Assessing the Distribution of the Probability of Spurious Operation PROPONENT #1

Case	P_SB_01_01
	Single Break Generic
	Grounded AC
	Intra-Cable
	TS source cable
	TS target cable

Statistical Analyses

Description of	Intra-cable: 26 of 53 shorted C5 and 27 of 53 shorted C6.
Analyses	
Distribution	Average = 26.5/53 or 0.50 (0.37, 0.50, 0.63) See adjustments below taking into
obtained	account expert judgment.

Expert Judgment

EPRI TR-1003326, Section 12.1.6 provides a range for the various cable configurations (Actuation Biased, Center ground, source centered, non-actuation biased). The range for the various tests ranged from 22% to 58%, with an average of ~39%. The non-EPRI tests used the source-centered which was the 58% value. Given the non-EPRI testing (NRC testing) used the source-centered configuration; it is generally biased – roughly around 30% (~(0.58-0.4)/0.58 = 0.34). Given this constitutes around 2/3 of the testing results, an adjustment of 30% * 2/3 = 20% should be applied. As a result the mean above (0.50) should be reduced by 20% to 0.40. The range can be shown from the EPRI testing (22% to 58%). This is rounded to 20% and 60% for the LB and UB values (5th and 95th). The 25th and 75th are estimated as 0.3 and 0.5, respectively. The TP estimated value from Case 2-1 is 0.42 (0.25, 0.39, 0.5), prior to adjustment for source-centered testing. After adjustment, Case 2-1 gets 0.34 (0.2, 0.34, 0.6). When combined, the TS/TP value is the average of the two, or 0.37 (0.2, 0.37, 0.6).

Median	0.40 (see above)
Lower Quartile	0.20 (5 th), or 0.3 (25 th)
Upper Quartile	0.60 (95 th) or 0.5 (75 th).
Justification of	See above.
median and	
quartiles	
Fitted	Normal.
distribution	

Expert's Additional Comments

For Grounded AC; recommend using the modifier for MOVs, sent through separate a white paper. See also recommendation to combine TS and TP Intra-Cable HSs.

P_SB_01_02
Single Break Generic
Grounded AC
Inter-Cable
TS source cable
TS target cable

Statistical Analyses

Description of	There were 7 inter-cable shorts reported in the EPRI/NEI tests, but all affecting	
Analyses	single conductor cable targets. There were 26 EPRI tests. Of the 22 non-EPRI	
	Thermoset tests where intercable was possible, there were no inter-cable hot	
	shorts. This includes zero of 22 C5 and zero of 22 C6 opportunities.	
	Given the EPRI and other tests are not poolable and should not be combined; the recommended approach for this is to use a Jeffries non-informative prior, using the 22 tests (e.g., ½ failure in 22+1 tests).	
Distribution	Using a 1/2 inter-cable hot short assumption in 22+1 tests, the following is	
obtained	determined:	
	Inter-cable = 0.5/23 = 0.022 (0.0005, 0.018, 0.15). This is the statistical	
	analysis, based on the highest expected value.	
	Overall, the probability is expected to be less than the 0.022 value based on the previous EPRI expert panel discussion (results provided in NUREG/CR-6850). As an order of magnitude, a 0.01 value is recommended with UB of 0.1 and a lower bound of 0.0005.	

Expert Judgment

Median	See above. 0.01
Lower Quartile	0.0005 (5 th), or 0.005 (25 th)
Upper Quartile	0.1 (95 th) or 0.06 (75 th).
Justification of	5 th and 95 th for the Jeffries is listed above as 0.0005 and 0.15 for a median of 0.018.
median and	Although the median is lowered for the 0.01 estimate above, the 5 th /95 th LB/UB are
quartiles	assumed the same as the Jeffries value, while the 25 $^{ m th}$ is adjusted (since the 25 $^{ m th}$ LB
	would be above the median).
Fitted	Binomial
distribution	

Expert's Additional Comments

See separate white paper on MOV modifier.

