APPENDIX 6.1-A

Drawdown Inyan Kara

ANALYTICAL DRAWDOWN IMPACT ANALYSIS OF THE INYAN KARA AQUIFER DEWEY-BURDOCK URANIUM PROJECT, FALL RIVER AND CUSTER COUNTIES, SOUTH DAKOTA

Topical Report RSI-2174

prepared for

Powertech (USA) Inc. 310 2nd Avenue Edgemont, South Dakota 57735

November 2010

ANALYTICAL DRAWDOWN IMPACT ANALYSIS OF THE INYAN KARA AQUIFER DEWEY-BURDOCK URANIUM PROJECT, FALL RIVER AND CUSTER COUNTIES, SOUTH DAKOTA

Topical Report RSI-2174

by

Crystal M. Hocking

RESPEC
P.O. Box 725
Rapid City, South Dakota 57709

prepared for

Powertech (USA) Inc. 310 2nd Avenue Edgemont, South Dakota 57735

November 2010

TABLE OF CONTENTS

1.0	INT	'RODUCTION	1
2.0	DR	AWDOWN PREDICTION METHODS	2
	2.1	PREDICTION APPLICATIONS	2
		2.1.1 Application 1	2
		2.1.2 Application 2	3
	2.2	AQUIFER PROPERTIES	3
	2.3	PUMPING RATES	3
3.0	LAI	KOTA AQUIFER DRAWDOWN PREDICTIONS	6
	3.1	APPLICATION 1	6
	3.2	APPLICATION 2	6
	3.3	APPLICATION COMPARISON	7
4.0	FAI	LL RIVER AQUIFER PREDICTIONS	8
	4.1	APPLICATION 1	8
	4.2	APPLICATION 2	8
5.0	SUI	MMARY AND CONCLUSIONS	10
6.0	REI	FERENCES	11
AP	PEN	DIX A. MAPS	A-1
AP]	PEN	DIX B. APPLICATION 1: U.S. GEOLOGICAL SURVEY SPREADSHEET DRAWDOWN PREDICTIONS	B-1
AP	PEN.	DIX C. APPLICATION 2: AQTESOLV DRAWDOWN CURVES BY AQUIFER PROPERTY SCENARIO (20 GALLONS PER MINUTE PUMPING RATE)	C-1
AP]	PEN	DIX D. APPLICATION VARIABLE RATE AND DURATION DRAWDOWN PREDICTIONS	D-1
AP	PEN:	DIX E. APPLICATION 1 AND 2 COMPARISONS (20 GALLONS PER MINUTE PUMPING RATE)	E-1

LIST OF TABLES

TABLE		PAGE
2-1	Transmissivity and Storativity Values Used in Drawdown Predictions	4
2-2	Relative Quantities of Water by Site and Aquifer	4
3-1	Well # 13 Drawdown Comparison of Results in Environmental Report (ER) Versus Current Investigation	6
4-1	Well # 18 Drawdown Comparison of Results in Environmental Report Versus Current Investigation	8
B-1	Burdock Well Field (Lakota Aquifer) Drawdown Estimates for Select Wells (All Values in Feet)	B-2
D-1	Burdock Well Field Drawdown Estimates for Select Lakota Aquifer Wells Using Scenario 1 Aquifer Properties (All Values in Feet)	D-2
D-2	Dewey Well Field Drawdown Estimates for Select Lakota Aquifer Wells Using Scenario 5 Aquifer Properties (All Values in Feet)	D-2

LIST OF FIGURES

FIGURI	E	PAGE
2-1	Comparison of Predicted Drawdown With One Versus Ten Pumped Wells in a Wellfield	5
A-1	Location of Lakota Wells Used in Drawdown Predictions	A-2
A-2	Location of Fall River Wells Used in Drawdown Predictions	A-3
C-1	Lakota Aquifer Drawdown Predictions for Nearby Wells Based on Aquifer Properties From Scenario 1	C-2
C-2	Lakota Aquifer Drawdown Predictions for Nearby Wells Based on Aquifer Properties From Scenario 2	C-3
C-3	Lakota Aquifer Drawdown Predictions for Nearby Wells Based on Aquifer Properties From Scenario 3	C-4
C-4	Fall River Aquifer Drawdown Predictions for Nearby Wells Based on Aquifer Properties From Scenario 4	C-5
C-5	Fall River Aquifer Drawdown Predictions for Nearby Wells Based on Aquifer Properties From Scenario 5	C-6
E-1	Application Drawdown Comparison for Well # 13	E-2
E-2	Application Drawdown Comparison for Well # 96	E-2
E-3	Application Drawdown Comparison for Well # 7002	E-3
E-4	Application Drawdown Comparison for Well # 7	E-3
E-5	Application Drawdown Comparison for Well # 42	E-4
E-6	Application Drawdown Comparison for Well # 622	E-4

1.0 INTRODUCTION

Calculations were conducted to estimate the drawdown impacts to the Inyan Kara Aquifer in the vicinity of the Dewey-Burdock in situ recovery project. These analytical calculations were prepared to supplement existing drawdown calculations.

This report is organized to optimize available information and understanding of the potential drawdown impacts. Chapter 2.0 provides information on the methods used to predict drawdown. Chapters 3.0 and 4.0 provide results of calculations for the Lakota Aquifer and the Fall River Aquifer, respectively. Conclusions are provided in Chapter 5.0 with references in Chapter 6.0. Information contained in other interrelated reports are referenced as appropriate.

2.0 DRAWDOWN PREDICTION METHODS

2.1 PREDICTION APPLICATIONS

Drawdown predictions for both the Lakota and Fall River Aquifers were calculated using two different applications, all using the Theis analytical solution for confined aquifers. Assumptions of the Theis solution (as presented in Powertech [2009a]) include:

- The aquifer is homogeneous and isotropic.
- The aquifer is confined with uniform thickness and has an infinite extent.
- No recharge to the aquifer occurs.
- The pumping well is fully penetrating and receives water from the full thickness of the formation.
- All water removed from the well comes from aquifer storage which is released instantaneously when the head is lowered.
- The piezometric surface is horizontal before pumping.
- The well is pumped at a constant rate.
- The pumping well diameter is small so wellbore storage is negligible.

Using both applications, drawdown was predicted at 22 Inyan Kara wells, 11 in each the Lakota and Fall River Aquifers. The locations of these wells are presented in Appendix A. These wells were chosen for their spatial distribution across the project site with special emphasis on selecting domestic water supply wells. Additional information about these wells is available in Appendix 2.2-A of the NRC Technical Report (TR) [Powertech, 2009b].

2.1.1 Application 1

The first application used in this study involves a simple calculation of drawdown using the Theis equation in a spreadsheet developed by the U.S. Geological Survey (USGS) [Halford and Kuniansky, 2002]; this method was used in the drawdown calculations provided to the Nuclear Regulatory Commission (NRC) in the Environmental Report (ER) Section 4.6.2.6 [Powertech, 2009a]. As in the ER, the outcrop was assumed to be a straight-line barrier boundary and was modeled with "image" pumping wells. The location of this barrier boundary is slightly shifted and rotated from the original calculations to best represent the outcrop locations across the site. Original outcrop boundaries follow more closely just the outcrop at the north end of the project area. The locations of the outcrop barrier boundaries are shown in Figures A-1 and A-2 in Appendix A. The Lakota boundary in this study is about 3,400 feet east of the Fall River boundary, compared to a 4,000-foot offset in the calculation used in the ER Section 4.6.2.6 [Powertech, 2009a].

This spreadsheet application was used for the purpose of mimicking the process used in drawdown estimates already presented in the NRC permit application. However, this method of analysis is limited and time consuming. The spreadsheet is not capable of rapidly predicting drawdown versus time curves in situations where multiple barrier boundaries and multiple pumping wells are present. For this reason, a second predictive application was chosen.

2.1.2 Application 2

The second application involved predicting drawdown using Theis' equation in AQTESOLV, Version 4.0 [HydroSOLVE, 2006], a software program used for analysis of aquifer tests. Final calculations in AQTESOLV used the same input information with the exception that both the outcrop and the Dewey Fault served as barrier boundaries. Most available hydrogeologic information indicates that the Dewey Fault acts as a barrier boundary to groundwater flow in the Inyan Kara Aquifers (Boggs [1983]; Powertech [2009b]). As a result of the fault boundary, predicted drawdown values would be more representative of actual conditions. Note that for this study, the barrier boundary along the Dewey Fault had to be rotated a few degrees from the exact fault orientation as AQTESOLV requires two barrier boundaries be orthogonal to one another.

2.2 AQUIFER PROPERTIES

Aquifer properties used in these calculations mirror those used in the ER. Transmissivity and storativity values were derived from aquifer tests conducted in 1979, 1982, and 2008. Values used in this analysis are provided in Table 2-1. These values represent the median (2008 tests) and average (1979 and 1982 tests) properties obtained from multiple observation wells; for a complete description of these tests and associated aquifer properties please refer to Tennessee Valley Authority (TVA) reports [Boggs and Jenkins, 1980], Boggs, 1983, and Powertech, 2009b]. Applications 1 and 2 calculate estimated drawdown using each of these aquifer property scenarios at pumping rates of 20 gallons per minute (gpm). Application 2 calculations done with higher pumping rates used only aquifer properties listed under Scenario 1 and 5 (Table 2-1), as these values are believed to be the most representative of the aquifer in proximity of proposed mining operations.

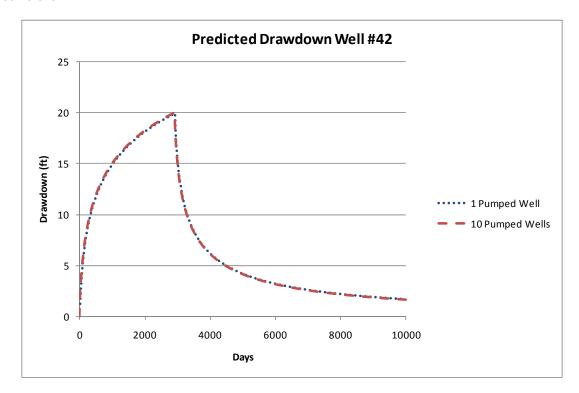
2.3 PUMPING RATES

Based on water consumption estimates, 99 percent of Inyan Kara water usage near Burdock will be derived from the Lakota Aquifer (Table 2-2). Near Dewey, about 75 percent of the Inyan Kara water usage will be derived from the Fall River Aquifer. For simplification, it is assumed that all pumping in the Lakota Aquifer occurs at the site of the May 2008 pump tests at the Burdock site, and pumping in the Fall River Aquifer occurs at the site of the May 2008 pump tests at the Dewey site. As a result of this simplifying assumption, predicted drawdown values

for Lakota Aquifer wells may be slightly lower than expected, while predicted impacts to Fall River Aquifer wells will be conservatively higher.

Table 2-1. Transmissivity and Storativity Values Used in Drawdown Predictions

Scenario No.	Date/Conductor	Transmissivity (ft²/day)	Storativity (ft/ft)								
Lakota Aquifer Tests											
1	1979–TVA	190	1.8×10 ⁻⁴								
2	1982–TVA	590	1.0×10 ⁻⁴								
3	2008–Powertech	150 1.2×10 ⁻⁴									
	Fall River Aquifer Tests										
4	1979–TVA	54	1.4×10 ⁻⁵								
5	2008–Powertech	255	4.6 ×10 ⁻⁵								


Table 2-2. Relative Quantities of Water by Site and Aquifer

T4	TT*4	Lako	ta	Fall R	liver	Total					
Item	Units	Value	%	Value	%	Value	%				
Based on Number of Production Wells (PWs)											
Burdock	PWs	880	98.9	10	1.1	890	100.0				
Dewey	PWs	153	27.9	395	72.1	548	100.0				
Project Total	PWs	1,033	71.8	405	28.2	1,438	100.0				
		Aver	rage Water	· Usage							
Burdock			99.0		1.0		100.0				
Dewey			25.3		74.7		100.0				

In the AOTESOLV application, real-world coordinates for observation wells were used as input. To represent the initial well fields, a single pumping well was also used in this application; however, actual operating procedures will involve the extraction from a number of evenly distributed wells over the entire area of a wellfield (about 2,000 to 3,000 acres). In an effort to determine the effect that a single pumping well versus the multiple wells in a wellfield would have on drawdown values, a calculation was also ran where ten randomly placed wells would pump a total of 20 gpm. Preliminary data indicate that drawdown results at nearby domestic

wells are at such a distance that the use of a single pumping well is sufficient to model a well field (Figure 2-1). Values for single versus multiple pumped wells were typically \pm 0.3 feet. Note this simplifying assumption would not be adequate to determine drawdown in or within close proximity of an active well field.

RSI-1853-10-073

Figure 2-1. Comparison of Predicted Drawdown With One Versus Ten Pumped Wells in a Wellfield.

For calculations described under Application 1, the median bleed case of 1 percent of 2,000 gpm (20 gpm) was used. For Application 2 impact calculations, the bleed case was varied. For the Lakota Aquifer, impact calculations in this study were prepared for wellfield pumping rates of 20, 60, and 120 gpm cases. For the Fall River Aquifer, calculations were prepared for pumping rates of 20, 40, and 60 gpm.

Calculations for Application 1 were done for an active pumping period of 8 years. Application 2 calculations are performed for an active pumping period of 8, 14, and 20 years. It is anticipated that active mining will occur for 8 to 14 years. A time frame of 20 years was also included as restoration activities may be ongoing until that time as well as the fact that water rights permits are assigned on a 20-year basis. If operations were to continue longer than 20 years, drawdown impacts would need to be reevaluated in the future.

3.0 LAKOTA AQUIFER DRAWDOWN PREDICTIONS

3.1 APPLICATION 1

Drawdown estimates for 11 Lakota aquifer wells in the Dewey-Burdock area, based on the Theis spreadsheet analysis, are presented in Table B-1 of Appendix B. Distances from the pumping well range from 6,765 feet (Well # 619) to 32,075 feet (Well # 96).

Predicted drawdown values are greatest at wells closest to the pumping well and for the scenario using the 2008 pumping test aquifer properties (highest transmissivity). The highest drawdown value predicted at the end of 8 years of pumping is 18.3 feet (Well #16). The furthest well (# 96) has a maximum predicted drawdown of 7.6 feet.

In the ER Section 4.6.2.6, drawdown was predicted for only the nearest Lakota domestic well (# 13) at 8 years' time and using Application 1. Comparisons of results from the ER Section 4.6.2.6 [Powertech, 2009a] to results from this analysis are provided in Table 3-1. Results from this investigation are within about 10 percent of those from the previous investigation. Deviations are the result of differences in placement of the barrier boundary (outcrop) line. This comparison demonstrates that these drawdown predictions are consistent with those derived from previous investigations.

Table 3-1. Well # 13 Drawdown Comparison of Results in Environmental Report (ER) Versus Current Investigation

Test	ER	Current Investigation
1979	9.5 ft	10.4 ft
1982	4.9 ft	5.1 ft
2008	12.6 ft	13.9 ft

3.2 APPLICATION 2

A single drawdown-versus-time plot was generated for each set of aquifer properties using a 20 gpm pumping rate and period of 8 years (Figures C-1 to C-3 of Appendix C). The maximum drawdown values for all wells (other than the pumping well) are between 5 and 25 feet at 8 years of pumping 20 gpm.

The maximum predicted drawdown values for each of the selected wells at the specified time intervals and pumping rates are provided in Appendix D. Generally, predicted drawdown

values increase with increases to the pumping rate and increased time of pumping. The maximum predicted drawdown values for the Lakota Aquifer occur after 20 years of pumping 120 gpm and are between 97 and 130 feet (Appendix D).

The most noticeable drawdown differences between applications are observed at wells closest to the Dewey Fault, notably Wells # 96 and # 615. The maximum drawdown observed on the AOTESOLV plots at these two wells in particular is about double the value calculated by Application 1. For example, the drawdown calculated using Application 1 with the 1979 aquifer test properties is 5.5 feet compared to about 10.1 feet. These differences indicate the simulation of the Dewey Fault as a barrier boundary does impact drawdown predictions, primarily increasing predicted drawdown at wells closest to the fault.

3.3 APPLICATION COMPARISON

For comparison of Applications 1 and 2, drawdown from three wells from each the Lakota and Fall River Aquifers were calculated using both the USGS spreadsheet and AQTESOLV (with and without the Dewey-Fault as a barrier boundary). The comparison results are all for a pumping rate of 20 gpm for a period of 8 years. Comparison graphs provided in Appendix E indicate that the USGS spreadsheet and AQTESOLV solution, both without the fault boundary, are nearly identical, as expected. Under similar pumping conditions and aquifer properties, predicted drawdown values from this calculation method are typically 25 to 100 percent greater than those determined from Application 1 (see Appendix E). Wells furthest from the fault show the least difference in drawdown, while wells closest to the fault have the greatest difference.

4.0 FALL RIVER AQUIFER PREDICTIONS

4.1 APPLICATION 1

Drawdown estimates for 11 Fall River Aquifer wells in the Dewey-Burdock area, based on the Theis spreadsheet analysis, are presented in Table B-2 of Appendix B. Distances from the pumping well range from 4,870 feet (Well # 695) to 29,710 feet (Well # 8).

Predicted drawdown values are greatest at wells closest to the pumping well and for the scenario using the 1979 pumping test aquifer properties (highest transmissivity). The highest drawdown value of 58.6 feet is predicted to occur at Well 695 after 8 years of pumping. The furthest well (#8) has a maximum predicted drawdown of 35.6 feet.

In the ER, drawdown was predicted for only the nearest domestic well (# 18). Comparisons of results from the ER to results from this analysis are provided in Table 4-1. Results from this investigation are within about 10 percent of those from the previous investigation. Deviations are the result of differences in placement of the barrier boundary (outcrop) line. This comparison demonstrates that these drawdown predictions are consistent with those derived from previous investigations [Powertech, 2009b].

Table 4-1. Well # 18 Drawdown Comparison of Results in Environmental Report Versus Current Investigation

Test Year	ER	Current Investigation		
1979	42.8 ft	43.8 ft		
2008	9.9 ft	10.1 ft		

4.2 APPLICATION 2

A single drawdown-versus-time plot was generated for each set of aquifer properties using a 20 gpm pumping rate and period of 8 years (Figures C-4 and C-5 of Appendix C). The maximum drawdown values for all wells (other than the pumping well), at a pumping rate of 20 gpm for a period of 8 years, are between 50 and 100 feet using the 1979 aquifer test properties and between 10 and 22 feet using the 2008 aquifer test properties. The significant range in predicted drawdown is the result of heterogeneities in the Dewey-Burdock area. It is important to note that the 1979 test was conducted near Burdock while the 2008 test was conducted near Dewey, the site of the first proposed mine units. For this reason, the drawdown results using

aquifer properties from the 2008 Fall River test are more representative of anticipated results from mining in that area.

The maximum predicted drawdown values for each of the selected wells at the specified time intervals and pumping rates are provided in Appendix D. Generally, predicted drawdown values increase with increases to the pumping rate and increased time of pumping. The maximum predicted drawdown values for the Fall River Aquifer occur after 20 years of pumping 60 gpm and are between 55 and 80 feet (Appendix D).

Predicted drawdown values from the AQTESOLV calculation are typically 50 to 100 percent greater to those determined from Application 1 (see Appendix D). Unlike the calculations conducted for a Lakota wellfield near Burdock, the Fall River wellfield is much closer to the Dewey Fault barrier boundary, and hence, the effects of that boundary are much more apparent and play a greater role in increasing the amount of drawdown. Drawdown at wells closest to the fault are impacted the greatest by the fault boundary. Well # 622, for instance, is the closest well to the fault. Although Well # 622 is almost twice the distance from the pumping well as Well # 695, in less than a year's time and continuing through 8 years of pumping, it has a slightly greater drawdown than Well # 695 (Figure C-4 and Figure C-5 in Appendix C).

5.0 SUMMARY AND CONCLUSIONS

Analytical drawdown calculations were conducted using aquifer property values obtained from different aquifer pump tests. Predictions made from the USGS spreadsheet and in AQTESOLV with the use of only the outcrop boundary are comparable to previous calculations and indicate this study was conducted similarly. However, results from the AQTESOLV analysis indicate that the Dewey Fault barrier boundary does have significant impacts on drawdown calculations for wells in the project vicinity.

According to criteria for granting a water permit as set forth in South Dakota Codified Law) SDCL 46-2A-9, a proposed diversion will be approved only if it can be developed without unlawfully impairing existing rights. Existing Inyan Kara water rights (of which there are none in the immediate project area or vicinity) and domestic wells are protected from adverse impacts per rules SDCL 4:02:04 and 74:02:05; these rules provide that an adverse impact or impairment is one such that it inhibits the wells ability to produce water independent of artesian pressure. In other words, if water levels in the Inyan Kara Aquifer decline and the pump level can be lowered to below the top of the aquifer and still have the ability to produce water, the well is not considered impaired. In accordance with SDCL 46-1-4 and board-adopted findings, an increase in operating cost or decrease in production is not considered an adverse impact.

