

August 15, 1992

CWS LTR #: 92-424

Mr. A. Bert Davis
Administrator
U.S. Nuclear Regulatory Commission
Region III
799 Roosevelt Road
Glen Ellyn, Illinois 60137

Subject: Dresden Nuclear Power Station

Radioactive Effluent Report

NRC Dockets 50-10, 50-237, 50-249

Enclosed is the corrected Radioactive Effluent Report for July through December, 1991 for Dresden Nuclear Power Station. Projected data for Sr-89, Sr-90, Fe55, H-3 and Gross Alpha for October through December was replaced with actual sample results.

A copy of this report will be furnished to the NRC Resident Inspector.

Sincerely Yours,

L. J. Lewn for 8/27/92 Charles W. Schroeder

Station Manager

Dresden Nuclear Power Station

CWS:MG:dk

Enclosure

cc: M. Gagnon

File/NRC

File/Numerical

Attached Distribution List

ZCWSLT92/266

280043

IF48

Director of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Mail Station P1-137 Washington D.C. 20555 (Original plus one copy)

- or -

One White Flint North * 11555 Rockville Pike Rockville, MD 20852

Illinois Department of Nuclear Safety Office of Nuclear Facility Safety 1035 Outer Park Drive Springfield, IL 62704

ANI Town Center, Suite 300 S 29 South Main Street West Hartford, CT. 06107-2445

American Electric Power Service Corp.
Nuclear Operations Division
1 Riverside Plaza
Columbus, Ohio 43216
(2 copies)

U.S. Environmental Protection Agency Air and Radiation Branch, Region V Health Physicist 230 S. Dearborn St. Chicago, IL 60606

Illinois Environmental Protection Agency Mr. Ed Marek, Acting Manager Maywood Regional Office 1701 First Avenue Maywood, IL 60153

Illinois Environmental Protection Agency Division of Water Pollution Control Environmental Protection Specialist 2200 Churchill Rd Springfield, IL 62706

* If delivered by private carrier (i.e. Federal Express) direct carrier to the lower back area of the One White Flint North Bldg, Mail Station P1-137

Semi Annual Report Distribution All Stations (Cont'd)

Murray & Trettel, Inc Environmental Meteorologist 414 West Frontage Rd Northfield, IL 60093

Teledyne Isotopes Midwest Laboratory General Manager 700 Landwehr Rd Northbrook, IL 60062

Chemistry Services
Chemistry Services Director
1237E

Emergency Preparedness Director 1237E

Nuclear Quality Programs and Assessments General Manager Suite 650 Downers Grove Semi Annual Report Distribution

Dresden

Station Manager Dresden

Health Physics Services Supervisor Dresden

NRC Senior Resident Inspector Dresden

U.S. Nuclear Regulatory Commission Region III 799 Roosevelt Rd. Glen Ellyn, IL 60137 (Two Copies)

Nuclear Quality Programs Superintendent Dresden

REGULATORY LIMITS

Gaseous Effluents - Dose

This Specification is provided to ensure that the dose at the unrestricted area boundary from gaseous effluents from the units on site will be within the annual dose limits of 10 CFR Part 20 The annual dose limits are the doses for unrestricted areas. associated with the concentrations of 10 CFR Part 20, Appendix B, Table II. These limits provide reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of an individual in an unrestricted area to annual average concentrations exceeding the limits specified in Appendix B, Table II of 10 CFR Part 20 (10 CFR Part 20.106(b)). The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to an individual at or beyond the unrestricted area boundary to less than or equal to 500 mrem/year to the total body or to less than or equal to 3000 mrem/year to the skin. These release rate limits also restrict, at all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to less than or equal to 1500 mrem/year. For purposes of calculating doses resulting from airborne releases, the main chimney is considered to be an elevated release point and the reactor building vent stack is considered to be a mixed mode release point.

Dose, Noble Gases

This Specification is provided to implement the requirements of Sections II.B, III.A and IV.A of Appendix I, 10 CFR Part 50. Limiting Conditions For Operation implement the guides set forth in Section II.3 of Appendix I. The statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents will be kept "as low as is reasonably achievable." The Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I is to be shown by calculational procedures based on models and data such that the actual exposure of an individual through the appropriate pathways is unlikely to be substantially underestimated. The dose calculations established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents will be consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1, July 1977. The ODCM equations provide for determining the air doses at the unrestricted boundary based upon the historical average atmospheric conditions. NUREG-0133 provides methods for dose calculations consistent with Regulatory Guides 1.109 and 1.111.

ZCWSLT/92

Dose, Radioiodines, Radioactive Material in Particulate Form and Radionuclides Other than Noble Gases

This specification is provided to implement the requirements of Sections II.C, III.A and IV.A of Appendix I, 10 CFR Part 50. The Limiting Conditions for Operation are the guides set forth in Section II.C of Appendix I. The statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive materials in gaseous effluents will be kept "as low as reasonably The ODCM calculational methods specified in the achievable." surveillance requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of an individual through appropriate pathways is unlikely to be substantially underestimated. The ODCM calculational methods approved by NRC for calculating the doses due to the actual release rates of the subject materials are required to be consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I", Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," Revision 1, July These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate specifications for radioiodines, radioactive material in particulate form and radionuclides other than noble gases are dependent on the existing radionuclide pathways to man, in the unrestricted The pathways which were examined in the development of these specifications were: 1) individual inhalation of airborne radionuclides, 2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man and 3) deposition onto grassy areas where milk animals graze with consumption of the milk by man.

Gaseous Waste Treatment

The OPERABILITY of the gaseous waste treatment which reduces amounts or concentrations of radioactive materials ensures that the system will be available for use whenever gaseous effluents require treatment prior to release to the environment. The requirement that the appropriate portions of this system be operable when specified provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept "as low as reasonably achievable". This specification implements the requirements of 10 CFR Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50, and design objective Section II.D of Appendix I to 10 CFR Part 50.

LIQUID EFFLUENTS

Concentration

This specification is provided to ensure the concentration of radioactive materials released in liquid waste effluents from the site to unrestricted areas will be less than the concentration levels specified in 10 CFR Part 20, Appendix B, Table II, Column 2. The concentration limit for noble gases, MPC in air (submersion), was converted to an equivalent concentration in water using the International Commission on Radiological Protection (ICRP) Publication 2.

Dose

This specification is provided to implement the requirements of Sections II.A, III.A and IV.A of Appendix I, 10 CFR Part 50. The Limiting Condition for Operation implements the guides set forth in Section II.A of Appendix I. The statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in liquid effluents will be kept "as low as reasonably achievable". The dose calculations in the ODCM implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of an individual through appropriate pathways is unlikely to be substantially underestimated. The equations specified in the ODCM for calculating the doses due to the actual release rates of radioactive materials in liquid effluents will be consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I", Revision 1, October 1977 and Regulatory Guide 1.113, "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I", April 1977. NUREG-0113 provides methods for dose calculations with Reg Guide 1.109 and 1.113.

Liquid Waste Treatment

The operability of the liquid radwaste treatment system ensures that this system will be available for use whenever liquid effluents require treatment prior to release to the environment. The requirement that the appropriate portions of this system be used when specified provides assurance that the releases of radioactive materials in liquid effluents will be kept "as low as reasonably achievable". This specification implements the requirements of 10 CFR Part 50 and design objective Section II.D of Appendix I to 10 CFR Part 50.

MAXIMUM PERMISSIBLE CONCENTRATIONS (MPC)

The concentration of radioactive materials released in gaseous and liquid effluents from the site to unrestricted areas will be less than the concentration levels specified in 10 CFR Part 20, Appendix B, Table II, Columns 1 and 2. The concentration limit for noble gases, MPC in air (submersion), was converted to an equivalent concentration in water using the International Commission on Radiological Protection (ICRP) Publication 2.

MAXIMUM PERMISSIBLE CONCENTRATION OF DISSOLVED OR ENTRAINED NOBLE GASES RELEASED FROM THE SITE TO UNRESTRICTED AREAS IN LIQUID WASTE

NUCLIDE	MPC(uCi/m1)*
Kr-85m	2.OE-04
Kr-85	5.0E-04
Kr-87	4.0E-05
Kr-88	9.0E-05
Ar-41	7.0E-05
Xe-131m	7.0E-04
Xe-133m	5.0E-04
Xe-133	6.0E-04
Xe-135m	2.0E-04
Xe-135	2.0E-04

^{*} Computed from Equation 20 of ICRP Publication 2 (1959), adjusted for infinite cloud submersion in water, and R = 0.01 rem/week, density = 1.0 g/cc and Pw/Pt = 1.0.

AVERAGE ENERGY

The average energy of fission and activation gases was calculated for the gaseous effluents released from the site. The average energy is based on the percentage of each fission gas nuclide present and its average energy per disintegration (\bar{E} in MeV/dis) for gamma and beta emissions separately.

 $E_G = 1.95E+00 \text{ MeV/dis}$

 $\overline{E}_{R} = 3.49E-01 \text{ MeV/dis}$

EQUIPMENT OUT-OF-SERVICE:

An Environmental Monitoring Station was inadvertantly without power from June 26, 1991 to July 13, 1991. This caused no air sample to be collected at station D-02 (0.3 miles at 50° from station). This power outage was due to construction activities at the station sewage treatment plant. It was not evident that power from the sewage treatment plant also fed the environmental monitoring station. All other (total of 16) station air samplers were operable during this period. The sampler was powered from a point upstream of a breaker for the sewage treatment plant in order to restore power to the sampler.

The Units 2 and 3 Reactor Building Vent SPING (System Particulate Iodine Noble Gas Monitor) was out of service from July 9, 1991 to October 1, 1991. This was due to maintenance work on the SPING to repair leaking valves and fittings. The Unit 2 and Unit 3 Reactor Building Vent Radiation Monitors and their respective Iodine and particulate samplers were utilized during this period.

MEASUREMENTS AND APPROXIMATIONS

- A. Fission and activation gases: The D-1 Chimney, D2/3 Chimney, and D2/3 Reactor Building Vent are sampled weekly via a grab sample. The samples are analyzed for specific isotopes present in the release using a Hyper-Pure Germanium (HP Ge) Spectrometry System. Tritium is sampled monthly via a grab sample on the D-1 Chimney, D2/3 Chimney, and D2/3 Reactor Building Vent and analyzed using a Liquid Scintillation Counter. Krypton-85 is estimated in the D2/3 Chimney using a recoil or non-recoil calculation using the fission per second plot and the sum of Kr-85m, Kr-87, Kr-88, Xe-133, Xe-135, and Xe 138 activities present in Reactor Off-Gas.
- B. Iodine and Particulate: Iodine and particulate samples from the D-1 Chimney, D2/3 Chimney and the D2/3 Reactor Building Vent are collected for a maximum seven day period. These samples are analyzed for specific nuclides present in the release using a HP Ge spectrometry system. When iodine or particulate samples are not used for reporting the release rate due to management decision that the sample may not be representative, an average of the preceding sample and the following sample is used to calculate the release. A monthly composite of the particulate samples is sent to a vendor to be analyzed for Fe-55, Sr-89, Sr-90, and Gross Alpha activity.
- C. Liquid Effluents: Analyzed for specific isotopes present in the release using a HP Ge spectrometry system. A composite of all batches for the month is sent to a vendor to be analyzed for Sr-89, Sr-90, Fe-55, H-3, and Gross Alpha activity. A sample of each Containment Cooling Service Water (CCSW) system is analyzed each month for specific isotopes present in the release using a HP Ge spectrometry system. A sample of each CCSW system is sent each month to a vendor to be analyzed for Sr-89, Sr-90, Fe-55, H-3, and Gross Alpha activity.
- D. Estimation of Overall Errors: The methods used for estimating overall errors associated with radioactivity measurements vary with discharge path and form of isotopes. Factors that contribute to the error include such items as calibration of counting equipment, counting statistics, sampling error, discharge volume, and flow rate monitors.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT July Through December 1991

GASEOUS EFFLUENTS

Docket Numbers: 50-10

50-237 50-249

SUMMATION OF ALL RELEASES

TYP	PE OF RELEASE	UNITS	3rd QUARTI	ER <u>4th</u> QUART	EST.TOTAL ER ERROR,%
	FISSION AND ACTIVATION GASES				
	1. Total Release	Ci	8.94E+00	1.34E-05	7.31
	2. Average Release Rate for Period	uCi/sec	1.12E+00	1.69E-06	
	3. Percent of Technical Specification Limit	%	*	*	
В.	IODINES	•		,	
	1. Total Iodine-131	Ci	8.16E-04	2.08E-05	9.51
	2. Average Release Rate of I-131 for Period	uCi/sec	1.03E-04	2.62E-06	
	3. Percent of Technical Specification Limit	%	*	*	
	4. Total Iodine-131, Iodine-133, and Iodine-135	Ci	7.45E-03	2.04E-03	
C.	PARTICULATES	•		,	
	1. Particulates with half-lives > 8 days	Ci	1.36E-02	5.46E-03	8.09
	2. Average Release Rate for Period	uCi/sec	1.71E-03	6.89E-04	I
4	Percent of Technical Specification Limit	%	*	*	
	Gross Alpha Radioactivity	Ci	6.32E-06	5.86E-06	
D.	TRITIUM	,	•		
	1. Total Release	Ci	9.41E-01	7.88E-01	7.89
	2. Average Release Rate for Period	uCi/sec	1.18E-01	9.91E-02	· · · · · · · · · · · · · · · · · · ·
	3. Percent of Technical Specification Limit	%	*	*	

[★] The information is contained in the Radiological Impact on Man section of the report. Total airborne release data is provided which includes fission and activation gases, iodines, particulates, and tritium.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

<u>July</u> Through <u>December</u> 19<u>91</u>

GASEOUS	EFFLUENTS

Docket Numbers: 50-10

50-237 50-249

SUMMATION OF ALL RELEASES

LLD (uCi/cc)

1	F	TS	S	T	ΩN	GI	18	F.S	

Xe-138	1.48E-07
Xe-135m	6.45E-08
Kr-87	3.46E-08
Kr-88	5.50E-08
Kr-85m	1.67E-08
Kr-85	4.19E-06
Xe-135	1.49E-08
Xe-133	4.06E-08
Ar-41	2.88E-08
Xe-133m	1.32E-07

2. IODINES

I-131	5.52E-13
I-133	3.40E-12
I-135	4.51E-10

3. PARTICULATES

Sr-89	1.60E-14
Sr-90	5.00E-15
Cr-51	3.61E-12
Mn-54	4.03E-13
<u>Co-58</u>	4.52E-13
Fe-55	3.00E-14
Fe-59	7.53E-13
Co-60	1.24E-12
<u>Zr-95</u>	7.31E-13
Nb-95	4.44E-13
Mo-99	5.78E-12
Ru-103	4.24E-13
Ag-110m	4.08E-13
Sb-124	4.70E-13
<u>I-131</u>	5.15E-13
Cs-134	5.05E-13
Cs-136	5.65E-13
Cs-137	5.16E-13
Ba-140	1.78E-12
La-140	8.78E-13
Ce-141	6.89E-13
Ce-144	2.72E-12
Zn-65	7.28E-13
Ba-133	5.42E-13
Sb-125	1.15E-12
Others:	

Gross Alpha 7.00E-15

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

July Through December 1991

<u>D1 Chimney</u> GASEOUS EFFLUENTS		
GROUND LEVEL RELEASES	Daalaat Nambaaa	EO 10
SEMI-ELEVATED RELEASES	Docket Number:	30-10
XX ELEVATED RELEASES		
CONTINUOUS MODE	DATOU MODE	

			JOUS MODE	BATO	CH MODE
NUCLIDES RELEASED	UNIT	3rd QUARTER	4th QUARTER	3rd QUARTER	4th QUARTER
FISSION GASES					
Xe-138	Ci	*	*		
Xe-135m	Ci	*	*		
Kr-87	Ci	*	*		
Kr-88	Ci	*	×		
Kr-85m	Ci	*	*		
Kr-85	Ci	*	*		
Xe-135	Ci	*	*		
Xe-133	Ci	*	*		
TOTAL	Ci			NONE	NONE
IODINES					
I-131	Ci	*	*		
I-133	Ci	*	*		
I-135	Ci	*	×		
TOTAL	Ci			NONE	NONE
PARTICULATES					
r-89	Ci	*	4.64E-06		
r-90	Ci	5.43E-08	9.05E-07		
Cr-51	Ci	*	*		
Mn-54	Ci	7.51E-07	*		
Co-58	Ci	*	*		
Fe-59	Ci	*	*		
Co-60	Ci	3.50E-05	2.14E-05		
Zr-95	Ci	*	*		
Nb-95	Ci	*	*		
Mo-99	Ci	*	*		
Ru-103	Ci	2.05E-03	9.39E-04		
Ag-110m	Ci	*	*		
Sb-124	Ci	*	*		
I-131	Ci	*	*		
Cs-134	Ci	*	*		
Cs-136	Ci	×	*		
Cs-137	Ci	2.52E-05	2.96E-06		
Ba-140	Ci	*	*		
La-140	Ci	×	*		
Ce-141	Ci	*	*		
Ce-144	Ci	*	*		
Zn-65	Ci	×	*		
Ba-133	Ci	ж	*		
Sb-125	Ci	*	*		
Fe-55	Ci	7.83E-07	1.14E-5		
TOTAL	Ci	2.10E-03	9.80E-04	NONE	NONE

^{*} The activity of this nuclide is less than the LLD listed on the appropriate table.

