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A Practical Guide to Sensitivity Analysis

of a Large-scale Computer Simulation Model

David Morton, Jeremy Tejada, and Alexander Zolan
The University of Texas at Austin

Abstract

We describe a 10-step sensitivity analysis procedure that applies to a large-scale computer sim-
ulation model. We propose using tornado diagrams as the initial tool for identifying the input
parameters to which the simulation’s outputs are most sensitive. Sensitivity plots and spider
plots complement tornado diagrams by capturing nonlinear responses in outputs to changes in
inputs. Regression metamodels, and associated experimental design, help understand sensitivi-
ties to, and interactions between, input parameters. Our motivating model from GSI-191 has a
number of distinguishing features: (i) The model is large in scale in that it has a high-dimensional
vector of inputs; (ii) Some of the model’s inputs are governed by probability distributions; (iii)
A key output of the model is the probability of system failure—a rare event; (iv) The model’s
outputs require estimation by Monte Carlo sampling, including the use of variance reduction
techniques associated with rare-event simulation; (v) It is computationally expensive to ob-
tain precise estimates of the failure probability; (vi) We seek to propagate key uncertainties
on model inputs to obtain distributional characteristics of the model’s outputs; and, (vii) The
overall model involves a loose coupling between a physics-based stochastic simulation sub-model
and a logic-based PRA sub-model via multiple initiating events in the latter sub-model. We
review a subset of a much larger literature, guided by the need to have a practical approach to
sensitivity analysis for a computer simulation model with these characteristics. We illustrate
our proposed 10-step procedure on a simple example of a simulation model for system reliabil-
ity. Important themes repeat throughout our recommendations, including the use of common
random numbers to reduce variability and smooth output analysis, a focus on assessing differ-
ences between two model configurations, and proper characterization of both sampling error
and uncertainties on input parameters. In Appendix A we assess the sensitivity of core damage
frequency (CDF) estimates to changes in input parameters for the South Texas Project Electric
Generating Station GSI-191 risk-informed resolution project. In particular, we use output from
the CASA Grande simulation model to construct a tornado diagram to assess which parameters,
from a list of candidate parameters, CDF appears most sensitive, and we further construct a
one-way sensitivity plot for one of the most sensitive parameters.

1 Background, Purpose, and Lexicon

Paraphrasing Kleijnen [9],

Sensitivity analysis, of a computer simulation model, estimates changes in the model’s
outputs with respect to changes in the model’s inputs.

In this report, we review approaches to sensitivity analysis of a computer simulation model, fo-
cusing on specific approaches that we see as practically viable in the context of resolving GSI-191
through a risk-informed approach. And, we propose a 10-step sensitivity analysis procedure. Before
proceeding, some remarks on our characterization of sensitivity analysis, adopted from Kleijnen,
are in order.
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1. We deliberately use the verb estimates because the “true” value of our model’s outputs (e.g.,
probability of system failure) cannot be computed. Rather this output must be estimated
using Monte Carlo sampling in our implementation via a computer simulation model.

2. For the moment, we are purposefully vague about how to make changes in the model’s inputs
because this is a key distinguisher of different approaches to sensitivity analysis. We explore
this issue in some detail in this report.

3. Another key distinguisher of approaches to sensitivity analysis is the manner in which we
quantitatively and qualitatively summarize changes in our estimates of the model’s outputs.
We discuss some important and complementary approaches.

4. We use the plural model’s inputs because of our interest in being able to handle a high-
dimensional vector of input parameters.

5. We again use model’s outputs recognizing that multiple performance measures are of simulta-
neous interest. For example, we may be interested in both the core damage frequency (CDF)
and the change in core damage frequency relative to a base model (ΔCDF), where the latter
model does not account for failure modes associated with GSI-191. Or, we may be interested
in the four-tuple (CDF, ΔCDF, LERF, ΔLERF), where LERF denotes large early release
frequency.

6. There is no redundancy in the term computer simulation model. Physical simulation models
differ from models implemented on a computer. The notions of to model and to simulate
both involve mimicking a real-world system. However, in our context modeling means the
act of abstracting the real-world system into a set of mathematical equations and/or logic
constituting an abstract model. While a simulation model is a mathematical model, it is
usually taken as distinct from other classes of mathematical models that yield an analytical
solution.

7. While a simulation model may be deterministic or stochastic, we focus on stochastic simula-
tion models. The output of a stochastic simulation model may be deterministic or random.
Consider the probability of system failure in the context of GSI-191. If we condition the
input on a random initiating frequency, the output of the model is a conditional probability
of system failure; i.e., the output is a random variable. On the other hand, if we integrate
with respect to the distribution governing the random initiating frequency, the probability of
failure is a deterministic output parameter. We consider both alternatives.

8. We cannot compute even a deterministic output measure exactly. Rather, we must estimate
the output using Monte Carlo sampling. We have sampling-based errors associated with
Monte Carlo methods, but these errors can be quantified. The errors can also be reduced
by increasing the sample size, and they can be reduced by using so-called variance reduction
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techniques. The latter methods are particularly important because of our interest in rare-
event simulation in which failure probabilities are very small.

9. It is important to distinguish three sources of error: First, we have sampling-based errors
associated with Monte Carlo methods discussed above. Second, we have errors due to uncer-
tainties on some model inputs. Third, we have errors due to a lack of fidelity of the model
itself. We can attempt to reduce the second type of error by gathering more data or eliciting
(more) information from experts. We can also use data and elicitation to reduce the third
type of error if we have competing hypothesized models, or sub-models. In all three cases,
sensitivity analysis can help guide where such efforts should focus.

A second key notion regarding sensitivity analysis in the context of decision problems involves
understanding which differences in inputs make a difference in the decision rather than simply
differences in model outputs. In this context, Clemen and Reilly [3] characterize sensitivity analysis
by saying:

Sensitivity analysis answers the question, “What makes a difference in this decision?”
. . . Determining what matters and what does not requires incorporating sensitivity anal-
ysis throughout the modeling process.

A similar sentiment is reflected in Eschenbach [6]:

This sensitivity analysis may be used (1) to make better decisions, (2) to decide which
data estimates should be refined before making a decision, or (3) to focus managerial
attention on the most critical elements during implementation.

Should some pipes that currently have fiberglass insulation be retrofitted to instead have reflec-
tive insulation to mitigate risk associated with a possible GSI-191 LOCA event? Such an action
would incur significant cost and significant radiation exposure to workers. What differences in input
parameters of a model lead to a “yes” versus “no” answer to this question? A surrogate question
involves the notion of Regions I, II, and III from Regulatory Guide 1.174 [4]. Suppose nominal
values of our model’s input parameters lead to an assessment that the plant is in Region III. Then,
we may ask: What changes in the input parameters would lead us to conclude that the plant would
instead be in Region I or Region II?

It is not the purpose of this report to directly answer the above pair of questions. Rather, we
provide a framework that, when properly applied, can answer these questions. For concreteness,
we apply our sensitivity analysis framework to a simple example of a parallel-series system with
four components illustrated in Figure 1. Here, our analogous question will be, “Should we perform
preventive maintenance on component 3 to decrease the probability the system fails prior to a
pre-specified time, t0?” We describe this illustrative example in more detail in Section 2.
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Figure 1: The figure depicts a series-parallel system in which the first two components (1 and 2) are
in series with a subsystem that has two components (3 and 4) in parallel. One of the two parallel
components must be “up” for the system to be up, along with both components 1 and 2.

2 Illustrative Example

Figure 1 depicts a simple model of system reliability we use to illustrate sensitivity analysis in
this report. Our emphasis here is on having a concrete model that is rich enough to serve this
purpose as opposed to having a high fidelity model of an actual system. The block diagram in
the figure depicts four components with independent random failure times T1, T2, T3, and T4. If a
component fails, it will not be repaired. We seek to understand the failure time of the system, given
by T = min{T1, T2, max{T3, T4}}. While T is a random variable, we use two deterministic output
measures P{T > t0} and E[T ], where the former output is our primary performance measure of
system reliability; i.e., the probability the system fails after a pre-specified time, t0. A secondary
output is the expected time until the system fails. We have oriented the measures so that we prefer
larger values.

The parameters of the four random variables, T1, . . . , T4, are inputs to our model of system
reliability. We assume the four random variables have exponential distributions, and so we have
as model inputs the failure rates of each of the components, λ1, λ2, λ3, and λ4 (which have units
of failures per unit time), along with the time threshold for which we desire the system to survive,
which we denote t0. Usually, we suppress the dependency of T1, . . . , T4 on their rates but sometimes
we write expressions such as T3(λ3) to emphasize the rate associated with T3. The inverse of the
failure rate is the mean time until a component fails, and often it is more natural to think in terms of
these means: λ−1

1 , λ−1
2 , λ−1

3 , and λ−1
4 , which have units of time. In what follows we interchangeably

speak of failure rates or mean times to failure, depending the context.
In our example, we have a decision to make for this system. We can operate the system as

depicted in Figure 1 with failure rates λ1, . . . , λ4. We call this the base option. Or, at time
0 we can take component 3 off-line, and perform preventive maintenance on that component.
Component 3 would then come back on-line at time t = Δt. Importantly, the system operates even
when component 3 is off-line for preventive maintenance. So the system would operate as three
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components in series with failure rates λ1, λ2, and λ4 during the time interval (0, Δt) and as the
system depicted in Figure 1 with failure rates λ1, λ2, λ3/k, and λ4, on time interval (Δt, t0). Here,
performing preventive maintenance on component 3 at time 0 reduces its failure rate from λ3 to
λ3/k for k ≥ 1. For brevity we call this latter option the PM option, although it arguably amounts
to an “upgrade” of component 3 given the memoryless property of the exponential random variable.
For the PM option, model inputs include λ1, λ2, λ3, λ4, t0, Δt, and k.

System reliability under the base option is given by:

P {min{T1, T2, max{T3(λ3), T4}} > t0} . (1)

System reliability under the PM option is:

P{min{T1, T2, T4} > Δt} · P{min{T1, T2, max{T3(λ3/k), T4}} > t0 − Δt}. (2)

We are using the memoryless property of exponential random variables in equation (2), by writing
the product and by writing the reliability of the system over time interval [Δt, t0] as the second
term. Also, the rates associated with T1, T2, and T4 do not change under the base and PM options
and hence we do not make them explicit in equations (1) and (2). That said, we investigate below
changes in these rates in the course of our sensitivity analysis.

We may treat input parameters, such as λ1, as deterministic but vary the parameter for the
purpose of understanding the sensitivity of system reliability to changes in λ1. Or, we may treat λ1

as a random variable governed, e.g., by a gamma distribution or by a bounded Johnson distribution.
In either case, we may compute, or estimate, the conditional output P{T > t0 |λ1} under the base
option, where T = min{T1, T2, max{T3, T4}}. In the latter case, because P{T > t0 |λ1} is a random
variable, we may compute, or estimate, the percentiles (e.g., the 5th, 50th, and 95th percentiles) of
P{T > t0 |λ1} knowing the corresponding percentiles of λ1. Alternatively, we may integrate with
respect to λ1’s distribution and obtain P{T > t0}. Finally, if λ1 is governed, e.g., by a bounded
Johnson distribution, we could seek to understand the sensitivity of P{T > t0} to the parameters
of the Johnson distribution.

In the context of GSI-191, example input parameters include margins governing various failure
modes such as the net positive suction head margin for pumps, the structural margin for pump
strainers, air intrusion limits for pumps, in-vessel limits on debris penetration, and solubility limits
on boron concentration in the core. Other key inputs include the temperature, pH, and water
volume of the pool, parameters governing debris generation and debris transport, parameters gov-
erning strainer characteristics, and so on. Some parameters such as pool temperature change over
time according to a specified input profile.

In a stochastic simulation model, random variables play a key role and their inputs can be
characterized in one of two key ways, and we take the initiating LOCA frequencies as an example.
We model a probability distribution as governing the frequency of breaks of various sizes. We
can either take as input: (i) the parameters of that probability distribution, which in the case of
STP’s GSI-191 analysis are the parameters of the Johnson distributions governing the break sizes
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for the six NUREG-1829 break-size categories or (ii) we can take as input a percentile (e.g., the
median) associated with that distribution. This choice affects how we characterize model output.
Similar choices can be made for random variables governing, e.g., the strainer safety margins. The
discussion above regarding the treatment of P{T > t0 |λ1} is our analog for the illustrative example.

In terms of model outputs for GSI-191, we may be interested in both the core damage frequency
(CDF) and the change in core damage frequency relative to a base-case model (ΔCDF). Or, we
may be interested in the four-tuple (CDF, ΔCDF, LERF, ΔLERF). A detailed physics-based
simulation model, such as CASA Grande, can help characterize the risk associated with a specific
failure mode. However, proper assessment of overall risk requires propagating such failures through
a coupled PRA model, and hence proper assessment of sensitivities to changes in underlying input
parameters requires a similar propagation.

In the remainder of this report we do not discuss a GSI-191 example in detail, even though
we are motivated by risk-informed GSI-191 analyses. Rather, we restrict attention to the example
discussed in this section to illustrate ideas. This streamlines the discussion and allows us to provide
simple and transparent insights on the relative merits of various approaches to sensitivity analysis.

3 A Practical Step-by-Step Guide to Sensitivity Analysis

Step 1: Define the Model

We let f : R
n → R

m denote our idealized model of the system. Here, our notation means
that the model takes as input the values of n parameters and gives as output m performance
measures. The vector of inputs is denoted x = (x1, x2, . . . , xn) and the vector of outputs is denoted
y = f(x1, x2, . . . , xn), where y = (y1, y2, . . . , ym). We call the model idealized because we assume,
for the moment, that the outputs are known exactly given the values of the estimates; i.e., for the
moment we assume we do not need to perform a Monte Carlo simulation in order to estimate the
values of the outputs.