Case

P_SB_01_03 Single Break Generic Grounded AC Aggregate TS source cable TS target cable

Statistical Analyses

Description of	See separate analysis for Intra-Cable and Inter-Cable.
Analyses	
Distribution	Total = 0.40 (0.2, 0.40, 0.6) + 0.01 (0.0005, 0.01, 0.1) = 0.41 (0.2, 0.41, 0.64)
obtained	

Expert Judgment

Median	0.41
Lower Quartile	0.2 (5 th), or 0.3 (25 th)
Upper Quartile	0.64 (95 th) or 0.53 (75 th)
Justification of	Median and uncertainty Bounds for inter-cable and intra-cable are both adjusted
median and	using engineering judgment. LB/UB values are based on the Boolean sum of each.
quartiles	For example, the 75^{th} bound = 0.5 + (1-0.5)*0.06 = 0.53.
Fitted	
distribution	

Case	P_SB_01_04
	Single Break Generic
	Ungrounded AC
	Intra-Cable
	TS source cable
	TS target cable

Description of Analyses	Intra-cable: 6 of 8 shorted C5 and 6 of 8 shorted C6. Average = $6/8$ or 0.75 (0.35, 0.75, 0.97) (See recommendation below). See also case 1-1, which recommends adjusting the point estimate to account for source-centered configuration for testing. As a result, the point estimate is 0.75 * (12) = 0.6. UB and LB are also adjusted to get (0.3, 0.6, 0.9).
Distribution obtained	Recommendation: Given TS and TP are so close, and given the low amount of tests; it is recommended to combine the two into a single HS probability = $(6+3.5)/(8+5) = 9.5/13 = 0.73 (0.46, 0.73, 0.91)$. However, this is modified below based on engineering judgment (source-centered configuration) by 20% to 0.58 (0.3, 0.58, 0.8).

Median	0.58 (assuming T-Set and T-Plastic are combined)
Lower Quartile	0.3 (5 th) or 0.5 (25 th)
Upper Quartile	0.8 (95 th) or 0.7 (75 th).
Justification of	Based on discussions in the Grounded AC TS case; a source-centered test bias is
median and	judged to affect the results. As a result, a 20% reduction in the failure rate is applied
quartiles	to TS cable. Also, LB and UB are adjusted based on the 20% reduction, but with a smaller reduction on the UB. For example, the 75^{th} UB is 0.80 before the 20% reduction, and is adjusted to 0.7 (versus 0.8 * 0.8 = 0.64).
Fitted distribution	

Expert's Additional Comments

Overall, the statistical uncertainty appears to be conservative.

Case

P_SB_01_05 Single Break Generic Ungrounded AC Inter-Cable TS source cable TS target cable

Statistical Analyses

Description of	0 of 8 occurrences for both C5 and C6. However, considered no test data during the
Analyses	data analysis due to inadequate opportunity for inter-cable spurious operation.
Distribution	None (see below)
obtained	

Expert Judgment

Discussion: None occurred in 8 tests. Additionally, a review of the failure modes for this circuit indicate that the spurious operation would require either two hot shorts between two multi-conductor cables, or a single hot short and a ground on the negative side of the target. This is considered less likely, and is judged to be less than the Base Case inter-cable. Based on this, an estimate of 1E-03 is recommended with an UB of 0.01 and a LB of 1E-04. The UB and LB are based on engineering judgment, but are similar to other low probability spurious operation probabilities in the analysis.

Mean (not	Inter-cable = 0.001
median).	
Lower Quartile	1E-04
Upper Quartile	0.01
Justification of	See above
median and	
quartiles	

Case

P_SB_01_06 Single Break Generic Ungrounded AC Aggregate TS source cable TS target cable

Statistical Analyses

If you carry out statistical analyses, please document your evaluation in the following table.