The maximum predicted drawdown within the Lakota Aquifer (Scenario 1 aquifer properties) occurs after 20 years of pumping 120 gpm with drawdown values between 77 and 130 feet. The maximum predicted drawdown within the Fall River Aquifer (Scenario 5 aquifer properties) occurs after 20 years of pumping 60 gpm with drawdown values between 55 and 80 feet. At the locality of existing wells, a maximum decrease of potentiometric head of 130 feet would not lower the water table below the top of the aquifer, and hence, these predicted drawdown values indicate any existing water use would not be lawfully impaired.

6.0 REFERENCES

Boggs, J. M. and A. M. Jenkins, 1980. Analysis of Aquifer Tests Conducted at the Proposed Burdock Uranium Mine Site, Burdock, South Dakota, Report No. WR28-1-520-109, prepared by the Tennessee Valley Authority.

Boggs, J. M., 1983. *Hydrogeologic Investigations at Proposed Uranium Mine Near Dewey*, *South Dakota*, Report No. WR28-520-128, prepared by the Tennessee Valley Authority.

Halford, K. J. and E. L. Kuniansky, 2002. Documentation of Spreadsheets for the Analysis of Aquifer-test and Slug-test Data, U.S. Geological Survey Open File Report 02-197.

HydroSolve, Inc., 2006. AQTESOLV, prepared by HydroSolve, Inc., Reston, VA.

Powertech, 2009a. Dewey-Burdock Project Application for NRC Uranium Recovery License Fall River and Custer Counties, South Dakota, environmental report, prepared by Powertech (USA) Inc., Denver, CO, for U.S. Nuclear Regulatory Commission, Rockville, MD.

Powertech, 2009b. Dewey-Burdock Project Application for NRC Uranium Recovery License Fall River and Custer Counties, South Dakota, technical report, prepared by Powertech (USA) Inc., Denver, CO, for U.S. Nuclear Regulatory Commission, Rockville, MD.

APPENDIX A MAPS

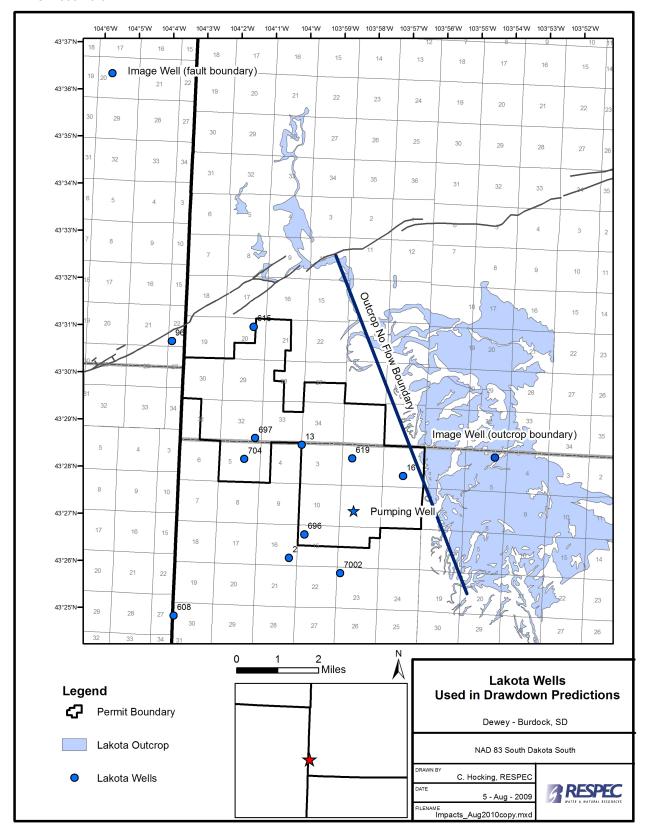


Figure A-1. Location of Lakota Wells Used in Drawdown Predictions.

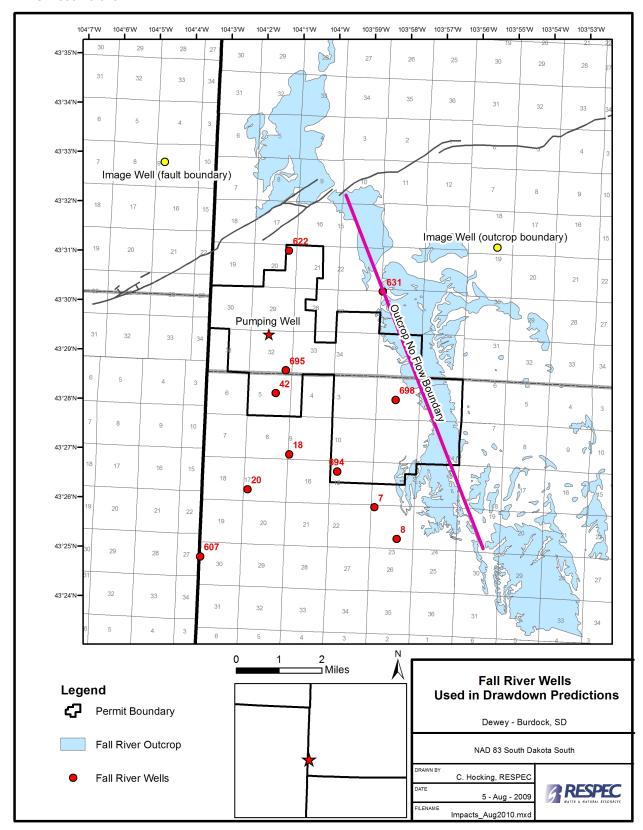


Figure A-2. Location of Fall River Wells Used in Drawdown Predictions.

APPENDIX B

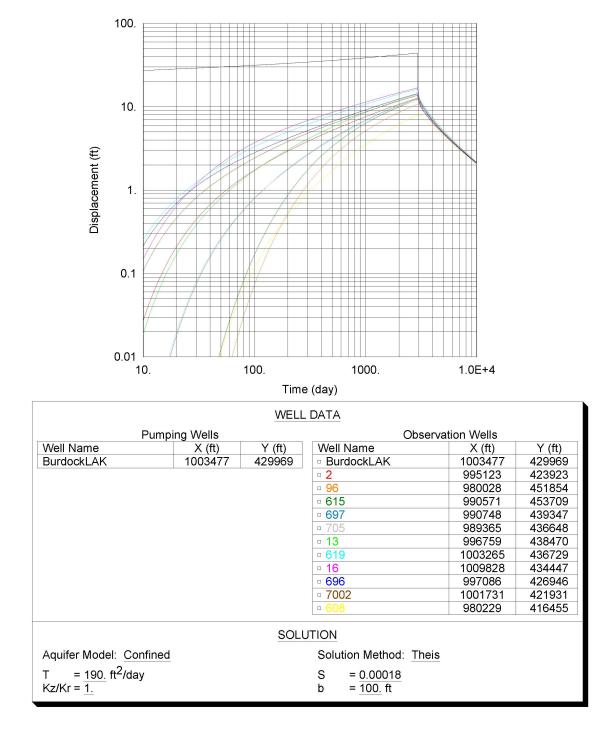
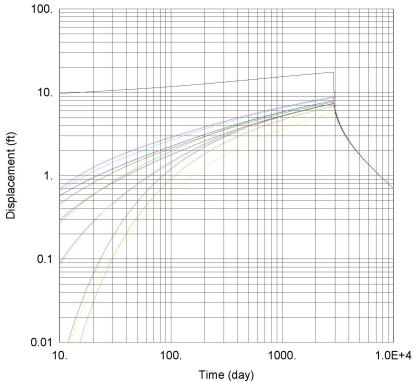

APPLICATION 1: U.S. GEOLOGICAL SURVEY SPREADSHEET DRAWDOWN PREDICTIONS

Table B-1. Burdock Well Field (Lakota Aquifer) Drawdown Estimates for Select Wells (All Values in Feet)


G						,	Well No	•				
Scenario		2	13	16	96	608	615	619	696	697	705	7002
	1 yr	4.3	4.4	7.4	0.9	1.2	1.5	6.6	5.6	3.0	2.9	5.3
	$2~{ m yrs}$	6.1	6.3	9.5	2.0	2.4	2.9	8.7	7.5	4.7	4.6	7.2
	$3\mathrm{yrs}$	7.2	7.4	10.8	2.9	3.3	3.9	9.9	8.7	5.8	5.7	8.4
1	$4~{ m yrs}$	8.1	8.3	11.7	3.6	4.0	4.7	10.8	9.6	6.6	6.5	9.3
1	$5\mathrm{yrs}$	8.8	9.0	12.4	4.2	4.6	5.3	11.5	10.3	7.3	7.2	10.0
	$6\mathrm{yrs}$	9.3	9.5	13.0	4.7	5.1	5.8	12.1	10.8	7.8	7.7	10.6
	7 yrs 9.8 10.0 13.5 5.1 5.5	5.5	6.2	12.6	11.3	8.3	8.2	11.0				
	8 yrs	10.2	10.4	13.9	5.5	5.9	6.6	13.0	11.7	8.7	8.6	11.4
	1 yr	2.9	3.0	4.1	1.4	1.6	1.8	3.8	3.4	2.4	2.4	3.3
	$2\mathrm{yrs}$	3.6	3.7	4.8	2.1	2.2	2.5	4.5	4.1	3.1	3.1	4.0
	3 yrs	4.0	4.1	5.2	2.5	2.6	2.9	5.0	4.5	3.5	3.5	4.4
9	4 yrs	4.3	4.4	5.5	2.8	2.9	3.2	5.2	4.8	3.8	3.8	4.7
2	5 yrs	4.6	4.6	5.8	3.0	3.1	3.4	5.5	5.1	4.1	4.0	5.0
	6 yrs	4.7	4.8	6.0	3.2	3.3	3.6	5.7	5.2	4.3	4.2	5.2
	7 yrs	4.9	5.0	6.1	3.3	3.5	3.7	5.8	5.4	4.4	4.4	5.3
	8 yrs	5.0	5.1	6.3	3.5	3.6	3.9	6.0	5.5	4.5	2.9 4.6 5.7 6.5 7.2 7.7 8.2 8.6 2.4 3.1 3.5 3.8 4.0 4.2	5.5
	1 yr	5.9	6.1	10.0	1.4	1.8	2.2	9.0	7.7	4.2	4.2	7.3
	$2~{ m yrs}$	8.3	8.5	12.7	3.0	3.5	4.2	11.7	10.2	6.5	6.4	9.8
	$3\mathrm{yrs}$	9.8	10.1	14.3	4.2	4.7	5.5	13.2	11.7	7.9	7.8	11.3
0	4 yrs	10.9	11.2	15.5	5.1	5.6	6.5	14.4	12.8	9.0	8.9	12.4
3	5 yrs	11.8	12.0	16.4	5.9	6.4	7.3	15.3	13.7	9.9	9.8	13.3
	6 yrs	12.5	12.7	17.1	6.5	7.1	8.0	16.0	14.4	10.6	10.5	14.0
	7 yrs	13.1	13.4	17.8	7.1	7.6	8.5	16.6	15.0	11.2	11.1	14.6
	8 yrs	13.6	13.9	18.3	7.6	8.1	9.1	17.2	15.5	11.7	11.6	15.2

APPENDIX C

APPLICATION 2: AQTESOLV DRAWDOWN CURVES BY AQUIFER PROPERTY SCENARIO (20 GALLONS PER MINUTE PUMPING RATE)

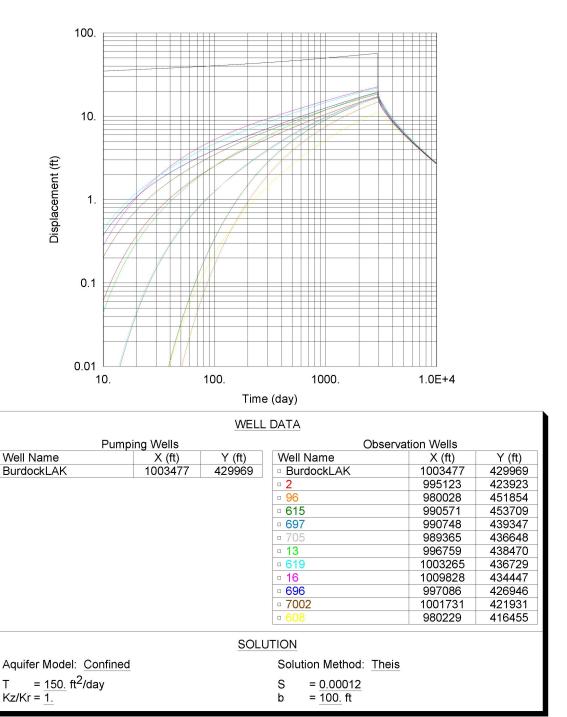
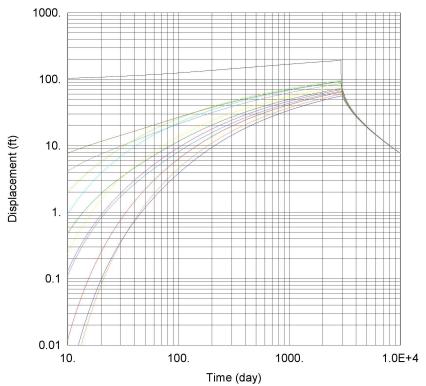


Figure C-1. Lakota Aquifer Drawdown Predictions for Nearby Wells Based on Aquifer Properties From Scenario 1 (1979 TVA Pump Test).



Vells X (ft) Y (ft) 03477 429969	Observa Well Name BurdockLAK 2 96 615 697 705	x (ft) 1003477 995123 980028 990571 990748 989365	Y (ft) 429969 423923 451854 453709 439347 436648							
	BurdockLAK 2 96 615 697	1003477 995123 980028 990571 990748 989365	429969 423923 451854 453709 439347							
03477 429969	296615697705	995123 980028 990571 990748 989365	423923 451854 453709 439347							
	96615697705	980028 990571 990748 989365	451854 453709 439347							
	615697705	990571 990748 989365	453709 439347							
	□ 697 □ 705	990748 989365	439347							
	- 705	989365								
			436648							
	- 12									
	4 3	996759	438470							
	- 619	1003265	436729							
	- 16	1009828	434447							
	- 696	997086	426946							
	- 7002	1001731	421931							
	- 608	980229	416455							
SOLUTION										
	Solution Method: Theis									
	S = 0.0001 b = 100 ft									
	SOLI	□ 16 □ 696 □ 7002 □ 608 SOLUTION Solution Method: Theis	□ 16							

Figure C-2. Lakota Aquifer Drawdown Predictions for Nearby Wells Based on Aquifer Properties From Scenario 2 (1982 TVA Pump Test).

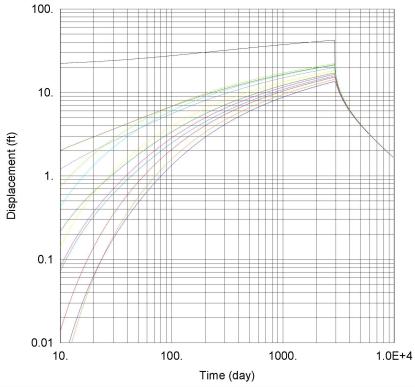


Figure C-3. Lakota Aquifer Drawdown Predictions for Nearby Wells Based on Aquifer Properties From Scenario 3 (2008 Powertech Pump Test).

WELL DATA											
Pumpi	ng Wells		Obser	vation Wells							
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)						
DeweyFR	988728	443725	DeweyFR	988728	443725						
			- 7	1001703	422417						
			- 8	1004451	418515						
			□ 18	991211	428960						
			- 20	986071	424628						
			· 42	989543	436481						
			□ 607	980219	416378						
			622	991175	454034						
			- 631	1002734	448993						
			- 694	997116	426836						
			· 695	990783	439313						
			□ 698	1004308	435651						
SOLUTION											
Aquifer Model: Confined			Solution Method: Theis								
T = 54. ft ² /day			S = 1.4E-5								
$Kz/Kr = \frac{34.}{1.}$			b = $\frac{1.42.8}{100. \text{ ft}}$								
_											

Figure C-4. Fall River Aquifer Drawdown Predictions for Nearby Wells Based on Aquifer Properties From Scenario 4 (1979 TVA Pump Test).

		1 11113	e (day)								
WELL DATA											
Pumpi	ing Wells		Obser	vation Wells							
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)						
DeweyFR	988728	443725	DeweyFR	988728	443725						
			- 7	1001703	422417						
			- 8	1004451	418515						
			□ 18	991211	428960						
			- 20	986071	424628						
			- 42	989543	436481						
			□ 607	980219	416378						
			- 622	991175	454034						
			- 631	1002734	448993						
			□ 694	997116	426836						
			□ 695	990783	439313						
			□ 698	1004308	435651						
SOLUTION											
Aquifer Model: Confined			Solution Method: Theis								
T = 255. ft ² /day			S = 4.6E-5								
Kz/Kr = 1.			$b = \frac{4.02-5}{100. \text{ ft}}$								
1.			5 <u>150.</u> It								

Figure C-5. Fall River Aquifer Drawdown Predictions for Nearby Wells Based on Aquifer Properties From Scenario 5 (2008 Powertech Pump Test).

APPENDIX D

APPLICATION VARIABLE RATE AND DURATION DRAWDOWN PREDICTIONS

Table D-1. Burdock Well Field Drawdown Estimates for Select Lakota Aquifer Wells Using Scenario 1 Aquifer Properties (All Values in Feet)

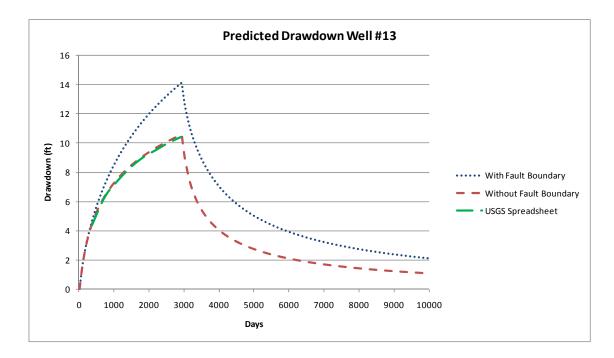
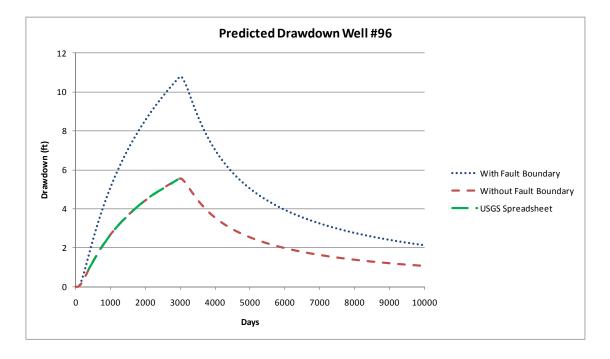

D.	37					,	Well No	·				
Rate	Year	2	13	16	96	608	615	619	696	697	705	7002
	8	12.6	14.1	16.8	10.7	7.9	12.1	16.3	14.4	12.4	12.1	13.7
20	14	15.8	17.4	20.1	13.9	10.8	15.5	19.6	17.5	15.7	15.3	16.8
	20	17.9	19.6	22.2	16.1	12.9	17.7	21.7	19.6	17.9	17.5	18.9
	8	37.9	42.4	50.5	32.0	23.7	36.4	48.9	43.1	37.3	36.3	41.1
60	14	47.3	52.2	60.2	41.8	32.5	46.4	58.7	52.6	47.1	46.0	50.4
	20	53.6	58.7	66.6	48.3	38.6	53.0	65.2	58.9	53.6	52.4	56.6
	8	75.9	84.8	100.9	64.0	47.5	72.7	97.8	86.2	74.6	72.6	82.1
120	14	94.6	104.4	120.3	83.6	65.0	92.8	117.4	105.2	94.2	92.0	100.7
	20	107.1	117.4	133.2	96.6	77.1	106.0	130.3	117.8	107.1	104.9	113.2

Table D-2. Dewey Well Field Drawdown Estimates for Select Fall River Aquifer Wells Using Scenario 5 Aquifer Properties (All Values in Feet)

Rate	Year	Well No.										
		7	8	18	20	42	607	622	631	694	695	698
20	8	15.2	14.3	17.1	15.7	19.9	13.5	22.1	21.2	16.5	21.4	18.3
	14	17.9	16.9	19.8	18.4	22.6	16.2	24.8	23.9	19.1	24.1	20.9
	20	19.6	18.6	21.5	20.0	24.3	17.8	26.5	25.6	20.8	25.8	22.6
40	8	30.5	28.6	34.3	31.4	39.9	27.1	44.3	42.4	32.9	42.9	36.6
	14	35.8	33.9	39.6	36.7	45.2	32.3	49.6	47.8	38.2	48.2	41.9
	20	39.1	37.2	43.0	40.1	48.6	35.7	53.0	51.2	41.6	51.6	45.3
60	8	45.7	42.9	51.4	47.2	59.8	40.6	66.4	63.6	49.4	64.3	54.9
	14	53.6	50.8	59.4	55.1	67.8	48.5	74.4	71.6	57.3	72.3	62.8
	20	58.7	55.8	64.4	60.1	72.9	53.5	79.5	76.8	62.4	77.4	67.9


APPENDIX E

APPLICATION 1 AND 2 COMPARISONS (20 GALLONS PER MINUTE PUMPING RATE)

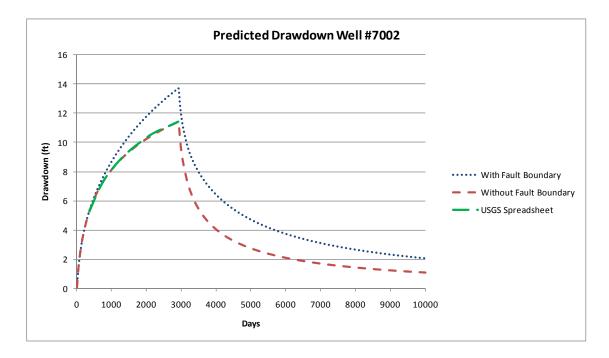


Figure E-1. Application Drawdown Comparison for Well # 13. Lakota Aquifer properties same as Scenario 1.