Our illustrative example has two models rooted in the base and PM options. The base-option
model has the following primitives: Four independent exponential random variables, T1, . . . , T4,
govern the failure times of four components with respective failure rates λ1, . . . , λ4, and the failure
time of the system is given by T = min{T1, T2, max{T3, T4}}. With these constructs and m = 2
outputs we have the model f defined by

f(λ1, . . . , λ4, t0) = ( P{T > t0}, E[T ] ) ,

where the equations for P{T > t0} and E[T ] could be further detailed using four-dimensional
integrals. (We do not do so here as it does not further our discussion of sensitivity analysis.) An
analogous idealized model can be written under the PM option using equation (2).
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Step 2: Select Outputs of Interest

Our model f has m outputs (y1, . . . , ym). In step 2 of the proposed process, we can restrict attention
to a subset of these outputs. There are a number of possibilities for our illustrative example. We
may have m = 1 with (y1) = (P{T ≤ t0}) or (y1) = (E[T ]) as the single output of interest. Or,
we have two outputs of interest: m = 2 and (y1, y2) = (P{T ≤ t0}, E[T ]). We may have m = 3
outputs: (y1, y2, y3) = (P{T > t0}, E[T ], P{T > t0 |λ1}), and this can be extended to include
additional outputs such as P{T > t0 |λi} for all i = 1, 2, . . . , 4.

The notion of attribution is tied to our outputs of interest. Consider the base option in our
example. Given that our system failed prior to time t0, we can assess whether this is due to a failure
of component 1, component 2, or due to the failure of the parallel subsystem of components 3-4.
Thus we can compute P{T1 = T |T < t0}, P{T2 = T |T < t0}, and P{max{T3, T4} = T |T < t0}.
When focusing on attribution, we could model m = 3 output parameters:

(y1, y2, y3) = (P{T1 = T |T < t0}, P{T2 = T |T < t0}, P{max{T3, T4} = T |T < t0}).

Of course, we could further assess whether component 3 or 4 caused the failure rather than taking
their paired subsystem via P{T3 = T |T < t0} and P{T4 = T |T < t0}.

Step 3: Select Inputs of Interest

Our model f has n inputs (x1, x2, . . . , xn). In step 2 of the process, we have already restricted
attention to a subset of the model outputs. It may seem counterintuitive to choose the outputs
before choosing the inputs, but this order is purposeful. Our choice of inputs hinges both on what
the analyst sees as important and on the outputs of interest that the analyst selected in step 2. The
notion of “important” here is driven by multiple considerations. In our example, the analyst may
believe an input parameter may not change whether the “base option” versus “PM option” choice
leads to higher system reliability until the parameter changes to some relatively extreme value, and
the analyst may seek to understand the magnitude of that extreme. Or, the analyst may believe an
output depends crucially on an input parameter, and the analyst seeks to understand the direction
and magnitude of change in the output with respect to changes in the input.

For our example’s base option, if we have selected m = 1 with (y1) = (E[T ]) then we may choose
as the input vector (x1, . . . , x4) = (λ1, . . . , λ4) and drop the time threshold t0 because this is not
relevant when estimating E[T ]. If the analyst believes that components 1 and 2 are identical and
components 3 and 4 are identical then it may suffice to have the smaller dimensional input vector
(x1, x2) = (λ1, λ3), because changes in λ1 = λ2 apply to both components 1 and 2 and changes in
λ3 = λ4 apply to both components 3 and 4.

If P{T > t0} is one of our outputs of interest then we may seek to understand the sensitivity of
the failure probability to choices of t0, and hence include t0 as an input parameter. However, even
if P{T > t0} is one of our outputs of interest we may not seek to understand its sensitivity with
respect to t0, if changes in t0 are highly unlikely or the value of t0 is fixed by mandate.
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Step 4: Choose Nominal Values and Ranges for Inputs

In the previous step, we have selected n input parameters of interest, (x1, x2, . . . , xn). In step 4,
we select nominal values for these parameters and lower and upper bounds for each of these input
parameters. We denote the nominal values by (x0

1, x
0
2, . . . , x

0
n), the lower bounds by (x0

1, x
0
2, . . . , x

0
n),

and the upper bounds by (x̄0
1, x̄

0
2, . . . , x̄

0
n).

The nominal value for an input parameter is typically based on the analyst’s best point estimate
for that input. That said, there are sometimes reasons for selecting an appropriately conservative
nominal value. Consider our illustrative example. The threshold time, t0, may denote the lifetime
for which we require the system to survive, but we may not know the value of t0 with certainty. We
could select a conservative (i.e., large but “reasonable”) value of t0, and if P{T > t0} is sufficiently
close to 1, we may be satisfied that our system is of sufficiently high reliability. Sensitivity analysis
explores this notion in a richer manner, seeking not just to understand the failure probability at
a single, perhaps conservative, value of t0, but rather to understand the failure probability over a
range of values of t0.

Table 1 gives the input parameters associated with our system reliability example. Lower and
upper bounds are specified by what the analyst sees as how low or high these parameters might be,
in an absolute sense. More typically, ranges are specified so that the interval contains values that
are both reasonable and likely (e.g., we might exclude values that have less than a 10% chance of
occurring). All seven parameters in Table 1 have absolute lower bounds of 0 and upper bounds of
∞. However, we have no intention of exploring this entire interval. Even if PM might conceivably
degrade a component, we will not explore k < 1. Similarly we will not explore Δt > t0 because
under such a large value for the PM time, it is clearly not worthwhile to pursue PM.

It is important to choose ranges for the input parameters that the analyst sees as reasonable
and commensurate. This task can be difficult, and we do not mean to minimize that difficulty.
That said, such choices are continually made during the process of modeling a system, and we see
this difficulty as implicit in the intimate connection between modeling and sensitivity analysis.

Step 5: Estimating Model Outputs under Nominal Values of Input Parameters

So far we have referred to the idealized model, f(x). So, with m = 1 model output, P{T > t0}, we
can discuss the value of system reliability under the nominal values of the input parameters, x = x0,
given in Table 1. However, for the large-scale stochastic models in which we have interest, we cannot
compute f(x0) exactly. Rather, we must estimate f(x0) using Monte Carlo sampling. Formally this
means that we have another model, which we denote, fN (x0), where this model is parameterized
by a sample size, N . We can compute fN (x0), but because its inputs involve sampling random
variables—such as the failure times of the four components in Figure 1—the model output, fN (x0),
is also a random variable. The random sampling error associated with fN (x0) can be quantified,
provided the sample size, N , is sufficiently large, using fN (x0)’s standard deviation via the central
limit theorem.
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Table 1: Nominal values, lower bounds, and upper bounds for the input parameters in our system
reliability example: λ−1

1 , . . . , λ−1
4 denote mean time until failure for the four components depicted

in Figure 1; t0 specifies the desired lifetime of the system; Δt is the time required to perform PM
on component 3; and, if PM is performed component 3’s failure rate drops to λ3/k where k ≥ 1.

Input Nominal Lower Upper
parameter (x) value (x0) bound (x) bound (x̄)
λ−1

1 (months) 200 150 250

λ−1
2 (months) 200 150 250

λ−1
3 (months) 50 25 75

λ−1
4 (months) 50 25 75

t0 (months) 18 12 24

Δt (months) 1 0.5 3

k (unitless) 2 1 5

Using the nominal values for the input parameters from Table 1, estimates of the system reli-
ability, expected time to failure, and failure attribution probabilities are reported in Table 2. The
table contains point estimates, and estimates of sampling error in the form of 95% confidence in-
terval halfwidths. For example, the point estimate of system reliability is 0.7520 under the base
option and 0.7850 under the PM option, as reported in the “P{T > t0}” row of Table 2. This
suggests that the PM option leads to higher system reliability, however, we cannot ignore sampling
error in coming to this conclusion. We also see from Table 2 that the mean lifetime of the system
appears to be longer under the PM option. And, we get a sense of how the attribution probabilities
change under the base and PM options, with the probability that the parallel subsystem 3-4 is
the cause of system failure dropping under the PM option. The three probabilities in rows 3-5 of
Table 2 sum to one because they are conditional on the system failing. Under the PM option the
attribution to parallel subsystem 3-4 drops, and hence the likelihood of the failure being attributed
to components 1 and 2 necessarily grows.

Based on Table 2, we are 95% confident that the true value for system reliability under the base
option lies in the interval (0.7252, 0.7788), and we are similarly confident that the true value for
system reliability under the PM option lies in the interval (0.7595, 0.8105). We may be tempted
to use the two confidence intervals (0.7252, 0.7788) and (0.7595, 0.8105) to infer that the difference
is not statistically significant (because the confidence intervals overlap), but this is not the proper
way to analyze this difference. We describe the approach we recommend shortly.
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Table 2: Estimates of output performance measures for the base-option model and the PM-option
model under the nominal values of the input parameters from Table 1. For example, the point
estimate for P{T > t0} under the base option is 0.7520 and a 95% confidence interval halfwidth is
0.0268. All estimates in the table are based on a sample size of N = 1000.

Output Base-option PM-option
Measure Model Model

P{T > t0} 0.7520 ± 0.0268 0.7850 ± 0.0255

E[T ] 44.0174 ± 2.3008 54.9770 ± 2.9976

P{T1 = T |T < t0} 0.2150 ± 0.0255 0.2520 ± 0.0270

P{T2 = T |T < t0} 0.2350 ± 0.0263 0.2940 ± 0.0283

P{max{T3, T4} = T |T < t0} 0.5500 ± 0.0309 0.4540 ± 0.0309

It is often significantly easier to estimate the difference of an output measure under two system
configurations than it is to estimate the absolute values of that same output measure. When
estimating differences we can take advantage of the simulation technique called common random
numbers in which similar components in the two systems see similar inputs. We illustrate this by
estimating

ΔP{T > t0} ≡ P{TPM > t0} − P{Tbase > t0}
using both common random numbers and independent random numbers with the same sample size
N = 1000, and we present the results in Table 3. The table rightly suggests that we can reduce
the variance of estimates of such differences by using common random numbers.

Table 3: Estimates of the differences in output performance measures between the base-option
model and the PM-option model under the nominal values of the input parameters from Ta-
ble 1 using both common and independent random numbers. For example, the point estimate
for ΔP{T > t0} under the base option is 0.0330 and a 95% confidence interval halfwidth is 0.0149,
but the halfwidth for the same estimate using independent random numbers is larger by a factor
of 2.5 at 0.0365.

Differences in Common Independent
Output Measures Random Numbers Random Numbers

ΔP{T > t0} 0.0330 ± 0.0149 0.0330 ± 0.0365

ΔE[T ] 10.9597 ± 1.3985 13.1036 ± 3.8276

ΔP{T1 = T |T < t0} 0.0370 ± 0.0124 0.0590 ± 0.0375

ΔP{T2 = T |T < t0} 0.0590 ± 0.0159 0.0640 ± 0.0381

ΔP{max{T3, T4} = T |T < t0} −0.0960 ± 0.0197 −0.1230 ± 0.0424
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Our point estimate of ΔP{T > t0} is 0.0330 and the sampling error is 0.0149 when using
common random numbers. The point estimate indicates that the PM option appears to have
higher reliability than the base option, and the fact that 0 is not included in the range 0.0330 ±
0.0149 = (0.0181, 0.0479) indicates that this difference is statistically significant at a confidence level
of 95%. Note that our point estimate of ΔP{T > t0} in Table 3 is identical to the difference of the
point estimates in Table 2. However, the key difference is that the sampling error of 0.0149 under
common random numbers is significantly smaller than the corresponding sampling errors reported
in Table 3 for independent random numbers, and significantly smaller than the sampling error
for the corresponding absolute performance measures in Table 2. Without hypothesizing a priori
whether the base or PM option leads to higher reliability, the question of statistical significance
hinges on whether the 95% confidence interval for ΔP{T > t0} includes 0. If it does not, the result
is statistically significant with the sign of the point estimate of ΔP{T > t0} determining whether
the base or PM option leads to a more reliable system. In this case, a positive difference indicates
the PM option is preferred.

Step 6: One-Way Sensitivity Analysis: Sensitivity Plots and Tornado Diagrams

From steps 1-4, we have specified a model, restricted attention to key model outputs and inputs,
and specified nominal values and ranges for the model inputs. From step 5, we have point estimates,
and estimates of sampling error, associated with the model’s outputs under the model’s nominal
input parameters.

Sensitivity plots restrict attention to one or two model outputs at a time and consider a single
input parameter. Tornado diagrams restrict attention to one model output at a time and consider
multiple inputs. We follow Clemen and Reilly [3] in referring to sensitivity plots and tornado
diagrams as one-way sensitivity analysis because we vary one input parameter at a time, holding
all other inputs at their nominal values.

Figure 2 is a sensitivity plot, showing how system reliability P{T > t0} changes for the base-
option model (without PM) as t0 varies. As t0 grows the system reliability drops. The figure
depicts point estimates along with 95% confidence intervals on P{T > t0}. Panel (a) of the figure
shows the results when using common random numbers, and panel (b) shows the same results when
using independent random numbers for estimating system reliability. The importance of using
common random numbers is evident from the smoothness of the results in panel (a) versus the lack
of smoothness in panel (b). Figure 3 is a similar sensitivity plot but for ΔP{T > t0}, where positive
values indicate that the PM option is preferable. The plot indicates a notion of dominance. That
is, when other parameters are held at their nominal values, system reliability for the PM option
exceeds that of the base option for all t0 values of interest.