Description of	Total of Proponent 1 Intra-Cable 0.58 (0.3, 0.58, 0.8) and Inter-Cable 0.001 (0.0001,
Analyses	0.001, 0.01)
Distribution	0.58 (0.3, 0.58, 0.8)
obtained	

Expert Judgment

If you use expert judgment, please document your evaluation in the following table. See above. Expert Judgment is used for the Inter-cable value, and a 20% reduction in the intracable value based on testing bias (source centered testing). Also includes the recommendation to combine T-Set and T-Plastic Cables. Would be slightly higher (0.3, 0.6, 0.9) if not combined.

Case

P_SB_01_07 Single Break Generic Ungrounded DC Intra-Cable TS source cable TS target cable

Statistical Analyses

Description of Analyses	Used values in the given data table of 43/87; 0.49 (0.39, 0.49, 0.60). Additionally, the testing was source centered and should be lowered by 20% (see previous recommendation) to 0.39 (0.3, 0.39, 0.6). Note UB is not reduced. Additionally, see below.
Distribution obtained	See below

Expert Judgment

Median	0.39
Lower Quartile	0.3 (5 th), 0.35 (25 th)
Upper Quartile	0.60 (95 th), 0.5 (75 th)
Justification of	LB based on statistical Binomial confidence intervals with 20% reduction for source
median and	centered. UB based on original UB confidence intervals without reduction
quartiles	(rounded).

Based on review of the data, the non-breaker data is 10/24 for SOVs, and 17/34 for others. This gives a total of 27/58 = 0.47 (0.33, 0.47, 0.60). This number is revised by 20% downward; to 0.38 (0.26, 0.38, 0.60).

For DC Breakers, the data shows (43-27)/(87-58) = 16/29 = 0.55 (0.36, 0.55, 0.74), with a 20% reduction for source centered to 0.44 (0.3, 0.44, 0.7).

Given the valves and breakers are similar, it is recommended to keep these combined above. Additionally, for MOVs, the MOV modifier can be applied, if accepted.

Case

P_SB_01_08 Single Break Generic Ungrounded DC Inter-Cable TS source cable TS target cable

Statistical Analyses

Description of	Zero failures in 53 (estimated) opportunities using the penlight data (zero in 45
Analyses	without), although not all are likely opportunities.
Distribution	Based on Jeffries non-informative prior; = 0.5/54 = 0.009. However, see below.
obtained	Recommended value of 0.001 (0.0005, 0.001, 0.01).

Expert Judgment

Median	Considered unlikely (0.001). See below
Lower Quartile	0.0005 (5 th)
Upper Quartile	0.01 (95 th)
Justification of	Since it is a single failure (hot to target), multi-conductor to multi-conductor, this is
median and	similar, but less likely than Case 1-2.
quartiles	
Fitted	
distribution	

Expert's Additional Comments

Given there is significant data, with no inter-cable HSs for ungrounded DC, and given it takes a specific set of failures; the TS inter-cable HS is considered unlikely. This is considered less likely than the 1-2 case (inter-cable, TS, grounded AC).

Case P_SB_01_09 Single Break Generic Ungrounded DC Multiple Shorts Ground TS source cable TS target cable

Statistical Analyses

Description of	See the Updated Table Counts 12-06-12
Analyses	
Distribution	= 14/87 =0.16 (0.09, 0.16, 0.26). 25 th = 0.13, 75 th = 0.20
obtained	This is assuming penlight is included.
	However, with penlight removed; = 9/49 = 0.18 (0.09, 0.18, 0.30). Recommend including penlight, since there is not a lot of difference. However, modifying the UB based on the penlight removed.
	Result = $(0.09, 0.16, 0.30)$

Case	P_SB_01_10	
	Single Break Generic	
	Ungrounded DC	
	Aggregate	
	TS source cable	
	TS target cable	

Description of See updated table counts 6-20 Intra cable = 0.39 (0.30, 0.39, 0.60), inter-cable less than	1E-
Analyses 03, multiple grounds = (0.09, 0.16, 0.30).	
Summation is based on the Boolean Sum.	
Distribution = 0.39 + 0.001* (1-0.39) + 0.16 * (1391) = 0.49 (0.36, 0.49, 0.72) with 5 th and 95 th liste	ł
obtained based on Boolean Sum.	
For example, UB = 0.60 + 0.01 * (1-0.6) + 0.30 * (1-0.604) = 0.72	

