RASCAL 4.3 Inputs for Site Boundary Dose Projections

The Radiological Assessment System for Consequence Analysis (RASCAL), developed for the U.S. Nuclear Regulatory Commission, is designed to be used in the independent assessment of dose projections during response to radiological emergencies.

RASCAL Version 4.3 uses different tools to model reactor accidents, spent fuel accidents, and fuel cycle facility accidents as described in RASCAL 4: Description of Models and Methods and RASCAL 4.3 Technical Supplement. The RASCAL Source Term to Dose (STDose) tool is a source term release path model that determines what nuclides and how much activity of each nuclide is available for release to the environment. STDose also determines how the activity gets from the source to the environment and how much activity is actually released as a function of time.

Defining and Running a Problem

The basic steps to setup a modeling run, calculate doses, and view results are as follows (the bold headings correspond to the STDose tool buttons):

- 1. <u>Event Type</u> Select the type of event to be modeled (See RASCAL User's Guide Section 2.1).
- 2. <u>Event Location</u> Pick a location from the list of sites in the facility database (See RASCAL User's Guide Section 2.2.1).
- 3. <u>Source Term</u> Select a source term type and define the source term characteristics (See RASCAL User's Guide Section 2.2.2).
- 4. <u>Release Pathways</u> Select a release pathway type and define the release characteristics (See RASCAL User's Guide Section 2.2.3).
- Meteorology Select the meteorological data set to be used for the calculations. A number of test data sets have been provided in the Predefined Data area to be used for any location at any time (See RASCAL 4.3 User's Guide Section 2.6).
- <u>Calculate Doses</u> Calculations are started from this screen. Set the desired calculation distance, dose conversion factors, and end date and time for the simulation, and enter a case description (See RASCAL User's Guide Section 2.7).
- 7. <u>Detailed Results</u> Results are viewable from the main screen tabs. Specifically, the maximum dose values and the computed source term summary are viewed by clicking the appropriate tab. More detailed source term details are available from the Details button (See RASCAL User's Guide Section 2.8).
- 8. <u>Save Case</u> A modeling run can be saved as a single file (extension .std) for later recall (See RASCAL User's Guide Section 2.9).

For each run provided in the table in Enclosure 1, the permutations of source term, release start time, core damage end state, release pathway/characteristics, and meteorology were specified following the steps above as detailed in the following.

The Source Term to Dose (STDose) tool is selected to begin the case setup.

RASCAL 4.3					
Radiological Assessment System for Consequence Analysis					
Primary Tools	Additional Tools				
Source Term to Dose (STDose)	Create Reactor Inventory Base File				
Field Measurement to Dose (FMDose)	Source Term Merge / Export				
Radionuclide Data Viewer	Download Meteorology from Internet				
Decay Calculator					
Help	Exit				

Event Type - After selection of the **Source Term to Dose (STDose)** tool, and the Nuclear Power Plant event type, default core inventories are provided for existing nuclear power plant sites. For all calculations, "Vogtle – Unit 1" was selected and the average burnup adjusted to 27,000 MWd/MTU as specified in Enclosure 1.

List only these sites:	Site names:	
All NPP Sites	▼ Vogtle - Unit 1	•

Source Term - RASCAL has four methods for estimating source terms that are defined accident sequences, including two core melt-accidents: *Long Term Station Blackout (SOARCA)* and *Loss of Cooling Accident (LOCA) (NUREG-1465)*. These source term models are described in RASCAL 4: Description of Models and Methods. The modeling runs were performed using either the SOARCA or LOCA (NUREG-1465) source terms as specified in Enclosure 1.