Figure 4 again shows a sensitivity plot for ΔP{T > t0}, but now as a function of the reduction
in the failure rate k. Here, we see that as k grows the PM option becomes increasingly preferable.
We know that at k = 1 the base option should be preferred, but from our simulation results using a
sample size of N = 1000, we cannot make this conclusion with statistical significance, as the figure
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indicates. (This would change under a larger sample size.) Figures 5 and 6 concern attribution.
Here, we suppress the confidence intervals to avoid clutter, but Tables 2 and 3 provide a sense
of the respective 95% confidence interval halfwidths under common random numbers. These two
figures quantify how the attribution probability of the parallel subsystem 3-4 drops as k grows.
Note that sampling error accounts for the differences in attribution to components 1 and 2 because
these components play identical roles and have identical failure rates.
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Figure 2: The y-axis in the figure is system reliability, P{T > t0}, and the x-axis is the value of t0
in months for the base-option model. The figure depicts quantitatively how system reliability drops
as the required lifetime of the system grows from its lower bound to its upper bound. The nominal
value of t0 is 18 months, and its lower and upper bounds are 12 and 24 months, respectively, as
indicated in the figure. In addition to point estimates of P{T > t0}, 95% confidence intervals at
each value of t0 are displayed. Panel (a) versus panel (b) of the figure distinguishes the results
when using common random numbers (recommended) versus the more näıve approach of using
independent random numbers at different values of t0. All estimates are based on a sample size of
N = 1000.
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Figure 3: The figure is to be read in the same manner as Figure 2 except that ΔP{T > t0} replaces
P{T > t0} on the y-axis.
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Figure 4: The figure is to be read in the same manner as Figure 2 except that ΔP{T > t0} replaces
P{T > t0} on the y-axis, and k replaces t0 on the x-axis.
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attribution probabilities such as P{T1 = T |T < t0}. Note that at any vertical line drawn through
the three series, the sum of the attribution probabilities is one.
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Figure 6: The figure is to be read in the same manner Figure 5 except that differences in attribution
probabilities such as ΔP{T1 = T |T < t0} replace P{T1 = T |T < t0} on the y-axis. In this case,
at any vertical line drawn through the three series the sum of the differences in the attribution
probabilities is zero.
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A tornado diagram compares the effect of continuously decreasing each input parameter from
its nominal value down to its lower bound and increasing the parameter up to its upper bound, and
seeing the effect on the model’s output. Often output measures change monotonically with respect
to the inputs. For example, with all other input parameters held constant, increasing the mean
time to failure of component 1, λ−1

1 , will increase system reliability (P{T > t0}), increase expected
system lifetime (E[T ]), and decrease the probability that a failure is attributable to component
1 (P{T1 = T |T < t0}). Decreases in λ−1

1 will have the opposite effect. However, in other cases
monotonicity of output is not ensured, and hence we should exercise care that we obtain correct
minimum and maximum values of the output as we vary an input over its range.

On the x-axis of a tornado diagram we plot the output measure of interest, in this case, system
reliability, P{T > t0}, expected time to system failure, E[T ], or their differences, ΔP{T > t0} and
ΔE[T ]. The y-axis stacks bars with the range of these outputs for each input parameter of interest.
The output under the nominal values of the inputs is highlighted. The horizontal bars for the input
parameters are ordered by sensitivity, with the longest bar, i.e., most sensitive input parameters on
top. Note the importance of having selected commensurate ranges for the input variables in step 4,
as these now affect which parameters are seen as most important. Panels (a) and (b) of Figure 7
display tornado diagrams for the base-option model for P{T > t0} and E[T ]. Panels (a) and (b) of
Figure 8 are analogous but for the PM option. Panels (a) and (b) of Figure 9 display ΔP{T > t0}
and ΔE[T ], where positive values indicate the PM option has higher reliability and longer expected
system lifetime.

Panel (a) of Figure 7 indicates that system reliability under the base option is most sensitive
to the value of t0, followed by the mean failure times of components 3 and 4 and then the mean
times for components 1 and 2. System reliability under the base option is not affected by input
parameters k and Δt. For E[T ], panel (b) of Figure 7 indicates the most sensitive parameters are
the mean failure times of components 3 and 4 followed by the same times for components 1 and
2. Output E[T ] is not affected by input parameters k, Δt, or t0. The results for the PM option in
Figure 8 are similar except that we see the importance of parameter k. Interestingly, the results
are relatively insensitive to the duration of the PM interval, Δt, although this changes slightly in
Figure 9 when examining the results for ΔP{T > t0}. For this reason, we do not show sensitivity
plots with respect to Δt here, although we revisit sensitivity to Δt in step 8 (in spider plots) and
step 9 (in a two-way sensitivity analysis with k).

Sampling errors are more easily displayed on sensitivity plots than on tornado diagrams. Still,
in Figures 7-9 we display horizontal error bars at the two extremes. Sensitivity plots also have
the advantage that multiple outputs can be plotted simultaneously. That said, tornado diagrams
can display many input parameters simultaneously and are widely used to assess to which input
parameters an output is most sensitive.
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(a) P{T > t0}

(b) E[T ]

Figure 7: The figure depicts tornado diagrams for P{T > t0} and E[T ] for the base-option model.
Point estimates along with 95% confidence intervals are displayed. The figure indicates that system
reliability is most sensitive to the value of t0, followed by the mean failure times of λ−1

3 and λ−1
4 and

then by the mean times λ−1
1 and λ−1

2 . Expected system lifetime is most sensitive to λ−1
3 and λ−1

4

and then λ−1
1 and λ−1

2 . Note that the color shading indicates whether a high or low value of the
input parameter corresponds to the change in the output. Thus, higher values of t0 lead to lower
values of system reliability, but higher component mean lifetimes lead to higher system reliability.
Again, estimates and error bars are calculated based on a sample size of N = 1000.
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Figure 8: The figure depicts tornado diagrams for P{T > t0} and E[T ] for the PM option, and is
to be read in the same manner as Figure 7.
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Figure 9: The figure depicts tornado diagrams for ΔP{T > t0} and ΔE[T ] where positive values
favor the PM option.
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Step 7: Uncertainty Quantification Plots

An important part of uncertainty quantification (UQ), and a part that distinguishes it from routine
sensitivity analysis, concerns propagating a probability distribution placed on one or more input
parameters through the nonlinear function represented by a simulation model and characterizing
the resulting probability distribution on an output measure. We emphasize that the probability
distribution we speak of here is a probability model that we place on input parameters and not the
Monte Carlo sampling-based error we reference above. (That said, as elsewhere, we also capture
sampling-based error here, too.) We call a graphical plot of the resulting probability distribution
a UQ plot, regardless of whether it is expressed as a cumulative distribution function (cdf) or a
probability density function (pdf). This idea is closely related to the sensitivity plots we form in
step 6, except that we now embed information associated with the probability distribution placed
on the input parameters. We begin by focusing on the case when a univariate distribution is placed
on a single input parameter, and we then turn to UQ plots when multivariate distributions are
placed on input parameters.

When constructing a sensitivity plot, the y-axis is the output parameter, and the x-axis is the
input parameter. For a sensitivity plot we typically form a uniform grid over the range of the input
parameter values, e.g., over the input ranges that Table 1 specifies. A cdf-based UQ plot is a plot
of the cumulative distribution function of the output measure. We also form pdf-based UQ plots.
In both cases we form estimates of these function based on sampling, where the sampling is done
in a manner we make precise below. For a cdf UQ plot, the x-axis contains levels of the output
measure, the y-axis contains probabilities, and the probability distribution on the input parameter
is implicitly encoded in the result.

We again use our example to make this idea concrete. Suppose that the improvement factor,
k, has a continuous uniform random variable on the interval (1, 5) specified in Table 1. Figure 10
contains UQ plots of E[T | k] and P{T > t0 | k} for the PM-option model. The two panels of the
figure contain estimates of the cdf-based UQ plots for both these two outputs. As k grows the
probability that a system failure is due to a failure of the parallel subsystem of components 3-4
drops. As a result, we see both cdfs grow quickly towards one for large values of E[T | k] and
P{T > t0 | k} because there is a large probability mass for k associated with little improvement in
these values. Figure 11 is similar, except that we now show cdfs for ΔE[T | k] and ΔP{T > t0 | k}
rather than E[T | k] and P{T > t0 | k}. Finally, Figure 12 shows the pdfs for E[T | k] and ΔE[T | k].
We do not show analogous pdfs for P{T > t0 | k} and ΔP{T > t0 | k} because the estimates have
excessive sampling error. Developing good pdf estimates for P{T > t0 | k} and ΔP{T > t0 | k}
would require a larger sample size.
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Figure 10: The figure depicts UQ plots which consist of estimates of the cdf of the corresponding
output measures when the improvement factor, k, is a uniform random variable on the interval
(1, 5). Point estimates as well as a 95% confidence envelope are plotted. As k grows the probability
that a system failure is due to the parallel subsystem of components 3-4 shrinks. As a result, we
see both cdfs grow quickly towards one for large values of E[T | k] and P{T > t0 | k}.
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Figure 11: The figure is to be read as Figure 10 except that we now show cdfs for ΔE[T | k] and
ΔP{T > t0 | k} rather than E[T | k] and P{T > t0 | k}.
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Figure 12: The figure depicts UQ plots which consist of estimates of the pdf of E[T | k] and ΔE[T | k]
when the improvement factor, k, is a uniform random variable on the interval (1, 5).
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In our example, when forming UQ plots of E[T | k] and P{T > t0 | k} we regard the other six
input parameters, λ1, . . . , λ4, Δt, and t0, as deterministic parameters, and the failure times of the
four components, T1, . . . , T4 as random variables. Our sampling consists of drawing N = 1000
independent and identically distributed (i.i.d.) observations of the four-tuple (T1, . . . , T4). In this
one-dimensional setting we form the 1%, 2%, 3%, . . . , 99% percentiles of the distribution of k,
using its distribution, and we then use our N = 1000 i.i.d. observations of (T1, . . . , T4) to estimate
E[T | k = kα], for α = 0.01, 0.02, . . . , 0.99, where kα denotes these percentiles. Although we describe
conditioning on evenly-spaced quantiles—evenly spaced in terms of probability—it may be desirable
to have a finer grid in regions where the function changes most rapidly. Again, we emphasize the
importance of using common random numbers in forming UQ plots such as those in Figures 10-12.

Obvious alternatives to what we have just sketched are also possible, appropriate, and even
necessary. (It also important to recognize what is inappropriate and we point to that, too, below.)
For example, we could regard the other six parameters as random variables instead of fixing them
at their nominal values and sample them in the same way we sample (T1, . . . , T4), while still
conditioning on k = kα to form estimates of E[T | k = kα]. Clarity in exposition should indicate
what precisely the expected-value operator is averaging over.

In another alternative, we could also sample from k’s distribution instead of conditioning on
its quantiles in order to form a UQ plot. When sampling k, it is important to distinguish this
sampling from that for (T1, . . . , T4). Specifically, we could use one sample size Nuq for k and
form ki, i = 1, . . . , Nuq from k’s distribution. For each of these samples we then compute, or rather
estimate E[T | k = ki], i = 1, . . . , Nuq, where each estimate averages over the N sampled realizations
of (T1, . . . , T4). We then use the estimates of E[T | k = ki], i = 1, . . . , Nuq, to form the types of
plots in Figure 10.

We did not use this sampling-based method in forming the UQ plots of Figure 10 because
it is more efficient in the one-dimensional setting to condition on the quantiles as we describe
above. However, this sampling-based approach is necessary to form a UQ plot when bivariate, or
higher dimensional multivariate, distributions are placed on input parameters. For example, if we
place a bivariate distribution on the PM time–reduction factor pair, (Δt, k), then such a bivariate
distribution has no notion of quantiles, and so the one-dimensional procedure does not have a
bivariate analog. We must sample. Importantly, we do not have to sample (T1, . . . , T4) from its
underlying distribution. If we have a variance reduction scheme that forms, e.g., unbiased estimates
of E[T | k = ki] then that sampling scheme can be used. However, it is important to recognize that
we must sample from the “true” underlying distribution of (Δt, k). If we use a distribution-altering
variance reduction scheme to sample from (Δt, k) when averaging out those parameters, that scheme
cannot be used when forming a UQ plot. Such altered schemes are designed to reduce variance and
hence would yield misleading plots, indicating, e.g., a pdf that is too narrow about the mean value
of the output measure.
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Step 8: One-Way Sensitivity Analysis: Spider Plots

A spider plot is an x-y graph, in which the x-axis depicts changes in the input parameters and the
y-axis captures corresponding changes in the model’s output measure. Like a tornado diagram, a
spider plot involves multiple input parameters and a single output variable. The output variable
is typically expressed in its natural units. For example, we express changes in E[T ] in months
and we express changes in P{T > t0} as a unitless value between 0 and 1, where the changes are
relative to estimates under the nominal value of the parameters. In order to allow the x-axis to
simultaneously represent multiple input parameters, which are on different scales with different
units, there are two possibilities. One possibility is to express percentage changes in the input
parameters from their nominal values. The second possibility is to express changes as multiples
of the standard deviation of the input parameters, when those input parameters are governed by
probability distributions. In either case, the magnitude we vary the parameters is determined by
the reasonable and commensurate ranges we have specified in step 4 of the analysis, e.g., in Table 1.
In the former case, if the nominal value of the input parameter is zero, then a second x-axis must
be added.

A tornado diagram can include a larger number of input variables than a spider plot. A
spider plot allows displaying about seven input parameters before it becomes cluttered. If the
output variable is monotonic (increasing or decreasing) in an input parameter then we only need
to estimate the model’s output at the lower bound, nominal value, and upper bound of the input
parameter. A spider plot requires estimating the model’s output at enough values of each input
parameter that a seemingly continuous plot of (x, y) pairs can be formed. A spider plot contains
more information than a tornado diagram. The tornado diagram’s endpoints denote the endpoints
of the spider plot, but the spider plot also specifies changes in the output at intermediate values, as
does a sensitivity plot. Again like a sensitivity plot, we can assess whether changes in the output are
linear or nonlinear with respect to changes in the input. Spider plots can contain point estimates
or 95%, say, confidence intervals on those changes. (In the latter case, we may need to reduce the
number of input parameters simultaneously displayed.)

