Advanced Passive 1000 (AP1000) Generic Technical Specification Traveler (GTST) Title: Changes Related to LCO 3.3.2, Reactor Trip System (RTS) Source Range Instrumentation I. <u>Technical Specifications Task Force (TSTF) Travelers, Approved Since Revision 2 of STS NUREG-1431, and Used to Develop this GTST</u> #### **TSTF Number and Title:** TSTF-469-T, Rev 0, Correct Action to Suspend Positive Reactivity Additions TSTF-519-T, Rev 0, Increase Standardization in Condition and Required Action Notes #### STS NUREGS Affected: TSTF-469-T, Rev 0: NUREG 1431 and 1432 TSTF-519-T, Rev 0: NUREG 1430 and 1431 ## **NRC Approval Date:** TSTF-469-T, Rev 0: 22-Apr-04 TSTF-519-T, Rev 0: 16-Oct-09 (TSTF Review) ## **TSTF Classification:** TSTF-469-T, Rev 1: Editorial Change TSTF-519-T, Rev 0: NUREG Only Change II. Reference Combined License (RCOL) Standard Departures (Std. Dep.), RCOL COL Items, and RCOL Plant-Specific Technical Specifications (PTS) Changes Used to Develop this GTST ## RCOL Std. Dep. Number and Title: There are no Vogtle Electric Generating Plant Units 3 and 4 (Vogtle or VEGP) departures applicable to GTS 3.3.1. ## **RCOL COL Item Number and Title:** There are no Vogtle COL items applicable to GTS 3.3.1. ## **RCOL PTS Change Number and Title:** The VEGP License Amendment Request (LAR) proposed the following changes to the initial version of the PTS (referred to as the current TS by the VEGP LAR). These changes include Administrative Changes (A), Detail Removed Changes (D), Less Restrictive Changes (L), and More Restrictive Changes (M). These changes are discussed in Sections VI and VII of this GTST. VEGP LAR DOC A024: Reformat of GTS 3.3.1 into Seven Parts; 3.3.1 through 3.3.7; note that this maps GTS 3.3.1 requirements into interim A024-modified TS (MTS) Subsection 3.3.2, to which the other changes are applied. VEGP LAR DOC A026: SR Note Change VEGP LAR DOC M01: Deletion of Reactor Trip Channel Operational Test (RTCOT) Definition VEGP LAR DOC M02: Provision for Two or More Inoperable Divisions or Channels VEGP LAR DOC L07: Certain TS Required Actions Requiring the Reactor Trip Breakers (RTBs) to be Opened Are Revised into Two Required Actions VEGP LAR DOC L09: Revise Table 3.3.1-1 Function 5 and related Conditions VEGP LAR DOC L10: Delete Current TS 3.3.1 Function 16, Interlocks VEGP LAR DOC L11: Delete Table 3.3.1-1 Function 5 third row and associated references # III. Comments on Relations Among TSTFs, RCOL Std. Dep., RCOL COL Items, and RCOL PTS Changes This section discusses changes: (1) that were applicable to previous designs, but are not to the current design; (2) that are already incorporated in the GTS; and (3) that are superseded by another change. TSTF-519-T has already been incorporated into the AP1000 GTS regarding the Writer's Guide for Improved Standard Technical Specifications (Reference 4) placement of Notes in TS Actions tables. | IV. | Additional Changes Proposed as Part of this GTST (modifications proposed by NRC | |-----|--| | | staff and/or clear editorial changes or deviations identified by preparer of GTST) | Minor corrections were made to correct grammatical errors in the bases. ## V. Applicability ## Affected Generic Technical Specifications and Bases: Section 3.3.2 Reactor Trip System (RTS) Source Range Instrumentation ## **Changes to the Generic Technical Specifications and Bases:** GTS 3.3.1, "Reactor Trip System (RTS) Instrumentation," is reformatted by VEGP DOC LAR A024 into multiple Specifications including interim A024-modified TS (MTS) 3.3.2, "Reactor Trip System (RTS) Source Range Instrumentation." The reformatting relocates GTS 3.3.1 Function 5, "Source Range Neutron Flux High Setpoint," into MTS 3.3.3 as part of the LCO statement. The MTS format is depicted in Section XI of this GTST as the reference case in the markup of the GTS instrumentation requirements for the source range instrumentation. ## MTS 3.3.2 LCO Title ## GTS 3.3.1 Function Reactor Trip System (RTS) Source Range Instrumentation 5. Source Range Neutron Flux High Setpoint References 2, 3, and 6 provide details showing the correspondence of GTS 3.3.1 Functions and STS 3.3.1 through 3.3.7 Functions. The Applicability Statement for MODES 3, 4, and 5 is revised to "Plant Control System capable of rod withdrawal or one or more rods not fully inserted." from "Reactor Trip Breakers (RTBs) closed and Plant Control System capable of rod withdrawal." This avoids undesirable plant secondary effects due to interlock actuation. (DOC L07) GTS 3.3.1 Conditions I, J, Q and R are reordered and relabeled as AP1000 MTS 3.3.2 Conditions A, B, C and D. (DOC A024) GTS Table 3.3.1-1, Function 5, third row is deleted (including footnote (e)). This eliminates the need for MTS Condition D. The requirement is inappropriately placed in the Specification requiring Reactor Trip System operability. (DOC L11) GTS Table 3.3.1-1 footnote (d), "Below the P-6 (Intermediate Range Neutron Flux) interlocks," applies to operation in MODE 2 for source range instrumentation. GTS Table 3.3.1-1 footnote (d) is incorporated into the MTS 3.3.3 LCO Applicability statement for MODE 2. GTS Table 3.3.1-1 footnote (a), "With Reactor Trip Breakers (RTBs) closed and Plant Control System capable of rod withdrawal," and footnote (e), "With RTBs open. In this condition, Source Range Function does not provide reactor trip but does provide indication," applies to operation in MODEs 3, 4, and 5 for source range instrumentation. GTS Table 3.3.1-1 footnote (a) is incorporated into the MTS 3.3.3 LCO Applicability statement for MODEs 3, 4, and 5 and footnote (e) is eliminated. (DOC A024 and DOC L11) STS 3.3.2 Conditions A and B are added to provide Actions to place inoperable channels in bypass and/or trip in MODE 2. (DOC L09) MTS 3.3.2 Condition A statement becomes STS 3.3.2 Condition C and is revised to reference new Actions A and B. (editorial result of DOC L09) MTS 3.3.2 Condition B (STS 3.3.3 Condition F) is revised to address three or more inoperable channels. Otherwise, LCO 3.0.3 would apply when the LCO is not met and the associated Actions are not met or an associated Action is not provided. (DOC M02) MTS 3.3.2 Condition A Action statement A.1 becomes STS 3.3.2 Action statement C.1 and is revised to "Suspend positive reactivity additions that could result in a loss of SDM." The accident analyses assume that events are initiated with the required SDM present. The proposed Required Actions will protect this assumption. (TSTF-469-T) MTS 3.3.2 Condition C becomes STS 3.3.2 Condition D. The requirement to open RTBs associated with proposed MTS 3.3.2 Action Statement C.2 is replaced by two Actions to "initiate action to fully insert all rods" and "place the Plant Control System in a condition incapable of rod withdrawal." This provides flexibility to avoid potentially undesirable effects of opening RTBs and initiating certain interlocks. (DOC L07 and editorial result of DOC L09) MTS 3.3.2 Condition D (GTS 3.3.1 Condition R) is deleted. This is related to the elimination of Function 5, third row requirement associated with GTS 3.3.1 Table 3.3.1-1. (DOC L11) GTS SR 3.3.1.1 is retained and renumbered as MTS SR 3.3.2.1. GTS SR 3.3.1.8 and 3.3.1.9 are combined and renumbered as STS SR 3.3.2.2. GTS SR 3.3.1.11 is retained and renumbered as STS SR 3.3.2.3. GTS SR 3.3.1.13 is retained and renumbered as STS SR 3.3.2.4. No Function Table is required. The MTS format is depicted as the reference case in the attached markup. (DOC A024) MTS SR 3.3.2.2 Surveillance Note regarding verification that interlock P-6 is in the required state for existing unit conditions is deleted. As discussed in the Bases, the interlock operability is adequately addressed by each related Function's requirement to be Operable and the requirement for actuation logic operability. (DOC L10) MTS SR 3.3.2.2 is revised from "Perform RTCOT..." to "Perform COT..." and Frequency Note is repositioned as a Surveillance Note, replacing the current Surveillance Note. The definition of RTCOT does not explicitly require adjustments of required alarm, interlock, and trip setpoints required for channel OPERABILITY such that the setpoints are within the necessary range and accuracy. NUREG-1431 specifies the COT for similar Functions. The Note relocation is per the Writer's Guide (Reference 5). (DOC M01 and DOC A026) The Bases are revised to reflect these changes. The following tables are provided as an aid to tracking the various changes to GTS 3.3.1 Conditions, Required Actions, Functions, Applicability Footnotes, and Surveillance Requirements that result in interim A024-modified TS (MTS) 3.3.3 and as further changed, STS 3.3.3. ## Changes to Conditions | GTS 3.3.1 | MTS 3.3.2 | STS 3.3.2 | Other STS Subsections | Additional | |------------------|---------------|------------------|---------------------------------|--------------------| | Condition | Condition | <u>Condition</u> | Addressing the Listed Condition | DOC Changes | | | | Α | | L09 | | | | В | | L09 | | Α | \rightarrow | \rightarrow | 3.3.1 | | | В | \rightarrow | \rightarrow | 3.3.5 | | | С | \rightarrow | \rightarrow | 3.3.5 | | | D | \rightarrow | \rightarrow | 3.3.1 | | | E | \rightarrow | \rightarrow | 3.3.1 | | | F | \rightarrow | \rightarrow | 3.3.3 | | | G | \rightarrow | \rightarrow | 3.3.3 | | | Н | \rightarrow | \rightarrow | 3.3.3 | | | I | Α | С | | L09 | | GTS 3.3.1
Condition
J | MTS 3.3.2
Condition
B | STS 3.3.2
Condition
F | Other STS Subsections Addressing the Listed Condition | Additional
<u>DOC Changes</u>
M02 | |-----------------------------|-----------------------------|-----------------------------|---|---| | K | \rightarrow | \rightarrow | 3.3.1 | | | L | \rightarrow |
\rightarrow | 3.3.4, 3.3.6 | | | M | \rightarrow | \rightarrow | 3.3.1 | | | N | \rightarrow | \rightarrow | 3.3.7 | | | 0 | \rightarrow | \rightarrow | 3.3.7 | | | Р | \rightarrow | \rightarrow | 3.3.4, 3.3.6 | | | Q | С | D | GTS Condition Q split into 2 Conditions | L07 | | Q | | E | | M02 | | R | D | | Deleted | L11 | # Changes to Functions | | Function [Modes(foot | note)] | STS 3.3.2 | Other STS Subsections | Additional | |--------------------|----------------------|-----------|-------------------|------------------------|--------------------| | GTS 3.3.1 | MTS 3.3.2 | STS 3.3.2 | Conditions | and Additional Changes | DOC Changes | | 5 [2(d)] | LCO 3.3.2 | LCO 3.3.2 | A, B | | | | 5 [3(a),4(a),5(a)] | LCO 3.3.2 | LCO 3.3.2 | C, D, E, F | | | | 5 [3(e),4(e),5(e)] | LCO 3.3.2 | | | Deleted | L11 | # Changes to Applicability Footnotes | GTS 3.3.1 | MTS 3.3.2 | STS 3.3.2 | STS 3.3.2 | STS Subsections Also | Additional Changes | |-----------------|-----------------|-----------------|-----------------|----------------------------|--------------------| | <u>Footnote</u> | <u>Footnote</u> | <u>Footnote</u> | <u>Function</u> | Addressing Listed footnote | DOC Number | | а | LCO App | licability | | 3.3.4, 3.3.5, 3.3.6, 3.3.7 | L07 | | d | LCO App | licability | | 3.3.3 | | | е | | Deleted | | | L11 | # Changes to Surveillance Requirements | GTS 3.3.1
<u>SR</u>
3.3.1.1 | MTS 3.3.2
<u>SR</u>
3.3.2.1 | STS 3.3.2
<u>SR</u>
