Administrative Topics Outline (Rev 11/13/13)

Facility: Pilgrim		Da	te of Examination:	2/2014
Examination Level:	RO	Ор	erating Test Number:	N14-1
Administrative Topic (see Note)	Type Code*		Describe activity to be p	erformed
Conduct of Operations (A1a)	N, R	2.1.7 (4.4)	Ability to evaluate pla make operational judg operating characterist and instrument interp	gments based on ics, reactor behavior,
		JPM:	Evaluate Temperature Receipt of a Relief /Sa	
Conduct of Operations (A1b)	N, S	2.1.31 (4.6)	Ability to locate contro controls, and indicatio that they correctly refl lineup.	ons, and to determine
		JPM:	Conduct a Shift Turno	over Panel Walkdown
Equipment Control (A2)		2.2.41 (3.5) Ability to obtain and interpret sta electrical and mechanical drawi		•
	N, R	JPM:	Using mechanical dra isolation boundaries f system.	
Emergency		2.4.39 (3.9)	Knowledge of RO res emergency plan imple	
Procedures/Plan (A4)	D, S	JPM:	Call Out the Emergen Organization	cy Response
	al) are required fo le administrative		pplicants require only 4 i are required.	items unless they are
*Type Codes & Criteria:	s & Criteria: (C)ontrol room, (0) (S)imulator, (2) or Class(R)oom (2) (D)irect from bank (\leq 3 for ROs; \leq 4 for SROs & RO retakes) (1) (N)ew or (M)odified from bank (\geq 1) (3) (P)revious 2 exams (\leq 1; randomly selected) (0)			

RO Admin JPM Summary

- A1a This is a New JPM. The candidate will be told that the plant is at full power and that a "Relief/Safety Valve Leaking" Alarm has just been received. The candidate will be told to respond IAW the ARP. The candidate is expected to determine that SRV-203-3B is leaking by evaluating SRV tailpipe temperature data and enter PNPS 2.2.23, Automatic Depressurization System, Attachment 6. The candidate will then evaluate the SRV 1st and 2nd stage temperature data from the Kaye Computer against SRV baseline data and determine that the 1st stage (Pilot) is leaking. The candidate will then compare the results to trigger points contained in PNPS 2.2.23, Attachment 6, and recommend to the CRS the required action.
- A1b This is a New JPM. The operator will be told that the plant is operating at power, that they are the on-coming BOP, and that a Shift Turnover is in progress in accordance with PNPS 1.3.34, Operations Administrative Policies and Processes. As part of the turnover the operator will be told that the off-going shift successfully completed HPCI Pump and Valve Operability Surveillance and a Monthly Diesel Operability Surveillance. The operator will be directed to conduct a Control Room panel walkdown beginning with panel C903 in accordance with of PNPS 1.3.34, Section 6.7.3.5, Step 7. The operator will be expected to identify that three system alignments are not aligned properly and report these to the CRS.
- A2 This is a new JPM. The initial condition for this JPM is that RHR is in its normal standby lineup. The operator will be told that RHR Pump Discharge Valve MO-1001-16B, is leaking into the "B" RHR quad. The operator will be directed to determine the valves that must be closed to stop the leak using station P&IDs. The operator will also be told to stop the leak while maintaining the "A" loop of RHR Containment Cooling and Sprays operational. A minimum of 4 valves must be identified as needing to be closed. The operator may identify other valves that should be verified closed but with RHR in its normal standby lineup these potential flow paths are normally isolated.
- A3 Radiation Control Not Selected.
- A4 This is a New JPM. The operator will be told that a Site Area Emergency has been declared and that he/she is the designated shift communicator. The operator will be directed to notify the Emergency Response Organization and offsite agencies of the event in accordance with EP-IP-100, Emergency Classification and Notification. Actions will include making site wide announcements, activating the Everbridge Pager system to notify off-site personnel of the event and notifying offsite agencies of the event using the Digital Notification Network. This JPM is time critical.

Administrative Topics Outline (Rev 12/03/13)

Facility: Pilgrim		Dat	e of Examination:	2/2014	
Examination Level:	SRO	Operating Test Number: N14-1		N14-1	
Administrative Topic (see Note)	Type Code*		Describe activity to be p	erformed	
Conduct of Operations (A1a)	M, R	2.1.18 (3.8)	Ability to make clear, logs, records, status b	ooards, and reports.	
		JPM:	Review a Portion of the Control Room Dail Logs		
Conduct of Operations		2.1.2 (4.4)	Knowledge of operato during all modes of pl		
(A1b)	D, R		Determine Reportability and actions associated with a Tech Spec Required Shutdown.		
Equipment Control (A2)	N, R	2.2.12 (4.1)	Knowledge of surveill	ances procedures.	
		JPM:	Review EDG Fuel Oil		
Radiation Control (A3)	N, S	2.3.6 (3.8)	Ability to Approve Rel		
Emergency Procedures/Plan (A4)		JPM: 2.4.44 (4.4)	Evaluate a Liquid Rac Knowledge of emerge action recommendation	ency plan protective	
Frocedures/Flam (A4)	D, S	JPM:	Perform Dose Assessment Using DAPAR Software		
NOTE: All items (5 total) are required for SROs. RO applicants require only 4 items unless they are retaking only the administrative topics, when 5 are required.					
*Type Codes & Criteria: (C)ontrol room, (0) (S)imulator, (2) or Class(R)oom (3) (D)irect from bank (\leq 3 for ROs; \leq 4 for SROs & RO retakes) (2) (N)ew or (M)odified from bank (\geq 1) (3) (P)revious 2 exams (\leq 1; randomly selected) (0)					

SRO Admin JPM Summary

- A1a This is a modified Bank JPM that was used previously on the 2011 NRC Exam. The operator will be told that the plant is at approximately 100% power, and provided with a completed portion of Attachment 1 - OPER-09, 0700 - 1900 (Day Watch) Surveillance Log, of PNPS 2.1.15, Daily Surveillance Log. The operator will be directed to perform a review of Attachment 1, Test #20 through Test #40 and identify any concerns. The operator will be expected to identify specific parameters on three different Tests (23, 31 and 36) that are not within their required or allowable band, and all additional action that must be taken. Two of the three tests that the operator needs to identify as being outside the allowable band are different from the JPM administered during the 2011 NRC Exam.
 - A1b This is a Bank JPM. The operator will be told that the plant is at rated power, that an RHR pump was declared inoperable 5 days ago. The operator will also be informed that an Emergency Diesel was just declared inoperable and that it will take at least 36 hours to repair. The operator will be directed to determine what actions are required. After the operator has determined that a 24 hour plant shutdown is required, the operator will be asked the following questions associated with the plant shutdown and to justify their responses using station procedures:
 - When the Shutdown must be commenced
 - o What constitutes "Initiation of a Plant Shutdown"
 - Any NRC reportability requirements (a 4 hour report is required.)
- A2 This is a New JPM. The operator will be provided with an initial set of plant conditions, and a completed Attachment 3, Emergency Diesel Generators On-Site Fuel Oil Quantity, of PNPS 8.9.1, Emergency Diesel Generator and Associated Emergency Bus Surveillance. The operator will be directed to perform the Acceptance Verification Signoff in accordance with Step 4.1 of PNPS 8.9.1. The operator will be expected to discover that the surveillance has been incorrectly completed, and for the given plant conditions Technical Specification 3.5.F.1, Minimum Low Pressure Cooling and Diesel Generator Availability is NOT met.
- A3 This is a New JPM. The operator will be placed on the simulator with a specific set of plant conditions and given RETDAS-generated Waste Liquid Release Permit for a planned release. The operator will be directed to review Attachment 1, Liquid Radwaste Verification and Discharge, of PNPS 7.9.12, Liquid Effluent Releases with RETDAS, and approve the liquid release; or identify any issues that may prevent its authorization. The operator will be expected to identify that three issues currently exist on the Discharge Permit that will prevent its authorization.

ES-301	Administrative Topics Outline	Form ES-301-1
	(Rev 12/03/13)	

A4 This is a Bank JPM. The operator will be provided with access to a computer with DAPAR software installed, and listing of pertinent plant parameters. The operator will be directed to perform an offsite dose assessment using the DAPAR computer software in accordance with Section 5.2 of EP-IP-300, Offsite Radiological Dose Assessment. The operator will be expected to determine the Protective Action Recommendation from the DAPAR Quick Assessment option.

•

Control Room/In-Plant Systems Outline (REV 12/02/13)

Form ES-301-2

Faci		Date of Examination:	2/2014		
Exar one)		Operating Test No.:	N14-1		
Cont	trol Room Systems [@] (8 for RO; 7 for SRO-I; 2 or 3 for SRO-U, including 1 ESF)				
	System / JPM Title	Type Code*	Safety Function		
S1	201003 Control Rod and Drive Mechanism [A2.02 (3.7/3.8)] Control Rod Exercise	S, D, P, A	1		
S2	202001 Recirculation System [A4.08 (3.2/3.1)] Startup an Idle Recirc Pump with Other Pump Running	S, D	4		
S 3	217000 Reactor Core Isolation Cooling System [A4.03 (3.4/3.3)] Manual Start of RCIC	S, N, A, EN, L	2		
S4	241000 Reactor/Turbine Pressure Regulating System [A2.03 (4.1/4.2)] Establish a Reactor Pressure Band	S, D, A, L	3		
S5	295013 High Suppression Pool Water Temperature [AA1.01 (3.9/3.9)] Place RHR in Torus Cooling	S, D, A	5		
S6	264000 Emergency Generators [A3.04 3.1/3.1)] EMERGENCY DIESEL GENERATOR SURVEILLANCE	S, D, A, EN	6		
S7	261000 Standby Gas Treatment System [A4.07 (3.1/3.2)] Main Stack Dilution Flow Fan Trip	S, N, A	9		
S8	215005 Average Power Range Monitor/Local Power Range Monitor [A4.04 (3.2/3.2)] Bypass a Failed LPRM	S, N	7		
In-P	In-Plant Systems@ (3 for RO; 3 for SRO-I; 3 or 2 for SRO-U)				
P1	295018 Partial or Complete Loss of Component Cooling Water [AA1.01 (3.3/3.4)] Cross-Tie RBCCW Cooling Loops	D, P, R, E	8		

Document in jmd\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\RXZYV7PA\NRC 75-day submittal.doc 2014 Control Room/In-Plant – NRC Exam

P2	P2 212000 Reactor Protection System [A2.01 (3.7/3.9)] Transfer of RPS Bus "A" from Alternate Power to the "A" RPS MG Set		D	7
P3	P3 295003 Partial or Complete Loss of AC Power [AA1.03 (4.1/4.1)] Manual Transfer of B-6		D, E	6
@	@ All RO and SRO-I control room (and in-plant) systems must be different and serve different safety functions all 5 SRO-U systems must serve different safety functions; in-plant systems and functions may overlap those tested in the control room.			
	* Type Codes Criteria for RO / SRO-I / SRO-U			υ
	ernate path ntrol room	4-6 Required For	RO, 6 Actual	
(D)irect from bank (E)mergency or abnormal in-plant (EN)gineered Safety Feature (L)ow-Power / Shutdown (N)ew or (M)odified from bank including 1(A) (P)revious 2 exams (R)CA (S)imulator		≤ 9 Required for F ≥ 1 Required for F N/A for RO ≥ 1 Required for F ≥ 2 Required for F ≤ 3 Randomly Sel ≥ 1 Required for F	RO, 2 Actual RO, 2 Actual RO, 3 Actual ected for RO, 2 Ac	tual

