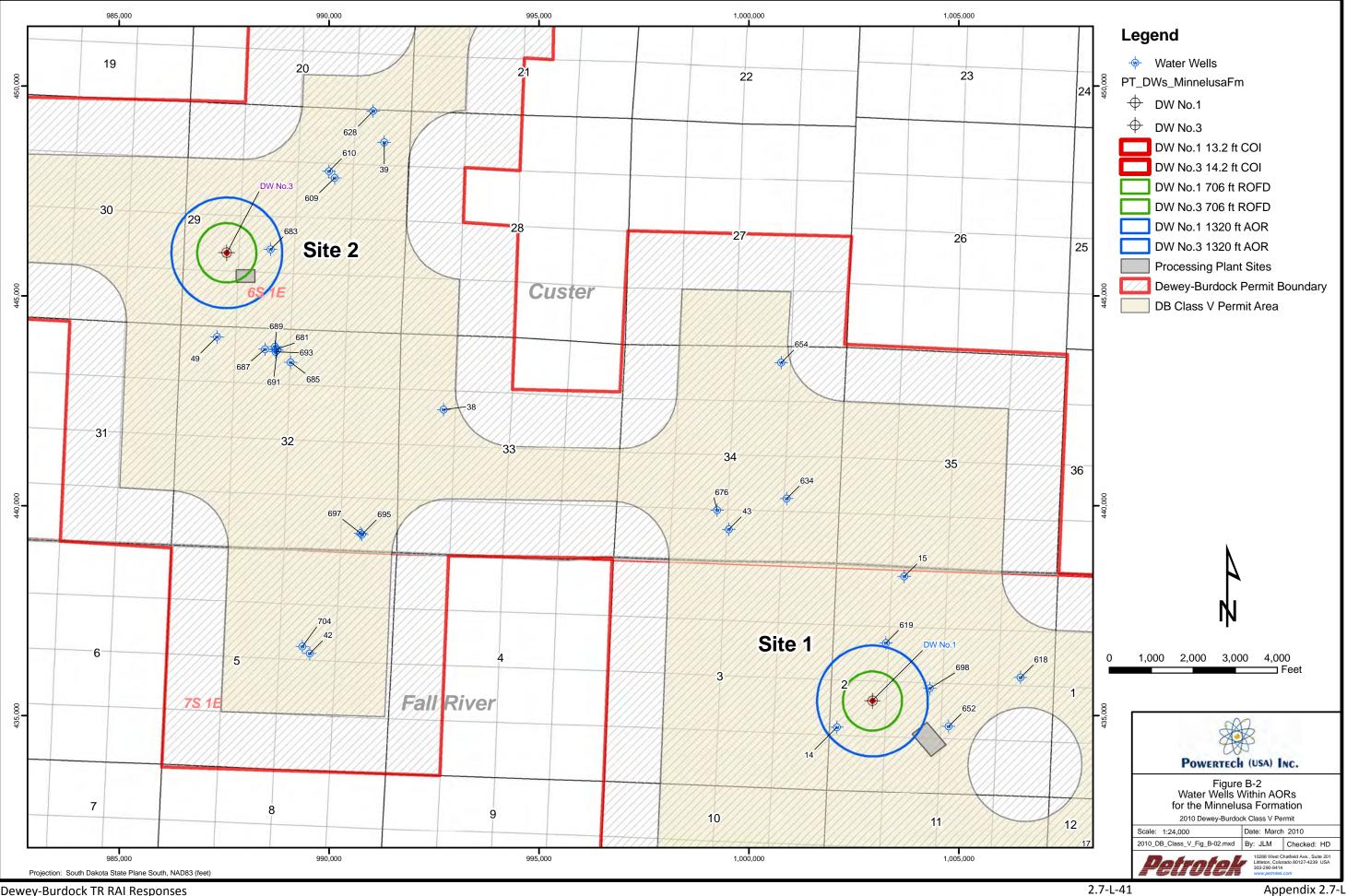
# **Artificial Penetrations**

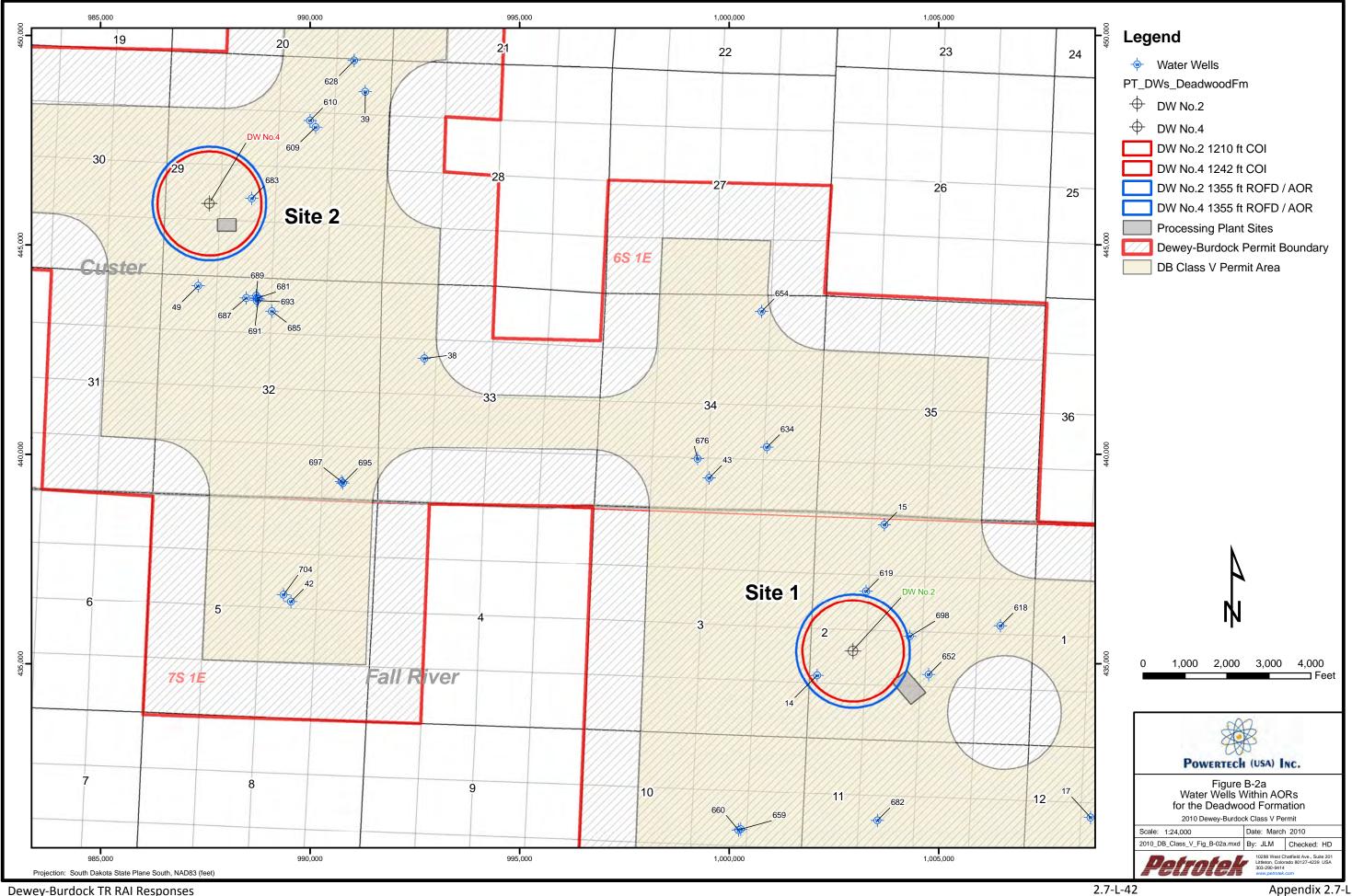
There are two artificial penetrations identified in the areas of review surrounding Site 1 and one in the areas of review surrounding Site 2. Figures B-2 and B-2a show the artificial penetrations within the AORs for DW Nos. 1 through 4 for the Minnelusa and the Deadwood, respectively.