Case	P_SB_02_01	P_SB_03_01
	Single Break Generic	Single Break Generic
	Grounded AC	Grounded AC
	Intra-Cable	Intra-Cable
	TP source cable	TS source cable – Note Source cable
	TP target cable	doesn't matter here
	-	TP target cable

These two cases were combined into a single case.

Statistical Analyses

Description of	15 of 32 shorted C5 and 12 of 32 shorted C6.	
Analyses	Average = 13.5/32	
Distribution	Average = 0.42 (0.2, 0.42, 0.6) – Upper and Lower bound based on Engineering	
obtained	Judgment, which is wider than the statistical uncertainty.	
	See also below for source centered modification and combination of TS and TP.	

Expert Judgment

Median	= 0.42 * 0.8 = 0.34 – adjusted for source centered testing. See case 1-1.
Lower Quartile	0.16 (5 th) or 0.30 (25 th) – adjusted from the statistical value above by ~20%
Upper Quartile	0.6(95 th) or 0.40 (75 th) - 95 th not adjusted (kept at .6), while 75 th adjusted by 20%.
Justification of	See below.
median and	
quartiles	
Fitted	
distribution	

Expert's Additional Comments

Recommend combining Intra-cable TS and TP data; TS ~ 0.40, and TP ~ 0.34 (after adjustment for source-centered testing). When combined, the TS/TP value is the average of the two, or 0.37 (0.2, 0.37, 0.6)

Case

P_SB_02_02 Single Break Generic Grounded AC Inter-Cable TP source cable TP target cable

Description of Analyses	0 C5 and 0 C6 of 24 tests. 9 EPRI are not counted, since they are single to multi- conductor inter-cable interactions (no Multi-conductor to multi-conductor). The recommended approach for this is to use a Jeffries non-informative prior, using the 24 tests (e.g., ½ failure in 24+1 tests).
Distribution obtained	Average = 0.5/25 = 0.02 (0.002, 0.02, 0.1). This is the statistical analysis, based on the highest expected value.
	Overall, similar to case 1-2, the probability is expected to be less than the 0.02 value. As an order of magnitude, a 0.01 value is recommended with UB of 0.1 and a lower bound of 0.0005. This is similar to the TS case 01-02.

See above

If you use expert judgment, please document your evaluation in the following table.

Median	0.01
Lower Quartile	0.0005 (5 th)
Upper Quartile	0.1 (95 th)
Justification of	See Case 1-2 above. Similar judgment used for estimating the Median (lower than
median and	the Jeffries), and estimating the UB/LB.
quartiles	
Fitted	
distribution	

Case

P_SB_02_03 Single Break Generic Grounded AC Aggregate TP source cable TP target cable

Statistical Analyses

If you carry out statistical analyses, please document your evaluation in the following table.

Description of	Intra-Cable: 0.37 (0.2, 0.37, 0.6) – including source-centered adjustment, and	
Analyses	combination with TS	
	Inter-Cable TP Source = 0.01 (0.0005, 0.01, 0.1)	
Distribution	Total = 0.38 (0.2, 0.38, 0.64)	
obtained	If not combined with TS; should be the arithmetic mean of the two cases 2-1 and 2-	
	2.	

Case	P_SB_02_04	P_SB_03_04
	Single Break Generic	Single Break Generic
	Ungrounded AC	Ungrounded AC
	Intra-Cable	Intra-Cable
	TP source cable	TS source cable
	TP target cable	TP target cable
	These two cases were combined into a single case.	