DRESDEN NUCLEAR POWER STATION

UNIT 1

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

July Through September 1991

D1 Chimney	GASEOUS EFFLUENTS			
	GROUND LEVEL RELEASES	Daabak	Normalis a sure	50 10
	SEMI-ELEVATED RELEASES	роскет	Number:	30-10
xx	ELEVATED RELEASES			

CONTINUOUS MODE NUCLIDES RELEASED UNIT JULY **AUGUST SEPTEMBER** 3rd QUARTER TOTAL FISSION GASES Xe-138 Ciж × * 30 Xe-135m × * * × CiKr-87 Ci× * × × Kr-88 × × × × Ci * 'n * 30 Kr-85m Ci × * × × Kr-85 Ci × * Ci × Xe-135 × Xe-133 Ci * × × TOTAL Ci IODINES Ci * × * × I-131 × * × I - 133Ci × I - 135Ci* × * × TOTAL Ci ARTICULATES r-89 Ci፠ * * * Sr-90 Ci 4.53E-09 4.98E-08 5.43E-08 Cr-51 * Ci Mn-54Ci 7.51E-07 × * 7.51E-07 Co-58 Ci × * * × Fe-59 * × * × Ci Co-60 Ci 3.77E-06 2.51E-05 6.14E-06 3.50E-05 Zr-95 Ci * × * × Nb-95 Ci * × Mo-99 Ci * Ci 6.42E-04 7.03E-04 2.05E-03 Ru-103 7.01E-04 Ag-110m Ci χ * × × Sb-124 Ci * 'n × * I-131 Ci * × * × Cs-134 Ci × × * × × * × × Cs-136 Ci 2.52E-05 × × Cs-137 Ci 2.52E-05 'n * Ba-140 Ci* ぉ La-140 Ci * × × Ce-141 Ci * × * х * × × Ce-144 Ci 'n * ŵ × አ Ci 2n-65× × Ba-133 Ci 'n * Sb-125 Ci× * ጎየ ×

7.09E-04

7.83E-07

7.05E-04

7.83E-07

2.10E-03

Ci

Ci

6.93E-04

Fe-55

TAL

^{*} The activity of this nuclide is less than the LLD listed on the appropriate table.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT October Through December 1991

D1 Chimney GASEOUS EFFLUENTS

GROUND LEVEL RELEASES

Docket Number: 50-10

SEMI-ELEVATED RELEASES

XX ELEVATED RELEASES

CONTINUOUS MODE

			C(ONTINUOUS MODE	
NUCLIDES RELEASED	UNIT	OCTOBER	NOVEMBER	DECEMBER	4th QUARTER TOTAL
FISSION GASES			•		
Xe-138	Ci	×	*	**	*
Xe-135m	Ci	*	*	*	% c
Kr-87	Ci	*	*	*	*
Kr-88	Ci	*	*	*	*
Kr-85m	Ci	*	*	*	*
Kr-85	Ci	*	*	*	×c ×c
Xe-135	Ci	*	×	*	*
Xe-133	Ci	*	*	*	*
TOTAL	Ci				
IODINES					
I-131	Ci	*	*	*	*
I-133	Ci	*	*	*	*
I-135	Ci	ň	*	*	*
TOTAL	Ci				
PARTICULATES					
r-89	Ci	*	2.65E-06	1.99E-06	4.64E-06
r-90	Ci	*	5.12E-07	3.93E-07	9.05E-7
Cr-51	Ci	*	*	*	*
Mn-54	Ci	*	×	*	*
Co-58	Ci	ň	*	*	*
Fe-59	Ci	*	*	*	*
Co-60	Ci	1.15E-05	7.57E-06	2.35E-06	2.14E-05
Zr-95	Ci	*	*	*	*
Nb-95	Ci	*	*	*	*
Ru-103	Ci	5.25E-04	4.14E-04	*	9.39E-04
Ag-110m	Ci	*	×	*	*
Sb-124	Ci	×	×	*	*
I-131	Ci	*	*	*	*
Cs-134	Ci	×	*	*	*
Cs-136	Ci	*	×	*	ν̈́c
Cs-137	Ci	*	1.77E-06	1.19E-06	2.96E-06
Ba-140	Ci	*	*	*	*
La-140	Ci	*	*	*	*
Ce-141	Ci	*	*	*	%
Ce-144	Ci	×	*	*	*
Zn-65	Ci	*	×	*	*
Ba-133	Ci	3'0	*	*	×
Sb-125	Ci	×	*	*	>2
Fe-55	Ci	1.87E-06	5.76E-06	3.74E-06	1.14E-05
TOTAL	Ci	5.38E-04	4.32E-04	9.66E-06	9.80E-04

^{*} The activity of this nuclide is less than the LLD listed on the appropriate table.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

____July __ Through __December __ 1991

<u>D2/3 Chimney</u> GASEOUS EFFLUENTS

GROUND	LEVEL	RELEASES			
			Docket N	Numbers:	50-237
SEMI-EL	EVATE	RELEASES			50-249

XX ELEVATED RELEASES

			CONTINUOUS MODE		BATCH MODE
NUCLIDES RELEASED	UNIT	3rd QUARTER	4th QUARTER	<u>3rd</u> QUARTER	<u>4th</u> QUARTER
FISSION GASES					
Xe-138	Ci	*	*		
Xe-135m	Ci	*	×		
Kr-87	Ci	*	*		
Kr-88	Ci	2.13E+00	*		
Kr-85m	Ci	*	*		
Kr-85	Ci	8.82E-04	1.34E-05		
Xe-135	Ci	1.54E-01	*		
Xe-133	Ci	*	*		
TOTAL	Ci	2.29E+00	1.34E-05	None	None
IODINES					
I-131	Ci	2.40E-04	2.08E-05		
I-133	Ci	1.24E-03	6.41E-05		
I-135	Ci	5.30E-03	1.95E-03		
TOTAL	Ci	6.78E-03	2.03E-03	None	None
PARTICULATES					
r-89	Ci	1.16E-04	1.82E-05		
r-90	Ci	1.59E-06	2.42E-06		
Cr-51	Ci	*	*		
Mn-54	Ci	6.50E-05	7.66E-05		
Co-58	Ci	*	*		
Fe-59	Ci	*	2.92E-05		
Co-60	Ci	3.78E-04	1.99E-04		
Zr-95	Ci	*	*		
Nb-95	Ci	*	*		
Ru-103	Ci	3.13E-03	7.80E-04		
Ag-110m	Ci	*	*		
Sb-124	Ci	*	*		
I-131	Ci	*	*		
Cs-134	Ci	*	*		
Cs-136	Ci	*	*		
Cs-137	Ci	7.12E-05	3.89E-05		
Ba-140	Ci	3.73E-04	*		
La-140	Ci	5.13E-04	**		
Ce-141	Ci	*	*		· · · · · · · · · · · · · · · · · · ·
Ce-144	Ci	*	*		
Zn-65	Ci	*	×		
Ba-133	Ci	*	×		
Sb-125	Ci	*	*		
Fe-55	Ci	5.74E-04	6.86E-04		
TOTAL	Ci	5.22E-03	1.83E-03	None	None

^{*} The activity of this nuclide is less than the LLD listed on the appropriate table.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

____July Through September 1991

D2/3 Chimney GASEOUS EFFLUENTS

_____ GROUND LEVEL RELEASES

Docket Numbers: 50-237

_____ SEMI-ELEVATED RELEASES

50-249

XX ELEVATED RELEASES

CONTINUOUS MODE

				NTINUOUS MODE	
NUCLIDES RELEASED	UNIT	JULY	AUGUST	SEPTEMBER	3rd QUARTER TOTAL
FISSION GASES					
Xe-138	Ci	*	ň	*	**
Xe-135m	Ci	*	*	*	*
Kr-87	Ci	*	*	*	*
Kr-88	Ci	6.62E-01	1.47E+00	*	2.13E+00
Kr-85m	Ci	*	*	*	*
Kr-85	Ci	4.32E-04	3.84E-04	6.62E-05	8.82E-04
Xe-135	Ci	1.54E-01	*	*	1.54E-01
Xe-133	Ci	*	*	*	ж
TOTAL	Ci	8,16E-01	1.47E+00	6.62E-05	2.29E+00
IODINES					
I-131	Ci	7.71E-05	8.12E-05	8.19E-05	2.40E-04
I-133	Ci	5.73E-04	4.31E-04	2.35E-04	1.24E-03
I-135	Ci	3.11E-04	2.33E-03	2.66E-03	5.30E-03
TOTAL	Ci	9.61E-04	2.84E-03	2.98E-03	6.78E-03
PARTICULATES					
r-89	Ci	6.16E-05	4.62E-05	7.87E-06	1.16E-04
x-90	Ci	6.52E-07	5.66E-07	3.72E-07	1.59E-06
Cr-51	Ci	*	፠	*	*
Mn-54	Ci	3.20E-05	2.33E-05	9.70E-06	6.50E-05
Co-58	Ci	*	×	*	×
Fe-59	Ci	*	rk	*	*
Co-60	Ci	1.71E-04	9.22E-05	1.15E-04	3.78E-04
<u>Zr-95</u>	Ci	*	×	*	*
Nb-95	Ci	*	*	*	*
Ru-103	Ci	6.15E-04	1.13E-03	1.39E-03	3.13E-03
Ag-110m	Ci	*	*	*	*
Sb-124	Ci	*	*	*	*
<u>I-131</u>	Ci	*	*	*	* .
Cs-134	Ci	*	*	*	*
Cs-136	Ci	*	*	*	*
Cs-137	Ci	3.21E-05	2.20E-05	1.71E-05	7.12E-05
Ba-140	Ci	1.66E-04	1.54E-04	5.28E-05	3.73E-04
La-140	Ci	2.57E-04	2.05E-04	5.05E-05	5.13E-04
Ce-141	Ci	*	*	ν̈́c	5.4
Ce-144	Ci	*	*	*	*
Zn-65	Ci	*	**	*	*
Ba-133	Ci	*	*	*	*
Sb-125	Ci	*	*	*	**
Fe-55	Ci	3.06E-04	7.68E-05	1.91E-04	5.74E-04
TOTAL	Ci	1.64E-03	1.75E-03	1.83E-03	5.22E-03

^{*} The activity of this nuclide is less than the LLD listed on the appropriate table.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

October Through December 1991

D2/3 Chimney	GASEOUS EFFLUENTS				
	GROUND LEVEL RELEASES				
	Docket Numbers:	50-237			
UAA MARKADAN III.	SEMI-ELEVATED RELEASES	50-249			
xx	ELEVATED RELEASES				

NUCLIDES RELEASED	UNIT	October	OUS MODE November	December	4th QUARTER TL
MOCEIDES KELEASED	UNII	occoper	MOAGUIDET	December	4CH QUARTER II
FISSION GASES					<u>.</u> .
Xe-138	Ci	*	*	*	*
Xe-135m	Ci	*	*	*	*
Kr-87	Ci	*	*	*	×
Kr-88	Ci	*	*	*	*
Kr-85m	Ci	*	*	*	፠
Kr-85	Ci	1.34E-05	*	*	1.34E-05
Xe-135	Ci	*	*	*	*
Xe-133	Ci	*	*	*	*
TOTAL	Ci	1.34E-05	*	*	1.34E-05
IODINES					
I-131	Ci	2.08E-05	*	*	2.08E-05
I-133	Ci	6.41E-05	*	*	6.41E-05
I-135	Ci	4.07E-04	1.54E-03	*	1.95E-03
TOTAL	Ci	4.92E-04	1.54E-03	*	2.03E-03
PARTICULATES					
r-89	Ci	1.04E-05	4.54E-06	3.27E-06	1.82E-05
r-90	Ci	7.46E-07	9.21E-07	7.49E-07	2.42E-06
Cr-51	Ci	*	*	*	*
Mn-54	Ci	6.66E-05	5.55E-06	4.45E-06	7.66E-05
Co-58	Ci	*	*	*	*
Fe-59	Ci	2.92E-05	*	*	2.92E-05
Co-60	Ci	1.56E-04	2.65E-05	1.62E-05	1.99E-04
Zr-95	Ci	*	*	*	*
Nb-95	Ci	*	*	*	*
Ru-103	Ci	4.98E-04	2.82E-04	*	7.80E-04
Ag-110m	Ci	*	*	*	*
Sb-124	Ci	*	*	*	*
I-131	Ci	*	*	*	*
Cs-134	Ci	*	*	*	ý¢
Cs-136	Ci	*	*	*	*
Cs-137	Ci	6.06E-06	1.03E-05	2.25E-05	3.89E-05
Ba-140	Ci	*	*	*	*
La-140	Ci	^ *t	*	*	*
Ce-141	Ci	*	*	*	*
	1 01		<u> </u>	 	

×

у,

*

2.62E-04

5.92E-04

ж

ጵ

አ

3'0

3.86E-04

1.15E-03

'n

20

58

×

6.86E-04

1.83E-03

×

*

у,

*

3.80E-05

8.52E-05

Ci

Ci

Ci

Ci

Ci

Ce-144

Zn-65

Ba-133

Sb-125

Fe-55

TOTAL

^{*} The activity of this nuclide is less than the LLD listed on the appropriate table.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

July Through December 1991

D2/3 Rx Building Vent	GASEOUS EFFLUENTS		
	GROUND LEVEL RELEASES		
	Docket	Numbers:	50-237
XX	SEMI-ELEVATED RELEASES		50-249

ELEVATED RELEASES

			ELEVATED R	ELEASES	
	 		CONTINUOUS MODE		BATCH MODE
NUCLIDES RELEASED	UNIT	3rd QUARTER	4th QUARTER	<u>3rd</u> QUARTER	4th QUARTER
FISSION GASES					•
Xe-138	Ci	*	*		
Xe-135m	Ci	*	*		
Kr-87	Ci	*	*		
Kr-88	Ci	6.65E+00	*		
Kr-85m	Ci	*	*		
Kr-85	Ci	*	*		
Xe-135	Ci	*	*		
Xe-133	Ci	*	*	_	
TOTAL	Ci	6.65E+00		NONE	NONE
IODINES					
I-131	Ci	5.68E-04	*		
I-133	Ci	3.32E-04	1.09E-05		
I-135	Ci	2.70E-04	*		
TOTAL	Ci	6.59E-04	1.09E-05	NONE	NONE
PARTICULATES					
Sr-89	Ci	3.80E-06	5.19E-06		•
r-90	Ci	2.26E-07	9.26E-06		
2r-51	Ci	3.70E-04	5.21E-05		
Mn-54	Ci	4.06E-04	1.23E-04		
Co-58	Ci	1.35E-04	1.27E-05	1	
Fe-59	Ci	3.93E-05	2.92E-05		
Co-60	Ci	1.54E-03	5.71E-04		
Zr-95	Ci	*	*		
Nb-95	Ci	*	*		
Ru-103	Ci	1.01E-04	7.80E-04		
Ag-110m	Ci	*	*		
Sb-124	Ci	*	*		
I-131	Ci	8.41E-06	*		
Cs-134	Ci	*	*		
Cs-136	Ci	*	*		
Cs-137	Ci	*	7.28E-08		
Ba-140	Ci	*	*		
La-140	Ci	*	*		
Ce-141	Ci	*	*		
Ce-144	Ci	*	*		
Zn-65	Ci	8.47E-06	*		
Ba-133	Ci	*	*		
Mo-99	Ci	1.93E-04	4.27E-05		
Sb-125	Ci	*	*		· · · · · · · · · · · · · · · · · · ·
Fe-55	Ci	3.44E-03	1.04E-03		
TOTAL	Ci	6.25E-03	2.67E-03	None	None

^{*} The activity of this nuclide is less than the LLD listed on the appropriate table.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

July Through September 1991

D2/3 Rx Building Vent	GASEOUS EFFLUENTS	
	GROUND LEVEL RELEASES	
	Docket Numbers:	50-237
XX	SEMI-ELEVATED RELEASES	50-249

ELEVATED RELEASES

	CONTINUOUS MODE BATCH MODE					
NUCLIDES RELEASED	UNIT	JULY	AUGUST	SEPTEMBER	3rd QUARTER	
	-					
FISSION GASES Xe-138	Ci	*	*	*	*	
	Ci	*	*	*	*	
Xe-135m	Ci	*		*	-	
Kr-87		*	*			
Kr-88	Ci	* *	*	6.65E+00 *	6.65E+00 *	
Kr-85m	Ci	* *	*	*	*	
Kr-85	Ci		* *	*	× ×	
Xe-135	Ci	*		*		
Xe-133	Ci	*	*	<u> </u>	*	
TOTAL	Ci			6.65E+00	6.65E+00	
IODINES						
I-131	Ci	3.42E-05	2.26E-05	*	5.68E-05	
I-133	Ci	2.27E-04	1.05E-04	5.51E-08	3.32E-04	
I-135	Ci	2.70E-04	*	*	2.70E-04	
TOTAL	Ci	5.31E-04	1.28E-04	5.51E-08	6.59E-04	
PARTICULATES						
Sr-89	Ci	1.60E-06	1.46E-06	7.42E-07	3.80E-06	
:-90	Ci	1.04E-07	4.98E-08	7.25E-08	2.26E-07	
€r-51	Ci	6.40E-05	2.97E-04	9.14E-06	3.70E-04	
Mn-54	Ci	1.55E-04	1.54E-04	9.74E-05	4.06E-04	
Co-58	Ci	5.30E-05	7.06E-05	1.10E-05	1.35E-04	
Fe-59	Ci	4.08E-06	2.84E-05	6.83E-06	3.93E-05	
Co-60	Ci	5.28E-04	6.88E-04	3.27E-04	1.54E-03	
Zr-95	Ci	*	×	*	*	
Nb-95	Ci	*	*	*	*	
Ru-103	Ci	9.83E-06	2.12E-05	7.00E-05	1.01E-04	
Ag-110m	Ci	*	*	*	*	
Sb-124	Ci	*	×	*	**	
I-131	Ci	6.22E-06	2.19E-06	*	8.41E-06	
Cs-134	Ci	*	*	*	*	
Cs-136	Ci	×	×	*	*	
Cs-137	Ci	*	×	*	*	
Ba-140	Ci	*	*	*	*	
La-140	Ci	*	*	*	×	
Ce-141	Ci	*	*	*	*	
Ce-144	Ci	*	n	*	*	
Zn-65	Ci	8.47E-06	*	y't	8.47E-06	
Ba-133	Ci	%	*	*	3.47L-00	
мо-99	Ci	7.33E-05	9.51E-05	2.46E-05	1.93E-04	
Sb-125	Ci	/.53E-05	<u>9.JIE-UJ</u> *	2.40E-03 *	1.93E-04 *	
	Ci	1.11E-03	1.23E-03	1.10E-03	3.44E-03	
Fe-55						
TOTAL	Ci	2.01E-03	2.59E-03	1.65E-03	6.25E-03	

^{*} The activity of this nuclide is less than the LLD listed on the appropriate table.