3.3.2.1 | STS Subsections Also Addressing the Listed SR 3.3.1, 3.3.3 | Example Surveillance No. <u>Surveillance Description</u> 3.3.1.1 CHANNEL CHECK | |-----------------------------------|-----------------------------------|-----------------------------------|--|--| | 3.3.1.2 | \rightarrow | \rightarrow | 3.3.1 | 3.3.1.2 Compare calorimetric heat balance to NI channel output | | 3.3.1.3 | \rightarrow | \rightarrow | 3.3.1 | 3.3.1.3 Compare calorimetric heat balance to delta-T power calculation | | 3.3.1.4 | \rightarrow | \rightarrow | 3.3.1 | 3.3.1.4 Compare incore detector measurement to NI AXIAL FLUX DIFFERENCE | | 3.3.1.5 | \rightarrow | \rightarrow | 3.3.1 | 3.3.1.5 Calibrate excore channels | | 3.3.1.6 | \rightarrow | \rightarrow | 3.3.7 | 3.3.7.1 Perform TADOT | | 3.3.1.7 | \rightarrow | \rightarrow | 3.3.4, 3.3.6 | 3.3.4.1 ACTUATION LOGIC TEST | | 3.3.1.8 | 3.3.3.2 | 3.3.3.2 | 3.3.1 | 3.3.1.6 Perform COT | | 3.3.1.9 | 3.3.2.2 | 3.3.2.2 | 3.3.1, 3.3.3 | 3.3.1.7 Perform COT | | 3.3.1.10 | \rightarrow | \rightarrow | 3.3.1 | 3.3.1.8 CHANNEL CALIBRATION | | 3.3.1.11 | 3.3.2.3 | 3.3.2.3 | 3.3.1, 3.3.3 | 3.3.1.9 CHANNEL CALIBRATION | | 3.3.1.12 | \rightarrow | \rightarrow | 3.3.1, 3.3.5 | 3.3.1.10 Perform TADOT | | 3.3.1.13 | 3.3.2.4 | 3.3.2.4 | 3.3.1, 3.3.3 | 3.3.1.11 Verify RTS RESPONSE | ## VI. <u>Traveler Information</u> ## **Description of TSTF changes:** Required Actions which prohibit positive reactivity additions are corrected to prohibit positive reactivity additions that could result in a loss of required SDM. The existing Required Actions do not accomplish the purpose as described in the Bases. ## **Rationale for TSTF changes:** The proposed Required Actions will prohibit activities which could result in a loss of SDM. That is consistent with the intent of the existing Required Actions, but eliminates the inconsistencies in the existing actions. The accident analyses assume that events are initiated with the required SDM present. The proposed Required Actions will protect this assumption. ## Description of changes in RCOL Std. Dep., RCOL COL Item(s), and RCOL PTS Changes: The Vogtle Electric Generating Plant Units 3 and 4 (VEGP) technical specifications upgrade (TSU) License Amendment Request (VEGP TSU LAR) (Reference 2) proposed changes to the initial version of the VEGP PTS (referred to as the current TS by the VEGP TSU LAR). As detailed in VEGP TSU LAR Enclosure 1, administrative change number 24 (DOC A024) reformats current TS 3.3.1 into multiple Specifications as follows: - 3.3.1, "Reactor Trip System (RTS) Instrumentation"; - 3.3.2, "Reactor Trip System (RTS) Source Range Instrumentation"; - 3.3.3, "Reactor Trip System (RTS) Intermediate Range Instrumentation"; - 3.3.4, "Reactor Trip System (RTS) Engineered Safety Feature Actuation - 3.3.5, "Reactor Trip System (RTS) Manual Actuation"; - 3.3.6, "Reactor Trip System (RTS) Automatic Trip Logic"; and - 3.3.7, "Reactor Trip System (RTS) Trip Actuation Devices." Since current TS 3.3.1, "Reactor Trip System (RTS) Instrumentation," is identical to GTS 3.3.1, it is appropriate for this GTST to consider the proposed changes to current TS 3.3.1 as changes to GTS 3.3.1 for incorporation in AP1000 STS 3.3.2. VEGP LAR DOC A024 is extensive, but retains the intention of current TS 3.3.1 while improving operational use of the TS. The numerous Functions, Conditions and extensive bases discussion associated with PTS 3.3.1 are repackaged into seven smaller parts. Therefore, the changes implemented by DOC A024 are presented in the attached Subsection 3.3.2 markup, in Section XI of this GTST, as the "clean" starting point for this GTST and are identified as interim A024-modified TS (MTS) 3.3.2. The specific details of the reformatting for MTS 3.3.2 can be found in VEGP TSU LAR (Reference 2), in Enclosure 2 (markup) and Enclosure 4 (clean). The NRC staff safety evaluation regarding DOC A024 can be found in Reference 3, VEGP LAR SER. The VEGP TSU LAR was modified in response to NRC staff RAIs in Reference 6 and the Southern Nuclear Operating Company RAI Response in Reference 7. VEGP LAR DOC A026 moves the proposed MTS SR 3.3.2.2 Frequency Note "Only required when not performed within previous 92 days" to replace the current Surveillance Note. The new Surveillance Note states "Only required to be performed when not performed within previous 92 days." VEGP LAR DOC M01 revises MTS SR 3.3.2.2 requirements from "Perform RTCOT in accordance with Setpoint Program," to "Perform COT in accordance with Setpoint Program." VEGP LAR DOC M02 addresses the fact that MTS 3.3.2, "Reactor Trip System (RTS) Source Range Instrumentation," does not specify Actions for inoperability of more than two inoperable source range channels. This results in entry into LCO 3.0.3 when three or more channels are inoperable. VEGP LAR DOC L07 revises the Action to open the RTBs into a two-step process to "initiate action to fully insert all rods," and "place the Plant Control System in a condition incapable of rod withdrawal." VEGP LAR DOC L09 allows for placing inoperable channels in bypass and/or trip thereby allowing continued operation. VEGP LAR DOC L10 removes the MTS SR 3.3.2.2 Surveillance Note regarding verification that interlock P-6 is in the required state for existing unit conditions. VEGP LAR DOC L11 deletes MTS Table 3.3.1-1, Function 5, Source Range Neutron Flux High Setpoint, third row for that function including applicability set "3(e),4(e),5(e)" and associated references to Required Channel, Condition, and Surveillance Requirements; Footnote (e); and Current Action R. A more detailed description of the changes by each of the above DOCs can be found in Reference 2, VEGP TSU LAR in Enclosure 1; the NRC staff safety evaluation can be found in Reference 3, VEGP LAR SER. The VEGP TSU LAR was modified in response to NRC staff RAIs (Reference 5) by Southern Nuclear Operating Company's RAI Response in Reference 6. ## Rationale for changes in RCOL Std. Dep., RCOL COL Item(s), and RCOL PTS Changes: The reformatting per VEGP LAR DOCs A024 and A028, except where addressed in other DOCs, addresses inconsistencies in formatting and approach between current TS 3.3.1 and current TS 3.3.2, respectively. Simplification and clarification are proposed for each Specification. In breaking down each current Specification into specific subsets of the Protection and Safety Monitoring System (PMS) function, improved human factored operator usability results. These improvements also reflect the general approach currently in use in the Improved Standard Technical Specifications (STS) for Babcock and Wilcox Plants, NUREG-1430, Rev. 4. That is to separate the functions for [sensor] instrumentation, Manual Actuation, Trip/Actuation Logic, and Trip Actuation Devices (e.g., Reactor Trip Breakers (RTBs)) into separate Specification subsections. Furthermore, the Actions for some ESFAS Functions generally involve a more complex presentation than needed for other Functions, such that simple common Actions are not reasonable. Such Functions are also provided with separate Specification subsections. When TS instrument function tables are utilized to reference Actions, the generally preferred format of the Actions for an instrumentation Specification in NUREG-1430 is to provide the initial Actions that would be common to all of the specified functions (typically for bypassing and/or tripping one or two inoperable channels), then the "default" Action would direct consulting the function table for follow-on Actions applicable to the specific affected function. These follow-up Actions generally reflect the actions to exit the Applicability for that function. This format also allows splitting the default Actions from the initial preferred actions. This general approach is the standard format for other Specifications and for Instrumentation Specifications for other vendors' Improved STS. VEGP LAR DOC A026 is consistent with the TS Writer's Guide found in reference 5. VEGP LAR DOC L10 notes that the existing GTS SR 3.3.1.9 Surveillance Note provides details of performing a Channel Operational Test (COT) and is deleted. GTS SR 3.3.1.9 is proposed as MTS SR 3.3.2.2. The requirement for verification that interlocks P-6 and P-10 are in their required state for existing unit conditions is unchanged and
is appropriately summarized in the Bases. VEGP LAR DOC M01 notes that the definition of RTCOT does not explicitly require "adjustments of required alarm, interlock, and trip setpoints" that are "required for channel OPERABILITY such that the setpoints are within the necessary range and accuracy." The current TS bases associated with the RTCOT describe these adjustments, but the bases are intended to clarify, not provide additional requirements. The COT definition explicitly requires these adjustments. Therefore, because the definition of COT more closely aligns with the RTCOT test description provided in the bases, the COT is specified instead of an RTCOT. The RTCOT definition is deleted from TS Section 1.1. A COT may be performed by means of any series of sequential, overlapping, or total channel steps. The changes are consistent with the intent of the required TS testing, and are consistent with NUREG-1431. VEGP LAR DOC M02 directly provides for the default Actions of LCO 3.0.3 without allowing for the additional hour that LCO 3.0.3 permits prior to initiating shutdown. This provides clarity for the operator and is more restrictive than LCO 3.0.3. VEGP LAR DOC L07 notes that when the RTBs are opened, certain other interlocks can be initiated. The initiation of the associated interlocks may have an undesirable secondary effect on the ease of operation of the plant such as the initiation of the P-4 interlock, which, in the event of low RCS temperature, can result in isolation of main feedwater to the steam generators. VEGP LAR DOC L09 places up to two inoperable channels in bypass or trip. In MODE 2, this allows continued operation and flexibility to continue a power ascension. Otherwise, further positive reactivity additions are not allowed per proposed MTS Action A. VEGP LAR DOC L10 notes that Interlock Operability is adequately addressed by each related Function's requirement to be Operable and the requirement for actuation logic operability. Interlock functions do not directly trip the reactor or initiate an ESFAS function, and as such are removed from the actuation instrumentation listing in TS. Per VEGP LAR DOC L11, the Source Range Neutron Flux Function in Modes 3, 4, and 5 with RTBs open, is not related to the Reactor Trip System, but involves indication only as stated in the current Applicability Footnote (e), and only requires one channel to be providing indication. The associated Bases also state that in Mode 3, 4, or 5 with the RTBs open, the LCO does not require the Source Range Neutron Flux channels for reactor trip functions to be Operable. As such, this requirement is inappropriately placed in the Specification requiring Reactor Trip System operability. ## Description of additional changes proposed by NRC staff/preparer of GTST: Dashes were added to time descriptors such as "the 72-hour completion time is acceptable..." in the Actions section of the bases. ## Rationale for additional changes proposed by NRC staff/preparer of GTST: These changes are to correct grammatical errors in the bases. ## VII. GTST Safety Evaluation ## **Technical Analysis:** TSTF-469-T revises MTS Action A.1 to "Suspend positive reactivity additions that could result in a loss of SDM." The Required Action will prohibit activities which could result in a loss of SDM. That is consistent with the intent of the existing Required Action, but eliminates the inconsistencies in the existing action. The accident analyses assume that events are initiated with the required SDM present. The Required Action will protect this assumption. VEGP LAR DOC M01 revises MTS SR 3.3.2.2 description to state "Perform COT in accordance with Setpoint Program," in place of "Perform RTCOT in accordance with Setpoint Program." Generic/current TS Section 1.1 defines a Reactor Trip Channel Operational Test (RTCOT) as "A RTCOT shall be the injection of a simulated or actual signal into the reactor trip channel as close to the sensor as practicable to verify OPERABILITY of the required interlock and/or trip functions. The RTCOT may be performed by means of a series of sequential, overlapping, or total channel steps so that the entire channel is tested from the signal conditioner through the trip logic." The STS Section 1.1 definition for Channel Operational Test (COT) per reference 2 VEGP TSU LAR DOC A001, states "A COT shall be the injection of a simulated or actual signal into the channel as close to the sensor as practicable to verify OPERABILITY of all devices in the channel required for channel OPERABILITY. The COT shall include adjustments, as necessary, of the required alarm, interlock, and trip setpoints required for channel OPERABILITY such that the setpoints are within the necessary range and accuracy. The COT may be performed by means of any series of sequential, overlapping, or total channel steps." MTS SR 3.3.2.2 requires an RTCOT, in accordance with the Setpoint Program, to be performed on each TS required automatic protection instrumentation Function. Each Function requiring performance of an RTCOT by MTS SR 