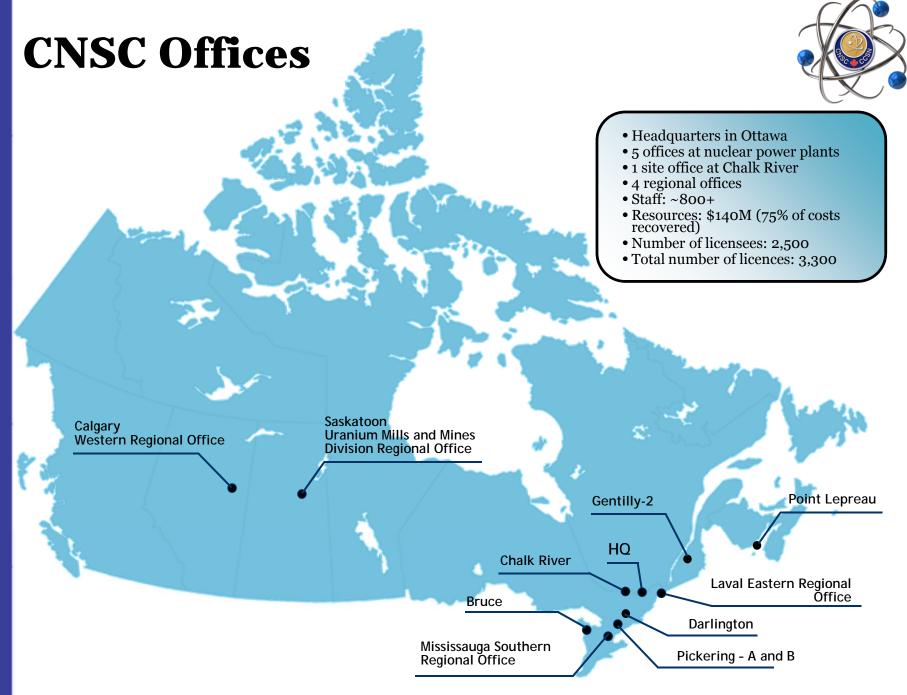


OPEX at Canadian Nuclear Processing Facilities

> Peter Elder, Director General Canadian Nuclear Safety Commission (CNSC)

Our Mandate

The CNSC's mandate is to


- Regulate the use of nuclear energy and materials so that the health, safety and security of Canadians and the environment are protected
- <u>Implement</u> Canada's international commitments on the peaceful use of nuclear energy
- <u>Disseminate</u> objective scientific, technical and regulatory information to the public

Safety, Security, Safeguard and Environmental Protection

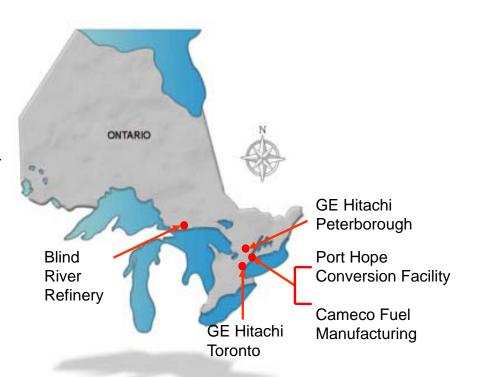
CNSC Regulates all Nuclear-Related Facilities and Activities

Uranium Processing Facilities in Canada

• Blind River Refinery

Conversion of Uranium
 Concentrate (U₃O₈) to Uranium
 Trioxide (UO₃)

Port Hope Conversion Facility


Conversion of UO₃ to UF₆ or UO₂

• GE Hitachi Canada - Toronto and Peterborough

Processing of UO₂ fuel pellets

Cameco Fuel Manufacturing

Processing of UO₂ fuel pellets

Blind River Refinery

- Conversion of Uranium Concentrate (U₃O₈) to Uranium Trioxide (UO₃)
- UO₃ sent to Port Hope facility for conversion to UF₆ or natural UO₂
- Worlds largest commercial uranium refinery