Source Term Options for Nuclear Power Plant	X
Source term based on reactor conditions	
C Long Term Station Blackout (SOARCA)	A reactor inventory base file has been found for this unit. This file provides information about the reactor fuel management practices and
C LOCA (NUREG-1465)	allows the model to optionally generate a more accurate core/RCS inventory. To use the feature, check the box below.
Coolant Release Accidents	For details and guidance see Help.
C Containment Radiation Monitor	Use custom core/RCS inventory
Source term based on nuclide specific data	
C Coolant Sample	
C Containment Air Sample	
C Effluent Releases - by Mixtures	ОК
C Effluent Release Rates - by Nuclide	Cancel
O Effluent Release Concentrations - by Nuclide	Help

Long Term Station Blackout - For the SOARCA modeling runs, RASCAL assumes a delay of at least 8 hours before the core is uncovered and a release begins. Additional delay time is specified by adjusting the amount of time core cooling is available. For SOARCA runs with 8 hours delay until core release, the expected duration of cooling was set to 0 hours (or ECCS available and operating set to "No"); and for runs with 28 hours delay, the expected duration of cooling was set to 20 hours.

🔄 Long Term Station Bl	ackout (SOARCA)	
Reactor shutdown:	2014/01/30 - 00:00	
ECCS available and operating:	Yes Expected duration of cooling: 20.0 No	hours
Core release starts at: 2	2014/01/31 04:00 (SD + 8h + 20.0h)	
Method used for core da C Core recovered C Yes [mage estimate 2014/02/26 💌 00:00	
© No		
 Specified damage 	e amount	
Cladding	failure 100 📩 percent	
⊖ Core mell	t 100 percent	OK Cancel
C Vessel m	elt through	<u>H</u> elp

LOCA (NUREG-1465) - For LOCA modeling runs, the amount of fission products released from the core is estimated based on the amount of time the core remains uncovered. The delay time between shutdown and when the core is uncovered and the release starts can be specified by entering the time the respective events occur. As specified in Enclosure 1, the time between shutdown and the start of the release was set to either 4 or 24 hours.

LOCA (NUREG-1465)
Reactor shutdown: 2014/01/29 00:00 Core uncovered: 2014/01/29 04:00
Method used for core damage estimate C Core recovered C Yes 2014/02/26 00:00 C No Specified damage amount
Image: Cladding failure Image: Descent OK Image: Core melt Image: Descent OK Image: Core melt Image: Descent Cancel Image: Oversel melt through Image: Descent Image: Descent Image: Descent Image: Descent Image: Descent Image: Descent Image: Descent Image: Descent

For simplicity, the time of reactor shutdown was assumed to occur at midnight in all cases.

Core Damage State - For all runs the core damage end state was specified by selecting either 100% cladding failure, 100% core melt, or 100% vessel melt through.

<u>**Release Pathways**</u> - For both core-melt accident source terms the available release pathways are *Containment leakage/failure*, *Steam generator tube rupture*, and *Containment bypass*.

Containment Leakage - The following diagram is representative of the containment release pathway.

Available release pat	hways		X
Select the release path C Containment leakage C Steam generator tub C Containment bypass	e rupture		
PWR Dry Containment	- Leakage/Failure	Safety Relief Condenser Valve Exhaust	Cancel Help
Auxiliary Building	Containment	Turbine Builiding	<u>Print</u>

The options for controlling the amount of leakage and contributing factors include options for specifying leak rate, containment spray, and release height. The leak rates and use of sprays are adjustable over time by adding or removing event rows.

🖪, PWR - Dry Containm	ent Leakage or Failure			x
Pathway description:	<none></none>		(optional; 60 character max)	
Release height: 10.0 m 💌				
Release timings:	Core release starts: 2013/12	2/05 12:00		
Leak rate to atmosphere described by:	 Percent volume / time Containment pressure / hole size 			
Date Ti	ne Event	Event setting	Add Row	
2013/12/05 12		Design		
2013/12/05 12	00 Sprays	Off	<u>R</u> emove Row	
			Sort Rows	
			<u>C</u> lear All	
			40	
			Can	cel
			<u>H</u> e	lp

Leak Rate - There are two options for describing the leak. The first is to specify the containment leak rate as *percent volume/time*, and the other is to describe the leak by *containment pressure and hole size*.