3.3.2.2 also requires performance of a Channel Calibration by MTS SR 3.3.2.3. Therefore, the Functions referencing MTS SR 3.3.2.2 contain adjustable devices. The definition of RTCOT does not explicitly require adjustments of required alarm, interlock, and trip setpoints required for channel OPERABILITY such that the setpoints are within the necessary range and accuracy. The Bases associated with the RTCOT describe these adjustments, but the Bases are intended to clarify, not provide additional requirements. A COT explicitly requires these adjustments. Therefore, the definition of a COT more closely aligns with the description of the testing provided in the Bases for MTS SR 3.3.2.2. Use of COT for this SR is consistent with similar testing specified in NUREG-1431, TS 3.3.1. Use of COT is also consistent with testing performed on other instrumentation specified in the current TS. Based on the VEGP LAR DOC L01 changes, an RTCOT is not required by the TS. Therefore, the Section 1.1 RTCOT definition is deleted. The VEGP LAR DOC M01 changes result in consistency with the use of Actuation Logic Test and COT in other TS requirements, are consistent with the intent of the required TS testing, and are consistent with NUREG-1431. VEGP LAR DOC M02 addresses the fact that MTS 3.3.2, "Reactor Trip System (RTS) Source Range Instrumentation," does not specify Actions for inoperability of more than two inoperable source range channels. This results in entry into LCO 3.0.3 when three or more channels are inoperable. AP1000 GTS LCO 3.0.3 is only applicable in MODES 1, 2, 3, and 4, and states: When an LCO is not met and the associated ACTIONS are not met, an associated ACTION is not provided, or if directed by the associated ACTIONS, the unit shall be placed in a MODE or other specified condition in which the LCO is not applicable. Action shall be initiated within 1 hour to place the unit, as applicable, - a. MODE 3 within 7 hours; andb. MODE 4 within 13 hours; and - c. MODE 5 within 37 hours. GTS 3.3.1 and 3.3.2 Functions with applicability statements that include MODE 1, 2, 3, or 4, generally have no Actions specified for addressing a loss of function condition, such as when all required channels are inoperable. Upon discovery of such a condition, LCO 3.0.3 would apply. The intent of LCO 3.0.3 (as stated in the TS Bases) is to "impose time limits for placing the unit in a safe MODE or other specified condition when operation cannot be maintained within the limits for safe operation as defined by the LCO and its ACTIONS." The Actions for inoperable RTS and ESFAS instrumentation provide restoration time and/or compensatory action allowances (e.g., place the inoperable channel in trip); but only for inoperability of some of the channels (e.g., 1 or 2 out of 4 required channels, typically). If these restoration and/or compensatory actions cannot be met in the required time, "default" actions are provided, which are designed to place the unit in a safe MODE or other specified condition typically, actions that result in exiting the Applicability for that Function. The shutdown actions of LCO 3.0.3 are typical of "default" actions throughout the TS that direct plant shutdown to exit the Applicability, with the exception that LCO 3.0.3 includes an additional 1 hour before the shutdown is required to be initiated. The revisions described in VEGP LAR DOC M02 address multiple-channel inoperability. The revisions will immediately impose the "default" Actions for that Function - without allowance for the 1 hour delay that is provided in LCO 3.0.3. Furthermore, the Function-specific "default" actions (currently, or proposed to be, specified for some Functions) impose requirements intended to establish safe operation that are not necessarily required by LCO 3.0.3. Since each Function-specific default action is specifically considering that Function's safety-basis, such default actions necessarily result in more appropriate actions than the general default actions of LCO 3.0.3. Specifically, the Actions for each new Condition associated with VEGP LAR DOC M02 for RTS and ESFAS Functions applicable in MODES1, 2, 3, or 4, are compared to LCO 3.0.3, and in each case, the new Actions are equivalent to or more restrictive than the actions of LCO 3.0.3. STS 3.3.4 Condition F leads to a default action to exit the LCO Applicability immediately, which is more restrictive than the time allowed by LCO 3.0.3. These actions, which are introduced by DOC L07, as discussed below, are not found in LCO 3.0.3. GTS 3.3.1 and 3.3.2 actions do not specify conditions that explicitly address multiple inoperable channels (that is, more than two inoperable channels or divisions, in most cases), and therefore default to LCO 3.0.3. In each instance, the proposed actions to address these conditions are more restrictive than the LCO 3.0.3 actions because completion times for reaching lower
operational modes are shorter by 1 hour. In addition, Function-specific actions, where specified, are more appropriate for the affected Function than the unit-shutdown actions of LCO 3.0.3 alone. Therefore, the changes specified by VEGP LAR DOC M02 do not introduce any adverse impact on public health and safety. Each of the current TS 3.3.1 required actions to open the reactor trip breakers (RTBs) is intended to ensure that control rods cannot be withdrawn thereby eliminating the possibility for control rod related positive reactivity additions and associated heat input into the reactor coolant. Additionally, all control rods are inserted by opening the RTBs. Therefore, replacing each required action to open RTBs with the two actions, which require initiating action to fully insert all rods and placing the Plant Control System in a condition incapable of rod withdrawal, maintains the intent of the existing action requirements. VEGP LAR DOC L07 replaces the specific method of precluding rod withdrawal and ensuring all rods are inserted while maintaining the requirement for establishing the plant conditions equivalent to opening the RTBs. The revised actions still ensure rod withdrawal is precluded and all rods are inserted; therefore, the detail to open the RTBs is not required to be in the TS to provide adequate protection of the public health and safety. To ensure that when the revised required actions are taken the unit is removed from the operational modes or other specified conditions in the Specification's Applicability, conforming revisions to the Applicability statements are made. The equivalent condition to the current Applicability statements that include "RTBs closed" is the condition of Plant Control System capable of rod withdrawal. However, since rods could have been withdrawn prior to making the Plant Control System incapable of rod withdrawal, the revised Specifications include the additional condition of "or one or more rods not fully inserted." This change also aligns with the required actions to both "fully insert all rods" and "place the Plant Control System in a condition incapable of rod withdrawal." The equivalent condition to the current Applicability statements that include "RTBs open" is the condition of "Plant Control System capable of rod withdrawal and all rods fully inserted." Removing the specific method of precluding rod withdrawal and establishing all rods inserted, and defining this condition solely in terms of the RTB status, from the TS is acceptable because this type of information is not necessary to be included to provide adequate protection of public health and safety. AP1000 STS 3.3.2 retains requirements to ensure that control rod withdrawal is prohibited and all rods are inserted, when required. VEGP LAR DOC L07 is designated as a less restrictive change because one specific method for meeting the intended TS requirements is being removed from the TS, and replaced with actions to allow using alternate methods to establish the equivalent operational conditions. VEGP LAR DOC L09 allows for placing inoperable channels in bypass and/or trip thereby allowing continued operation. Generic/current TS 3.3.1 Actions for one or two Source Range Neutron Flux High Setpoint channels in Mode 2 restrict power ascension with current Required Action I.1, "Suspend operations involving positive reactivity additions." The VEGP LAR DOC L09 change adding STS 3.3.2 Actions A and B requires placing these inoperable channels in bypass and/or trip. Meeting these Required Actions allows continued operation and flexibility to continue power ascension. This is a less restrictive change. As summarized in Final Safety Analysis Report (FSAR) Table 7.2-2, Reactor Trips, each automatic RTS function is provided with 4 channels, with division trip logic of 2-out-of-four ("2/4") and similar bypass logic and capability. This bypass capability is also described in the TS Bases: The use of four channels for protection functions is based on a minimum of two channels being required for a trip or actuation, one channel in test or bypass, and a single failure on the remaining channel. The signal selector algorithm in the Plant Control System (PLS) will function with only three channels. This includes two channels properly functioning and one channel having a single failure. For protection channels providing data to the control system, the fourth channel permits one channel to be in test or bypass. Minimum requirements for protection and control are achieved with only three channels OPERABLE. The fourth channel is provided to increase plant availability, and permits the plant to run for an indefinite time with a single channel out of service. Furthermore, the RTS TS Bases for Function 5 specifically describe this capability for the Source Range Neutron Flux Function: This same discussion appears in other automatic RTS Function Bases. Four channels are provided to permit one channel in trip or bypass indefinitely and still ensure no single random failure will disable this trip Function. The requirement to bypass and/or trip one and two inoperable automatic channels is applicable to most other automatic channels as provided in generic/current TS 3.3.1 Actions E, F, and K. These Actions have the same provisions for tripping and/or bypassing inoperable channels. Currently, with one or two channels inoperable, one affected channel must be placed in a bypass or trip condition. If one channel is bypassed, the logic becomes two-out-of-three, while still meeting the single failure criterion. (A failure in one of the three remaining channels will not prevent the protective function.) If one channel is tripped, the logic becomes one-out-of three, while still meeting the single failure criterion. (A failure in one of the three remaining channels will not prevent the protective function.) For two inoperable channels, with one channel bypassed and one channel tripped, the logic becomes one-out-of-two, while still meeting the single failure criterion. Therefore the change to provide Actions to bypass or trip one inoperable channel and bypass one channel and trip one channel for two inoperable Source Range Neutron Flux channels is consistent with the design and consistent with the intent as described in the TS Bases for these Functions. Based on the Completion Times for AP1000 GTS 3.3.1 Action F, applicable to Intermediate Range Neutron Flux channels, bypassing and/or tripping within 2 hours is provided for the STS 3.3.2, Actions A and B. Since RTS trip capability remains with one or two Source Range channels inoperable, the additional 2 hours allowed by Actions A and B do not have any significant impact on safety. The current action suspending all operations involving positive reactivity additions unless all four Source Range channels are Operable is overly restrictive given RTS trip capability remains and that the safety analyses do not take credit for the Source Range Neutron Flux trip Function, as stated in the Bases. The VEGP LAR DOC L09 change results in closer alignment with Actions for other automatic RTS Functions. The actions continue to assure operation within the assumptions of the safety analysis such as preserving single-failure criterion for indefinite operations. As such there is no adverse impact to public health and safety. VEGP LAR DOC