NRC Sponsored Research on Primary Water Stress Corrosion Cracking

Greg Oberson NRC/RES June 4, 2014

The views expressed in this presentation are not necessarily those of the U.S. Nuclear Regulatory Commission

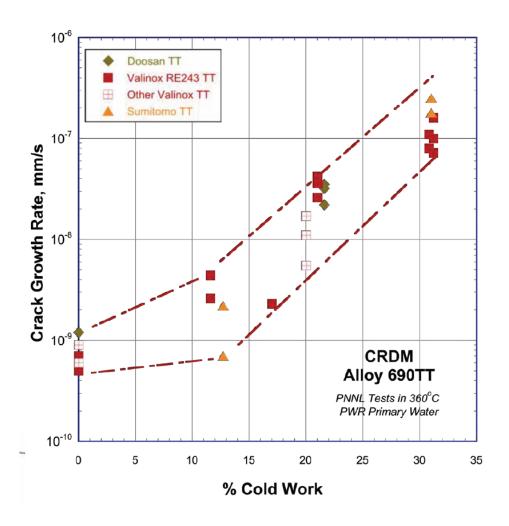
Objectives

- Obtain crack growth rate data to inform inspection requirements
 - Components manufactured using Alloy 690/152/52
 - Weld overlays and inlays
 - Dissimilar metal weld dilution zones
- Recent areas of testing focus
 - Effects of cold work on crack growth rates in Alloy 690
 - Weld dilution zones

Effects of Cold Work

Cold Work Effects on Alloy 690 Crack Growth Rates

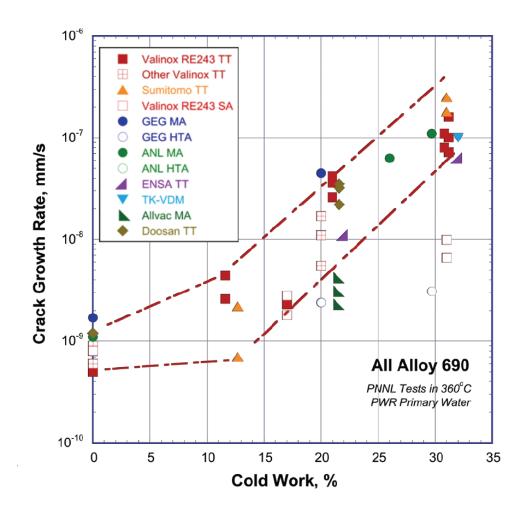
- Crack growth rates on non-cold worked Alloys 690 are low (~10⁻⁹ mm/s) but number of materials tested is limited
- Data show strong effect of cold work, with crack growth rates above 10⁻⁸ mm/s at 20%+ cold work
- Systematic study of cold-work effects ongoing at PNNL



Materials Tested

- Alloy 690TT CRDM tube
 - Valinox, Sumitomo, Doosan materials
 - Various cold work levels, up to 20% tensile strain, 31% cold roll, 31% cold forge
- Alloy 690 Plate/Bar/Billet
 - ANL, GE, TK-VDM, Allvac, ENSA materials
 - Various cold work levels, up to 26% cold roll,
 32% cold forge