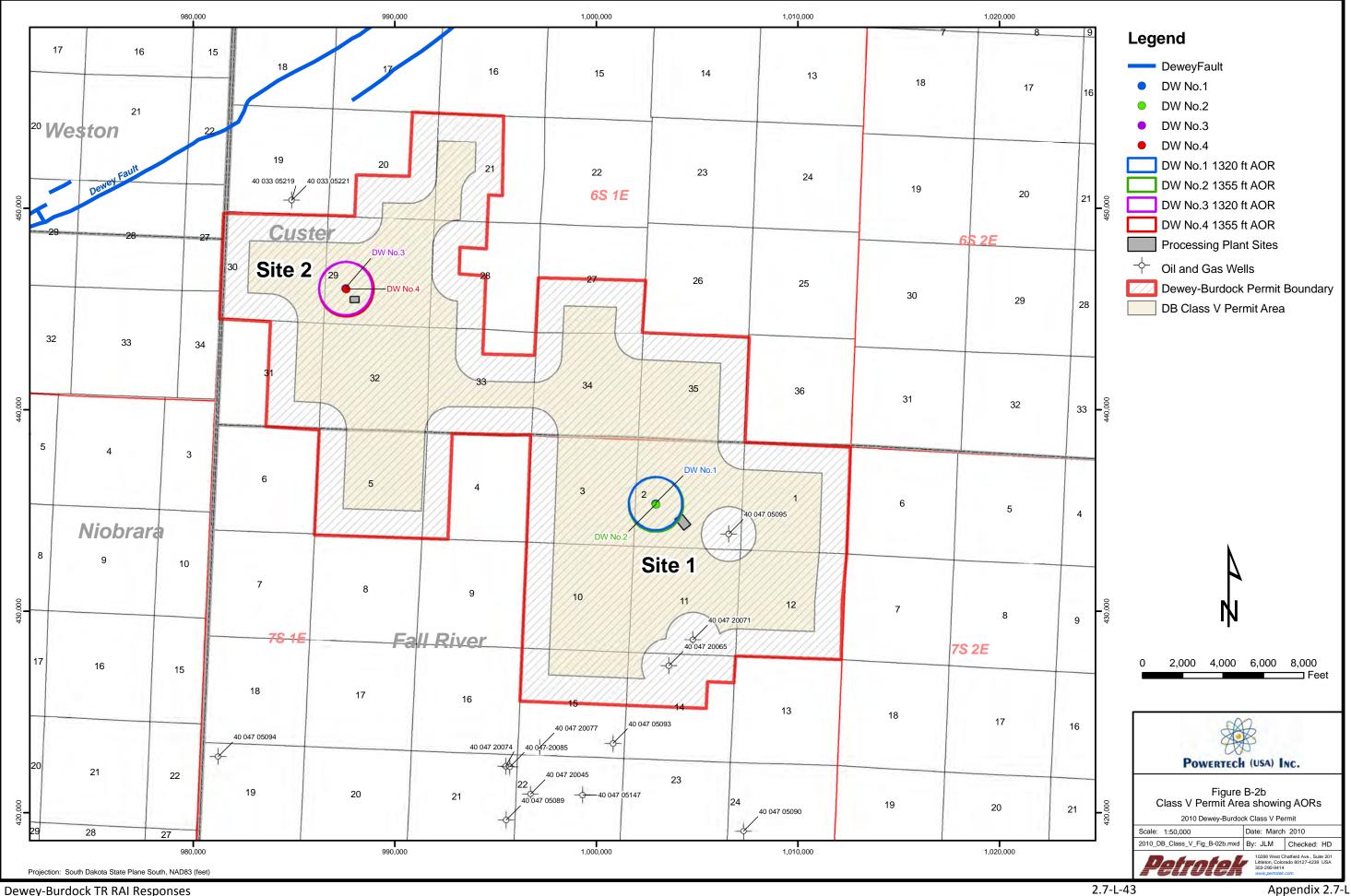
Figure B-2b, a map generated using regional data provided by the state of South Dakota, shows the Proposed Class V permit area, the location of the required AORs for four of the proposed Dewey-Burdock Disposal Wells, and the locations of surrounding oil and gas wells. Figure B-2c presents the location of all known water wells within the proposed Class V permit area.

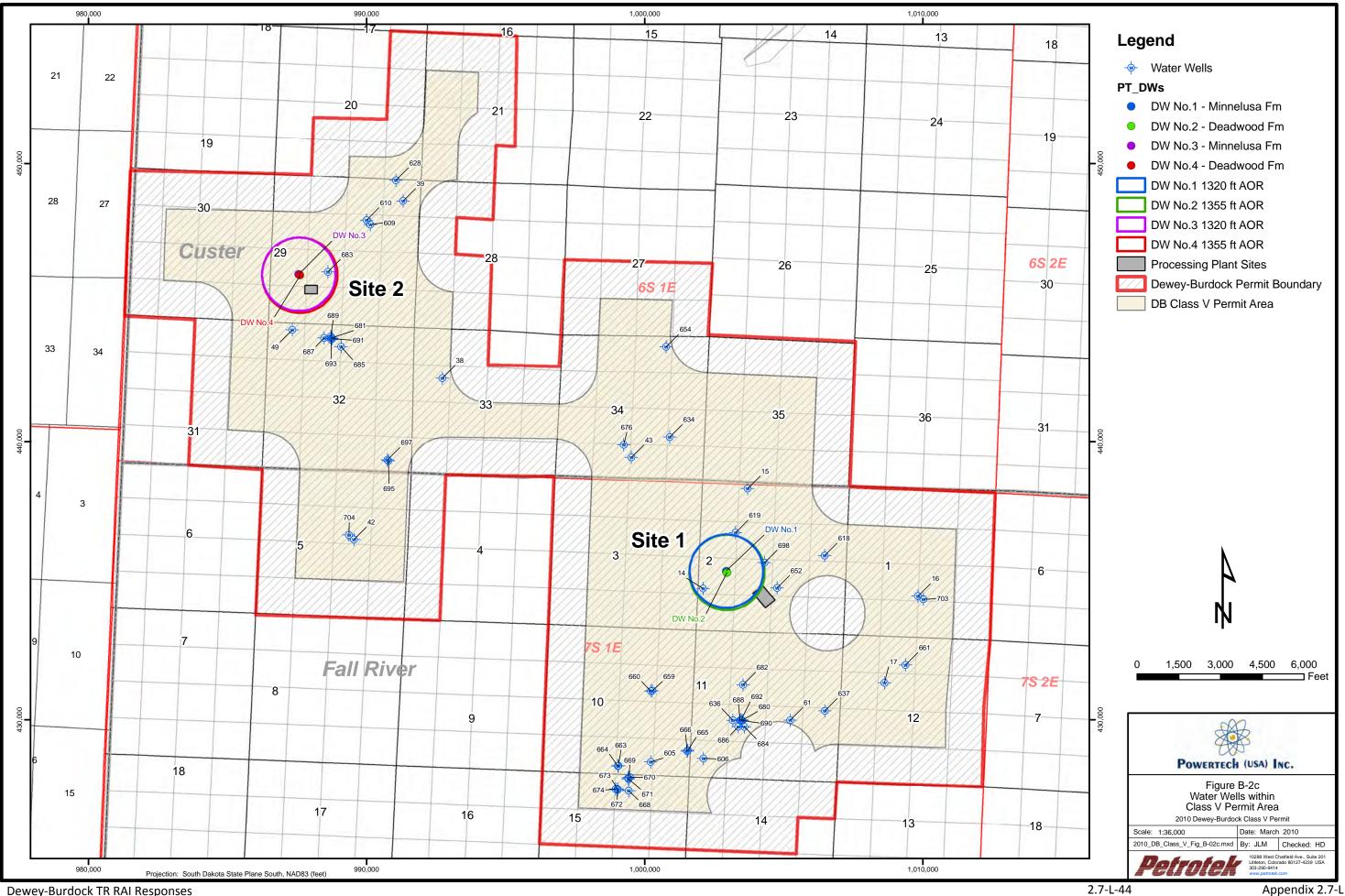
Table C-1 is a tabulation of the known water wells located within the Class V permit area. The deepest formation penetrated by any of these wells is the Unkpapa/Sundance. Due to the absence of wells within the Class V permit area that penetrate the injection zones, there is little potential for causing any endangerment to a USDW.

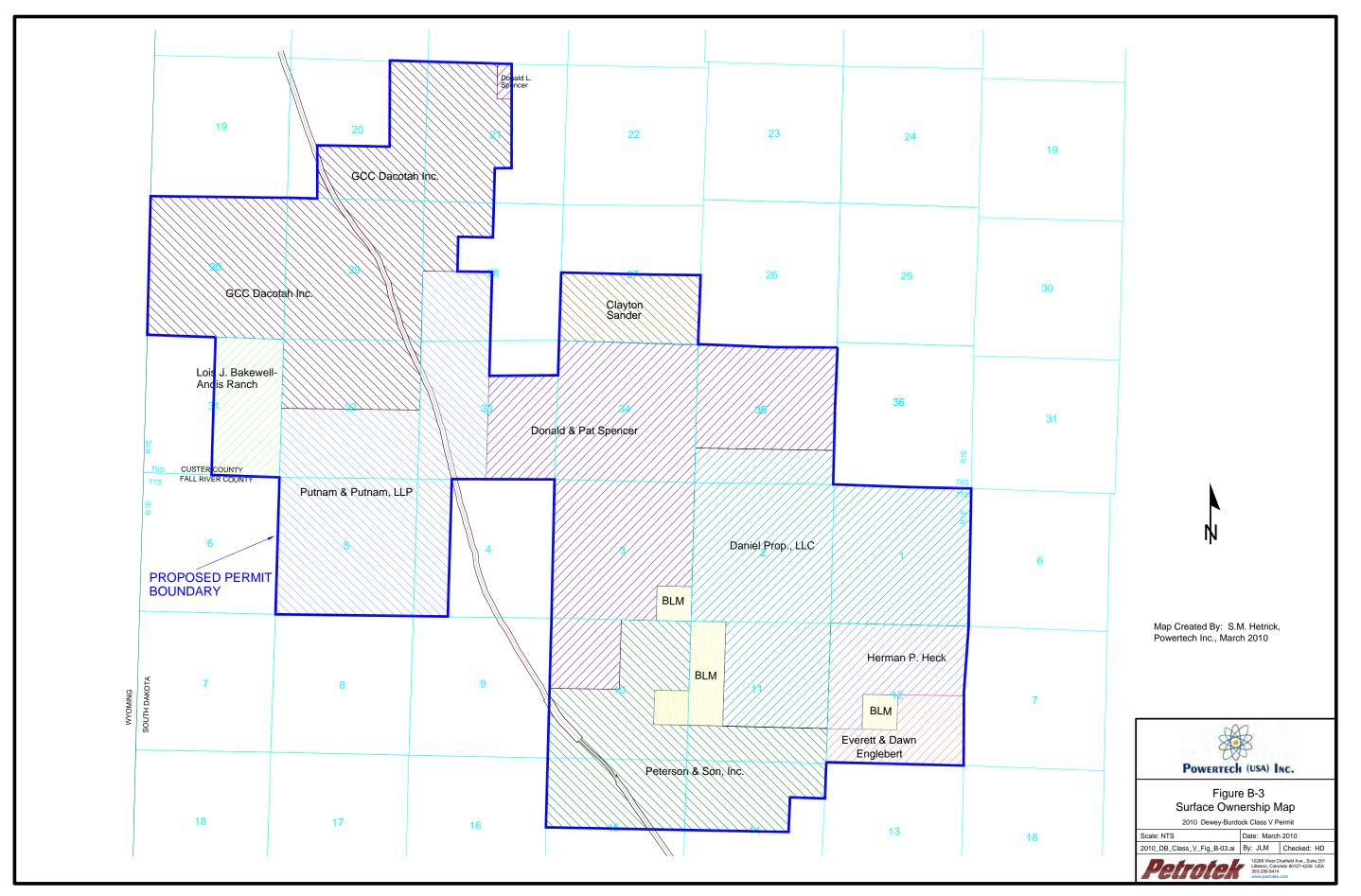

Table C-2 is a tabulation of the three oil and gas wells permitted within the Dewey-Burdock Project area. The plugging records for these well are included as Appendix B. According to the records obtained from DENR, each of the wells is plugged to a sufficient depth so as not to allow transmission of fluids from the targeted injection zones to overlying USDWs. Note that none of these wells are located within the proposed Class V permit area. As such, they will not be encompassed in any prospective AORs of proposed Dewey-Burdock Disposal Wells.