DRESDEN NUCLEAR POWER STATION

UNITS 2 and 3

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT October Through December 1991

D 2/3 Rx Building Vent	GASEOUS EFFLUENTS		
	GROUND LEVEL RELEASES		
	Docket Numbers:	50-237	
xx	SEMI-ELEVATED RELEASES	50-249	

ELEVATED RELEASES

			ELEVATED 1		
	11			ONTINUOUS MODE	l
NUCLIDES RELEASED	UNIT	OCTOBER	NOVEMBER	DECEMBER	4th QUARTER TOTAL
FISSION GASES					
Xe-138	Ci	*	*	*	*
Xe-135m	Ci	*	*	*	*
Kr-87	Ci	*	*	*	*
Kr-88	Ci	*	*	*	*
Kr-85m	Ci	*	*	*	*
Kr-85	Ci	*	*	*	*
Xe-135	Ci	*	*	*	*
Xe-133	Ci	*	*	*	*
TOTAL	Ci				
IODINES					
I-131	Ci	*	*	*	*
I-133	Ci	1.09E-05	*	**	1.09E-05
I-135	Ci	*	*	*	*
TOTAL	Ci	1.09E-05	*	*	1.09E-05
PARTICULATES		20072200			
Sr-89	Ci	*	3.50E-06	1.69E-06	5.19E-06
r-90	Ci	*	6.24E-06	3.02E-06	9.26E-06
3r-51	Ci	5.21E-05	*	*	5.21E-05
Mn-54	Ci	1.07E-04	1.25E-05	3.33E-06	1.23E-04
Co-58	Ci	1.27E-05	*	*	1.27E-05
Fe-59	Ci	1.64E-05	1.28E-05	*	2.92E-05
Co-60	Ci	4.91E-04	6.33E-05	1.69E-05	5.71E-04
Zr-95	Ci	*	<u> </u>	*	*
Nb-95	Ci	*	*	*	*
Ru-103	Ci	1.90E-04	5.90E-04	*	7.80E-04
Ag-110m	Ci	*	*	*	*
Sb-124	Ci	*	*	*	*
I-131	Ci	*	*	*	*
Cs-134	Ci	*	*	*	*
Cs-136	Ci	*	*	*	*
Cs-137	Ci	*	*	7.28E-08	7.28E-08
Ba-140	Ci	*	*	7.28E-06	/ · 20E-00
La-140	Ci	*	*	*	*
Ce-141	Ci	*	*	*	*
Ce-144	Ci	*	*	*	*
Zn-65	Ci	*	*	*	*
	Ci	*	*	*	* *
Ba-133	1 1		*	*	·• · · · · · · · · · · · · · · · · · ·
Mo-99	Ci	4.27E-05 *	*	*	4.27E-05
Sb-125	Ci			_	
Fe-55	Ci	6.67E-04	3.31E-04	4.50E-05	1.04E-03
TOTAL	Ci	1.58E-03	1.02E-03	7.00E-05	2.67E-03

^{*} The activity of this nuclide is less than the LLD listed on the appropriate table.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

_____July___ Through <u>December</u> 19<u>91</u> LIQUID EFFLUENTS

SUMMATION OF ALL RELEASES

Docket Numbers: 50-10

50-237

50-249

		UNITS	3rd QUARTER	4th QUARTER	EST. TOTAL
Α.	FISSION AND ACTIVATION PRODUCTS				
	1. Total Release (not incl. tritium, gases, alpha)	Ci	2.43E-02	1.85E-02	5.58
	2. Average Diluted Conc. During Period	uCi/mL	5.85E-10	6.03E-09	·I
	3. Percent of Applicable Limit	%	*	*	
В.	TRITIUM	•	,	,	
2.	1. Total Release	Ci	4.13E+00	2.69E+00	7.75
	2. Average Diluted Conc. During Period	uCi/mL	9.93E-08	8.76E-07	
	3. Percent of Applicable Limit	%	*	*	
2	ISSOLVED AND ENTRAINED GASES Total Release Average Diluted Conc. During Period	Ci uCi/mL	1.71E-04 4.11E-12	< LLD	5.58
	3. Percent of Applicable Limit	%	*	*	
D.	GROSS ALPHA RADIOACTIVITY 1. Total Release	Ci	< LLD	< LLD	15.1
<u>E.</u>	VOLUME OF WASTE RELEASED (prior to dilution)	Liters	7.54E+06	5.15E+06	5.00
	VOLUME OF DILUTION WATER USED DURING PERIOD	liters	4.16E+10	3.07E+09	5.00

 \star The information is contained in the Radiological Impact on Man section of this report. Total liquid release data is provided which includes fission and activation products, tritium, and dissolved and entrained gases.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT July Through December 1991

TABLE OF LOWER LIMITS OF DETECTABILITY FOR LIQUID EFFLUENTS

50-237 50-249

Docket Numbers: 50-10

NUCLIDE	<u>LLD</u> (uCi/mL)
Sr-89	3.00E-08
Sr-90	8.00E-09
Mn-54	6.13E-08
Co-58	4.89E-08
Fe-59	9.81E-08
Co-60	1.18E-07
Zn-65	1.18E-07
Sb-124	1.13E-07
I-131	6.75E-08
Cs-134	5.86E-08
Cs-137	5.72E-08
Ba-140	2.27E-07
La-140	5.56E-08
Ce-141	9.67E-08
Xe-133	1.58E-06
Xe-135	5.65E-08
Cr-51	5.06E-07
Fe-55	1.30E-07
Cs-138	2.24E-07
H-3	2.00E-06
Gross Alpha	3.00E-07 *
<u>Zr-95</u>	1.58E-07
<u>Kr-87</u>	1.54E-07
Kr-88	5.48E-07
I-135	1.85E-07
I-132	1.01E-07
Ag-110m	6.60E-08
Ba-133	8.08E-08
Ce-144	4.23E-07
Cs-136	7.05E-08
I-133	5.79E-08
<u>I-134</u>	7.16E-07
Kr-85	1.29E-05
Mo-99	4.03E-07
Nb-95	6.01E-08
Np-239	3.44E-07
Ru-103	5.26E-08
Sb-125	1.65E-07
Xe-131m	2.34E-06
Xe-133m	4.92E-07
Xe-138	3.03E-06

^{*} This value was reported as a MDA by the Off-site vendor for the monthly Unit 2 Service Water grab sample taken on October 22, 1991. All other MDAs for Gross Alpha during this report period for Radwaste, CCSW and Service Water grab samples were less than or equal to 1.40E-08 uCi/mL.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

July Through December 1991

Radwaste LIQUID EFFLUENTS Docket Numbers: 50-10 50-237

1. Number of Batch Releases: 136

50-249

2. Total Time Period for Batch Releases: 3.83E+04 min

3. Maximum Time Period for a Batch Release: 4.12E+02 min

4. Average Time Period for Batch Releases: 2.82E+02 min5. Minimum Time Period for a Batch Release: 2.30E+02 min

6. Average Stream Flow During Periods of

Release of Effluent into a Flowing Stream: 1.16E+06 L/min

	CONTINUOUS			ВАТСН	BATCH MODE		
NUCLIDES RELEASED	UNIT	3rd QUARTER	4th QUARTER	<u>3rd</u> QUARTER	<u>4th</u> QUARTER		
Sr-89	Ci		"	*	*		
Sr-90	Ci			4.22E-05	6.11E-05		
Mn-54	Ci			3.73E-03	2.59E-03		
Co-58	Ci			3.47E-05	1.20E-05		
Fe-59	Ci			1.88E-05	3.36E-05		
Co-60	Ci			1.40E-02	8.70E-03		
Zn-65	Ci			*	*		
Ru-103	Ci			1.74E-04	*		
Ag-110m	Ci			2.69E-06	*		
Sb-124	Ci			*	*		
I-131	Ci			*	×		
Cs-134	Ci			*	*		
Ss-137	Ci			3.72E-03	5.07E-03		
a-140	Ci			*	*		
La-140	Ci			6.89E-06	*		
Ce-141	Ci			*	*		
Cs-138	Ci			*	2.77E-05		
Fe-55	Ci			1.09E-03	2.06E-03		
Zr-95	Ci			*	*		
I - 132	Ci			*	*		
I - 134	Ci			3.01E-05	*		
As-76	Ci			3.56E-05	*		
(above)							
Total For Period	Ci	NONE	NONE	2.29E-02	1.85E-02		
Xe-133	Ci			7.71E-05	*		
Xe-135	Ci			9.41E-05	**		
Kr-88	Ci			*	*		

^{*} The activity of this nuclide is less than the LLD listed on the appropriate table.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT July Through September 1991

Radwaste LIQUID EFFLUENTS Docket Numbers: 50-10

50-237 50-249

BATCH MODE

			BAT	ICH MODE	
NUCLIDES RELEASED	UNIT	JULY	AUGUST	SEPTEMBER	3rd QUARTER TOTAL
Sr-89	Ci	*	*	*	*
Sr-90	Ci	4.52E-06	4.83E-06	3.28E-05	4.22E-05
Mn-54	Ci	1.15E-03	1.07E-03	1.51E-03	3.73E-03
Co-58	Ci	3.11E-05	*	3.64E-06	3.47E-05
Fe-59	Ci	1.54E-05	3.40E-06	*	1.88E-05
Co-60	Ci	3.89E-03	3.95E-03	6.19E-03	1.40E-02
Zn-65	Ci	*	*	*	×
Ru-103	Ci	*	*	1.74E-04	1.74E-04
Ag-110m	Ci	*	*	2.69E-06	2.69E-06
Sb-124	Ci	*	*	*	×c
I-131	Ci	**	*	*	×
Cs-134	Ci	*	*	*	×
Cs-137	Ci	7.71E-04	9.91E-04	1.96E-03	3.72E-03
<u>Ba-140</u>	Ci	*	*	*	*
La-140	Ci	6.89E-06	*	*	6.89E-06
Cs-138	Ci	*	*	*	×
Fe-55	Ci	2.83E-04	1.60E-04	6.44E-04	1.09E-03
I-132	Ci	*	**	*	78
1–134	Ci	*	*	3.01E-05	3.01E-05
s-76	Ci	3.56E-05	*	*	3.56E-05
(above)					
Total For Period	Ci	6.19E-03	6.18E-03	1.06E-02	2.29E-02
Xe-133	Ci	7.71E-05	*	*	7.71E-05
Xe-135	Ci	9.41E-05	*	*	9.41E-05

^{*} The activity of this nuclide is less than the LLD listed on the appropriate table.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT October Through December 1991

Radwaste LIQUID EFFLUENTS Docket Numbers: 50-10 50-237

50-249

			BAT	CH MODE	
NUCLIDES RELEASED	UNIT	OCTOBER	NOVEMBER +	DECEMBER	4th QUARTER TOTAL
Sr-89	Ci	*	0	* .	*
Sr-90	Ci	5.08E-05	0	1.03E-05	6.11E-05
Mn-54	Ci	1.18E-03	0	1.41E-03	2.59E-03
Co-58	Ci	K	0	1.20E-05	1.20E-05
Fe-59	Ci	*	0	3.36E-05	3.36E-05
Co-60	Ci	3.88E-03	0	4.82E-03	8.70E-03
Zn-65	Ci	*	0	*	*
Sb-124	Ci	*	0	*	水
I-131	Ci	*	0	*	*
Cs-134	Ci	*	0	*	*
Cs-137	Ci	3.78E-03	0	1.29E-03	5.07E-03
Ba-140	Ci	*	0	*	×
La-140	Ci	*	0	*	×
Ce-141	Ci	*	0	*	×
Cs-138	Ci	2.77E-05	0	*	2.77E-05
Fe-55	Ci	1.23E-03	0	8.32E-04	2.06E-03
I-132	Ci	*	0	*	*
	Ci				
	Ci				
(above)					
Total For Period	Ci	1.01E-02	00	8.41E-03	1.85E-02
Xe-133	Ci	*	0	*	*
Xe-135	Ci	*	0	*	*

^{*} The activity of this nuclide is less than the LLD listed on the appropriate table.

[†] There were no liquid effluents via this pathway during November 1991.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

July Through <u>December</u> 1991

CCSW LIQUID EFFLUENTS Docket Numbers: 50-237
50-249

1. Number of Batch Releases: 38

2. Total Time Period for Batch Releases: 4.71E+01 min

3. Maximum Time Period for a Batch Release: 1.24E+00 min

4. Average Time Period for Batch Releases: 1.24E+00 min

5. Minimum Time Period for a Batch Release: 1.24E+00 min

6. Average Stream Flow During Periods of

Release of Effluent into a Flowing Stream: 2.82E+06 L/min

		CONTINU	OUS MODE	BATCH	MODE
NUCLIDES RELEASED	UNIT	3rd QUARTER	4th QUARTER	<u>3rd</u> QUARTER	4th QUARTER
Sr-89	Ci			2.23E-07	*
Sr-90	Ci			2.14E-07	3.45E-07
Mn-54	Ci			*	K
Co-58	Ci			*	*
Fe-59	Ci			*	*
Co-60	Ci			1.64E-05	3.97E-06
Zn-65	Ci			*	*
Sb-122	Ci			*	*
Sb-124	Ci			*	*
<u>I-131</u>	Ci			*	*
<u>I-132</u>	Ci			*	*
I-135	Ci	,		*	*
Ss-134	Ci			9.24E-07	*
s-137	Ci			6.30E-06	*
Ba-140	Ci			*	*
La-140	Ci			*	*
Cs-138	Ci			*	*
Fe-55	Ci			*	*
	Ci				
(above)		·			
Total For Period	Ci	NONE	NONE	2.41E-05	4.32E-06
Xe-133	Ci			*	*
Xe-135	Ci			*	*

^{*} The activity of this nuclide is less than the LLD listed on the appropriate table.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

<u>July</u> Through <u>September</u> 19<u>91</u>

CCSW LIQUID EFFLUENTS Docket Numbers: 50-237 50-249

			BA.	TCH MODE	
NUCLIDES RELEASED	UNIT	JULY	AUGUST	SEPTEMBER	3rd QUARTER TOTAL
Sr-89	Ci	*	2.23E-07	*	2.23E-07
Sr-90	Ci	*	*	2.14E-07	2.14E-07
Mn-54	Ci	*	*	*	*
Co-58	Ci	*	*	*	*
Fe-59	Ci	*	*	*	*
Co-60	Ci	5.17E-06	6.63E-06	4.62E-06	1.64E-05
Zn-65	Ci	*	*	ጵ	*
Sb-122	Ci	*	*	*	×
Sb-124	Ci	n	*	*	*
I-131	Ci	*	*	*	*
I-132	Ci	*	*	*	×
I-135	Ci	*	*	*	*
Cs-134	Ci	9.24E-07	*	*	9.24E-07
Cs-137	Ci	1.99E-06	3.79E-06	5.16E-07	6.30E-06
Ba-140	Ci	*	*	*	*
La-140	Ci	*	*	*	*
Cs-138	Ci	*	*	*	*
Fe-55	Ci	*	*	*	*
	Ci				
(above)					
Total For Period	Ci	8.08E-06	1.06E-05	5.35E-06	2.41E-05
Xe-133	Ci	*	ж	*	*

^{*} The activity of this nuclide is less than the LLD listed on the appropriate table.

