Level of Detail for Piping Stress Analyses

Pre-Application Review Meeting

May 02, 2014

Table of Contents

- I. Introduction
- II. Current Design Approach for APR1400
- III. Proposed Design Approach for APR1400

1

IV. Open Discussion

I. Introduction

Purpose of Meeting

KHNP needs to better understand the NRC's recent communications* and clarify the scope of piping design work to be completed for the APR1400 DC application.

- NRC has recently provided a clarification on the level of detail for piping design in DC application: a heavy reliance on DAC may no longer be appropriate for the APR1400 DC application.
- No comments were identified during the acceptance review of the APR1400 DCD.

*Piping Level of Detail for Design Certification (March 4, 2014)

Piping Design Work Flow

4

Piping Stress Analysis Work Flow

II. Current Design Approach for APR1400

Application of DAC to Piping Stress Analysis

- KHNP has applied DAC to piping stress analysis based on the following NRC guidance:
 - SECY 92-053 "Use of design acceptance criteria during 10 CFR Part 52 design certification reviews"
 - RG 1.206 C.III.5 "Design Acceptance Criteria"
 - RG 1.215 "Guidance for ITAAC Closure Under 10 CFR Part 52"
 - NEI 08-1 "Industry Guideline for the ITAAC Closure process Under 10 CFR Part 52"
- Completion of piping design based on the reference plant (SKN3&4) design is impractical due to the following reasons:
 - Higher Seismic Loads
 - Unavailability of Vendor Information
 - Change of General Arrangement
 - Change of ASME Code Edition

To enable NRC safety determination, DAC & ITAAC has been identified in DCD Tier 1, Table 2.3 & 2.4 with <u>two sample calculations</u>.

Summary of Piping Design Level of Detail

Class	Scope	Design Completion	Sample Calculation	DAC Closure	ITAAC
	RCS Piping	DAC	Surge Line	COL	Tier 1 Table 2.4.2-4
ASME Class 1	RCS Branch Piping	DAC	One Subsystem	COL	Tier 1 Table 2.4.2-4, 2.4.4~7-4
ASME Class 2&3	All Piping	DAC	One Subsystem	COL	Tier 1 Table 2.3-1

Sample Calculation

- Two representative piping systems were selected for sample calculations.
 - Direct vessel injection system from reactor vessel to containment penetration – SI101(Class 1&2)

Sample Calculation Conformance Table with regard to DCD 3.12

Chapter	Title		stem	Romark	
			SI101	Remark	
3.12	Piping Design Review				
3.12.1	Introduction	0	0		
3.12.2	Codes and Standards	0	0		
3.12.2.1	ASME Boiler and Pressure Vessel Code	0	0		
3.12.2.2	ASME Code Cases	N/A	N/A		
3.12.2.3	Piping System Design Specification and Design Report		0	Design Spec.	
3.12.3	Piping Analysis Methods				
3.12.3.1	Experimental Stress Analysis Method	N/A	N/A		
3.12.3.2	Modal Response Spectrum Method	0	0		
3.12.3.2.1	General	0	0		
3.12.3.2.2	Floor Response Spectrum	0	0		
3.12.3.2.3	Uniform Support Motion Method	0	0		
3.12.3.2.4	Modal Combination	0	0		
3.12.3.2.5	Directional Combination	0	0		
3.12.3.2.6	Seismic Anchor Motion Analysis Method	0	0		
3.12.3.3	Independent Support Motion Method	N/A	N/A		
3.12.3.4	Time-History Method	0	0		
3.12.3.5	Inelastic Analysis Method	N/A	N/A		
3.12.3.6	Small-Bore Piping System Method	N/A	N/A		
3.12.3.7	Non-seismic/Seismic Interaction (II/I)	N/A	N/A		
3.12.3.8	Seismic Category I Buried Piping			COL Item	

Sample Calculation Conformance Table with regard to DCD 3.12 (Cont'd)

Chapter		Subs	ystem		
	Title	FW101	SI101	Remark	
3.12.4	Piping Modeling Technique	I	•		
3.12.4.1	Computer Codes	0	0		
3.12.4.2	Dynamic Piping Model	0	0		
3.12.4.3	Piping Benchmark Program			DST (Program Vendor)	
3.12.4.4	Decoupling Criteria	N/A	0		
3.12.5	Piping Stress Analysis Criteria	1			
3.12.5.1	Seismic Input Envelope vs. Site-Specific Spectra	N/A	N/A		
3.12.5.2	Design Transients	0	0		
3.12.5.3	Loadings and Load Combination				
3.12.5.3.1	Pressure	0	0		
3.12.5.3.2	Mechanical Loads	0	0		
3.12.5.3.3	Thermal Expansion	0	0		
3.12.5.3.4	Seismic	0	0		
3.12.5.3.5	Fluid Transient Loads	0	N/A		
3.12.5.3.6	Wind/Tornado Loads			COL Item	
3.12.5.3.7	Design Basis Pipe Break Loads	0	0		
3.12.5.3.8	Thermal and Pressure Transient Loads	N/A	0		
3.12.5.3.9	Hydrostatic Pressure Tests	0	N/A		
3.12.5.3.10	Load Combinations	o	o		
3.12.5.4	Damping Values	0	0		
3.12.5.5	Combination of Modal Responses	0	0		
3.12.5.6	High-Frequency Modes	0	0		
3.12.5.7	Fatigue Evaluation of ASME Code Class 1 Piping	0	0		
3.12.5.8	Fatigue Evaluation of ASME Code Class 2 and 3 Piping	0	0		