RSI-1853-10-082

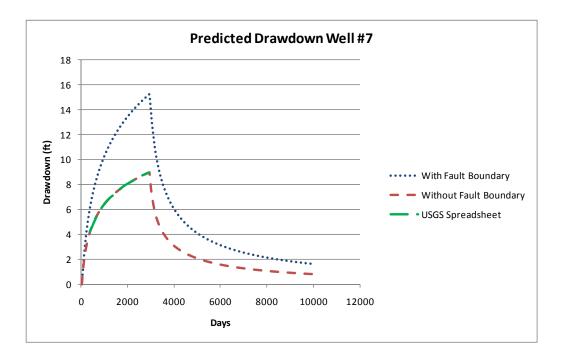


Figure E-2. Application Drawdown Comparison for Well # 96. Lakota Aquifer properties same as Scenario 1.

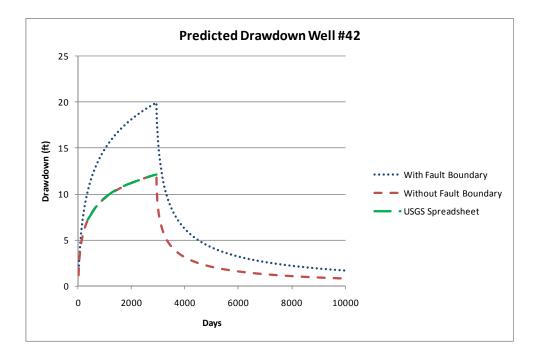


Figure E-3. Application Drawdown Comparison for Well # 7002. Lakota Aquifer properties same as Scenario 1.

RSI-1853-10-084

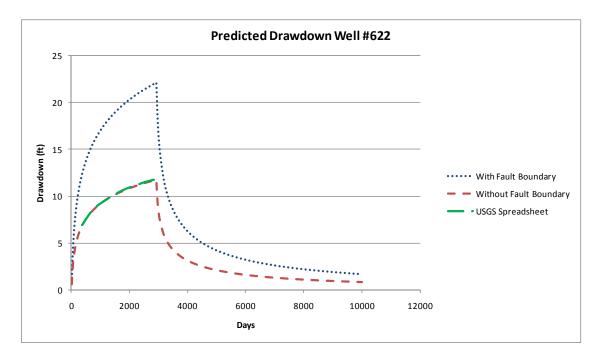


Figure E-4. Application Drawdown Comparison for Well # 7. Fall River Aquifer properties same as Scenario 5.

Figure E-5. Application Drawdown Comparison for Well # 42. Fall River Aquifer properties same as Scenario 5.

RSI-1853-10-086

Figure E-6. Application Drawdown Comparison for Well # 622. Fall River Aquifer properties same as Scenario 5.

APPENDIX 6.6-A

Financial Assurance Estimate

Dewey-Burdock Project Financial Assurance - Appendix 6.6-A Table of Contents

	Page
Table of Contents	2
Summary of Costs By Year, Deep Well Disposal Option	3
Summary of Costs By Year, Land Application Option	4
Notation	5
Table 1: Assumptions	6
Table 2: Unit Costs	9
O&M during Aquifer Restoration	10
Table 3: Operating and Maintenance Costs	12
Table 4: Capital Equipment	16
Table 5: Chemicals	17
Table 6: Byproduct Disposal	18
Table 7: Monitoring	19
Table 8: Well Field Reclamation	20
Table 9: Site Demolition	22
Table 10: Survey	26
Table 11: Labor	27
Table 12: Management	28
Table 13: Impoundments	29
Table 14: Well Field Pipe Removal	30

Summary of Costs by Year Dewey-Burdock Project Powertech (USA), Inc.

				Powertecn	(00/4), inc.				
)e	we	y-Burdock - Restoration and	Reclamati	on Costs - D	eep Well Di	sposal Opti	on		
		Project Year		2	3	4	5	6	Total
		Operation Phase	Construction	Production	Restoration +	- Stability	Decommi	ssioning	
		Production (lbs U3O8)	-	1,000,000	2,588	-	-	-	
О.	Des	cription							
1	Fac	ility Decommissioning							
	Α	Salvageable Equipment					121,000	121,000	242,000
		Non-salvageable bldg. & equipment							
	В	disposal					355,040	355,040	710,080
	С	11e.(2) byproduct material disposal			4,400		231,105	231,105	466,609
	D	Restore contaminated areas						570,300	570,300
2	O&I	M - Aquifer restoration and stability monitor	ing						-
	Α	Method: RO treatment with permeate inje	ction		448,937	448,937			897,873
		Method: groundwater sweep with Madison injection							
3	We	I field reclamation							-
	Α	Well plugging & closure					375,650	375,650	751,300
		Remove surface equipment & reclaim					487,525	487,525	975,050
4		liological Survey				İ	·	10,300	10,300
5	Pro	ect Management Costs & Miscellaneous			268,400	242,300	229,500	228,500	968,700
_	_	or incl. 35% overhead + 10% contractor pr	ofit		534,000	398,000	270,000	135,000	1,337,000
7	Cor	tingency @ 15%			188,360	163,385	310,473	377,163	1,039,382
		al Financial Assurance Amount	-	-	1,444,097	1,252,622	2,380,293	2,891,583	7,968,594

Summary of Costs by Year Dewey-Burdock Project Powertech (USA), Inc.

De	wey	/-Burdock - Restoration an	d Reclama	tion Costs -	Land Applica	ation Option	า		
		Project Year		2	3	4	5	6	Total
		Operation Phase	Construction	Production	Restoration+	stability	Decommis	ssioning	
		Production (lbs U3O8)	-	1,000,000	2,588	-	-	-	
١о.	Desc	cription							
1	Facil	lity Decommissioning							
	Α	Salvageable Equipment					121,000	121,000	242,000
		Non-salvageable bldg. & equipment disposal					561,790	561,790	1,123,580
	С	11e.(2) Byproduct material disposal			4,400		261,716	261,716	527,831
	D	Restore contaminated areas						1,429,100	1,429,100
2	O&N	/I - Aquifer restoration and stability moni	toring						
	Α	Method: RO treatment with permeate	injection						
		Method: groundwater sweep with Madison injection			277,850	277,850			555,700
3	Well	field reclamation							-
	Α	Well plugging & closure					375,650	375,650	751,300
	В	Remove surface equipment & reclaim					487,525	487,525	975,050
4	Radi	iological Survey						24,400	24,400
5		ect Management Costs & cellaneous			268,400	242,300	229,500	228,500	968,700
6	Labo	or incl. 35% overhead + 10% contractor	profit		534,000	398,000	270,000	135,000	1,337,000
7		tingency @ 15%			162,698	137,723	346,077	543,702	1,190,199
		Il Financial Assurance Amount	-	-	1,247,348	1,055,873	2,653,258	4,168,383	9,124,861

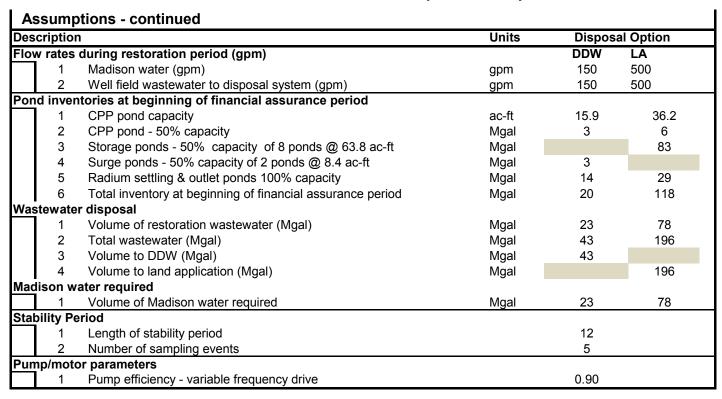
Notation)	
	Abbrev.	Definition
	ac	acres
	ac-ft	acre-feet
	BSW	baseline sampling well
	CF	cubic feet
	CPP	Central Processing Plant
	CY	cubic yards
	d	days
	DDW	deep disposal well
	est.	estimated
	ft	feet
	ft ³	cubic feet
	gpm	US gallons/minute
	HH	header house
	IMW	internal monitor wells
	IW	injection wells
	IX	ion exchange
	kgal	thousand gallons
	kW	kiloWatt
	kWh	kiloWatt-hour
	L	liter
	LA 	land application
	lb	pounds mass
	lf	linear foot
	M#	million pounds
	MET	meteorological
	mg Mgal	milligrams million gallons
	Mgal MW	monitor wells
	MWh	megaWatt-hour
	PMW	perimeter monitor wells
	ppm	parts per million
	PV	pore volumes
	PW	production wells
	RC	restoration composite
	R/T	round trips
	SF	Satellite Facility
	TDH	total dynamic head
	U3O8	uranium oxide product
	WF	well field
	у	year
	•	<i>-</i>

Assumptions Dewey-Burdock Project

Table 1: Assumptions

Dewey-Burdock Project Powertech USA, Inc.

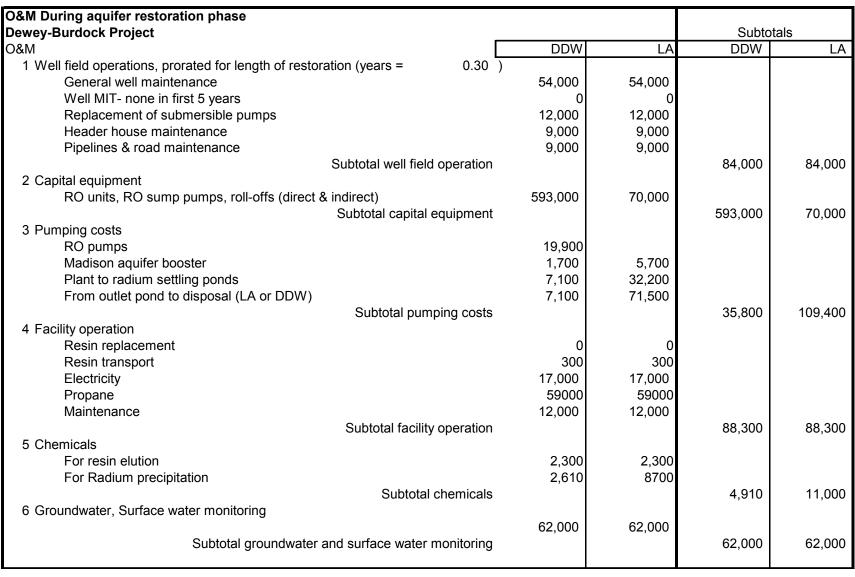
Des	cription		Quantity	Units
Proc	ducton p	hase parameters		
	1	Production objective	1,000,000	lb/y U3O8
		Ore zone mass per unit area (Total resource/total ore body area)	1.59	lb/sq ft
	3	ISR recovery efficiency	0.75	
	4	Ore body area in active ISR (1Mlb/y U3O8/0.75/(1.59 lb/ft ²)	836,050	sq. ft
	5	Ratio of actual pattern area/ ore body area	1.04	
	6	Active ISR wellfield area	869,493	sq ft
	7	Active ISR wellfield area	20.0	acres
	8	Area per 70' x 70' pattern, mean	4,450	sq ft/pattern
	9	Design flow rate of production composite	4000	gpm
	10	Design flow rate of production composite per production well	20	gpm
	11	Mean grade of extracted water (ppm U3O8) (design)	60	mg/L U3O8
	12	Number of online patterns to meet production goal (active area/(area/pattern))	195	patterns
	13	Ratio of injection wells to production wells (design)	2.1	IJ/PW
	14	Number of online injection wells required to meet objective	411	IW
	15	Number of online production wells per header house (design)	18	PW/HH
	16	Number of HH required to meet production objective (PW/18)	11	HH
	17	Number of perimeter monitor wells in Burdock WF#1 and Dewey WF#1	70	PMW
	19	Number of overlying internal mon. wels in active production zone @ 1 per 4 ac.	5	MW
	20	Number of underlying internal monitor wells in active prod. zone @ 1 per 8 ac.	2	MW
	21	Total number of active internal monitor wells in Burd. WF#1 and Dew. WF#1	7	Int. MWs;
	22	Number of internal monitor wells per HH	1	Int. MW/HH
	24	Baseline sampling wells in active production area (1 per 4 acres)	5	BSW
	26	Length of large (10' wide) pipeline trench	10,000	ft
	28	Length of medium (5' wide) pipeline trench	5,050	ft
	30	Length of small (2' wide) pipeline trench	2,000	ft
Sun	nmary of	active wells for production phase		
	1	Production wells	195	PW
	2	Injection wells	411	IW
	3	Perimeter ring wells	70	PMW
	4	Internal monitor wells	7	IMW
	5	Baseline sampling wells	5	BSW
	6	Header houses	11	HH
	7	Total # monitor wells per 1MM lb/y produced during production	77	MW
	8	WF access roads	17,000	ft



Assumptions Dewey-Burdock Project

As	sumpt	ions - continued		
Des	cription		Quantity	Units
Wel	l field ed	quipment in place at end of 1st year production		
	1	Total wells to be plugged & abandoned	683	wells
	2	Wellhead covers to be heated during aquifer restoration (PW + IW + MW)	683	wells
	3	Header houses	11	HH
	4	Overhead electric lines	101,000	ft
	5	Facility access roads (24') (Burd 7,975 ft., Dew 8,550 ft.)	16,525	ft
	6	Well field access roads (12') (Burd 11076 ft., Dew 11,710 ft.)	22,786	ft
Ger	eral aqu	ifer restoraton assumptions		
	1	Restoration flow rate	500	gpm
	2	Restoration operating days	365	day/y
	3	Ore zone porosity	0.30	
	4	Ore zone thickness	4.6	ft
	5	Flare factor, volumetric	1.44	
	6	Pore volumes required for restoration	6.0	PV
Res	toration	parameters		
	1	Pore volume affected in year 1 = (ore body area/1M pounds U3O8 recovered) x thickness x porosity x flare factor	12,924,359	gallons/M# recovered
	2	Total volume restoration composite, including excess wellfield area, for 6 PV	77,546,156	gallons
	3	Months to restore a pattern (6 PV @ 20 gpm)	0.5	month
	4	Years to restore aquifer for 1M lbs of U3O8 recovered (total vol RC/500 gpm)	0.30	years
Wel	l pluggi	ng parameters		,
	1 1	Mean well depth (Inj., Prod., Monitoring) (Burd450', Dew600')	525	ft
	2	Inside diameter	4.91	inch
	3	Volume per foot (for plugging)	0.131	ft ³ /ft
	4	Volume to be plugged per well	69	ft ³
Pipe	ı eline dis			-
	1	HDPE pipe density, SG	0.95	
	2	Void volume in chipped pipe	10%	
Pon	nd solids	• • • • • • • • • • • • • • • • • • • •		
	1	Addition rate of barium chloride to restoration composite	20	mg/L
	2	Percent solids	40%	Č
	3	Specific gravity	1.4	
	4	Pond sludge density	87.2	lb/CF

Assumptions Dewey-Burdock Project



Unit Costs Dewey-Burdock Project

Unit Costs Cost factors presented here and elsewhere in this Appendix are from vendor quotes, from the 2009 RS Means cost estimating handbooks, from recent ISR license applications, and from calculations as described. **Energy costs** Unit Price Electrical power \$/kWh 0.07 \$/gal 2.15 Propane 2 Chemical Costs unit \$/unit Hydrogen peroxide - 50% solution 0.30 lb Sulfuric acid - 93% lb 0.135 Sodium hydroxide - 50% solution lb 0.145 Sodium chloride lb 0.09 Sodium carbonate lb 0.135 Barium chloride dihydrate lb 0.67 3 Well plugging costs Cost of plugging mix. \$/CF 9.00 Cost of plugging cement per well \$/well 621.29 Contract labor w/ equipment, 4 crew-hr/well @ \$125/hr \$/well 500.00 Total plugging cost per well \$/well 1121.29 4 11e.(2) byproduct material disposal cost Transportation to White Mesa, UT (785 miles 1-way) @ \$3.55/loaded \$/CY 140 mile + \$1.85/unloaded mile for 30 CY load 11e.(2) disposal fee, soil-like material \$/CY 150 11e.(2) disposal fee, equipment \$/CY 150 5 Pipeline removal cost Excavation & pipe removal - from Table 14 0.533 Pipelines ≥ 8" \$/(ft-pipe) Pipelines ≥ 3"-6" @ 50% rate of large pipe \$/(ft-pipe) 0.267 well field pipelines 1"-2" @ 25% rate of large pipe \$/(ft-pipe) 0.133 Pond disposal \$/(ft²-liner) Liner removal and shredding 0.05 \$/CF 0.15 Pipe chipping

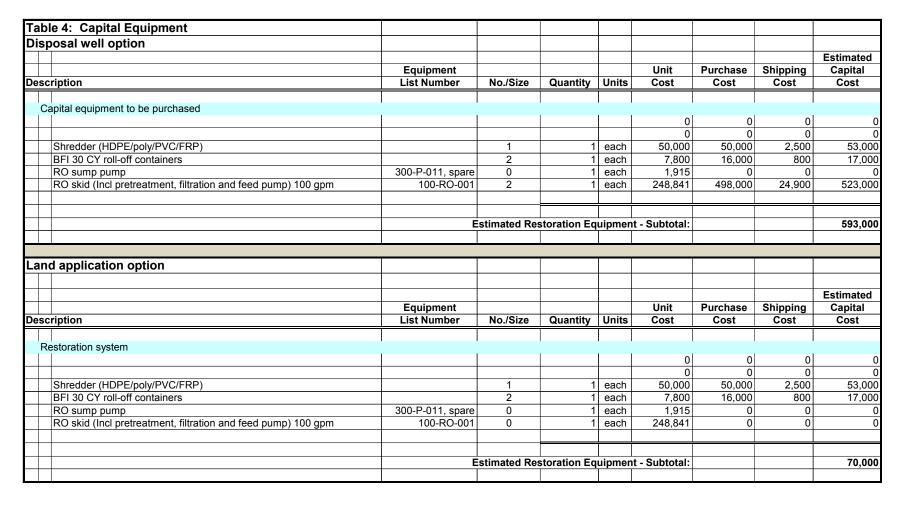
Operation and Maintenance during Aquifer Restoration Dewey-Burdock Project

Operation and Maintenance during Aquifer Restoration Dewey-Burdock Project

O&M During aquifer restoration phase					
Dewey-Burdock Project				Subto	tals
		DDW	LA	DDW	LA
7 Disposal well					
Electricity		20,000			
Maintenance		9,863			
	Subtotal disposal well			29,863	-
8 Land application system					
Electricity			96,000		
Maintenance			35,000		
	Subtotal land application system			-	131,000
Total O&M for aquifer restoration	Totals	897,873	555,700	897,873	555,700
		DDW	LA	DDW	LA

able	3: O	perating and maintenance costs					
ewev-l	Burd	lock Project					
		USA), Inc.					
			Number	Quantity	Units	Rate	Cost (\$/yr)
		field costs during aquifer restoration assuming continuous 365-day/y operation	1				
We		per well)					
		eneral well maintenance	1	1	lump sum	300	300
		ell Mechanical Integrity Testing (every 5 yr)	1	0			C
	Ele	ectric utilities:					
		Well head heaters (0.5 kW, 8 hr/day, 180 days/yr)	1	720	kWh	0.070	50
Но	ador	houses (per HH)					
116		ow meter maintenance (2 @ \$50 ea.) per HH	2	1	ea	50	100
	_	eplacement pressure gauges/switches	20	1	ea	50	1,000
		quip. maintenance (@ 2% of new equipment capital)	1	80.000	%	0.02	1.600
		Subtotal maintenance		,			2,700
	Ele	ectric utilities:					,
		Bldg. heating (5 kw, 180 days/yr)	1	22.000	kWh	0.070	1,500
		Instrumentation (1 kw)	1	9,000	kWh	0.070	600
		Subtotal power		-,			2,100
We	ellfiel	d maintenance					
	# Pr	oduction (extraction) wells		195	prod wells		
	# Inj	ection wells		411	inj wells		
	Gen	eral well maintenance (\$300/well * (PW+IW)/y)			_		182,000
		I MIT - none in first 5 years		-			
	Rep	lacement of submersible pumps (10%/yr @ \$2,000 each)		39,000	\$		
	# He	eader houses (per MM # produced)		11.0	HH		
	Hea	ader house maintenance (# HH x \$2700/HH)			per HH	2,700	29,700
-		Louis Cold and description					
Ge		al well field maintenance		4	luman auur	20,000	20.000
		pelines		1	lump sum	20,000	20,000
		pad maintenance materials (gravel/culverts)		1	lump sum	10,000	10,000
	Wi	ireless telemetry and security systems maintenance		1	lump sum	2,000	2,000
		Subtotal maintenance					32,000