Ci

Xe-135

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT October Through December 1991

CCSW LIQUID EFFLUENTS Docket Numbers: 50-237 50-249

BATCH MODE

			BA'	TCH MODE	
NUCLIDES RELEASED	UNIT	OCTOBER	NOVEMBER	DECEMBER	4th QUARTER TOTAL
Sr-89	Ci	3'8	ж	*	*
Sr-90	Ci	1.07E-07	2.38E-07	×	3.45E-07
Mn-54	Ci	*	*	×	×
Co-58	Ci	*	ን የ	*	*
Fe-59	Ci	*	*	*	×
Co-60	Ci	1.13E-06	1.66E-06	1.18E-06	3.97E-06
Zn-65	Ci	*	*	*	×
Sb-122	Ci	*	. *	*	×
Sb-124	Ci	*	*	*	*
I-131	Ci	*	*	*	*
I-132	Ci	×	×	*	×
I-135	Ci	*	*	*	*
Cs-134	Ci	*	*	*	*
Cs-137	Ci	*	70	*	7 t
Ba-140	Ci	*	*	*	*
La-140	Ci	ጵ	*	*	%
Cs-138	Ci	*	*	*	*
Fe-55	Ci	*	*	*	ን ং
	Ci				
(above)					
Total For Period	Ci	1.24E-06	1.90E-06	1.18E-06	4.32E-06
Xe-133	Ci	*	*	*	*
Xe-135	Ci	*	*	*	×

^{*} The activity of this nuclide is less than the LLD listed on the appropriate table.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

<u>July Through December 1991</u>

Docket Numbers: 50-10

50-237 50-249

SOLID WASTE AND IRRADIATED FUEL SHIPMENTS

Est Tot

											DBC TOC.
Α.	SOLID WASTE	SHIPPED	OFFSITE	FOR	BURIAL	OR	DISPOSAL	(NOT	IRRADIATED	FUEL)	Error, %
									las e.		
	1. Type of Wa	aste							lUnit	6-month	period

1. Type of Waste	Unit	6-month period	
a. Spent resins, filter sludges, evaporator bottoms, etc.	m3	1.10E+02	
a. Spent resins, filter sludges, evaporator bottoms, etc.	Ci	5.41E+02	12.4
h Dun companible weeks conteminated equip ata	m ³	1.08E+03	
b. Dry compressible waste, contaminated equip., etc.	Ci	6.46E+00	16.6
Tunnalista di componente controli pode etc	m ³	0.00E+00	
c. Irradiated components, control rods, etc.	Ci	0.00E+00	16.6
d Ohbor (donoriba)	m ³	0.00E+00	
d. Other (describe)	Ci	0.00E+00	

2. Estimate of Major Nuclide Composition (by type of waste)

		/6	U1
<u>a.</u>	Co-60	62.7	3.39E+02
	Fe-55	21.8	1.18E+02
	Mn-54	7.15	3.87E+01
	Cs-137	7.15	3.87E+01
b.	Co-60	21.2	1.37E+00
	Fe-55	64.4	4.16E+00
	Mn-54	6.15	3.97E-01
	Ni-59	1.32	8.53E-02
	Ni-63	1.02	6.59E-02
	Cs-137	5.14	3.32E-01

3. Solid Waste Disposition

NUMBER OF SHIPMENTS	MODE OF TRANSPORTATION	DESTINATION
26	Motor freight (exclusive use only)	CNSI, Barnwell, SC
10	Motor freight (exclusive use only)	Quadrex, Oak Ridge, TN
4	Motor freight (exclusive use only)	CNSI, Channahon, IL
5	Motor freight (exclusive use only)	Westinghouse DDR,
		Madison, PA
1	Motor freight (exclusive use only)	US Ecology,
	-	Richland, WA

IRRADIATED FUEL SHIPMENTS (Disposition)

NUMBER OF SHIPMENTS MODE OF TRANSPORTATION **DESTINATION**

None

DRESDEN NUCLEAR POWER STATION UNITS 1, 2, AND 3 EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

ELLIGENT WIND AWOLE DISLOSUR SELITIMINOUR VELOI

<u>July</u>	Through	<u>December</u>	19 <u>91</u>
	ABNORMAL	RELEASES	

Α		L	Т	a	Ħ	T	ח
$\boldsymbol{\Gamma}$	•	u		v	v	ᅩ	v

	•		
	1.	Number of Releases:	1
	2.	Total Activity Released:	1.41E-03
В.	GASI	eous	
	1.	Number of Releases:	2
	2.	Total Activity Released:	2.87E-05
		TOTAL	3

One abnormal release of liquid occurred on September 8, 1991. Approximately 5 gallons of water spilled from a cask onto the ground on site. The cask was not secured to the trailer during transport onsite of a liner half full of uncontaminated resin. The cask fell from the trailer and spilled the contaminated water, but the liner remained intact and did not spill its contents. Corrective actions include requirements to secure a cask and its lid during movements, and to inspect casks for water when a liner is removed. (DVR #12-2/3-91-160)

Mn-54	4.16E-04Ci
Co-60	9.84E-04Ci
Cs-137	4.54E-06Ci
Sb-125	3.22E-06Ci

One abnormal release of airborne effluents occurred on September 13, 1991. The release was through a normal pathway (Unit 2 Reactor Building Vent) but was unmonitored for 30 minutes for particulates and Iodine due to a disconnected valve on the back-up sampler in use. The valve was removed beyond an out-of-service boundary during work on a sample pump. Removal of the closed valve allowed air from the immediate area to be drawn through the operating sample pump rather than from the Reactor Building Vent only. Noble gas monitoring was available and indicated no change in release during this time period. Corrective actions include personnel disciplinary action for the individual involved, an article written for stationwide presentation on Out-of-Service practices, a review of the event in continuous training, and an effort to improve availability of primary sampling system. (DVR #12-2-91-166) Particulates and Iodines were estimated from highest Unit 2 Reactor Building Vent release rates from this year.

Cr-51	5.79E-07Ci	Mo-99	1.21E-07Ci
Mn-54	1.50E-07Ci	I-133	5.51E-08Ci
Co-58	9.16E-08Ci	Fe55	2.83E-07Ci
Fe-59	7.48E-08Ci	Sr-89	7.30E-10Ci
Co-60	5.79E-07Ci		

DRESDEN NUCLEAR POWER STATION UNITS 1, 2 AND 3 EFFLUENT AND WASTE DISPOSAL SEMI-ANNUAL REPORT July Through December 1991

ABNORMAL RELEASES

A ground level release of airborne effluents was discovered and stopped on November 29, 1991. This release was on the return line to the Unit 2/3 chimney from the Illinois Department of Nuclear Safety chimney sampler. This release was of unknown duration and the effect on the public is insignificant compared to the much higher flow through the chimney. The activity released from January 1, 1991 through November 29, 1991 is listed below.

H-3	1.21E-05Ci
Kr-85	1.88E-08Ci
Kr-88	5.46E-06Ci
Xe-135	9.43E-06Ci
Sr-89	1.26E-09Ci
Sr-90	1.42E-11Ci
Mn-54	7.78E-10Ci
Fe-59	8.55E-11Ci
Co-60	3.21E-09Ci
Ru-103	1.33E-08Ci
Ag-110m	4.63E-11Ci
Cs-137	4.39E-10Ci
Ba-140	3.91E-09Ci
La-140	5.22E-09Ci
Fe-55	8.46E-09Ci

DRESDEN NUCLEAR POWER STATION DOCKET NOS. 50-10, 50-237, 50-249

RADIOLOGICAL IMPACT ON MAN

DRESDEN UNIT ONE

1991 ANNUAL REPORT MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/91 TO 12/31/91 CALCULATED 08/26/92 INFANT RECEPTOR

TYPE	1st Quarter Jan-Mar	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
GAMMA AIR (MRAD)	0.00E+00 ()	0.00E+00 ()	0.00E+00 ()	0.00E+00 ()	0.00E+00 ()
BETA AIR	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
(MRAD)	()	()	()	()	()
TOT. BODY	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
(MREM)	()	()	()	()	()
SKIN	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
(MREM)	()	()	()	()	()
ORGAN	À.13E−05	9.75E-05	8.88E-05	4.00E-05	2.67E-04
(MREM)	(SE)	(SE)	(SE)	(SE)	(SE)
	LIVER	LIVER	LIVER	LUNG	LIVER

THIS IS A REPORT FOR THE CALENDAR YEAR 1991

COMPLIANCE STATUS - 10 CFR 50 APP. I INFANT RECEPTOR

	% OF APP I						
	QTRLY	1ST QTR	2ND QTR	3RD QTR	4TH QTR	YRLY	% OF
	OBJ	JAN-MAR	APR-JUN	JUL-SEP	OCT-NOV	OBJ	APP.I
GAMMA AIR (MRAD)	5.0	0.00	0.00	0.00	0.00	10.0	0.00
BETA AIR (MRAD)	10.0	0.00	0.00	0.00	0.00	20.0	0.00
TOT. BODY (MREM)	2.5	0.00	0.00	0.00	0.00	5.0	0.00
SKIN (MREM)	7.5	0.00	0.00	0.00	0.00	15.0	0.00
ORGAN (MREM)	7.5	0.00	0.00	0.00	0.00	15.0	0.00
		LIVER	LIVER	LIVER	LUNG]	LIVER

RESULTS BASED UPON ODCM ANNEX REVISION 0 MARCH 1989

DRESDEN UNIT ONE

1991 ANNUAL REPORT MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/91 TO 12/31/91 CALCULATED 08/26/92 ADULT RECEPTOR

TYPE	1st Quarter Jan-Mar	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM)	0.00E+00 () 0.00E+00 () 0.00E+00 () 0.00E+00 () 3.94E-05 (SE)	0.00E+00 () 0.00E+00 () 0.00E+00 () 0.00E+00 () 2.35E-04 (NE)	0.00E+00 () 0.00E+00 () 0.00E+00 () 0.00E+00 () 4.30E-04 (NE)	0.00E+00 () 0.00E+00 () 0.00E+00 () 0.00E+00 () 1.43E-04 (NE)	0.00E+00 () 0.00E+00 () 0.00E+00 () 0.00E+00 () 8.39E-04 (NE)
	LIVER	GI-LLI	GI-LLI	GI-LLI	GI-LLI

THIS IS A REPORT FOR THE CALENDAR YEAR 1991

COMPLIANCE STATUS - 10 CFR 50 APP. I ADULT RECEPTOR

	% OF APP I						
•	QTRLY	1ST QTR	2ND QTR	3RD QTR	4TH QTR	YRLY	% OF
	OBJ	JAN-MAR	APR-JUN	JUL-SEP	OCT-NOV	OBJ	APP.I
GAMMA AIR (MRAD)	5.0	0.00	0.00	0.00	0.00	10.0	0.00
BETA AIR (MRAD)	10.0	0.00	0.00	0.00	0.00	20.0	0.00
TOT. BODY (MREM)	2.5	0.00	0.00	0.00	0.00	5.0	0.00
SKIN (MREM)	7.5	0.00	0.00	0.00	0.00	15.0	0.00
ORGAN (MREM)	7.5	0.00	0.00	0.01	0.00	15.0	0.01
		LIVER	GI-LLI	GI-LLI	GI-LLI	(GI-LLI

RESULTS BASED UPON ODCM ANNEX REVISION 0 MARCH 1989

DRESDEN UNIT TWO

1991 ANNUAL REPORT MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/91 TO 12/31/91 CALCULATED 08/26/92 INFANT RECEPTOR

TYPE	1st Quarter Jan-Mar	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM)	2.95E-06 (NE) 6.22E-07 (N) 1.24E-06 (NE) 2.71E-06 (NE) 1.09E-03 (NNE)	7.78E-07 (NE) 1.64E-07 (N) 3.27E-07 (NE) 7.15E-07 (NE) 1.88E-03 (NNE)	2.81E-03 (NE) 2.05E-03 (NNE) 1.66E-03 (NE) 3.83E-03 (NNE) 3.36E-03 (NNE)	1.79E-12 (NE) 3.22E-11 (N) 8.62E-13 (NE) 2.33E-11 (N) 5.60E-03 (NNE)	2.81E-03 (NE) 2.05E-03 (NNE) 1.66E-03 (NE) 3.84E-03 (NNE) 1.19E-02 (NNE)
	LUNG	THYROID	THYROID	LUNG	LUNG

THIS IS A REPORT FOR THE CALENDAR YEAR 1991

COMPLIANCE STATUS - 10 CFR 50 APP. I INFANT RECEPTOR

	% OF APP I						
	QTRLY	1ST QTR	2ND QTR	3RD QTR	4TH QTR	YRLY	% OF
	OBJ	JAN-MAR	APR-JUN	JUL-SEP	OCT-NOV	OBJ	APP.I
GAMMA AIR (MRAD)	5.0	0.00	0.00	0.06	0.00	10.0	0.03
BETA AIR (MRAD)	10.0	0.00	0.00	0.02	0.00	20.0	0.01
TOT. BODY (MREM)	2.5	0.00	0.00	0.07	0.00	5.0	0.03
SKIN (MREM)	7.5	0.00	0.00	0.05	0.00	15.0	0.03
ORGAN (MREM)	7.5	0.01	0.03	0.04	0.07	15.0	0.08
		LUNG	THYROID	THYROID	LUNG	j	LUNG

RESULTS BASED UPON ODCH ANNEX REVUSION 0 MARCH 1989

DRESDEN UNIT TWO

1991 ANNUAL REPORT MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/91 TO 12/31/91 CALCULATED 08/26/92 ADULT RECEPTOR

TYPE	1ST QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM)	2.95E-06 (NE) 6.22E-07 (N) 1.24E-06 (NE) 2.71E-06 (NE) 1.10E-03 (NNE)	7.78E-07 (NE) 1.64E-07 (N) 3.27E-07 (NE) 7.15E-07 (NE) 2.10E-03 (NNE)	2.81E-03 (NE) 2.05E-03 (NNE) 1.66E-03 (NE) 3.83E-03 (NNE) 4.25E-03 (NNE)	1.79E-12 (NE) 3.22E-11 (N) 8.62E-13 (NE) 2.33E-11 (N) 6.51E-03 (NNE)	2.81E-03 (NE) 2.05E-03 (NNE) 1.66E-03 (NE) 3.84E-03 (NNE) 1.39E-02 (NNE)
	LUNG	GI-LLI	GI-LLI	GI-LLI	GI-LLI

THIS IS A REPORT FOR THE CALENDAR YEAR 1991

COMPLIANCE STATUS - 10 CFR 50 APP. I ADULT RECEPTOR

	% OF APP I						
	QTRLY	1ST QTR	2ND QTR	3RD QTR	4TH QTR	YRLY	% OF
	OBJ	JAN-MAR	APR-JUN	JUL-SEP	OCT-NOV	OBJ	APP.I
GAMMA AIR (MRAD)	5.0	0.00	0.00	0.06	0.00	10.0	0.03
BETA AIR (MRAD)	10.0	0.00	0.00	0.02	0.00	20.0	0.01
TOT. BODY (MREM)	2.5	0.00	0.00	0.07	0.00	5.0	0.03
SKIN (MREM)	7.5	0.00	0.00	0.05	0.00	15.0	0.03
ORGAN (MREM)	7.5	0.01	0.03	0.06	0.09	15.0	0.09
		LUNG	GI-LLI	GI-LLI	GI-LLI	(GI-LLI

DRESDEN UNIT THREE

1991 ANNUAL REPORT MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/91 TO 12/31/91 CALCULATED 08/24/92 INFANT RECEPTOR

TYPE	1st Quarter Jan-Mar	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM)	4.40E-05 (NE) 9.27E-06 (N) 1.85E-05 (NE) 4.04E-05 (NE) 1.32E-02 (NNE)	4.63E-06 (NE) 9.77E-07 (N) 1.94E-06 (NE) 4.25E-06 (NE) 1.52E-02 (NNE)	1.95E-04 (NE) 6.69E-06 (N) 1.17E-04 (NE) 1.56E-04 (NE) 1.27E-02 (NNE)	0.00E+00 () 0.00E+00 () 0.00E+00 () 0.00E+00 () 4.97E-04 (NNE)	2.44E-04 (NE) 1.69E-05 (N) 1.37E-04 (NE) 2.01E-04 (NE) 4.13E-02 (NNE)
	LUNG	THYROID	THYROID	LUNG	LUNG

THIS IS A REPORT FOR THE CALENDAR YEAR 1991

COMPLIANCE STATUS - 10 CFR 50 APP. I INFANT RECEPTOR

	% OF APP I						
	QTRLY	1ST QTR	2ND QTR	3RD QTR	4TH QTR	YRLY	% OF
	OBJ	JAN-MAR	APR-JUN	JUL-SEP	OCT-NOV	OBJ	APP.I
GAMMA AIR (MRAD)	5.0	0.00	0.00	0.00	0.00	10.0	0.00
BETA AIR (MRAD)	10.0	0.00	0.00	0.00	0.00	20.0	0.00
TOT. BODY (MREM)	2.5	0.00	0.00	0.00	0.00	5.0	0.00
SKIN (MREM)	7.5	0.00	0.00	0.00	0.00	15.0	0.00
ORGAN (MREM)	7.5	0.18	0.20	0.17	0.01	15.0	0.28
		LUNG	THYROID	THYROID	LUNG]	LUNG

DRESDEN UNIT THREE

1991 ANNUAL REPORT MAXIMUM DOSES RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 01/01/91 TO 12/31/91 CALCULATED 08/24/92 ADULT RECEPTOR

TYPE	1st Quarter Jan-Mar	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
GAMMA AIR (MRAD) BETA AIR (MRAD) TOT. BODY (MREM) SKIN (MREM) ORGAN (MREM)	4.40E-05 (NE) 9.27E-06 (N) 1.85E-05 (NE) 4.04E-05 (NE) 1.34E-02 (NNE)	4.63E-06 (NE) 9.77E-07 (N) 1.94E-06 (NE) 4.25E-06 (NE) 1.70E-02 (NNE)	1.95E-04 (NE) 6.69E-06 (N) 1.17E-04 (NE) 1.56E-04 (NE) 1.48E-02 (NNE)	0.00E+00 () 0.00E+00 () 0.00E+00 () 0.00E+00 () 5.00E-04 (NNE)	2.44E-04 (NE) 1.69E-05 (N) 1.37E-04 (NE) 2.01E-04 (NE) 4.48E-02 (NNE)
	LUNG	GI-LLI	GI-LLI	LUNG	GI-LLI