L10 removes Function 12, Reactor Trip System Interlocks (P-6, P-10, and P-11), from MTS 3.3.1, Table 3.3.1-1. RTS interlocks are provided to ensure reactor trip system instrumentation and actuation Functions are in the correct configuration for the current plant status. They back up operator actions to ensure protection system Functions are not blocked during plant conditions in which the safety analysis assumes the Functions are Operable. The interlocks, as separate RTS and ESFAS Functions are removed from the GTS and the associated action requirements are deleted. Interlock Operability is adequately addressed by each related Function's requirement to be Operable and the requirement for reactor trip logic and ESF actuation logic operability. For these related RTS and ESFAS instrumentation and actuation Functions to be Operable, the associated RTS and ESFAS interlock functions would have to be in the required state as a support feature for Operability. For these RTS trip and ESFAS actuation Functions to be Operable, the associated RTS and ESFAS interlock Functions would have to be in the required state as a support feature for operability. These RTS and ESFAS interlock functions do not directly trip the reactor or actuate ESFAS, and as such are removed from the actuation instrumentation listing in TS. The role of the interlocks, and their support for the operability of RTS trip and ESFAS actuation Functions, are described in the TS Bases, as well as in Final Safety Analysis Report (FSAR) Chapter 7, Instrumentation and Controls. Furthermore, each RTS trip and ESFAS actuation Function is required operable during the stated TS Applicability. The Applicability for certain trip or actuation Functions is based on transitioning above or below an interlock; while other Functions are not directly supported by an interlock. For Functions supported by an interlock, while operating within the TS required Applicability for that Function, its associated supporting interlock is not required to automatically change state. The interlock status must be established in conjunction with assuring supported Function's operability prior to entering the required Applicability. In addition, LCO 3.0.4 requires the operators to ensure RTS trip and ESFAS operability prior to entering their Applicability. These TS requirements remain in effect and impose the necessary operability requirements related to the removed interlock Functions. As such, interlocks are adequately addressed by each related Function's requirement to be operable and the requirement for actuation logic operability. MTS SR 3.3.2.2
Surveillance Note provides details of performing a Channel Operational Test (COT) and is deleted. The requirement for verification that interlock P-6 is in their required state for existing unit conditions is unchanged and is appropriately summarized in the Bases. If the interlock is not automatically functioning as designed, the condition is entered into the Corrective Action Program and appropriate operability evaluations performed for the affected Function(s), which would evaluate potential operability impact on individual instrument Function channels and/or the coincident logic subsystem channel. Adverse impacts to operability could be evaluated to affect individual instrumentation channels, or may be evaluated to impact the divisional coincident logic. In either outcome, the appropriate actions are provided by the affected supported feature(s). Instrument channel Functions with interlocks implicitly required to support the Function's operability, are also addressed by the COT and Channel Calibration Surveillance Requirements. Actuation logic with interlocks implicitly required to support operability of the logic is also addressed by the Actuation Logic Test Surveillance Requirements. The applicable COT, Channel Calibration, and Actuation Logic Test Bases will include the following discussion supporting this change ("CHANNEL CALIBRATION" is replaced with "COT" or "ACTUATION LOGIC TEST" as appropriate): Interlocks implicitly required to support the Function's OPERABILITY are also addressed by this CHANNEL CALIBRATION. This portion of the CHANNEL CALIBRATION ensures the associated Function is not bypassed when required to be enabled. This can be accomplished by ensuring the interlocks are calibrated properly in accordance with the SP. If the interlock is not automatically functioning as designed, the condition is entered into the Corrective Action Program and appropriate OPERABILITY evaluations performed for the affected Function. The affected Function's OPERABILITY can be met if the interlock is manually enforced to properly enable the affected Function. When an interlock is not supporting the associated Function's OPERABILITY at the existing plant conditions, the affected Function's channels must be declared inoperable and appropriate ACTIONS taken. VEGP LAR DOC L11 deletes generic/current Table 3.3.1-1, Function 5, Source Range Neutron Flux High Setpoint, third row for that function including Applicability set "3(e),4(e),5(e)" and associated references to Required Channel, Condition, and Surveillance Requirements; Footnote (e); and generic/current Action R. The Source Range Neutron Flux Function in Modes 3, 4, and 5 with RTBs open, is not related to the Reactor Trip System, but involves indication only as stated in the current Applicability Footnote (e), and only requires one channel to be providing indication. The associated Bases also state that in Mode 3, 4, or 5 with the RTBs open, the LCO does not require the Source Range Neutron Flux channels for reactor trip functions to be Operable. Therefore, this requirement is inappropriately placed in the Specification requiring Reactor Trip System operability. Source Range Neutron Flux channels are also required to be Operable by generic/current TS 3.3.2, Engineered Safeguards Actuation System (ESFAS) Instrumentation, Table 3.3.2-1, Function 15a, Boron Dilution Block - Source Range Neutron Flux Doubling. This Function remains Applicable, requiring 4 channels, during the specified condition being deleted in TS 3.3.1. Furthermore, the SRs for this Function also encompass the Channel Check and Channel Calibration Surveillances being deleted from current TS 3.3.1 for Source Range Neutron Flux. AP1000 GTS 3.3.1, Action R applies solely for inoperability of the one required Source Range Neutron Flux indication channel (i.e., all four Source Range Neutron Monitoring channels inoperable). In the unlikely event that all four channels were inoperable, the requirements associated with the Boron Dilution Block - Source Range Neutron Flux Doubling channels, are appropriate to provide the necessary protection. Changes to these Actions are addressed in changes to the generic/current TS 3.3.2, Table 3.3.2-1, Function 15a, Boron Dilution Block -Source Range Neutron Flux Doubling function, and are reflected in the MTS 3.3.8, "Engineered Safety Feature Actuation System (ESFAS) Instrumentation." The MTS 3.3.8 actions direct entering applicable actions for inoperable valves associated with boron dilution flow paths, i.e., TS 3.1.9, Chemical and Volume Control System (CVS) Demineralized Water Isolation Valves and Makeup Line Isolation Valves. TS 3.1.9, Action B would apply to this condition (i.e., all required valves would be considered inoperable) and requires isolation of the affected flow paths within 1 hour, consistent with current TS 3.3.1, Required Action R.2. The potential for an uncontrolled boron dilution accident is eliminated by isolating all unborated water sources as required by this action. This change eliminates generic/current Required Action R.1 (suspend operations involving positive reactivity additions) and R.3 (perform Shutdown Margin verifications); however, with the RTBs open and potential boron dilution paths isolated unit safety is adequately maintained without these additional required actions. This change is consistent with changes made in TSTF-135, "3.3 - RPS and ESFAS Instrumentation," Revision 3, and as reflected in NUREG-1431. Therefore, this change results in closer alignment with NUREG-1431 presentation of Source Range Neutron Flux instrumentation. The actions continue to assure operation within the assumptions of the safety analysis. As such there is no adverse impact to public health and safety. The remaining changes, including VEGP LAR change A024, are editorial, clarifying, grammatical, or otherwise considered administrative. These changes do not affect the technical content, but improve the readability, implementation, and understanding of the requirements, and are therefore acceptable. #### References to Previous NRC Safety Evaluation Reports (SERs): VEGP TSU LAR SER (Reference 3) ## VIII. Review Information ## **Evaluator Comments:** None Randy Belles Oak Ridge National Laboratory 865-574-0388 bellesrj@ornl.gov ## **Review Information:** Availability for public review and comment on Revision 0 of this traveler approved by NRC staff on Thursday, May 29, 2014. ## **NRC Final Approval Date:** ## **NRC Contact:** C. Craig Harbuck United States Nuclear Regulatory Commission 301-415-3140 Craig.Harbuck@nrc.gov # IX. <u>Evaluator Comments for Consideration in Finalizing Technical Specifications and Bases</u> The database does not yet recognize non-breaking hyphens or spaces. For Rev. 0 of this GTST, it was necessary to manually insert (1) non-breaking hyphens as necessary to interlock designations such as P-10 to avoid breaking across the end of a line; and (2) non-breaking spaces as necessary to (a) keep symbols such as "≥" with the subsequent value; and (b) avoid stranding a number value on a subsequent line, such as MODE 5. ## X. References Used in GTST - 1. AP1000 DCD, Revision 19, Section 16, "Technical Specifications," June 2011 (ML11171A500). - Southern Nuclear Operating Company, Vogtle Electric Generating Plant, Units 3 and 4, Technical Specifications Upgrade License Amendment Request, February 24, 2011 (ML12065A057). - NRC Safety Evaluation (SE) for Amendment No. 13 to Combined License (COL) No. NPF-91 for Vogtle Electric Generating Plant (VEGP) Unit 3, and Amendment No. 13 to COL No. NPF-92 for VEGP Unit 4, September 9, 2013, ADAMS Package Accession No. ML13238A337, which contains: | ML13238A355 | Cover Letter - Issuance of License Amendment No. 13 for Vogtle Units 3 and 4 (LAR 12-002). | |-------------|--| | ML13238A359 | Enclosure 1 - Amendment No. 13 to COL No. NPF-91 | | ML13239A256 | Enclosure 2 - Amendment No. 13 to COL No. NPF-92 | | ML13239A284 | Enclosure 3 - Revised plant-specific TS pages (Attachment to | | | Amendment No. 13) | | ML13239A287 | Enclosure 4 - Safety Evaluation (SE), and Attachment 1 - Acronyms | | ML13239A288 | SE Attachment 2 - Table A - Administrative Changes | | ML13239A319 | SE Attachment 3 - Table M - More Restrictive Changes | | ML13239A333 | SE Attachment 4 - Table R - Relocated Specifications | | ML13239A331 | SE Attachment 5 - Table D - Detail Removed Changes | | ML13239A316 | SE Attachment 6 - Table L - Less Restrictive Changes | | | | The following documents were subsequently issued to correct an administrative error in Enclosure 3: | ML13277A616 | Letter - Correction To The Attachment (Replacement Pages) - Vogtle | |-------------|--| | | Electric Generating Plant Units 3 and 4-Issuance of Amendment Re: | | | Technical Specifications Upgrade (LAR 12-002) (TAC No. RP9402) | | ML13277A637 | Enclosure 3 - Revised plant-specific TS pages (Attachment to | | | Amendment No. 13) (corrected) | - 4. TSTF-286, Revision 2, "Define "Operations Involving Positive Reactivity Additions." - 5. TSTF-GG-05-01, "Writer's Guide for Plant-Specific Improved Technical Specifications," June 2005. - RAI Letter No. 01 Related to License Amendment Request (LAR) 12-002 for the Vogtle Electric Generating Plant Units 3 and 4 Combined Licenses, September 7, 2012 (ML12251A355). - Southern Nuclear Operating Company, Vogtle Electric Generating Plant, Units 3 and 4, Response to Request for Additional Information Letter No. 01 Related to License Amendment Request LAR-12-002, ND-12-2015, October 04, 2012 (ML12286A363 and ML12286A360) 3 | 1 | CTST | ΔP1000 | -055-332 | Rev C | |---|------|-----------------------------|--------------------|-------| | и | | $A \subset I \cup I \cup I$ | -(/:):)) .) / | | ## XI. MARKUP of the Applicable GTS Section for Preparation of the STS NUREG