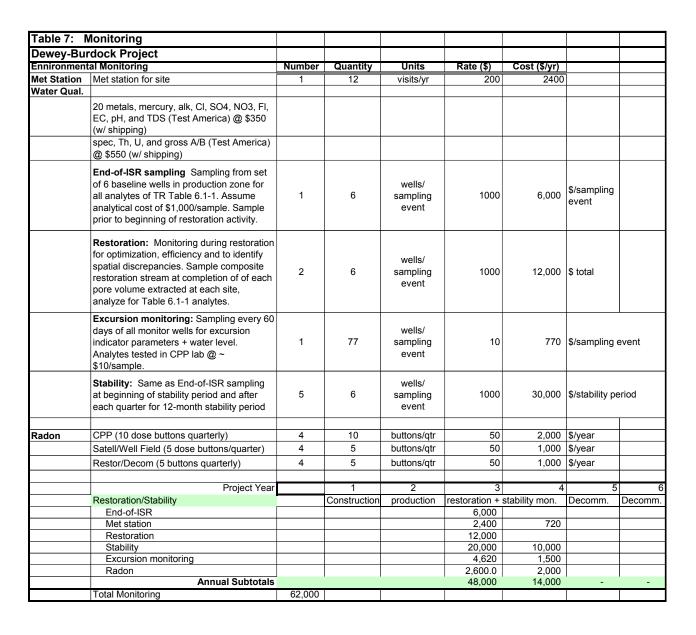
		Number	Quantity	Units	Rate	Cost (\$/yr)
Anı	nual Facility/Plant costs					
Ion	exchange resin replacement - DOWEX 21K XLT		0	CF	221	0
Util	ities:					
	Electricity					
	PC booster pump 250 gpm @ 90' TDH	2	83,000	kWh	0.070	5,800
	IC booster pump 250 gpm @ 90' TDH	2	83,000	kWh	0.070	
	Resin transfer pump 100 gpm @ 50' TDH	1	9,180	kWh	0.070	
	Utility water pump (300 gpm @ 40' TDH)	1	22,020	kWh	0.070	1,500
	RO unit - included in deep well disposal option below					
	CPP HVAC	1	175	MWh	0.070	12,300
	CPP lighting (0.8 W/ft ² for 10 ⁴ ft ²⁾	10,000	70,000	kWh	0.070	4,900
	CPP instrumentation (2 kw)	1	18,000	kWh	0.070	1,300
	Maintenance bldg. HVAC	1	87.6	MWh	0.070	6,100
	Office bldg. HVAC	1	87.6	MWh	0.070	6,100
	Satellite faiclity HVAC	1	88	MWh	0.070	6,100
	Satellite facility instrumentation	1	18,000	kWh	0.070	1,300
	Exterior lighting	1	88	MWh	0.070	6,100
	Subtotal annual electric power					57,943
	Propane @ 21,600 Btu/gal (gallons from ER)					
	CPP/SF space heating	1	77,220	gal/y	2.150	166,000
	CPP thermal fluid heater, prorated for restoration production of U3O8	2.59E-03	14,145	gal/y	2.150	100
	Maintenance bldg	1	11,598	gal/y	2.150	24,900
	Office bldg	1	4,883	gal/y	2.150	10,500
	Subtotal annual propane					201,500
Re	sin transport to CPP		6	R/T per yr	50	300
Land Ar	plication Option Operating Cost	Mgal	kWh/kgal	kWh	\$/kWh	Lump Sum \$
	Land app. pumps from pond to pivots (200' TDH) (water vol. from Table 1)	196	5.220	1,021,000	0.07	71,470
			5.220	.,==.,===	2.01	,
	Days of irrigation	Days				
	March 29-May 10	42				
	May 11-Sept 24	136				
	Sept 25-Oct 31	37				
	Total available irrigation days per year	215				
	3		U		1	1


		Number	Quantity	Units	Rate	Cost (\$/yr)
			•		subtotal	
Pivo	t Irrigation system capacity	# installed	# used	@ gpm	gpm	
	50 acre Pivot - 15 hp drive	5	5	104	520	
	25 acre Pivot - 10 hp drive	0	0	52	0	
	15 are Pivot - 7.5 hp	0	0	31	0	
	Total land application rate (gpm)				520	
	Total days of irrigation required (wastewater volume/total LA rate)				261	
	Irrigation Years @ 215 days/y				1.2	
Cos	t of pivot irrigation operation				\$/kWh	Cost \$
	Center pivot hydraulic pump; 15 hp for 50 ac areas (use 13 RHP)	5	350,471	kWh	0.07	24,500
	Center pivot hydraulic pump; 10 hp for 25 ac areas (use 8 RHP)	0	0	kWh	0.07	C
	Center pivot hydraulic pump; 7.5 hp for 15 ac areas	0	0	kWh		C
	Sump nump at 25 as land ann site (return irrigation tailuster/runaff)	0	3.000	kWh	0.07	
	Sump pump at 25 ac land app site (return irrigation tailwater/runoff)		-,			2.500
	Sump pump at 50 ac land app site (return irrigation tailwater/runoff)	5	10,000	kWh	0.07	3,500
	Subtotal land application power					99,000
Equi	pment maintenance				\$	Annual Cost
	Center pivot machines	5	1	year	500	2,500
	Equip. maintenance (@ 3% of new equipment capital) - pumps only		78,000	%	3	2,300
Equi	pment replacement (@ 3% of new equipment capital)		1,464,000	%	3	43,900
	Subtotal annual maintenance					49,000
	Prorated pivot maintenance (129/365)					35,038
	Total cost land application					205,508
p dis	posal well operating cost					
Injec	tion pump maintenance and repair (assume 6%/y of cap cost)	2	150,000	Cap cost	0.06	18,000
	Wastewater volume (Mgal)	43		-		
	Days of DDW operaton (ww volume/(150 gpm total flow rate))	200				
	Prorated DDW maintenance					9,863
	tric utilities:					
	Deep disposal well PD pump (4, but only one operating)					
	150 gpm @ 1000' TDH)	1	275,300	kwh	0.070	19,300
	Bldg. heating (1 kw, 180 days/yr)	1	4,000	kwh	0.070	300
	RO unit power	1	284	MWh	0.070	19,900
	Subtotal annual DDW power					20,000
	Prorated DDW power (216/365)					10,959
	Total deep well cost (power + maint.)					20,822

		Number	Quantity	Units	Rate	Cost (\$/yr)
Rest	pration					\ - \ -
	Treatment chemicals					
	IX cost (from Operating Chemicals)			LS	1.000	11,00
	Subtot	al				11,00
	Treatment maintenance					
	Process hardware maintenance + replacement @ 4% of Capital		994,000	cap cost	0.040	39,76
	Subtot	al				40,00
	Madison water supply power					
	Maintenance @ 10%/y of replacement cost of (\$75K/pump)	2	75,000		0.100	15,00
	Madison booster pump (150 gpm; 500 TDH; 24 hr/day)	1	184,000	kwh	0.070	13,00
	Subtot	al				28,00
Powe	r costs that vary with disposal option					
	Madison water supply booster pump (free flowing) @ 40' TDH	Mgal	kWh/kgal	\$/kWh	Cost \$	
	DDW option	23	1.040	0.07	1,700	
	LA option	78	1.040	0.07	5,700	
	Pump power from ponds to disposal	Mgal	kWh/kgal		Cost \$	
	DDW option Booster Pumps (90 TDH)	43	2.350	0.070	7,100	
	LA option Booster Pumps (200 TDH)	196	5.220	0.070	71,500	
	Ex option booster rumps (200 1BH)	130	5.220	0.070	7 1,500	
	Booster pumps from plant to radium settling ponds	Mgal	kWh/kgal		Cost \$	
	DDW option booster pumps (90 TDH)	43	2.350	0.070	7,100	
	LA option booster pumps (90 TDH)	196	2.350	0.070	32,200	

Capital Equipment Dewey-Burdock Project

Chemicals Dewey-Burdock Project


Table 5: Chemicals						
Dewey-Burdock Project						
Chemical usage		usage	rate			
Hydrogen peroxide - 50% solution			lb/(lb U3O8)			
Sulfuric acid - 93%			lb/(lb U3O8)			
Sodium hydroxide - 50% solution		0.92	lb/(lb U3O8)			
Sodium chloride			lb/(lb U3O8)			
Sodium carbonate		0.92	lb/(lb U3O8)			
Barium chloride dihydrate			mg/(L-RC)			
Flow rate		500	gpm			
Uranium concentration		5	ppm			
Uranium concentration in IX tails			ppm			
Volume of restoration composite extracted		77,550,000	gal			
U3O8 production during restoration activities		2588	lb U3O8			
Chemical Costs (\$/y)						
Project year	1	2	3	4	5	6
U3O8 production from restoration activities (lb L	J3O8)		2588	0	0	C
Cost of Chemicals						
Hydrogen peroxide - 50% solution			300			
Sulfuric acid - 93%			300			
Sodium hydroxide - 50% solution			300			
Sodium chloride			1100			
Sodium carbonate			300			
Barium chloride dihydrate			8,700			
Subtotal			11,000	-	-	_

11e.(2) Byproduct Material Disposal Dewey-Burdock Project

le 6:	11e(2) Bypr	oduct Mat	erial Dis	posal									
	Burdock Proj		.0										
							Quantity	Units	Disposal Rate	Transportation Cost	Annual Disposal Cost	Years of Rest. + Stability	Total Cos
	RO and IX	waste			uded in CPF		0		\$/CF	\$/CF			
	Well field w	aste				ks = 2 CF/wk	104	CF/yr	5.56	5.19	1,117	1.30	1,45
	PPE					ks = 2 CF/wk	104	CF/yr	5.56	5.19	1,117	1.30	1,45
	Decontamin	nation waste	9	Assume 1	drum/4 wee	ks = 2 CF/wk	104	CF/yr	5.56		1,117	1.30	1,45
							Subtotal Byp	roduct Disp	osal during R	estoration Ops.			4,38
									Dianagal	Tran	nsportation Cost		Lump Sur
e.(2)	byproduct m	naterial was	ste during	decommi	ssioning		Quantity	Units	Disposal Rate (\$/unit)	1101	r	1	
le.(2)	byproduct m	naterial was	ste during	decommi	ssioning		Quantity	Units		unit	no. units	\$/unit	
e.(2)	byproduct m			g decommi	ssioning		Quantity 8,230.00	Units				\$/unit 5.19	+disposal
				g decommi	ssioning		,		Rate (\$/unit)	unit			+disposal
	Well field w	aste - from	Table 6		ssioning		,		Rate (\$/unit)	unit			+disposal
	Well field w	aste - from	Table 6	Table 9	ssioning		8,230.00	CF	Rate (\$/unit)	unit CF		5.19	+disposal
Por	Well field ward liners DDW option	vaste - from n facility was Facility waste	Table 6 ste - from Ta	Table 9	ssioning		8,230.00 19,930	CF	S.56	unit CF CF		5.19	+disposal 88,39 214,06 275,28
Por	Well field ward liners DDW option LA option F	vaste - from n facility was Facility waste	Table 6 ste - from Ta	Table 9	ssioning		8,230.00 19,930 25,630 21,951	CF CF CF	5.56 5.56 5.56	unit CF CF CF Semi load	no. units	5.19 5.19 5.19	+disposal 88,39 214,06 275,28
Por	Well field ward liners DDW option LA option F	vaste - from n facility was Facility waste	Table 6 ste - from Ta	Table 9	ssioning		8,230.00 19,930 25,630	CF CF CF	5.56 5.56 5.56	unit CF CF CF Semi load	no. units	5.19 5.19 5.19	transport +disposal 3 88,39 214,06 275,28 159,75

Monitoring Dewey-Burdock Project

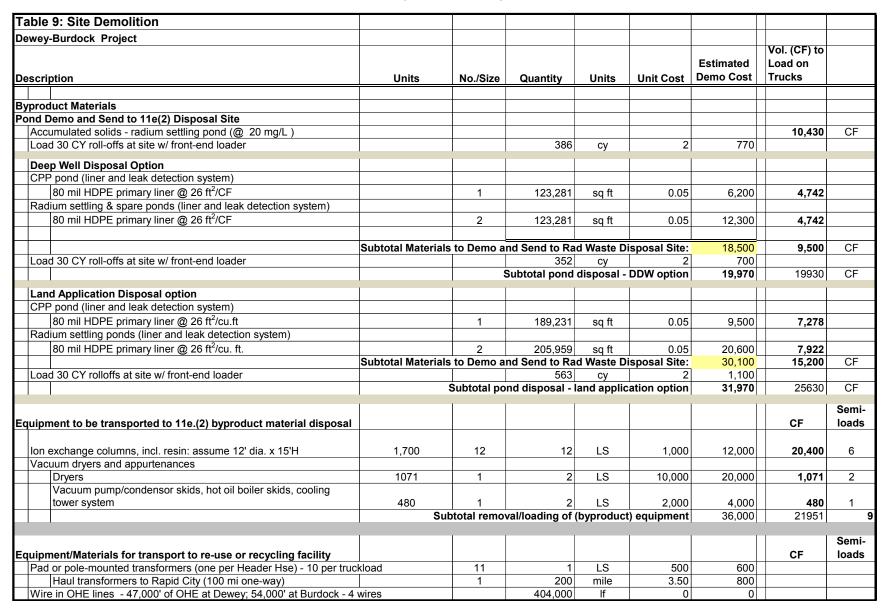
Well Field Reclamation Dewey-Burdock Project

Table 8: Well Field Reclamation Dewey-Burdock Project Well Decommissioning Value Units Unit cost per well (assume avg. depth of 650 feet) 5" diameter casing = 0.131 CF/LF Average well depth = 525 LF Volume per well = 69.0 CF Cement grout cost = 9.00 \$/CF Cement plug cost/well 621.29 \$/well Equipment + labor: pull tube, pump; cut & remove casing below grade. Contract labor/equipment (incl. mob/demob) = 4 crew-hr/well @ \$125/hr 500 \$/well Total abandonment cost/well (rounded) = 1,100 \$/well Cost of plugging wells # wells (from Table 1) = 751,300 \$LS

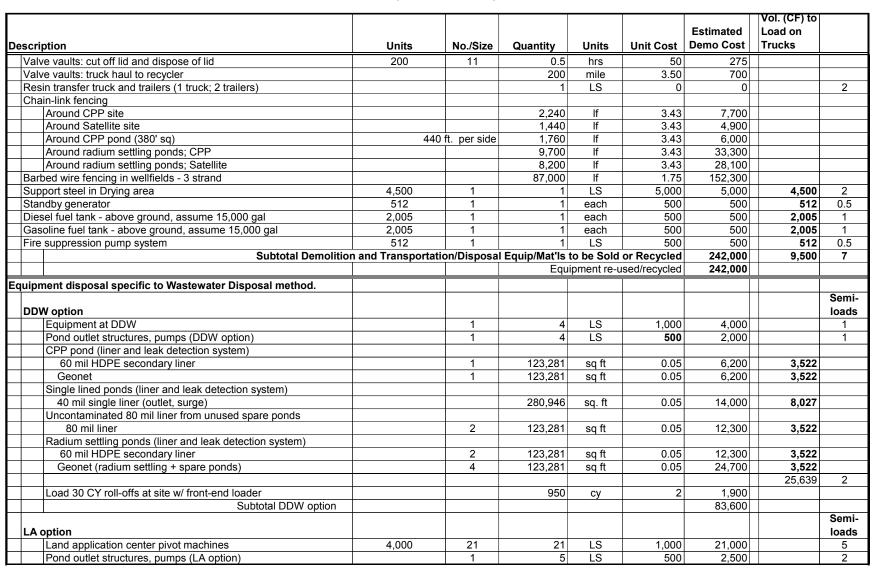
683

751,000 \$LS

Surface Structures	-	No./Size	Quantity	Units	Cost	Demo Cost	Waste vol (Cu	ı. Ft)
Overhead Power	-						SubtitleD	11e.(2)
Power poles: one every 200' (40' H, 5' in ground); pull + cut in half, place pole and cross arms in roll-off	47+54K' OHE	505	505	each	297	150,000	27,888	
Power cables	Assumed zero	net cost (r	emoval cost :	= salvage v	/alue)	0		
Wells	CF per well	# wells	Quantity					
Casing/wellhead appurtenances/cover from prod/inj/mon. wells @ 64 CF/well	64	683	683				43,712	
Well pumps from PW+MW	1	272	272					272
Down-hole tubing wells (2" X 625' x 0.36" wall)	14	683	683					9,579
Total WF Surface structures							71,600	9,851

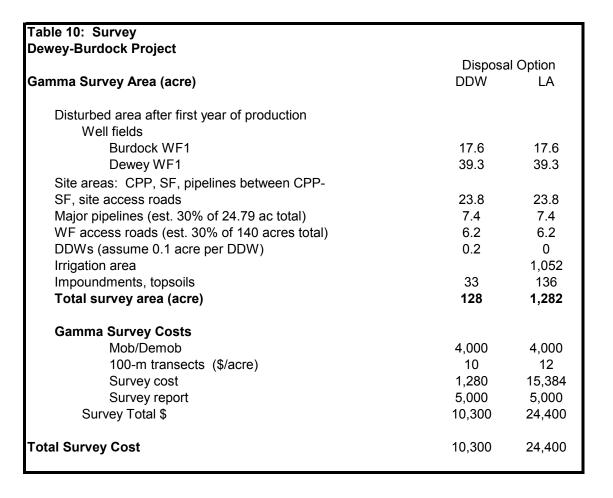

Total well plugging & abandonment costs

Well Field Reclamation Dewey-Burdock Project


Powertech (USA) Inc.

Header Houses	Included w	th building	dem	olition/disp	osal in Ta	ble 9		
Pipelines to be chipped and dis	posed as 11	e.(2) byprod	duct	material				
Trunklines from CPP or SF to w	ell fields;							
								Chipped
Burdock (CPP to WF)	No.	pipes		ft.	lb/ft			(CF
1 16" HDPE per site	1	2		4000	24.2			3,
2 10" HDPE per site	1	2		4000	10.93			1,
Dewey (SF to WF)								
1 16" HDPE per site	1	2		1000	24.2			
2 10" HDPE per site	1	2		1000	10.93			
Per HH (valve vaults to HH)								
1 6" HDPE per HH	11	2		120	4.15			
2 2" HDPE per HH	11	2		120	0.534			
Per Well (HH to well)								
1 2" HDPE per PW, IMW	202	1		210	0.534			
2 2" HDPE per PMW	70	1		720	0.534			
3 1.5" HDPE per Inj. Well	411	1		210	0.342			
Tota	al to 11e.(2) b	yproduct ma	ateria	al disposal	- Table 6			8,
Pipeline chipping @ \$0.15/CF							1,235	
Pipeline removal		# pipes	ft	of trench		\$/(ft-pipe)	Cost \$	
CPP-SF Trunklines			4	5,000		0.533	10,660	
CPP-SF trunklines			4	19,800		0.533	42,214	
Valve vaults to HH			3	1320		0.267	1,057	
Well field pipelines			4	35,498		0.133	18,885	
Cost of pipeline removal							72,816	
Total Well Field Decommission	ina Coete						975,050	

Powertech (USA) Inc.