Sample Calculation Conformance Table with regard to DCD 3.12 (Cont'd)

Chapter	Title	Subsystem		Remark	
- chapter		FW101	SI101	Remark	
3.12.5.9	Thermal Oscillations in Piping Connected to the Reactor Coolant System	N/A	o		
3.12.5.10	Thermal Stratification			Surge Line	
3.12.5.11	Safety Relief Valve Design, Installation, and Testing	N/A	N/A		
3.12.5.12	Functional Capability	o	o		
3.12.5.13	Combination of Inertial and Seismic Anchor Motion Eff ects	o	o		
3.12.5.14	Operating-Basis Earthquake as a Design Load	N/A	N/A		
3.12.5.15	Welded Attachments	N/A	o		
3.12.5.16	Modal Damping for Composite Structures	N/A	N/A		
3.12.5.17	Minimum Temperature for Thermal Analyses	0	0		
3.12.5.18	Intersystem Loss-of-Coolant Accident	0	0		
3.12.5.19	Effects of Environment on Fatigue Design	N/A	x		
3.12.6	Piping Support Design Criteria	0	0		

III. Proposed Design Approach for APR1400

Application of Graded Approach

KHNP will revise DCD to incorporate a graded approach as follows:

High Safety Significant Piping

- All class 1 piping
- MS & FW lines to the first 6-way rigid restraint beyond the isolation valves
- Piping systems design and stress analyses will be completed except for environmental fatigue evaluation

Lower Safety Significant Piping

- Class 2&3 piping selected by Expert Panel through the failure mode & effect analysis(FMEA) based on pipe hazard analysis of SKN 3&4 and safety significance of each piping.
 - Detailed method and procedure of selecting class 2&3 piping will be proposed in the next PARM.
 - A list of Class 2&3 piping packages to address the piping DAC will be provided in the DCD.
 - The selected packages are considered to provide NRC with sufficient information to make a safety determination for resolving DAC.
- Design documents and drawings will be prepared.
- Piping stress analyses will be performed by COL applicants

Piping Design Scope of Work to be Completed

Description	Documents	Current	Forecast	Class 1	Class 2&3	
Description	/ Drawings	Status	date	>1"	≤2″	≥2.5″
Functional design criteria for mechanical systems and components	System Design Criteria (SDC)	Issued for DC	Completed	х	х	Х
Preliminary system design description	System Functional Description (SFD)	Issued for DC	Completed	Х	X	х
Piping design methodology	DCD Tier 2, ch3.12	Issued for DC	Completed	х	Х	Х
Simplified piping & instrumentation diagrams	Piping & Instrument Diagram (P&ID)	Issued for DC	Completed	Х		Х
Process flow diagrams or descriptions	DCD Tier 2	Issued for DC	Completed	Х		х
Key piping parameters	Piping Design Table (PDT) Line Index	Issued for DC Not issued	Completed 12/2014	X X		Х

Piping Design Scope of Work to be Completed (cont'd)

Description	Documents	Current	Forecast	Class 1	Class 2&3	
Description	/ Drawings	Status	date	>1"	≤2″	≥2.5″
Plant layout and	• GA Drawings	Issued for DC	Completed	Х		х
information	 Piping Isometric drawing 	27 piping Subsystems connected to major components	Completed except for Lower Safety Significant Piping	Х		X1
Design specifications	Valve specification	Not issued	12/2014	Х		
connected to piping systems	• Pump specification		12/2014	Х		
Preliminary piping stress analyses	• Summary report for class 1, 2&3	Two sample calculations	12/2015	х		x ²
	• Design report for Class 1		12/2015 (excluding environmental fatigue)	Х		

1. Lower Safety Significant piping will be completed 12/2015

2. For MS & FW piping to the first 6-way rigid restraint beyond the isolation valves

Documents/Drawings Development

Documents/ Drawings	For review	For	Class 1	Class 2&3	
Documents/ Drawings		audit	>1"	≤2"	≥2.5"
Design reports for Class 1 piping ¹		x	x		
Summary report s of stress analysis results for class 1, 2&3 piping (TeR) ¹	x		x		X ²
Piping isometric drawings		х	х		X ³
Line Index		x	x		X ²
Valve/Pump Specifications		х	x		

- 1. Excluding environmental fatigue evaluation
- 2. For MS & FW piping to the first 6-way rigid restraint beyond the isolation valves

18

3. For Lower Safety Significant piping

Clarification Items

Environmental Fatigue Evaluation for Class 1 Piping

- NUREG/CR-6909 (RG 1.207) is under revision.
- ASME Codes & Standards have not been developed yet.

IV. Open Discussion