Description of	3 of 5 shorted C5 and 4/5 shorted C6. Average = 3.5 of 5. (See	
Analyses	recommendation below). See also case 1-1, which recommends adjusting the point	
	estimate to account for source-centered configuration for testing. As a result, the point estimate is 0.70 * (12) = 0.56. UB and LB are also adjusted to get (0.2, 0.56,	
	0.8).	

If Recommendation not accepted: 0.56 (0.2, 0.56, 0.8). Recommendation: Given	
mended to	
= 0.73 (0.46,	
lgment	
= 0.73 (0.46, Igment	

Median	0.58 (assuming T-Set and T-Plastic are combined)	
Lower Quartile	0.3 (5 th) or 0.5 (25 th)	
Upper Quartile	0.8 (95 th) or 0.7 (75 th).	
Justification of	Based on discussions in the Grounded AC TS case; a source-centered test bias is	
median and	judged to affect the results. As a result, a 20% reduction in the failure rate is applied	
quartiles	to TS cable. Also, LB and UB are adjusted based on the 20% reduction, but with a smaller reduction on the UB. For example, the 75^{th} UB is 0.80 before the 20% reduction, and is adjusted to 0.7 (versus 0.8 * 0.8 = 0.64).	
Fitted		
distribution		

Case	P_SB_02_05	
	Single Break Generic	
	Ungrounded AC	
	Inter-Cable	
	TP source cable	
	TP target cable	

Description of	Zero failures in 5 tests, listed as no test data in the table.	
Analyses		
Distribution	N/A – See below	
obtained		

Expert Judgment

Median	0.01
Lower Quartile	0.0005 (5 th)
Upper Quartile	0.1 (95 th)
Justification of	See below
median and	
quartiles	
Fitted	
distribution	

Expert's Additional Comments

Similar to the TS, there were zero inter-cable hot shorts in 5 tests for both C5 and C6 contacts. However, this may be due to the high number of intra-cable HSs. It is recommended to use a higher value than the Inter-cable failure rate calculated for the ungrounded case; as a result, an unlikely recommendation is provided, similar to grounded AC: Inter-cable = 0.01 (0.0005, 0.01, 0.1)

Case P_SB_02_06 Single Break Generic Ungrounded AC Aggregate TP source cable TP target cable

Statistical Analyses

Description of	Intra-Cable: 0.58 (0.3, 0.58, 0.8)
Analyses	Inter-cable (based on grounded) = 0.01 (0.0005, 0.01, 0.01)
Distribution obtained	Aggregate = 0.59 (0.4, 0.71, 0.81)

Case	P_SB_02_07	P_SB_03_07
	Single Break Generic	Single Break Generic
	Ungrounded DC	Ungrounded DC
	Intra-Cable	Intra-Cable – Doesn't make sense (intra
	TP source cable	cable with TS-TP?)
	TP target cable	TS source cable
	-	TP target cable
	T he second sec	

These two cases were combined into a single case.

Statistical Analyses

Description of	Use data directly = 35/64
Analyses	
Distribution	0.55 (0.44, 0.55, 0.65) – 5 th /95 th
obtained	However; adjusted for the 20% source centered testing (see 1-1), the final recommended
	result is 0.56 * .8 = 0.44 (0.35, 0.45, 0.65)

Expert Judgment

Median	0.44
Lower Quartile	0.35 (5 th), 0.4 (25 th)
Upper Quartile	0.65 (95 th) , 0.55 (75 th)
Justification of	0.34 is based on calculated value above 0.43 reduced by 20%. UB remains similar to
median and	the above, without reduction. 25 th and 75 th based on engineering judgment, based
quartiles	on 5 th and 95 th estimates.
Fitted	

With the large amount of data; the uncertainty bounds can be based on the statistical estimates above, without significant uncertainty added.