Figure 13 displays two spider plots for our example for E[T ] and P{T > t0} (y-axis) for the
base-option model as a function of percentage changes in the input parameters (x-axis). Panel (a)
shows a spider plot for E[T ] while panel (b) shows the spider plot for P{T > t0}. Figure 14 displays
spider plots for the PM option for our example, and Figure 15 displays spider plots for ΔE[T ] and
ΔP{T > t0}. Note that we choose not to include confidence limits for each parameter displayed in
the graph because of the clutter they induce. Also note that the range of the x-axis is determined
by the nominal values and the lower and upper bounds specified in Table 1. Importantly, the
input parameters are not each varied the same percentage. Rather, the limits are those specified
in Table 1. Qualitatively, the figures are similar to the tornado diagrams as to the most sensitive
input parameters. However, Figures 13-15 are more insightful as to the rate of change and any
associated nonlinearities in the change.
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Figure 13: The figure depicts two spider plots for the base option in our example. The plot in
panel (a) shows E[T ] (y-axis) as a function of percentage changes in the input parameters (x-axis).
The plot in panel (b) is identical to the one in panel (a) except that the y-axis is P{T > t0}.
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Figure 14: The figure reads as Figure 13 except that it is for the PM option in our example.
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Figure 15: The figure reads as Figure 13 except that it is for the differences in performance for our
example.
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Step 9: Two-way Sensitivity Analysis

Two-way sensitivity graphs allow for visualizing the interaction of two or more input variables.
While such analysis can be more difficult to perform, it can provide valuable insight. For our
example, Figure 16 depicts the effect of simultaneous changes in the duration of PM (Δt) and the
factor by which the PM reduces the failure rate of component 3 (k) on ΔP{T > t0}. Panel (a)
contains only the point estimate, and panel (b) contains both the point estimate and the confidence
limits, allowing us to see the indifference zone where neither option is statistically better than the
other. Figure 17 is similar to Figure 16, except the parameters of interest are t0 and k.

Two-way sensitivity analyses can be extended to include more than two decision alternatives,
and in such cases the plots typically partition the space into three or more regions in which each
alternative is preferred. It is also possible to form a three-dimensional plot of an output variable
(e.g., the difference in system reliability ΔP{T > t0}) as a function of two input variables (e.g., Δt

and k), although we do not pursue that here.
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Figure 16: The figure depicts a two-way sensitivity plot for the input parameters governing the
duration of PM, Δt, and the factor by which the failure rate of component 3 is reduced, k. When
Δt is small and k is large, the PM option is preferred, and when Δt is large and k is small the
base option is preferred. The figure quantifies this notion with the two-dimensional analog of a
threshold analysis.

30



12

14

16

18

20

22

24

1 2 3 4 5

t 0

k

Two-Way Sensitivity Plot: Difference - ΔP[T > t0]

Mean

PM Option 
Preferred

Base Option 
Preferred

(a) Point Estimate

12

14

16

18

20

22

24

1 2 3 4 5

t 0

k

Two-Way Sensitivity Plot: Difference - ΔP[T > t0]

Mean

UL

LL

PM Option 
Preferred

Base Option 
Preferred

(b) Point Estimate and Confidence Limits

Figure 17: The figure depicts a two-way sensitivity plot for the input parameters governing the
minimum time the system must be operational, t0, and the factor by which the failure rate of
component 3 is reduced, k. When t0 is small and k is small, the base option is preferred, and when
t0 is large and k is large the PM option is preferred.
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Step 10: Metamodels & Design of Experiments

The possible pitfalls of changing only one input parameter at a time are well documented in the
literature (see, e.g., [8, 10]) and include the fact that interaction effects between input parameters
are lost. Graphical sensitivity analyses become more difficult when moving past a one- or two-
dimensional analysis, but we can form a metamodel (which is also called a response surface, an
emulator, or a surrogate model) and carry out an experimental design to fit that metamodel.

Recall from step 1 that we use y to denote the simulation model’s output and we use x =
(x1, . . . , xn) to denote the simulation model’s input. For simplicity we focus on a single output
measure. Among the simplest metamodels typically postulated are polynomial regression models
of low degree; e.g.,

y = β0 +
n∑

k=1

βkxk +
n∑

k=1

n∑
k′=k+1

βk,k′xkxk′ + ε. (3)

To fit the parameters β0, β1, . . . , βn, and β1,2, . . . , β1,n, . . . , βn−1,n, we use an experimental design to
specify M , say, input parameter vectors (xi

1, . . . , x
i
n), i = 1, . . . , M , coupled with the corresponding

estimated simulation output yi. The corresponding error terms, εi, are assumed to be independent
and normally distributed with mean zero, at least in the simplest approach. So far, we have em-
phasized the importance of using common random numbers in carrying out our analyses. However,
the assumption that the error terms εi are independent requires that we draw independent Monte
Carlo samples at each design point. When estimating a difference, we still use common random
numbers for the base and PM options at that design point.

We could add higher-order cross terms to equation (3). This can improve the quality of the fit,
but we need to take care that we have an adequate number of observations relative to the larger
number of model parameters so the model is not over-fit. Perhaps more importantly, a thorough
understanding of a higher-degree polynomial regression model can be challenging.

Table 1 specifies seven input parameters for our example, but only five of those input parameters
matter for the base option. (The PM parameters of Δt and k are not relevant for the base option.)
In this case, we can seek to explain system reliability y = P{T > t0} as a relatively simple function
of λ−1

1 , λ−1
2 , λ−1

3 , λ−1
4 , and t0. A full factorial design with two levels in this case would involve

25 = 32 combinations of these values placed at their lower and upper bounds from Table 1. When
we also include the nominal case for the values of the parameters we have 35 = 243 combinations.
If we instead have seven input parameters for the PM option, these values become 27 = 128 and
37 = 2187. Note that the preceding values represent the number of “design points” in a specific
experimental design. In order to estimate higher-order effects and interaction terms, multiple
replications are typically run at each design point. So for our example, at each design point, we
could estimate y = P{T > t0} using a sample size of N = 1000, and we could replicate that point
estimate Nr = 3 times.

For our example, we present the results of a regression metamodel, where the performance
measure of interest is the difference in reliability, ΔP{T > t0}, where again, positive values favor
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the PM option. We use a 37 full factorial design, where the three levels are the minimum, nominal,
and maximum values in Table 1. At each design point, we perform Nr = 3 independent replications
of the simulation using a sample size of N = 1000 for each replicate.

Table 4: Experimental design parameters for the replicated 37 factorial design and overall model
fit statistics. The F -Statistic measures whether any of the input variables in any combination with
one another have a statistically significant effect on the response (ΔP{T > t0}). The adjusted R2

value assesses the overall goodness-of-fit of the model to the simulation output.

# of Design Points 2,187
# of Replications Per Design Point: 3
Total Sample Size: 6,561

Residual Standard Error: 0.01295
Residual Degrees of Freedom: 6,532

Adjusted R2 Value: 0.8895

F -Statistic: 1,886
Degrees of Freedom 1: 28
Degrees of Freedom 2: 6,532
p-value: <2.20E-16

From the information in Table 4, we can see that based on the adjusted R2 value of 0.8895,
we have a good (not excellent) fit to the simulation output. An excellent fit is categorized by
an adjusted R2 value of at least 0.90. As we indicate above, in a 37 full factorial experimental
design, there are 2,187 design points; i.e., 2,187 unique combinations of input parameters. We
replicate these design points three times, for a total size of 6,561. Each of these 6,561 estimates of
ΔP{T > t0} is based on a sample size of N = 1000. The F -Statistic and p-value are used to test the
hypothesis that all of the coefficients βk and βk,k′ , with the exception of the intercept β0, are zero.
If this is the case, none of the input parameters (i.e., “factors” in the terminology of regression
and experimental design) or interactions among these parameters are significant in estimating the
response variable, ΔP{T > t0}. The p-value measures the statistical significance of the result. For
the F -Test, we see that the p-value is less than 2.2 × 10−16, which is much less than the standard
significance level of 0.05. So for this F -Test we can conclude that at least one coefficient in our
regression model is significantly different from zero, and hence is a significant factor in estimating
ΔP{T > t0}. This, coupled with a reasonably good adjusted R2 value of 0.8895 suggests that we
have a relatively good fit to the simulation output and the fit parameters, other than the intercept,
play a significant role in estimating ΔP{T > t0}.

The next step in the analysis is to examine which regression coefficients, βk and βk,k′ , are statis-
tically significant in our model. This is a notion of attribution in that we are attempting to attribute
a change in the response variable to changes in the input variable and characterize the strength of
the relationship. Table 5 presents the estimates for the coefficients in the regression model (3) as
well as their standard errors, and the associated p-values for determining the significance levels of
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individual parameters.

Table 5: Results of fitting linear regression model (3) for ΔP{T > t0}. We exclude all terms higher
than second order terms as equation (3) indicates. Using the p-value we can determine which effects
and two-way interactions have a significant effect in estimating ΔP{T > t0}.

Coefficients Parameters
Coefficient Standard

t-value p-value
Significant

Estimates Error at α = 0.05

β0 Intercept -4.374E-02 8.909E-03 -4.910 9.34E-07 Yes
β1 λ−1

1 -4.420E-06 3.132E-05 -0.141 8.88E-01 No
β2 λ−1

2 -4.166E-05 3.132E-05 -1.330 1.84E-01 No
β3 λ−1

3 2.448E-04 8.680E-05 2.820 4.82E-03 Yes
β4 λ−1

4 4.089E-04 8.680E-05 4.711 2.52E-06 Yes
β5 k 1.480E-02 9.005E-04 16.434 2.00E-16 Yes
β6 Δt -2.160E-02 1.801E-03 -11.993 2.00E-16 Yes
β7 t0 2.959E-03 2.816E-04 10.507 2.00E-16 Yes
β1,2 λ−1

1 · λ−1
2 7.682E-09 9.591E-08 0.080 9.36E-01 No

β1,3 λ−1
1 · λ−1

3 -3.916E-07 2.398E-07 -1.633 1.02E-01 No
β1,4 λ−1

1 · λ−1
4 -3.837E-07 2.398E-07 -1.600 1.10E-01 No

β1,5 λ−1
1 · k 1.009E-05 2.398E-06 4.206 2.63E-05 Yes

β1,6 λ−1
1 · Δt -6.564E-06 4.796E-06 -1.369 1.71E-01 No

β1,7 λ−1
1 · t0 1.901E-06 7.993E-07 2.378 1.74E-02 Yes

β2,3 λ−1
2 · λ−1

3 -4.407E-07 2.398E-07 -1.838 6.61E-02 No
β2,4 λ−1

2 · λ−1
4 -1.680E-08 2.398E-07 -0.070 9.44E-01 No

β2,5 λ−1
2 · k 1.061E-05 2.398E-06 4.427 9.73E-06 Yes

β2,6 λ−1
2 · Δt -5.576E-06 4.796E-06 -1.163 2.45E-01 No

β2,7 λ−1
2 · t0 3.070E-06 7.993E-07 3.842 1.23E-04 Yes

β3,4 λ−1
3 · λ−1

4 1.319E-05 5.994E-07 21.998 2.00E-16 Yes
β3,5 λ−1

3 · k -2.303E-04 5.994E-06 -38.416 2.00E-16 Yes
β3,6 λ−1

3 · Δt -8.428E-05 1.199E-05 -7.030 2.28E-12 Yes
β3,7 λ−1

3 · t0 -3.768E-05 1.998E-06 -18.858 2.00E-16 Yes
β4,5 λ−1

4 · k -2.378E-04 5.994E-06 -39.675 2.00E-16 Yes
β4,6 λ−1

4 · Δt 2.797E-04 1.199E-05 23.329 2.00E-16 Yes
β4,7 λ−1

4 · t0 -5.333E-05 1.998E-06 -26.691 2.00E-16 Yes
β5,6 k · Δt -1.725E-03 1.199E-04 -14.390 2.00E-16 Yes
β5,7 k · t0 1.183E-03 1.998E-05 59.200 2.00E-16 Yes
β6,7 Δt · t0 3.536E-04 3.996E-05 8.847 2.00E-16 Yes

Table 5 provides several insights, and can be viewed as “typical” regression output. In the
first two columns of the table, we list all of the coefficients in the model, their corresponding
input parameters, and interactions among the input parameters. For example, β0 is the coefficient
representing the intercept, β1 represents the coefficient of λ−1

1 , and β5,7 represents the interaction
between k and t0. The third column presents point estimates of each of the regression coefficients
and the fourth column presents the standard error associated with these coefficients. The ratio of
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the estimate to the standard error is the t-value for the t-test, which tests the hypothesis that each
individual parameter takes value zero so that rejecting the null hypothesis indicates the parameter
is significant. The p-values for the t-tests for each of these terms (column 6) can be interpreted
in same manner as the p-value for the F -test we describe above, and can be used to determine
the statistical significance of each term in the regression model individually, whereas the F -test
determines the significance of the parameters as a group.

The positive signs on the coefficients for k and t0 are consistent with the sensitivity plots in
Figures 3 and 4 and the spider plot in Figure 15 and, of course, with intuition. Similarly, the negative
coefficient for Δt is consistent with intuition and Figure 15: As the time required to carryout PM
grows, the benefit of the PM option drops. The signs and magnitude of other coefficients are more
subtle. The positive coefficient for λ−1

3 is counterintuitive: As the reliability of component 3 grows,
the benefit from PM should shrink, not grow. However, examining the sign and relative magnitude
of the coefficients for λ−1

3 and λ−1
3 · k—and knowing the nominal value of k is 2—we see that as

λ−1
3 grows, the regression estimate of ΔP{T > t0} indeed shrinks. This holds except for values of

k ≈ 1, on the boundary of the experimental design, where the quality of the regression fit is likely
poorer.

We can see from the information in Table 5, that several of the two-factor interactions terms
are significant, including all interaction terms involving k and t0, indicating that these parameters
have a significant effect on the response variable ΔP{T > t0}. This is again consistent with what
we learned from the tornado diagram in Figure 9 and the spider plot of Figure 15. In addition, we
see that the interaction term k · t0 has the greatest t-statistic among all terms, and we can conclude
that it is one of the most significant contributors to the estimate of ΔP{T > t0}. The fact that
this nonlinearity is important, and that the sign of k · t0’s coefficient is positive, is not surprising
given the two-way sensitivity plot in Figure 17 for k and t0.

To illustrate the value of this regression output, we demonstrate how to use this regression
equation to predict the value of ΔP{T > t0}, without the need to rerun the simulation model. This
is especially important for large-scale stochastic simulation models for which it may take several
days or even weeks to run a designed experiment and collect the type of output we collected for
this illustrative example. If the statistical experiment is planned well, the regression metamodel
can be used to predict performance measures without the need for rerunning the simulation model.
However, we note that using this approach, we should not use values of the input parameters
outside the bounds of those used in the experimental design, in our case the minimum parameter
values from Table 1. And, as we have already seen, near the boundary of the design, the regression
fit may degrade. In addition, we should examine the goodness-of-fit statistics we describe above
to ensure the statistical model is adequate before relying on its predictive power. Table 6 applies
our regression metamodel to the nominal values for all parameters, and forms an estimate of
ΔP{T > t0} without the need to run the simulation model. Table 7 presents the results of simply
using the simulation model to estimate ΔP{T > t0} and its associated error, and we can compare
these estimates to the value obtained by using the regression metamodel to determine the validity
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of metamodel.