The entire section of the Specifications and the Bases associated with this GTST is presented next. Changes to the Specifications and Bases are denoted as follows: Deleted portions are marked in strikethrough red font, and inserted portions in bold blue font. ## 3.3 INSTRUMENTATION 3.3.2 Reactor Trip System (RTS) Source Range Instrumentation LCO 3.3.2 Four channels of RTS Source Range Neutron Flux – High Setpoint instrumentation shall be OPERABLE. APPLICABILITY: MODE 2 with Intermediate Range Neutron Flux below the P-6 interlock, MODES 3, 4, and 5 with Reactor Trip breakers (RTBs) closed and Plant Control System capable of rod withdrawal or one or more rods not fully inserted. ## ACTIONS | CONDITION | REQUIRED ACTION | COMPLETION TIME | |---|---|-----------------| | A. One channel inoperable in MODE 2. | A.1 Place inoperable channel in bypass or trip. | 2 hours | | B. Two channels inoperable in MODE 2. | B.1 Place one inoperable channel in bypass. | 2 hours | | | AND | | | | B.2 Place one inoperable channel in trip. | 2 hours | | CA.Required Action and associated Completion Time of Condition A or B not met One or two Source Range Neutron Flux channels inoperable. | CA.1 Suspend operations involving positive reactivity additions that could result in a loss of required SDM | | ## ACTIONS (continued) | REQUIRED ACTION | COMPLETION TIME | |--|--| | DC.1 Restore three of four channels to OPERABLE status. | 48 hours | | OR | | | C. 2 Open RTBs. | 49 hours | | D.1 Suspend operations involving positive reactivity additions. | Prior to increasing THERMAL POWER to > P-6 | | AND | | | D.2 Close unborated water source isolation valves. | 1 hour | | AND | | | D.3 Perform SR 3.1.1.1. | 1 hour | | | AND | | | Once per 12 hours
thereafter | | E.1 Initiate action to fully insert all rods. | 1 hour | | AND | | | E.2 Place the Plant Control System in a condition incapable of rod withdrawal. | 1 hour | | | DC.1 Restore three of four channels to OPERABLE status. OR C. 2 Open RTBs. D.1 Suspend operations involving positive reactivity additions. AND D.2 Close unborated water source isolation valves. AND D.3 Perform SR 3.1.1.1. E.1 Initiate action to fully insert all rods. AND E.2 Place the Plant Control System in a condition incapable of rod | Page 23 ## ACTIONS (continued) | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |--|------|------------------------------------|-----------------| | FB. Three or more Source Range Neutron Flux channels inoperable. | FB.1 | Open reactor trip breakers (RTBs). | Immediately | ## SURVEILLANCE REQUIREMENTS | SOLVEILEANCE REGOINEMENTS | | | | |---------------------------|--|---|--| | | SURVEILLANCE | FREQUENCY | | | SR 3.3.2.1 | Perform CHANNEL CHECK. | 12 hours | | | SR 3.3.2.2 | This Surveillance shall include verification that interlock P 6 is in its required state for existing unit conditions. Only required to be performed when not performed within previous 92 days. Not required to be performed prior to entering MODE 3 from MODE 2 until 4 hours after entry into MODE 3. Perform RTCOT in accordance with Setpoint Program. | NOTE Only required when not performed within previous 92 days Prior to reactor startup | | | | | AND 4 hours after reducing power below P-6 AND 92 days thereafter | | SURVEILLANCE REQUIREMENTS (continued) | _ | · / / | | |------------|--|---| | | SURVEILLANCE | FREQUENCY | | SR 3.3.2.3 | NOTENOTENOTE | | | | Perform CHANNEL CALIBRATION in accordance with Setpoint Program. | 24 months | | SR 3.3.2.4 | Neutron detectors are excluded from response time testing. | | | | Verify RTS RESPONSE TIME is within limits. | 24 months on a
STAGGERED
TEST BASIS | #### **B 3.3 INSTRUMENTATION** B 3.3.2 Reactor Trip System (RTS) Source Range Instrumentation #### BASES #### **BACKGROUND** A description of the RTS Instrumentation is provided in the Bases for LCO 3.3.1, "Reactor Trip System (RTS) Instrumentation." APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY The RTS functions to maintain the SLs during all AOOs and mitigates the consequences of DBAs in all MODES in which the RTBs are closed. The RTS Source Range Neutron Flux trip Function provides protection against an uncontrolled bank rod withdrawal accident from a subcritical condition during startup. This trip Function provides redundant protection to the Power Range Neutron Flux - Low Setpoint and Intermediate Range Neutron Flux trip Functions. In MODES 3, 4, and 5, administrative controls also prevent the uncontrolled withdrawal of rods. The Protection and Safety Monitoring System (PMS) source range detectors are located external to the reactor vessel and measure neutrons leaking from the core. The safety analyses do not take credit for the Source Range Neutron Flux trip Function. Even though the safety analyses take no credit for the Source Range Neutron Flux trip, the functional capability at the specified Trip Setpoint is assumed to be available and the trip is implicitly assumed in the safety analyses. The Trip Setpoint reflects only steady state instrument uncertainties as the detectors do not provide primary protection for any events that result in a harsh environment. This trip can be manually blocked by the main control room operator when above the P-6 setpoint (Intermediate Range Neutron Flux interlock) and is automatically unblocked when below the P-6 setpoint. The manual block of the trip function also de-energizes the source range detectors. The source range detectors are automatically re-energized when below the P-6 setpoint. The trip is automatically blocked when above the P-10 setpoint (Power Range Neutron Flux interlock). The source range trip is the only RTS automatic protective Function required in MODES 3, 4, and 5. Therefore, the functional capability at the specified Trip Setpoint is assumed to be available. The LCO requires four channels of Source Range Neutron Flux to be OPERABLE in MODE 2 below P-6 and in MODE 3, 4, or 5 with RTBs closed and the Plant Control Rod Drive-System (PLS) capable of rod #### **BASES** APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) withdrawal or one or more rods not fully inserted. Four channels are provided to permit one channel in trip or bypass indefinitely and still ensure no single random failure will disable this trip Function. In MODE 3, 4, or 5 with the Plant Control System (PLS) incapable of rod withdrawal and all rods fully inserted RTBs open, the LCO does not require the Source Range Neutron Flux channels for reactor trip Functions to be OPERABLE. In MODE 2 when below the P-6 setpoint during a reactor startup, the Source Range Neutron Flux trip must be OPERABLE. Above the P-6 setpoint, the Intermediate Range Neutron Flux trip and the Power Range Neutron Flux - Low Setpoint trip will provide core protection for reactivity accidents. Above the P-6 setpoint, the PMS source range detectors are de-energized and inoperable as described above. In MODE 3, 4, or 5 with the reactor shutdown, the Source Range Neutron Flux trip Function must also be OPERABLE. If the PLS is capable of rod withdrawal or one or more rods are not fully inserted, the Source Range Neutron Flux trip must be OPERABLE to provide core protection against a rod withdrawal accident. If the PLS is not capable of rod withdrawal, the source range detectors are required to be OPERABLE to provide monitoring of neutron levels and provide protection for events like an inadvertent boron dilution. These Functions are addressed in LCO 3.3.8, "Engineered Safety Feature Actuation System (ESFAS) Actuation Logic - Operating," and LCO 3.3.16, "Engineered Safety Feature Actuation System (ESFAS) Actuation Logic - Shutdown." The requirements for the PMS source range detectors in MODE 6 are addressed in LCO 3.9.3, "Nuclear Instrumentation." The RTS Source Range instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). #### **BASES** #### **ACTIONS** In the event a channels as-found condition is outside the as-found tolerance described in the SP, or the channel is not functioning as required, or the transmitter, instrument loop, signal processing electronics, or trip output is found inoperable, then all affected Functions provided by that channel must be declared inoperable and the LCO Condition(s) entered for the protection Function(s) affected. ## **A.1** Condition A addresses the situation where one source range instrumentation channel is inoperable in MODE 2. With one channel inoperable, the inoperable channel must be placed in a bypass or trip condition within two hours. If one channel is bypassed, the logic becomes two-out-of-three, while still meeting the single
failure criterion. (A failure in one of the three remaining channels will not prevent the protective function.) If one channel is tripped, the logic becomes one-out-of-three, while still meeting the single failure criterion. (A failure in one of the three remaining channels will not prevent the protective function). The 2 hours allowed to place the inoperable channel(s) in the bypassed or tripped condition is consistent with the Intermediate Range Neutron Flux instrumentation Completion Times provided in LCO 3.3.3. ## **B.1 and B.2** Condition B addresses the situation where two source range instrumentation channels are inoperable in MODE 2. With two channels inoperable, one affected channel must be placed in a bypass condition within 2 hours and one affected channel must be placed in a trip condition within 2 hours. If one channel is bypassed and one channel is tripped, the logic becomes one-out-of-two, while still meeting the single failure criterion. The 2 hours allowed to place the inoperable channel(s) in the bypassed or tripped condition is consistent with the Intermediate Range Neutron Flux instrumentation Completion Times provided in LCO 3.3.3. ## <u>C.1</u> Condition C is entered when any Required Action and associated Completion Time of Conditions A or B is not met. If the channel(s) is not restored to OPERABLE status or placed in trip or bypass, as applicable, within the allowed Completion Time, Required Action C.1 requires immediate suspension of positive reactivity additions that could result in a loss of required SDM. #### **BASES** ACTIONS (continued) ## **D.1** Condition D addresses the situation where one or two source range instrumentation channels are inoperable in MODE 3, 4, or 5. With one or two source range instrumentation channels inoperable, three of the four required channels must be restored to OPERABLE status within 48 hours. The 48 hours to restore three of four source range instrumentation channels is justified in Reference 2. #### **E.1 and E.2** Condition E is entered when the Required Action and associated Completion Time of Condition D is not met. If three of the four required source range instrumentation channels are not restored to OPERABLE status within the allowed Completion Time, Required Action E.1 requires that action be initiated to fully insert all rods within 1 hour, and Required Action E.2 requires that the PLS be placed in a condition incapable of rod withdrawal within 1 hour. The allowed Completion Time is reasonable, based on operating experience, to reach the specified condition in an orderly manner and without challenging plant systems. ## <u>F.1</u> Condition F addresses the situation where three or more source range instrumentation channels are inoperable. With three or more channels inoperable, single failure criterion cannot be met and the reactor trip breakers must be opened immediately. #### **A.1** Condition A applies to one or two Source Range Neutron Flux trip channels inoperable when in MODE 2, below the P 6 setpoint, and performing a reactor startup. With the unit in this Condition, below P 6, the PMS source range performs the monitoring and protection functions. With one or two of the four channels inoperable, operations involving positive reactivity additions that could result in a loss of required SDM shall be suspended immediately. This will preclude any power escalation. With only two source range channels OPERABLE, core protection is severely reduced and any actions that