Case

P_SB_02_08 Single Break Generic Ungrounded DC Inter-Cable TP source cable

TP target cable

Statistical Analyses

Description of	No data in 36 tests, including penlight.
Analyses	
Distribution	Considered Unlikely (e.g., 0.01 median)
obtained	

Expert Judgment

Median	0.01
Lower Quartile	0.001
Upper Quartile	0.1
Justification of	Used unlikely similar to the previous estimates. Based on the number of tests,
median and	would consider lower. However, since it is not clear about the number of possible
quartiles	interactions; the median of 0.01 seems reasonable.
Fitted	
distribution	

Case P_SB_02_09 Single Break Generic Ungrounded DC Multiple Shorts Ground TP source cable TP target cable

Description of Analyses	See the data table; 9 failures in 64 tests, including penlight (3 in 36 if penlight is not included).
Distribution	$= 9/64 = 0.14 (0.08, 0.14, 0.23) - 5^{\text{th}}/95^{\text{th}}$

May want to consider combining with TS failures (case 1-9) = 0.20. Average would be 0.17.

Case

P_SB_02_10 Single Break Generic Ungrounded DC Aggregate TP source cable TP target cable

Statistical Analyses

Description of	See Cases 2-7 to 2-9. = 0.45 (0.35, 0.45, 0.65) + 0.01 (0.001, 0.01, 0.1) +
Analyses	0.14 (0.08, 0.14, 0.23)
	Median = 0.45 + 0.01 * (1-0.45) + 0.14 * (1-0.451)
	= 0.53 (0.40, 0.53, 0.75)
Distribution	
obtained	

Case

P_SB_04_01 (now 03-01) Single Break Generic Grounded AC Intra-Cable Cable includes a grounded metal foil shield wrap

Statistical Analyses

Description of Analyses	Intra-Cable: 0 of 5 shorted C5 and 2 of 5 shorted C6. Average = 1/5
Distribution	0.2 (0.0051, 0.20, 0.72)
obtained	See below

Expert Judgment

Median	0.20
Lower Quartile	0.037 (5 th), 0.10 (25 th)
Upper Quartile	0.51 (95 th), 0.36 (75 th)
Justification of	Statistical mean appears too wide, based on 5 tests. If you use 2/10, you get much
median and	smaller uncertainty. Additionally, we believe the value is below 1-1 and 1-2, which
quartiles	would mean the UB should be below ~ 0.5. LB and UB values based on 2/10 using
	binomial confidence intervals.

Case

P_SB_04_03 (now 03-03) Single Break Generic Grounded AC Aggregate Cable includes a grounded metal foil shield wrap

Statistical Analyses

Description of	Same as Intra-Cable since inter- cable is considered unlikely.
Analyses	
Distribution	0.2 (0.037, 0.20, 0.51) – 5 th /95 th .
obtained	

Case

P_SB_04_04 (now 03-04) Single Break Generic Ungrounded AC Intra-Cable Cable includes a grounded metal foil shield wrap

Statistical Analyses

Description of	N/A – See below No Direct Data.
Analyses	
Distribution	
obtained	

Expert Judgment

Mean	0.30
Lower Quartile	0.04 (5 th)
Upper Quartile	0.70 (95 th)
Justification of	See below
median and	
quartiles	
Fitted	
distribution	

Expert's Additional Comments

Given no direct data, it is recommended that the ratio of the TS for Ungrounded (0.58) and grounded (0.40) (both adjusted for source-centered) multiplied by the Grounded AC HS probability for metal foil cable (0.2 (0.037, 0.2, 0.51)). This results in the following:

 $\label{eq:linear} \begin{array}{l} \mbox{Intra-Cable} = 0.2 * (0.58/0.4) = 0.29 \ (0.008, \ 0.30, \ 0.70) - \mbox{Note: LB/UB based on expert opinion.} \\ \mbox{Inter-Cable considered unlikely.} \end{array}$

Case

P_SB_04_06 (now 03-06) Single Break Generic Ungrounded AC Aggregate Cable includes a grounded metal foil shield wrap

Statistical Analyses

Analyses	
Distribution obtained	0.3 (0.04, 0.30, 0.70) – Note: LB/UB based on expert opinion.