Table 6: An example of applying the results of the regression model to the nominal values of the
input parameters in order to predict ΔP{T > t0}. Note that using this method, we no longer need
to run the simulation model to predict ΔP{T > t0} as a function of any combination of input
parameters . The adjusted R2 value from Table 4 is 0.8895, and in practice this value is acceptable,
although 0.90 is typically considered the threshold for a excellent fit.

Coefficients
Coefficient

Parameters
Parameter

Contribution
Estimates Values

β0 -4.374E-02 Intercept None -0.0437
β1 -4.420E-06 λ−1

1 200 None
β2 -4.166E-05 λ−1

2 200 None
β3 2.448E-04 λ−1

3 50 0.0122
β4 4.089E-04 λ−1

4 50 0.0204
β5 1.480E-02 k 2 0.0296
β6 -2.160E-02 Δt 1 -0.0216
β7 2.959E-03 t0 18 0.0533
β1,2 7.682E-09 λ−1

1 · λ−1
2 40000 None

β1,3 -3.916E-07 λ−1
1 · λ−1

3 10000 None
β1,4 -3.837E-07 λ−1

1 · λ−1
4 10000 None

β1,5 1.009E-05 λ−1
1 · k 400 0.0040

β1,6 -6.564E-06 λ−1
1 · Δt 200 None

β1,7 1.901E-06 λ−1
1 · t0 3600 0.0068

β2,3 -4.407E-07 λ−1
2 · λ−1

3 10000 None
β2,4 -1.680E-08 λ−1

2 · λ−1
4 10000 None

β2,5 1.061E-05 λ−1
2 · k 400 0.0042

β2,6 -5.576E-06 λ−1
2 · Δt 200 None

β2,7 3.070E-06 λ−1
2 · t0 3600 0.0111

β3,4 1.319E-05 λ−1
3 · λ−1

4 2500 0.0330
β3,5 -2.303E-04 λ−1

3 · k 100 -0.0230
β3,6 -8.428E-05 λ−1

3 · Δt 50 -0.0042
β3,7 -3.768E-05 λ−1

3 · t0 900 -0.0339
β4,5 -2.378E-04 λ−1

4 · k 100 -0.0238
β4,6 2.797E-04 λ−1

4 · Δt 50 0.0140
β4,7 -5.333E-05 λ−1

4 · t0 900 -0.0480
β5,6 -1.725E-03 k · Δt 2 -0.0035
β5,7 1.183E-03 k · t0 36 0.0426
β6,7 3.536E-04 Δt · t0 18 0.0064

Estimate of ΔP{T > t0} 0.03591
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Table 7: Results for ΔP{T > t0} from running the simulation model with all input parameters at
nominal levels with sample size N = 1000.

ΔP{T > t0} 0.0330
95% CI Halfwidth 0.0149

95% CI Lower Limit 0.0181
95% CI Upper Limit 0.0479

In Table 6 we again provide the estimates of the coefficients and the parameters and interactions
they represent. The fourth column of this table contains the parameter values for each of the
associated coefficients for the nominal case, with the exception of the intercept which is not directly
linked to any parameter or interaction. The first seven values in this column match the nominal
parameter values given in Table 1. The interaction terms are simply the products of these input
parameter values. For example, the nominal value of Δt = 1, and the nominal value of k = 2, and
thus the parameter value for the interaction Δt·k = 2, as shown in the table. As shown in regression
model (3), an estimate of ΔP{T > t0} can be formed by computing the product of the parameter
(or interaction term) values and the coefficient, and summing those values along with the value of
the intercept. The final column in Table 6 is the product of the coefficient and parameter value.
Summing all the values in this column provides us with an estimate of ΔP{T > t0} = 0.03591 when
all parameters are at their nominal levels.

It is useful to compare this estimate with a point estimate and associated 95% confidence limits
of ΔP{T > t0} using the simulation model. Table 7 presents results from the simulation model,
and we see that the estimate of ΔP{T > t0} is 0.0330± 0.0149 = (0.0181, 0.0479). We can see that
our regression metamodel estimate of 0.0359 is within the 95% confidence limits, and is different
from the simulation point estimate of 0.0330 by less than 10%. This suggests that our regression
metamodel can be used in lieu of running the simulation under appropriate circumstances.

In addition to predicting the values of performance measures, we can also use the results of
the designed experiment to construct two-way interaction plots that describe how a given response
changes as a function of two input parameters. Figures 18-21 show two-way interaction plots for
pairs of input parameters, where the response variable is again ΔP{T > t0}. For example, in
Figure 18, we see how ΔP{T > t0} changes when all input parameters are held constant except
for k and λ−1

3 . First, we see that when k = 1, using the point estimates, we prefer the base option
regardless of the value of λ−1

3 . However, for values of k greater than one (namely 3 and 5), we prefer
the PM option regardless of the value of λ−1

3 . When λ−1
3 is at its minimum value of 30, changes in

the repair factor k have a more significant effect on ΔP{T > t0} than when λ−1
3 is at the nominal

or maximum levels. Figure 19 shows similar results for k and t0. The fact that ΔP{T > t0} grows
with k and t0 is as expected, as is the amplification of the effect of growing k for larger values of
t0. Figures 20 and 21 depict analogous results for the respective pairs (k, Δt) and (t0, Δt).
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Figure 18: The figure is a two-way interaction plot for k and λ−1
3 , where the response variable is

ΔP{T > t0}.

Figure 19: The figure is a two-way interaction plot for k and t0, where the response variable is
ΔP{T > t0}.

38



Figure 20: The figure is a two-way interaction plot for k and Δt, where the response variable is
ΔP{T > t0}.

Figure 21: The figure is a two-way interaction plot for t0 and Δt, where the response variable is
ΔP{T > t0}.

39



Running full factorial designs, as the number of input parameters grows large, and the underly-
ing simulation model is computationally expensive, quickly becomes intractable. The way forward
is to employ fractional experimental designs and/or to attempt to reduce the dimension of the
input vector. Fractional factorial designs use fewer design points, and like the analysis we give
above, disregard higher order interaction terms in favor of estimating main effects and two-way
interactions. There is a large literature on this topic, and it is not our goal here to review this in
detail. See, for example, the survey in [9] and references cited therein.

4 Further Discussion

Implicit in much of our discussion in steps 5-9 is the notion of threshold analysis. For our example,
the PM option is preferred under the nominal values of the input parameters. Understanding
how much an input parameter would need to change in order to change that assessment has been
important in our discussions of one- and two-parameter sensitivity plots, tornado diagrams, UQ
plots, and spider plots. This notion is even embedded in our definition of the output performance
measure ΔP{T > t0} ≡ P{TPM > t0} − P{Tbase > t0}. Strictly speaking, the notion of a threshold
value applies when estimates of the output variables are precise. When they contain sampling error,
or they are uncertain because of uncertainties in the input parameters, a more nuanced analysis is
needed. For example, in a sensitivity plot for ΔP{T > t0} as a function of k, we examine whether
95% confidence intervals include zero to understand whether the PM option is preferred, the base
option is preferred, or whether, based on sampling error, we cannot assess which is preferable. This
third characterization is made if the confidence interval contains zero. In that case, we are in an
indifference zone in which we cannot assess whether the PM or base option is preferred. When
we place a prior distribution on k, we can obtain a probability distribution governing the random
variables ΔP{T > t0 | k}, and ΔE[T | k], and we can assess the probability that one of these outputs
is positive (favoring the PM option) or negative (favoring the base option).

In some cases, as we range an input parameter, the preference for one option over an alternative
does not change. In this case we have a dominance relationship. As Figure 3 illustrates, we prefer
the PM option over the base option for all values of the input parameter t0 of interest. It is
important to note that we may have considerable variability in an output measure, but if we have a
dominance relationship then this variability is of secondary interest. Of primary interest is whether
the decision we would make changes.

Perhaps the foremost caveat when performing a one-way sensitivity analysis of a trusted model
is to assess whether it makes sense to vary the input parameters one at a time. If two or more
input parameters depend on an unstated auxiliary factor, this may not be valid. For example, it
may be that components 1 and 2 in our example are identical but we are unsure of the associated
failure rate. In this case, we should have λ1 = λ2, i.e., we should replace the two input parameters
λ1 and λ2 with a single parameter. In other cases, the dependency between two parameters is
not so simple. For example, if λ1 and λ2 are random variables they may have a dependent joint
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probability distribution in which the correlation is positive (but not perfect). In this case, we could
view that correlation coefficient between λ1 and λ2 as an input parameter to be varied or we could
form a UQ plot and to characterize ΔP{T > t0 | (λ1, λ2)}.

Another caveat in our one-at-a-time sensitivity analysis concerns the notion that all input
parameters take their nominal values except for one. This can mask the effect of “cross terms.”
The level of one input variable departing from its nominal value may amplify the effect of changes
in another input variable. The purpose of the metamodel analysis in step 10 is to unmask precisely
such interactions.

Whether done by a formal expert elicitation or an informal scheme, the nominal values of the
parameters and their ranges are typically based on expert opinion and hence subject to well-known
biases related to anchoring, over confidence, etc. Particularly relevant for GSI-191 analysis are
difficulties in assessing rare-event probabilities. For example, see the discussions in Tversky and
Kahneman [21] and O’Hagan et al. [15], and also see Kynn [11].

Model uncertainty is an often neglected part of sensitivity analysis. A simple form of model
uncertainty for our example concerns the distributional assumption on the four-tuple of failure
times (T1, . . . , T4). We have assumed these four failure times to be independent and to have
exponential distributions. Different distributional assumptions, e.g., a dependent joint distribution
in which each component is a Weibull random variable might provide a higher fidelity model. These
distinctions can arise because of important differences in assumptions made on the underlying
physical model governing component failure. Hypothesizing competing models for an underlying
phenomenon and understanding the domain of applicability of such models is, of course, central to
scientific investigation.

5 Conclusions and Some Emerging Tools for Sensitivity Analysis

In this report, we have proposed a 10-step sensitivity analysis procedure that we see as practical
for large-scale stochastic computer simulation models. And, we have illustrated these ideas on a
simple example of a simulation model for system reliability. None of the steps we propose are new.
Rather, we rely on the literatures from decision analysis, econometrics, statistics, and simulation
to guide what we have proposed.

Tornado diagrams provide a simple means for visualizing the influence of a significant number
of input parameters on an output variable and for understanding to which input variables the
output variable is most sensitive. Effective use of tornado diagrams requires the analyst to specify
reasonable and commensurate ranges for a collection of input parameters. Both sensitivity plots
and spider plots complement tornado diagrams in that they more easily: (i) depict the nonlinear
response of an output variable to changes in an input parameter, and (ii) depict the sampling-
based error associated with estimating an output measure. We have advocated careful distinction
of Monte Carlo sampling-based errors from uncertainties in input parameters. We model the latter
type of uncertainty by placing a (possibly joint) probability distribution on the input parameters,
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and in this setting we seek to understand the resulting probability distribution on the output by
propagating the uncertainty through the nonlinear function represented by the simulation model.
We discuss how to propagate uncertainty for univariate and multivariate distributions on input
parameters. Finally, we describe regression metamodels, and associated experimental design, for
understanding sensitivities and interactions between input parameters.

A number of important themes repeat throughout our recommendations. These have included
the use of common random numbers in order to reduce variability and smooth output analysis. We
have also focused on assessing differences in input parameters that make a difference in decisions
or qualitative characterizations of the system at hand. The relevant ideas we have discussed in
this regard include threshold analyses, indifference zones, and establishing dominance relations.
Sensitivity analysis simplifies significantly when using deterministic simulation models. However,
our simulations are stochastic and hence proper characterization of both sampling error and un-
certainties on input parameters has been a pervasive theme in our presentation.

Our discussion is by no means comprehensive for sensitivity analysis of computer simulation
models. Alternatives include computing derivatives, which is often termed local sensitivity analysis;
see, e.g., Sobol [19]. Specifically, with f(x1, x2, . . . , xn) denoting a single output measure from our
simulation model, we could estimate the gradient

∇xf(x1, . . . , xn) =
(

∂f

∂x1
, . . . ,

∂f

∂xn

)
.

Local sensitivity analysis is of particular interest when attempting to optimize f , but optimization
over the inputs is not our focus here. More importantly, if we simply report estimates of the partial
derivatives ∂f

∂xi
, i = 1, . . . , n, this can mislead with respect to what input parameters are most

important because: (i) a per unit change in the temperature of water at a sump pump may not be
commensurate with a per gram/fuel-assembly change in debris mass having penetrated the strainer;
and, (ii) even if we compute ∂f

∂xi
Δxi for commensurate values of Δxi, a linear approximation may

be poor over the range of parameters of interest.
It is for the reasons just discussed that we advocate the global sensitivity analysis that we have

proposed in steps 4-10. Here, the notion of “global” is specified by the analyst via ranges associated
with the input parameters (as we have done in Table 1) rather than rates of change at a single
point. These ranges play a central role in sensitivity plots, tornado diagrams, spider plots, and the
experimental designs associated with regression metamodels. (Even though we term these global,
it is important to recognize that all but the regression metamodel involve changing one parameter
at a time.) Such analyses need not associate a probability distribution with the input parameters.
However, in our view it is preferable when such probability distributions can be specified because
we can make use of them in UQ plots as well as our other sensitivity analyses. In such cases the
specific endpoints of the ranges become less important.

