

EPRI ELECTRIC POWER

Integrating Fuel Design with the Front the and Back-End of the Fuel Cycle: A Utility -Informed Perspective Informed

Andrew SowderSenior Technical Leader, Fuels & Chemistry

USNRC 2014 Fuel Cycle Information Exchange Rockville, MD June 10, 2014

Back-End Fuel Performance Concerns

- Creep and creep rupture
- Hydride reorientation
- Delayed hydride cracking
- Severe accident performance
- Mitigating factors
	- $\mathcal{L}_{\mathcal{A}}$, and the set of $\mathcal{L}_{\mathcal{A}}$ $-$ internal rod pressurization
	- $\mathcal{L}_{\mathcal{A}}$, and the set of $\mathcal{L}_{\mathcal{A}}$ – fuel-cladding interactions
- **Evaluation of issues is ongoing**

Question at hand: Can/should confirmed back-end issues be addressed with fuel design?

Fuel Performance in Context

- In the reactor, LWR fuel operates under extreme conditions for years
	- high T
	- high P
	- high φ_n
- Conditions outside reactor are much more benign

Fuel performance requirements are best understood in context of entire lifecycle.

ELECTRIC POWER
RESEARCH INSTITUTE

 \equiv

Fuel Performance in Context

Used nuclear fuel in storage

Nuclear fuel designed for robust in-reactor performance should tolerate more benign conditions experienced during storage *and subsequent transportation***.**

Historical Context: LWR Fuel Development

- Current LWR fuel system reflects over five decades of optimization for <u>in-reactor</u> performance for:
	- $\mathcal{L}_{\mathcal{A}}$, and the set of th – increased burnups
	- decreased fuel failures
	- $\mathcal{L}_{\mathcal{A}}$, and the set of th $-$ substantial increases in nuclear plant availability
- Successful evolution of zirconium fuel system has balanced tangible benefits against costs
	- $\mathcal{L}_{\mathcal{A}}$, and the set of th $-$ safety benefits accrue from widespread application
	- benefits in back-end cannot be decou pled from in-reactor performance
- **Minor changes to zirconium fuel designs often require substantial timeframes and resources for deployment**

Current Context: U.S LWR Fuel Performance

© 2014 Electric Power Research Institute, Inc. All rights reserved.

ELECTRIC POWER RESEARCH INSTITUTE

Drivers for New Fuel Development: Enhanced Accident Tolerant Fuel (ATF) Example

• Fukushima focused international attention on benefits of increased safety margins through improvement of fuel and core components

 Maintain coolablecore geometry following recovery

 $\sqrt{C_{\rm{NN}}^2C}$

Eliminate or reduce hydrogen generation

Maintain or improve performance

Reduction or elimination of exothermic zirconium oxidation reduces driving force for core and infrastructure damage AND provides commensurate back-end benefits.

Fukushima Confirmed Low Risks for Used Fuel Storage

- Negligible calculated risk for fuel in storage relative to operating reactors*
- Events at Fukushima support this paradigm**
	- Jan Jawa (– drivers (energy and hydrogen) for onsite damage and offsite releases originated in reactor cores
	- Jan Jawa (neither used fuel nor pool performance issues contributed to infrastructure damage or offsite releases
	- Jan Jawa ($-$ pool structures survived seismic and tsunami events $\,$ and reactor building explosions
	- Jan Jawa ($-$ used fuel integrity was maintained despite explosions, subsequent debris impacts, and extended periods without active cooling

*WASH-1400 (1975); EPRI NP-3365(1984); NUREG-1150 (1990) ** EPRI 1025058 (2012)

© 2014 Electric Power Research Institute, Inc. All rights reserved.

Opportunities and Challenges with New Fuel

- New materials may eliminate key fuel failure modes (e.g., hydride formation) but could (re-)introduce others
- DOE-NE performance metrics for ATF explicitly capture performance for storage, transportation and disposal
- Emphasis on back-end vs. in-reactor performance mirrors tension in ATF R&D between accident tolerance and normal operational performance
	- $\mathcal{L}_{\mathcal{A}}$, and the set of th $-$ performance for severe accident conditions cannot be at $\,$ expense of performance for normal/off-normal operation and design-basis accidents and commercial viability
	- $\mathcal{L}_{\mathcal{A}}$, and the set of th **performance for back-end cannot be at expense of inreactor performance and commercial viability**

ATF Example: EPRI R&D for New Cladding and Channel Designs

Mo-Alloy Fuel Cladding

- •Corrosion resistant under normal ops
- High strength to ~1500°C
- •Potential for steam oxidation resistance at > 1000ºC the contract of the contract of
- •Compatible with current fuel/core designs & normal ops

SiC Composite BWR Fuel Channels

- Primary driver is elimination of channel distortion
- \bullet Eliminates >35% of Zr from BWR core

Closing

- Consideration of storage, transportation, and disposal issues is informing enhanced accident tolerant fuel design and assessment
- Opportunities may emerge for LWR fuel design enhancements that could result in benefits for the back-end
- **Back-end performance issues alone do not warrant or j yj g g g ustify major changes to fuel or cladding design**
- **In-reactor performance continues to drive fuel design**

Together Shaping the Future of Electricity …Shaping of