For the modeling runs, containment leakage was specified to occur at the design leak rate for the duration of the release, or at the design leak rate until containment failure 48 hours after the start of the release. The containment failure was assumed to be a leak rate equivalent to a 1 inch hole at 125 psig containment pressure.

When the *percent volume/time* option is selected, RASCAL sets the leak rate to a default design leak rate of 0.1 %/d. However, per Enclosure 1 a design leak rate is 0.2 %/day is to be modeled which was manually entered in the *Percent Volume* option.

Leak Rate as Percent of Volume							
⊙ Total Failure (100 %/h)	ОК						
C Percent Volume: 0. → % per h →	Cancel						
⑦ Design (0.10 %/d)	<u>H</u> elp						
Eak Rate as Percent of Volume	×						
 Leak Rate as Percent of Volume Total Failure (100 %/h) 	OK						

When the *containment pressure/hole size* option is selected, RASCAL calculates the leak rate based on the user inputs for containment pressure, temperature, and hole size. Although this method can be used to calculate the leak rate for the assumed containment failure, RASCAL only allows the user to describe the leak rate by one of the two methods (percent volume/time or containment pressure/hole size) in a particular run and the user cannot mix methods.

🖪. Leak Rate as Pressure	and Hole Size	×
Containment pressure: Containment temperature:	52 → Ib/ir² ▼ (gauge)	
Containment temperature:		
Hole area or diameter:	Small pipe (10 sq in)	
	C Large pipe (100 sq in)	OK
	Small hatch (10 sq ft)	
	C Large hatch (30 sq ft)	Cancel
	C User defined: 0.	<u>H</u> elp

For the runs with design leakage followed by an assumed containment failure 48 hours after the start of release, the increased leak rate was accounted for by manually calculating the leak rate based on the assumed hole size and containment pressure following the method outlined in RASCAL 4: Description of Models and Methods, Section 1.5.2., and adding this value to the design leak rate of 0.2 %/day. First, the mass flow rate for time step *k* is computed from:

$$MFR(k) = C\left(\frac{\pi D}{4}\right)\sqrt{2\rho(P_1(k) - P_2)}$$

where C = 0.63, D is the hole diameter, ρ is the density of the containment atmosphere, $P_1(k)$ is the containment pressure at time step k, and P_2 is atmospheric pressure. Then, the leakage fraction from the containment during time step k is computed from:

$$LF(k) = \frac{MFR(k)t}{\rho V_c}$$

where *t* is the duration of time step *k* in seconds and V_c is the containment volume. RASCAL default time steps are 15 minutes and the default containment volume for Vogtle is 2.7×10^6 ft³. Simplified static values of containment pressure and containment temperature of 40C (with containment sprays operating) and 200C (without containment sprays) were used as specified in Enclosure 1. The computed leak rate for the assumed containment failure amounts to an additional 0.18 %/day. To change the leak rate once containment failure occurs, a row was added to describe the event (leak rate 0.38 %/d) and the time set to 48 hours after the start of release.

🔄 PWR - Dry Con	tainment l	Leakage or Failure			×
Pathway description: <pre></pre>		(optional; 60 character max)			
Release height: 10.0 m 💌					
Release timings:		Core release starts:	2014/01/30 08:00		
Leak rate to atmos described by:	phere	 Percent volume / time C Containment pressure / 	/ hole size		
Date	Time	Event	Event setting	Add Row	
2014/01/30	08:00	Leak rate (% vol)	0.2 %/d		
2014/01/30	08:00	Sprays	Off	Bemove Row	
2014/02/01	08:00	Leak rate (% vol)	0.38 %/d		
				Sort Rows Clear All OK Cance Help	

Containment Spray - For each run, the sprays were set to either "On" or "Off" and remained so for the entire duration of the release. RASCAL 4: Description of Models and Methods describes the modeling of containment sprays.