UIC Permit Application Powertech (USA) Inc. March 2010

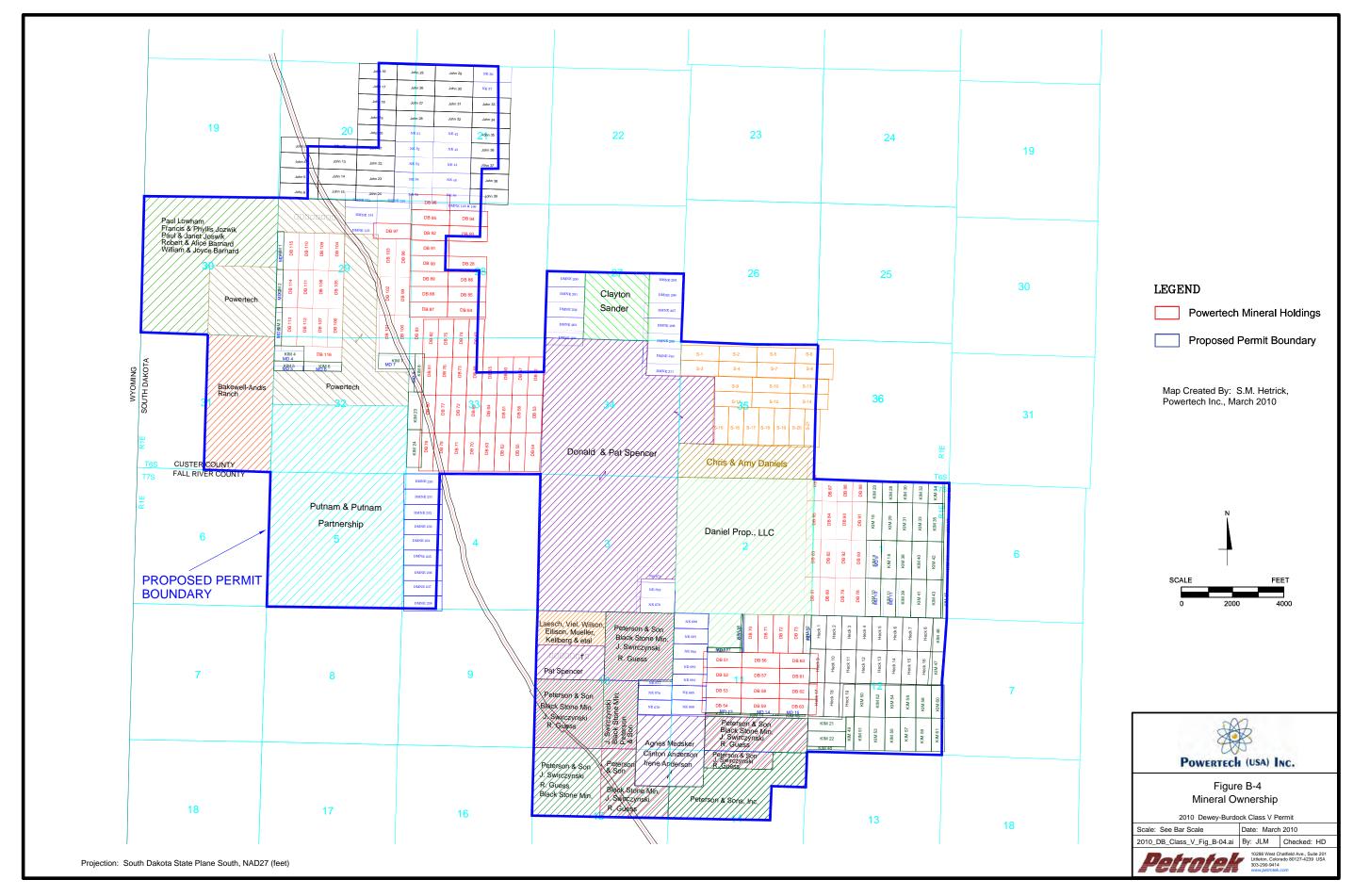

## **Property Ownership and Public Notice**


Figure B-3 shows the surface property owners in the Dewey-Burdock Project area and Figure B-4 shows the mineral ownership within the Dewey-Burdock Project boundary.


For the purpose of public notice, newspaper service is available from several publishers in the area including the closest paper to the proposed facility, the Edgemont Herald Tribune.












Dewey-Burdock TR RAI Responses June 2011



# 2.C CORRECTIVE ACTION PLAN AND WELL DATA

Submit a tabulation of data reasonably available from public records or otherwise known to the applicant on all wells within the area of review, including those on the map required in Attachment B, which penetrate the proposed injection zone. Such data shall include the following:

A description of each well's type, construction, date drilled, location, depth, record of plugging and/or completion, and any additional information the Director may require. In the case of a new injection well, include the corrective action proposed to be taken by the applicant under 40 CFR 144.55.

#### RESPONSE

### **Corrective Action**

A corrective action plan is not required for any of the artificial penetrations within the AORs of the proposed Dewey-Burdock wells or the Class V permit area because there are no artificial penetrations to the injection zone within the Class V permit area. If a corrective action plan for any neighboring well becomes necessary in the future, it will be developed according to appropriate regulatory standards and guidelines.

The corrective action plan which would be proposed by Powertech should the potential for fluid migration to occur through the confining layer develop via any future well likely would include the following:

- 1. The impacted Dewey-Burdock Project Disposal Well will be shut-in.
- 2. The USEPA, Region 8 UIC Section and the SD DENR will be notified.
- 3. Following well shut-in, liquid 11e2 waste will be shipped to alternative permitted facilities for off-site treatment and/or disposal as necessary.
- 4. A contingency plan will be prepared as follows:
  - a. Locate well and identify present operator or owner, if any.
  - b. Identify mode of failure.
  - c. Prepare remedial plan outlining course of action.
  - d. The remedial plan will be submitted to the USEPA, Region 8 and SD DENR for approval.
  - e. Upon authorization, the remedial plan will be implemented.

#### Water Wells within AORs

Table C-1 is a tabulation of the known artificial penetrations (water wells) located within the Class V permit area. The deepest formation penetrated by any of these wells is the Unkpapa/Sundance. Due to the absence of wells within the Class V permit area that penetrate either of the targeted injection zones, there is no potential from artificial penetrations for causing any endangerment to a USDW.

UIC Permit Application Powertech (USA) Inc. March 2010

## Area of Review Oil and Gas Well Data

Table C-2 is a tabulation of the three oil and gas wells permitted within the Dewey-Burdock Project area that are outside the assigned AORs. The plugging records for these wells are included as Appendix B. Plugging records obtained from DENR indicate that each of the wells is plugged to a sufficient depth so as not to allow transmission of fluids from the targeted injection zones to overlying USDWs. Note that none of these wells are located within the proposed Class V permit area. As such, they will not be encompassed in any prospective future AORs of proposed additional Dewey-Burdock Disposal Wells.

| Well ID | Well Depth (ft) | Formation        | Abandoned | Depth to Water (ft) |
|---------|-----------------|------------------|-----------|---------------------|
|         |                 |                  |           |                     |
| 605     | Unknown         | Inyan Kara       | no        | Unknown             |
| 606     | Unknown         | Lakota           | yes       | 0                   |
| 42      | 600             | Lakota           | no        | -10                 |
| 61      | 525             | Lakota           | unknown   | Unknown             |
| 16      | 330             | Lakota           | no        | 158                 |
| 618     | Unknown         | Unknown          | no        | Unknown             |
| 15      | 495             | Lakota           | yes       | 0                   |
| 634     | Unknown         | Unknown          | yes       | Unknown             |
| 43      | 350             | Lakota           | yes       | Unknown             |
| 14      | 470             | Lakota           | unknown   | -1                  |
| 636     | Unknown         | Unknown          | yes       | Unknown             |
| 637     | Unknown         | Unknown          | no        | Unknown             |
| 17      | 156             | Fall River       | no        | Unknown             |
| 39      | Unknown         | Unknown          | unknown   | Unknown             |
| 652     | 280             | Inyan Kara       | yes       | Unknown             |
| 654     | Unknown         | Inyan Kara       | yes       | Unknown             |
| 659     | Unknown         | Fall River       | yes       | Unknown             |
| 660     | Unknown         | Lakota           | yes       | Unknown             |
| 661     | Unknown         | Lakota           | unknown   | Unknown             |
| 663     | 550             | Lakota           | unknown   | Unknown             |
| 664     | 360             | Fall River       | unknown   | Unknown             |
| 665     | 252             | Fall River       | unknown   | Unknown             |
| 666     | 441             | Lakota           | unknown   | Unknown             |
| 669     | 550             | Lakota           | unknown   | Unknown             |
| 670     | 395             | Fuson            | unknown   | Unknown             |
| 671     | 350             | Fall River       | unknown   | Unknown             |
| 672     | 376             | Fall River       | unknown   | Unknown             |
| 673     | 440             | Fuson            | unknown   | Unknown             |
| 674     | 570             | Lakota           | unknown   | Unknown             |
| 676     | 23              | Alluvial         | no        | Unknown             |
| 683     | 650             | Fall River       | no        | 5                   |
| 687     | 608             | Fall River       | no        | Unknown             |
| 685     | 595             | Fall River       | no        | Unknown             |
| 682     | 460             | Lakota           | no        | Unknown             |
| 686     | 428             | Lakota           | no        | Unknown             |
| 684     | 423             | Lakota           | no        | Unknown             |
| 690     | 623             | Unkpapa/Sundance | no        | -29                 |
| 692     | 327             | Lakota           | no        | Unknown             |
| 38      | 494             | Lakota           | no        | -14                 |
| 609     | 1000            | Lakota           | no        | 7                   |
| 610     | Unknown         | Fall River       | no        | Unknown             |
| 619     | 280             | Lakota           | no        | 19                  |
| 628     | Unknown         | Inyan Kara       | no        | Unknown             |
| 668     | 574             | Inyan Kara       | no        | Unknown             |
| 698     | 205             | Fall River       | no        | Unknown             |
| 704     | 955             | Unkpapa/Sundance | no        | Unknown             |
| 703     | 525             | Unkpapa/Sundance | no        | Unknown             |
| 695     | 508             | Fall River       | no        | Unknown             |