Case	P_SB_04_07 (now 03-07)
	Single Break Generic
	Ungrounded DC
	Intra-Cable
	Cable includes a grounded metal foil shield wrap

Description of	Used the Updated Table Counts data directly.
Analyses	
Distribution	= 3/7 = 0.43 (0.13, 0.43, 0.77)
obtained	

Case P_SB_04_09 (now 03-09) Single Break Generic Ungrounded DC Multiple Shorts Ground Cable includes a grounded metal foil shield wrap

Description of	Use the data directly.
Analyses	
Distribution	= 2/7
obtained	0.29 (0.053, 0.29, 0.66)

Case P_SB_04_10 (now 03-10) Single Break Generic Ungrounded DC Aggregate Cable includes a grounded metal foil shield wrap

Statistical Analyses	
Description of	Used data directly.
Analyses	
Distribution	= 5/7
obtained	0.71 (0.34, 0.71, 0.947)

P_SB_05_01 (now 04-01) Single Break Generic Grounded AC Intra-Cable Cable includes an un-insulated grounded drain wire

Statistical Analyses

Case

Description of	0 of 1 shorted C5 and 0 of 1 shorted C6.
Analyses	
Distribution obtained	Jeffries Non-Informative Prior would result in $0.5/2 = 0.25$. LB = 0.1, UB = 0.6 (based on TS intra-cable). This appears to be around the right magnitude since it is above
	the shielded value (~ 0.2) and below the TS or TP unshielded value (~ 0.5).
	If you use both contacts; Jeffries non-informative prior would be 0.5 of 3; which gives 0.16. This appears to be too low, since it is below the Shielded case.

Expert Judgment

Median	0.25
Lower Quartile	0.1 (5 th)
Upper Quartile	0.6 (95 th)
Justification of	See above.
median and	
quartiles	
Fitted	
distribution	

Case

P_SB_05_02 (now 04-02) Single Break Generic Grounded AC Inter-Cable Cable includes an un-insulated grounded drain wire

If you use expert judgment, please document your evaluation in the following table.

Median	0.001
Lower Quartile	0.0001
Upper Quartile	0.01
Justification of	EF 10 estimated.
median and	
quartiles	
Fitted	
distribution	

Expert's Additional Comments

Inter-cable: 0.019 and 0.016 are the values for TS and TP cables above. Likely, the value for uninsulated ground drain wire will be much lower. Given the likely upperbound is likely a factor of 10 lower, a recommended value of 0.001 is estimated based on engineering judgment, EF =10. 1E-03 is the value I estimate for highly unlikely, which includes the X-ed out boxes on the table. The unlikely boxes, typically gray, are more likely ~1e-02. The case above appears to be lower than 1E-02, but there is insufficient data to validate this.

Case

P_SB_05_03 (now 04-03) Single Break Generic Grounded AC Aggregate Cable includes an un-insulated grounded drain wire

Statistical Analyses

If you carry out statistical analyses, please document your evaluation in the following table.

Description of	Basically, using the Intra-Cable Value since inter-cable estimated as 0.001
Analyses	
Distribution	0.2 (0.0051, 0.20, 0.73)
obtained	

Case

P_SB_06_01 (now 05-01) Single Break Generic Grounded AC Intra-Cable Armored 7/C Cable

Expert Judgment

If you use expert judgment, please document your evaluation in the following table.

Mean	0.07 (does not include and insights from the Duke Tests)
Lower Quartile	0.004 (5 th) and 0.04 (25 th).
Upper Quartile	0.4 (95 th) and 0.2 (75 th)

Justification of	See below
median and	
quartiles	
Fitted	
distribution	

1/7 for C5 and 1/7 for C6. However, the one test was from the EPRI test where the armored cable exceeded its minimum bend radius. For the resulting probability tables, this failure was removed (resulting in the estimated values in NUREG/CR-6850 of 0.075 with CPT). Several alternatives are possible; a) Use 1 of 7 as an average; which gives 0.14, b) Use 0.5 of 6+1, based on Jeffries non-informative prior; which gives 0.071 or c) some alternate method. It is recommended to use option b, given the agreement of the original expert panel that the single hot short observed occurred in a cable configuration not allowed in a plant installation.