JPM Summary

- JPM S1 This is a Bank JPM previously used on the 2011 NRC Exam. The operator will be told that the plant is at 100% power, and that the Weekly Control Rod exercising is to be performed in accordance with PNPS 8.3.2, Control Rod Exercise. The operator will be directed to commence the weekly control rod exercising in accordance with Section 8.1 of PNPS 8.3.2. When a coupling check is performed on a rod being withdrawn, the rod will go into an overtravel condition (Alternate Path). The operator will be expected to recouple the rod per offnormal procedure 2.4.11, Control Rod Positioning Malfunctions.
- JPM S2 This is a Bank JPM. The operator will be told that the "A" Recirc pump tripped two days ago, that the reactor was placed into single loop operation, that the problem has been repaired and post work tested, and that preparations to restart the pump are underway. The operator will be provided with a set of initial plant conditions and a mostly completed OPER-19 (Reactor Recirculation Pump Start Checklist). The operator will be directed to start the "A" recirc pump IAW section 7.4, of PNPS 2.2.84 (Startup of Reactor Recirculation Pump(s) (Reactor Pressurized and/or at Power Conditions)), and to match speeds with the operating pump. The operator will be expected to start the "A" Recirc pump on the first attempt and then match speeds with the "B" Recirc pump pump.
- JPM S3 This is a New JPM. The operator will be placed in a situation that requires the manual startup of Reactor Core Isolation Cooling System (RCIC). The operator will be directed to place RCIC in the Injection Mode and raise water level in

ES-301	Control Room/In-Plant Systems Outline	Form ES-301-2
	(REV 12/02/13)	

accordance with PNPS 2.2.22.5, RCIC Injection and Pressure Control, Attachment 1, RCIC Injection. The operator will be expected to use Section 1.0, Injection, of Attachment 1 and discover that the RCIC System Injection Mode pushbutton fails to start the system (**Alternate Path**). The operator will be expected to go to Section 2.0, Manual Injection, of Attachment 1 and manually start the RCIC System.

- JPM S4 This is a modified Bank JPM. The operator will be told that the the plant is shutdown following a manual Reactor scram, that all control rods are inserted, that the EPR is controlling Reactor pressure at ≈940 psig, and that another operator is controlling Reactor water level in the normal band. The operator will be directed to take control of Reactor pressure with the Bypass Valve Opening Jack (BVOJ) and establish a pressure band between 800 and 950 psig in the lower part of the band in accordance with Section 4.2, RPV Cooldown and Depressurization Under Emergency Conditions, of PNPS 5.3.35.2, Operations Emergency and Transient Response Strategies. The operator will be expected to use the BVOJ to establish and maintain a Reactor pressure band between 800 to 950 psig. When this pressure is established a new pressure band will be directed. During the establishment of this reactor pressure one Bypass Valve will fail fully open (Alternate Path). The operator will be expected to respond to this event using Steps 4.3.2 of PNPS 2.4-47, Turbine Control System Malfunctions. The use of the BVOJ Control Switch and the Vacuum Trip Monitor (Trip#2) Pushbutton will not close the Bypass Valve, and the operator will be required to close the MSIVs to limit the cooldown.
- JPM S5 This is a Bank JPM. The operator will be told that the plant is at 100% power, Torus temperature is >80°F, and that RBCCW cooling has been maximized by another operator. The operator will be directed to maximize Torus cooling by initially placing the "A" RHR loop in torus cooling in accordance with Attachment 14, Maximize Torus Cooling Checklist, of PNPS 5.3.35.1, Transient Response Hardcards for Operating Crews. The operator will be expected to align the RHR System for Torus Cooling. When the "A" RHR Pump is started the operator will observe indications that there is potential blockage of the ECCS Suction Strainers (**Alternate Path**). The operator will be expected to address PNPS 2.2.19.5, RHR Modes of Operation for Transients, Attachment 8, Mitigative Actions for Potential ECCS Suction Strainer Blockage, and determine that the indications are associated with blockage of the ECCS Suction Strainers.
- JPM S6 This is a Bank JPM. The operator will be told that the reactor is at power with all house loads aligned to the Unit Aux Transformer. The monthly operability run of the "A" EDG is in progress. The Operator parallelthe EDG and commence the EDG operability run. As KW loading is increased, the EDG governor will become unstable as indicated by KW swings on the engine (Alternative Path). The operator is expected to recognize indications of unstable operation and IAW the precautions of procedure 8.9.1 unload the engine and open its output breaker.
- JPM S7 This is a New JPM. The operator will directed to respond to a C7 Misc Alarm on a Control Room back panel. The operator will discover that the "A" Main Stack Dilution Flow Fan has tripped and diagnose that the "B" Fan failed to start. IAW Document in jmd\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\RXZYV7PA\NRC 75-day submittal.doc 2014 Control Room/In-Plant – NRC Exam

_		
ES-301	Control Room/In-Plant Systems Outline	Form ES-301-2
	(REV 12/02/13)	

the ARP, the operator is expected to start the "B" fan. Shortly thereafter the "B" Fan will also trip and the operator is expected to enter PNPS 2.4.45, Loss/Reduction of Main Stack Dilution Flow at Stack Building (**Alternate Path**). The operator will be expected to execute the actions of PNPS 2.4.45, and manually start one train of Standby Gas Treatment in accordance with PNPS 2.2-50, Standby Gas Treatment.

- JPM S8 This is a New JPM. The operator will be told that with the plant operating at power an LPRM failure occurred; and that the crew is implementing PNPS 2.4.38, LPRM Failure. The operator will be directed to bypass LPRM 20-29B by performing Attachment 4 of PNPS 2.2.66, Local Power Range Monitoring Systems. The operator will be expected to complete Steps 1-10 of Attachment 4 of PNPS 2.2.66.
- JPM P1 This is a Bank JPM previously used on the 2009 NRC Exam. The operator will be told that the plant was operating at 100% power when bus A5 locked out due to a ground fault and as a result, the RBCCW loop 'A' pumps have been lost. The operator will also be told that Off-Normal procedure 2.4.A5, Loss of Electrical Bus A5, has been entered. The operator will be directed to Cross-tie Reactor Building Closed Cooling Water with the 'B' loop supplying, in accordance with PNPS 2.4.42, Loss of RBCCW, Attachment 5, RBCCW Loop Crosstie. The operator will be expected to cross-tie the 'A' and 'B' Reactor Building Closed Cooling Water loops.
- JPM P2 This is a Bank JPM. The operator will be told that RPS "A" was transferred to its alternate power supply to support repairs to the "A" RPS MG set, that repairs have been completed and the "A" RPS MG set has been restarted, and that RPS "A" needs to be transferred back to its normal supply. The operator will be directed to transfer RPS bus "A" back to "A" RPS MG Set in accordance with PNPS 2.2.79, Reactor Protection System. The operator will be expected to complete Section 7.1.4[1] of PNPS 2.2.79.
- JPM P3 This is a Bank JPM. The operator will be told that with the plant operating at 100% power, a momentary loss of B1 has occurred, that B-6 failed to transfer to Bus B-2, and that PNPS 2.4.B6, Loss of Bus B6, has been entered. The operator will be directed to transfer B6 to B1 in accordance with PNPS 2.4.B6. The operator will be expected to transfer B6 to B1 in accordance with Section 4.2.1 of PNPS 2.4.B6.

Facil	ing in a grant	Date of Examination:	2/2014		
Exam Level (circle RO SRO-I SRO-U Operating Test No.:					
Cont	trol Room Systems [@] (8 for RO; 7 for SRO-I; 2 or 3 for SRO-U, including 1 ESF)				
	System / JPM Title	Type Code*	Safety Function		
S1	201003 Control Rod and Drive Mechanism [A2.02 (3.7/3.8)] Control Rod Exercise	S, D, P, A	1		
S2	Not Used for SRO-I				
S3	217000 Reactor Core Isolation Cooling System [A4.03 (3.4/3.3)] Manual Start of RCIC	S, N, A, EN, L	2		
S4	241000 Reactor/Turbine Pressure Regulating System [A2.03 (4.1/4.2)] Establish a Reactor Pressure Band	S, D, A, L	3		
S5	295013 High Suppression Pool Water Temperature [AA1.01 (3.9/3.9)] Place RHR in Torus Cooling	S, D, A	5		
S6	264000 Emergency Generators [A3.04 3.1/3.1)] EMERGENCY DIESEL GENERATOR SURVEILLANCE	S, D, A, EN	6		
S7	261000 Standby Gas Treatment System [A4.07 (3.1/3.2)] Main Stack Dilution Flow Fan Trip	S, N, A	9		
S8	215005 Average Power Range Monitor/Local Power Range Monitor [A4.04 (3.2/3.2)] Bypass a Failed LPRM	S, N	7		
In-P	In-Plant Systems@ (3 for RO; 3 for SRO-I; 3 or 2 for SRO-U)				
P1	295018 Partial or Complete Loss of Component Cooling Water [AA1.01 (3.3/3.4)] Cross-Tie RBCCW Cooling Loops	D, P, R, E	8		

Document in jmd\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\RXZYV7PA\NRC 75-day submittal.doc 2014 Control Room/In-Plant – NRC Exam

P2	P2 212000 Reactor Protection System [A2.01 (3.7/3.9)] Transfer of RPS Bus "A" from Alternate Power to the "A" RPS MG Set		D	7
P3	295003 Partial or Complete Loss of AC Power [Manual Transfer of B-6	[AA1.03 (4.1/4.1)]	D, E	6
All RO and SRO-I control room (and in-plant) systems must be different and serve different s all 5 SRO-U systems must serve different safety functions; in-plant systems and functions ma those tested in the control room.				
	* Type Codes Criteria for RO / SRO-I / SRO-U			U
(C)o (D)ir	ernate path ntrol room ect from bank perception or abnormal in plant	4-6 Required For ≤ 8 Required for S	SRO-I, 7 Actual	
(E)mergency or abnormal in-plant (EN)gineered Safety Feature (L)ow-Power / Shutdown (N)ew or (M)odified from bank including 1(A) (P)revious 2 exams (R)CA (S)imulator		≥ 1 Required for S N/A for SRO-I ≥ 1 Required for S ≥ 2 Required for S ≤ 3 Randomly Sel ≥ 1 Required for S	GRO-I, 2 Actual GRO-I, 3 Actual ected for SRO-I, 2	Actual