add positive reactivity to the core must be suspended immediately. #### **BASES** ## ACTIONS (continued) ## <u>B.1</u> Condition B applies to three inoperable Source Range Neutron Flux channels when in MODE 2, below the P 6 setpoint, and performing a reactor startup, or in MODE 3, 4, or 5 with the RTBs closed and the CRD System capable of rod withdrawal. With the unit in this Condition, below P 6, the NIS source range performs the monitoring and protection functions. With three source range channels inoperable, the RTBs must be opened immediately. With the RTBs open, the core is in a more stable condition. ## C.1 and C.2 Condition C applies to one or two inoperable Source Range Neutron Flux channels in MODE 3, 4, or 5 with the RTBs closed and the PLS capable of rod withdrawal. With the unit in this Condition, below P 6, the NIS source range performs the monitoring and protection functions. With one or two of the source range channels inoperable, 48 hours is allowed to restore three of the four channels to an OPERABLE status. If the channels cannot be returned to an OPERABLE status, 1 additional hour is allowed to open the RTBs. Once the RTBs are open, the core is in a more stable condition and the unit enters Condition R. The allowance of 48 hours to restore the channel to OPERABLE status, and the additional hour to open the RTBs, are justified in Reference 2. ## D.1, D.2, and D.3 Condition D applies when the required Source Range Neutron Flux channel is inoperable in MODE 3, 4, or 5 with the RTBs open. With the unit in this Condition, the NIS source range performs the monitoring and protection functions. With the required source range channel inoperable, operations involving positive reactivity additions shall be suspended immediately. This will preclude any power escalation. In addition to suspension of positive reactivity additions, all valves that could add unborated water to the RCS must be closed within 1 hour as specified in LCO 3.9.2. The isolation of unborated water sources will preclude a boron dilution accident. Also, the SDM must be verified within 1 hour and once every 12 hours thereafter as per SR 3.1.1.1, SDM verification. With no source range #### **BASES** ## ACTIONS (continued) channels OPERABLE, core protection is severely reduced. Verifying the SDM within 1 hour allows sufficient time to perform the calculations and determine that the SDM requirements are met. The SDM must also be verified once per 12 hours thereafter to ensure that the core reactivity has not changed. Required Action D.3 precludes any positive reactivity additions; therefore, core reactivity should not be increasing, and a 12 hour Frequency is adequate. The Completion Times of within 1 hour and once per 12 hours are based on operating experience in performing the Required Actions and the knowledge that unit conditions will change slowly. ## SURVEILLANCE REQUIREMENTS The CHANNEL CALIBRATION and RTCOT are performed in a manner that is consistent with the assumptions used in analytically calculating the required channel accuracies. For channels that include dynamic transfer functions, such as, lag, lead/lag, rate/lag, the response time test may be performed with the transfer function set to one, with the resulting measured response time compared to the appropriate Chapter 7 response time (Ref. 1). Alternately, the response time test can be performed with the time constants set to their nominal value provided the required response time is analytically calculated assuming the time constants are set at their nominal values. The response time may be measured by a series of overlapping tests such that the entire response time is measured. #### SR 3.3.2.1 Performance of the CHANNEL CHECK once every 12 hours ensures that gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of even something more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION. #### **BASES** ## SURVEILLANCE REQUIREMENTS (continued) Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment have drifted outside their corresponding limits. The Frequency is based on operating experience that demonstrates that channel failure is rare. Automated operator aids may be used to facilitate the performance of the CHANNEL CHECK. ## SR 3.3.2.2 SR 3.3.2.2 is the performance of a RTCOT. The test is performed in accordance with the SP. If the actual setting of the channel is found to be outside the as found tolerance, the channel is considered inoperable. This condition of the channel will be further evaluated during performance of the SR. This evaluation will consist of resetting the channel setpoint to the NTS (within the allowed tolerance), and evaluating the channels response. If the channel is functioning as required and is expected to pass the next surveillance, then the channel is OPERABLE and can be restored to service at the completion of the surveillance. After the surveillance is completed, the channel as-found condition will be entered into the Corrective Action Program for further evaluation. A RTCOT is performed on each required channel to provide reasonable assurance that the entire channel will perform the intended Function. A test subsystem is provided with the protection and safety monitoring system to aid the plant staff in performing the RTCOT. The test subsystem is designed to allow for complete functional testing by using a combination of system self checking features, functional testing features, and other testing features. Successful functional testing consists of verifying that the capability of the system to perform the safety function has not failed or degraded. For hardware functions this would involve verifying that the hardware components and connections have not failed or degraded. Generally this
verification includes a comparison of the outputs from two or more redundant subsystems or channels. #### **BASES** ## SURVEILLANCE REQUIREMENTS (continued) Since software does not degrade, software functional testing involves verifying that the software code has not changed and that the software code is executing. To the extent possible, protection and safety monitoring system functional testing is accomplished with continuous system self-checking features and the continuous functional testing features. The RTCOT shall include a review of the operation of the test subsystem to verify the completeness and adequacy of the results. If the RTCOT cannot be completed using the built-in test subsystem, either because of failures in the test subsystem or failures in redundant channel hardware used for functional testing, the RTCOT can be performed using portable test equipment. Interlocks implicitly required to support the Function's OPERABILITY are also addressed by this COT. This portion of the COT ensures the associated Function is not bypassed when required to be enabled. This can be accomplished by ensuring the interlocks are calibrated properly in accordance with the SP. If the interlock is not automatically functioning as designed, the condition is entered into the Corrective Action Program and appropriate OPERABILITY evaluations performed for the affected Function. The affected Function's OPERABILITY can be met if the interlock is manually enforced to properly enable the affected Function. When an interlock is not supporting the associated Function's OPERABILITY at the existing plant conditions, the affected Function's channels must be declared inoperable and appropriate ACTIONS taken. This test frequency of 92 days is justified based on Reference 2 (which refers to this test as "RTCOT") and the use of continuous diagnostic test features, such as deadman timers, cross-check of redundant channels, memory checks, numeric coprocessor checks, and tests of timers, counters and crystal time bases, which will report a failure within the protection and safety monitoring system cabinets to the operator within 10 minutes of a detectable failure. SR 3.3.2.2 is modified by two Notes. The first Note states that this test shall include verification that the P 6 interlock is in its required state for #### **BASES** ## SURVEILLANCE REQUIREMENTS (continued) the existing unit condition. allows this surveillance to be satisfied if it has been performed within the previous 92 days. The second Note provides a 4 hour delay in the requirement to perform this Surveillance when entering MODE 3 from MODE 2. This note allows a normal shutdown to proceed without a delay for testing in MODE 2 and for a short time in MODE 3 until the RTBs are open and SR 3.3.2.2 is no longer required to be performed. If the unit is to be in MODE 3 with the RTBs closed for a time greater than 4 hours, this Surveillance must be performed prior to 4 hours after entry into MODE 3. The Frequency is modified by a Note that allows this surveillance to be satisfied if it has been performed within 92 days of the Frequencies prior to reactor startup and four hours after reducing power below P-6. The Frequency of "prior to reactor startup" ensures this surveillance is performed prior to critical operations. The Frequency of "4 hours after reducing power below P-6" allows a normal shutdown to be completed and the unit removed from the MODE of Applicability for this surveillance without a delay to perform the testing required by this surveillance. The Frequency of every 92 days thereafter applies if the plant remains in the MODE of Applicability after the initial performances of prior to reactor startup and four hours after reducing power below P-6. The MODE of Applicability for this surveillance is < P-6. Once the unit is in MODE 3, this surveillance is no longer required. If power is to be maintained < P-6 for more than 4 hours, then the testing required by this surveillance must be performed prior to the expiration of the 4 hour limit. Four hours is a reasonable time to complete the required testing or place the unit in a MODE where this surveillance is no longer required. This test ensures that the NIS source range instrumentation channels are OPERABLE prior to taking the reactor critical and after reducing power into the applicable MODE (< P-6) for periods > 4 hours. During the RTCOT, the protection and safety monitoring system cabinets in the division under test may be placed in bypass. ## SR 3.3.2.3 SR 3.3.2.3 is the performance of a CHANNEL CALIBRATION every 24 months. This SR is modified by a Note stating that neutron detectors are excluded from the CHANNEL CALIBRATION. The test is performed in accordance with the SP. If the actual setting of the channel is found to be outside the as found tolerance, the channel is considered inoperable. #### **BASES** ## SURVEILLANCE REQUIREMENTS (continued) This condition of the channel will be further evaluated during performance of the SR. This evaluation will consist of resetting the channel setpoint to the NTS (within the allowed tolerance), and evaluating the channels response. If the channel is functioning as required and is expected to pass the next surveillance, then the channel is OPERABLE and can be restored to service at the completion of the surveillance. After the surveillance is completed, the channel as-found condition will be entered into the Corrective Action Program for further evaluation. The CHANNEL CALIBRATION for the source range neutron detectors consists of obtaining the preamp discriminator curves, evaluating those curves, and comparing the curves to the manufacturer's data. Interlocks implicitly required to support the Function's OPERABILITY are also addressed by this CHANNEL CALIBRATION. This portion of the CHANNEL CALIBRATION ensures the associated Function is not bypassed when required to be enabled. This can be accomplished by ensuring the interlocks are calibrated properly in accordance with the SP. If the interlock is not automatically functioning as designed, the condition is entered into the Corrective Action Program and appropriate OPERABILITY evaluations performed for the affected Function. The affected Function's OPERABILITY can be met if the interlock is manually enforced to properly enable the affected Function. When an interlock is not supporting the associated Function's OPERABILITY at the existing plant conditions, the affected Function's channels must be declared inoperable