Intra-Cable Average = 0.5/7 = 0.07 (0.004, 0.07, 0.4).

It is expected, if the Duke tests were incorporated, the value would decrease to around 0.04 or so, since there were no additional HSs for grounded AC circuits in the Duke Tests per the summary report.

Case

P_SB_06_03 (now 05-03) Single Break Generic Grounded AC Aggregate Armored 7/C Cable

Statistical Analyses

Description of	Since Inter-Cable is considered unlikely, use Intra-cable
Analyses	
Distribution	0.07 (0.004, 0.07, 0.4) 5 th /95 th
obtained	

Expert's Additional Comments

See Intercable discussion.

Case

P_SB_06_04 (now 05-04) Single Break Generic Ungrounded AC Intra-Cable Armored 7/C Cable

Median	0.5
Lower Quartile	0.2 (5 th) and 0.4 (25 th)
Upper Quartile	0.9 (95 th) and 0.6 (75 th)
Justification of	Use ungrounded DC, considering Duke Tests, with some reduction for AC.
median and	
quartiles	
Fitted	
distribution	

Expert's Additional Comments

See analysis for Metal foil shielded wrap as follows:

Given no direct data, it is recommended that the ratio of the TS for Ungrounded (0.58) and grounded (0.40) (both adjusted for source-centered) multiplied by the Grounded AC HS probability for metal foil cable (0.2 (0.037, 0.2, 0.51)). This results in the following: Intra-Cable = 0.2 * (0.58/0.4) = 0.29 (0.008, 0.30, 0.70) - Note: LB/UB based on expert opinion.

Inter-Cable considered unlikely.

Using a similar approach above for armored cable, grounded is (0.004, 0.07, 0.4). Result is: Intra-cable Armored Cable = 0.10 (0.006, 0.10, 0.6).

However; based on engineering judgment; the value should be more similar to the ungrounded DC. The ungrounded DC = 9/12 = 0.75 (0.47, 0.75, 0.928). Including the Duke testing, the number is roughly 0.5 to 0.6. Based on engineering judgment, the resulting ungrounded AC is recommended to be (0.2, 0.5, 0.9).

Case

P_SB_06_06 (now 05-06) Single Break Generic Ungrounded AC Aggregate Armored 7/C Cable

Statistical Analyses

Description of Analyses	Since inter-cable is considered unlikely, use Intra-Cable.
Distribution obtained	0.5 (0.2, 0.5, 0.9)

Case

P_SB_06_07 (now 05-07) Single Break Generic Ungrounded DC Intra-Cable

Armored 7/C Cable

Statistical Analyses

Description of	Use data from table
Analyses	
Distribution	= 9/12
obtained	0.75 (0.47, 0.75, 0.93). The 25 th and 75 th are 0.6 and 0.85, respectfully.

The above does not include any of the Duke Power Test insights. Likely, the results would be slightly lower when this is accounted for in the results.

Expert's Additional Comments

UB and LB (all) bounds are based on statistical estimates.

Case P_SB_06_09 (Now 05-09) Single Break Generic Ungrounded DC Multiple Shorts Ground Armored 7/C Cable

Statistical Analyses

Description of	Use data directly.
Analyses	
Distribution	= 5/12
obtained	$0.42 (0.18, 0.42, 0.68) - 5^{\text{th}}/95^{\text{th}}$

P_9	6B_06_10 (now 05-10)
Sin	gle Break Generic
Un	grounded DC
Agg	gregate
Arr	nored 7/C Cable

Statistical Analyses

Case

Description of	Use Table Values	
Analyses		
Distribution	= 11/12	
obtained	0.92 (0.66, 0.92, 0.996) – 5 th /95 th	
	Should get similar if using Boolean Sum of the two independent values, so	
	recommending for this case; recommend using the data directly for this case.	