JPM Summary

- JPM S1 This is a Bank JPM previously used on the 2011 NRC Exam. The operator will be told that the plant is at 100% power, and that the Weekly Control Rod exercising is to be performed in accordance with PNPS 8.3.2, Control Rod Exercise. The operator will be directed to commence the weekly control rod exercising in accordance with Section 8.1 of PNPS 8.3.2. When a coupling check is performed on a rod being withdrawn, the rod will go into an overtravel condition (**Alternate Path**). The operator will be expected to recouple the rod per offnormal procedure 2.4.11, Control Rod Positioning Malfunctions.
- JPM S2 Not Used For SRO-I
- JPM S3 This is a New JPM. The operator will be placed in a situation that requires the manual startup of Reactor Core Isolation Cooling System (RCIC). The operator will be directed to place RCIC in the Injection Mode and raise water level in accordance with PNPS 2.2.22.5, RCIC Injection and Pressure Control, Attachment 1, RCIC Injection. The operator will be expected to use Section 1.0, Injection, of Attachment 1 and discover that the RCIC System Injection Mode pushbutton fails to start the system (Alternate Path). The operator will be expected to go to Section 2.0, Manual Injection, of Attachment 1 and manually start the RCIC System.
- JPM S4 This is a modified Bank JPM. The operator will be told that the the plant is shutdown following a manual Reactor scram, that all control rods are inserted,

Document in jmd\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\RXZYV7PA\NRC 75-day submittal.doc 2014 Control Room/In-Plant – NRC Exam

ES-301

that the EPR is controlling Reactor pressure at ≈940 psig, and that another operator is controlling Reactor water level in the normal band. The operator will be directed to take control of Reactor pressure with the Bypass Valve Opening Jack (BVOJ) and establish a pressure band between 800 and 950 psig in the lower part of the band in accordance with Section 4.2, RPV Cooldown and Depressurization Under Emergency Conditions, of PNPS 5.3.35.2, Operations Emergency and Transient Response Strategies. The operator will be expected to use the BVOJ to establish and maintain a Reactor pressure band between 800 to 950 psig. When this pressure is established a new pressure band will be directed. During the establishment of this reactor pressure one Bypass Valve will fail fully open (Alternate Path). The operator will be expected to this event using Steps 4.3.2 of PNPS 2.4-47, Turbine Control System Malfunctions. The use of the BVOJ Control Switch and the Vacuum Trip Monitor (Trip#2) Pushbutton will not close the Bypass Valve, and the operator will be required to close the MSIVs to limit the cooldown.

- JPM S5 This is a Bank JPM. The operator will be told that the plant is at 100% power, Torus temperature is >80°F, and that RBCCW cooling has been maximized by another operator. The operator will be directed to maximize Torus cooling by initially placing the "A" RHR loop in torus cooling in accordance with Attachment 14, Maximize Torus Cooling Checklist, of PNPS 5.3.35.1, Transient Response Hardcards for Operating Crews. The operator will be expected to align the RHR System for Torus Cooling. When the "A" RHR Pump is started the operator will observe indications that there is potential blockage of the ECCS Suction Strainers (**Alternate Path**). The operator will be expected to address PNPS 2.2.19.5, RHR Modes of Operation for Transients, Attachment 8, Mitigative Actions for Potential ECCS Suction Strainer Blockage, and determine that the indications are associated with blockage of the ECCS Suction Strainers.
- JPM S6 This is a Bank JPM. The operator will be told that the reactor is at power with all house loads aligned to the Unit Aux Transformer. The monthly operability run of the "A" EDG is in progress. The Operator parallelthe EDG and commence the EDG operability run. As KW loading is increased, the EDG governor will become unstable as indicated by KW swings on the engine (Alternative Path). The operator is expected to recognize indications of unstable operation and IAW the precautions of procedure 8.9.1 unload the engine and open its output breaker.
- JPM S7 This is a New JPM. The operator will directed to respond to a C7 Misc Alarm on a Control Room back panel. The operator will discover that the "A" Main Stack Dilution Flow Fan has tripped and diagnose that the "B" Fan failed to start. IAW the ARP, the operator is expected to start the "B" fan. Shortly thereafter the "B" Fan will also trip and the operator is expected to enter PNPS 2.4.45, Loss/Reduction of Main Stack Dilution Flow at Stack Building (**Alternate Path**). The operator will be expected to execute the actions of PNPS 2.4.45, and manually start one train of Standby Gas Treatment in accordance with PNPS 2.2-50, Standby Gas Treatment.

JPM S8 This is a New JPM. The operator will be told that with the plant operating at power an LPRM failure occurred; and that the crew is implementing PNPS Document in jmd\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\RXZYV7PA\NRC 75-day submittal.doc

ES-301	Control Room/In-Plant Systems Outline Form ES-301-2 (REV 12/02/13)
	2.4.38, LPRM Failure. The operator will be directed to bypass LPRM 20-29B by performing Attachment 4 of PNPS 2.2.66, Local Power Range Monitoring Systems. The operator will be expected to complete Steps 1-10 of Attachment 4 of PNPS 2.2.66.
JPM P1	This is a Bank JPM previously used on the 2009 NRC Exam. The operator will be told that the plant was operating at 100% power when bus A5 locked out due to a ground fault and as a result, the RBCCW loop 'A' pumps have been lost. The operator will also be told that Off-Normal procedure 2.4.A5, Loss of Electrical Bus A5, has been entered. The operator will be directed to Cross-tie Reactor Building Closed Cooling Water with the 'B' loop supplying, in accordance with PNPS 2.4.42, Loss of RBCCW, Attachment 5, RBCCW Loop Crosstie. The operator will be expected to cross-tie the 'A' and 'B' Reactor Building Closed Cooling Water been to cross-tie the 'A' and 'B' Reactor Building Closed Cooling Water been to cross-tie the 'A' and 'B' Reactor Building Closed Cooling Water been to cross-tie the 'A' and 'B' Reactor Building Closed Cooling Water loops.
JPM P2	This is a Bank JPM. The operator will be told that RPS "A" was transferred to its alternate power supply to support repairs to the "A" RPS MG set, that repairs have been completed and the "A" RPS MG set has been restarted, and that RPS "A" needs to be transferred back to its normal supply. The operator will be directed to transfer RPS bus "A" back to "A" RPS MG Set in accordance with PNPS 2.2.79, Reactor Protection System. The operator will be expected to complete Section 7.1.4[1] of PNPS 2.2.79.
JPM P3	This is a Bank JPM. The operator will be told that with the plant operating at 100% power, a momentary loss of B1 has occurred, that B-6 failed to transfer to

JPM P3 This is a Bank JPM. The operator will be told that with the plant operating at 100% power, a momentary loss of B1 has occurred, that B-6 failed to transfer to Bus B-2, and that PNPS 2.4.B6, Loss of Bus B6, has been entered. The operator will be directed to transfer B6 to B1 in accordance with PNPS 2.4.B6. The operator will be expected to transfer B6 to B1 in accordance with Section 4.2.1 of PNPS 2.4.B6.

Control Room/In-Plant Systems Outline (REV 12/02/13)

Form ES-301-2

Faci	ing in the second s	Date of Examination:	2/2014	
Exar one)		Operating Test No.:	N14-1	
Cont	rol Room Systems [@] (8 for RO; 7 for SRO-I; 2 or 3 for SRO-U, including 1 ESF)			
	System / JPM Title	Type Code*	Safety Function	
S1	Not Used for SRO-U			
S2	Not Used for SRO-U			
S3	Not Used for SRO-U			
S4	241000 Reactor/Turbine Pressure Regulating System [A2.03 (4.1/4.2)] Establish a Reactor Pressure Band	S, D, A, L	3	
S5	Not Used for SRO-U			
S6	264000 Emergency Generators [A3.04 3.1/3.1)]	S, D, A, EN	6	
	EMERGENCY DIESEL GENERATOR SURVEILLANCE			
S7	261000 Standby Gas Treatment System [A4.07 (3.1/3.2)]	S, N, A	9	
	Main Stack Dilution Flow Fan Trip	0, 11, 7	3	
S8	Not Used for SRO-U			
In-P	lant Systems@ (3 for RO; 3 for SRO-I; 3 or 2 for SRO-U)			
P1	295018 Partial or Complete Loss of Component Cooling Water [AA1.01 (3.3/3.4)]	D, P, R, E	8	
	Cross-Tie RBCCW Cooling Loops			
P2	212000 Reactor Protection System [A2.01 (3.7/3.9)]			
	Transfer of RPS Bus "A" from Alternate Power to the "A" RPS MG Set	D	7	
P3	Not Used for SRO-U			
@	@ All RO and SRO-I control room (and in-plant) systems must be different and serve different safety functions; all 5 SRO-U systems must serve different safety functions; in-plant systems and functions may overlap those tested in the control room.			

Document in jmd\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\RXZYV7PA\NRC 75-day submittal.doc 2014 Control Room/In-Plant – NRC Exam

* Type Codes	Criteria for RO / SRO-I / SRO-U
(A)Iternate path (C)ontrol room	2-3 Required For SRO-U, 3 Actual
(D)irect from bank	\leq 4 Required for SRO-U, 4 Actual
(E)mergency or abnormal in-plant	≥ 1 Required for SRO-U, 1 Actual
(EN)gineered Safety Feature (control room system)	≥ 1 Required for SRO-U, 1 Actual
(L)ow-Power / Shutdown	≥ 1 Required for SRO-U, 1 Actual
(N)ew or (M)odified from bank including 1(A)	≥ 1 Required for SRO-U, 1 Actual
(P)revious 2 exams	≤ 2 Randomly Selected for SRO-U, 1 Actual
(R)CA	≥ 1 Required for SRO-U, 1 Actual
(S)imulator	

JPM Summary

- JPM S1 Not Used For SRO-U
- JPM S2 Not Used For SRO-U
- JPM S3 Not Used For SRO-U
- JPM S4 This is a modified Bank JPM. The operator will be told that the the plant is shutdown following a manual Reactor scram, that all control rods are inserted, that the EPR is controlling Reactor pressure at ≈940 psig, and that another operator is controlling Reactor water level in the normal band. The operator will be directed to take control of Reactor pressure with the Bypass Valve Opening Jack (BVOJ) and establish a pressure band between 800 and 950 psig in the lower part of the band in accordance with Section 4.2, RPV Cooldown and Depressurization Under Emergency Conditions, of PNPS 5.3.35.2, Operations Emergency and Transient Response Strategies. The operator will be expected to use the BVOJ to establish and maintain a Reactor pressure band between 800 to 950 psig. When this pressure is established a new pressure band will be directed. During the establishment of this reactor pressure one Bypass Valve will fail fully open (Alternate Path). The operator will be expected to respond to this event using Steps 4.3.2 of PNPS 2.4-47, Turbine Control System Malfunctions. The use of the BVOJ Control Switch and the Vacuum Trip Monitor (Trip#2) Pushbutton will not close the Bypass Valve, and the operator will be required to close the MSIVs to limit the cooldown.
- JPM S5 Not Used For SRO-U
- JPM S6 This is a Bank JPM. The operator will be told that the reactor is at power with all house loads aligned to the Unit Aux Transformer. The monthly operability run of the "A" EDG is in progress. The Operator parallelthe EDG and commence the EDG operability run. As KW loading is increased, the EDG governor will become unstable as indicated by KW swings on the engine (Alternative Path). The operator is expected to recognize indications of unstable operation and IAW the precautions of procedure 8.9.1 unload the engine and open its output breaker.