Description	Units	No./Size	Quantity	Units	Unit Cost	Estimated Demo Cost	Vol. (CF) to Load on Trucks	
Single lined ponds (liner and leak detection system)	Onits	140./3126	Quantity	Units	Onit Cost	Beine Gest	Писко	
40 mil single liner (outlet, storage, spare storage)			2,457,374	sq. ft	0.05	122,900	70,211	
CPP pond (liner and leak detection system)			2,457,374	sq. it	0.05	122,900	70,211	
60 mil HDPE secondary liner		1	189,231	sq ft	0.05	9,500	5,407	
Geonet		1	189,231	sq ft	0.05	9,500	5,407	
Uncontaminated 80 mil liner from unused spare ponds		ı	169,231	sq it	0.05	9,500	5,407	
80 mil liner		2	205,959	sq ft	0.05	20,600	5.885	
Radium Settling Ponds (liner and leak detection system)		2	200,909	SQ II	0.05	20,000	5,005	
60 mil HDPE secondary liner		2	205,959	og ft	0.05	20.600	5,885	
Geonet (radium settling + spare ponds)		4	205,959	sq ft	0.05	41,200	5,885	
Georiet (radium settling + spare ponds)		4	205,959	sq ft	0.05	41,200	98,678	7
Load 20 CV vall offerst site w/ fromt and loaden			2.055		0	7 200	90,070	1
Load 30 CY roll-offs at site w/ front-end loader			3,655	су	2	7,300		
Subtotal LA option						255,100		
Equipment/Materials to Demo and Dispose at Construction and Demo	olition Landfill							
Process pumps in buildings	16	60	60	LS	200	12,000	960	1
Shaker screens: 10'x7'x5'H	400	2	2	LS	2,000	4,000	800	1
Elution columns: 7' dia x 15'H	600	4	4	LS	1,000	4,000	2,400	2
13' dia. tanks x 16'H	2,100	22	22	LS	500	11,000	46,200	11
11' dia. tanks x 16'H	1,500	2	2	LS	1,000	2,000	3,000	1
10' dia. tanks x 16'H	1,300	1	1	LS	1,000	1,000	1,300	1
RO units	400	4	4	LS	1,000	4,000	1,600	1
Thickeners	10,600	2	2	LS	10,000	20,000	21,200	5
Screw conveyors	100	2	2	LS	1,000	2,000	200	6
Filter presses	2000	2	2	LS	5,000	10,000	4,000	1
Chemical storage tanks outside CPP - assume 20,000 gal	2674	3	3	LS	500	1,500	8,021	3
Drum conveying system	2.900	1	1	LS	1.000	1,000	2,900	0.5
Drum washer and drying system	1,200	1	1	LS	1,000	1,000	1,200	0.5
Paint booth	400	1	1	LS	500	500	400	0
Building Structures								
Office building	60x90x20+roof		148,500	CF	0.15	22,300	18,600	
Maintenance/Warehouse	140x120x20		462,000	CF	0.15	69,300	33,800	
Fire suppression tank	240,000 gal		30,968	CF	0.15	4,600		
Building Structure			•			-		
CPP, includes loading dock area	392'x130'x20'+roof		1,486,840	CF	0.15	223,000	77,560	
Lab/control rm/break rm/showers/restrooms w/in CPP	30x90x20'		54,000	CF	0.15	8,100	10,200	
Rad container bldg	30x24x15		10,800	CF	0.15	1,600	2,340	
Header houses - assume equip/piping inside demo'd w/ bldg	10x40x8	11	3,200	CF	0.15	5,280	8,800	
Satellite bldg, incl interior wall	124x156x20		396,552	CF	0.15	59.500	39,448	
Lab/control rm/break rm/showers/restrooms w/in Satellite	45x45x20		40,500	CF	0.15	6,100	4,950	
			,		Bldgs Demo:	399,780	342,600	34

Description									Vol. (CF) to	
Transportation/Disposal Loading 30 CV 7 (10lifs at site w/ front-end loader Loading process equipment 34 semi load 1,000 34,000 17 cansportation to Regional landfill at Edgemont, SD @ 16 miles \$3.50/mi x 16 mi + \$1.98/mi x 423 semi-load 88 37,100 17 cansportation to Regional landfill at Edgemont, SD @ 16 miles \$3.50/mi x 16 mi + \$1.98/mi x 423 semi-load 88 37,100 17 cansportation to Re-use/Recycling sit @ Rapid City, SD @ 87 miles \$3.50/mi x 87 mi + \$1.98/mi x 7 semi load 477 3,300 12,689 CY 10 126,990 10 126,990 126,990 126,990 10 126,990 10 126,990 10 126,990 10 126,990 10 126,990 10 126,990 10 126,990 10 126,990 10 126,990 10 126,990 10 10 126,990 10 10 126,990 10 126,990 10 126,990 10 126,990 10 126,990 10 10 126,990 10 10 126,990 10 10 126,990 10 10 126,990 10 10 126,990 10 10 126,990 10 10 126,990 10 10 126,990 10 10 126,990 10 10 126,990 126,990 126,990 126,990 126,990 126,990 126,990 126,990 126,990 126,990 126,990 126,990 126,990 126,990 126,990 126,990 126,990 126,990 126,990 126,990 1	. .							Estimated	Load on	
Loading 30 CY rolloffs at site w/ front-end loader 12,689 CY 2 25,400			Units	No./Size	Quantity	Units	Unit Cost	Demo Cost	Trucks	
Loading process equipment										
Transportation to Regional landfill at Edgemont, SD @ 16 miles \$3.50/mix 16 mi + \$1.98/mix 423 semi-load 88 37,100		<u> </u>			,			-,		
Transportation to RE-use/Recycling sit @ Rapid City, SD @ 87 miles \$3.50/mi x 87 mi + \$1.98/mi x \$ 7 5emi load 477 3.300 126,900 1										
Disposal fee at Custer -Fall River landfill, Edgemont, SD 126,990 Subtotal Transportation/Disposal - Subtitle D Material: 226,700			'							
Subtotal Transportation/Disposal - Subtitle D Material: 226,700	Tra	nsportation to RE-use/Recycling sit @ Rapid City, SD @ 87 miles	\$3.50/mi x 87 mi +	\$1.98/mi x 8				- ,		
Communication Communicatio	Dis	posal fee at Custer -Fall River landfill, Edgemont, SD						- ,		
Other Misc Demo Activities			Subtot	al Transpoi						
Rinse piping and treat rinsewater - assume 3 piping volumes 2,263,486 gal/pipe vol 6,790 1,000 gal 3 20,400 Valve vaults at well fields - leave in place fill with soil 11 11 CY 20 2,500 Septic tank - CPP: 15,000 gal (fill with soil, leave in place) 15,000 gal 1 2,005 CY 10 20,100 Septic tank - Satellite: 10,000 gal (fill with soil, leave in place) 10,000 gal 1 1,337 CY 10 13,400 Backfill excavation and compact surge pond (Dewey) 59,259 CY 1 59,300 Backfill excavation and compact radium settling ponds volume (Dewey) 185,185 CY 1 185,200 Abandon DDWs 0 wells 100,000 0 Reseed well field areas (fertilize, seeding, mulching) 67 acre 1,500 100,700 Reseed CPP site 11 acre 1,500 16,600 Reseed CPP radium settling ponds 48 acre 1,500 71,300 Reseed Satellite plant area 35 acre 1,500 52,300 Reseed access road to CPP 11 acre 1,500 16,500 Reseed access road to Satellite 8 acre 1,500 12,000 LA Option only Backfill excavation and compact storage ponds 8 x 63.8 acr 823,000 CY 1 823,000 Reseed Storage pond area Subtotal addi other Misc Demo Activities: 570,300 Subtotal addi other Misc for LA option 856,800					Transport	ation/Dispos	sal in Landfill	626,000		
Valve vaults at well fields - leave in place fill with soil 11	Other	Misc Demo Activities								
Septic tank - CPP: 15,000 gal (fill with soil, leave in place) 15,000 gal 1 2,005 CY 10 20,100	Rin	se piping and treat rinsewater - assume 3 piping volumes	2,263,486 gal/pipe v	ol	6,790	1,000 gal	3	20,400		
Septic tank - Satellite: 10,000 gal (fill with soil, leave in place)	Val	ve vaults at well fields - leave in place fill with soil		11	11	CY	20	2,500		
Backfill excavation and compact surge pond (Dewey) 59,259 CY 1 59,300	Sep	otic tank - CPP: 15,000 gal (fill with soil, leave in place)	15,000 gal	1	2,005	CY	10	20,100		
Backfill excavation and compact radium settling ponds volume (Dewey) 185,185 CY 1 185,200 Abandon DDWs 0 wells 100,000 0 Reseed well field areas (fertilize, seeding, mulching) 67 acre 1,500 100,700 Reseed CPP site 11 acre 1,500 16,600 Reseed CPP radium settling ponds 48 acre 1,500 71,300 Reseed Satellite plant area 35 acre 1,500 52,300 Reseed access road to CPP 11 acre 1,500 16,500 Reseed access road to Satellite 8 acre 1,500 12,000 Reseed access road to Satellite 8 acre 1,500 12,000 LA Option only Backfill excavation and compact storage ponds 8 x 63.8 ac ft 823,000 CY 1 823,000 Reseed storage pond area 24 acre 1,500 35,800 Subtotal addl other Misc for LA option 858,800 Submary of Facility Decommissioning Costs DDW LA	Sep	otic tank - Satellite: 10,000 gal (fill with soil, leave in place)	10,000 gal	1	1,337	CY	10	13,400		
Abandon DDWs	Bad	ckfill excavation and compact surge pond (Dewey)			59,259	CY	1	59,300		
Reseed well field areas (fertilize, seeding, mulching) 67 acre 1,500 100,700 Reseed CPP site 11 acre 1,500 16,600 Reseed CPP radium settling ponds 48 acre 1,500 71,300 Reseed Satellite plant area 35 acre 1,500 52,300 Reseed access road to CPP 11 acre 1,500 16,500 Reseed access road to Satellite 8 acre 1,500 12,000 Reseed access road to Satellite 8 acre 1,500 12,000 LA Option only	Bad	ckfill excavation and compact radium settling ponds volume (Dewe	y)		185,185	CY	1	185,200		
Reseed CPP site	Aba	andon DDWs			0	wells	100,000	0		
Reseed CPP radium settling ponds	Res	seed well field areas (fertilize, seeding, mulching)			67	acre	1,500	100,700		
Reseed Satellite plant area 35 acre 1,500 52,300 Reseed access road to CPP 11 acre 1,500 16,500 Reseed access road to Satellite 8 acre 1,500 12,000 Subtotal Other Misc Demo Activities: 570,300 LA Option only Backfill excavation and compact storage ponds 8 x 63.8 ac ft 823,000 CY 1 823,000 Reseed storage pond area 24 acre 1,500 35,800 Subtotal addl other Misc for LA option 858,800 Summary of Facility Decommissioning Costs DDW LA	Res	seed CPP site			11	acre	1,500	16,600		
Reseed access road to CPP	Res	seed CPP radium settling ponds			48	acre	1,500	71,300		
Reseed access road to Satellite 8 acre 1,500 12,000	Res	seed Satellite plant area			35	acre	1,500	52,300		
Subtotal Other Misc Demo Activities: 570,300 LA Option only Backfill excavation and compact storage ponds 8 x 63.8 ac ft 823,000 CY 1 823,000 Reseed storage pond area 24 acre 1,500 35,800 Subtotal addl other Misc for LA option 858,800 Summary of Facility Decommissioning Costs DDW LA	Res	seed access road to CPP			11	acre	1,500	16,500		
LA Option only Backfill excavation and compact storage ponds Reseed storage pond area Subtotal addl other Misc for LA option Summary of Facility Decommissioning Costs B x 63.8 ac ft B 23,000 CY 1 823,000 Subtotal addl other Misc for LA option Subtotal addl other Misc for LA option B 58,800 DDW LA	Res	seed access road to Satellite			8	acre	1,500	12,000		
Backfill excavation and compact storage ponds 8 x 63.8 ac ft 823,000 CY 1 823,000 Reseed storage pond area 24 acre 1,500 35,800 Subtotal addl other Misc for LA option 858,800 Summary of Facility Decommissioning Costs DDW LA					Subtotal Othe	r Misc Dem	o Activities:	570,300		
Backfill excavation and compact storage ponds 8 x 63.8 ac ft 823,000 CY 1 823,000 Reseed storage pond area 24 acre 1,500 35,800 Subtotal addl other Misc for LA option 858,800 Summary of Facility Decommissioning Costs DDW LA	LA On	tion only								
Reseed storage pond area 24 acre 1,500 35,800 Subtotal addl other Misc for LA option 858,800 Summary of Facility Decommissioning Costs			9 v 63 9 ac ft		833 000	CV	1	833 000		
Subtotal addI other Misc for LA option 858,800 Summary of Facility Decommissioning Costs DDW LA			0 X 03.0 ac it					,		
Summary of Facility Decommissioning Costs DDW LA	ING:	Seed Storage poild area		Su			.,	,		
				Ju	biolai audi oli	iei wiisc io	LA Option	030,000		
		Summary of Facility Decommissioning Costs			DDW		LA			
A Reclyclable/salvageable equipment 242,000 242,000 242.000	Α				242,000		242,000			
B Non-salvageable buildings & equipment disposal 710,080 1,123,580							,			
C 11e.(2) byproduct material processing/loading 55,970 67,970					55,970					
D Restore contaminated areas 570,300 1,429,100	D									
					,					

Survey Dewey-Burdock Project

Labor Dewey-Burdock Project

Table 11: Lak	bor				Project Ye	ar				
					1	2	3	4	5	6
				Activity	Constrctn	Prodctn	Restoratio	n+ stability	Recl. + [Decomm.
Ad	dministratio	on								
	R	Radiation S	afety Officer				1	1	1	1
Re	estoration									
	S	Superintend	dent				1	1	1	
	R	Restoration	Engineer				1	1	0	0
	R	Restoration	Operator				2	0	0	0
	L	ab Technic	cians				1	1	0	0
Unit Labor Co	sts includi	ng 35% o	verhead							
Ac	dministratio	on								
	R	Radiation S	afety Officer	135,000			135,000	135,000	135,000	135,000
Re	estoration									
		Superintend		135,000			135,000	135,000	135,000	0
	R	Restoration	Engineer	81,000			81,000	81,000	0	0
	R	Restoration	Operator	68,000			136,000	0	0	0
	L	ab Techni	cians	47,000			47,000	47,000	0	0
	P	Project Yea	r		1	2	3	4	5	6
		Restora	tion and Reclama	ation Labor Cost			534,000	398,000	270,000	135,000

Management Dewey-Burdock Project

Table 12: Management and Miscellaneous Costs Dewey-Burdock Project									
					1				
		Projed	ct year						
	3	4	5	6	Total				
Mob/Demob	12,500			12,500	25,000				
Total Management Facility Manager @ \$150,000 + 35% Contractor Profit	202,500	202,500	202,500	202,500	810,000				
Percent of labor 10%	53,400	39,800	27,000	13,500	133,700				
Subtotals Mgmt & Misc \$	268,400	242,300	229,500	228,500	968,700				

Impoundments Dewey-Burdock Project

Table 13: Impound	dments							_		
Dewey-Burdock P	roject									
		# ponds		DD	W			LA	ı	
	PONDS		capacity	liner/pond	Primary	Secondary	capacity	Liner	Primary	Secondary
			ac-ft	ft ² *	mil	mil	ac-ft	ft ² *	mil	mil
	CPP	1	15.9	123,281	80	60	36.2	189,231	80	60
	Radium Settling	2	15.9	123,281	80	60	39.4	205,959	80	60
	Spare	2	15.9	123,281	80	60	39.4	205,959	80	60
	Outlet	2	5.1	53,068	40		4.9	18,588	40	
	Surge	2	8.4	87,405	40					
	Storage	8					63.8	242,020	40	
	Spare Storage	2					63.8	242,020	40	
	Liner ft ² (KP)-Dewey			264,718	80			433,190	80	
	Liner ft ² (KP)-Dewey			264,718	60			433,190	60	
	Liner ft ² (KP)-Dewey			140,473	40]		1,228,687	40	
	Liner ft ² (KP)-Burdock			351,689	80			579,875	80	
Totals	Liner ft ² (KP)-Burdock			351,689	60	1		579,875	60	
	Liner ft ² (KP)-Burdock			140,473	40	1		1,228,687	40	
	Total 80 mil (KP)			616,407	80			1,013,065	80	
	Total 60 mil (KP)			616,407	60	1		1,013,065	60	
		280,946	40	1		2,457,374	40			
	Total 40 mil (KP) 280,946 40 KP= Total liner areas, as reported by Knight Piesold (KP) in Pond Design Report * Liner area of individual ponds estimated as proportional to pond capacity									

Well Field Pipe Removal Dewey-Burdock Project

Table 14: Well Field Pipe Removal Dewey-Burdock Project

Assumptions

- 1 Backhoe trench to uncover pipe @ 1,500 ft/day
- 2 Extract pipeline and backfill @ 1,500 ft/day
- 3 Backhoe rental \$2688/mo., plus fuel, maint., mob. @ \$1,200/wk) = \$1,840/wk
- 4 Backhoe operator @ \$20/hr
- 5 Pipeline extraction with 2 workers @ \$17/hr in addition to backhoe operator
- 6 Operating schedule: 8 hr/day, 5 days/week

Main pipeline removal

Equipment

Labor

Backhoe operator

$$\frac{$20}{man-hr}$$
 x $\frac{8 man-hr}{1 day}$ x $\frac{1 d}{1,500 ft}$ =\$ 0.11 /ft

Pipeline extraction

$$\frac{$}{man-hr}$$
 x $\frac{16 man-hr}{1 day}$ x $\frac{1 day}{1,500 ft}$ =\$ 0.18 /ft

APPENDIX 6.6-B

Numerical Modeling of Groundwater Conditions Related to In Situ Recovery

NUMERICAL MODELING OF GROUNDWATER CONDITIONS RELATED TO INSITU RECOVERY AT THE DEWEY-BURDOCK URANIUM PROJECT, SOUTH DAKOTA

Introduction

Powertech (USA) Inc., has submitted an application to the U.S. Nuclear Regulatory Commission (NRC) for a Source Materials License (SML) to conduct in-situ recovery (ISR) of uranium from the Dewey-Burdock Project in South Dakota (Powertech, 2009). Wellfield-scale modeling simulations were conducted in response to the Request for Additional Information (RAI) from NRC presented to Powertech in a correspondences dated May 19, 2010 and May 28, 2010. The target ore zone at the Dewey site is the lower Fall River Formation, and this is the aguifer represented in these hydrological modeling simulations. Ore is also present in the Lakota Formation to the south at the Burdock site area, but flow in this aguifer is not simulated.

The following lists the specific RAIs presented by NRC that are addressed in this report (references to pore volume are not addressed in this report):

Correspondence dated May 19, 2010, entitled "Summary of April 8, 2010, Teleconference Addressing Technical Issues, Powertech (USA), Inc., Proposed Dewey-Burdock In-Situ Recovery Facility (TAC No. J00606)".

Section III (Miscellaneous Issues), #4(d): The applicant includes a flare factor of 1.5 in its calculation of restoration costs. In addition ground water restoration costs are based on treatment of 10 pore volumes. Provide justification for the flare factor and for using 10 pore volumes total.

Correspondence dated May 28, 2010, entitled "Request for Additional Information, Powertech (USA), Inc., Proposed Dewey-Burdock In Situ Recovery Facility (TAC No. J00606)".

- Section 5.7.8, #10: On page 3-14 of the Technical Report, the applicant proposes for the perimeter monitoring ring to be 400 feet from the production well field, with a minimum spacing between wells of a spacing that ensures a 70 degree angle. The applicant references three NUREG guidance documents on the proposed spacing but does not justify the spacing based on site-specific hydrogeological and geochemical conditions. Please provide the appropriate justification.
- Section 6.1, #7: The application did not include estimates on the pore volume for a wellfield, porosity, or flare factors. The staff needs this information to evaluate the financial assurance calculations and the proposed schedule and water balance for the restoration process. Please provide this information for staff to review.

A numerical groundwater flow model was developed to evaluate wellfield-scale issues related to ISR production at the site. This report describes the development of the numerical model and summarizes the results of numerical simulations used to address NRC concerns regarding ISR operations at the site.

Numerical Modeling of Flare and Excursion Dewey-Burdock Uranium Project, South Dakota

Detection and Recovery,

November 2010

Dewey-Burdock TR RAI Responses June 2011

Page 1

Models and simulations presented in this report are not intended to fully characterize the regional groundwater flow system and are based on data currently available. It is noted that there are hydrologic complexities to the site and surrounding area, such as aquifer heterogeneities and recharge and fault boundaries that may require further characterization. This modeling exercise is provided for the analysis of wellfield flare and demonstrating hydraulic control at the monitor well ring. The modeling presented in this report is site specific and is not intended to represent the regional groundwater flow system.

Purpose and Objectives

The numerical groundwater flow model was developed to support Powertech in planning and operation of the ISR project. The numerical model was used to assess impacts of ISR mining on lower Fall River Formation in the Dewey area of the proposed Dewey-Burdock Uranium Project. Model simulations were developed to:

- Evaluate the wellfield balance and net bleed at the proposed F-13 wellfield.
- Estimate wellfield flare during mining operations.
- Demonstrate that proposed monitor well spacing is adequate to detect any potential excursions, specifically by simulating an excursion out of the wellfield.
- Demonstrate that hydraulic control of the simulated excursion can be established by changing injection/extraction rates and altering groundwater flow direction at the perimeter monitor well ring.

The model was developed to allow adequate discretization within the wellfields such that the impacts of individual wells can be discerned.

Conceptual Model

Description of the geology and hydrogeology of the Permit Area can be found in the SML application (Powertech, 2009). Based on that document and hydrologic testing conducted in 2008 (Knight Piesold, 2008), a conceptual hydrologic model for the Dewey area at the Dewey-Burdock Project is summarized below.

The aquifer being simulated is the lower Fall River Formation, which is the proposed uranium production zone at the Dewey area. The total thickness of the Fall River Formation is approximately 165 feet in the area. There are three distinct ore zones of about 10 to 15 feet thick within the lower Fall River sandstone interval. This sandstone at the base of the Fall River is approximately 75 feet thick, and dips to the south-southwest at approximately 0.01 ft/ft. This interval of the lower Fall River Formation is the aquifer that was modeled in the following simulations.

The Fall River Formation is a confined aquifer system at the Dewey area, with a hydraulic gradient generally following the dipping beds to the south-southwest. Measured gradients in the Dewey area are locally as high as 0.01 ft/ft, but generally are

Page 2

Petrotek

closer to an average of 0.006 ft/ft (Knight Piesold, 2008). A hydraulic gradient of 0.006 ft/ft is utilized for all baseline (non-pumping) conditions around the simulated wellfield. There is also a vertical-upward hydraulic gradient of approximately 0.2 ft/ft measured between well screens in the lower sandstone versus the upper sandstone in the Fall River Formation. For the purposes of these simulations that focus on hydraulic behavior within the monitoring well ring, this vertical gradient was not considered, nor was potential leakage from or into overlying and underlying layers.