THIS IS A REPORT FOR THE CALENDAR YEAR 1991

COMPLIANCE STATUS - 10 CFR 50 APP. I ADULT RECEPTOR

	% OF APP I						
	QTRLY	1ST QTR	2ND QTR	3RD QTR	4TH QTR	YRLY	% OF
	OBJ	JAN-MAR	APR-JUN	JUL-SEP	OCT-NOV	OBJ	APP.I
GAMMA AIR (MRAD)	5.0	0.00	0.00	0.00	0.00	10.0	0.00
BETA AIR (MRAD)	10.0	0.00	0.00	0.00	0.00	20.0	0.00
TOT. BODY (MREM)	2.5	0.00	0.00	0.00	0.00	5.0	0.00
SKIN (MREM)	7.5	0.00	0.00	0.00	0.00	15.0	0.00
ORGAN (MREM)	7.5	0.18	0.23	0.20	0.01	15.0	0.30
		LUNG	GI-LLI	GI-LLI	LUNG	(GI-LLI

RESULTS BASED UPON ODCM ANNEX REVISION 0 MARCH 1989

< >

DRESDEN UNIT TWO INFANT RECEPTOR

1991 ANNUAL REPORT

MAXIMUM DOSES (MREM) RESULTING FROM LIQUID EFFLUENTS
PERIOD OF RELEASE - 01/01/91 TO 12/31/91 CALCULATED 08/24/92

DOSE TYPE	1ST QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
TOTAL	2.19E-04	9.93E-05	2.36E-05	1.98E-05	3.61E-04
BODY INTERNAL	8.01E-04	2.51E-04	4.44E-05	5.13E-05	1.15E-03
ORGAN	LIVER	LIVER	LIVER	LIVER	LIVER

THIS IS A REPORT FOR THE CALENDAR YEAR 1991

COMPLIANCE STATUS - 10 CFR 50 APP. I

			% OF .	APP I			
	QTRLY OBJ	1ST QTR JAN-MAR	2ND QTR APR-JUN	3RD QTR JUL-SEP	4TH QTR OCT-NOV	YRLY OBJ	% OF APP.I
OTAL BODY (MREM)	1.5	0.01	0.01	0.00	0.00	3.0	0.01
CRIT. ORGAN(MREM)	5.0	0.02	0.01	0.00	0.00	10.0	0.01
		LIVER	LIVER	LIVER	LIVER]	LIVER

DRESDEN UNIT TWO INFANT RECEPTOR

1991 ANNUAL REPORT

PROJECTED DOSE AT NEAREST COMMUNITY WATER SYSTEM * PERIOD OF RELEASE - 01/01/91 TO 12/31/91 CALCULATED 08/24/92

DOSE TYPE	1st QUARTER JAN-MAR	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
TOTAL	2.19E-04	9.93E-05	2.36E-05	1.98E-05	3.61E-04
BODY INTERNAL	8.01E-04	2.51E-04	4.44E-05	5.13E-05	1.15E-03
ORGAN	LIVER	LIVER	LIVER	LIVER	LIVER

THIS IS A REPORT FOR THE CALENDAR YEAR 1991

COMPLIANCE STATUS - 40 CFR 141

TYPE	ANNUAL LIMIT	% OF LIMIT
TOTAL BODY	4.0 (MREM)	0.009
INTERNAL ORGAN	4.0 (MREM)	0.029
ONGAN		I.TVER

 \bigcirc \sim \cdot

^{*} THIS CALCULATION OF DOSE IS BASED ON TECHNIQUES DESCRIBED IN THE COMMONWEALTH EDISON OFFSITE DOSE CALCULATION MANUAL. THESE TECHNIQUES DIFFER FROM THOSE DESCRIBED IN 40 CFR 141.

DRESDEN UNIT TWO ADULT RECEPTOR

1991 ANNUAL REPORT

MAXIMUM DOSES (MREM) RESULTING FROM LIQUID EFFLUENTS PERIOD OF RELEASE - 01/01/91 TO 12/31/91 CALCULATED 08/24/92

DOSE TYPE	1st Quarter Jan-Mar	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
TOTAL	1.34E-03	3.68E-04	5.55E-05	7.66E-05	1.84E-03
BODY INTERNAL	2.01E-03	5.52E-04	7.99E-05	1.12E-04	2.75E-03
ORGAN	LIVER	LIVER	LIVER	LIVER	LIVER

THIS IS A REPORT FOR THE CALENDAR YEAR 1991

COMPLIANCE STATUS - 10 CFR 50 APP. I

	QTRLY OBJ	1ST QTR JAN-MAR	% OF 2ND QTR APR-JUN	APP I 3RD QTR JUL-SEP	4TH QTR OCT-NOV	YRLY OBJ	% OF APP.I
TOTAL BODY (MREM)	1.5	0.09	0.02	0.00	0.01	3.0	0.06
CRIT. ORGAN(MREM)	5.0	0.04	0.01	0.00	0.00	10.0	0.03
		LIVER	LIVER	LIVER	LIVER	I	LIVER

DRESDEN UNIT TWO ADULT RECEPTOR

1991 ANNUAL REPORT

PROJECTED DOSE AT NEAREST COMMUNITY WATER SYSTEM * PERIOD OF RELEASE - 01/01/91 TO 12/31/91 CALCULATED 08/24/92

DOSE TYPE	1st Quarter Jan-Mar	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
TOTAL	1.26E-04	4.18E-05	9.86E-06	1.00E-05	1.88E-04
BODY INTERNAL	1.90E-04	1.14E-04	1.32E-05	1.09E-05	3.26E-04
ORGAN	GI-LLI	GI-LLI	GI-LLI	BONE	GI-LLI

THIS IS A REPORT FOR THE CALENDAR YEAR 1991

COMPLIANCE STATUS - 40 CFR 141

TYPE	ANNUAL LIMIT	% OF LIMIT
TOTAL BODY	4.0 (MREM)	0.005
INTERNAL ORGAN	4.0 (MREM)	0.008
ORGAN		GT-I.I.T

< :

^{*} THIS CALCULATION OF DOSE IS BASED ON TECHNIQUES DESCRIBED IN THE COMMONWEALTH EDISON OFFSITE DOSE CALCULATION MANUAL. THESE TECHNIQUES DIFFER FROM THOSE DESCRIBED IN 40 CFR 141.

DRESDEN UNIT THREE INFANT RECEPTOR

1991 ANNUAL REPORT

MAXIMUM DOSES (MREM) RESULTING FROM LIQUID EFFLUENTS PERIOD OF RELEASE - 01/01/91 TO 12/31/91 CALCULATED 08/24/92

DOSE TYPE	1st Quarter Jan-Mar	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
TOTAL	2.19E-04	9.94E-05	3.66E-05	2.68E-05	3.82E-04
BODY INTERNAL	8.01E-04	2.51E-04	6.80E-05	6.95E-05	1.19E-03
ORGAN	LIVER	LIVER	LIVER	LIVER	LIVER

THIS IS A REPORT FOR THE CALENDAR YEAR 1991

COMPLIANCE STATUS - 10 CFR 50 APP. I

				% OF	APP I			
		QTRLY OBJ	1ST QTR JAN-MAR	2ND QTR APR-JUN	3RD QTR JUL-SEP	4TH QTR OCT-NOV	YRLY OBJ	% OF APP.I
OTAL	BODY (MREM)	1.5	0.01	0.01	0.00	0.00	3.0	0.01
CRIT.	ORGAN (MREM)	5.0	0.02	0.01	0.00	0.00	10.0	0.01
			LIVER	LIVER	LIVER	LIVER	1	LIVER

DRESDEN UNIT THREE INFANT RECEPTOR

1991 ANNUAL REPORT

PROJECTED DOSE AT NEAREST COMMUNITY WATER SYSTEM *
PERIOD OF RELEASE - 01/01/91 TO 12/31/91 CALCULATED 08/24/92

DOSE TYPE	1st Quarter Jan-Mar	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
TOTAL	2.19E-04	9.94E-05	3.66E-05	2.68E-05	3.82E-04
BODY INTERNAL	8.01E-04	2.51E-04	6.80E-05	6.95E-05	1.19E-03
ORGAN	LIVER	LIVER	LIVER	LIVER	LIVER

THIS IS A REPORT FOR THE CALENDAR YEAR 1991

COMPLIANCE STATUS - 40 CFR 141

TYPE	ANNUAL LIMIT	% OF LIMIT
TOTAL BODY	4.0 (MREM)	0.010
INTERNAL ORGAN	4.0 (MREM)	0.030
ONGAN		LIVER

^{*} THIS CALCULATION OF DOSE IS BASED ON TECHNIQUES DESCRIBED IN THE COMMONWEALTH EDISON OFFSITE DOSE CALCULATION MANUAL. THESE TECHNIQUES DIFFER FROM THOSE DESCRIBED IN 40 CFR 141.

DRESDEN UNIT THREE ADULT RECEPTOR

1991 ANNUAL REPORT

MAXIMUM DOSES (MREM) RESULTING FROM LIQUID EFFLUENTS
PERIOD OF RELEASE - 01/01/91 TO 12/31/91 CALCULATED 08/24/92

DOSE TYPE	1st Quarter Jan-Mar	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
TOTAL	1.34E-03	3.69E-04	8.54E-05	1.04E-04	1.90E-03
BODY INTERNAL	2.01E-03	5.53E-04	1.23E-04	1.52E-04	2.84E-03
ORGAN	LIVER	LIVER	LIVER	LIVER	LIVER

THIS IS A REPORT FOR THE CALENDAR YEAR 1991

COMPLIANCE STATUS - 10 CFR 50 APP. I

			% OF	APP I			
	QTRLY OBJ	1ST QTR JAN-MAR	2ND QTR APR-JUN	3RD QTR JUL-SEP	4TH QTR OCT-NOV	YRLY OBJ	% OF APP.I
TOTAL BODY (MREM)	1.5	0.09	0.02	0.01	0.01	3.0	0.06
CRIT. ORGAN(MREM)	5.0	0.04	0.01	0.00	0.00	10.0	0.03
		LIVER	LIVER	LIVER	LIVER	1	LIVER

DRESDEN UNIT THREE ADULT RECEPTOR

1991 ANNUAL REPORT

PROJECTED DOSE AT NEAREST COMMUNITY WATER SYSTEM * PERIOD OF RELEASE - 01/01/91 TO 12/31/91 CALCULATED 08/24/92

DOSE TYPE	1st Quarter Jan-Mar	2ND QUARTER APR-JUN	3RD QUARTER JUL-SEP	4TH QUARTER OCT-DEC	ANNUAL
TOTAL	1.26E-04	4.19E-05	1.54E-05	1.37E-05	1.97E-04
BODY INTERNAL	1.90E-04	1.14E-04	1.98E-05	1.49E-05	3.35E-04
ORGAN	GI-LLI	GI-LLI	GI-LLI	BONE	GI-LLI

THIS IS A REPORT FOR THE CALENDAR YEAR 1991

COMPLIANCE STATUS - 40 CFR 141

TYPE	ANNUAL LIMIT	% OF LIMIT
TOTAL BODY	4.0 (MREM)	0.005
INTERNAL ORGAN	4.0 (MREM)	0.008
ONUM		GI-LLI

^{*} THIS CALCULATION OF DOSE IS BASED ON TECHNIQUES DESCRIBED IN THE COMMONWEALTH EDISON OFFSITE DOSE CALCULATION MANUAL. THESE TECHNIQUES DIFFER FROM THOSE DESCRIBED IN 40 CFR 141.

DRESDEN NUCLEAR POWER STATION DOCKET NOS. 50-10, 50-237, 50-249

METEOROLOGICAL DATA

July-September 1991 150-35 ft. DIFFERENTIAL TEMPERATURE

NUMBER OF OBSERVATIONS = 2207 VALUES ARE PERCENT OCCURRENCE

SPEED							- WIND	DIREC	TION C	LASSES										- STAB	ILITY	CLASSES	}		
CLASS	N	HNE	NE	ENE	E	ESE	SE	SSE	S	SSN	SW	WSW	¥	ANN	NN	HHV	TOTAL	EU	MU	SU	N	SS	MS	ES	TOTAL
EU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							
MU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		.00						
C SU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00			.00					
A N L SS	.00 .00	.00 .00	.00	.00 nn	.00 .00	.00 .00	.00 00.	.00	.00	.00 .00	.00	.00	.00	.00	.00	.00 .00	00.				.00	. 05			
N MS	.00	.00	.00 .00	.00 .00	.00	.00	.00	.00 .00	.00 .00	.00	.00 .00	.00	.00	.00 .00	.05 .00	.00	.05 .00					.03	.00		
ES	.00	.00	.00	.00	.00	.00	.00	.00	.05	.00	.00	.00	. 05	.00	.00	.00	.09							.09	
																									.14
EU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							
NU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		.00						
1 SU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.05	.05			. 05					
- N	.09	.09	.14	.00	.00	.09	.00	.09	. 14	. 18	.23	. 14	.09	.09	.14	.14	1.63				1.63				
3 S\$.54	.41	.63	.50	.63	.14	. 45	.27	.14	.23	.14	.05	.32 .36	.09	.59	.18	5.30					5.30	0 00		
MS Es	. 45 . 41	.50 .14	.59 .09	.59 .14	.41 .05	.41 .23	.32	. 45 . 09	.63 .14	.82 .41	1.04	.59 .27	. 05	.41 .27	1.00	.63 .82	9.20 4.58						9.20	4.58	
	111	• 1 7	.,,	,,,			141	.100	117	• • • •		•••		161	144	102	7100							7100	20.75
				•	47				**					4.4											
AU	1.22	1.04	.05 .09	.05 .00	.27 .23	.18 .23	.00 .09	.14	.00 .27	.27 .23	.27 .18	.36 .36	.14 .00	.14	.59 .09	1.00	5.71 2.40	3. <i>l</i> 1	2.40						
4 SU	.05	.18	.27	.00	.23	.09	. 27	.09	.18	.14	.14	.14	.09	.05	.14	.14	2.17		2.40	2.17					
- N	. 14	.27	1.09	1.22	1.63	.95	.63	.72	.72	.54	.72	.50	.59	.14	.18	.27	10.33				10.33				
7 \$\$.68	.91	1.27	2.85	2.67	3.08	1.59	1.04	1.36	1.18	.86	.54	.72	1.54	.63	.72	21.66					21.66			
MS Es	.14	.05 .00	.09	.00	.14	.91 .14	.50 .18	.50	.72 .05	1.36	1.18	.50	.72	.50	.18	.36 .18	7.84						7.84	1 45	
[0	.00	.00	.00	.00	.uə	. (4	. 10	.09	.00	.21	.32	. 05	.00	. 05	. 09	. 10	1.45							1.45	51.56

EU	.50	.14	.23	.09	.41	.41	.14	.18	.23	.54	.82	.86	.09	.27	.54	.82	6.25	6.25							
MU	.00	.00	. 18	.00	.09	.05	. 05	.05	.18	.18	.09	.27	.09	.09	.09	.00	1.40		1.40						
8 SU	.00	.00	. 05	.00	. 05	.09	.09	.32	.05	.09	.00	.09	.05	.18	.00	. 14	1.18			1.18					
- N	. 05	. 05	. 32	. 14	.27	.36	.27		.36	.50	.50	.63	.41	.23	. 36	.32	5.89				5.89				
1 SS 2 MS	.18 .00	.14 .00	.27 .00	.05 .00	.36 .00	.50 .05	.27 .00	.50 .09	. 45 . 05	.77 .36	. 95 . 05	. 41 . 05	. 41 . 05	.63 .00	.54 .00	.54 .00	6.98 .68					6.98	.68		
ES	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.05	.00	.00	.05							.05	•
																									22.43
.		••													••										
EU uu	.00	.00	.00	.00	.00	.00	.00	.09	.05	.72	.63	, 45 as	.09	.36			2.63	2.63	44						
1 MU 3 Su	.00 .00	.00. .00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.08 .05	.00 .00	.09 .00	.05 .23	. 05 . 89	.00 .05	.09 .05	.05 .00	.00 .05	.32 .50		.32	.50					
- N	.00	.00	.00	.00	.00	.00	.00	.05	.05	.27	. 18	.32	.09	.14	.00	.00	1.09				1.09				
1 88	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.09	. 14	.00	.00	.00	.05	.27					.27			
NS.	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00						.00		
S	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							.00	1 00
																									4.80

CECO DRESDEN STATION 35 ft. WIND SPEED and WIND DIRECTION

July-September 1991 150-35 ft. DIFFERENTIAL TEMPERATURE

_		•		'	JJ 16.	MIND C)	LIIU WII	AD DTE	CITOR					100-30	, , , ,	ATLLEVE	RITYE	ENTEN	RIUNE					
E)						WING	DIREC	CTION (LASSES	}									- STAB	ILITY	CLASSES	}		
\$8	S N	NNE	NE	ENE	E	ESE	SE	SSE	\$	SSW	SW	NSW	¥	ANA	NW	NNW	TOTAL	EU	MU	SU	N	SS	MS	ES	TOTAL
EU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.05	. 14	.00	.00	.00	.00	. 18	. 18							
1 MU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.09	.00	.00	.00	.00	.00	.00	.09		.09						
9 SU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00			.00					
- N	.00	.00	.00	.00	.00	.00	.00	.00	.00	. 05	.00	.00	.00	.00	.00	.00	.05				. 05				
2 SS	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00					.00			
4 MS	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00						.00		
ES	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							.00	
																									.32
FII	**	44	00	00	00		••	44	**	•	••	•						^^							
U3	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	**						
G MU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		.00						
T SU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00			.00	00				
N 2 CC	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00				.00				
2 \$\$.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00					.00			
4 MS	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	. 80	.00						.00	44	
ES	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	. 00	.00	.00							.00	
																									.00
TOT	4.44	4.17	5.35	5.62	7.48	7.88	5.12	6.03	5.80	9.29	9.06	6.98	4.44	5.39	6.34	6.62	100.00	14.77	4.21	3.90	18.99	34.25	17.72	6.16	100.00