We have recommended using tornado diagrams as an initial tool for assessing the most important
input parameters, and using sensitivity plots, UQ plots, spider plots, and metamodels to enable
a richer exploration of model sensitivity. It is possible to employ more sophisticated statistical
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schemes for screening factors using metamodels [25], including sequential bifurcation screening [24].
However, even when such schemes are advocated, it is acknowledged that such approaches have yet
to see significant application in practice [9]. Originally developed for interpolation in geostatistical
and spatial sampling, Kriging (see, e.g., [5, 17, 18]) has seen widespread successful application in
the context of deterministic simulation models as an alternative to regression metamodels. More
recently, Kriging metamodels have begun to see application to stochastic simulation models; see,
e.g., [1, 7, 2]. While these approaches are a promising alternative to regression metamodels, there
are a number of outstanding research issues that remain to be solved [9].
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A Appendix: A Sensitivity Analysis for STP GSI-191

In this appendix we apply the proposed framework to analyze the sensitivity of estimates of a risk
measure to changes in input parameters of the CASA Grande simulation model, using STP data.
The CASA Grande simulation model has the characteristics we describe in the abstract and in
Section 1, and the framework we describe in this report was designed with large-scale stochastic
simulation models like CASA Grande in mind.

In what follows, we briefly review the sampling scheme within CASA Grande, and we describe
the loose coupling between CASA Grande and the PRA model. We describe how we estimate risk
in terms of the contribution to core damage frequency (CDF) from GSI-191, in units of events
per calendar year (CY), using estimates of the conditional failure probabilities that CASA Grande
provides. That is, our risk measure is the change in core damage frequency (ΔCDF) relative
to a base CDF due to non-GSI-191 issues. We present the results of 22 scenarios, where each
scenario specifies the values of the input parameters to CASA Grande and where one of these
scenarios contains nominal values for the parameters. This presentation includes a tornado diagram
representing changes in all parameters we consider, and further includes a sensitivity plot for one
of the key inputs.

A.1 Step 1: Define the Model

We refer to Volume 3 [12] for a discussion of the CASA Grande simulation model. One important
aspect of this simulation for the purpose of our analysis here is the fact that a stratified sampling
estimator is employed, in which the stratification is on the initiating frequency. The probability
distribution governing the initiating frequency is consistent with percentiles from NUREG-1829
[20] as we describe in [16]. This stratified sampling estimator can be thought of as an “outer loop”
of replications when running the simulation model, which we refer to as “frequency replications.”
This outer loop facilitates preservation of the probability distribution for initiating frequency in
the sense of the uncertainty quantification plots described in Step 7, and the stratified estimator
further reduces variance versus a näıve Monte Carlo estimator.

Within each frequency replication, i.i.d. replications are performed in order to estimate con-
ditional failure probabilities for each mode of failure (sump and boron fiber limit) and break size
(small, medium, and large), conditioned on the pump state as well as the initiating frequency. A
stratification with 15 cells is used for the stratified estimator with respect to the initiating frequency,
and importantly, the sampling in distinct cells of the strata is done independently, unless specified
otherwise. A sample size within each cell of the stratification is selected, as well as the boundaries
of each cell of the strata, as indicated in Table 8. See [13] for background on the stratified sampling
estimator. The right-most column in Table 8 is based on optimization model (10) in [13].
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Table 8: Stratification of initiating frequency in terms of quantiles of its distribution function F .
The probability mass for each cell is indicated, as is the sample size devoted to i.i.d. replications
within each cell.

Frequency Cell Cell Probability Number of
Replication Lower Limit Upper Limit Mass Stat. Replications

1 F−1(0.000) F−1(0.045) 0.045 11
2 F−1(0.045) F−1(0.115) 0.070 12
3 F−1(0.115) F−1(0.195) 0.080 11
4 F−1(0.195) F−1(0.260) 0.065 9
5 F−1(0.260) F−1(0.295) 0.035 7
6 F−1(0.295) F−1(0.365) 0.070 11
7 F−1(0.365) F−1(0.435) 0.070 8
8 F−1(0.435) F−1(0.510) 0.075 23
9 F−1(0.510) F−1(0.620) 0.110 45
10 F−1(0.620) F−1(0.685) 0.065 18
11 F−1(0.685) F−1(0.720) 0.035 13
12 F−1(0.720) F−1(0.830) 0.110 51
13 F−1(0.830) F−1(0.955) 0.125 50
14 F−1(0.955) F−1(0.990) 0.035 28
15 F−1(0.990) F−1(1.000) 0.010 11

A.2 Step 2: Select Outputs of Interest

The change in core damage frequency (ΔCDF), when accounting for GSI-191 processes, is selected
as the output of interest for this sensitivity study.

A.2.1 Core Damage Frequency

The method for estimating ΔCDF combines estimates from the CASA Grande simulation model
with coefficients, as we explain here, from STP’s PRA [22]. The CASA Grande simulation model
is used to estimate the conditional probabilities of a sump failure and a boron fiber limit failure at
various break sizes (small, medium, and large), when we condition on the initiating frequency of
a LOCA and the pump state. From the PRA, we can use a base CDF from non-GSI-191 events,
as well as the core damage frequencies associated with a sump or boron fiber limit failure, further
conditioned on each permutation of pump state and break size. This is formalized as follows.
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Indices and Sets:
i = 1, . . . , F index for cells stratifying frequency replications
j = 1, . . . , Mi index for statistical replications
k = 1, . . . , N index for set of pump states

Events:
SL small LOCA
ML medium LOCA
LL large LOCA
PSk pumps in state k
Fi initiating frequency in cell i
S sump failure
B boron fiber limit
CD core damage

Parameters:
fSL frequency (events/CY) of a Small LOCA
fML frequency (events/CY) of a Medium LOCA
fLL frequency (events/CY) of a Large LOCA
P (PSk) probability mass of PSk

P (Fi) probability mass of Fi

P̂ (S|LOCA,Fi, PSk) estimate of probability of S given LOCA = SL,ML, orLL, Fi, PSk

P̂ (B|LOCA,Fi, PSk) estimate of probability of B given LOCA = SL,ML, orLL, Fi, PSk

RBASE non-GSI-191 core damage frequency (events/CY)
R̂CD estimate of core damage frequency (events/CY)

The three frequencies, fSL, fML, and fLL, are taken from the right-most column of Table 4-1
from Volume 2 [22]. In the sensitivity analysis computations that follow, we use F = 15 frequency
replications, and for the i-th frequency replication cell, we use Mi statistical replications with the
values for Mi given in the right-most column of Table 8. As discussed in Volumes 2 and 3 [22, 12], in
general we would consider a total of N = 64 pump states, although a reduced number of bounding
pump states are used in actual computation. These 64 pump states include the mostly likely “Pump
State 1,” which has all pumps on all three trains available. In the results we present here, we only
consider Pump State 1, which has a probability mass of 0.935 when we consider all 64 pump states.
In terms of our notation this means we have N = 1 and P (PS1) = 1, effectively eliminating the
sum over k. If we were to compute P (PSk) more generally, we would do so by normalizing the
pump state frequencies in the left-hand column of Table 9-1 in Volume 2 [22] or equivalently the
same frequencies in Table 2.2.11 in Volume 3 [12]. In our computations we also take RBASE = 0
so that R̂CD estimates ΔCDF. That said, we develop the formulas that follow for general values of
F , Mi, N , and RBASE .
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Estimating CDF

The estimate for CDF is calculated by summing the probability of each pump state–initiating
frequency pair, and multiplying each term by the corresponding PRA frequencies coupled with the
conditional failure probabilities estimated by CASA Grande. The formula for the estimator is as
follows:

R̂CD = RBASE +
F∑

i=1

N∑
k=1

P (Fi)P (PSk) · (4a)

[
fSL · P̂ (S|SL,Fi, PSk) + fSL · P̂ (B|SL,Fi, PSk) (4b)

+fML · P̂ (S|ML,Fi, PSk) + fML · P̂ (B|ML,Fi, PSk) (4c)

+fLL · P̂ (S|LL,Fi, PSk) + fLL · P̂ (B|LL,Fi, PSk)
]
. (4d)

Each of the six probability estimates, e.g., P̂ (S|LL,Fi, PSk), is formed via a sample mean of i.i.d.
observations, e.g., P̂ j(S|LL,Fi, PSk), j = 1, . . . , Mi, within the CASA Grande simulation. That
is,

P̂ (S|LL,Fi, PSk) =
1

Mi

Mi∑
j=1

P̂ j(S|LL,Fi, PSk). (5)

In this way, equation (5), and its five analogs (e.g., for P̂ (S|ML,Fi, PSk)), are substituted for the
corresponding terms in equation (4) to form the estimator R̂CD.

Estimating the Variance of the CDF Estimator

We must estimate the variance of the estimator R̂CD in order to quantify its sampling error. There
are a total of 6 · F · N + 1 terms in equation (4) defining R̂CD, and in order to estimate the
variance, we must clarify which of these pairs of terms are independent and which are dependent.
First, we assume the terms P (Fi) and P (PSk), as well as the frequencies from the PRA such as
RBASE and fLL, are deterministic. Dependency, or the lack thereof, between pairs of estimators like
P̂ (S|SL,Fi, PSk) and P̂ (B|SL,Fi, PSk) depend on how the simulation is performed. The terms
across distinct frequency replications and pump states are independent because independent Monte
Carlo samples are drawn within each pump state–initiating frequency pair; however, the six terms
within each pump state–initiating frequency pair are dependent. Thus, with V (·) and COV (·)
denoting the sample variance and sample covariance operators, we have the following equation
for V (R̂CD), which has 15 sample covariance terms because we have six pump state–initiating
frequency pairs:
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V
[
R̂CD

]
=

F∑
i=1

N∑
k=1

[P (PSk)]2 · [P (Fi)]2 · (6a)

{
f2

SL · V
[
P̂ (S|SL,Fi, PSk)

]
+ f2

SL · V
[
P̂ (B|SL,Fi, PSk)

]
(6b)

+f2
ML · V

[
P̂ (S|ML,Fi, PSk)

]
+ f2

ML · V
[
P̂ (B|ML,Fi, PSk)

]
(6c)

+f2
LL · V

[
P̂ (S|LL,Fi, PSk)

]
+ f2

LL · V
[
P̂ (B|LL,Fi, PSk)

]
(6d)

+2 · fSL · fML · COV
(
P̂ (S|SL,Fi, PSk), P̂ (S|ML,Fi, PSk)

)
(6e)

+2 · fSL · fLL · COV
(
P̂ (S|SL,Fi, PSk), P̂ (S|LL,Fi, PSk)

)
(6f)

+2 · fSL · fSL · COV
(
P̂ (S|SL,Fi, PSk), P̂ (B|SL,Fi, PSk)

)
(6g)

+2 · fSL · fML · COV
(
P̂ (S|SL,Fi, PSk), P̂ (B|ML,Fi, PSk)

)
(6h)

+2 · fSL · fLL · COV
(
P̂ (S|SL,Fi, PSk), P̂ (B|LL,Fi, PSk)

)
(6i)

+2 · fML · fLL · COV
(
P̂ (S|ML,Fi, PSk), P̂ (S|LL,Fi, PSk)

)
(6j)

+2 · fML · fSL · COV
(
P̂ (S|ML,Fi, PSk), P̂ (B|SL,Fi, PSk)

)
(6k)

+2 · fML · fML · COV
(
P̂ (S|ML,Fi, PSk), P̂ (B|ML,Fi, PSk)

)
(6l)

+2 · fML · fLL · COV
(
P̂ (S|ML,Fi, PSk), P̂ (B|LL,Fi, PSk)

)
(6m)

+2 · fLL · fSL · COV
(
P̂ (S|LL,Fi, PSk), P̂ (B|SL,Fi, PSk)

)
(6n)

+2 · fLL · fML · COV
(
P̂ (S|LL,Fi, PSk), P̂ (B|ML,Fi, PSk)

)
(6o)

+2 · fLL · fLL · COV
(
P̂ (S|LL,Fi, PSk), P̂ (B|LL,Fi, PSk)

)
(6p)

+2 · fSL · fML · COV
(
P̂ (B|SL,Fi, PSk), P̂ (B|ML,Fi, PSk)

)
(6q)

+2 · fSL · fLL · COV
(
P̂ (B|SL,Fi, PSk), P̂ (B|LL,Fi, PSk)

)
(6r)

+2 · fML · fLL · COV
(
P̂ (B|ML,Fi, PSk), P̂ (B|LL,Fi, PSk)

)}
. (6s)

To illustrate computation of the sample variance terms, V (·), and sample covariance terms,
COV (·), in equation (6), we give the formulas for the first sample variance term from (6b) and the
first sample covariance term from (6e):

V
[
P̂ (S|SL,Fi, PSk)

]
=

1
Mi

1
Mi − 1

Mi∑
j=1

[
P̂ j(S|SL,Fi, PSk) − P̂ (S|SL,Fi, PSk)

]2
(7)
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and

COV (P̂ (S|SL,Fi, PSk), P̂ (S|ML,Fi, PSk) = (8a)

1

Mi

1

Mi − 1

MiX
j=1

h
P̂ j(S|SL,Fi, PSk) − P̂ (S|SL,Fi, PSk)

i
·

h
P̂ j(S|SL,Fi, PSk) − P̂ (S|ML, Fi, PSk)

i
. (8b)

Further Remarks on Estimating ΔCDF

For this sensitivity analysis study, we estimate R̂CD conditional on being in the pump state in
which all three pumps are operating on all three trains; i.e., the most likely pump state called
“Pump State 1.” This eliminates the sum across pump states in the estimators given above and,
because we are computing a conditional probability, has the effect of setting the probability mass
associated with “Pump State 1” equal to 1. In addition we take RBASE = 0 so that R̂CD estimates
ΔCDF rather than CDF.

In what follows, we are interested in differences in R̂CD under pairs of scenarios, i.e., under two
sets of input parameters to CASA Grande. Specifically, we have R̂0

CD under the nominal settings
of the parameters, R̂′

CD under perturbed settings of the parameters, and our interest lies in the
estimator ΔR̂CD = R̂′

CD−R̂0
CD. When computing this difference, we use common random numbers

across the two scenarios to reduce the variance of ΔR̂CD, which is computed using a straightforward
variant of equation (6) in which the sample variance and sample covariance terms have terms like
P̂ j(S|SL,Fi, PSk) and P̂ (S|SL,Fi, PSk) replaced by ΔP̂ j(S|SL,Fi, PSk) and ΔP̂ (S|SL,Fi, PSk),
respectively.