Document in jmd\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\RXZYV7PA\NRC 75-day submittal.doc 2014 Control Room/In-Plant – NRC Exam

ES-301	Control Room/In-Plant Systems Outline	Form ES-301-2
	(REV 12/02/13)	

- JPM S7 This is a New JPM. The operator will directed to respond to a C7 Misc Alarm on a Control Room back panel. The operator will discover that the "A" Main Stack Dilution Flow Fan has tripped and diagnose that the "B" Fan failed to start. IAW the ARP, the operator is expected to start the "B" fan. Shortly thereafter the "B" Fan will also trip and the operator is expected to enter PNPS 2.4.45, Loss/Reduction of Main Stack Dilution Flow at Stack Building (Alternate Path). The operator will be expected to execute the actions of PNPS 2.4.45, and manually start one train of Standby Gas Treatment in accordance with PNPS 2.2-50, Standby Gas Treatment.
- JPM S8 Not Used For SRO-U
- JPM P1 This is a Bank JPM previously used on the 2009 NRC Exam. The operator will be told that the plant was operating at 100% power when bus A5 locked out due to a ground fault and as a result, the RBCCW loop 'A' pumps have been lost. The operator will also be told that Off-Normal procedure 2.4.A5, Loss of Electrical Bus A5, has been entered. The operator will be directed to Cross-tie Reactor Building Closed Cooling Water with the 'B' loop supplying, in accordance with PNPS 2.4.42, Loss of RBCCW, Attachment 5, RBCCW Loop Crosstie. The operator will be expected to cross-tie the 'A' and 'B' Reactor Building Closed Cooling Water loops.
- JPM P2 This is a Bank JPM. The operator will be told that RPS "A" was transferred to its alternate power supply to support repairs to the "A" RPS MG set, that repairs have been completed and the "A" RPS MG set has been restarted, and that RPS "A" needs to be transferred back to its normal supply. The operator will be directed to transfer RPS bus "A" back to "A" RPS MG Set in accordance with PNPS 2.2.79, Reactor Protection System. The operator will be expected to complete Section 7.1.4[1] of PNPS 2.2.79.
- JPM P3 Not Used For SRO-U

Scenario Event Description Pilgrim 2014 NRC Scenario 1 ES-D1

Facility:	PILGF	RIM	Scenario No.: 1	Op Test No.: 2014 NRC							
Examiners:			Operators	s: SRO -							
-			<u> </u>	RO -							
-				BOP -							
Initial Conditior	ns: • • •	Open LP Execute L Place RB Adjust Sta	NRC Scenario 1 P Steps labeled "Initial Co CCW Pump "A" in PTL and irtup FRV output to 30%	Steps labeled "Initial Condition 1" AND "Initial Condition 2" CW Pump "A" in PTL and hang Danger Tag on CS							
Turnover:	• • • • • •	The Reac Rx power Reactor P control is of RPV level Current R Procedure RBCCW F pumps are The runnin Directions	on the EPR. control is via the Startup F od position is TBD 2.1.1 is complete through Pump "A" is OOS and is no operable and a Tracking ng Steam Packing Exhaust	up he IRMs on Range 9. 5 bypass valve open. RPV pressure FRV step [92] t available. All other RBCCW							
Critical Tasks:		through an 01 prior to During failu methods co Shutdown When a pri through an	un-isolable break, scram to commencing Emergency E ure to scram conditions, inso ontained within 5.3.23 and under all conditions mary system is discharging un-isolable break, execute when max safe operating	g into the secondary containment he reactor per EOP-04 and EOP- Depressurization. Sert control rods using one or more / or EOP-02 to achieve Rx. g into the secondary containment e Emergency Depressurization per values are exceeded in two or							
Event Malf. N	No.	Event	Eve								
No.		Type*		cription							
1. N/A		N - BOP N - SRO	Shift Steam Packing Exha	aust Blowers IAW 2.2.93, section							
2. N/A		R – RO R - SRO	Power ascension per Pla control rod withdraw.	nt Startup Procedure 2.1.1, using							

3.	RD09	C – RO C - SRO	During initial rod withdraw, Stuck Rod. Crew responds IAW PNPS 2.4.11.1. Rod un-sticks when drive pressure is raised 150 pounds.
4.	МТ09	C – BOP C - SRO	Steam Seal Pressure Regulator fails closed. BOP responds IAW ARP C2C-A7 and establishes manual control using the bypass valve and unloading valve as required.
5.	RP09 (A) NM20"C"	I/C – ALL TS - SRO	RPS MG set "A" trip. Crew shifts RPS "A" to the backup power supply IAW PNPS 2.2.79. APRM "C" fails upscale when the bus is re-energized. RO diagnoses APRM failure bypasses APRM, and resets RPS as directed by the SRO. BOP resets Rad Monitors. SRO consults T.S. Table 3.1.1 and FSAR Appendix B, Table 3.2.C.1.,for the APRM failure (Tracking LCO).
6.	ED05	TS - SRO	Loss of 23 KV line. TS 3.9.B.1
7.	PC02 (25% initially, 100% post scram) PC13 Overrides to prevent manual closure of RWCU 2 5 & 80 valves	M - All	Un-isolable RWCU leak that leads to high area temperatures requires a manual scram and eventual emergency depressurization. EOP-01, EOP-04 and EOP-17.
8.	RD12 at 100% for 4	C – RO C - SRO	Incomplete scram. 4 control rods fail to insert but can be inserted manually IAW PNPS 5.3.23, Alternate Rod
-	withdrawn		Insertion. Transition to EOP-02 required.
*		R)eactivity,	I)nstrument, (C)omponent, (M)ajor

ES-D1

Scenario Summary:

The plant is at approximately 4% power with a reactor plant startup in progress following a two day outage. Procedure 2.1.1, Startup from Shutdown is complete up through step [92]. RBCCW pump "A" is out of service. The running Steam Packing Exhaust Blower has been reported as vibrating excessively. The directions to the shift are to shift Steam Packing Exhaust Blowers IAW PNPS 2.2.93, Main Condenser Vacuum System and then continue the plant startup IAW PNPS 2.1.1.

After assuming the watch, the BOP will shift Steam Packing Exhaust Blowers as directed. The RO will commence control rod withdraw and raise power in preparation for transferring the Reactor Mode Switch to Run. While raising power, the RO will encounter a control rod that cannot be moved with normal drive pressure. The crew is expected to respond IAW PNPS 2.4.11.1, CRD System Malfunctions. The RO is expected to increase drive water pressure in 50 pound increments and attempt to move the rod at each increment. The rod will move when drive pressure has been increased by 150 pounds.

Then the Steam Seal Pressure Regulator will fail closed. The BOP is expected to diagnose the failure and respond IAW ARP C2C-A7, Steam Seal Header Press LO and take manual control of header pressure via the regulator bypass valve and steam seal unloading valve. The crew may also refer to PNPS 2.4.36, Lowering Condenser Vacuum.

Next the crew will be informed that a bearing problem is indicated on the "A" RPS MG set. As the crew prepares to secure the MG set, the MG set will trip causing a ½ scram and loss of power to various Nuclear Instruments and Radiation Monitors. The crew is expected to diagnose the failure and direct the field operator to place RPS "A" on the backup power supply IAW PNPS 2.2.79, Reactor Protection System. When the bus is re-energized, APRM "C" will fail upscale. The RO is expected to diagnose the failure, bypass the APRM as directed and reset the ½ scram. The SRO is expected to consult T.S. Table 3.1.1 and FSAR Appendix B, Table 3.2.C.1., conclude that the minimum number of operable APRMs is met and enter a Tracking LCO. The BOP is expected to reset the rad monitors that were impacted by the power loss.

Then the 23KV Circuit Switcher supplying the Shutdown Transformer will trip. The SRO is expected to declare the Shutdown Transformer Inop, refer to TS 3.9.B.1 and declare a 7 day LCO.

The scenario ending event begins when a primary system leak occurs in the secondary containment from the RWCU system. The leak will result in rising area temperatures. The crew is expected to enter EOP-04, Secondary Containment Control, when area temperatures exceed EOP-04 entry conditions. The automatic PCIS isolation will fail and various valve failures will prevent manual isolation. Before any area temperature reaches its max safe operating value, the crew is expected to enter EOP-01 RPV Control and insert a manual scram (**Critical Task #1**). Four control rods will fail to insert following the scram. The SRO is expected to transition to EOP-02, RPV Control, Failure to Scram. Boron injection is not expected. The RO is expected to manually insert the

control rods IAW PNPS 5.3.23, Alternate Rod Insertion and achieve reactor shutdown status under all conditions (**Critical Task #2**).

The crew is expected to perform an aggressive cooldown IAW PNPS 5.3.35.2, Operations Emergency and Transient Response Strategies and rapidly lower pressure to 450 to 550 psig in order to reduce the effects of the leak. However area temperatures will continue to rise. The crew may anticipate an Emergency Depressurization IAW EOP-01 and open all turbine bypass valves. Regardless of any mitigating action, area temperatures will exceed their max safe operating values in two or more areas of the secondary containment. The crew is then expected to enter EOP-17, Emergency RPV Depressurization, open all SRVs and depressurize the reactor (**Critical Task #3**).

The scenario will be terminated when all SRVs have been opened, and RPV water level has been stabilized

Scenario Event Description Pilgrim 2014 NRC Scenario 2 ES-D1

Facility:	PILGRIM	Scenario No.: 2	Op Test No.: 2014 NRC
Examiners:		Operators	: SRO - RO - BOP -
Initial Conditio	 Increase power Manually isolate Verify both RW Place "B" CS point Open LP NRC Structure Conditions" Bypass APRM * Hang Caution T 	to ~ 55% e RWCU CU filters are on hold ump in PTL and dange	< compared by the second s
Turnover:	 condenser back The backwash I returned to a not "B" CS pump is charging motor. The plant is on breaker repair. APRM "C" has to operable and a RWCU is isolate last shift. The e Directions to the Orections to the System, sector RWC System, sector Place "A" RV backwashed or Restore powrection of the System of the	kwash. has been completed a prmal lineup IAW PNF s OOS to allow for rep day 2 of a 7 day LCO failed upscale and is to Tracking LCO has be ed following an equipe quipment failure has to e shift are to: CU to service IAW PN tion 7.2 commencing a VCU Filter Demin in so later in the shift.	IAW TS 3.5.A.2 due to the CS oppassed. All other APRMs are een initiated. ment failure during a surveillance been repaired. IPS 2.2.83, Reactor Cleanup at step [6]. ervice. "B" Filter Demin will be S 2.1.14, Station Power Changes,
Critical Tasks	 When RPV level Emergency Dep When systems r 	cannot be restored a ressurize the reactor.	com pressure exceeds 16 psig. and maintained >-150 inches, pre cooling do not automatically ems for injection.