| Well ID | Well Depth (ft) | Formation        | Abandoned | Depth to Water (ft) |
|---------|-----------------|------------------|-----------|---------------------|
| 697     | 682             | Lakota           | no        | Unknown             |
| 691     | 505             | Fall River       | no        | Unknown             |
| 693     | 910             | Unkpapa/Sundance | no        | -138                |
| 689     | 730             | Lakota           | no        | -59                 |
| 681     | 600             | Fall River       | no        | -13                 |
| 49      | 600             | Fall River       | no        | Unknown             |
| 688     | 255             | Fall River       | no        | 37                  |
| 680     | 436             | Lakota           | no        | 39                  |

# TABLE C-1 Known Water Wells Within Class V Permit Area

Source: 2009 Powertech Dewey-Burdock NRC Application

| Well API     | Name                   | Well Depth (ft) | Formation | Well Status            |
|--------------|------------------------|-----------------|-----------|------------------------|
|              |                        |                 |           |                        |
| 40-047-05095 | Earl Darrow #1         | 2,450           | Minnelusa | Plugged and Abandonded |
| 40-047-20071 | #34-11 Peterson        | 2,250           | Minnelusa | Plugged and Abandonded |
| 40-047-20065 | Lenore Peterson #21-14 | 2,266           | Minnelusa | Plugged back to 850'   |

# 2.D MAPS AND CROSS SECTIONS OF USDWs

Submit maps and cross sections indicating the vertical limits of all underground sources of drinking water within the area of review (both vertical and lateral limits for Class I), their position relative to the injection formation and the direction of water movement, where known, in every underground source of drinking water which may be affected by the proposed injection activities.

## RESPONSE

The major bedrock aquifers in the Black Hills area include the Deadwood, Madison, Minnelusa, Minnekahta, and Inyan Kara (Carter et al, 2003). These aquifers are regionally extensive in areas surrounding the Black Hills as shown on Figure D-1 (Driscoll et al., 2002). A regional east-west geologic cross section across the Black Hills Uplift is shown on Figure D-2. The location of the cross section A-A' is indicated on Figure D-1. Ground-water flow in the regional aquifer system in the Paleozoic aquifer units (i.e., Deadwood, Madison, Minnelusa, and Minnekahta Formations) is generally interpreted to be radially outward from the outcrops surrounding the Black Hills (Figure D-3). Groundwater recharge from the Black Hills area comingles with groundwater in the Powder River Basin to the west and then migrates northeastward into the Williston Basin where it eventually discharges at lower elevations to the land surface in eastern North Dakota and along the outcrop of the Canadian Shield in Canada.

Only two of these major aquifers, the Madison and Inyan Kara, are considered to be USDWs within the AORs of the Dewey-Burdock Disposal Wells. As discussed below, the Deadwood, Minnelusa, and Minnekahta do not supply water wells in the Dewey-Burdock area and are not considered to be USDWs locally. Further, due to local total dissolved solids (TDS) concentrations in excess of 10,000 mg/l, (shown Table D-1 from the USGS Produced Waters Database [http://energy.cr.usgs.gov/prov/prodwat/data2.htm]), the Minnelusa is not a USDW.

Minor aquifers in the area include the Sundance formation (Driscoll et al., 2002). While some authors differentiate geologically between the Sundance and overlying Unkpapa Formation, they are thought to be hydrogeologically connected and are referred to as the Unkpapa/Sundance in this document. Further, the Unkpapa/Sundance is considered to be the lower-most USDW above the Madison below the Dewey-Burdock Project area.

#### **Deadwood Formation**

The Cambrian-age Deadwood Formation consists of massive to thinly-bedded, brown to light-gray sandstone; greenish glauconitic shale; dolomite; and flat-pebble limestone conglomerate. Sandstone with conglomerate occurs locally at the base of the formation. The Deadwood ranges in thickness from 0 to 500 feet (Carter et al., 2003) in the area. Generally, groundwater flow in the Cambrian-Ordovician aquifer system is from the high-altitude recharge areas on the top of the Black Hills radially outward (Figure D-4). Regionally the Deadwood is confined by the Precambrian basement (Williamson and Carter, 2001). It overlies the Precambrian basement and granite wash (where present) and outcrops approximately 20 miles to the northeast of the Dewey-Burdock Project (Figure D-1). As stated previously, the Deadwood is not considered to be a local USDW. Based on available data, there are no known water wells supplied by the Deadwood Formation in the Dewey-Burdock Project area. There are no water quality data available in the area, but it is suspected that water quality declines with depth and distance down-gradient from the recharge at the outcrop. As a result, it is likely that the Deadwood contains dissolved solids in excess of 10,000 mg/l below Sites 1 and 2 and will not meet the USEPA criteria for a USDW. An isopach map of the Deadwood is included as Figure D-5.

UIC Permit Application Powertech (USA) Inc. March 2010

#### Madison Formation

The Mississippian Madison aquifer is contained within the limestones, siltstones, sandstones, and dolomite of the Madison Limestone or Group. Generally, water in the Madison is confined except in outcrop areas and can frequently demonstrate artesian conditions. Groundwater flow in this aquifer system generally is from the recharge areas radially outward from the Black Hills (Figure D-6). Water in the Madison is typically fresh only near the recharge areas, becoming slightly saline to saline as it moves down-gradient (Figure D-7). In the deeper parts of the Williston Basin, the water is a brine with dissolved solids concentrations greater than 300,000 mg/L (Driscoll et al., 2002). Local water quality for the Madison is summarized by analysis of the Edgemont city wells and is presented in Table D-1. Structure contour and isopach maps of the Madison are included as Figures D-8 and D-9, respectively. A potentiometric surface map of the Madison Formation is presented as Figure D-10.

### Minnelusa Formation

The Pennsylvanian- and Permian-age Minnelusa Formation consists of yellow to red, crossstratified sandstone, limestone, dolomite, and shale. The Minnelusa Aquifer occurs primarily in sandstone and anhydrite beds in the upper part of the formation (Williamson and Carter, 2001). Water in this aquifer moves from recharge areas radially outward from the Black Hills and to the northeast to discharge areas in eastern South Dakota (Figure D-6). It is confined above by the Opeche Shale and below by layers of lower permeability in the Minnelusa Formation.

The Minnelusa is referred to as an aquifer but is an oil and gas producer in the Dewey-Burdock area. Table D-2 and Figure D-11 present local water quality data from the USGS Produced Waters Database for the Minnelusa Formation that shows TDS concentrations in excess of 10,000 mg/l in the Dewey-Burdock area. In addition, this formation does not supply water to any local water wells. As such, it is not considered to be a USDW in the Dewey-Burdock area. Structure contour and isopach maps of the Minnelusa are included as Figures D-12 and D-13, respectively. A potentiometric surface map of the Minnelusa Formation is presented as Figure D-14.

It has been postulated that in the vicinity of the Black Hills, there may be communication between the Madison and Minnelusa Formations and even communication from the Minnelusa to the surface via breccia pipes. However, this communication is thought to occur near the outcrop in areas where these formations are near surface. These areas are located well to the north and east of the Project area and up-gradient in the system. Evidence of regional isolation is the contrast between water quality in the Madison and Minnelusa. There is no evidence to suggest that there is communication between these formations locally.

#### Minnekahta Formation

The Permian-age Minnekahta Limestone is a thin to medium-bedded, fine-grained, purple to gray laminated limestone, which ranges in thickness from 25 to 65 feet (Driscoll et al., 2002). The Minnekahta is considered a major aquifer in parts of the Black Hills area but does not supply any known water wells locally.

#### Unkpapa/Sundance Formation

The Sundance Formation consists of greenish-gray shale with thin limestone lenses; glauconitic sandstone, with red sandstone near the middle of the formation. The Sundance ranges from 250 to 450 feet thick (Carter et al., 2003). The Unkpapa Sandstone is a massive fine-grained sandstone, 0 to 225 feet thick (Carter et al., 2003). A potentiometric surface map of the Unkpapa is presented as

figure D-14a. The Unkpapa/Sundance is considered a minor aquifer in the area. Local water quality data from wells located within the Dewey-Burdock Project are presented in Table D-3.