Sometimes it is convenient to report and display the ratio of the these frequencies estimates,
rather than their difference; i.e., we report

R̂1
CD

R̂0
CD

, (9)

and term this the ratio of risk. We again use common random numbers when computing this
estimator, and the sample variance of this is estimated via

V

(
R̂1

CD

R̂0
CD

)
=

1
[R̂0

CD]2

⎡
⎣V (R̂1

CD) − 2

(
R̂1

CD

R̂0
CD

)
COV (R̂1

CD, R̂0
CD) +

(
R̂1

CD

R̂0
CD

)2

V (R̂0
CD)

⎤
⎦ . (10)

A.3 Step 3: Select Inputs of Interest

The following input parameters of interest were selected, via multiple discussions of the STP Tech-
nical Team, from a larger collection of candidate parameters. The selection was based on: (i) the
uncertainty associated with estimates of the values of the parameters, and (ii) the perceived likeli-
hood that bias would, based on the team’s deliberations, have the largest effect on the estimates
of risk, either in the increasing or decreasing direction.
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1. Amount of Latent Fiber in the Pool; 4 levels

2. Boron Fiber Limit in the Core; 4 levels

3. Debris Transport Fractions Inside the Zone of Influence; 3 levels

4. Chemical Precipitation Temperature; 2 levels

5. Total Failure Fractions for Debris Outside the Zone of Influence (Unqualified Coatings); 2
levels

6. Chemical Bump-Up Factor; 2 levels

7. Fiber Penetration Function; 2 levels

8. Size of Zone of Influence; 2 levels

9. Time to Turn Off One Spray Pump; 2 levels

10. Time to Hot Leg Injection; 2 levels

11. Strainer Buckling Limit; 2 levels

12. Water Volume in the Pool; 3 levels

13. Debris Densities; 2 levels

14. Time-Dependent Temperature Profiles; 2 levels

15. Spray Transport Fractions for Debris Outside the Zone of Influence (Unqualified Coatings);
2 levels

A short description of the parameters of interest is provided in the following. See also Sections
2 and 5 of Volume 3 [12] for further discussion.

Amount of Latent Fiber in Pool There is an amount of existing dust and dirt in the contain-
ment, which is based on plant measurement. The latent fiber is assumed to be in the pool at
the start of recirculation. This latent debris is therefore available immediately upon start of
recirculation, uniformly mixed in the containment pool. During fill up, this latent debris is
also available to penetrate the sump screen.

Boron Fiber Limit The boron fiber limit refers to the assumed success criterion, or threshold of
concern where boron precipitation would be assumed to occur for cold leg breaks. The fiber
limit comes from the testing performed by the vendor that shows no pressure drop occurs
with full chemical effects. The assumption is that all fiber that penetrates through the sump
screen is deposited uniformly on the core.
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Debris Transport Fractions in ZOI This refers to the three-zone ZOI debris size distribution.
Each different type of insulation has a characteristic ZOI which is divided in three sections
to take into account the type of damage (debris size distribution) within each zone.

Chemical Precipitation Temperature CASA Grande assumes that, once a “thin bed” of fiber
is formed on the strainer, the chemical precipitation bump up factors are applied when the
pool temperature reaches the precipitation temperature, defined in input.

Total Failure Fraction for Debris Outside the ZOI CASA Grande uses a table of total fail-
ure fractions that are applied to the transport logic trees. The fraction of each type (fiber,
paint and coatings, and so forth) that passes through areas to the pool are used to under-
stand what is in the pool as a function of time during recirculation. The total failure fraction
multiplies the total inventory of unqualified coatings.

Chemical Bump Up Factor The chemical bump up factor is used as a multiplier on the con-
ventional head loss calculated in CASA Grande. The multiplier is applied if a thin bed is
formed and the pool temperature is at or below the precipitation temperature.

Fiber Penetration Function The amount of fiber that bypasses the ECCS sump screen (as
a fraction) is correlated to the arrival time and the amount of fiber on the screen. The
coefficients of the correlation define the fractional penetration amounts.

Size of ZOI The zone of influence (ZOI) is defined as a direct function (multiplier) of break size
(and nominal pipe diameter). For example, for NUKON fiber, the ZOI (for STP) is 17 times
the break diameter. The ZOI is assumed to be spherical unless it is associated with less than
a full (double-ended) break in which case it is hemispherical. Otherwise, it is truncated by
any concrete walls within the ZOI.

Time to Turn Off One Spray Pump If three spray pumps start, then by procedure one is se-
cured. The time to secure the pump is governed by the operator acting on the conditional
action step in the procedure.

Time to Hot Leg Injection Similar to the spray pump turn off time, the time to switch one or
more trains to hot leg injection operation is governed by procedure.

Strainer Buckling Limit The strainer buckling limit is the differential pressure across the ECCS
strainer at which the strainer is assumed to fail mechanically. This limit is based on engi-
neering calculations that incorporate a factor of safety.

Water Volume in the Pool Depending on the break size, the amount of water that is in the
pool, as opposed to held up in the RCS and other areas in containment, is variable. Smaller
breaks tend to result in less pool volume than larger breaks.
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Debris Densities The debris density depends on the amount and type of debris that arrives in
the pool. These densities are used in head loss correlations to calculate, for example, debris
volume.

Time Dependent Temperature Profiles The temperature of the water in the sump affects air
release and vaporization during recirculation. The time-dependent temperature profile comes
from the coupled RELAP5-3D and MELCOR simulations depending on break size.

Spray Transport Fractions for Debris Outside the ZOI CASA Grande uses a table of fail-
ure fractions that are applied to the transport logic trees. The fraction of each type (fiber,
paint and coatings, and so forth) that passes through areas to the pool are used to understand
what is in the pool as a function of time during recirculation. The spray transport fraction
is the fraction of failed coatings that wash to the pool during spray operation.

The first two inputs, latent fiber and boron fiber limit, have four levels, including the nominal
case. Items 3 and 12, debris transport within the ZOI and water volume, have three levels. And,
all other of the other input parameters have two levels, the nominal case and a perturbation in a
single direction. Thus, the number of runs needed to conduct one-at-a-time sensitivity analysis is:
2 · (4 − 1) + 2 · (3 − 1) + 11 · (2 − 1) + 1 = 22. The number of runs needed to conduct a single
replicate full factorial design would be 42 · 32 · 211 = 294, 912. We conduct the former, but we do
not attempt the latter here.

A.4 Step 4: Choose Nominal Values and Ranges for Inputs

The nominal value for an input parameter is sometimes based on the STP Technical Team’s best
point estimate for that input. However, we sometimes instead select an appropriately conservative
nominal value, as is the case for the strainer buckling limit, as we mention above. When selecting
ranges for the parameters, sometimes we both increase and decrease a parameter from its nominal
value, but other times we only change the parameter in a single direction. We can make the latter
choice because we wish to limit changes to directions that we know will increase risk or because
the nominal value is already seen as being conservative. Here, we list the 22 scenarios we use for
sensitivity analysis.

Scenario 0: Nominal-value Case

All inputs have a nominal value. Those nominal values are as follows:

1. The amount of latent fiber in the pool is 12.5 ft3.

2. The boron fiber limit in the core is 7.5 g/FA.

3. The debris transport fractions for debris generated inside the zone of influence are given in
Table 9.
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Table 9: Nominal debris transport fractions for debris generated inside the zone of influence.
Debris Transport Model / LDFG LDFG LDFG Microtherm Qual Coat Crud

Debris Type Fines Small Large Fines Fines Fines

Blowdown Upper 0.70 0.60 0.22 0.70 0.70 0.70
Blowdown Lower 0.30 0.25 0.00 0.30 0.30 0.30
Washdown Inside 0.53 0.27 0.00 0.53 0.53 0.53
Washdown Annulus 0.47 0.19 0.00 0.47 0.47 0.47
Washdown BC Inside 0.00 0.27 0.00 0.00 0.00 0.00
Washdown BC Annulus 0.00 0.00 0.00 0.00 0.00 0.00
Pool Fill Sump 0.02 0.00 0.00 0.02 0.02 0.02
Pool Fill Inactive 0.05 0.00 0.00 0.05 0.05 0.05

Recirculation Lower 1.00 0.64 0.00 1.00 1.00 1.00
Recirculation Inside 1.00 0.64 0.00 1.00 1.00 1.00
Recirculation Annulus 1.00 0.58 0.00 1.00 1.00 1.00

Erosion Spray 0.00 0.01 0.01 0.00 0.00 0.00
Erosion Pool 0.00 0.07 0.07 0.00 0.00 0.00

4. The chemical precipitation temperature is 140◦F.

5. The total failure fractions for debris generated outside the zone of influence (unqualified coatings)
are given in row 1 of Table 10.

Table 10: Nominal debris failure fractions for debris generated outside the zone of influence (un-
qualified coatings).

Debris Transport Model / Epoxy Epoxy Epoxy Epoxy Epoxy Alkyd Baked IOZ
Debris Type Fines Fine Small Large Curls Enamel Fines

Chips Chips Chips

Total Failure Fraction 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Upper Containment 0.15 0.15 0.15 0.15 0.15 0.54 0.00 0.83
Lower Containment 0.02 0.02 0.02 0.02 0.02 0.46 1.00 0.17

Reactor Cavity 0.83 0.83 0.83 0.83 0.83 0.00 0.00 0.00
Prior to Securing Sprays 0.06 0.06 0.06 0.06 0.06 0.06 0.00 0.06

Recirculation Lower Containment 1.00 0.41 0.00 0.00 1.00 1.00 1.00 1.00
Recirculation Reactor Cavity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6. The chemical bump-up factors as a function of break size are:

Small Breaks: Truncated Exponential Distribution
Mean = 1.25
Minimum = 1
Maximum = 15.3

Medium Breaks: Truncated Exponential Distribution
Mean = 1.50
Minimum = 1
Maximum = 18.2

Large Breaks: Truncated Exponential Distribution
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Mean = 2.00
Minimum = 1
Maximum = 24.0

7. The fiber penetration function parameters are:

Fraction of Sheddable Debris: Uniform Distribution
Min = 0.00956
Max = 0.02720

Shedding Rate (1/min): Uniform Distribution
Min = 0.008236
Max = 0.054600

Efficiency Per Gram of Debris: Uniform Distribution
Min = 0.000339
Max = 0.003723

Fit Cut Point (g): Uniform Distribution
Min = 790
Max = 880

Initial Efficiency: Uniform Distribution
Min = 0.656
Max = 0.706

Exponential Rate Constant (1/g): Continuous Empirical Distribution Parameters:
0.0011254; 0.10
0.0013078; 0.45
0.0317870; 0.10

8. The size of zones of influence (R/D) as a function of break size are:

NUKON: 17.0
NUKON 2: 17.0
Microtherm: 28.6
RMI: 1.0
Lead: 1.0
Thermal Wrap: 17.0
IOZ: 1.0
Alkyd: 1.0

9. The times to turn off one spray pump (minutes) as a function of break size are:

Small Breaks: 0.0
Medium Breaks: Normal Distribution
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Mean = 20.0
Standard Deviation = 5.0

Large Breaks: Normal Distribution
Mean = 20.0
Standard Deviation = 5.0

10. The times to hot leg injection (minutes) as a function of break size are:

Small Breaks: Uniform Distribution
Min = 345
Max = 360

Medium Breaks: Uniform Distribution
Min = 345
Max = 360

Large Breaks: Uniform Distribution
Min = 345
Max = 360

11. The strainer buckling limit is 9.35 ft H2O.

12. The water volumes in the pool (ft3) as a function of break size are:

Small Breaks: Uniform Distribution
Min = 43, 464
Max = 61, 993

Medium Breaks: Uniform Distribution
Min = 39, 533
Max = 69, 444

Large Breaks: Uniform Distribution
Min = 45, 201
Max = 69, 263

13. The debris densities (lbm/ft3) are:

LDFG Fines: 2.4
LDFG Small: 2.4
LDFG Large: 2.4
Microtherm Filaments: 2.4

14. The temperature profiles (◦F) as a function of break size are given in Figure 22.
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Figure 22: Temperature profiles (◦F) for small and large breaks. Panel (a) shows the full 700 hour
temperature profile, while panel (b) shows only the first 36 hours, which is the standard run length
for CASA Grande scenarios.

15. The spray transport fractions for debris generated outside the zone of influence (unqualified
coatings) are given in the fifth row of Table 10.

We use an upper limit of 15 g/FA for the boron fiber limit in Scenario 5 because WCAP-16793
[23] established a boron fiber limit of 15 g/FA as the maximum value for the STP fuel design based
on cooling. The reason we decrease below that value in the nominal case, and further in Scenario
4, is to understand the sensitivity to this value since it is not the value for core cooling but rather
the value we use for boric acid precipitation failure. At 15 g/FA, there is effectively no resistance
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to flow as measured in WCAP-16793. In contrast to the situation for the boron fiber limit, for the
strainer buckling limit, the nominal value is conservative, containing a significant safety margin.
Hence, we do not make this limit even weaker in our sensitivity analysis, and we only consider an
increase in the limit in Scenario 16.

Scenario 1: Decrease Latent Fiber

The amount of latent fiber in the pool is changed to 6.25 ft3, whereas the nominal value is 12.5 ft3.

Scenario 2: Increase Latent Fiber I

The amount of latent fiber in the pool is changed to 25.0 ft3, whereas the nominal value is 12.5 ft3.

Scenario 3: Increase Latent Fiber II

The amount of latent fiber in the pool is changed to 50.0 ft3, whereas the nominal value is 12.5 ft3.

Scenario 4: Decrease Boron Fiber Limit

The boron fiber limit in the core is changed to 4.0 g/FA, whereas the nominal value is 7.5 g/FA.

Scenario 5: Increase Boron Fiber Limit I

The boron fiber limit in the core is changed to 15.0 g/FA, whereas the nominal value is 7.5 g/FA.

Scenario 6: Increase Boron Fiber Limit II

The boron fiber limit in the core is changed to 50.0 g/FA, whereas the nominal value is 7.5 g/FA.