Release Height - A release height of 10 m was used in all runs.

Steam Generator Tube Rupture - The SGTR release path has adjustable parameters for controlling the leak rate into tubes, location of rupture (above or below water line), steaming rate, and release point (safety relief valve or condenser exhaust).

Available release path	hways		×
Select the release pathw C Containment leakage C <u>Steam generator tub</u> C Containment bypass	e rupture		
PWR Dry Containment	Sprays Pressurizer Relef Tank Reactor Vessel Low Pressure System	Safety Relief Offgas Valve Exhaust	OK Cancel <u>H</u> elp
Auxiliary Building	Containment	Turbine Builiding	Print

As specified in Enclosure 1, for each of the runs with a SGTR release pathway, the leakage was assumed to be into 0.5 tubes, above the water level, at a steaming rate of 72,000 lbm/hr, and release through the safety relief valve. RASCAL assumes leakage into the steam generator from 1 failed tube to be equivalent to 500 gpm, so the leak rate was set to 250 gpm for the assumed 0.5 tube leakage.

🖪, Steam Generato	or Tube Ri	upture			x
Pathway description	on:			(optional; 60 character max)	
Release height:		10.0 m 💌			
Release timings:		Core release starts:	2014/01/30 00:00		
Leak rate to atmos described by:	phere	Leak rate into SG and steam	ing rate		
Date	Time	Event	Event setting	Add Row	
2014/01/30	00:00	Leak rate into SG	250 gal/min		
2014/01/30	00:00	Rupture location	Above water level	Remove Row	
2014/01/30	00:00	Steaming rate	72000 lb/h		
2014/01/30	00:00	Release point	Safety relief valve		
				Sort Rows	
				<u>C</u> lear All	
				ОК	٦.
				- Six	_
				Cancel	
					_
				<u>H</u> elp	

Containment Bypass - The containment bypass release allows the user to control bypass flow rate and whether the release is filtered or not.

🔄. Available release pati	hways	×
Select the release pathw C Containment leakage C Steam generator tub C [Containment bypass]	e rupture	
PWR Dry Containment	Bypass Sprays Relief Tank Resctor Vessel Low Pressure System Containment	OK Cancel Help Print

For the bypass runs, bypass flow rate was set to 1000 gal/min and filters either "On " or "Off" as specified in Enclosure 1. Release height remained 10 m for all the runs.

By Bypass of Containment	×
Pathway description: <a>(optional; 60 character max	k)
Release height: 10.0 m 💌	
Release timings: Core release starts: 2014/01/29 08:00	
Leak rate to atmosphere Bypass flow rate described by:	
Date Time Event Event setting Add Row	
2014/01/29 08:00 Bypass flow rate 1000 gal/min	
2014/01/29 08:00 Filters On <u>Bernove Row</u>	
Sort Rows	
<u>C</u> lear All	
	OK
	Cancel
	Help
	100P

Meteorology - RASCAL has a number of predefined weather conditions that include conditions for different seasons, time of day, and precipitation. The wind is assumed to be coming from the West in all predefined non site-specific weather datasets. Options exist to use actual observations and forecasts or Predefined Data for the site, but the following predefined weather conditions were selected for use in the modeling runs.

Meteorology	Stability Class	Wind Speed	Precipitation	Temperature	Relative Humidity
Summer - Afternoon - Calm	A	4 mph	No precip	85 F	40%
Summer - Afternoon - Windy	В	15 mph	No precip	85 F	40%
Winter - Rainy	D	10 mph	Rain	35 F	95%
Winter - Afternoon - Calm	С	4 mph	No precip	35 F	75%