and appropriate ACTIONS taken. The 24-month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed on the 24 month Frequency. #### **BASES** ## SURVEILLANCE REQUIREMENTS (continued) ## SR 3.3.2.4 This SR 3.3.2.4 verifies that the individual channel actuation response times are less than or equal to the maximum values assumed in the accident analysis. Response Time testing criteria are included in Reference 1. For channels that include dynamic transfer Functions (e.g., lag, lead/lag, rate/lag, etc.), the response time test may be performed with the transfer Function set to one, with the resulting measured response time compared to the appropriate DCD Chapter 7 response time. Alternately, the response time test can be performed with the time constants set to their nominal value, provided the required response time is analytically calculated assuming the time constants are set at their nominal values. The response time may be measured by a series of overlapping tests such that the entire response time is measured. Response time may be verified by actual response time tests in any series of sequential, overlapping or total channel measurements, or by the summation of allocated sensor, signal processing and actuation logic response times with actual response time tests on the remainder of the channel. Each channel response must be verified every 24 months on a STAGGERED TEST BASIS (i.e., all four Protection Channel Sets would be tested after 96 months). Response times cannot be determined during plant operation because equipment operation is required to measure response times. Experience has shown that these components usually pass this surveillance when performed on a refueling frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. SR 3.3.2.4 is modified by a note exempting neutron detectors from RTS RESPONSE TIME testing. This Note is necessary because of the difficulty in generating an appropriate detector input signal. Excluding the detectors is acceptable because the principles of detector operation ensure a virtually instantaneous response. # **BASES** #### **REFERENCES** - 1. Chapter 7.0, "Instrumentation and Controls." - 2. APP GW GLR 137, Revision 1, "Bases of Digital Overpower and Overtemperature Delta T (OP) Reactor Trips," Westinghouse Electric Company LLC. - 2. APP-GW-GSC-020, "Technical Specification Completion Time and Surveillance Frequency Justification." | GTST AP1000-O55-3.3.2, Rev. 0 | | | |-------------------------------|--|--| # XII. Applicable STS Subsection After Incorporation of this GTST's Modifications The entire subsection of the Specifications and the Bases associated with this GTST, following incorporation of the modifications, is presented next. #### 3.3 INSTRUMENTATION # 3.3.2 Reactor Trip System (RTS) Source Range Instrumentation LCO 3.3.2 Four channels of RTS Source Range Neutron Flux – High Setpoint instrumentation shall be OPERABLE. APPLICABILITY: MODE 2 with Intermediate Range Neutron Flux below the P-6 interlock, MODES 3, 4, and 5 with Plant Control System capable of rod withdrawal or one or more rods not fully inserted. # ACTIONS | CONDITION
| REQUIRED ACTION | | COMPLETION TIME | |--|-----------------|--|-----------------| | A. One channel inoperable in MODE 2. | A.1 | Place inoperable channel in bypass or trip. | 2 hours | | B. Two channels inoperable in MODE 2. | B.1 | Place one inoperable channel in bypass. | 2 hours | | | <u>AND</u> | | | | | B.2 | Place one inoperable channel in trip. | 2 hours | | C. Required Action and associated Completion Time of Condition A or B not met. | C.1 | Suspend positive reactivity additions that could result in a loss of required SDM. | Immediately | | D. One or two channels inoperable in MODE 3, 4, or 5. | D.1 | Restore three of four channels to OPERABLE status. | 48 hours | # ACTIONS (continued) | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |--|------------|--|-----------------| | E. Required Action and associated Completion Time of Condition D not | E.1 | Initiate action to fully insert all rods. | 1 hour | | met. | <u>AND</u> | | | | | E.2 | Place the Plant Control
System in a condition
incapable of rod withdrawal. | 1 hour | | F. Three or more channels inoperable. | F.1 | Open reactor trip breakers (RTBs). | Immediately | # SURVEILLANCE REQUIREMENTS | | SURVEILLANCE | FREQUENCY | |------------|------------------------|-----------| | SR 3.3.2.1 | Perform CHANNEL CHECK. | 12 hours | | SURVEILLANCE REQUIREMENTS | (continued) | | |---------------------------|-------------|--| | | | | | | SURVEILLANCE | FREQUENCY | |------------|---|--| | SR 3.3.2.2 | Only required to be performed when not performed within previous 92 days. Not required to be performed prior to entering MODE 3 from MODE 2 until 4 hours after entry into MODE 3. | | | | Perform COT in accordance with Setpoint Program. | Prior to reactor startup AND 4 hours after reducing power below P-6 AND 92 days thereafter | | SR 3.3.2.3 | Perform CHANNEL CALIBRATION in accordance with Setpoint Program. | 24 months | | SR 3.3.2.4 | Neutron detectors are excluded from response time testing. Verify RTS RESPONSE TIME is within limits. | 24 months on a
STAGGERED
TEST BASIS | #### **B 3.3 INSTRUMENTATION** B 3.3.2 Reactor Trip System (RTS) Source Range Instrumentation #### BASES #### **BACKGROUND** A description of the RTS Instrumentation is provided in the Bases for LCO 3.3.1, "Reactor Trip System (RTS) Instrumentation." # APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY The RTS functions to maintain the SLs during all AOOs and mitigates the consequences of DBAs in all MODES in which the RTBs are closed. The RTS Source Range Neutron Flux trip Function provides protection against an uncontrolled bank rod withdrawal accident from a subcritical condition during startup. This trip Function provides redundant protection to the Power Range Neutron Flux - Low Setpoint and Intermediate Range Neutron Flux trip Functions. In MODES 3, 4, and 5, administrative controls also prevent the uncontrolled withdrawal of rods. The Protection and Safety Monitoring System (PMS) source range detectors are located external to the reactor vessel and measure neutrons leaking from the core. The safety analyses do not take credit for the Source Range Neutron Flux trip Function. Even though the safety analyses take no credit for the Source Range Neutron Flux trip, the functional capability at the specified Trip Setpoint is assumed to be available and the trip is implicitly assumed in the safety analyses. The Trip Setpoint reflects only steady state instrument uncertainties as the detectors do not provide primary protection for any events that result in a harsh environment. This trip can be manually blocked by the main control room operator when above the P-6 setpoint (Intermediate Range Neutron Flux interlock) and is automatically unblocked when below the P-6 setpoint. The manual block of the trip function also de-energizes the source range detectors. The source range detectors are automatically re-energized when below the P-6 setpoint. The trip is automatically blocked when above the P-10 setpoint (Power Range Neutron Flux interlock). The source range trip is the only RTS automatic protective Function required in MODES 3, 4, and 5. Therefore, the functional capability at the specified Trip Setpoint is assumed to be available. The LCO requires four channels of Source Range Neutron Flux to be OPERABLE in MODE 2 below P-6 and in MODE 3, 4, or 5 with the Plant Control System (PLS) capable of rod withdrawal or one or more rods not #### **BASES** APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) fully inserted. Four channels are provided to permit one channel in trip or bypass indefinitely and still ensure no single random failure will disable this trip Function. In MODE 3, 4, or 5 with the Plant Control System (PLS) incapable of rod withdrawal and all rods fully inserted, the LCO does not require the Source Range Neutron Flux channels for reactor trip Functions to be OPERABLE. In MODE 2 when below the P-6 setpoint during a reactor startup, the Source Range Neutron Flux trip must be OPERABLE. Above the P-6 setpoint, the Intermediate Range Neutron Flux trip and the Power Range Neutron Flux - Low Setpoint trip will provide core protection for reactivity accidents. Above the P-6 setpoint, the PMS source range detectors are de-energized and inoperable as described above. In MODE 3, 4, or 5 with the reactor shutdown, the Source Range Neutron Flux trip Function must also be OPERABLE. If the PLS is capable of rod withdrawal or one or more rods are not fully inserted, the Source Range Neutron Flux trip must be OPERABLE to provide core protection against a rod withdrawal accident. If the PLS is not capable of rod withdrawal, the source range detectors are required to be OPERABLE to provide monitoring of neutron levels and provide protection for events like an inadvertent boron dilution. These Functions are addressed in LCO 3.3.8, "Engineered Safety Feature Actuation System (ESFAS) Actuation Logic - Operating," and LCO 3.3.16, "Engineered Safety Feature Actuation System (ESFAS) Actuation Logic - Shutdown." The requirements for the PMS source range detectors in MODE 6 are addressed in LCO 3.9.3, "Nuclear Instrumentation." The RTS Source Range instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). #### **BASES** #### **ACTIONS** In the event a channels as-found condition is outside the as-found tolerance described in the SP, or the channel is not functioning as required, or the transmitter, instrument loop, signal processing electronics, or trip output is found inoperable, then all affected Functions provided by that channel must be declared inoperable and the LCO Condition(s) entered for the protection Function(s) affected. #### <u>A.1</u> Condition A addresses the situation where one source range instrumentation channel is inoperable in MODE 2. With one channel inoperable, the inoperable channel must be placed in a bypass or trip condition within two hours. If one channel is bypassed, the logic becomes two-out-of-three, while still meeting the single failure criterion. (A failure in one of the three remaining channels will not prevent the protective function.) If one channel is tripped, the logic becomes one-out-of-three, while still meeting the single failure criterion. (A failure in one of the three remaining channels will not prevent the protective function). The 2 hours allowed to place the inoperable channel(s) in the bypassed or tripped condition is consistent with the Intermediate Range Neutron Flux instrumentation Completion Times provided in LCO 3.3.3. #### B.1 and B.2 Condition B addresses the situation where two source range instrumentation channels are inoperable in MODE 2. With two channels inoperable, one affected channel must be placed in a bypass condition within 2 hours and one affected channel must be placed in a trip condition within 2 hours. If one channel is bypassed and one channel is tripped, the logic becomes one-out-of-two, while still meeting the single failure criterion. The 2 hours allowed to place the inoperable channel(s) in the bypassed or tripped condition is consistent with the Intermediate Range Neutron Flux instrumentation Completion Times provided in LCO 3.3.3. # <u>C.1</u> Condition C is entered when any Required Action and associated Completion Time of Conditions A or B is not met. If the channel(s) is not restored to OPERABLE status or placed in trip or bypass, as applicable, within the allowed Completion Time, Required Action C.1 requires immediate suspension of positive reactivity additions that could result in a loss of required SDM. #### **BASES** # ACTIONS (continued) ### D.1 Condition D addresses the situation where one or two source range instrumentation channels are inoperable in MODE 3, 4, or 5. With one or two source range instrumentation channels inoperable, three of the four required channels must be restored to OPERABLE status within 48 hours. The 48 hours to restore three of four source range instrumentation channels is justified in Reference 2. # E.1 and E.2 Condition E is entered when the Required Action and associated Completion Time of Condition D is not met. If three of the four required source range instrumentation channels are not restored to OPERABLE status within the allowed Completion Time, Required Action E.1 requires that action be initiated to fully insert all rods within 1