Wind Direction by Stability

N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	¥	AHA	HW	HNW	TOTAL	-STABILITY CLASSES-
1.72	1.18	.27	. 14	.68	.59	. 14	.41	.27	1.54	1.77	1.81	.32	.11	1.36	1.81	14.77	Extremely Unstable
.00	.27	.27	.00	. 32	.27	. 14	. 14	. 45	.59	.32	.68	.09	.23	.23	.23	4.21	Moderately Unstable
. 05	. 18	. 32	.00	.27	. 18	. 36	. 45	.23	.23	.36	.32	. 18	.27	. 14	.36	3.90	Slightly Unstable
.27	.41	1.54	1.36	1.90	1.40	.91	1.99	1.27	1.54	1.63	1.59	1.18	.59	.68	.72	18.99	Neutral
1.40	1.45	2.17	3.40	3.67	3.72	2.31	1.81	1.95	2.17	2.04	1.13	1.45	2.27	1.81	1.50	34.25	Slightly Stable
.59	.54	.68	.59	.54	1.36	. 82	1.04	1.40	2.54	2.27	1.13	1.13	.91	1.18	1.00	17.72	Moderately Stable
.41	.14	.09	. 14	.09	.36	. 45	.18	.23	.68	.68	.32	.09	.36	.95	1.00	6.16	Extremely Stable

N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	¥	ANA	NW	HNW	TOTAL	-WIND SPEED CLASSES-
nn	ΛΛ	nn	00		00	nn	nn	ሰፍ	00	nα	nn	ns.	00	ns.	nn	. 14	CALN
																20.75	1.0 - 3.5 mph
2,22	2.72	2.85	4.12	5.21	5.57	3.26	2.67	3.31	3.99	3.67	2.45	2.27	2.45	1.90	2.90	51.56	3.6 - 7.5 mph
.72	.32	1.04	.27	1.18	1.45	. 82	2.27	1.31	2.45	2.40	2.31	1.09	1.45	1.54	1.81	22.43	7.6 - 12.5 mph
.00	.00	.00	.00	.00	.00	.00	. 18	.09	1.09	1.18	1.04	.23	. 63	.27	.09	4.80	12.6 - 18.5 mph
.00	.00	.00	.00	.00	.00	.00	.00	.00	.14	.05	.14	.00	.00	.00	.00	. 32	18.6 - 24.5 mph
.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	> 24.5 mph

July-September 1991 300-35 ft. DIFFERENTIAL TEMPERATURE

NUMBER OF OBSERVATIONS = 2207 VALUES ARE PERCENT OCCURRENCE

										TALUI	O ANL	FLNOER	. 0000	NNLINGE											
SPEED							- WIND	DIREC	TION C	LASSES	}									- STAB	ILITY	CLASSES	}		
CLASS	N	NNE	NE	ENE	E	ESE	SE	SSE	\$	SSN	SW	WSW	W	ANA	NW	NNN	TOTAL	EU	MU	SU	N	SS	MS	ES	TOTAL
EU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							
NU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		.00						
C SU A N	.00 .00	.00	.00 .00	.00 .00	.00 .00	.00	.00	.00	.00 .00	.00 .00	.00 .00	.00 .00	.00	.00	.00 .00	.00 .00	.00 .00			.00	.00				
L SS	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00				, 00	.00			
N MS	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00						.00		
ES	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							.00	.00
																									. 00
EU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							
MU 1 Su	.00 .00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		.00	88					
- N	.00	.00	.00 .00	.00 .05	.00 .00	.00 .00	.00 .00	.00 .14	.00 .00	.00 .14	.00 .05	.00 .05	.00 .00	.00 .05	.00 .00	.00 .14	.00 .68			.00	.68				
3 SS	.05	.05	.00	.00	. 05	.05	.00	.09	. 05	.00	.00	.00	.09	. 05	.00	.00	. 45				•••	. 45			
MS	.00	. 05	.00	.00	. 05	.09	.14	.09	. 05	. 05	.00	.09	. 05	. 14	.09	. 05	.91						.91		
ES	.00	.00	. 05	.00	.00	.00	.00	. 05	. 05	.00	.05	. 05	.05	. 05	.00	.00	.32	•						.32	2.36
2	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							
MU 4 SU	.05 .18	.05 .09	.00 .00	.00	.00 .09	00.	.00	.00	.00	.00	.00	.00	.00 .05	.00.	.00	.05	.14		.14	1 04					
- N	. 18	. 36	.54	.63	.54	. 05 . 82	.00 .54	.05 .41	.00 .63	.09 .82	.00 .77	. 14 . 82	.41	.05 .23	.05 .18	.09 .50	1.04 8.38			1.04	8.38				
7 SS	. 14	.14	.23	. 45	.27	.41	.27	. 18	.32	.32	. 18	. 14	.27	.14	.23	.27	3.94					3.94			
MS Es	.05	.00	.00	. 32	. 32	.18	.14	.27	.23	.27	.23	. 23	.23	.14	.09	. 05	2.72						2.72	4 00	
29	.09	.09	. 14	. 14	.09	.00	.00	.00	.09	.00	. 05	.09	.09	.00	.09	. 05	1.00							1.00	17.22
EU	.27	.09	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.23	.59	.59							
HU	.21	.41	.00	. 05	. 18	.00	. 05	.00	.00	. 05	.09	.00	.00	.00	.00	. 36	1.45		1.45						
8 SU - N	.41 .27	.54 .41	.27	.05	.32	.14 1.09	.05	.09 1 09	00. as	.36 1.27	.14 .86	.27 .95	.00 .54	.00 .36	.18 .54	.18 .27	2.99 13.37			2.99	13.37				
1 88	.32	.68			1.77	.77	1.36	.91	.63	.77	.72	.11	.86	. 45	.54	.09	13.00				10.41	13.00			
2 MS	.41	.23	.63	.41	.68	.14	.27	.27	. 45	.09	. 32	.17	.32	. 36	. 18	.09	5.62						5.62		•
ES	.14	.23	.23	.00	.09	.00	. 05	.00	.00	.00	.23	.09	. 18	.00	.00	.09	1.31							1.31	38.33
																									40,33
EU	.32	.18	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.09	.00	.59	.59							
1 MU	. 18	. 09	.09	.00	. 05	.00	.00	.00	.00	.00	. 14	. 05	.00	.00	.14	.14	.86		.86						
3 SU - N	.05 .18	. 05 . 45	. 18 . 59	. 05 . 45	.00 .63	.09 .32	.00 .41	.05 .72	.09 .27	.32 .54	.27 .82	.27 .95	.00 .50	.09 .36	.14 .36	.27 .41	1.90 7.97			1.90	7.97				
1 88	.17	.50	.72	.63	1.04	1.27	.17	.86	.91	1.40	1.63	.41	.59	.95	.91	.63	14.00				1101	14.00			
IS .	.63	. 14	.09	.05	.05	.27	.27	.23	.32	.54	1.13	.23	.36	.41	. 32	. 14	5.17						5.17		
\$. 32	.27	.00	.00	.00	.00	.00	.00	.09	.00	.54	.23	.09	. 05	.00	. 18	1,77							1.77	29 66
																									32.26

July-September 1991 300-35 ft. DIEFFRENTIAL TEMPERATURE

-		•		3	100 ft.	MIND	SPEED	and WI	ND DIR	ECTION	i				300-35	ft. I	DIFFEREN	TIAL T	EMPERA	TURE					
)						- WIND	DIREC	TION C	LASSES	}									STAB	ILITY	CLASSE	s		
, is	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	¥	MNA	NY	NHW	TOTAL	EU	MU	SU	N	SS	MS	ES	TOTAL
EU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.05	.00	.05	.05							
1 MU	. 05	.00	. 05	.00	.00	.00	.00	.00	.00	.00	.09	.00	.00	. 05	. 14	. 05	.41		.41						
9 SU	.00	.00	.09	.05	.00	.00	.00	.05	.00	.27	.23	.09	.05	. 14	.00	.14	1.09			1.09					
- N	.09	.00	.09	.00	.00	.00	.00	.14	. 05	.05	.54	.41	. 18	.68	. 14	.09	2.45				2.45				
2 SS	.32	.00	.05	.05	.05	.09	.05	.14	.23	.50	.50	.27	.00	. 18	.54	.32	3.26					3.26	1.59		
4 MS	.00	.00	.00	.00	.00	.00	. 05	. 05	.09 .05	.50	.59	.14	.00 .05	. 18 . 80	.00 .00	.00 .00	1.59 .18						(.38	. 18	
ES	.00	.00	.00	.00	.00	.00	.00	.00	.05	.05	.05	. 00	. U 0	.00	.00	.00	.10							, 10	9.02
																									7,02
EU	.00		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							
g Nu	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		.00						
T SU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.09	.00	.00	.00	.00	.09			.09					
N	.00	.00	.00	.00	.00	.00	.00	.00	.00	. 18	.14	.32	. 05	.00	.00	.00	.68				.68				
2 SS	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.05	.00	.00	.00	.00	.05					. 05	00		
4 MS ES	.00 .00	.00 .00	.00	.00 .00	.00	.00 .00	.00	.00	.00	.00 .00	.00 .00	.00	.00 .00	.00	.00	.00	.00 00.						.00	.00	
29	.00	.00	.00	.uu	.00	.00	.00	.00	.00	.00	.vu	.vu	.00	.00	.00	.00	. 00							.00	.82
TOT	5 71	5 17	5 62	6 52	7 79	5 75	5 44	5.85	5.44	8.56	10 33	7.93	4.98	5.07	4.98	4.85	100.00	1.22	2.85	7.11	33.53	34.71	15.99	4.58	100.00
101	3,11	V. 11	3.02	0.52	1113	J. 1 J	V177	3,03	0,77	0.00	10.00	1.00	7100	0,01	4100	7,00	100100	*****	2,00			••••	10100	,,,,,	100100
Vinc	l Nire	ction b	ıv Stal	ilitv																					
W 1116	וטווע	octon 2	, ocas	,,,,,,,																					
	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	¥	ANA	NW	HNW	TOTAL	-\$1	ABILIT	Y CLA	SSES-				

N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	¥	ANA	NW	HHW	TOTAL	-STABILITY CLASSES-
.59	.27	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.14	.23	1.22	Extremely Unstable
.54	.54	. 14	. 05	.23	.00	.05	.00	.00	. 05	.32	. 05	.00	. 05	.27	.59	2.85	Moderately Unstable
.63	.68	.54	.27	.41	.27	.05	.23	.09	1.04	.63	.86	.09	.27	.36	.68	7.11	Slightly Unstable
																33.53	Neutral
																34.71	Slightly Stable
1.09	.41	.72	.77	1.09	.68	.86	.91	1.13	1.45	2.27	1.45	. 95	1.22	.68	. 32	15.99	Moderately Stable
																4.58	Extremely Stable

N	NNE	NE	ENE	E	ESE	\$E	SSE	S	SSW	SW	WSW	¥	WWW	MW	NNW	TOTAL	-WIND SPEED CLASSES-
.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	CALN
														-		2.36	1.0 - 3.5 mph
.68	.72	.91	1.68	1.31	1.45	.95	.91	1.27	1.50	1.22	1.40	1.04	.54	.63	1.00	17.22	3.6 - 7.5 mph
2.08	2.58	2.72	3.53	4.58	2.13	2.81	2.36	1.95	2.54	2.36	2.85	1.90	1.18	1.45	1.31	38.33	7.6 - 12.5 mph
2.45	1.68	1.68	1.18	1.77	1.95	1.45	1.86	1.68	2.81	4.53	2.13	1.54	1.86	1.95	1.77	32.26	12.6 - 18.5 mph
. 45	.00	.27	.09	. 05	.09	.09	.36	.41	1.36	1.99	.91	. 27	1.22	.86	.59	9.02	18.6 - 24.5 mph
.00	.00	.00	.00	.00	.00	.00	.00	.00	.18	.14	. 45	.05	.00	.00	.00	.82	> 24.5 mph

October-December 1991 150-35 ft. DIFFERENTIAL TEMPERATURE

NUMBER OF OBSERVATIONS = 2192 VALUES ARE PERCENT OCCURRENCE

										TALUL	O ARE	LICE		MILITOL											
SPEED							- WIND	DIREC	TION C	LASSES										STABI	LITY (CLASSES			
CLASS	N	NNE	NE	ENE	E	ESE	\$E	SSE	\$	SSW	SW	WSW	¥	MNW	HW	HNW	TOTAL	EU	MU	SU	N	SS	MS	ES	TOTAL
EU MU C SU A N L SS M HS ES	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00	.00	.00	.00	.00	.00	.00	.00
EU MU 1 SU - N 3 SS MS ES	.00 .00 .00 .09 .18 .32	.00 .00 .00 .05 .09 .14	.00 .00 .00 .14 .18 .05	.00 .00 .00 .00 .05 .05	.00 .00 .05 .09 .14	.00 .00 .09 .09 .14	.00 .00 .00 .18 .18 .27	.05 .00 .05 .23 .32	.00 .00 .00 .00 .09 .23	.00 .05 .05 .09 .27 .14	.00 .05 .00 .41 .09	.00 .00 .09 .09 .18 .00	.00 .00 .00 .14 .32 .09	.00 .05 .00 .14 .27 .36	.00 .05 .05 .18 .14	.00 .09 .05 .05 .23 .23	.05 .23 .32 1.37 3.06 2.55	.05	.23	.32	1.37	3.06	2.55	. 64	8.21
AU 4 SU - N 7 SS MS ES	.09 .00 .00 .87 .55 .09	.00 .09 .05 1.23 .55 .23	.00 .05 .09 1.60 .64 .05	.00 .00 .00 2.10 .27 .00	.00 .00 .05 .55 .27 .05	.00 .00 .09 .73 .78 .36	.05 .32 .18 .78 .55 .68	.00 .00 .05 .32 1.41 .05	.14 .05 .05 .27 1.78 .82	.05 .00 .00 .36 1.28 .64	.09 .00 .00 .59 .82 .87	.23 .00 .05 .23 .36 .23	.05 .00 .14 1.23 1.28 .23	. 14 . 09 . 23 . 96 . 87 . 32 . 05	.36 .14 .09 1.00 1.28 .18	.18 .05 .09 .82 .96 .27	1.37 .78 1.14 13.64 13.64 5.06	1.37	.78	1.14	13.64	13.64	5.06	.50	36.13
EU MU 8 SU - N 1 SS 2 MS ES	.68 .05 .09 1.51 .32 .00		.09 .09 .00 .68 .27 .00		.00 .00 .09 .73 .00	.00 .09 .05 .73 .23 .00	.05 .14 .05 .46 .46	.55	.23 .14 .05 1.00 2.05 .23	1.41 .09	.23 .05 .05 1.09 .91 .00	.32 .14 .18 .36 .27 .00	.91	.59 .14 .18 1.87 .68 .00	.23 .05 .00 .91 .50	.36 .00 .14 .82 .73 .00	4.11 1.37 1.28 14.55 9.44 .41	4.11	1.37	1.28	14.55	9.44	.41	.00	31.16
EU 1 MU 3 SU - N 1 SS	.09 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .18 .00	.00 .05 .05 .55 .78 .00	.00 .00 .00 .32 .05 .00	.09 .05 .09 .82 .36 .00	.09 .05 .09 1.92 1.09 .00	.50 .14 .23 1.05 .64 .09	.27 .14 .05 .41 .32 .00	.46 .00 .14 .27 .09 .00	. 46 . 18	.64 .14 .09 1.28 .14 .00	. 14 . 05 . 05 . 27 . 00 . 00	.05 .05 .05 .09 .09	2.42 1.09 1.00 9.35 3.97 .09	2.42	1.09	1.00	9.35	3.97	.09	.00	17.93