Create New Edit Existing Import Delete Predefined Data (Non Site-specific) Predefined Data (Site Specific)	Summer - Afternoon - Calm Summer - Afternoon - Rainy Summer - Afternoon - Windy Summer - Morning - Calm Summer - Morning - Rainy Summer - Morning - Windy Summer - Night - Calm Summer - Night - Calm Summer - Night - Windy Winter - Afternoon - Calm Winter - Afternoon - Calm Winter - Afternoon - Windy	D stab 4 mph No precip 70 F 50% rh Time period covered: Dates will be adjusted to match release
---	--	--

Weather conditions persist through the duration of the calculation unless the user specifies different meteorology, and the dose calculations are projected out to 96 hours from the start of release. For the Winter – Rain conditions it is unlikely these conditions would persist for 4 days straight, therefore, some practical assumptions were made. It was assumed the worst case precipitation would last for 24 hours from the start of release. The reasonableness of this assumption was validated by comparing the RASCAL modeling assumptions to the actual site weather conditions.

From the RASCAL 4.3 Workbook, for moderate rain, RASCAL assumes a precipitation rate of 0.04 in/hr to 0.2 in/hr, or approximately 1 to 4 inches/day. From Chapter 2.3 of the Vogtle Final Safety Analysis Report (FSAR), Table 2.3.2-1, the maximum 24 hour rainfall in the winter months is approximately 3.5 inches. Thus, 24 hours of moderate rain in the RASCAL model is a reasonable approximation of the worst case precipitation the site is likely to experience. The weather conditions persisting after the rain were specified as Winter – Afternoon – Calm. The other predefined weather conditions compare favorably to the climatological data tabulated in Chapter 2.3 of the FSAR.

	Enter da	ata for: Vogtle					Retrieve	e Download	led Data (Change <u>u</u> nits or
Station D /OGT	Туре	Date	Time (24 h)	Wind Direct from (deg)	Speed (mph)	Stability Class	Precipitation	Air* Temp (deg F)	Air * Pressure (mb)	Dew Pt * (deg F)
.MFS1	Obs	2014/01/30	08:00	270	10.0	D	Rain	35		
(LKR	Obs	2014/01/31	08:00	270	4.0	С	No Precip	35		
(SSC ≡	Obs	2014/02/01	00:00	270	4.0	С	No Precip	35		
VATS1	Obs	2014/02/02	00:00	270	4.0	С	No Precip	35		
BNL	Obs	2014/02/03	00:00	270	4.0	С	No Precip	35		
(OGB (MNI	Obs	2014/02/04	00:00	270	4.0	С	No Precip	35		
UZI (NBC (1033 UYL										
(SVN (SVN (TBR (LHW (JES -										
(SVN (TBR (LHW		-				1	Add recor	d		
SVN TBR LHW JES Note: or UF6 release	es, air tempe	erature, air pressure	, and a mea	asure of mo	pisture are	1	<u>A</u> dd recor		1	_
SVN TBR LHW UFS Note: Note: or UF6 release quired. or all other rele	eases, air pr	erature, air pressure essure and moisture e precipitation type	e are not re					ts	1	C

<u>Calculate Doses</u> - The dose calculations are being performed to provide site area boundary doses for comparison to the entry criteria for SAMGs. Since the meteorological conditions always assume the wind is coming from due West, an appropriate calculation distance is the distance from the release point to the Eastern site area boundary. From Chapter 2.3 of the Vogtle FSAR, Table 2.3.4-2, the assumed distance to the Eastern boundary ranges from approximately 0.7 to 1.15 miles (NE to SE direction). Therefore, dose projections at 1 mile are used to compare against entry conditions into the SAMGs.

Since dose projections are only needed at 1 mile, the *Distance of Calculation* was set to "Close-in only" which computes doses for distances of 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, and 2.0 miles for computational efficiency.

The end of calculations was set to 96 hours form the start of release, consistent with U.S. Environmental Protection Agency Protective Action Guides (EPA PAG) dose metrics.