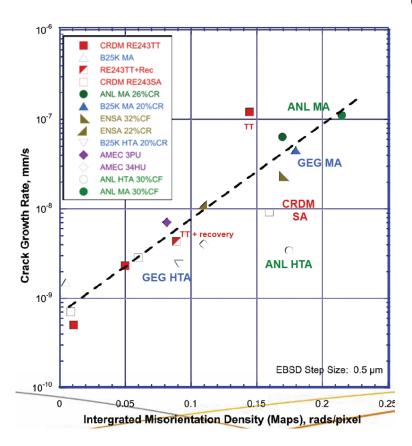
Crack Growth Rates – CRDM Materials

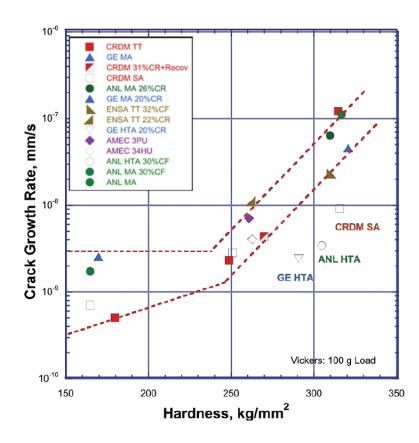


Notable increase in growth rate above 10-15% cold work

Bruemmer, et al, ICG-EAC, 2014

Crack Growth Rates – All Materials




Data trend is consistent with addition of bar/plate materials

Bruemmer, et al, ICG-EAC, 2014

Internal Strain and Hardness Correlations

Internal strain and hardness generally increase with CW and correlate well with measured crack growth rate

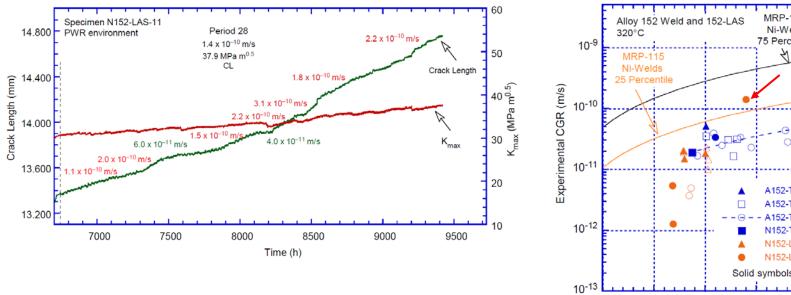
Bruemmer, et al, ICG-EAC, 2014

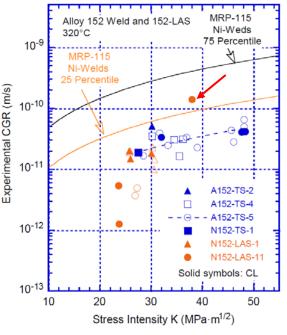
Weld Dilution

Effects of Chromium Dilution on PWSCC Crack Growth Rate

- Cr can be compositionally diluted near the fusion line between high-Cr weld metals and base material or low-Cr weld metal
- Ongoing studies measure crack growth in weld dilution zones
- Materials tested
 - 152M-LAS, 52M-LAS, 152-SS at PNNL
 - 52M-182 overlay, **152-LAS at ANL**

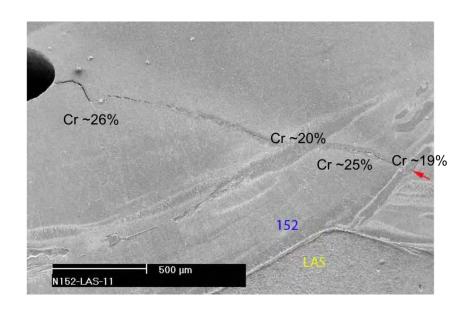
ANL Test on 152-LAS





- Alloy 690 to LAS mockup with Alloy 152 butter and weld
- CT specimens machined from first layer of Alloy 152 butter

Crack Growth Rate



- For about 2,700 hours at constant load, crack growth rate of about 1.4 x 10⁻⁷ mm/s
- Crack growth rate above the 25th percentile curve for Alloy 82/182 welds from MRP-115

Alexandreanu, et al, Alloy 690 Expert Panel Meeting, 2013

Crack Features

- Crack appears to advance in Alloy 152 butter layer
- LAS remains as unbroken ligaments
- Further analysis and additional testing ongoing at PNNL

Future Work – Crack Growth Rate Testing

- NUREG/CR report on effects of cold work on Alloy 690 expected by late 2014
- Testing priorities
 - Weld dilution
 - Effects of welding parameters
 - Overlays and inlays with 52/152
- Mockups needed

Future Work – Initiation Testing

- Anticipated start of NRC-sponsored testing program in 2015
- Data priorities
 - Alloy 600/82/182 to support xLPR code development
 - Effects of surface peening
- Exploring cooperative program with EPRI
 - Public meeting this Thursday afternoon