Results of hydrologic testing conducted in 2008 (Knight Piesold, 2008) provided the basis for aquifer parameters values used in the modeling. Results of testing in the Dewey area in the lower Fall River indicate an average transmissivity of 255 ft²/day and average storativity of 4.6 x 10⁻⁵. Based on an assumed 75-foot thickness of the lower Fall River, the hydraulic conductivity is calculated as 3.4 ft/day. Total porosity of the lower Fall River was estimated at 29 percent, based on analysis of core samples. These values were the initial values used in the model calibration simulations. The initial values were modified during model calibration.

Average groundwater velocity under the stated aquifer conditions of hydraulic conductivity of 3.4 ft/d, hydraulic gradient of 0.006 ft/ft and porosity of 29 percent is 0.07 ft/d, or 26 ft/yr.

Anticipated production rates were assumed to be approximately 20 gallons per minute (gpm) per well pattern, with a net bleed (overproduction) of approximately 1%. Figure 1 shows the wellfield layout that was modeled in the Dewey area.

Model Code

Three-dimensional analysis of groundwater flow in the lower Fall River aquifer system was performed with the finite difference groundwater flow model (MODFLOW), developed by the U.S. Geological Survey (USGS) (McDonald 1988, 1996). MODFLOW was selected for simulating groundwater flow at the Dewey site because it is capable of a wide array of boundary conditions, in addition to being a public domain code that is well accepted in the scientific community. MODFLOW can be used to simulate transient or steady-state saturated groundwater flow in one, two, or three dimensions. The code simulates groundwater flow using a block-centered, finite-difference approach. Modeled aquifers can be simulated as unconfined, confined, or a combination of thereof.

Advective transport was evaluated using MODPATH, Version 3, developed by the USGS (Pollock, 1994). MODPATH's particle-tracking code was utilized because it is compatible with model outputs from the MODFLOW groundwater flow model and is suitable for flowpath analysis of steady-state or transient simulations, and is a widely accepted public domain code. MODPATH utilizes the output head files from MODFLOW to calculate particle velocity changes over time in three dimensions.

Page 3

Petrotek

MODPATH was used to provide computations of groundwater seepage velocities and groundwater flow directions at the site.

The pre/post-processor Groundwater Vistas (Environmental Simulations, Version 5, 2007) was used to assist with input of model parameters and output of model results. Groundwater Vistas serves as a direct interface with MODFLOW and MODPATH. Groundwater Vistas provides an extensive set of tools for developing, modifying and calibrating numerical models and allows for ease of transition between the groundwater flow and particle tracking codes. Full description of the Groundwater Vistas program is provided in the Users Guide to Groundwater Vistas 5 (Environmental Simulations, Inc., 2007).

Model Domain and Grid

The model encompasses an area of approximately 1,530 square miles and is shown on Figure 2. The model domain is aligned to the prevailing potentiometric gradient to the southwest (model is oriented 26 degrees east of north) and the model grid is centered over the F-13 wellfield. Northeast-southwest dimensions are 206,840 feet (39.2 miles), and northwest-southeast dimensions are 206,562.5 feet (39.1 miles).

The model grid was designed to provide adequate spatial resolution within the wellfield area in order to simulate response of the aquifer to typical extraction and injection rates anticipated at the Dewey area in the lower Fall River Formation. The model grid was extended a considerable distance from the wellfield boundaries to minimize potential impacts of exterior boundary conditions on the model solution in the area of interest.

Cell dimensions within the area of the proposed wellfield are 17.5 feet by 17.5 feet. Cell dimensions are gradually increased to a size of 1,500 feet by 1,500 feet near the edges of the model. The model consists of 476 rows and 291 columns, and contains 138,516 active cells.

Model Boundary Conditions

Boundary conditions imposed on a numerical model define the external geometry of the groundwater flow system being studied. Boundary conditions assigned in the model were determined from available reported potentiometric conditions (Knight Piesold, 2008). Descriptions of the types of boundary conditions that can be implemented with the MODFLOW code are found in McDonald and Harbaugh (1988).

This numerical model was designed for a conceptual evaluation of wellfield flare and near-wellfield groundwater movement, and is not a rigorous conceptualization of the potential heterogeneities and hydrogeologic boundaries present in the larger regional groundwater flow system.

Page 4

Petrotek

Boundary conditions used to represent hydrologic conditions at the Dewey site include general-head boundaries (GHB) and wells (extraction and injection). The locations of the GHB conditions within the model are illustrated in Figure 2. Discussion of the placement and values for these boundary conditions is provided below. The placement and values for the well boundary conditions are described under the simulation discussion.

The GHB was used in the Dewey Area model to account for inflow and outflow from the model domain on all sides. GHBs were assigned along the edges of the model domain by extrapolating available potentiometric data (Knight Piesold, 2008), including observed water level elevations and observed hydraulic gradients. GHBs were used because the groundwater elevation at those boundaries can change in response to simulated stresses. In the Dewey wellfield model, GHBs were assigned to all four sides of the model. The values of head assigned to the GHBs ranged from 4,269 feet above mean sea level (ft amsl) along the north edge of the model and 3,036 ft amsl, along the south edge. The values of head assigned to the GHBs on the west and east sides of the model vary linearly between assigned heads at the north and south boundaries of the model. This configuration represents a hydraulic gradient of 0.006 ft/ft to the southwest, consistent with water levels and hydraulic gradients observed in the lower Fall River monitor wells.

The wellfield configuration includes a series of 5-spot well patterns with an extraction well located in the center, surrounded by four injection wells. Each well pattern is approximately 70 feet on a side. Figure 1 presents the wellfield layout of injection and extraction wells, and the perimeter monitor well ring. Extraction and injection rates applied to the wells are described under the simulation discussions of this report.

The model domain was extended a suitable distance from the location of the proposed production wellfield to minimize perimeter boundary effects on the interior of the model where the hydraulic stresses were applied.

Aquifer Properties

Input parameters used in the model to simulate aquifer properties are consistent with site-derived data, including the following:

- Top and bottom elevations of the lower Fall River sandstone, of approximately 3,066 feet above mean sea level (ft amsl) and 2,991 ft amsl at the southwest corner of the modeled wellfield
- Saturated thickness of 75 feet
- Hydraulic gradient of 0.006 ft/ft
- Hydraulic conductivity of 3.4 ft/day and storativity of 4.6 x 10⁻⁵, based on hydrologic testing (to be modified by model calibration)

Page 5

Porosity of 29%, based on core analysis

For the purposes of a wellfield-scale model simulating ISR production, the additional geologic and hydrogeologic complexities that are present in the Dewey area were not included, owing to the lack of data. The wellfield is located on a homoclinal limb of the Fall River Formation, but the aquifer is represented as an extension of the stratigraphic dip observed near the wellfield. Thus, the observed top of the lower Fall River sandstone is extended to the model boundaries at a dip of 0.01 ft/ft, though limited local data and regional mapping indicates that the degree of dip in both the up-dip and downdip directions decreases.

Static water level conditions within the model domain are similarly presented. Utilizing a potentiometric elevation of 3,654 ft amsl at the southwest corner of the wellfield, an average measured gradient of 0.006 ft/ft is extended to the edges of the model boundaries.

A hydrologic test conducted in 2008 (Knight Piesold, 2008) in the Dewey area included a pump test at well DB-07-32-03C for 3.08 days, at a constant rate of 30.2 gpm. The median reported aquifer transmissivity (T) for the lower Fall River (estimated thickness of 75 feet) was approximately 255 ft²/day, which corresponds to a hydraulic conductivity of 3.4 ft/day. Median storativity (S) was determined to be 4.6 x 10^{-5} . These two values (T = 3.4 ft/day; S = 4.6 x 10^{-5}) represent starting aquifer input values for the wellfield model calibration to the results of testing.

No attempt was made to calibrate the model to natural background potentiometric conditions because of limited data.

Modeled Aquifer Response versus 2008 Hydrologic Testing

The groundwater model was calibrated to the 2008 pump test conducted in the Dewey area (Knight Piesold, 2008). The pumping well (DB-07-32-03C) is completed in a portion of the lower Fall River (ore zone), and three observation wells completed to the ore zone were monitored. The pumping well and two closest observation wells are located within or near the wellfield. Overlying and underlying wells were also monitored, but because the model is a single layer, the overlying and underlying data was not utilized in the calibration.

The pumping well was simulated at a constant rate of 30.2 gpm for 3.08 days. The initial condition was the previously described potentiometric surface with a hydraulic gradient of 0.006 ft/ft. Simulated drawdown at the three observation wells was compared to the pump test results and hydraulic conductivity and storativity values were varied in the model input to attempt a best fit to the limited hydrologic data. No attempt was made to compare the results of the pumping well drawdown at the end of the test, due to the lack of data regarding well efficiency at this well.

Page 6

Petrotek

Appendix 6.6-B

June 2011

The following table briefly summarizes the results of the 2008 testing:

Well	Туре	Radial Distance to Pumping Well (ft)	Observed Drawdown at End of Pumping (ft)
DB 07-32-3C	Pumping	0	44.8
DB 07-32-05	Observation	265	13.0
DB 07-32-4C	Observation	467	9.8
DB 07-29-7	Observation	2,400	1.5

During calibration, model input parameters for K and S were varied from the average reported aquifer parameters ($K = 3.4 \, \text{ft/day}$, $S = 4.6 \, \text{x} \, 10^{-5}$, Knight Piesold [2008]). Table 1 summarizes the calculated residual values (difference between observed versus model results of drawdown), and shows that a K value of 3.1 ft/day and S value of 4 x 10^{-5} provides the best match to observed drawdowns. The model output at the distal observation well (DB 07-29-7, 2,400 ft distant) overpredicts drawdown in all simulated cases. The purpose of the modeling simulations are to simulate flow at a wellfield scale and within the monitoring well ring (spaced 400 feet from the ore body wellfield patterns, therefore the drawdown fit at the two closest wells was weighed more heavily in the choice of aquifer parameters for the wellfield model (see Table 1). Based on this approach, a conductivity of 3.1 ft/day and storativity of 4 x 10^{-5} were determined to best fit the limited hydrologic data available. Figure 3 presents the simulated drawdown versus observed drawdown.

Dewey Wellfield Balance and Determination of Flare

The wellfield balance and flare determination simulation was conducted to (1) attempt to balance injection and production volumes within the wellfield while minimizing excursion potential and (2) track groundwater particle pathways that illustrate the horizontal flare around the wellfield. The following wellfield simulation was run for a period of two years, and flare was evaluated at the end of this time frame.

Input parameters for the modeled aquifer are a K value equal to 3.1 ft/day and S equal to 4 x 10^{-5} . Total wellfield overproduction (bleed) in this simulation is 1.0%. Balancing was conducted by starting with an idealized wellfield balance, with each extraction well producing at 20 gpm. Each injection well rate is defined by the number of neighboring extraction wells. An interior injection well surrounded by four extraction wells and injects at a rate of 19.8 gpm (1.0% bleed). For an exterior injection well adjacent to three extraction wells, the injection rate is 75% of an interior well, and 50% and 25% for an injection well adjacent to two and one extraction wells, respectively.

Total production at the 104 extraction wells is 2080 gpm, equivalent to 20 gpm per well. Total injection at the 160 injection wells is 2059.2 gpm, ranging in rate from 3.2 gpm to 20.8 gpm. Figure 4 presents the modeled wellfield, with posted extraction and injection volumes at each of the 264 wells.

Numerical Modeling of Flare and Excursion Detection and Recovery, Dewey-Burdock Uranium Project, South Dakota November 2010 Dewey-Burdock TR RAI Responses

June 2011

Page 7

Particle tracking by MODPATH was implemented utilizing multiple particles originating in the model cell of each of the exterior injection wells. Figure 5 presents the particle flowpaths of the balanced wellfield at 1.0% bleed, and the perimeter of the particle traces were traced. Horizontal flare is calculated by taking the ratio of the flare perimeter and boundary of the injection wells. Horizontal flare was minimized by adjusting injection rates at specific wells while maintaining the overall balance at a 1% bleed. Horizontal flare is calculated at 1.19 by dividing the area of particle traces by the exterior boundary of the wellfield. Vertical flare cannot be evaluated in the single-layer model that was utilized in this simulation, but it is expected that the magnitude of vertical flare is similar, or less, in scale to horizontal flare. Due to the vertical anisotropy likely present in the sand layers (i.e., horizontal conductivity is greater than vertical conductivity) and the presence of overlying and underlying confining layers, it is likely that flare in the vertical dimension is less than in the horizontal. Therefore, a total flare value of 1.4 is reasonable and appropriate for the Dewey wellfield.

Simulated Regional Drawdown and Wellfield Potentiometric Levels

Regional drawdown was evaluated based on the results of the two-year operational simulation conducted in the wellfield flare evaluation. Based on the model results, regional drawdown impacts of 5 feet and 1 foot are approximately 14,000 ft (2.7 mi) and 68,000 ft (12.9 mi), respectively (see Figure 6). Figures 7 and 8 present the modeled potentiometric surface of the ore zone near the wellfield and modeled drawdown near the wellfield, respectively.

For model verification, an analytical Theis equation is used to compare the radius of drawdown from the wellfield. Using the Theis solution in a spreadsheet produced by the USGS (Halford and Kuniansky, 2002), a pumping rate of 20.8 gpm (i.e., 2080 gpm – 2059.2 gpm) over a two-year period is used. Results of this calculation indicate that the radius of 5-foot and 1-foot of drawdown is approximately 16,000 feet and 80,000 feet, respectively, which compares well to the results of the modeling simulations.

The wellfield model simulates a homogeneous and isotropic aquifer, without any potential hydrogeologic boundaries (e.g., recharge and/or fault boundaries). The presence of potential boundaries at some distance from the wellfield, or heterogeneity within the wellfield could increase or decrease the overall drawdown within the wellfield area, and may require changes in the overall wellfield balance, but is not expected to significantly alter flow within the wellfield.

Dewey Wellfield Simulated Excursion

In order to assess the proposed 400 foot monitoring well spacing (i.e., wells spaced approximately 400 feet distant from the wellfield, and laterally spaced 400 feet apart in the monitor well ring), an excursion was simulated to illustrate that the spacing is adequate to detect a potential excursion that might occur.

Numerical Modeling of Flare and Excursion Detection and Recovery, Dewey-Burdock Uranium Project, South Dakota November 2010 Dewey-Burdock TR RAI Responses

June 2011

To simulate the excursion, the extraction well at the extreme southwest corner of the wellfield was turned off, with all remaining injection and extraction wells operating at the same rates evaluated in the 1% bleed wellfield flare simulation. This location in the wellfield was utilized because the downgradient and southern portion of the wellfield would be most susceptible to particles exiting the hydraulic sink of the wellfield and traveling southwest with the regional groundwater gradient. Particles to track the flow of injectate from the wellfield during the simulated excursion were placed at the three downgradient injection wells.

Figure 9 presents the particle paths originating from the "out of balance" corner of the wellfield. Figure 10 presents the simulated potentiometric surface at this time near the wellfield. Groundwater flow vectors at the end of the excursion simulation are presented in Figure 11 and illustrate that groundwater flow in the southern area near the monitoring wells is dominantly to the south, in the direction of regional hydraulic gradient. As can be observed from Figure 9, the modeled excursion would eventually intersect the perimeter monitor wells. Therefore, the proposed 400 foot monitoring well spacing is adequate to detect any potential excursion.

Dewey Wellfield Simulated Excursion Recovery

To demonstrate that any potential excursion to the monitoring well ring can be hydraulically controlled, the previously simulated excursion was recovered by adjusting wellfield production/injection. Injection rates at the three downgradient injection wells were set to zero, and the two downgradient extraction wells were adjusted to pump at a rate of 24 gpm each.

Figure 12 presents the potentiometric surface near the simulated excursion at approximately one hour after the recovery was initiated. As can be seen in this figure and contrasted with the potentiometric levels during the excursion (see Figure 10), a local gradient from the southernmost monitor well back to the wellfield is induced. Figure 13 illustrates the velocity vectors of groundwater flow at the same time, which has been reversed and modeled groundwater flow at the area of the simulated excursion is moving back towards the wellfield.

The previously simulated excursion, where a single extraction well was turned off, was run for an additional 30 days, and particles just inside the perimeter monitor well boundary at the downgradient side of the wellfield were tracked. At the end of the 30 days, the excursion recovery was initiated and particles representing the downgradient extent of the simulated excursion were tracked for a period of 60 days. Figure 14 illustrates the simulated groundwater flowpaths immediately adjacent to the monitor well for this scenario, as well as illustrating that the excursion recovery scenario is adequate to reverse the hydraulic gradient and reverse the direction of groundwater flow at a distance of 400 ft, and pull the simulated excursion back inside the perimeter boundary. This figure also provides an indication of the scale of simulated groundwater travel times, as groundwater migrates only approximately 3 ft in the 30 day simulated

Numerical Modeling of Flare and Excursion Detection and Recovery, Dewey-Burdock Uranium Project, South Dakota November 2010 Dewey-Burdock TR RAI Responses

June 2011

Page 9

Appendix 6.6-B

excursion scenario, and a similar distance for the 60 day recovery. Differences in velocity at this location during the excursion and subsequent recovery are because the induced hydraulic gradient during recovery is lower than the regional gradient that was simulated during the out-of-balance wellfield excursion.

In order to assess the validity of this simulation, an analytical Theis solution for a confined aquifer was utilized. The excursion recovery represents an additional 28 gpm of production (24 gpm at one well previously not operating, and the other well increased from 20 gpm to 24 gpm) and a deduction of approximately 16 gpm (see Figure 4 for posted injection rates), a net pumping rate of 44 gpm. At a distance of 400 ft from the pumping well, the drawdown at one hour is estimated to be approximately 4 feet. Therefore, the Theis solution verifies the results of the modeling simulation that indicate the local gradient can be influenced at a distance of 400 ft. This relatively rapid response at this distance is due to that fact that the lower Fall River is a relatively low-storage system (based on hydrologic testing).

Summary

Numerical modeling was conducted to evaluate wellfield-scale issues related to ISR production at the Dewey-Burdock Project. Wellfield flare was determined and the proposed 400 foot well spacing was demonstrated through modeling to be adequate to detect a potential excursion at this distance. Model simulations also demonstrated that hydraulic control of the simulated excursion can be established by changing wellfield operational rates at this distance away from the wellfield.

Horizontal flare from a balanced wellfield operating at a 1% net bleed was determined to be 1.19. Vertical flare was not evaluated, but considering a similar scale of flare in this direction, total wellfield flare is estimated at approximately 1.4.

An excursion was simulated by varying the wellfield balance, and particle pathways representing the flow of injectate indicate that the 400 foot monitoring well spacing is adequate to detect the excursion away from the wellfield. The recovery of a potential excursion was also demonstrated by varying the wellfield balance to reverse the hydraulic gradient at this distance and change the direction of travel of groundwater back towards the wellfield.