RASCAL 4.3 includes two sets of inhalation dose conversion factors, i.e., dose conversion factors from the International Commission on Radiological Protection (ICRP) 26 (Federal Guidance Report (FGR) 11) and ICRP-60 (FGR-13). In general, the differences in CEDE dose conversion factors are small compared to the uncertainties in the source term and dispersion. However, for comparison to EPA PAG doses, the ICRP-60 inhalation dose conversion factors must be used and was selected for all runs. See RASCAL 4: Description of Models and Methods, Section 2.7 and the RASCAL 4.3 User's Guide for a more detailed discussion of these dose conversion factors.

Start the Calculations	
Specify options and title for this set of calculations, then	OK to begin calculations.
Distance of calculation	Case information
C Close-in + out to 10 miles (16 km)	Title:
C Close-in + out to 25 miles (40 km)	Run 1
Close-in + out to 50 miles (80 km)	(required - max 45 characters)
C Close-in + out to 100 miles (160 km)	Case description:
 Close-in only 	
Using close-in distances in miles: 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0 C Defaults C User defined Set Close Distances Start of release to atmosphere: 2014/01/30 08:00 (from release pathway definition) End calculations at	
 Start of release to atmosphere plus: 96 → → hours 	(optional - max 600 characters)
C User specified time: 2014/02/03 - 08:00	Analyst: © Dose Analyst
Inhalation dose factors to use in calculations C ICRP 26/30 © ICRP 60/72	c
	Help Cancel OK

Detailed Results - When the calculations are completed the Maximum Dose Values for the Close-In dose are displayed. The values of Total Effective Dose Equivalent (EDE) and Thyroid Committed Dose Equivalent (CDE) at 1 mile were used to determine entry into SAMGs with the results provided in the table in Enclosure 1.

	a Viewer <u>S</u> ite / Facility Data View	ver <u>H</u> elp			
NPP Reactor	Maximum Dose Valu	ues (rem) - Close	-In		<u>^</u>
Event Location	Dist from release miles 0.1 (kilometers) (0.16)		0.5 0.7 (0.8) (1.13)	1. 1.5 (1.61) (2.41)	2. (3.22)
Vogtie - Unit 1 Source Term Import Long Term Station Blackout (SDARCA)	Thyroid CDE 3.2E+ Child Thyroid CDE <u>6.1E+</u> Inhalation CEDE 3.6E+ Cloudshine 1.0E+ 4-day Groundshine 6.9E+ Inter Phase 1st Yr <u>7.3E+</u>	03 4.0E+02 2.4E+02 03 8.8E+02 4.1E+02 03 1.7E+03 7.8E+02 02 9.5E+01 4.8E+01 00 5.3E+01 3.3E+01 02 3.1E+02 1.9E+02 03 3.3E+03 2.1E+03 03 1.8E+03 1.2E+03	1.5E+02 8.2E+01 2.9E+02 1.6E+02 1.6E+01 8.3E+00 1.6E-01 1.1E-01 1.0E+02 7.0E+01 1.1E+03 7.6E+02	4.1E+01 1.9E+01 7.9E+01 3.6E+01 4.0E+00 1.7E+00 6.1E-02 3.0E-02 4.4E+01 2.5E+01 4.7E+02 2.7E+02	1.0E+01 = 2.0E+01 8.7E-01 1.7E-02 1.6E+01 1.7E+02
<u>Release Path</u> PWR Dry Meteorology	Notes: • Doses exceeding 2013 EP • Early-Phase PAGs: TEDE - • Thyroid CDE - adult thyroid as related to 1992 EPA P	1 rem dose from exposure to AGs (no interim PAG - no	all radionuclides -	_	Ŧ
Predefined Conditions	Value displayed: (C Close-in dos C Doses to mi C Criticality sh	les	: • English O Metric	Definitions	► Print
<u>∎</u> etailed Results F Sa <u>v</u> e Case	Case Summary	Sec	irce Term	1 Mavimum I	Dose Values

<u>Save Case</u> - All the modeling runs in Enclosure 1 were saved for recall and verification purposes.