Port Hope Conversion Facility

- Cameco Corporation's Port Hope Conversion Facility
- Converts Uranium Trioxide powder to natural UO₂ and UF₆
- Started as a Radium Processing facility in the 1930s, located on Lake Ontario

Pressurized Uranium Concentrate Drum

- June 2012 depressurized when lid loosen by worker
- About 20 kg of Uranium Concentrate released to air within the facility
- Dose to the employee of approximately 1.7 mSv
- Root Causes (both at US Mill and Cameco facility)
 - Failure to identify hazards in previous OPEX (US-NRC IN99-03)
 - Failure to ensure that OPEX was shared between all stakeholders

Picture of the drum which resulted in Uranium Concentrate release within the facility

Pressurized Uranium Concentrate Drum (Cont'd)

- Regulatory Actions
 - Cameco required to isolate all concentrate from the same mill
 - Cameco required to put in place immediate measures to protect workers
 - Cameco required to develop methods to test for pressure and safely de-pressurize concentrate drums
 - Inspections of all Canadian
 Uranium Mills for similar issues

Pressurized Uranium Concentrate Drum – OPEX

- US-NRC, CNSC, Industry working group to disseminate "lessons learned"
 - Survey results identified that pressurized drums instances were limited to mills using a peroxide based process
 - Drum pressurizations were a result of continued decomposition of dried uranium product and the production of oxygen after the drums have been filled and sealed

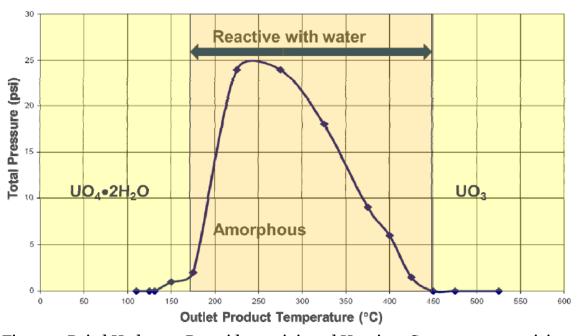


Figure 1: Dried Hydrogen Peroxide precipitated Uranium Concentrate reactivity with water

Pressurized Uranium Concentrate Drum – OPEX (Cont'd)

- Recommendations from US-NRC working group
 - Increase cooling and venting time for facilities utilizing Hydrogen
 Peroxide precipitation process
 - Conducting visual inspections of the drums for signs of pressurization prior to shipment
 - Facility operators should develop protocols to minimize the potential for organics, including oils and greases, to enter into Uranium Concentrate process circuits

Port Hope Conversion Facility Loss of Supervisory Control

- January 2014 PHCF lost supervisory control of UF₆ Plant
- Manual mode was required to reestablish plant control which resulted in eroding safety barriers
- No releases from the facility or exposures to workers
- Root Causes
 - Less than adequate management practices
 - Less than adequate policies and procedures

H₂ and F₂ gas lines located in UF₆ Plant at the Port Hope Conversion Facility

CNSC Staff Response to Cameco's January 2014 Event

- Cameco was required to take the following actions
 - Provide additional mitigation measures prior to the restart of the facility
 - Explain why work was performed on safety critical processes during normal operations and what controls were in place to prevent such a situation
 - Investigate why the Supervisory Control system required further intervention to bring the UF₆ plant under a safe shutdown state
 - Provide a root cause analysis of how this incident occurred and identify appropriate corrective actions to ensure the safety of the plant is maintained
 - Identify a schedule for the implementation of the corrective actions

Conclusion

- Recent events in Canada confirm the importance of international sharing of operating experience
- Operators need formal systems to share operating experience both internally and externally. This is part of the Canadian Management System requirements
- Fuel cycle facilities can learn intelligently from NPP events

Thank You

We will never compromise safety...

it's in our DNA!

Learn more at nuclearsafety.gc.ca

Facebook.com/CanadianNuclearSafetyCommission Youtube.com/cnscccsn