Scenario Event Description Pilgrim 2014 NRC Scenario 2

Event	Malf. No.	Event	Event Description
No.		Type*	
1.	N/A	N - BOP N - SRO	BOP restores RWCU to service IAW PNPS 2.2.83, Reactor Cleanup System, section 7.2 commencing at step [6].
2.	N/A	R – RO R - SRO	RO commences power ascension using Recirc flow control IAW PNPS 2.1.14, Station Power Changes, section 7.3.
3.	Ovrd for HPCI Manual Initiation PB Ovrd for HPCI AOP	C – BOP C – SRO TS - SRO	HPCI inadvertent initiation. BOP secures HPCI IAW 2.4.35, Inadvertent Initiation of CSCS. SRO refers to TS 3.5.C.3 and declares a 24 hour Cold S/D LCO. Note: After the BOP places the HPCI AOP in PTL, the switch is to be overridden in the PTL position.
4.	RD05 (A) RD08 for rod 10-39	C – RO C – SRO TS - SRO	CRD Pump trip. RO starts standby pump IAW 2.4.4, Loss of CRD Pumps. Control Rod Accumulator Trouble alarm annunciates prior to pump start. Alarm does not clear after the pump start. After investigation the crew determines that the accumulator cannot be recharged. SRO declares the accumulator Inop, refers to TS 3.3.D and declares the associated control rod "Slow".
5.	CW03 (A) Ovrd for "B" pump control switch in STOP	C – All	Running TBCCW trips. Standby pump fails to auto start and cannot be started manually. Crew responds IAW PNPS 2.4.41, Loss of TBCCW. RO manually scrams and performs scram actions. BOP trips all feed and condensate pumps, closes MSIVs and injects with RCIC.
6.	PC01 ramped to ~ 2200 gpm over 15 min.	M – All	Small break LOCA that requires entry into EOP-01 and EOP-03. Break overcomes ability of CRD and RCIC to maintain level. Emergency Depressurization required to allow low pressure ECCS injection. Drywell sprays will be required.
7.	CS01 (A) RH04 (B)	C – BOP	CS pump "A" trips when pump starts to inject following opening of CS injection valve. LPCI injection valve fails to auto open when RPV pressure lowers to < 400 psig. Operator action required to manually open the valve and inject with RHR to establish adequate core cooling. (I)nstrument, (C)omponent, (M)ajor

Scenario Summary:

RX power is approximately 55% following a power reduction for a main condenser backwash. The backwash has been completed and the seawater system has been returned to a normal lineup IAW PNPS 2.2.94.5.

The "B" CS pump is OOS to allow for replacement of the pump's breaker charger motor. The plant is on day 2 of a 7 day LCO IAW TS 3.5.A.2 due to the CS breaker repair. APRM "C" has failed upscale and is bypassed. All other APRMs are operable. RWCU is isolated following an equipment failure during a surveillance last shift. The equipment failure has been repaired.

The directions to the shift are to restore RWCU service IAW PNPS 2.2.83, Reactor Cleanup System, section 7.2 commencing at step [6] and then restore power to 100% IAW PNPS 2.1.14, Station Power Changes.

After assuming the watch, the BOP will restore RWCU to service IAW PNPS 2.2.83. After RWCU is in service the RO will commence a power ascension by raising Recirc Flow IAW PNPS 2.1.14 section 7.5.

During the power ascension, HPCI will inadvertently start and inject. The crew is expected to respond IAW 2.4.35, Inadvertent Initiation of CSCS. The BOP will be required to secure HPCI and complete subsequent actions such as assisting in determining whether any fuel damage has occurred. The RO may be directed to reduce power during the transient. After stabilizing the plant the SRO is expected to refer to Tech Spec TS 3.5.C.3 and declare a 24 hour Cold S/D LCO due to HPCI being OOS in conjunction with CS "B" being OOS.

Next, the running CRD Pump trips. The RO is expected to enter PNPS 2.4.4, Loss of CRD Pumps and start the standby pump. A Control Rod Accumulator Trouble alarm annunciates prior to the pump start. The alarm does not clear after restoring charging water pressure. Following investigation the crew will determine that the accumulator cannot be recharged. The SRO is expected to declare the accumulator Inop, refer to TS 3.3.D and declare the associated control rod "Slow". Alternatively the SRO may declare the associated control rod Inop and initiate action to fully insert the rod and disarm the rod but this is not expected.

The scenario ending event begins with a trip of the running TBCCW pump. The standby pump fails to auto start and cannot be started manually. The crew is expected to respond IAW PNPS 2.4.41, Loss of TBCCW. The RO is expected to manually scram the reactor and perform required scram actions. The BOP is expected to trip all feed and condensate pumps, close the MSIVs, and inject with RCIC. RPV pressure will be controlled using SRVs. Entry conditions for EOP-01, RPV Control will be exceeded.

The transient results in a reactor coolant leak that progresses in size over time. Drywell pressure will exceed the entry conditions of EOP-01 and EOP-03, Primary Containment Control. EOP-03 will direct the use of Torus and Drywell sprays (**Critical Task #1**).

IAW PNPS 5.3.35.2, Operations Emergency and Transient Response Strategies, the crew is expected to rapidly lower pressure to 450 to 550 psig in order to reduce the effects of the leak. Regardless of any mitigating action, RPV level will continue to lower and drop below the Top of

the Active Fuel (TAF). The crew is then expected to enter EOP-17, Emergency RPV Depressurization, open all SRVs and depressurize the reactor in order to allow the Low Pressure ECCS to restore vessel level (**Critical Task #2**).

When RPV pressure lowers below 400 psig one of the LPCI injection valves will fail to auto open. The "A" CS pump will trip when it starts to inject. Operator action will be required to manually open the LPCI injection valve to allow the RHR system to recover RPV level and adequate core cooling (**Critical Task #3**).

The scenario will be terminated when all SRVs have been opened, water level has been restored to the normal range and primary containment parameters are stabilized or lowering.

Scenario Outline Pilgrim 2014 NRC Scenario 3

Facility: PIL	GRIM Scenario No.: 3 Op Test No.: 2014 NRC
Examiners:	Operators: SRO - RO - BOP -
Initial Conditions:	 Initialize to IC-15 Full Power Operations Open LP NRC Scenario 3 Execute LP step labeled "Initial Conditions" Place "B" CS pump in PTL Hang danger tag on CS pump control switch Bypass APRM "C" and reset the ½ scram Caution tag the APRM Joystick
Turnover:	 RX power is 100%. A plant shutdown has been directed by plant management due to rising drywell leakage. Unidentified leakage has risen by 1.6 gpm over the last 24 hours. Unidentified leakage is currently 3.8 gpm. "B" CS pump is OOS to allow for replacement of the pump's breaker charger motor. The plant is on day 2 of a 7 day LCO IAW TS 3.5.A.2 due to the CS breaker repair. APRM "C" has failed upscale and is bypassed. All other APRMs are operable and a Tracking LCO has been initiated. PNPS 2.1.5, Controlled Shutdown From Power, Section F has been initiated. Preliminary de-inerting activities have commenced but actual de-inertion has not yet started I&C has just completed the IRM and SRM calibrations IAW PNPS 2.1.5, Section F, steps [2](b) and (c). The directions to the shift are to: Commence de-inerting the containment beginning at step [6] of PNPS 2.2.70, Attachment 11, section 4.1. Use the "B" SBGT Train only. When de-inerting has commenced, begin the power reduction. ISO NE has been notified of the power reduction. The Shift Manager has determined that it is not necessary to place a FRV in manual.
Critical Tasks:	 Inject SBLC before torus water temperature exceeds the BIIT or in response to core oscillations. During failure to scram conditions, insert control rods using one or more methods contained within 5.3.23 and / or EOP-02 to achieve Rx. Shutdown under all conditions During failure to scram conditions terminate and prevent injection from all sources (except CRD, RCIC, and SBLC) and lower level to < -25 inches prior to recommencing injection.

Scenario Outline Pilgrim 2014 NRC Scenario 3

Event	Malf. No.	Event	Event
No.		Type*	Description
1.	N/A	N - BOP N - SRO	The BOP will lineup the PCAC system and commence de- inerting the primary containment IAW PNPS 2.2.70, Attachment 11, Section 4.1
2.	N/A	R – RO R - SRO	The RO will commence a power reduction using Recirc Flow Control IAW PNPS 2.1.5, step [3] and PNPS 2.1.14, Station Power Changes.
3.	RD01	C – RO C - SRO	In-service CRD Flow Control Valve (FCV) fails open. The RO responds IAW PNPS 2.4.11.1, CRD System Malfunctions, Attachment 5, and places the standby CRD FCV in service.
4.	TC06	C – BOP C – SRO TS - SRO	In-service Pressure Regulator (EPR) oscillates. The BOP determines that the EPR is oscillating and responds IAW PNPS 2.4.37, Turbine Control System Malfunctions and removes the EPR from service. The SRO determines that the MCPR LCO is not satisfied due to loss of backup pressure regulation and enters TS LCO 3.11.C.1.
5.	CW16A 10% severity	C – BOP C – SRO TS - SRO	SSW Loop "A" Leak. The crew responds IAW PNPS 2.4.43, Loss of One Salt Service Water Loop. BOP Cross Connects RBCCW and isolates Loop "A" SSW.
			SRO declares Loop "A" SSW inoperable and a 24 Hr Cold S/D LCO due to RBCCW Cross Tie valves being Open. T.S. 3.5.B.3.C.1
6.	MS14 (A)	C – All	SRV "A" fails open. The crew will respond IAW PNPS 2.4.29, Stuck Open SRV. When all efforts to close the valve are unsuccessful, the crew will insert a manual scram before 5 minutes have elapsed. The SRV will reclose when RPV pressure lowers to 850 psig.
7.	Remote functions for both SDIV levels at 98.5% severity	M- All	Large Hydraulic Lock ATWS following manual scram. Rx, Power will remain above 3%. The Crew will respond IAW EOP-02, RPV Control Failure to scram. All injection will be terminated and prevented to lower level below the feedwater spargers. SBLC injection will be required.
8.	LP01	C – RO C – SRO	The squib valve will fail to fire when the 1 st SBLC Train is started. The RO will be required diagnose the failure and initiate the standby train.
* (N	I)ormal, (F	R)eactivity,	I)nstrument, (C)omponent, (M)ajor

Scenario Summary:

The plant is at approximately 100% power with a plant shutdown in progress due to increased drywell leakage. "B" CS pump is OOS to allow for replacement of the pump's breaker charger motor. The plant is on day 2 of a 7 day LCO IAW TS 3.5.A.2 due to the CS breaker repair. APRM "C" has failed upscale and is bypassed. All other APRMs are operable.

The directions to the shift are to commence de-inerting the primary containment and commence the power reduction IAW PNPS2.1.5, Controlled Shutdown From Power, Section F.

After assuming the watch the BOP will align the PCAC system, start Standby Gas and commence de-inerting the primary Containment. The RO will then commence the power reduction by lowering Recirc Flow to 43 Mlbm/hr as required.

After a sufficient power reduction has occurred the in-service CRD Flow Control Valve (FCV) fails open. The RO is expected to respond IAW PNPS 2.4.11.1, CRD System Malfunctions, Attachment 5 and place the standby CRD FCV in service.

The in-service Pressure Regulator (EPR) then begins to oscillate. The BOP is expected to determine that the EPR is oscillating and respond IAW PNPS 2.4.37, Turbine Control System Malfunctions and remove the EPR from service. The SRO is expected to determine that the MCPR LCO is not met due to loss of backup pressure regulation and enter TS LCO 3.11.C.1.

Next an air leak results in one SDIV drain valve failing partially closed. The SRO is expected to refer to TS 3.3.G and declare a 7 day LCO to isolate the drain line.