#### Inyan Kara Group

Several sandstone units compose the lower Cretaceous aquifer, which is known as the Inyan Kara aquifer in South Dakota. These units are the Lakota and Fall River Formations and the Lakota is divided into the Chilson, Minnewaste, and Fuson Members. Some authors include the Minnewaste Limestone Member regionally, but it is not present below the project area. Generally, water in the Inyan Kara is confined by several thick shale layers of the Graneros Group (including the Skull Creek Shale), except in outcrop areas around structural uplifts, such as the Black Hills Uplift. Regionally, groundwater in the Inyan Kara moves from high-altitude recharge areas to discharge areas in eastern North Dakota and South Dakota. Although the aquifer is wide-spread, it contains little fresh water except in small areas in central and south-central Montana and north and east of the Black Hills uplift. Water in the Inyan Kara is saline in the deeper parts of the Williston and Powder River Basins (Driscoll et al., 2002). Table D-4 presents local water quality data from wells located within the Dewey-Burdock Project. A structure contour map of the Inyan Kara are included as Figure D-15. Isopach maps of each of the units that compose the Inyan Kara are included as Figure D-16, D-17, and D-18. A potentiometric surface map of the Fall River Aquifer is presented as Figure D-19.

Figure D-20 is a cross-section location map that shows A - A' (Figure D-21) and B - B' (Figure D-22) which show the vertical extent of the USDWs across the project area. The lowermost formations (Madison, Englewood, and Deadwood) are not shown due to the lack of deep well logs.

# TABLE D-1 Local Water Quality Data - Madison Formation

| Summary of Ma       | dison well data | a, Edgemont ci | ty water  |           |           |           |           |           |           |           |        |         |         |          |
|---------------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------|---------|---------|----------|
|                     |                 | Well ID        | BNR/TVA   | well 2    | well 4    | well 5    | TVA       | well 2    | well 4    | well 5    | Mean   | Minimum | Maximum | Std. Dev |
|                     |                 | Sample Date    | 11/6/2002 | 11/6/2002 | 11/6/2002 | 11/6/2002 | 5/23/2000 | 5/23/2000 | 5/23/2000 | 5/23/2000 |        |         |         |          |
| Component           |                 | units          |           |           |           |           |           |           |           |           |        | _       |         | L        |
| Physical properties |                 |                |           |           |           |           |           |           |           |           |        |         |         |          |
| Conductivity        | Cond.           | umhos/cm       | 1154      | 1671      | 1785      | 2140      | 1300      | 1700      | 1800      | 2300      | 1731.3 | 1154.0  | 2300.0  | 382.1    |
| Hardness            |                 |                | 406       | 503       | 528       | 580       | 410       | 460       | 500       | 560       | 493.4  | 406.0   | 580.0   | 64.3     |
| рН                  | рН              |                | 7.81      | 7.7       | 7.73      | 7.66      | 7.15      | 7.23      | 7.26      | 7.37      | 7.5    | 7.2     | 7.8     | 0.3      |
| TDS                 | TDS             | mg/L           | 726       | 1047      | 1101      | 1333      | 690       | 980       | 940       | 1000      | 977.1  | 690.0   | 1333.0  | 205.0    |
| TSS                 | TSS             | mg/L           |           |           |           |           |           |           |           |           |        |         |         |          |
| Turbidity           | Turbidity       | NTU            |           |           |           |           |           |           |           |           |        |         |         |          |
| Acidity             | Acidity         |                |           |           |           |           |           |           |           |           |        |         |         |          |
| Alkalinity          | CaCO3           |                | 188       | 181       | 182       | 180       | 170       | 160       | 160       | 170       | 173.9  | 160.0   | 188.0   | 10.5     |
| Carbonate           | CO3             | mg/L           |           |           |           |           |           |           |           |           |        |         |         |          |
| Bicarbonate         | HCO3            | mg/L           | 229       | 221       | 222       | 220       | 210       | 200       | 200       | 210       | 214.0  | 200.0   | 229.0   | 10.7     |
| Chloride            | CI              | mg/L           | 185       | 255       | 300       | 385       | 150       | 250       | 270       | 360       | 269.4  | 150.0   | 385.0   | 79.7     |
| Cyanide             | CN              | mg/L           |           |           |           |           |           |           |           |           |        |         |         |          |
| Flouride            | F               | mg/L           | 0.843     | 1.1       | 1.07      | 1.32      | 0.9       | 1.05      | 1.03      | 1.2       | 1.1    | 0.8     | 1.3     | 0.2      |
| Nitrogen, Ammonia   | NH3             | mg/L           |           |           |           |           |           |           |           |           |        |         |         |          |
| Nitrogen, Nitrate   | NO3             | mg/L           | 0.211     | 0.086     | 0.063     | <.05      | 0.15      | 0.16      | 0.16      | <.1       | 0.1    | 0.1     | 0.2     | 0.1      |
| Nitrogen, Nitrite   | NO2             | mg/L           |           |           |           |           | <.01      | <.01      | <.01      | <.01      |        | 0.0     | 0.0     | _        |
| Sulfate             | SO4             | mg/L           | 211       | 295       | 309       | 353       | 210       | 300       | 340       | 390       | 301.0  | 210.0   | 390.0   | 64.0     |
| Metals              |                 |                |           |           |           |           |           |           |           |           |        |         |         |          |
| Aluminum            | Al              | mg/L           |           |           |           |           |           |           |           |           |        |         |         |          |
| Arsenic             | As              | mg/L           | 0.006     | 0.01      | 0.01      | 0.008     |           |           |           |           | 0.0085 | 0.0     | 0.0     | 0.0019   |
| Calcium             | Са              | mg/L           | 115       | 150       | 156       | 175       | 100       | 120       | 130       | 140       | 135.8  | 100.0   | 175.0   | 24.4     |
| Iron                | Fe              | mg/L           | 0.05      | 0.091     | <.05      | 2.53      | < 0.05    | 0.09      | <.05      | 2.6       | 1.1    | 0.1     | 2.6     | 1.4      |
| Magnesium           | Mg              | mg/L           | 28.8      | 31.1      | 33.7      | 34.8      | 30        | 32        | 35        | 36        | 32.7   | 28.8    | 36.0    | 2.6      |
| Manganese           | Mn              | mg/L           | 0.05      | 0.05      | <.05      | <.05      | <.03      | <.03      | <.03      | 0.05      | 0.05   | 0.1     | 0.1     | 0.00     |
| Mercury             | Hg              | mg/L           |           |           |           |           |           |           |           |           |        |         |         |          |
| Lead                | Pb              | mg/L           |           |           |           |           |           |           |           |           |        |         |         |          |
| Molybdenum          | Мо              | mg/L           |           |           |           |           |           |           |           |           |        |         |         |          |
| Potassium           | к               | mg/L           | 10.6      | 17.3      | 17.9      | 23        | 12        | 19        | 20        | 24        | 18.0   | 10.6    | 24.0    | 4.7      |
| Selenium            | Se              |                |           |           |           |           |           |           |           |           |        |         |         |          |
| Sodium              | Na              | mg/L           | 86.9      | 161       | 174       | 228       | 88        | 150       | 170       | 200       | 157.2  | 86.9    | 228.0   | 49.4     |

Source: Summary of Madison well data, Edgemont city water http://www.sdgs.usd.edu/other/db.html

|            | Location |          |            | ion      |                    |            |           |               | Test l     | nterval       |            |
|------------|----------|----------|------------|----------|--------------------|------------|-----------|---------------|------------|---------------|------------|
|            |          |          |            |          |                    |            | Formation |               |            | Bottom        |            |
| API Number | Section  | Township | Range      | Latitude | Longitude          | County     | Sampled   | Sample Method | Top (feet) | (feet)        | TDS (mg/L) |
| 4003305005 | 34       | 6S       | 2E         | 43.48664 | -103.86925         | Custer     | Minnelusa | DST           | 1,338      | 1,375         | 18,814     |
| 4003305010 | 34       | 6S       | 2E         | 43.48814 | -103.86781         | Custer     | Minnelusa | Production    | 1,368      | 1,388         | 13,512     |
| 4003305010 | 34       | 6S       | 2E         | 43.48814 | -103.86781         | Custer     | Minnelusa | Wellhead      | 1,356      |               | 7,740      |
| 4003305015 | 34       | 6S       | 2E         | 43.49021 | -103.86926         | Custer     | Minnelusa | Separator     | 713        |               | 7,429      |
| 4003305035 | 30       | 5S       | 2E         | 43.58112 | -103.93146         | Custer     | Minnelusa | Bailer        | 845        | 851           | 4,288      |
| 4004705067 | 15       | 9S       | 2E         | 43.26232 | -103.87392         | Fall River | Minnelusa | DST           | 2,692      | 2,707         | 24,823     |
| 4004705067 | 15       | 9S       | 2E         | 43.26232 | -103.87392         | Fall River | Minnelusa | DST           | 2,692      | 2,707         | 24,422     |
| 4004705067 | 15       | 9S       | 2E         | 43.26232 | -103.87392         | Fall River | Minnelusa | WLT           | 2,230      | 2, <u>234</u> | 9,803      |
| 4004705089 | 21       | 7S       | 1E         | 43.42595 | -103.99711         | Fall River | Minnelusa | DST           | 2,390      | 2,400         | 21,391     |
| 4004705089 | 21       | 7S       | 1 <u>E</u> | 43.42595 | -1 <u>03.99711</u> | Fall River | Minnelusa | DST           | 2,390      | 2,400         | 17,279     |
| 4004705089 | 21       | 7S       | 1E         | 43.42595 | -103.99711         | Fall River | Minnelusa | DST           | 2,390      | 2,400         | 16,652     |
| 4004705092 | 21       | 7S       | 2E         | 43.42964 | -103.88318         | Fall River | Minnelusa | Unknown       | 1,415      | 1,4 <u>18</u> | 10,183     |
| 40000185   | 34       | 6S       | 2E         | 43.48480 | -103.86630         | Custer     | Minnelusa | Separator     | 713        |               | 7,427      |
| 40000183   | 34       | 6S       | 2E         | 43.48480 | -103.86630         | Custer     | Minnelusa | Separator     | 680        |               | 6,968      |

# TABLE D-2 Local Water Quality Data - Minnelusa Formation

-- - Data not provided.