hour, and Required Action E.2 requires that the PLS be placed in a condition incapable of rod withdrawal within 1 hour. The allowed Completion Time is reasonable, based on operating experience, to reach the specified condition in an orderly manner and without challenging plant systems. # <u>F.1</u> Condition F addresses the situation where three or more source range instrumentation channels are inoperable. With three or more channels inoperable, single failure criterion cannot be met and the reactor trip breakers must be opened immediately. # SURVEILLANCE REQUIREMENTS The CHANNEL CALIBRATION and COT are performed in a manner that is consistent with the assumptions used in analytically calculating the required channel accuracies. For channels that include dynamic transfer functions, such as, lag, lead/lag, rate/lag, the response time test may be performed with the transfer function set to one, with the resulting measured response time compared to the appropriate Chapter 7 response time (Ref. 1). Alternately, the response time test can be performed with the time constants set to their nominal value provided the required response time is analytically calculated assuming the time constants are set at their nominal values. The response time may be measured by a series of overlapping tests such that the entire response time is measured. #### **BASES** # SURVEILLANCE REQUIREMENTS (continued) ### SR 3.3.2.1 Performance of the CHANNEL CHECK once every 12 hours ensures that gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of even something more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION. Agreement criteria are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment have drifted outside their corresponding limits. The Frequency is based on operating experience that demonstrates that channel failure is rare. Automated operator aids may be used to facilitate the performance of the CHANNEL CHECK. ### SR 3.3.2.2 SR 3.3.2.2 is the performance of a COT. The test is performed in accordance with the SP. If the actual setting of the channel is found to be outside the as found tolerance, the channel is considered inoperable. This condition of the channel will be further evaluated during performance of the SR. This evaluation will consist of resetting the channel setpoint to the NTS (within the allowed tolerance), and evaluating the channels response. If the channel is functioning as required and is expected to pass the next surveillance, then the channel is OPERABLE and can be restored to service at the completion of the surveillance. After the surveillance is completed, the channel as-found condition will be entered into the Corrective Action Program for further evaluation. A COT is performed on each required channel to provide reasonable assurance that the entire channel will perform the intended Function. #### **BASES** # SURVEILLANCE REQUIREMENTS (continued) A test subsystem is provided with the protection and safety monitoring system to aid the plant staff in performing the COT. The test subsystem is designed to allow for complete functional testing by using a combination of system self checking features, functional testing features, and other testing features. Successful functional testing consists of verifying that the capability of the system to perform the safety function has not failed or degraded. For hardware functions this would involve verifying that the hardware components and connections have not failed or degraded. Generally this verification includes a comparison of the outputs from two or more redundant subsystems or channels. Since software does not degrade, software functional testing involves verifying that the software code has not changed and that the software code is executing. To the extent possible, protection and safety monitoring system functional testing is accomplished with continuous system self-checking features and the continuous functional testing features. The COT shall include a review of the operation of the test subsystem to verify the completeness and adequacy of the results. If the COT cannot be completed using the built-in test subsystem, either because of failures in the test subsystem or failures in redundant channel hardware used for functional testing, the COT can be performed using portable test equipment. Interlocks implicitly required to support the Function's OPERABILITY are also addressed by this COT. This portion of the COT ensures the associated Function is not bypassed when required to be enabled. This can be accomplished by ensuring the interlocks are calibrated properly in accordance with the SP. If the interlock is not automatically functioning as designed, the condition is entered into the Corrective Action Program and appropriate OPERABILITY evaluations performed for the affected Function. The affected Function's OPERABILITY can be met if the interlock is manually enforced to properly enable the affected Function. When an interlock is not supporting the associated Function's OPERABILITY at the existing plant conditions, the affected Function's channels must be declared inoperable and appropriate ACTIONS taken. #### **BASES** # SURVEILLANCE REQUIREMENTS (continued) This test frequency of 92 days is justified based on Reference 2 (which refers to this test as "RTCOT") and the use of continuous diagnostic test features, such as deadman timers, cross-check of redundant channels, memory checks, numeric coprocessor checks, and tests of timers, counters and crystal time bases, which will report a failure within the protection and safety monitoring system cabinets to the operator within 10 minutes of a detectable failure. SR 3.3.2.2 is modified by two Notes. The first Note allows this surveillance to be satisfied if it has been performed within the previous 92 days. The second Note provides a 4 hour delay in the requirement to perform this Surveillance when entering MODE 3 from MODE 2. This note allows a normal shutdown to proceed without a delay for testing in MODE 2 and for a short time in MODE 3 until the RTBs are open and SR 3.3.2.2 is no longer required to be performed. If the unit is to be in MODE 3 with the RTBs closed for a time greater than 4 hours, this Surveillance must be performed prior to 4 hours after entry into MODE 3. The Frequency is modified by a Note that allows this surveillance to be satisfied if it has been performed within 92 days of the Frequencies prior to reactor startup and four hours after reducing power below P-6. The Frequency of "prior to reactor startup" ensures this surveillance is performed prior to critical operations. The Frequency of "4 hours after reducing power below P-6" allows a normal shutdown to be completed and the unit removed from the MODE of Applicability for this surveillance without a delay to perform the testing required by this surveillance. The Frequency of every 92 days thereafter applies if the plant remains in the MODE of Applicability after the initial performances of prior to reactor startup and four hours after reducing power below P-6. The MODE of Applicability for this surveillance is < P-6. Once the unit is in MODE 3, this surveillance is no longer required. If power is to be maintained < P-6 for more than 4 hours, then the testing required by this surveillance must be performed prior to the expiration of the 4 hour limit. Four hours is a reasonable time to complete the required testing or place the unit in a MODE where this surveillance is no longer required. This test ensures that the NIS source range instrumentation channels are OPERABLE prior to taking the reactor critical and after reducing power into the applicable MODE (< P-6) for periods > 4 hours. During the COT, the protection and safety monitoring system cabinets in the division under test may be placed in bypass. #### **BASES** # SURVEILLANCE REQUIREMENTS (continued) ### SR 3.3.2.3 SR 3.3.2.3 is the performance of a CHANNEL CALIBRATION every 24 months. This SR is modified by a Note stating that neutron detectors are excluded from the CHANNEL CALIBRATION. The test is performed in accordance with the SP. If the actual setting of the channel is found to be outside the as found tolerance, the channel is considered inoperable. This condition of the channel will be further evaluated during performance of the SR. This evaluation will consist of resetting the channel setpoint to the NTS (within the allowed tolerance), and evaluating the channels response. If the channel is functioning as required and is expected to pass the next surveillance, then the channel is OPERABLE and can be restored to service at the completion of the surveillance. After the surveillance is completed, the channel as-found condition will be entered into the Corrective Action Program for further evaluation. The CHANNEL CALIBRATION for the source range neutron detectors consists of obtaining the preamp discriminator curves, evaluating those curves, and comparing the curves to the manufacturer's data. Interlocks implicitly required to support the Function's OPERABILITY are also addressed by this CHANNEL CALIBRATION. This portion of the CHANNEL CALIBRATION ensures the associated Function is not bypassed when required to be enabled. This can be accomplished by ensuring the interlocks are
calibrated properly in accordance with the SP. If the interlock is not automatically functioning as designed, the condition is entered into the Corrective Action Program and appropriate OPERABILITY evaluations performed for the affected Function. The affected Function's OPERABILITY can be met if the interlock is manually enforced to properly enable the affected Function. When an interlock is not supporting the associated Function's OPERABILITY at the existing plant conditions, the affected Function's channels must be declared inoperable and appropriate ACTIONS taken. The 24-month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed on the 24 month Frequency. #### **BASES** # SURVEILLANCE REQUIREMENTS (continued) # SR 3.3.2.4 This SR 3.3.2.4 verifies that the individual channel actuation response times are less than or equal to the maximum values assumed in the accident analysis. Response Time testing criteria are included in Reference 1. For channels that include dynamic transfer Functions (e.g., lag, lead/lag, rate/lag, etc.), the response time test may be performed with the transfer Function set to one, with the resulting measured response time compared to the appropriate DCD Chapter 7 response time. Alternately, the response time test can be performed with the time constants set to their nominal value, provided the required response time is analytically calculated assuming the time constants are set at their nominal values. The response time may be measured by a series of overlapping tests such that the entire response time is measured. Response time may be verified by actual response time tests in any series of sequential, overlapping or total channel measurements, or by the summation of allocated sensor, signal processing and actuation logic response times with actual response time tests on the remainder of the channel. Each channel response must be verified every 24 months on a STAGGERED TEST BASIS (i.e., all four Protection Channel Sets would be tested after 96 months). Response times cannot be determined during plant operation because equipment operation is required to measure response times. Experience has shown that these components usually pass this surveillance when performed on a refueling frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. SR 3.3.2.4 is modified by a note exempting neutron detectors from RTS RESPONSE TIME testing. This Note is necessary because of the difficulty in generating an appropriate detector input signal. Excluding the detectors is acceptable because the principles of detector operation ensure a virtually instantaneous response. # **BASES** # REFERENCES - 1. Chapter 7.0, "Instrumentation and Controls." - 2. APP-GW-GSC-020, "Technical Specification Completion Time and Surveillance Frequency Justification."