Then a leak on Salt Service Water (SSW) loop "A" will occur. The crew is expected to respond IAW PNPS 2.4.43, Loss of One Salt Service Water Loop. The BOP will cross connect RBCCW loops and isolate SSW loop "A" to stop the leak. The SRO is expected to declare Loop "A" SSW inoperable and a 24 Hr Cold S/D LCO due to the RBCCW Cross Tie valves being open (T.S. 3.5.B.3.C.1).

The scenario ending event begins when a SRV fails open following the previous pressure oscillations. The crew is expected to respond IAW PNPs 2.4.29, Stuck Open SRV. All efforts to close the valve will be unsuccessful. The crew is expected to insert a manual scram before 5 minutes have elapsed. Water in the Scram Discharge Volumes will cause a hydraulic lock on the control rods and most will fail to insert.

The crew is expected to respond IAW EOP-02, RPV Control, Failure to Scram. The RO is expected to reduce both Recirc pumps to minimum speed and trip the pumps to lower power. The crew is expected to inject SBLC before the BIIT curve is exceeded (**Critical Task #1**). The Standby Liquid SQUIB valve will fail to fire. The RO is expected to recognize the failure and start the standby SBLC Train. Other actions will include inhibiting ADS and defeating the MSIV low RPV level isolation. Torus water temperature will exceed the EOP-03, Primary Containment Control, entry condition.

EOP-02 will require that injection be terminated and prevented and RPV level lowered to below -25 inches to mitigate /prevent core oscillations (**Critical Task # 2**). The RO is expected to

insert control rods utilizing PNPS 5.3.23 Alternate Rod Insertion and complete control rod insertion (**Critical Task #3**). In addition to manually driving rods, repeated manual scrams are expected.

The scenario will end when all rods are inserted, EOP-02 is exited, RPV level is in progress of being restored to the normal band and actions are in progress to lower Torus Water temperature.

	Pilgrim						Date	e of	Exa	m:	20	14	NRC					
			F	ro k	ΊΑ C	ateg	ory F	Point	s				SR	SRO-Only Points				
Tier Group		K 1	К 2	К 3	K 4	К 5	К 6	A 1	A 2	A 3	A 4	G *	Total	A	2	Ģ)*)	Tota
1. Emergency	1	3	3	3				3	4			4	20	3	3	4	4	7
& Plant	2	2	1	1				1	1			1	7	2	2		1	3
Evaluations	Tier Totals	5	4	4				4	5			5	27	Ę	5	į	5	10
	1	2	2	2	2	3	2	2	3	3	2	3	26	2	2	:	3	5
2. Plant	2	1	1	1	2	1	1	1	1	1	1	1	12	0	1	2	2	3
Systems	Tier Totals	3	3	3	4	4	3	3	4	4	3	4	38		3	Ę	5	8
3. Generic k	nowledg	ge &	Abili	ities		1	:	2		3	4	4	10	1	2	3	4	7
						3	:	3		2		2		1	2	2	2	
									DUIII	s and	the S	RO-o	specified i nlv exam r	must t	otal 2	5 poin	ts.	
3. 4.	Systems/ that do no systems t guidance	evolu ot app that a regai	oly at t re not rding e rom as	he fac incluc elimina s man	each sility s ded or ation y syst	group hould n the of ina ems a	o are i be de outline oprop and ev	dentifi eleted e shou riate k volutic	ied on and ju uld be (/A sta	the a ustifie adde ateme	issocia d; ope d. Re ints. ible; s	ated c eratior fer to ample	nly exam r putline; sys nally impor section D. e every sys	stems tant, s .1.b of	or eve site-sp ES-4	olution becific 01, fo	s r	
	Systems/ that do no systems t guidance Select top the group Absent a	evolu ot app hat a regai pics fr befo plant	oly at t re not rding e rom as re sele speci	he fac incluc elimina s man ecting fic pric	each cility s ded or ation y syst a sec prity, o	group hould n the of inap erms a cond t conly th	o are i be de outline oprop and ev opic f	dentif eleted e shou riate k volutio or any KAs ha	ied on and juid be (/A state ns as syste	a the a ustifie adde ateme possi em or an im	issocia d; ope d. Re ints. ible; s evolut portar	ated c eration fer to ample tion.	nly exam r outline; sys nally impor section D	stems tant, s .1.b of stem c	or evo site-sp ES-4 or evo	olution becific 01, fo lution	s r in	
4.	Systems/ that do no systems t guidance Select top the group Absent a be selected	evolu ot app hat a regai pics fr befo plant ed. U	oly at t re not rding e om as re sele specir lse the	he fac incluc elimina man ecting fic pric e RO	each sility s ded or ation y syst a sec ority, o and S	group hould n the of inap ems a cond t conly th RO ra	o are i be de outline oprop and ev opic f nose h atings	dentifi eleted e shou riate k volutio or any KAs ha for the	ied on and juid be (/A state (/A state (/A state (/A state (/A state) (/A sta	the a ustifie adde possion or an im and S	issocia d; ope d. Re ints. ible; s evolut ible; s evolut iRO-o	ated c eration fer to ample tion. nce ra nly pc	nly exam r putline; sys nally impor section D. e every sys ting (IR) o	stems tant, s .1.b of stem c f 2.5 c spectiv	or evo site-sp ES-4 or evo	olution becific 01, fo lution	s r in	
4 . 5.	Systems/ that do no systems t guidance Select top the group Absent a be selecte Select SF	evolu ot app hat a regai pics fr befo plant ed. U RO top ric (G ist be	oly at t re not re not om as re sele speci- lse the pics fo) K/As releva	he fac incluce elimination man ecting fic price RO a or Tier s in Ti	each cility s ded or ation y syst a sec ority, o and S s 1 ar ers 1	group hould n the of inap erms a cond t cond t RO ra nd 2 fr and 2 fr	are i be de outline oprop and ev opic f nose h atings rom th	dentifieleted e shou riate k volutico or any (As ha for the sha be se	ied on and ju ild be (/A sta ns as syste aving e RO ded s	a the a ustifie adde possi em or an im and S ystem	issocia d; ope d. Re ints. ible; s evolut portar RO-o is and Secti	ated of eration fer to ampletion. nce ra nly po K/A of on 2 of	nly exam r putline; sys nally impor section D e every sys ting (IR) o ortions, res categories of the K/A	stems tant, s 1.b of stem c f 2.5 c spectiv Catalo	or evo ite-sp ES-4 or evo or high vely.	olution becific 01, fo lution her sha	s r all	
4. 5. 6.	Systems/ that do no systems t guidance Select top the group Absent a be selecte Select SF The gene topics mu applicable On the fol ratings (IF the group other thar	evolu ot app hat a regan bics fr befo plant ed. U RO top ric (G st be e K/A' llowin R) for and f cate	ly at t re not re not om as re sele speci- ise the bics for) K/As releva s g pag the ap tier tol egory	he fac incluc elimin: a man ecting fic price RO : or Tier ant to es, er oplical als fo A2 or	each ility s led on y syst a sec ority, (and S and S and S and S and S are a the a the ter the ble lic r eacl G* or	group hould n the of inap eems a cond t RO ra and 2 fr and 3 fr an	are i be de outline opprop and ev opic fr nose H attings rom th shall ble ev numl level, gory i SRO-(dentifi eleted e shouriate H volutic or any (As h: for the e sha be se volutio bers, a and th n the ponly e:	ied on and juid be ild be v/A sta ns as syste aving e RO ded s lected n or s a brief he poi table xam, d	the a ustifie adde- ateme possi em or an im and S ystem d from ystem d for stem t tota above enter	issocia d; ope d. Re ints. ible; s evolut portar RO-o is and Secti t. Refe sister tiption t. If fut it on ti	ated c antior fer to ample tion. nce ra nly pc K/A c on 2 c er to S of ea for ea for ea for ea for ea for ea	nly exam r putline; sys nally impor section D. e every sys ting (IR) o prtions, res categories of the K/A Section D.	stems tant, s 1.b of stem c f 2.5 c ppectiv Catalo 1.b of he topp n and pmentiolumn	or evo ite-sp ES-4 or evo or high rely. og, bu ES-4(vics' ir categ	olution becific 01, fo lution her sha ht the 01 for mporta lory. E	s r all the ence in	

EAPE#/Name Safety Function	K1	K2	КЗ	A1	A2	G	K/A Topic(s)	lmp.	Q#
295023 Refueling Accidents / 8							AA2.04 - Ability to determine and/or interpret the following as they apply to REFUELING ACCIDENTS : Occurrence of fuel handling accident	4.1	76
295030 Low Suppression Pool Water Level / 5					×		EA2.04 - Ability to determine and/or interpret the following as they apply to LOW SUPPRESSION POOL WATER LEVEL : Drywell/ suppression chamber differential pressure: Mark- 1&II	3.7	77
295031 Reactor Low Water Level / 2					X		EA2.02 - Ability to determine and/or interpret the following as they apply to REACTOR LOW WATER LEVEL : Reactor power	4.2	78
295018 Partial or Total Loss of CCW / 8						X	2.1.19 - Conduct of Operations: Ability to use plant computers to evaluate system or component status.	3.8	79
295025 High Reactor Pressure / 3						X	2.2.44 - Equipment Control: Ability to interpret control room indications to verify the status and operation of a system, and understand how operator actions and directives effect plant and system conditions.	4.4	80
295019 Partial or Total Loss of Inst. Air / 8						x	2.1.32 - Conduct of Operations: Ability to explain and apply all system limits and precautions.	4.0	81
295004 Partial or Total Loss of DC Pwr / 6						x	2.2.25 - Equipment Control: Knowledge of bases in technical specifications for limiting conditions for operations and safety limits.	4.2	82
295023 Refueling Accidents / 8	x						AK1.01 - Knowledge of the operational implications of the following concepts as they apply to REFUELING ACCIDENTS : Radiation exposure hazards	3.6	39

EAPE#/Name Safety Function	K1	K2	К3	A1	A2	G	K/A Topic(s)	lmp.	Q#	
							EK1.02 - Knowledge of the		[·	
							operational implications of			
295028 High Drywell Temperature / 5							the following concepts as			
	X				1000 (1000) 1000 (1000)	an tri ser Dave a c	they apply to HIGH	2.9	40	
						1999 - 1998 1999 - 1998 1999 - 1998	DRYWELL TEMPERATURE			
							: Equipment environmental			
							qualification			
						· · · ·	AK1.04 - Knowledge of the			
			1				operational implications of			
205004 Dertiel er Tetel						servite Servite de la	the following concepts as			
295004 Partial or Total	X						they apply to PARTIAL OR	2.8	41	
Loss of DC Pwr / 6							COMPLETE LOSS OF D.C.			
							POWER : Effect of battery			
					- Style		discharge rate on capacity			
		1					AK2.01 - Knowledge of the			
							interrelations between			
600000 Plant Fire On-site /		x					PLANT FIRE ON SITE and	2.6	42	
8							the following: Sensors,			
							detectors and valves			
	1	t			1.2		AK2.09 - Knowledge of the			
						1.45		interrelations between		
295019 Partial or Total						1.5% 1.5	PARTIAL OR COMPLETE			
Loss of Inst. Air / 8		X					LOSS OF INSTRUMENT	3.3	43	
							AIR and the following:			
						Contraction of the second s	Containment			
							EK2.10 - Knowledge of the			
						nd a	interrelations between HIGH			
295025 High Reactor							REACTOR PRESSURE and			
Pressure / 3		X						2.9	44	
							the following: SPDS/ERIS/CRIDS/GDS:			
				ļ			Plant-Specific			
				<u>↓</u>			EK3.04 - Knowledge of the			
						ana Nafar	reasons for the following			
]						
295026 Suppression Pool			x		1		responses as they apply to SUPPRESSION POOL	3.7	45	
High Water Temp. / 5			^					5.1	45	
							HIGH WATER TEMPERATURE: SBLC			
	+						injection			
							AK3.01 - Knowledge of the			
							reasons for the following			
295021 Loss of Shutdown			X				responses as they apply to	3.3	46	
Cooling / 4							LOSS OF SHUTDOWN			
							COOLING : Raising reactor			
							water level			