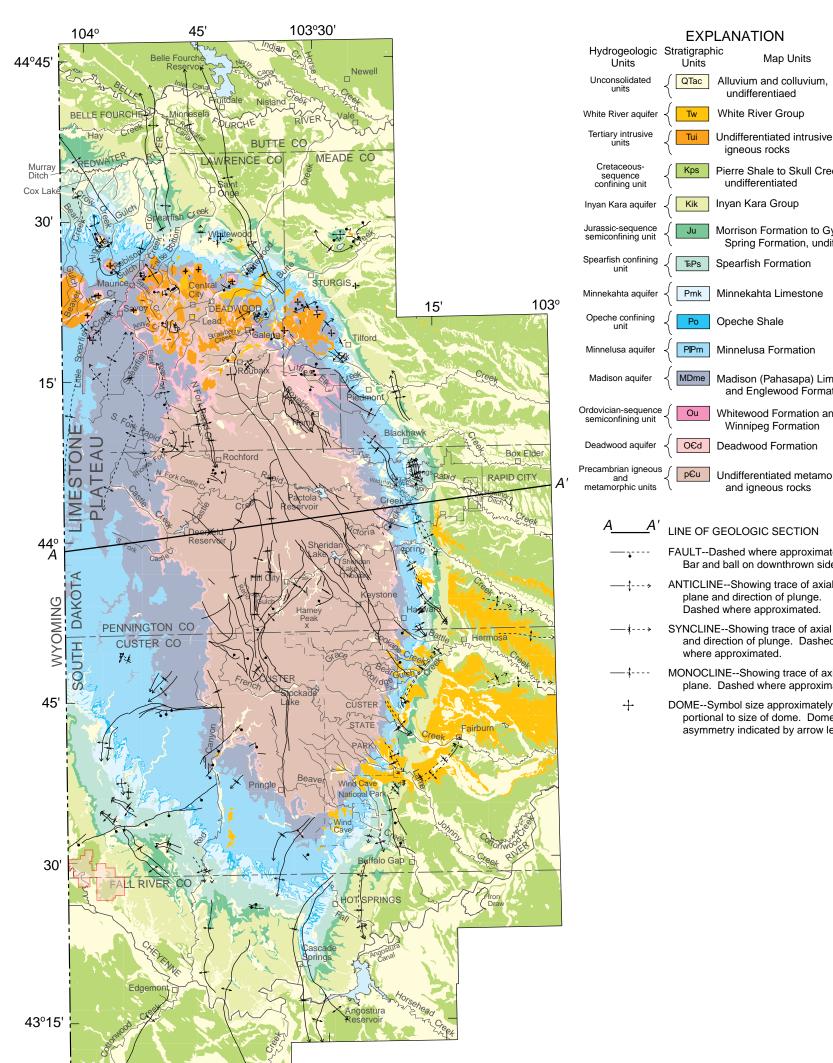
Shading indicates duplicate samples.

Source: USGS Produced waters Database; http://energy.cr.usgs.gov/prov/prodwat/data.htm

| Well #635                                           |               |               |               |                        |  |  |  |  |  |
|-----------------------------------------------------|---------------|---------------|---------------|------------------------|--|--|--|--|--|
| Analyte                                             | 9/26/07 18:08 | 11/27/07 8:25 | 2/10/08 14:55 | 4/29/08 19:00          |  |  |  |  |  |
| A/C Balance (± 5) (%)                               | -1.14         | -0.831        | -0.25         | 3.52                   |  |  |  |  |  |
| Alkalinity-Total as CaCO3 (mg/L)                    | 124           | 118           | 120           | 118                    |  |  |  |  |  |
| Aluminum-Dissolved (mg/L)                           | <0.1          | <0.1          | <0.1          | <0.1                   |  |  |  |  |  |
| Ammonia (mg/L)                                      | 0.1           | 0.4           | 0.5           | 0.5                    |  |  |  |  |  |
| Anions (meq/L)                                      | 30.4          | 31.6          | 33.7          | 32.8                   |  |  |  |  |  |
| Antimony-Total (mg/L)                               |               |               | < 0.003       | < 0.003                |  |  |  |  |  |
| Arsenic-Dissolved (mg/L)                            | < 0.001       | < 0.001       | <0.001        | <0.001                 |  |  |  |  |  |
| Arsenic-Total (mg/L)                                |               |               | <0.001        | 0.001                  |  |  |  |  |  |
| Barium-Dissolved (mg/L)                             | <0.1          | <0.1          | <0.1          | <0.1                   |  |  |  |  |  |
| Barium-Total (mg/L)                                 |               |               | <0.1          | <0.1                   |  |  |  |  |  |
| Beryllium-Total (mg/L)                              |               |               | <0.001        | <0.001                 |  |  |  |  |  |
| Bicarbonate as HCO3 (mg/L)                          | 151           | 144           | 146           | 144                    |  |  |  |  |  |
| Boron-Dissolved (mg/L)                              | 0.4           | 0.4           | 0.5           | 0.4                    |  |  |  |  |  |
| Boron-Total (mg/L)                                  |               |               | 0.5           | 0.4                    |  |  |  |  |  |
| Cadmium-Dissolved (mg/L)                            | < 0.005       | < 0.005       | < 0.005       | < 0.005                |  |  |  |  |  |
| Cadmium-Total (mg/L)                                |               |               | < 0.005       | < 0.005                |  |  |  |  |  |
| Calcium-Dissolved (mg/L)                            | 110           | 120           | 132           | 136                    |  |  |  |  |  |
| Carbonate as CO3 (mg/L)                             | <5            | <5            | <5            | <5                     |  |  |  |  |  |
| Cations (meq/L)                                     | 29.8          | 31.1          | 33.5          | 35.2                   |  |  |  |  |  |
| Chloride (mg/L)                                     | 20.0          | 23            | 26            | 20                     |  |  |  |  |  |
| Chromium-Dissolved (mg/L)                           | < 0.05        | <0.05         | <0.05         | < 0.05                 |  |  |  |  |  |
| Chromium-Total (mg/L)                               |               | 0.00          | <0.05         | < 0.05                 |  |  |  |  |  |
| Conductivity @ 25 C (umhos/cm)                      | 2890          | 2830          | 2950          | 2810                   |  |  |  |  |  |
| Copper-Dissolved (mg/L)                             | <0.01         | <0.01         | <0.01         | < 0.01                 |  |  |  |  |  |
| Copper-Total (mg/L)                                 | -0.01         | -0.01         | <0.01         | <0.01                  |  |  |  |  |  |
| Fluoride (mg/L)                                     | 0.3           | 0.3           | 0.4           | 0.4                    |  |  |  |  |  |
| Gross Alpha-Dissolved (pCi/L)                       | 2.5           | 4.4           | 14.8          | 13.2                   |  |  |  |  |  |
| Gross Beta-Dissolved (pCi/L)                        | 4.3           | 6.3           | 10            | -8                     |  |  |  |  |  |
| Gross Gamma-Dissolved (pCi/L)                       | 960           | 1000          | 91            |                        |  |  |  |  |  |
| Iron-Dissolved (mg/L)                               | <0.03         | <0.03         | <0.03         | <0.03                  |  |  |  |  |  |
| Iron-Total (mg/L)                                   | -0.00         | -0.00         | 1.11          | 1.08                   |  |  |  |  |  |
| Lead 210-Dissolved (pCi/L)                          | <1            | 1.7           | <1            | 1.00                   |  |  |  |  |  |
| Lead 210-Dissolved (pCi/L)                          | <1            | 5.1           | <1            | -9.6                   |  |  |  |  |  |
| Lead 210-Sdspended (pc#2)                           | <1            | 0.1           |               | -0.0                   |  |  |  |  |  |
| Lead-Dissolved (mg/L)                               | <0.001        | 0.003         | <0.001        | <0.001                 |  |  |  |  |  |
| Lead-Total (mg/L)                                   | ~0.001        | 0.000         | <0.001        | <0.001                 |  |  |  |  |  |
| Magnesium-Dissolved (mg/L)                          | 44.3          | 49            | 52.3          | 54.1                   |  |  |  |  |  |
| Magnesium-Dissolved (mg/L)                          | 0.06          | 0.07          | 0.06          | 0.06                   |  |  |  |  |  |
| Manganese-Total (mg/L)                              | 0.00          | 0.07          | 0.06          | 0.05                   |  |  |  |  |  |
| Manganese-Total (mg/L)<br>Mercury-Dissolved (mg/L)  | <0.001        | <0.001        | <0.001        | <0.001                 |  |  |  |  |  |
| Mercury-Dissolved (mg/L)<br>Mercury-Total (mg/L)    | <0.001        | <0.001        | <0.001        | <0.001                 |  |  |  |  |  |
| Mercury-Total (mg/L)<br>Molybdenum-Dissolved (mg/L) | <0.0002       | <0.001        | <0.1          | <0.01                  |  |  |  |  |  |
|                                                     | <0.1          | <u> </u>      | 0.01          | <0.1                   |  |  |  |  |  |
| Molybdenum-Total (mg/L)                             | <0.05         | <0.05         | <0.05         | <0.05                  |  |  |  |  |  |
| Nickel-Dissolved (mg/L)                             | <0.05         | <0.05         | <0.05         | <0.05                  |  |  |  |  |  |
| Nickel-Total (mg/L)                                 | -0.1          | <0.1          | <0.05         | <0.05                  |  |  |  |  |  |
| Nitrogen, Nitrate as N (mg/L)                       | <0.1          |               |               |                        |  |  |  |  |  |
| Nitrogen, Nitrite as N (mg/L)                       | <0.1          | <0.1          | <0.1<br>129.4 | <u>&lt;0.05</u><br>180 |  |  |  |  |  |
| Oxidation-Reduction Potential (mV)                  | 7 70          | 270           |               |                        |  |  |  |  |  |
| pH                                                  | 7.72          | 7.64          | 7.91          | 8.2                    |  |  |  |  |  |
| Polonium 210-Dissolved (pCi/L)                      | <1            | 1.9           | <1            | 1.1                    |  |  |  |  |  |
| Polonium 210-Suspended (pCi/L)                      | <1            | <1            | <1            |                        |  |  |  |  |  |
| Polonium 210-Total (pČi/L)                          | <1            |               |               |                        |  |  |  |  |  |
| Potassium-Dissolved (mg/L)                          | 7.8           | 8.3           | 8.2           | 7. <u>3</u>            |  |  |  |  |  |
| Radium 226-Dissolved (pCi/L)                        | 1.6           | 0.8           | 1.3           |                        |  |  |  |  |  |
| Radium 226-Suspended (pCi/L)                        | 0.8           | <0.2          | 0.6           | 0.3                    |  |  |  |  |  |