List of Tables

1 – Dewey Wellfield Model, Calibration to 2008 Hydrologic Testing

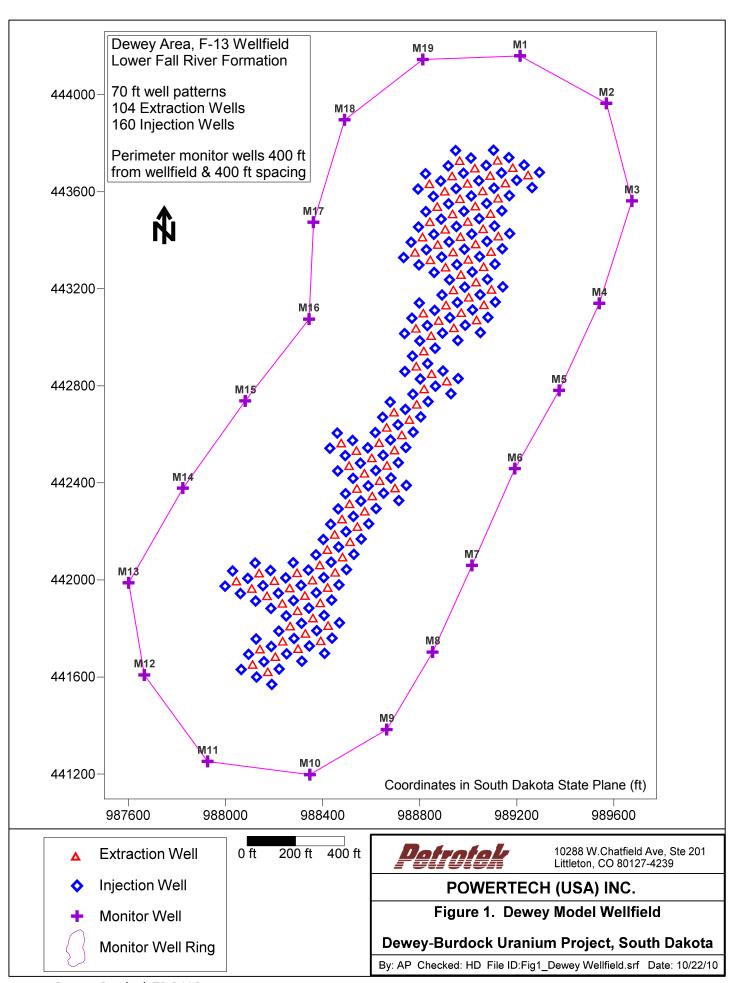
List of Figures

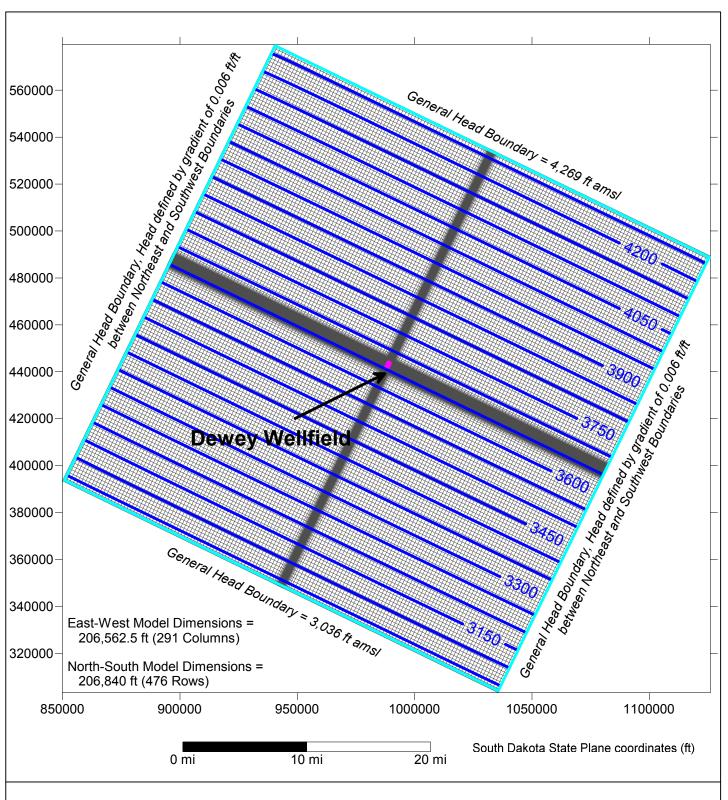
- 1 Dewey Model Wellfield
- 2 Dewey Wellfield Model, Boundary Conditions and Background Potentiometric Surface
- 3 Dewey Wellfield Model, 2008 Pump Test Calibration Results
- 4 Balanced Wellfield Rates, 1% Bleed, 2-Year Simulation
- 5 Wellfield Flare, 1% Bleed, 2-Year Simulation
- 6 Simulated Regional Drawdown, 1% Bleed, 2-Year Simulation
- 7 Local Potentiometric Surface, 1% Bleed, 2-Year Simulation
- 8 Local Simulated Drawdown, 1% Bleed, 2-Year Simulation
- 9 Simulated Excursion Flowpaths and Detection by Perimeter Monitor Wells
- 10 Potentiometric Surface, Simulated Excursion
- 11 Groundwater Velocity Vectors, Simulated Excursion
- 12 Potentiometric Surface (63 minutes), Simulated Excursion Recovery
- 13 Groundwater Velocity Vectors (63 minutes), Simulated Excursion Recovery
- 14 Particle Flow Paths at Monitor Well, Simulated Excursion and Recovery

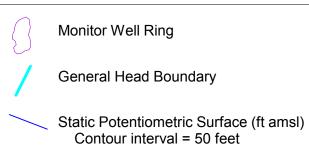
June 2011

References

- Environmental Simulations, Inc. 2005. Guide to Using Groundwater Vistas, Version 5. pp 372. Prepared by Environmental Simulations, Inc., Reinholds, VA.
- Knight Piesold, 2008. Powertech (USA) Inc., Dewey-Burdock Project, 2008 Pumping Tests: Results and Analysis. Prepared for Powertech (USA), November 2008.
- McDonald, M.G., and A.W. Harbaugh. 1988. MODFLOW, A Modular Three-Dimensional Finite Difference Flow Model. Techniques of Water-Resources Investigations, Book 6, Chapter A1. U.S. Geological Survey.
- McDonald, M.G., and A.W. Harbaugh. 1996. *User's documents for MODFLOW-96, an update to the U.S. Geological Survey modular finite difference ground-water flow model.* Open File Report 96-485. U.S. Geological Survey.
- Powertech (USA) Inc., 2009. Dewey-Burdock Project Application for NRC Uranium Recovery License, Fall River and Custer Counties, South Dakota, Technical Report (separate cover) & Environmental Report (separate cover). February 2009.

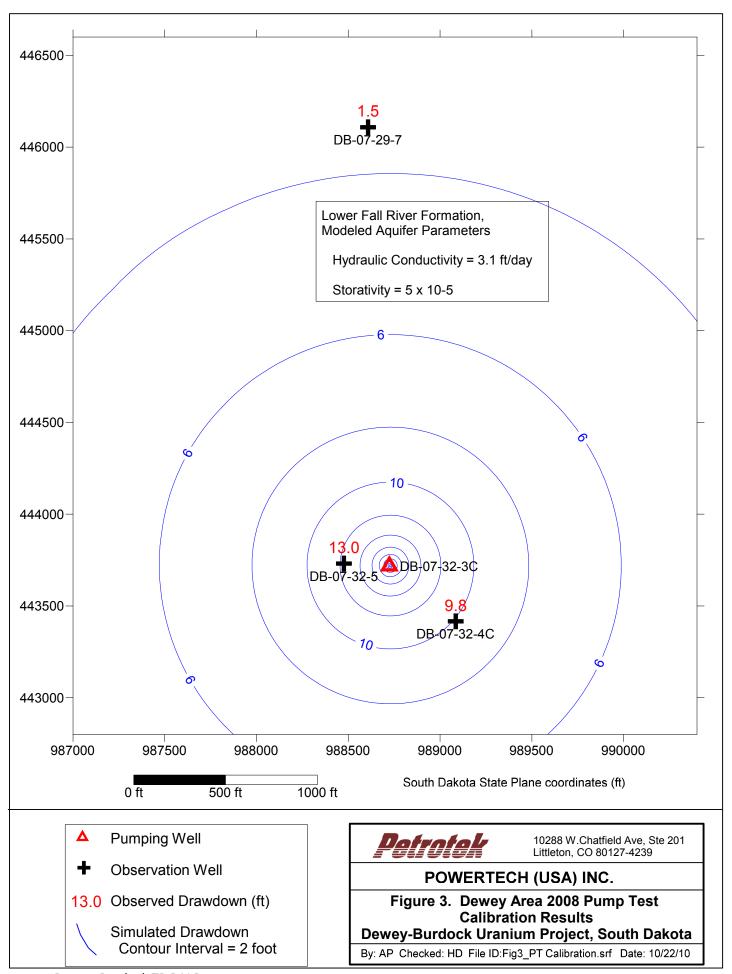

Table 1. Dewey Wellfield Model, Calibration of Model to 2008 Hydrologic Testing

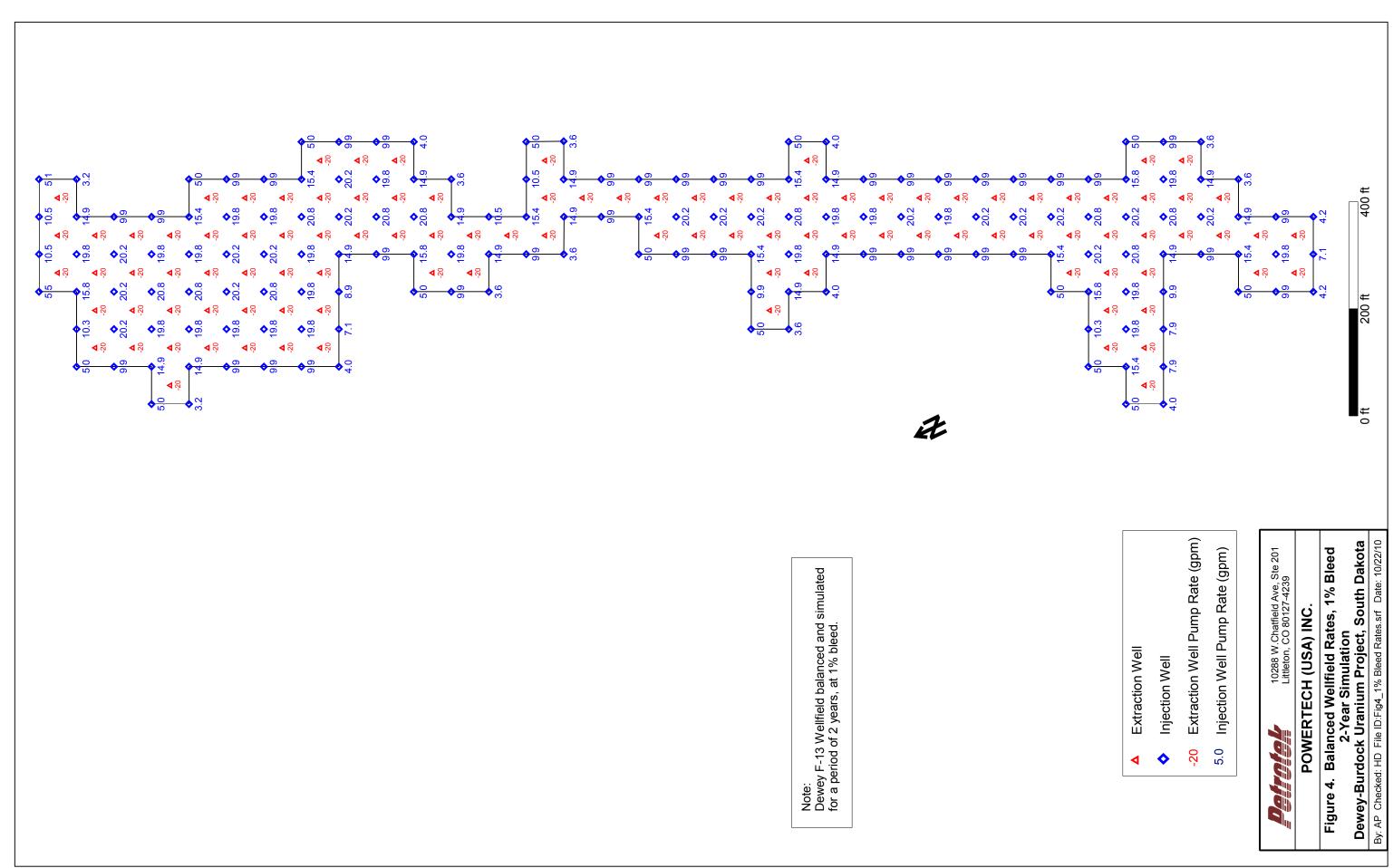

	Drawdown Residual* (DB 07-32-05)	Drawdown Residual* (DB 07-32-04C)	Drawdown Residual* (DB 07-29-7)	Residual Sum of Squares, 2 Closest Wells ¹	
	(265 ft from PW)	(467 ft from PW)	(2,400 ft from PW)	2 Glosest Wells	
K = 3.1 ft/c	day				
S=3e-5	-0.34	-1.11	-3.03	1.35	
S=4e-5	0.23	-0.53	-2.5	0.33	
S=5e-5	0.68	-0.09	-2.09	0.47	
S=6e-5	1.04	0.28	-1.77	1.16	
K = 3.2 ft/	day				
S=3e-5	0.01	-0.83	-2.94	0.69	
S=4e-5	0.57	-0.37	-2.43	0.46	
S=5e-5	1	0.16	-2.03	1.03	
S=6e-5	1.35	0.51	-1.72	2.08	
K = 3.4 ft/	day				
S=3e-5	0.67	-0.31	-2.79	0.55	
S=4e-5	1.19	0.21	-2.3	1.46	
S=5e-5	1.6	0.62	-1.93	2.94	
S=6e-5	1.93	0.95	-1.63	4.63	
K = 3.6 ft/	day				
S=4e-5	1.75	0.65	-2.18	3.49	
S=5e-5	2.13	1.03	-1.83	5.60	
S=6e-5	2.45	1.34	-1.54	7.80	


Notes:

^{* -} A positive sign indicates underprediction of drawdown; negative sign indicates model output drawdown more than observed drawdown.

^{1 -} Calibration based on evaluation at two closest monitoring wells, as indicated in text. **Bold** indicates best fit utilized for wellfield model simulations.




10288 W.Chatfield Ave, Ste 201 Littleton, CO 80127-4239

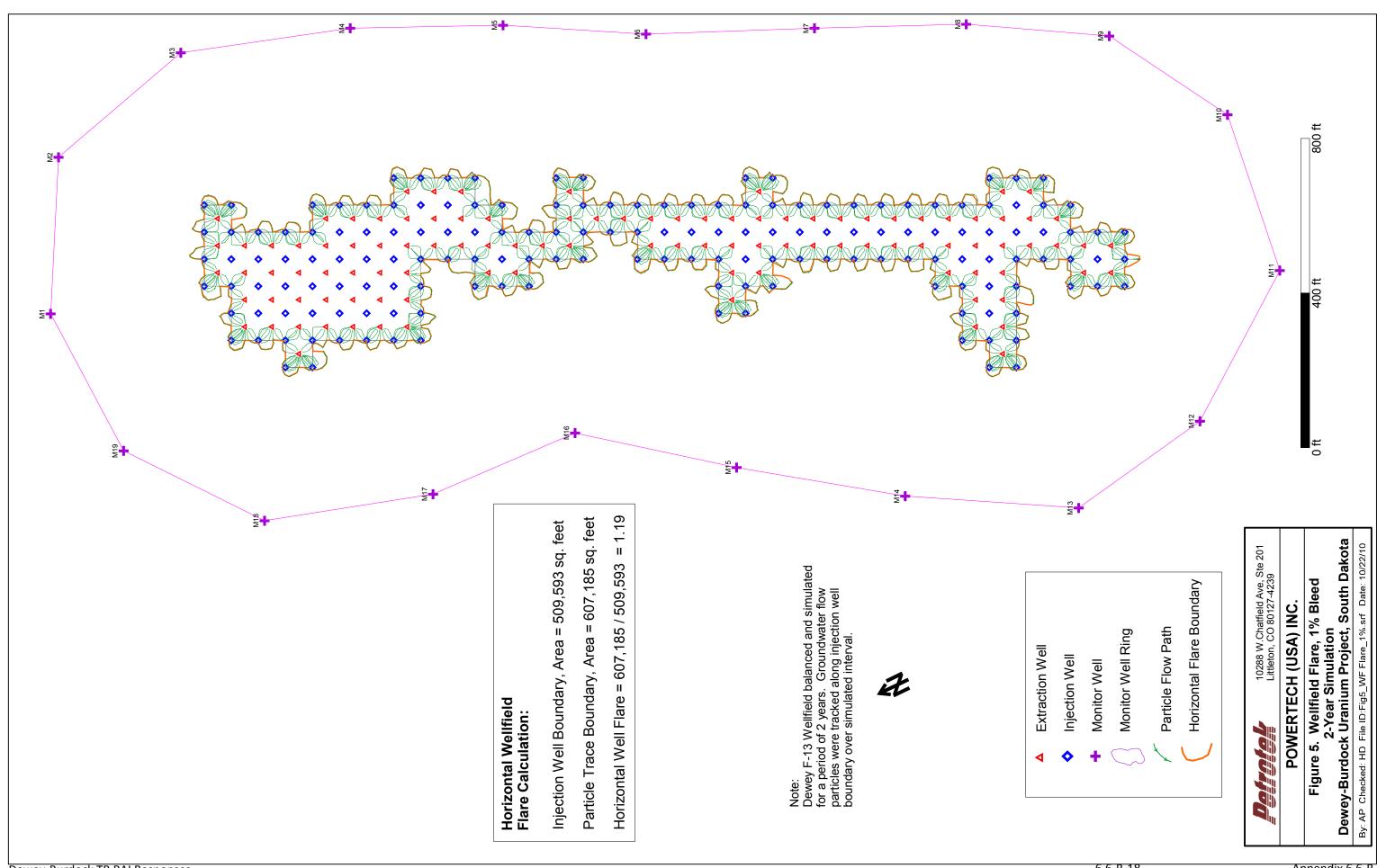
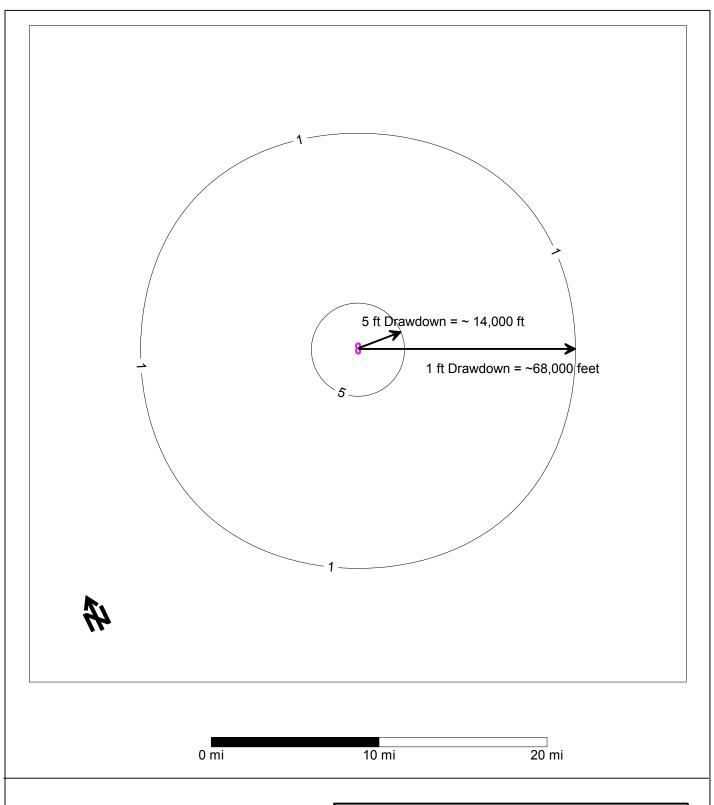
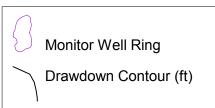

POWERTECH (USA) INC.

Figure 2. Model Domain, Boundary Conditions, Background Potentiometric Surface Dewey-Burdock Uranium Project, South Dakota