EAPE#/Name Safety Function	K1	K2	КЗ	A1	A2	G	K/A Topic(s)	lmp.	Q#
295024 High Drywell Pressure / 5			x				EK3.05 - Knowledge of the reasons for the following responses as they apply to HIGH DRYWELL PRESSURE : RPV flooding	3.5	47
295037 SCRAM Conditions Present and Reactor Power Above APRM Downscale or Unknown / 1				x			EA1.07 - Ability to operate and/or monitor the following as they apply to SCRAM CONDITION PRESENT AND REACTOR POWER ABOVE APRM DOWNSCALE OR UNKNOWN : RMCS: Plant- Specific	3.9	48
295016 Control Room Abandonment / 7		-		x			AA1.05 - Ability to operate and/or monitor the following as they apply to CONTROL ROOM ABANDONMENT : D.C. electrical distribution	2.8	49
295003 Partial or Complete Loss of AC / 6				x			AA1.04 - Ability to operate and/or monitor the following as they apply to PARTIAL OR COMPLETE LOSS OF A.C. POWER : D.C. electrical distribution system	3.6	50
295038 High Off-site Release Rate / 9					X		EA2.04 - Ability to determine and/or interpret the following as they apply to HIGH OFF- SITE RELEASE RATE : Source of off-site release	4.1	51
700000 Generator Voltage and Electric Grid Disturbances					X.		AA2.04 - Ability to determine and/or interpret the following as they apply to GENERATOR VOLTAGE AND ELECTRIC GRID DISTURBANCES: VARs outside capability curve.	3.6	52
295030 Low Suppression Pool Water Level / 5					×		EA2.01 - Ability to determine and/or interpret the following as they apply to LOW SUPPRESSION POOL WATER LEVEL : Suppression pool level	4.1	53

•

L

EAPE#/Name Safety Function	К1	K2	КЗ	A1	A2	G	K/A Topic(s)	lmp.	Q#
295018 Partial or Total Loss of CCW / 8						X	2.4.47 - Emergency Procedures / Plan: Ability to diagnose and recognize trends in an accurate and timely manner utilizing the appropriate control room reference material.	4.2	54
295005 Main Turbine Generator Trip / 3						X	2.4.21 - Emergency Procedures / Plan: Knowledge of the parameters and logic used to assess the status of safety functions, such as reactivity control, core cooling and heat removal, reactor coolant system integrity, containment conditions, radioactivity release control, etc.	4.0	55
295006 SCRAM / 1						X	2.2.42 - Equipment Control:: Ability to recognize system parameters that are entry- level conditions for Technical Specifications.	3.9	56
295031 Reactor Low Water Level / 2					X		EA2.03 - Ability to determine and/or interpret the following as they apply to REACTOR LOW WATER LEVEL : Reactor pressure	4.2	57
295001 Partial or Complete Loss of Forced Core Flow Circulation / 1 & 4						X	2.2.25 - Equipment Control: Knowledge of bases in technical specifications for limiting conditions for operations and safety limits.	3.2	58
K/A CategoryTotals	3	3	3	3	4/3	4/4	Group Point Total:	2	20/7

Pilgrim BWR Examination Outline Emergency and Abnormal Plant Evolutions - Tier 1 Group 2

EAPE#/Name Safety Function	K1	K2	КЗ	A1	A2	G	K/A Topic(s)	Imp.	Q#
295020 Inadvertent Cont. Isolation / 5 & 7					X		AA2.02 - Ability to determine and/or interpret the following as they apply to INADVERTENT CONTAINMENT ISOLATION : Drywell/containment temperature	3.4	83
500000 High CTMT Hydrogen Conc. / 5					an a	X	2.4.8 - Emergency Procedures / Plan: Knowledge of how abnormal operating procedures are used in conjunction with EOP's.	4.5	84
295007 High Reactor Pressure / 3					x		AA2.01 - Ability to determine and/or interpret the following as they apply to HIGH REACTOR PRESSURE : Reactor pressure	4.1	85
295014 Inadvertent Reactivity Addition / 1	×						AK1.01 - Knowledge of the operational implications of the following concepts as they apply to INADVERTENT REACTIVITY ADDITION : Prompt critical	3.7	59
295033 High Secondary Containment Area Radiation Levels / 9		x					EK2.02 - Knowledge of the operational implications of the following concepts as they apply to HIGH SECONDARY CONTAINMENT AREA RADIATION LEVELS : Process radiation monitoring system	3.8	60
295029 High Suppression Pool Water Level / 5			x				EK3.01 - Knowledge of the reasons for the following responses as they apply to HIGH SUPPRESSION POOL WATER LEVEL : Emergency depressurization	3.5	61
295012 High Drywell Temperature / 5				x			AA1.01 - Ability to operate and/or monitor the following as they apply to HIGH DRYWELL TEMPERATURE : Drywell ventilation system	3.5	62

Pilgrim BWR Examination Outline Emergency and Abnormal Plant Evolutions - Tier 1 Group 2

EAPE#/Name Safety Function	K1	K2	КЗ	A1	A2	G	K/A Topic(s)	Imp.	Q#
295034 Secondary Containment Ventilation High Radiation / 9					X		EA2.02 - Ability to determine and/or interpret the following as they apply to SECONDARY CONTAINMENT VENTILATION HIGH RADIATION : Cause of high radiation levels	3.7	63
295036 Secondary Containment High Sump/Area Water Level / 5						X	2.2.14 - Equipment Control: Knowledge of the process for controlling equipment configuration or status.	3.9	64
295015 Incomplete SCRAM / 1	x						AK1.03 - Knowledge of the operational implications of the following concepts as they apply to INCOMPLETE SCRAM : Reactivity effects	3.8	65
K/A Category⊺otals	2	1	1	1	1/2	1/1	Group Point Total:		7/3

System #/Name	K1	K2	КЗ	K4	K5	K6	A1	A2	A3	A4	G	K/A Topic(s)	lmp.	Q#
209001 LPCS								×				A2.05 - Ability to (a) predict the impacts of the following on the LOW PRESSURE CORE SPRAY SYSTEM ; and (b) based on those predictions, use procedures to correct, control, or mitigate the consequences of those abnormal conditions or operations: Core spray line break	3.6	86
203000 RHR/LPCI: Injection Mode								*				A2.12 - Ability to (a) predict the impacts of the following on the RHR/LPCI: INJECTION MODE (PLANT SPECIFIC) ; and (b) based on those predictions, use procedures to correct, control, or mitigate the consequences of those abnormal conditions or operations: Pump runout	2.7	87
215004 Source Range Monitor											X	2.4.30 - Emergency Procedures / Plan; Knowledge of events related to system operation / status that must be reported to internal organizations or external agencies, such as the state, the NRC, or the transmission system operator.	4.1	88
215003 IRM											X	2.2.38 - Equipment Control: Knowledge of conditions and limitations in the facility license.	4.5	89
264000 EDGs											X	2.2.40 - Equipment Control: Ability to apply technical specifications for a system.	4.7	90

System #/Name	К1	К2	КЗ	K4	К5	K6	A1	A2	A3	A4	G	K/A Topic(s)	lmp.	Q#
300000 Instrument Air	x											K1.02 - Knowledge of the connections and / or cause effect relationships between INSTRUMENT AIR SYSTEM and the following: Service air	2.7	1
262002 UPS (AC/DC)	×											K1.19 - Knowledge of the physical connections and/or cause- effect relationships between UNINTERRUPTABLE POWER SUPPLY (A.C./D.C.) and the following: Power range neutron monitoring system: Plant-Specific	2.9	2
203000 RHR/LPCI: Injection Mode		x									· · · · · · · · · · · · · · · · · · ·	K2.02 - Knowledge of electrical power supplies to the following: Valves	2.5	3
215003 IRM		x										K2.01 - Knowledge of electrical power supplies to the following: IRM channels/detectors	2.5	4
211000 SLC			×									K3.02 - Knowledge of the effect that a loss or malfunction of the STANDBY LIQUID CONTROL SYSTEM will have on following: Core spray line break detection system: Plant- Specific	3.0	5
215005 APRM / LPRM			x									K3.07 - Knowledge of the effect that a loss or malfunction of the AVERAGE POWER RANGE MONITOR/LOCAL POWER RANGE MONITOR SYSTEM will have on following: Rod block monitor: Plant- Specific	3.2	6

System #/Name	K1	K2	КЗ	K4	K5	K6	A1	A2	A3	A4	G	K/A Topic(s)	Imp.	Q#
206000 HPCI				x		-						K4.14 - Knowledge of HIGH PRESSURE COOLANT INJECTION SYSTEM design feature(s) and/or interlocks which provide for the following: Control oil to turbine speed controls: BWR-2,3,4	3.4	7
209001 LPCS				x								K4.02 - Knowledge of LOW PRESSURE CORE SPRAY SYSTEM design feature(s) and/or interlocks which provide for the following: Prevents water hammer	3.0	8
259002 Reactor Water Level Control					×							K5.01 - Knowledge of the operational implications of the following concepts as they apply to REACTOR WATER LEVEL CONTROL SYSTEM : GEMAC/Foxboro/Bailey controller operation: Plant-Specific	3.1	9
215004 Source Range Monitor					x							K5.03 - Knowledge of the operational implications of the following concepts as they apply to SOURCE RANGE MONITOR (SRM) SYSTEM : Changing detector position	2.8	10
264000 EDGs						x						K6.08 - Knowledge of the effect that a loss or malfunction of the following will have on the EMERGENCY GENERATORS (DIESEL/JET) : A.C. power	3.6	11

System #/Name	K 1	K2	КЗ	K4	K5	K6	A1	A2	A3	A4	G	K/A Topic(s)	Imp.	Q#
217000 RCIC						x						K6.01 - Knowledge of the effect that a loss or malfunction of the following will have on the REACTOR CORE ISOLATION COOLING SYSTEM (RCIC): Electrical power	3.4	12
239002 SRVs							x					A1.08 - Ability to predict and/or monitor changes in parameters associated with operating the RELIEF/SAFETY VALVES controls including: Suppression pool water temperature	3.8	13
205000 Shutdown Cooling							x					A1.05 - Ability to predict and/or monitor changes in parameters associated with operating the SHUTDOWN COOLING SYSTEM (RHR SHUTDOWN COOLING MODE) controls including: Reactor water level	3.4	14
223002 PCIS/Nuclear Steam Supply Shutoff								X				A2.10 - Ability to (a) predict the impacts of the following on the PRIMARY CONTAINMENT ISOLATION SYSTEM/NUCLEAR STEAM SUPPLY SHUT- OFF ; and (b) based on those predictions, use procedures to correct, control, or mitigate the consequences of those abnormal conditions or operations: Loss of coolant accidents	3.9	15