CECO DRESDEN STATION

October-December 1991

		,		;	35 ft.	WIND S	SPEED	ind WI	ND DIRI	ECTION					150-3	ft.	DIFFERE	NTIAL 1	EMPER	TURE					
ED							WIND	DIRE	CTION (CLASSES										- STAB	ILITY	CLASSES	;		
ASS		NNE	NE	ENE	E	ESE	SE	SSE	\$	SSW	SW	WSW	¥	ANA	NY	NNN	TOTAL	EU	NU	SU	N	SS	MS	ES	TOTAL
EU	.00	.00	.00	.00	.00	.00	.00	.00	. 05	. 18	.09	.00	.00	.00	.00	. 05	.36	.36							
1 MU	.00	.00	.00		.00	.00	.00	.00	.14	. 05	.23	.00	.05	.00	.00	.00	. 46		. 46						
9 SU	.00	.00	.00		.00	.00	.00	.00	. 05	.00	.09	. 18	.05	. 05	.00	.00	.41			.41					
- N	.00	.00	.00		.00	.00	.00	. 18	.68	.91	.00	.55		. 23	. 05	.00	3.42				3.42				
2 SS	.00	.00			.00	.14	.05	. 05	.41	.09	.09	.00		. 05	.00	.00	.91					.91			
4 MS	.00	.00			.00	.00	.00	.00	.00	.00	.00	.00		.00	.00	.00	.00						.00		
ES	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							.00	
																									5.57
EU	.00	.00	.00		.00	.00	.00	.00	.00	.00	.14	.00		.00	.00	.00	.14	. 14	••						
G MU	.00	.00	.00		.00	.00	.00	.00	.00	.00	.09	.00		.00	.00	.00	.09		.09						
T SU	.00	.00	.00		.00	.00	.00	.00	.00	.00	. 05	.00		.00	.00	.00	. 05			.05		,			
N	.00	.00	.00		.00	.00	.00	.00	. 14	.14	.14	. 23		.00	.00	.00	. 68				.68				
2 SS	.00	.00	.00		.00	.00	.00	.00	.00	.05	.00	.00		.00	.00	.00	. 05					.05			
4 HS	.00	.00	.00		.00	.00	.00	.00	.00	.00	.00	.00		.00	.00	.00	.00						.00		
ES	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							.00	4 00
																									1.00
TOT	5.02	3.74	3.92	3.06	2.19	4.97	4.93	5.89	11.86	9.90	7.44	4.70	11.09	9.58	5.93	5.79	100.00	8.44	4.01	4.20	43.02	31.07	8.12	1.14	100.00
				•						•									•					•	
Wind	Direc	tion t	y Sta	bility																					
	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL	-ST	ABILIT	Y CLA	SSES-				

N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	¥	ANA	XX	NNW	TOTAL	-STABILITY CLASSES-
.87	. 18	.09	.05	.00	.00	.09	.50	.50	.87	. 82	1.00	.13	1.37	.73	.64	8.44	Extremely Unstable
.05	.09	.14	.09	.00	.14	. 46	.09	.36	.41	.50	. 14	.68	.41	.27	. 18	4.01	Moderately Unstable
.09	.09	.09	. 05	. 18	. 18	.23	.23	.23	.32	.27	.64	.55	.55	. 18	.32	4.20	Slightly Unstable
2.46	2.19	2.42	2.51	1.55	2.10	1.73	2.05	4.01	3.60	2.24	1.73	5.75	4.47	2.42	1.78	43.02	Neutral
1.05	.78	1.09	. 32	. 41	2.01	1.28	2.60	5.43	3.74	2.55	.91	2.97	2.01	1.92	2.01	31.07	Slightly Stable
.41	.36	.09	.05	.05	.50	1.05	.36	1.28	.96	.96	.23	. 32	.68	.32	.50	8.12	Moderately Stable
.09	. 05	.00	.00	.00	. 05	.09	.05	.05	.00	.09	.05	.09	.09	.09	.36	1.14	Extremely Stable

N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	AKA	NW	NNW	TOTAL	-WIND SPEED CLASSES-
••			**			00	••			•		••	•	**		**	A 4 1 W
.00	.00	.00	. 00	.00	.00	.uu	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	EALM
.68	. 32	.36	.09	.27	. 32	.68	.68	. 36	.59	. 64	.41	.59	.87	.55	.78	8.21	1.0 - 3.5 mph
1.60	2.14	2.42	2.37	.91	2.01	2.60	1.82	3.10	2.33	2.37	1.09	2.97	2.65	3.15	2.60	36.13	3.6 - 7.5 mph
2.65	1.28	1.14	. 59	.82	1.09	1.23	1.73	3.70	2.92	2.33	1.28	3.19	3.47	1.69	2.05	31.16	7.6 - 12.5 mph
.09	.00	.00	.00	. 18	1.41	.36	1.41	3.24	2.65	1.19	.96	3.33	2.28	.50	.32	17.93	12.6 - 18.5 mph
.00	.00	.00	.00	.00	. 14	. 05	.23	1.32	1.23	.50	.73	.96	.32	.05	.05	5.57	18.6 - 24.5 mph
.00	.00	.00	.00	.00	.00	.00	.00	. 14	.18	.41	.23	.05	.00	.80	.00	1.00	> 24.5 mph

October-December 1991 300-35 ft. DIFFERENTIAL TEMPERATURE

NUMBER OF OBSERVATIONS = 2202 VALUES ARE PERCENT OCCURRENCE

										******	•														
SPEED							- WIND	DIREC	TION (LASSES										STABI	LITY (CLASSES			
CLASS		NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	S¥	WSW	¥	WNW	NW	NNW	TOTAL	EU	NU	SU	N	SS	MS	ES	TOTAL
cu.	00	0.0	00	00	00	40	00	00	00	80	80	00	66	00	00	00	۸۸	00							
EU Mu	.00 .00	.00 .00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00						
E SU	.00	.00	.00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00	.00 .00	.00	.00 .00	.00 .00	.00 .00		.00	.00					
A N	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00				.00				
L SS	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00					.00			
N NS	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00						.00		
ES	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							.00	
																									.00
Fil	**							••		••			••					••							
EU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	۸۸						
MU 1 Su	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00	.00	.00 .00	.00	.00 .00	.00	.00	.00 .00	.00	.00	.00	.00		.00	.00					
- N	.05	.00	.14	.05	.00	.00 .05	.00 .00	.05	.00 .14	.05	.00 .05	.00 .05	.05	.00 .05	.00 .00	.00. .00	.00 .17			.00	.17				
3 88	.05	.00	.09	.00	.09	.00	.00	.05	. 05	.05	.00	.09	.09	.00	.05	.00	.59				• • • •	.59			
HS	.09	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.05	.00	.14						.14		
ES	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00						• • • •	.00	
-																								***	1.50
L. L.	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							
MU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	. 05	.00	.00	. 05		.05	**					
4 SU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00			.00					
- N	.14	.14	.18	.09	.09	.32	.82	.18	.27	.27	.27	.36	.23	.64	.54	.32	4.86				4.86	0 10			
7 SS MS	.14	.14	.05 .09	. 18 . 05	.09 .05	.00 .05	.27 .00	.09 .14	.09 .27	.05 .09	.14 .00	.09 .00	.41 .00	.05 .00	. 18 . 05	.18 .00	2.13 .77					2.13	.11		
ES	.09	.00	.00	.05	.05	.00	.05	.05	.00	.00	.05	.00	.09	. 05	.00	.09	.54						•11	.54	
	100					.00	.00		, 00	100	.00			, 00	, , ,		107								8.36
EU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	. 05	.00	.05	.09	.09							
NU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		.00	••					
8 SU	.32	.00	.00	.00	.00	.00	. 05	.05	.00	.00	.00	.00	.00	.05	.05	.00	.50			.50					
- N			1.09		. 32	.27	.68	.50	.23		. 45		1.14	. 95			11.17				11.17	0 10			
1 SS 2 MS		.64 .18	.41 .14	.36	.23	.00 .14	. 32	.50	.30	.82	1.03	.68	.77 an	.54		1.09	9.13					9.13	2.23		
Z M3 ES	. 05		.05	.00	.05 .00	.00	.00	.27 .00	.00	.32 .09	.18 .05	.14 .00	.05 .00	.09 .00	.14 .00	.05 .05	2.23						2.23	.32	•
10	. 00	.00	.03	. vu	.00	.00	.00		.00	.03	.03	.00	.00	.00	.00	.00	.42							.02	23.43
																									20110
EU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		.00	.00	.09	.09	.09							
1 MU	. 05	.05	.00	.00	.00	.00	.05	.00	.00	.00	.00	.00	.00	.00	.00	.00	. 14		.14						
3 SU	.27	.09	.05	.00	.00	.00	.00	.09	.00	.00	.00	. 05	.09	.09	.05	.00	.11			.77					
- N	1.63	1.04	1.32	.86	.59	. 45	.09	.64	.68	1.00	1.23			1.77	.86	.64	14.49			,	14.49	45 44			
1 \$\$. 45	.54	.64	.41	.23	.05	. 45	1.04		2.95	2.32	.41		1.63		1.18	15.08					15.08	A 44		
MS	. 14 . 05	.05 .05	.14	.00	.00. 00.	.05	.14	.23 .00	.32	.86	.50 .05	.23 .00	.18	.23 .00	.23 .00	.14 .05	3.41						3.41	.32	
	.03	.ua	.00	.00	.00	.00	.00	. vu	.09	. 05	.05	. 00	.00	.00	.00	.05	. 32							.JC	34.29
																									SAIFA

CECO DRESDEN STATION 300 ft WIND SPEED and WIND RESECTION

October-December 1991 300-35 ft DIFFERENTIAL TEMPERATURE

_		•			300 ft.				IND DI	RECTION	¥						OIFFEREN		EMPERA'	TURE					
ED							WINE) DIREC	CTION	CLASSES	}		,							STAB	ILITY	CLASSES			
88	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	¥	WWW	NN	HHW	TOTAL	EU	MÚ	SU	N	SS	MS	ES	TOTAL
EU	.05	.09	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.14	. 14							
1 KU	.05	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.05	.09		.09						
9 SU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.09	.00	.00	. 05	. 14			. 14					
- N	.41	.09	. 05	.05	.27	.54	.09	. 36	.54	. 86	.64	. 45	1.73	2.00	. 32	. 18	8.58				8.58				
2 SS	.09	. 14	. 18	.00	. 05	.50	.50	.54	1.73	2.63	.95	.32	.77	.73	.50	.23	9.85					9.85			
4 MS	. 05	. 05	.00	.00	.00	.00	.05	.00	. 05	. 45	.09	.00	.00	. 18	.00	. 05	.95						.95		
ES	. 05	.00	.00	.00	.00	.00	.00	.00	.00	.09	.00	.00	.00	.00	.00	.00	.14							.14	
																									19.89
EU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							
G MU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		.00						
T SU	.00	.00	.00	.00	.00	.00	.00	.00	.05	.00	.00	.00	.00	.00	.00	.00	. 05			. 05					
N	.00	.00	.00	.00	.00	.05	.00	.05	.54	.73	.64	.86	1.36	.91	.27	.09	5.50				5.50				
2 SS	.00	.00	.00	.00	.00	.50	.41	.36	2.36	1.41	.73	. 18	.68	.23	.00	.05	6.90					6.90			
4 MS	.00	.00	.00	.00	.00	.00	.00	.00	.05	. 05	.00	.00	.00	.00	.00	.00	.09						.09		
ES	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							.00	
																									12.53
TOT	5.59	4.22	4.59	4.04	2.09	2.95	4.09	5.18	9.22	12.99	9.40	4,77	9.99	10.26	5.22	5.40	100.00	.32	.27	1.45	45.37	43.69	7.58	1.32	100.00
Wind	Direc	tion b	y Stab	ility																					
	N	NNE	NE	ENE	E	ESE	\$E	SSE	S	SSW	SW	WSW	¥	MNA	NW	NNV	TOTAL	-\$1/	ABILIT\	/ CLA:	SSES-				
	.05	.09	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.05	.00	.14	.32	Ext	remely	Unst	able				
	.09	. 05	.00	.00	.00	.00	. 05	.00	.00	.00	.00	.00	.00	. 05	.00	.05	.27		erately						
				•													/								

N	NNE	NE	ENE	E	ESE	\$E	SSE	S	SSW	SW	WSW	¥	ANA	MM	NNW	TOTAL	-STABILITY CLASSES-
. 05	.09	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.05	.00	.14	.32	Extremely Unstable
.09	. 05	.00	.00	.00	.00	. 05	.00	.00	.00	.00	.00	.00	. 05	.00	. 05	.27	Moderately Unstable
.59	.09	.05	.00	.00	.00	.05	.14	.05	.00	.00	.05	. 18	.14	.09	.05	1.45	Slightly Unstable
2.77	2.18	2.77	3.00	1.27	1.68	1.68	1.77	2.41	3.09	3.27	2.59	5.81	6.31	2.72	2.04	45.37	Neutral
1.50	1.45	1.36	.95	.68	1.04	1.95	2.59	5.72	7.90	5.22	1.77	3.68	3.18	1.95	2.72	43.69	Slightly Stable
. 36	.27	.36	.05	.09	.23	.32	.64	.95	1.77	.11	.36	.23	.50	.45	.23	7.58	Moderately Stable
.23	.09	.05	.05	.05	.00	.05	.05	.09	.23	. 14	.00	.09	.05	.00	. 18	1.32	Extremely Stable

H	NNE	NE	ENE	E	ESE	SE	SSE	\$	SSW	SW	WSW	¥	ANA	RV	NNW	TOTAL	-WIND SPEED CLASSES-
.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	CALN
.18	.09	.23	.05													1.50	1.0 - 3.5 mph
.36	.27	.32	.36	.27	.36	1.14	. 45	.64	.41	. 45	. 45	.73	.11	.11	.59	8.36	3.6 - 7.5 mph
1.77	1.68	1.68	2.32	.59	.41	1.18	1.32	.86	1.41	1.77	1.32	1.95	1.68	1.45	2.04	23.43	7.6 - 12.5 mph
2.59	1.82	2.13	1.27	. 82	.54	.73	2.00	2.23	4.86	4.09	1.04	2.54	3.72	1.82	2.09	34.29	12.6 - 18.5 mph
.68	.36	.23	.05	. 32	1.04	.64	.91	2.32	4.04	1.68	.77	2.59	2.91	. 82	.54	19.89	18.6 - 24.5 mph
.00	.00	.00	.00	.00	.54	.41	.41	3.00	2.18	1.36	1.04	2.04	1.14	.27	. 14	12.53	> 24.5 mph

January-December 1991 150-35 ft. DIFFERENTIAL TEMPERATURE

NUMBER OF OBSERVATIONS = 8705 VALUES ARE PERCENT OCCURRENCE

										VALUE	3 AKE	PERGER	H UCCU	RKENCE											
SPEED							- WIND	DIREC	TION C	LASSES										STABI	LITY	CLASSES	;		
CLASS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	ANA	NW	MNW	TOTAL	EU	MU	SU	N	SS	MS	ES	TOTAL
EU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							
MU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		.00						
C SU A N	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00 .00	.00. .00	.00 .00	.00 .00	.00	.00 .00	.00 .00	.00 .00	.00 .00	.00. 00.			.00	.00				
L SS	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	.01				.00	.01			
N NS	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00						.00		
ES	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00	.01	.00	.01	.00	.03							.03	.0
EU	.01	.00	.00	.00	.00	.00	.00	.01	.00	.01	.00	.00	.00	.00	.03	.01	.08	.08							
#0 1 CU	.01	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00	.01	. 02	.02	.08		.08						
1 SU - N	.00 .09	.00 .14	.00 .17	.00 .07	.01 .09	.00 .10	.00 .06	.00 .09	.00 .10	.01 .11	.02 .11	.02 .08	.00 .13	.01 .15	.02 .15	.03 .11	.14 1.77			.14	1.77				
3 SS	.30	.24	.37	. 26	.38	. 15	. 32	.32	.23	.23	.23	.17	.31	. 15	.20	.20	4.06				••••	4.06			
MS	. 29	.23	.22	.29	.23	.23	.25	.29	. 29	.32	. 46	.23	. 18	. 25	.33	.26	4.35						4.35		
ES	.16	.10	.02	.05	.05	.09	.08	. 05	.06	.14	. 16	.10	.02	. 10	.29	.29	1.76							1.76	12.23
																									12,20
J	. 48	.37	.06	.02	.11	. 15	.07	.09	.11	. 15	. 15	.22	.09	. 18	.34	. 48	3.09	3.09							
KU	. 05	.11	.07	.00	.20	. 15	. 14	. 02	.09	.08	.07	. 15	.05	.06	. 13	. 16	1.52		1.52						
4 SU - N	.09 .59	.08 .56	.10 1.24	.01 1.44	.17 1.13	.09 .92	.20 .68	.05 .67	.07 .54	.07 .45	.11 .67	.09 .46	.10 .76	. 11 . 48	.08 .65	.09 .74	1.53 11.96			1.53	11.96				
7 SS	.57	.93	1.08	1.61	1.69	1.36	.85	1.19	1.41	1.24	.96	.48	1.13	1.02	.69	.84	17.06				11,30	17.06			
MS	.06	.11	.08	.00	. 13	.61	. 46	.23	.67	.17	.79	.33	.30	.24	. 14	. 17	5.09						5.09		
ES	.00	.00	.00	.00	.01	. 10	, 06	.02	.01	.08	.11	.03	.02	.02	.06	. 14	.68							.68	40.92
																									40.32
EU	. 52	. 29	.20	.08	.31	.28	.20	. 18	.24	.30	. 47	. 46	.51	. 52	.57	.69	5.80	5.80							
MU	.08	.03	.10	.03	.20	.11	.11	. 02	.08	. 13	. 14	.21	,14	. 15	.06	.07	1.67		1.67						
8 SU	.14	.09	.01	.03	.07	.08	. 13	.10	.05	. 15	.11	. 16	.13	.17	.06	. 13	1.61			1.61	40.00				
- N 1 SS	.75 .22	. 43	.17 .43	.70 .21	.90 .43	.72 .57	.41 .41	.85 .64	.75 1.24	.94 1.11	.85 1.10	.56 .25	.96 .53	1.05 .60	.91 .36	. 65 . 44	12.20 8.79				12.20	8.79			
2 MS	.00	.00	.00	.00	.00	.01	.03	.02	.08	.22	.05	. 02	.01	.00	.00	.00	.45					0.114	. 45		
ES	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	.01	.00	.00	.02							.02	
																									30.53
EU	. 16	10	กา	ስስ	nn	no	99	16	21	£0	20	20	15	£ 1	11	12	3.35	2 25							
1 MU	.07	. 05 . 02	.02 .00	.00 .00	.00 .00	.08 .03	.22 .01	.16 .06	. 15 . 01	.52 .10	.38 .14	.30 .08	. 15 . 13	.61 .17	.44 .11	. 13 . 05	.99	u.JJ	.99						
3 SU	.02	.00	.00	.00	.06	.03	.03	. 05	.07	.15	.09	.10	.07	.13	.05	.06	.91		- • •	.91					
- 1	.00	.02	.01	.00	. 28	.30	.14	.41	. 87	.74	. 48	.37	.98	.60	. 16	.10	5.46				5.46				
1 \$\$.00 .00	.01 .00	.00 .00	.00	.10 .00	.24 .00	.07 .00	. 17 . 00	. 44 . 00	. 43 . 05	.22	. 15	. 13 . 00	.07	.02	.06 nn	2.10					2.10	nt		
6	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00 .00	.00	.00	.00 .00	.00 .00	.00	.05 .01						. 05	.01	
	- •						•				•	•		, - -											12.87