• •?

| Well #635                                 |               |               |               |               |  |  |  |  |
|-------------------------------------------|---------------|---------------|---------------|---------------|--|--|--|--|
| Analyte                                   | 9/26/07 18:08 | 11/27/07 8:25 | 2/10/08 14:55 | 4/29/08 19:00 |  |  |  |  |
| Radon 222-Total (pCi/L)                   |               | 902           | 806           | 1070          |  |  |  |  |
| Selenium-Dissolved (mg/L)                 | 0.001         | <0.001        | <0.001        | <0.001        |  |  |  |  |
| Selenium-IV-Dissolved (mg/L)              |               | 0.001         | <0.001        | <0.001        |  |  |  |  |
| Selenium-Total (mg/L)                     |               |               | <0.001        | 0.001         |  |  |  |  |
| Selenium-VI-Dissolved (mg/L)              |               | <0.001        | < 0.001       | <0.001        |  |  |  |  |
| Silica-Dissolved (mg/L)                   | 8.6           | 9             | 10            | 4.9           |  |  |  |  |
| Silver-Dissolved (mg/L)                   | < 0.005       | <0.005        | < 0.005       | < 0.005       |  |  |  |  |
| Silver-Total (mg/L)                       |               |               | < 0.005       | < 0.005       |  |  |  |  |
| Sodium Adsorption Ratio (SAR) (meq/L)     |               | 9.3           | 9.6           | 10            |  |  |  |  |
| Sodium-Dissolved (mg/L)                   | 470           | 480           | 515           | 545           |  |  |  |  |
| Solids-Total Dissolved Calculated (mg/L)  | 2040          | 2120          | 2270          | 2280          |  |  |  |  |
| Solids-Total Dissolved TDS @ 180 C (mg/L) | 2200          | 2300          | 2300          | 2200          |  |  |  |  |
| Strontium-Total (mg.L)                    |               |               | 4.2           | 4.6           |  |  |  |  |
| Sulfate (mg/L)                            | 1500          | 1370          | 1470          | 1430          |  |  |  |  |
| TDS Balance (0.80 - 1.20) (dec.%)         | 1.09          | 1.08          | 1.03          | 0.98          |  |  |  |  |
| Thallium-Total (mg/L)                     |               |               | < 0.001       | < 0.001       |  |  |  |  |
| Thorium 230-Dissolved (pCi/L)             | <0.2          | <0.2          | <0.2          | 0.2           |  |  |  |  |
| Thorium 230-Suspended (pCi/L)             | <0.2          | <0.2          | <0.2          | 0.1           |  |  |  |  |
| Thorium 230-Total (pCi/L)                 | <0.2          |               |               |               |  |  |  |  |
| Thorium 232-Dissolved (pCi/L)             | < 0.005       | <0.005        | <0.005        | < 0.005       |  |  |  |  |
| Uranium-Dissolved (mg/L)                  | 0.002         | 0.002         | 0.0021        | 0.0017        |  |  |  |  |
| Uranium-Suspended (mg/L)                  | < 0.0003      | < 0.0003      | < 0.0003      | < 0.0003      |  |  |  |  |
| Uranium-Total (mg/L)                      | 0.002         |               | 0.0021        | 0.0017        |  |  |  |  |
| Vanadium-Dissolved (mg/L)                 | <0.1          | <0.1          | <0.1          | <0.1          |  |  |  |  |
| Zinc-Dissolved (mg/L)                     | <0.01         | 0.02          | <0.01         | <0.01         |  |  |  |  |
| Zinc-Total (mg/L)                         |               |               | <0.01         | <0.01         |  |  |  |  |


#### TABLE D-3 Local Water Quality Data - Unkpapa/Sundance Formation

Source: Powertech 2008 Class III UIC Permit Application, Appendix F

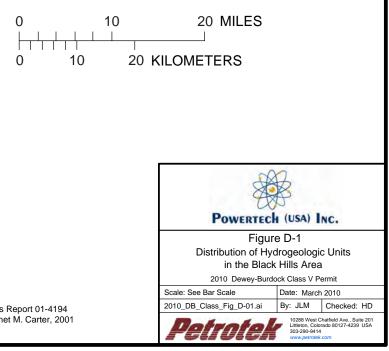
|                        |             | Me             | an      |         | Mini           | mum     |         | Max           | imum |      |
|------------------------|-------------|----------------|---------|---------|----------------|---------|---------|---------------|------|------|
| न्द्र                  | Well        | Powertech      | TVA     | RPD     | Powertech      | TVA     | RPD     | Powertech     | TVA  | RPD  |
| mg/l                   | 2           | 181            | 219     | 19%     | 88             | 200     | 78%     | 214           | 242  | 12%  |
|                        | 7           | 171            | 181     | 6%      | 170            | 171     | 1%      | 176           | 191  | 8%   |
| caco3,                 | 8           | 166            | 178     | 7%      | 156            | 166     | 6%      | 178           | 194  | 9%   |
| ပီ                     | 13          | 159            | 173     | 8%      | 142            | 160     | 12%     | 170           | 196  | 14%  |
|                        | 16          | 153            | 152     | 1%      | 148            | 144     | 3%      | 160           | 157  | 2%   |
| ح ا                    | 18          | 179            | 196     | 9%      | 172            | 180     | 5%      | 184           | 238  | 26%  |
| <u><u></u></u>         | 42          | 178            | 188     | 5%      | 174            | 179     | 3%      | 180           | 204  | 13%  |
| Alkalinity as          | 4002        | 140            | 158     | 12%     | 138            | 144     | 4%      | 144           | 202  | 34%  |
| A                      | 7002        | 261            | 261     | 0%      | 250            | 210     | 17%     | 280           | 300  | 7%   |
|                        | 2           | 2285           | 1547    | 39%     | 15 <u>00</u>   | 1450    | 3%      | 4400          | 1750 | 86%  |
| Conductivity, uS/cm    | 7           | 1542           | 1338    | 14%     | 1440           | 1325    | 8%      | 1650          | 1350 | 20%  |
| N/S                    | 8           | 1450           | 1385    | 5%      | 1420           | 1285    | 10%     | 1560          | 1450 | 7%   |
| 1.5                    | 13          | 1292           | 1274    | 1%      | 1140           | 1100    | 4%      | 1420          | 1400 | 1%   |
| Ľ.                     | 16          | 1063           | 1162    | 9%      | 925            | 1150    | 22%     | 1260          | 1175 | 7%   |
| Ċ,                     | 18          | 1412           | 1379    | 2%      | 1330           | 1300    | 2%      | 1470          | 1420 | 3%   |
| пр                     | 42          | 1408           | 1353    | 4%      | 1310           | 1200    | 9%      | 1510          | 1400 | 8%   |
| 5                      | 4002        | 1220           | 1161    | 5%      | 1130           | 1100    | 3%      | 1340          | 1195 | 11%  |
| ပ                      | 7002        | 2328           | 2339    | 0%      | 2200           | 1925    | 13%     | 2480          | 2500 | 1%   |
|                        | 2           | 7.91           | 7.7     | 3%      | 7.85           | 7.16    | 9%      | 7.94          | 8.2  | 3%   |
|                        | 7           | 8.11           | 8.5     | 5%      | 8.05           | 8.3     | 3%      | 8.17          | 8.7  | 6%   |
|                        | 8           | 7.95           | 7.87    | 1%      | 7.93           | 7.59    | 4%      | 7.97          | 8.5  | 6%   |
|                        | 13          | 7.9            | 7.76    | 2%      | 7.75           | 7.48    | 4%      | 8.05          | 8.1  | 1%   |
|                        | 16          | 7.46           | 7.34    | 2%      | 7.38           | 7.31    | 1%      | 7.57          | 7.39 | 2%   |
|                        | 18          | 8.08           | 7.94    | 2%      | 8.02           | 7.69    | 4%      | 8.11          | 8.4  | 4%   |
|                        | 42          | 8.02           | 7.94    | 1%      | 7.95           | 7.67    | 4%      | 8.08          | 8.4  | 4%   |
| Hd                     | 4002        | 7.83           | 7.75    | 1%      | 7.65           | 7.51    | 2%      | 8.02          | 8.5  | 6%   |
|                        | 7002        | 7.36           | 7.44    | 1%      | 7.22           | 7.14    | 1%      | 7.56          | 8    | 6%   |
| id.                    | 2           | 1750           | 1043    | 51%     | 1100           | 1004    | 9%      | 3600          | 1113 | 106% |
| <u></u>                | 7           | 999            | 1081    | 8%      | 896            | 1058    | 17%     | 1050          | 1104 | 5%   |
| <u></u>                | 8           | 1000           | 965     | 4%      | 940            | 860     | 9%      | 1100          | 1130 | 3%   |
| 2                      | 13          | 878            | 886     | 1%      | 850            | 792     | 7%      | 890           | 1006 | 12%  |
| ŝ                      | 16          | 814            | 846     | 4%      | 760            | 796     | 5%      | 940           | 894  | 5%   |
| Total Dissolved Solids | 18          | 958            | 909     | 5%      | 940            | 520     | 58%     | 990           | 1118 | 12%  |
| all                    | 42          | 950            | 939     | 1%      | 930            | 888     | 5%      | 980           | 1033 | 5%   |
| of I                   | 4002        | 818            | 773     | 6%      | 790            | 740     | 7%      | 850           | 805  | 5%   |
| -                      | 7002        | 1875           | 1843    | 2%      | 1800           | 1690    | 6%      | 1900          | 1970 | 4%   |
| RPI                    | D (Relative | Percent Differ | ence) = | = The a | bsolute differ | ence di | vided b | y the average |      |      |