System #/Name	K1	K2	КЗ	K4	K5	K6	A1	A2	A3	A4	G	K/A Topic(s)	Imp.	Q#
262001 AC Electrical Distribution								X				A2.04 - Ability to (a) predict the impacts of the following on the A.C. ELECTRICAL DISTRIBUTION ; and (b) based on those predictions, use procedures to correct, control, or mitigate the consequences of those abnormal conditions or operations: Types of loads that, if deenergized, would degrade or hinder plant operation	3.8	16
400000 Component Cooling Water									x			A3.01 - Ability to monitor automatic operations of the CCWS including: Setpoints on instrument signal levels for normal operations,warnings, and trips that are applicable to the CCWS	3.0	17
261000 SGTS									x			A3.03 - Ability to monitor automatic operations of the STANDBY GAS TREATMENT SYSTEM including: Valve operation	3.0	18
212000 RPS										x		A4.05 - Ability to manually operate and/or monitor in the control room: Reactor power	4.3	19
218000 ADS										x		A4.07 - Ability to manually operate and/or monitor in the control room: ADS valve acoustical monitor noise: Plant-Specific	3.5	20

Pilgrim BWR Examination Outline Plant Systems - Tier 2 Group 1

System #/Name	K1	К2	КЗ	K4	K5	K6	A1	A2	A3	A4	G	K/A Topic(s)	lmp.	Q#
262002 UPS (AC/DC)											X	2.1.7 - Conduct of Operations: Ability to evaluate plant performance and make operational judgments based on operating characteristics, reactor behavior, and instrument interpretation.	2.7	21
400000 Component Cooling Water											X	2.1.2 - Conduct of Operations: Knowledge of operator responsibilities during all modes of plant operation.	4.1	22
215004 Source Range Monitor								X.				A2.05 - Ability to (a) predict the impacts of the following on the SOURCE RANGE MONITOR (SRM) SYSTEM ; and (b) based on those predictions, use procedures to correct, control, or mitigate the consequences of those abnormal conditions or operations: Faulty or erratic operation of detectors/system	3.3	23
262001 AC Electrical Distribution									x			A3.04 - Ability to monitor automatic operations of the A.C. ELECTRICAL DISTRIBUTION including: Load sequencing	3.4	24

Pilgrim BWR Examination Outline Plant Systems - Tier 2 Group 1

System #/Name	K1	K2	К3	K4	К5	K6	A1	A2	A3	A4	G	K/A Topic(s)	Imp.	Q#
215005 APRM / LPRM					x							K5.06 - Knowledge of the operational implications of the following concepts as they apply to AVERAGE POWER RANGE MONITOR/LOCAL POWER RANGE MONITOR SYSTEM : Assignment of LPRM's to specific APRM channels	2.5	25
215003 IRM											X	2.4.31 - Emergency Procedures / Plan: Knowledge of annunciator alarms, indications, or response procedures.	4.2	26
K/A Category Totals	2	2	2	2	3	2	2	3/2	3	2	3/3	Group Point Total:	2	26/5

System #/Name	K1	K2	КЗ	К4	K5	K6	A1	A2	A3	A4	G	K/A Topic(s)	Imp.	Q#
256000 Reactor Condensate								×				A2.02 - Ability to (a) predict the impacts of the following on the REACTOR CONDENSATE SYSTEM; and (b) based on those predictions, use procedures to correct, control, or mitigate the consequences of those abnormal conditions or operations: Valve closures	2.9	91
202002 Recirculation Flow Control											X	2.4.11 - Emergency Procedures / Plan: Knowledge of abnormal condition procedures.	4.2	92
204000 RWCU											X	2.4.12 - Emergency Procedures / Plan: Knowledge of general operating crew responsibilities during emergency operations	4.3	93
204000 RWCU	x											K1.14 - Knowledge of the physical connections and/or cause- effect relationships between REACTOR WATER CLEANUP SYSTEM and the following: Process sample system	2.5	27
272000 Radiation Monitoring		x										K2.03 - Knowledge of electrical power supplies to the following: Stack gas radiation monitoring system	2.5	28
215002 RBM			×									K3.01 - Knowledge of the effect that a loss or malfunction of the ROD BLOCK MONITOR SYSTEM will have on following: Reactor manual control system: BWR-3,4,5	3.3	29

System #/Name	K1	K2	К3	K4	K5	K6	A1	A2	A3	A 4	G	K/A Topic(s)	Imp.	Q#
201002 RMCS				×								K4.07 - Knowledge of REACTOR MANUAL CONTROL SYSTEM design feature(s) and/or interlocks which provide for the following: Timing of rod insert and withdrawal cycles (rod movement sequence timer)	2.5	30
201001 CRD Hydraulic					x							K5.02 - Knowledge of the operational implications of the following concepts as they apply to CONTROL ROD DRIVE HYDRAULIC SYSTEM : Flow indication	2.6	31
214000 RPIS						x						K6.02 - Knowledge of the effect that a loss or malfunction of the following will have on the ROD POSITION INFORMATION SYSTEM : Position indication probe	2.7	32
202001 Recirculation					-		×					A1.06 - Ability to predict and/or monitor changes in parameters associated with operating the RECIRCULATION SYSTEM controls including: Recirculation pump motor amps	2.5	33

System #/Name	K1	К2	К3	К4	K5	K6	A1	A2	A3	A4	G	K/A Topic(s)	Imp.	Q#
286000 Fire Protection								X				A2.12 - Ability to (a) predict the impacts of the following on the FIRE PROTECTION SYSTEM; and (b) based on those predictions, use procedures to correct, control, or mitigate the consequences of those abnormal conditions or operations: Low diesel fuel supply: Plant- Specific	3.1	34
288000 Plant Ventilation									x			A3.01 - Ability to monitor automatic operations of the PLANT VENTILATION SYSTEMS including: Isolation/initiation signals	3.8	35
241000 Reactor/Turbine Pressure Regulator								-		x		A4.11 - Ability to manually operate and/or monitor in the control room: Turbine speed	3.1	36
219000 RHR/LPCI: Torus/Pool Cooling Mode											X	2.1.32 - Conduct of Operations: Ability to explain and apply all system limits and precautions.	3.8	37
259001 Reactor Feedwater				×								K4.04 - Knowledge of REACTOR FEEDWATER SYSTEM design feature(s) and/or interlocks which provide for the following: Dispersal of feedwater in the reactor vessel	2.5	38
K/A Category Totals	1	1	1	2	1	1	1	1/1	1	1	1/2	Group Point Total:		12/3

Facility: Pilgrim Date: 2014 NF			>			
Category	KA #	Торіс	RO		SRO-Only	
1. Conduct of Operations			IR	Q#	IR	Q#
	2.1.20	Ability to interpret and execute procedure steps.	4.6	66		
	2.1.31	Ability to locate control room switches, controls, and indications, and to determine that they correctly reflect the desired plant lineup.	4.6	67		
	2.1.18	Ability to make accurate, clear and concise logs, records, status boards, and reports.	3.6	74		
	2.1.25	Ability to interpret reference materials, such as graphs, curves, tables, etc.			4.2	94
	Subtotal			3		1
2. Equipment Control	2.2.40	Ability to apply technical specifications for a system.	3.4	68		
	2.2.6	Knowledge of the process for making changes to procedures.	3.0	69		
	2.2.15	Ability to determine the expected plant configuration using design and configuration control documentation, such as drawings, line-ups, tag-outs, etc.	3.9	75		
	2.2.21	Knowledge of pre- and post- maintenance operability requirements.			4.1	95
	2. 2 .11	Knowledge of the process for controlling temporary design changes.			3.3	98
	Subtotal			3		2

,		Knowladay of a disting a second by the				· · · · · · · · · · · · · · · · · · ·
	2.3.4	Knowledge of radiation exposure limits	3.2	70		
		under normal or emergency conditions. Knowledge of radiation monitoring				
		systems, such as fixed radiation				
	2.3.15	monitors and alarms, portable survey	2.9	71		
	2.3.15	instruments, personnel monitoring	2.5			
		equipment, etc.				
		Knowledge of Radiological Safety				
		Procedures pertaining to licensed				
3. Radiation		operator duties, such as response to				
Control	2.3.13	radiation monitor alarms, containment			3.8	96
Control	2.0.70	entry requirements, fuel handling				
		responsibilities, access to locked high				
		radiation areas, aligning filters, etc.				
		Ability to use radiation monitoring				
		systems, such as fixed radiation				
	2.3.5	monitors and alarms, portable survey			2.9	99
		instruments, personnel monitoring				
		equipment, etc.				
	Subtotal	· · · · · · · · · · · · · · · · · · ·		2		2
		Knowledge of the bases for prioritizing				
	2.4.23	emergency procedure implementation	3.4	72		
		during emergency operations.				
	2.4.29	Knowledge of the emergency plan.	3.1	73		
4. Emergency Procedures / Plan		Knowledge of local auxiliary operator				
	2.4.35	tasks during emergency and the			4.0	97
		resultant operational effects.			4.0	51
		Knowledge of RO tasks performed				
	2.4.34	outside the main control room during an				
		emergency and the resultant			4.1	100
		operational effects.				
	0.11.1			2		
Tior 2 Daint Ta	Tier 3 Point Total:					2
				10		7

Tier / Group	Randomly Selected KA	Reason for Rejection
1/1	295016 / AA1.09 replaced by 295016 / AA1.05	Facility does not have an isolation/emergency condenser
1/1	600000 / AK2.03 replaced by 600000 / AK2.01	It isn't possible to prepare a psychometrically sound question related to the subject K/A.
1/2	295036 / 2.2.22 replaced by 295036 / 2.2.14	There are no LCOs or safety limits that are directly impacted by Secondary Containment High Sump/Area water level.
2 / 1	259002 / K5.07 replaced by 259002 / K5.01	Facility does not have turbine driven feed pumps
2/1	215004 / K5.01 replaced by 215004 / K5.03	Unacceptable overlap with question 23
2 / 1	400000 / 2.2.39 replaced by 400000 / 2.1.2	There are no one hour Tech Spec action statements associated with Component Cooling water at Pilgrim
2 / 1	263000 / 2.1.7 replaced by 262002 / 2.1.7	Excessive topic overlap. 5 items related to DC power
3 / 1	G1 / 2.1.21 replaced by G1 / 2.1.18	It isn't possible to prepare a psychometrically sound question related to the subject K/A.
2/1	203000 / K2.01 replaced by 203000 / K2.02	It isn't possible to prepare a psychometrically sound question related to the subject K/A. Any question developed directly to this KA would be LOD = 1
2/2	204000 / 2.4.34 replaced by 204000 / 2.4.12	The subject K/A isn't relevant at the subject facility. There are no RO tasks outside the control room associated with this system