By: AP Checked: HD File ID:Fig2_Dewey WF Model.srf Date: 10/22/10

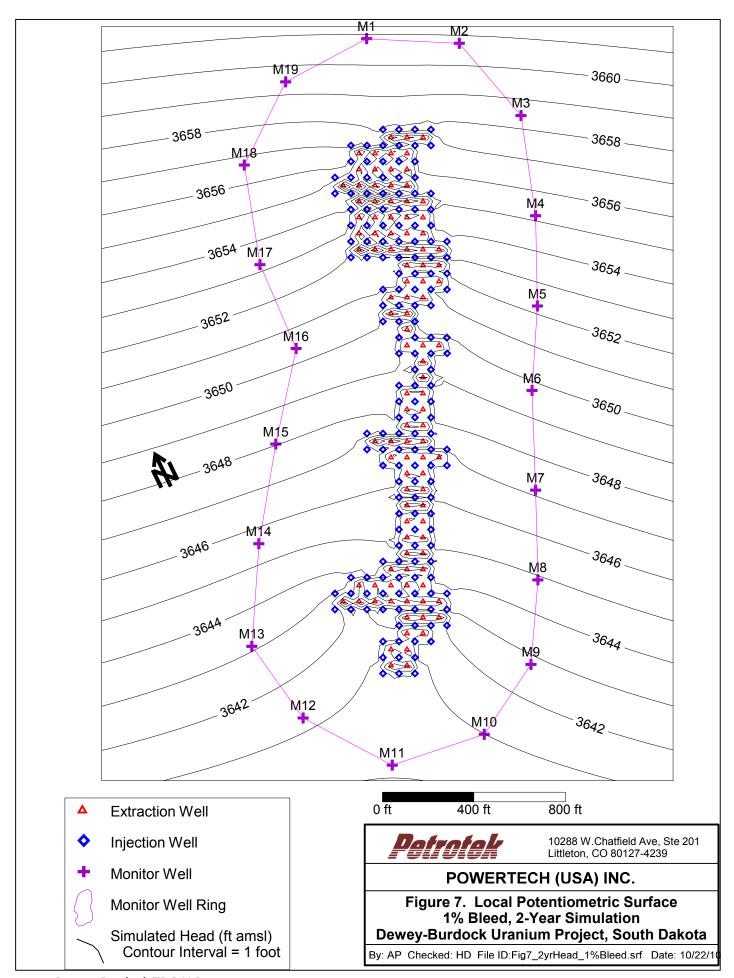


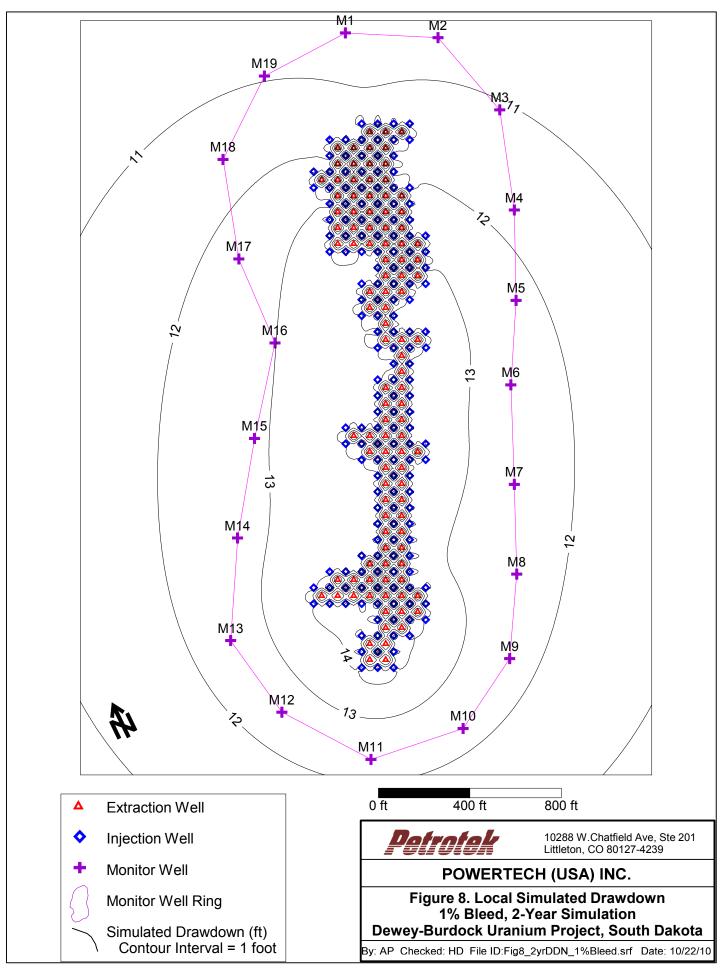


Dewey-Burdock TR RAI Responses June 2011

6.6-B-18

Appendix 6.6-B




10288 W.Chatfield Ave, Ste 201 Littleton, CO 80127-4239

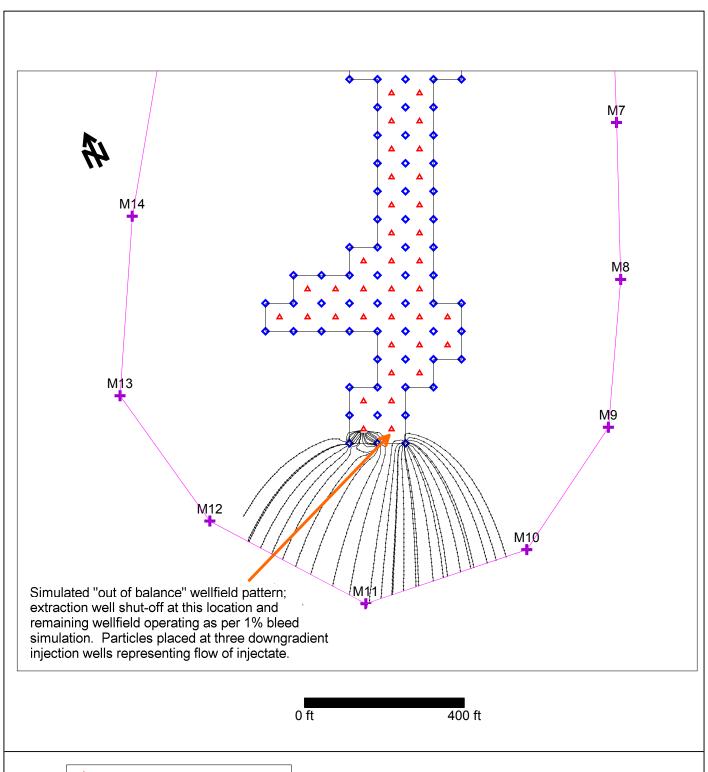
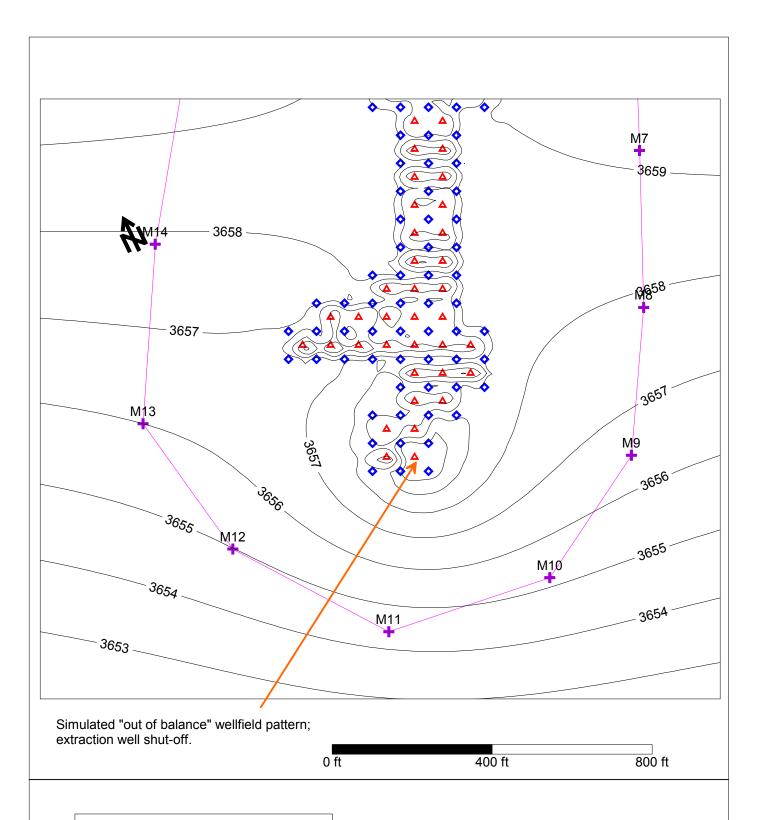

POWERTECH (USA) INC.

Figure 6. Simulated Regional Drawdown, 1% Bleed 2-Year Simulation Dewey-Burdock Uranium Project, South Dakota

By: AP Checked: HD File ID:Fig6_RegionalDDN.srf Date: 10/22/10




10288 W.Chatfield Ave, Ste 201 Littleton, CO 80127-4239

POWERTECH (USA) INC.

Figure 9. Simulated Excursion Flowpaths and Detection by Perimeter Monitor Wells Dewey-Burdock Uranium Project, South Dakota

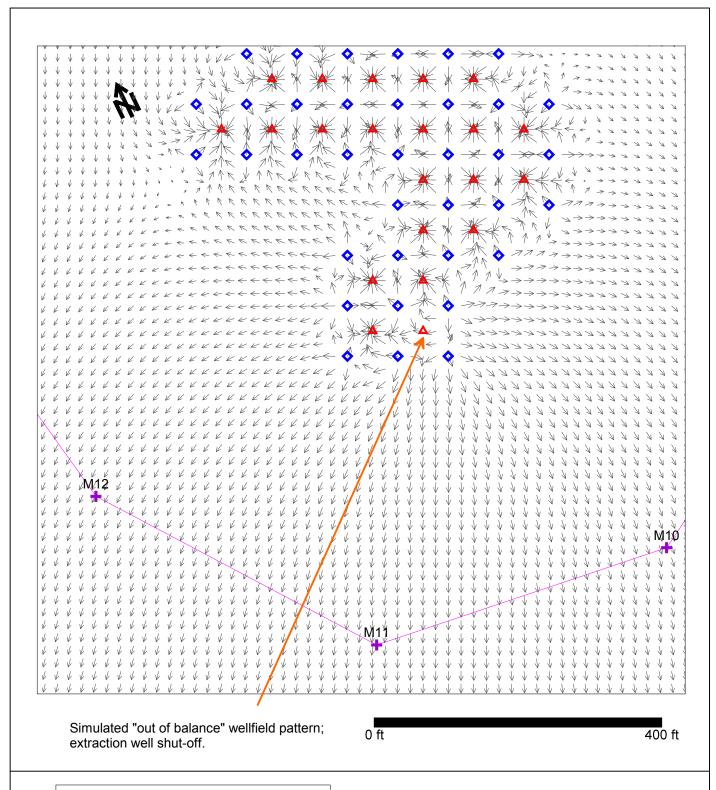
By: AP Checked: HD File ID:Fig9_SimExc_Particles.srf Date: 9/30/10

Injection Well

Monitor Well

Monitor Well Ring

Potentiometric Surface (ft amsl) Contour Interval = 1 foot



10288 W.Chatfield Ave, Ste 201 Littleton, CO 80127-4239

POWERTECH (USA) INC.

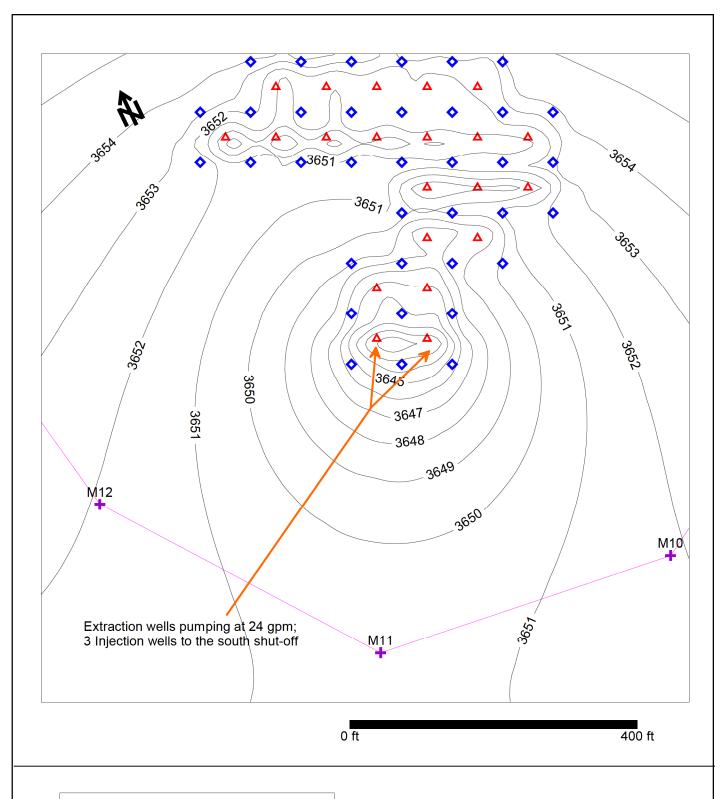
Figure 10. Potentiometric Surface, Simulated Excursion Dewey-Burdock Uranium Project, South Dakota

By: AP Checked: HD File ID:Fig10_SimExc_Head.srf Date: 10/22/10

- Extraction Well
- Injection Well
- Monitor Well

Monitor Well Ring

↓ Groundwater Flow Velocity Vector



10288 W.Chatfield Ave, Ste 201 Littleton, CO 80127-4239

POWERTECH (USA) INC.

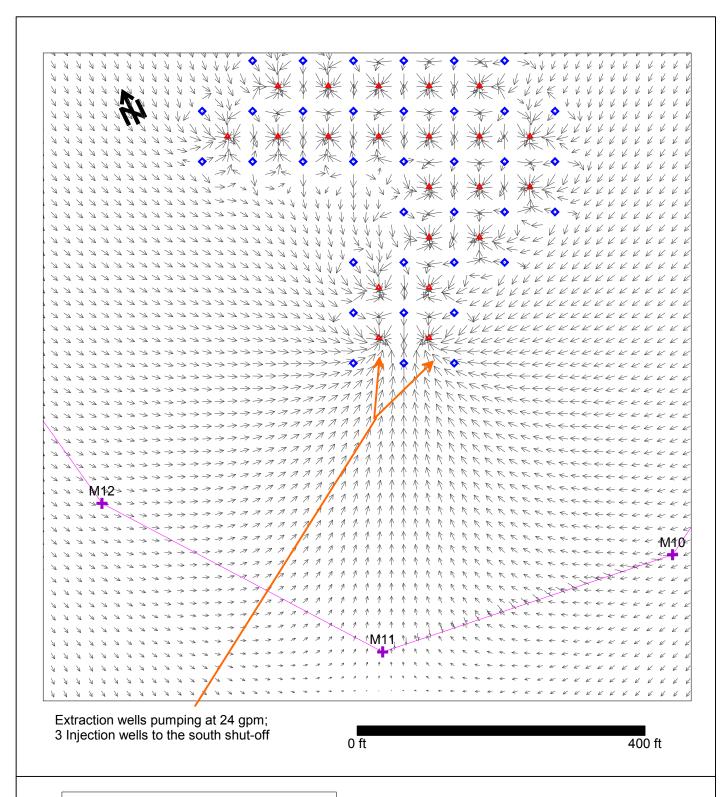
Figure 11. Velocity Vectors,
Simulated Excursion
Dewey-Burdock Uranium Project, South Dakota

By: AP Checked: HD File ID:Fig11_SimExc_Vectors.srf Date: 10/22/10

- Injection Well
- Monitor Well

Monitor Well Ring

Potentiometric Surface (ft amsl) Contour Interval = 1 foot



10288 W.Chatfield Ave, Ste 201 Littleton, CO 80127-4239

POWERTECH (USA) INC.

Figure 12. Potentiometric Surface (1 Hour), Simulated Excursion Recovery Dewey-Burdock Uranium Project, South Dakota

By: AP Checked: HD File ID:Fig12_Recovery_Head.srf Date: 10/22/10

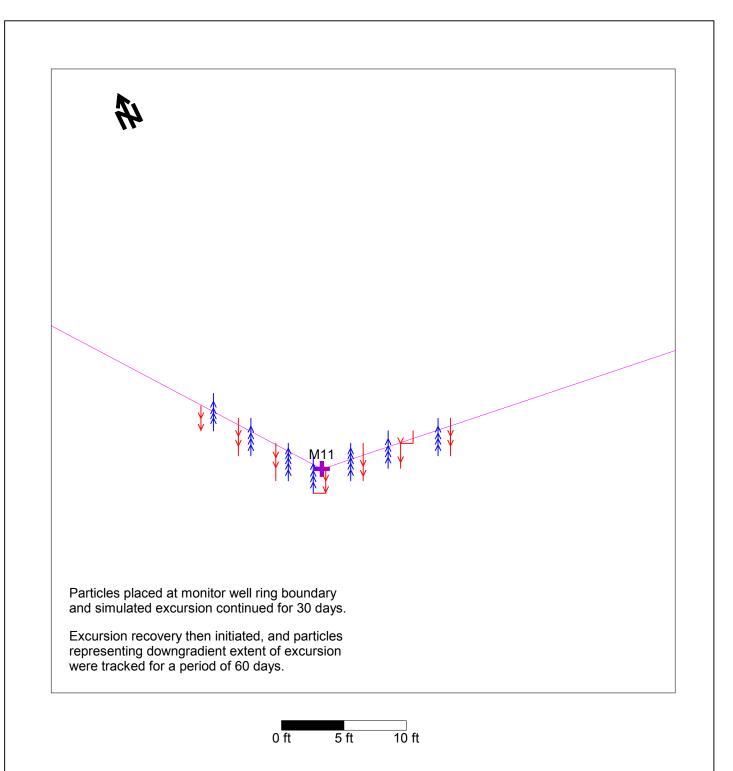
Injection Well

Monitor Well

N

Monitor Well Ring

Groundwater Flow Velocity Vector



10288 W.Chatfield Ave, Ste 201 Littleton, CO 80127-4239

POWERTECH (USA) INC.

Figure 13. Velocity Vectors (1 Hour), Simulated Excursion Recovery Dewey-Burdock Uranium Project, South Dakota

By: AP Checked: HD File ID:Fig13_Recovery_Vector.srf Date: 10/22/10

flowpath representing simulated recovery

Monitor Well

Monitor Well Ring

10288 W.Chatfield Ave, Ste 201 Littleton, CO 80127-4239

POWERTECH (USA) INC.

Figure 14. Particle Flow Paths at Monitor Well Simulated Excursion & Recovery Dewey-Burdock Uranium Project, South Dakota

By: AP Checked: HD File ID:Fig14_Exc&RecovPath.srf Date: 10/22/10

APPENDIX 7.3-C

MILDOS-AREA Input Parameters

Table 7.3.1: Parameters used to estimate radionuclide releases from the Dewey-Burdock site

Parameter	Value	Unit	Variable Name	Source
Rate of land application - 1	1.27E-03	m d ⁻¹	AR_1	Application
Rate of land application - 2	2.79E-3	m d ⁻¹	AR ₂	Application
Area of land application - Dewey	1.27E+06	m ²	LA _{Dewey}	Application
Area of land application - Burdock	1.27E+06	m ²	LA _{Burdock}	Application
Time of land application in a year - 1	80	d	t _{d1}	Application
Time of land application in a year - 2	137	d	t_{d2}	Application
Years of land application	15	у	t _y	Application
Concentration of natural uranium in water	300	pCi L ⁻¹	[U-nat] _{water}	Application (NRC effluent values)
Concentration of thorium-230 in water	100	pCi L ⁻¹	[Th- 230] _{water}	Application (NRC effluent values)
Concentration of radium-226 in water	60	pCi L ⁻¹	[Ra- 226] _{water}	Application (NRC effluent values)
Concentration of lead- 210 in water	10	pCi L ⁻¹	[Pb- 210] _{water}	Application (NRC effluent values)
Density of soil - Dewey	1.28	g cm ⁻³	$ ho_{ m Dewey}$	Application
Density of soil - Burdock	1.24	g cm ⁻³	$ ho_{ m Burdock}$	Application
Depth of contamination	0.15	m	X	Assumption
Distribution coefficient of natural uranium in loam soil	15	cm ³ g ⁻¹	$K_{d,U\text{-nat}}$	"Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil" by Yu et al.
Distribution coefficient of thorium-230 in loam soil	3300	cm ³ g ⁻¹	K _{d,Th-230}	"Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil" by Yu et al.
Distribution coefficient of radium-226 in loam soil	36000	cm ³ g ⁻¹	K _{d,Ra-226}	"Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil" by Yu et al.
Distribution coefficient of lead-210 in loam soil	16000	cm ³ g ⁻¹	K _{d,Pb-210}	"Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil" by Yu et al.
Soil volume water content - Dewey	0.91	unitless	W _{Dewey}	Application
Soil volume water content - Burdock	0.80	unitless	WBurdock	Application
Rate of resuspension of radionuclides in surface soil	4E-06	h ⁻¹	ARR	DOE Handbook "Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities" by the US Department of Energy
Respirable fraction of resuspended radionuclides in surface soil	1.0	unitless	RF	DOE Handbook "Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities" by the US Department of Energy

Parameter	Value	Unit	Variable Name	Source		
Soil porosity - Dewey	0.5429	unitless	n _{Dewey}	Application		
	0.5340	unitless	n_{Burdock}	Application		
Lixiviant flow rate - production	1.49E+04	L min ⁻¹	$M_{production}$	Application		
Lixiviant flow rate - restoration	3.73E+03	L min ⁻¹	M _{restoration}	Application		
Lixiviant residence time	108	d	t	Application		
Production days per year	360	d	D	Application		
Formation porosity	0.34	unitless	$n_{ m form}$	"Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil" by Yu et al. (coefficient for sandstone)		
Content of radium in ore	592	pCi g ⁻¹	[Ra] _{ore}	Application		
Formation density	1.9	g cm ⁻³	$ ho_{ m form}$	Application		
Storage time in mud pits	7	d	T	Application		
Number of mud pits per year	725	y ⁻¹	N	Application		
Resin porosity	0.38	unitless	n _{resin}	Application		
Resin transfers per day	0.5	d ⁻¹	N _i	Application		
Volume of resin per transfer	1.42E+04	L	Vi	Application		
Average mass of ore material in mud pit	185	g	m	Application		
Radon emanation coefficient	0.22	unitless	Е	"Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil" by Yu et al.		

Table 7.3-2: Estimated soil concentrations (pCi g⁻¹) and release rates (Ci y⁻¹) of natural uranium (U-Nat), thorium-230 (Th-230), radium-226 (Ra-226), and lead-210 (Pb-210) from the Dewey-Burdock Site.

Location	X (km)	Y (km)	U-Nat		Th-230		Ra-226		Pb-210	
			Soil Conc.	Rel. Rate	Soil Conc.	Rel. Rate	Soil Conc.	Rel. Rate	Soil Conc.	Rel. Rate
Land Application - Dewey	-6.02	3.80	10.8	0.0974	3.78	0.0325	2.27	0.0195	0.378	0.00325
Land Application - Burdock	-1.09	0.99	11.2	0.0974	3.91	0.0325	2.34	0.0195	0.391	0.00325

Table 7.3-3: Estimated releases (Ci y⁻¹) of radon-222 from the Dewey-Burdock site.

Location	X	Y	Production	Restoration	Drilling	Resin	Land	Total
Location	(km)	(km)	Trouuction	Restor ation	Drining	Transfer	Application	Total
Production Well Field(5)	-3.86	3.48	212	26.5	3.6E-05	0	0	238.5
Production Well Field (2)	1.83	-0.56	212	26.5	3.6E-05	0	0	238.5
SF	-5.00	3.54	134	16.7	0	0.523	0	151.2*
SF Deep Well	-5.00	3.54	57	7.1	0	0	0	64.1*
Total SF			191	23.8		0.523		215.3
CPP	0	0	134	16.7	0	0	0	150.7*
CPP Deep Well	0	0	57	7.1	0	0	0	64.1*
Total CPP			191	23.8	0	0	0	214.8
Land Application - Dewey	-6.02	3.80	0	0	0	0	6.08	6.08
Land Application - Burdock	-1.09	0.99	0	0	0	0	7.49	7.49
Total			806	100.6	7.2E-05	0.523	14.0	921

^{*}These estimated releases are included in the total SF and CPP estimated releases and are not added again in the Total of 921 Ci/y.