CECO DRESDEN STATION 35 ft. WIND SPEED and WIND DIRECTION

January-December 1991 150-35 ft. DIFFERENTIAL TEMPERATURE

1				;	35 ft.	WIND S	SPEED 8	ind WIM	ID DIRI	ECTION					150-38	ft.	DIFFERE	NTIAL	EMPER/	ITURE					
E)						WIND) DIREC	CTION (CLASSES	}									- STAB	ILITY	CLASSES	·		
.68		NNE	NE	ENE	E	ESE	SE	SSE	\$	SSW	SW	WSW	¥	MMA	HM	NNW	TOTAL	EU	MU	SU	X	SS	MS	ES	TOTAL
EU	.00	.00	.00	.00	.00	. 05	.00	.00	.03	.14	.08	.08	.02	.03	.06	.01	.51	.51							
1 NU	.00	.00	.00	.00	.00		.00	.00	.05	.05	.07	. 02	.01	.00	.01				.22						
9 SU	.00	.00			.00	.00	.00	.00	.02	.00	.02	.07	.07	.01	.00	.00				.20					
- N	.00	.00		.00	.00	.01	.03	.13	.26	.33	.14	.22	. 36	.07	.01-						1.56				
2 \$\$.00	.00	.00	.00	.00	.03	.01	.01	. 16	.07	. 05	.00	.07	.01	.00	.00						.41			
4 MS	.00	.00		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00								.00	^^	
ES	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							.00	2.89
																									2.03
EU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.03	.03	.00	.00	.00	.00	.07	.07							
G MU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.02	.06	.00	.00	.00	.00		•••	.08						
T SU	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	.01	.00	.00	.00	.02			.02					
N	.00	.00	.00	.00	.00	.00	.02	.00	.05	.07	.03	.09	.03	.00	.00	.00	.30				.30				
2 SS	.00	.00	.00	.00	.00	.00	.00	.00	.01	.02	.00	.00	.00	.00	.00	.00	.03					.03			
4 MS	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00						.00		
ES	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							.00	
																									.51
TOT	4.65	4.08	4.95	4.80	6.52	6.51	5.00	5.86	8.16	9.18	8.35	5.63	7.40	7.00	5.97	5.94	100.00	12.90	4.55	4.40	33.25	32.46	9.94	2.50	100.00

Wind Direction by Stability

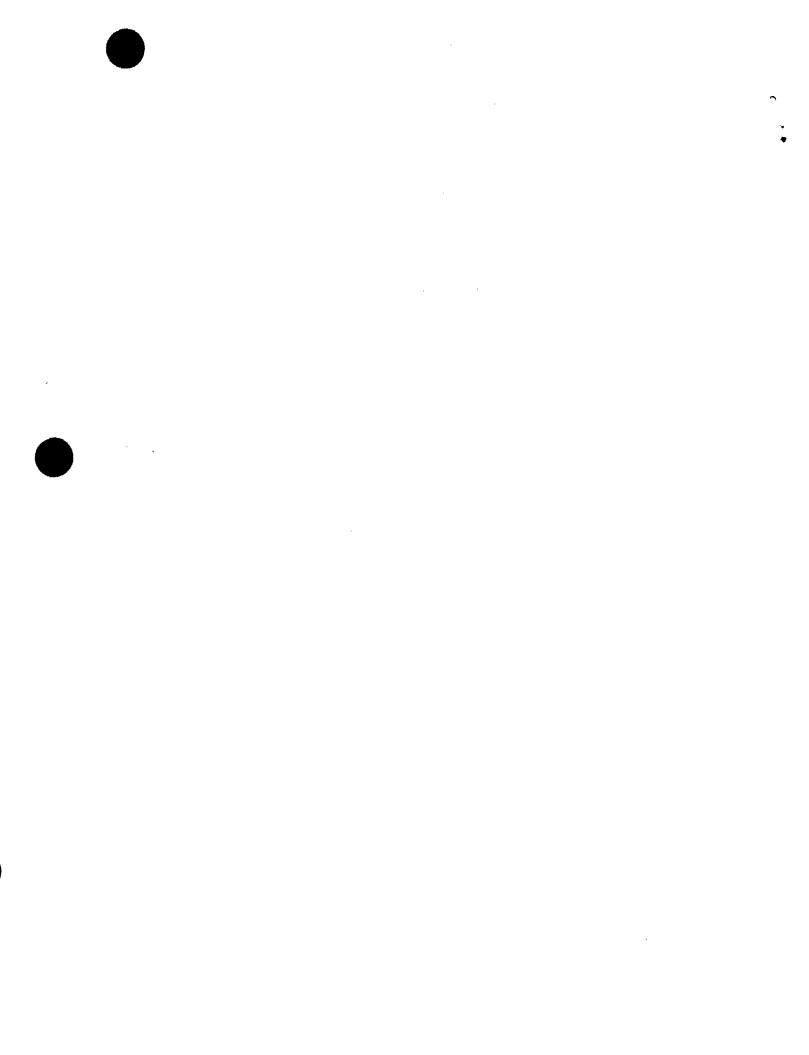
N	NNE	NE	ENE	E	ESE	SE	SSE	\$	SS¥	SW	WSW	¥	AKA	KW	MNA	TOTAL	-STABILITY CLASSES-
1.17	.70	.28	. 10	. 43	.55	. 48	. 45	.54	1.11	1.11	1.09	.77	1.34	1.45	1.32	12.90	Extremely Unstable
.21	.17	.17	.03	.39	.30	.26	.10	.23	.37	.44	.52	. 32	.39	. 33	.31	4.55	Moderately Unstable
. 25	.17	.11	.05	.31	.21	.36	.20	.21	. 38	.38	. 45	.38	.44	.21	.31	4.40	Slightly Unstable
1.42	1.15	2.19	2.21	2.39	2.06	1.34	2.15	2.57	2.64	2.29	1.78	3.22	2.34	1.88	1.61	33.25	Neutral
1.09	1.44	1,87	2.08	2.60	2.35	1.67	2.34	3.49	3.10	2.56	1.06	2.16	1.85	1.28	1.53	32.46	Slightly Stable
.34	.34	.30	.29	.36	. 85	.75	.54	1.03	1.36	1.30	.59	. 49	.49	.47	.44	9.94	Moderately Stable
.16	.10	.02	.05	.06	.20	.14	.08	.08	.22	.28	. 15	.06	. 14	.36	.43	2.50	Extremely Stable

N	NNE	NE	ENE	E	ESE	SE	SSE	\$	SSW	SW	WSW	¥	MNM	NW	NNW	TOTAL	-WIND SPEED CLASSES-
.00	.00	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00	.01	.00	.02	.00	.05	CALM
.86	.71	.78	.67	.76	.57	.71	.76	.68	.84	.99	.61	.64	.88	1.05	.93	12.23	1.0 - 3.5 mph
1.84	2.17	2,63	3.08	3.43	3.38	2.45	2.27	2.91	2.84	2.87	1.77	2.45	2.13	2.09	2.62	40.92	3.6 - 7.5 mph
1.70	1.09	1.50	1.06	1.90	1.78	1.30	1.83	2.44	2.85	2.72	1.68	2.27	2.49	1.95	1.98	30.53	7.6 - 12.5 mph
. 25	.10	.03	.00	. 44	.69	. 47	.86	1.54	1,98	1.31	1.00	1.45	1.57	.78	.39	12.87	12.6 - 18.5 mph
.00	.00.	.00	.00	.00	.09	. 05	. 14	.53	.59	.36	.39	.53	.13	.08	. 02	2.89	18.6 - 24.5 mph
.00	.00	.00	.00	.00	.00	.02	.00	.06	.09	. 10	. 18	.05	.00	.00	.00	.51	> 24.5 mph

January-December 1991 300-35 ft. DIFFERENTIAL TEMPERATURE

NUMBER OF OBSERVATIONS = 8690 VALUES ARE PERCENT OCCURRENCE

SPEE	n						- WIND	DIREC	etion o	LASSES										STARI	LITY	CLASSES			
CLAS		NNE	NE	ENE	E	ESE	SE	SSE	\$	SSW	SW	WSW	W	WNW	NW	NNW	TOTAL	EU	MU	SU	N	SS	MS	E\$	TOTAL
EU MU C SU A N L SS M MS	00. 00. 00. 00.	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00	.00	.00	.00	.00	.00	.00	.00
EU MU 1 SU - N 3 SS MS	.00 .00 .03 .02 .03	.00 .01 .00 .06 .05 .01	.00 .00 .00 .07 .05	.00 .00 .00 .03 .02 .00	.00 .00 .00 .01 .05	.00 .00 .00 .02 .05 .03	.00 .00 .00 .02 .02 .03	.00 .00 .07 .07 .03	.00 .00 .00 .06 .02 .02	.00 .00 .00 .08 .02 .02	.00 .00 .00 .05 .03	.00 .00 .00 .06 .02 .02	.00 .00 .00 .09 .07	.00 .00 .00 .09 .01	.00 .00 .05 .02 .05	.00 .00 .00 .06 .01	.00 .01 .00 .85 .54 .37	.00	.01	.00	. 85	.54	.37	.08	1.85
MU 4 SU - N 7 SS MS ES	.08 .21 .13 .01	.00 .01 .02 .29 .13 .00	.00 .00 .00 .25 .16 .05	.00 .00 .03 .32 .39 .17	.00 .00 .02 .38 .31 .13	.00 .00 .02 .56 .20	.00 .01 .05 .60 .20	.00 .00 .02 .32 .16 .15	.00 .00 .02 .36 .24 .15	.00 .00 .03 .38 .16 .10	.00 .00 .01 .40 .16	.00 .00 .05 .46 .20	.00 .00 .01 .29 .29 .14	.00 .01 .02 .35 .09 .06	.01 .00 .01 .33 .18 .03	.00 .03 .06 .32 .22 .02	.01 .10 .47 5.82 3.21 1.36	.01	. 10	.47	5.82	3.21	1.36	. 48	11.46
	.07 .20 .66 .49	.02 .10 .16 .45 .49 .12	.28	.00 .01 .02 1.42 1.40 .37	.28	.00 .00 .03 .70 .37 .09	.20	.00 .00 .06 .64 .72 .31	.29	.81 .24	.00 .03 .06 .74 .92 .29	.01 .00 .09 .82 .68 .33	.92 .23	.60 .16	.08 .02 .07 .62 .52 .12	.60 .06	.31 .51 1.21 11.70 11.05 3.49	.31	.51	1.21	11.70	11.05	3.49	.61	. 28.87
EU 1 MU 3 SU - N 1 SS	.06 .13 1.09	.05 .09 .12 .77 .67 .08	.00 .02 .09 1.00 .81 .09	.00 .00 .02 .92 .84 .01	.00 .01 .01 .86 .96 .03	.01 .05 .03 .45 .76 .24	.07 .33	.01	.01 .06 .06 .46 1.04 .26	.00 .18 .90 2.09 .58	.12 1.10	.05 .09 .66 .67	.01 .05 .07 1.00 .97 .23	.06 .02 .12 .93 1.04 .22	.07 .08 .10 .92 .70 .14		.54 .69 1.42 12.77 14.97 3.79	.54	.69	1.42	12.77	14.97	3.79	.60	34.78


CECO DRESDEN STATION 300 ft WIND SPEED and WIND DIRECTION

January-December 1991 300-35 ft. DIFFERENTIAL TEMPERATURE

		•			300 ft	. WIND	SPEED	and Wi	IND DI	RECTIO	٧				300-3	ft.	DIFFERE	WTIAL 1	TEMPER.	ATURE					
ED							WIND) DIREC	CTION	CLASSES	3			· 						- STAB	JILITY	CLASSE	\$		
88	N	NNE	NE	ENE	E	ESE	SE	SSE	S	KSS	SW	NSW	N	ANA	NV	NNW	TOTAL	EU	MU	SU	J N	SS	NS NS	ES	TOTA
EU	.06	.02	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00	.01	.00	.06	. 05	.21	.21							
1 MU	.02	.00					.00	.00	.00		.07	.00	.00	. 02	.06	.03			. 26						
9 SU	.03	.03			.00		.02	.01	.01			. 02	.03	. 12	.03	.05				.67					
- N	. 39	.17	.30		.38	.37	. 13	. 29	.36		. 56	. 45	.75	1.22	. 43	.31					6.79				
2 SS	.10	. 18					.30	.33	.84			.39	.33	. 55	. 33	.20						6.93			
4 MS Es	.03	.02 .00	.00 00.		.00 .00		.03 .00	.01 .00	.07 .01		.36 .01	.06	.01 .01	.12	.01 .00	.01 .00							1.06		
£3	. 0 !	.00	.00	.00	.00	.00	.00	.00	.01	.03	.01	.01	.01	.00	.00	. 00	.09							.09	16.0
																									10.0
EU	.00	.00	.00	.00	.00	.01	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.01	.01							
G MU	.00	.00	.00	.00	.00	.02	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.02		.02						
T SU	.00	.00			.00		.00	.00	.01		.02	.03	.00	.02	.01	.00	. 12			. 12					
N	.01	.05	.00	.00	.08	.08	.08	. 16	. 32		.30	.61	.66	.53	.31	.06					3.72				
2 SS	.00	.01	.00		. 12	. 13	.10	.14	.84		.35	.20	.41	.10	.00	.02						3.08			
4 HS	.00	.00	.00		.00	.00	.00	.00	.03		.00	.00	.00	.00	.00	.00							.07		
ES	.00	.00	.00	.00	.00	.00	.00	.01	.00	.00	.00	.00	.00	.00	.00	.00	.01							.01	7.64
					•																				7.03
TOT	5.11	4.36	5.02	6.19	5.83	4.89	4.81	5.37	6.84	10.18	9.67	6.55	7.48	7.32	5.42	4.96	100.00	1.08	1.60	3.88	41.66	39.78	10.13	1.88	100.00
Wind	Direc	tion t	y Sta	bility																					
				·																					

H	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	MSM	¥	MNM	NW	NNW	TOTAL	-STABILITY CLASSES-
.24	.09	.00	.00	.00	.02	.07	.00	.02	.00	.00	.01	. 03	.08	.22	. 29	1.08	Extremely Unstable
.18	. 22	.06	.01	.06	.07	. 16	.01	.06	.03	. 14	.05	.07	. 10	. 16	. 22	1.60	Moderately Unstable
.44	.33	.23	.09	. 14	. 12	. 17	. 16	. 10	.44	.31	. 29	. 16	.31	.23	.36	3.88	Slightly Unstable
2.39	1.78	2.53	2.78	2.57	2.19	1.96	2.07	2.19	3.11	3.15	3.05	3.39	3.76	2.66	2.07	41.66	Neutral
1.20	1.53	1.65	2.70	2.52	2.04	1.83	2.38	3.52	5.24	4.17	2.15	2.99	2.39	1.76	1.71	39.78	Slightly Stable
. 45	.23	.43	.55	. 45	.44	.59	.71	.83	1.29	1.57	.85	.63	.59	.35	. 18	10.13	Moderately Stable
.21	.17	. 13	.05	. 10	.02	.03	.03	.12	.08	.33	. 15	.20	.08	.05	. 13	1.88	Extremely Stable

H	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	¥	ANA	NV	NNW	TOTAL	-WIND SPEED CLASSES-
.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	CALN
.09	. 13	. 14	.06	.07	.10	.08	. 18	. 12	. 13	. 10	. 12	.20	. 15	. 12	.08	1.85	1.0 - 3.5 mph
.51	.47	. 49	.97	.90	.86	.93	.67	.79	.68	.72	.83	.17	.56	.61	.69	11.45	3.6 - 7.5 mph
1.68	1.42	1.84	3.22	2.23	1.20	1.66	1.74	1.46	1.88	2.14	1.98	1.93	1.53	1.44	1.53	28.87	7.6 - 12.5 mph
																34.78	12.6 - 18.5 mph
.66	. 44	.53	. 15	.56	.93	. 48	.64	1.30	2.57	2.07	.93	1.15	2.03	.92	.64	16.01	18.6 - 24.5 mph
.01	.06	.00	.00	.20	. 25	. 18	.31	1.21	1.17	.67	.84	1.07	.66	.32	.08	7.03	> 24.5 mah