Source: Table 2.7-45: Comparison of Statistics for Selected Constituents between Historic TVA Data and current Powertech Data (2009 Powertech NRC Application)





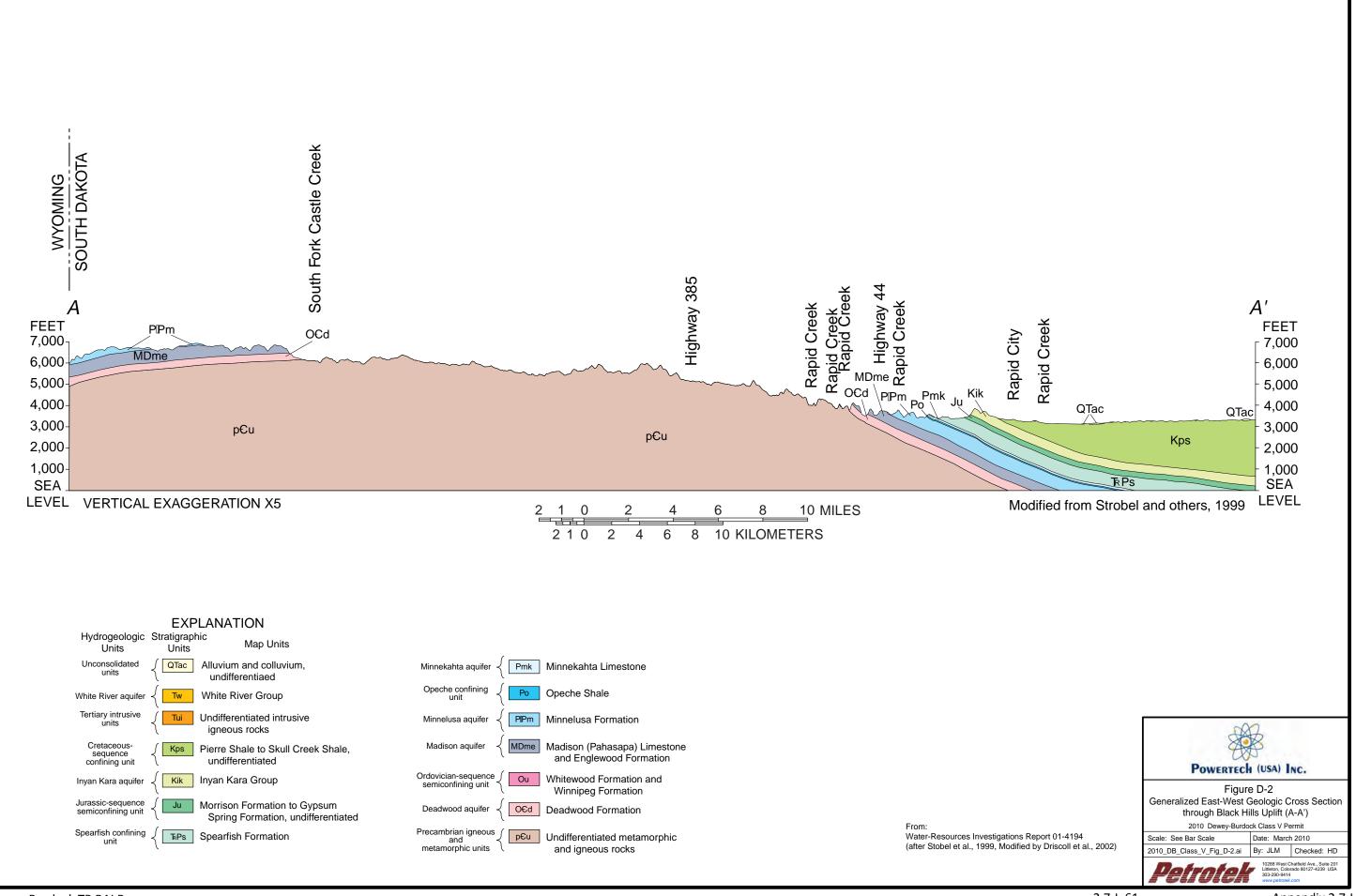
Alluvium and colluvium, undifferentiaed White River Group


Pierre Shale to Skull Creek Shale, undifferentiated Inyan Kara Group Morrison Formation to Gypsum Spring Formation, undifferentiated Spearfish Formation Minnekahta Limestone **Opeche Shale** Minnelusa Formation Madison (Pahasapa) Limestone and Englewood Formation Whitewood Formation and Winnipeg Formation **Deadwood Formation** Undifferentiated metamorphic and igneous rocks A\_\_\_\_A' LINE OF GEOLOGIC SECTION FAULT--Dashed where approximated. Bar and ball on downthrown side. ANTICLINE -- Showing trace of axial plane and direction of plunge. Dashed where approximated. SYNCLINE--Showing trace of axial plane and direction of plunge. Dashed

MONOCLINE--Showing trace of axial plane. Dashed where approximated.

DOME--Symbol size approximately proportional to size of dome. Dome asymmetry indicated by arrow length.

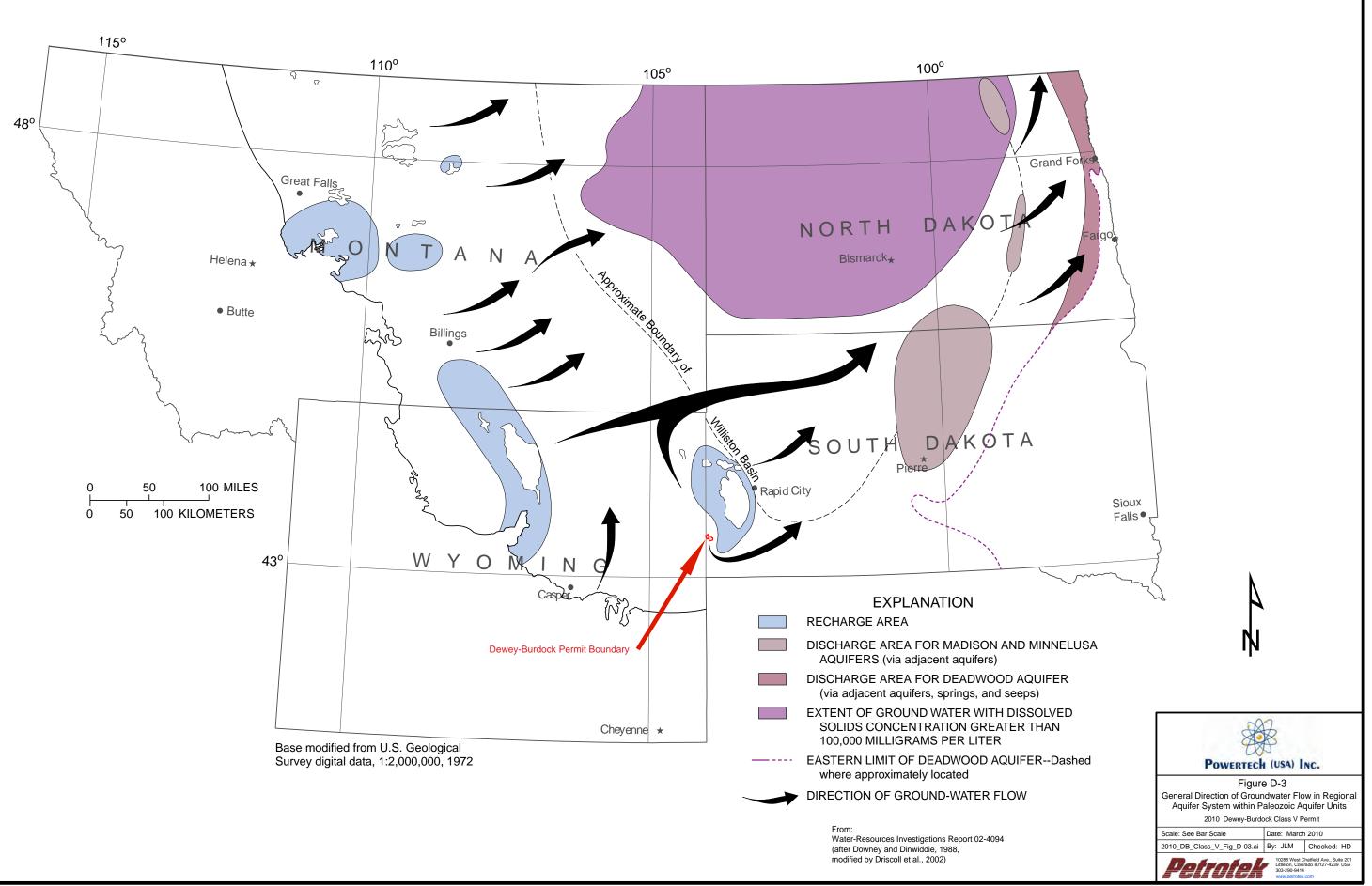



Base modified from U.S. Geological Survey digital data, 1:100,000 Rapid City, Office of City Engineer map, 1:18,000, 1996 Universal Transverse Mercator projection, zone 13



# 2.7-L-60

Dewey-Burdock Permit Boundary


From: Water-Resources Investigations Report 01-4194 by Joyce E. Williamson and Janet M. Carter, 2001



Dewey-Burdock TR RAI Responses June 2011

2.7-L-61

Appendix 2.7-L



Dewey-Burdock TR RAI Responses June 2011

Appendix 2.7-L