Scenario 7: Increase Debris Transport Inside the Zone of Influence

The debris transport fractions for this scenario are given in Table 11. Note that the only increased
debris transport fractions are the blowdown and washdown transport fractions for LDFG fines and
small.
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Table 11: Increased debris transport fractions for debris generated inside the zone of influence.
Debris Transport Model / LDFG LDFG LDFG Microtherm Qual Coat Crud

Debris Type Fines Small Large Fines Fines Fines

Blowdown Upper 1.00 1.00 0.22 0.70 0.70 0.70
Blowdown Lower 1.00 1.00 0.00 0.30 0.30 0.30
Washdown Inside 1.00 1.00 0.00 0.53 0.53 0.53
Washdown Annulus 1.00 1.00 0.00 0.47 0.47 0.47
Washdown BC Inside 1.00 1.00 0.00 0.00 0.00 0.00
Washdown BC Annulus 0.00 0.00 0.00 0.00 0.00 0.00
Pool Fill Sump 0.02 0.00 0.00 0.02 0.02 0.02
Pool Fill Inactive 0.05 0.00 0.00 0.05 0.05 0.05

Recirculation Lower 1.00 0.64 0.00 1.00 1.00 1.00
Recirculation Inside 1.00 0.64 0.00 1.00 1.00 1.00
Recirculation Annulus 1.00 0.58 0.00 1.00 1.00 1.00

Erosion Spray 0.00 0.01 0.01 0.00 0.00 0.00
Erosion Pool 0.00 0.07 0.07 0.00 0.00 0.00

Scenario 8: Decrease Debris Transport Inside the Zone of Influence

The debris transport fractions for this scenario are given in Table 12. Note that the only decreased
debris transport fractions are the blowdown and washdown transport fraction for LDFG fines and
small.

Table 12: Decreased debris transport fractions for debris generated inside the zone of influence.
Debris Transport Model / LDFG LDFG LDFG Microtherm Qual Coat Crud

Debris Type Fines Small Large Fines Fines Fines

Blowdown Upper 0.60 0.51 0.22 0.70 0.70 0.70
Blowdown Lower 0.26 0.21 0.00 0.30 0.30 0.30
Washdown Inside 0.45 0.22 0.00 0.53 0.53 0.53
Washdown Annulus 0.40 0.16 0.00 0.47 0.47 0.47
Washdown BC Inside 0.00 0.23 0.00 0.00 0.00 0.00
Washdown BC Annulus 0.00 0.00 0.00 0.00 0.00 0.00
Pool Fill Sump 0.02 0.00 0.00 0.02 0.02 0.02
Pool Fill Inactive 0.05 0.00 0.00 0.05 0.05 0.05

Recirculation Lower 1.00 0.64 0.00 1.00 1.00 1.00
Recirculation Inside 1.00 0.64 0.00 1.00 1.00 1.00
Recirculation Annulus 1.00 0.58 0.00 1.00 1.00 1.00

Erosion Spray 0.00 0.01 0.01 0.00 0.00 0.00
Erosion Pool 0.00 0.07 0.07 0.00 0.00 0.00

Scenario 9: Increase Chemical Precipitation Temperature

The chemical precipitation temperature is changed to 160◦F, whereas the nominal value is 140◦F.
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Scenario 10: Decrease Total Failure Fractions for Debris Outside the Zone of Influence
(Unqualified Coatings)

Table 13: Decreased total failure fractions for debris generated outside the zone of influence (un-
qualified coatings).

Debris Transport Model / Epoxy Epoxy Epoxy Epoxy Epoxy Alkyd Baked IOZ
Debris Type Fines Fine Small Large Curls Enamel Fines

Chips Chips Chips

Total Failure Fraction 0.80 0.80 0.80 0.80 0.80 0.43 0.43 0.92
Upper Containment 0.15 0.15 0.15 0.15 0.15 0.54 0.00 0.83
Lower Containment 0.02 0.02 0.02 0.02 0.02 0.46 1.00 0.17

Reactor Cavity 0.83 0.83 0.83 0.83 0.83 0.00 0.00 0.00
Prior to Securing Sprays 0.06 0.06 0.06 0.06 0.06 0.06 0.00 0.06

Recirculation Lower Containment 1.00 0.41 0.00 0.00 1.00 1.00 1.00 1.00
Recirculation Reactor Cavity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Scenario 11: Increase Chemical Bump-Up Factor

The chemical bump-up factors as a function of break size are changed as follows:

Small Breaks: Truncated Exponential Distribution
Mean = 1.875
Minimum = 1
Maximum = 30.0

Medium Breaks: Truncated Exponential Distribution
Mean = 2.25
Minimum = 1
Maximum = 30.0

Large Breaks: Truncated Exponential Distribution
Mean = 3.00
Minimum = 1
Maximum = 30.0

Scenario 12: Increase Fiber Penetration (Lower Envelope)

The fiber penetration function parameters are no longer sampled from distributions. Instead, they
are now constants with the following values:

Fraction of Sheddable Debris: 0.0196
Shedding Rate (1/min): 0.0538
Efficiency Per Gram of Debris: 0.0003391
Fit Cut Point (g): 880
Initial Efficiency: 0.656
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Exponential Rate Constant (1/g): 0.0013

Scenario 13: Decrease Size of Zone of Influence (ZOI)

The size of zones of influence (R/D) as a function of break size are changed as follows:

NUKON: 12.75
NUKON 2: 12.75
Microtherm: 21.45
RMI: 0.75
Lead: 0.75
Thermal Wrap: 12.75
IOZ: 0.75
Alkyd: 0.75

Scenario 14: Increase Time to Turn Off One Spray Pump

The times to turn off one spray pump (minutes) as a function of break size are changed as follows:

Small Breaks: 0.0
Medium Breaks: Normal Distribution

Mean = 1440.0
Standard Deviation = 5.0

Large Breaks: Normal Distribution
Mean = 1440.0
Standard Deviation = 5.0

Scenario 15: Increase Time to Hot Leg Injection

The times to hot leg injection (minutes) as a function of break size are changed as follows:

Small Breaks: 450
Medium Breaks: 450
Large Breaks: 450

Scenario 16: Increase Strainer Buckling Limit

The strainer buckling limit is changed to 10.30 ft H2O, whereas the nominal value is 9.35 ft H2O.
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Scenario 17: Decrease Water Volume

The water volumes in the pool (ft3) as a function of break size are changed as follows:

Small Breaks: Uniform Distribution
Min = 39, 191
Max = 56, 720

Medium Breaks: Uniform Distribution
Min = 34, 084
Max = 63, 995

Large Breaks: Uniform Distribution
Min = 39, 478
Max = 63, 540

Scenario 18: Increase Water Volume

The water volumes in the pool (ft3) as a function of break size are changed as follows:

Small Breaks: Uniform Distribution
Min = 48, 737
Max = 67, 266

Medium Breaks: Uniform Distribution
Min = 44, 982
Max = 74, 893

Large Breaks: Uniform Distribution
Min = 50, 924
Max = 74, 986

Scenario 19: Increase Debris Densities

The debris densities (lbm/ft3) are:

LDFG Fines: 3.0
LDFG Small: 3.0
LDFG Large: 3.0
Microtherm Filaments: 3.0

Scenario 20: Decrease Time-Dependent Temperature Profiles

The modified temperature profiles (◦F) as a function of break size are given in Figure 23.
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Figure 23: Temperature profiles (◦F) for small and large breaks. Panel (a) shows the full 700 hour
temperature profile, while panel (b) shows only the first 36 hours, which is the standard run length
for CASA Grande scenarios.
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Scenario 21: Increase Spray Transport Fraction for Debris Outside the Zone of Influ-
ence (Unqualified Coatings)

Table 14: Increased spray transport fractions for debris generated outside the zone of influence
(unqualified coatings).

Debris Transport Model / Epoxy Epoxy Epoxy Epoxy Epoxy Alkyd Baked IOZ
Debris Type Fines Fine Small Large Curls Enamel Fines

Chips Chips Chips

Total Failure Fraction 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Upper Containment 0.15 0.15 0.15 0.15 0.15 0.54 0.00 0.83
Lower Containment 0.02 0.02 0.02 0.02 0.02 0.46 1.00 0.17

Reactor Cavity 0.83 0.83 0.83 0.83 0.83 0.00 0.00 0.00
Prior to Securing Sprays 0.12 0.12 0.12 0.12 0.12 0.12 0.00 0.12

Recirculation Lower Containment 1.00 0.41 0.00 0.00 1.00 1.00 1.00 1.00
Recirculation Reactor Cavity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A.5 Step 5: Estimating Model Outputs under Nominal Values of Input Parameters

Table 15 presents the results from running CASA Grande with all parameters set at their nominal
values (Scenario 0), using the formula for R̂CD from equation (4), along with estimates of sampling
error. We see the point estimate of risk in terms of ΔCDF (events/CY) is 1.817E-08, with lower
and upper 95% confidence limits of 1.626E-08 and 2.009E-08, respectively. If we take 1.00E-06
as a threshold of interest then our estimate of R̂CD is not close to this threshold when all input
parameters are set to their nominal values.

Table 15: Results for Scenario 0 with all input parameters set to their nominal values. The first
column is R̂CD in units of events/CY while the remaining columns characterize the sampling error.

Mean 95% CI 95% CI 95% CI CI HW %
Risk Half-Width Lower Limit Upper Limit of Mean

1.817E-08 1.914E-09 1.626E-08 2.009E-08 10.53%

A.6 Step 6: One-Way Sensitivity Analysis: Sensitivity Plots and Tornado Diagrams

In this step, we present results associated with running all 22 scenarios both in tabular form
and using a tornado diagram, and we further present a one-way sensitivity plot. We begin with
numerical results in tabular form for both the absolute risk (again, conditional on being in the
state with all pumps working in all three trains) and for the difference in ΔCDF with respect to a
perturbation of the input parameters relative to the nominal parameter values. Then, we present
a tornado diagram corresponding to changing the 15 inputs as we detail in Section A.4. Finally,
we present a one-way sensitivity plot for the boron fiber limit, which, after examining the tornado
plot and tables of results, appears to be the input parameter to which our estimate of ΔCDF is
most sensitive.
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Tables of Results

Table 16 presents the numerical results for each of the 22 scenarios. In this table, we present our
estimate of the ΔCDF (Mean Risk) associated with each scenario, and we provide 95% confidence
interval (CI) limits associated with this estimate. We also present the ratio of the 95% CI half-width
to the mean as a percentage.

Table 16: ΔCDF estimates, and sampling error, for all scenarios. The first two columns provide the scenario
number and the parameter being changed; see Section A.4. The third column reports how we anticipate the
ΔCDF will change, and the remaining columns read in the same manner as in Table 15.

#
Sensitivity Expected Mean 95% CI 95% CI 95% CI CI HW %

Measure Direction Risk Half-Width LL UL of Mean

0 Baseline None 1.817E-08 1.914E-09 1.626E-08 2.009E-08 10.53%

1 Latent Fiber Low (6.25 ft3) Decrease 1.905E-08 1.928E-09 1.712E-08 2.098E-08 10.12%

2 Latent Fiber High (25 ft3) Increase 1.669E-08 1.770E-09 1.492E-08 1.846E-08 10.61%

3 Latent Fiber Very High (50 ft3) Increase 3.394E-08 1.447E-08 1.947E-08 4.840E-08 42.63%

4 Boron Fuel Limit (4.0 g/FA) Increase 1.690E-06 1.146E-06 5.445E-07 2.836E-06 67.79%

5 Boron Fuel Limit (50 g/FA) Decrease 1.308E-08 1.412E-09 1.167E-08 1.449E-08 10.80%

6 Boron Fuel Limit (15 g/FA) Decrease 1.329E-08 1.415E-09 1.188E-08 1.471E-08 10.65%

7 Debris Transport Inside ZOI High Increase 7.896E-08 2.250E-08 5.645E-08 1.015E-07 28.50%

8 Debris Transport Inside ZOI Low Decrease 1.241E-08 1.493E-09 1.092E-08 1.390E-08 12.03%

9 Chemical Temp High Increase 1.905E-08 1.937E-09 1.712E-08 2.099E-08 10.17%

10 Total Failure % Outside ZOI Low (80%) Decrease 1.770E-08 1.878E-09 1.582E-08 1.958E-08 10.61%

11 Bump Factor High Increase 2.287E-08 2.024E-09 2.085E-08 2.490E-08 8.85%

12 Penetration Low Envelope Increase 1.552E-07 1.696E-08 1.382E-07 1.721E-07 10.93%

13 ZOI Size Small Decrease 6.795E-09 8.275E-10 5.967E-09 7.622E-09 12.18%

14 Turn Off 1 Spray Longer Decrease 1.569E-08 1.763E-09 1.393E-08 1.745E-08 11.23%

15 Hot Leg Injection Longer Increase 1.962E-08 1.954E-09 1.766E-08 2.157E-08 9.96%

16 Strainer Limit Higher Decrease 1.639E-08 1.801E-09 1.459E-08 1.819E-08 10.99%

17 Water Volume Low Increase 2.001E-08 2.027E-09 1.798E-08 2.203E-08 10.13%

18 Water Volume High Decrease 1.655E-08 1.776E-09 1.477E-08 1.833E-08 10.73%

19 Debris Density High Increase 2.567E-08 2.353E-09 2.331E-08 2.802E-08 9.17%

20 Temperature Profiles Low Increase 1.963E-08 1.991E-09 1.764E-08 2.162E-08 10.14%

21 Spray Transport % Outside ZOI High (12%) Increase 1.798E-08 1.914E-09 1.606E-08 1.989E-08 10.65%

Table 17 focuses on the differences and the ratios of the ΔCDF under the nominal parameter
values and under the perturbed parameter values; i.e., we report R̂′

CD/R̂0
CD in the third column

(Ratio) and ΔR̂CD = R̂′
CD − R̂CD in the fourth column (Mean Diff), where R̂0

CD is the point
estimate of ΔCDF under the nominal scenario and R̂′

CD is that under the perturbation scenarios.
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Table 17: ΔCDF estimates for all scenarios in comparison with the nominal case. This comparison
is performed via the ratio and the difference. The CI statements are for the difference, and the
final column indicates whether the difference is statistically significant at a 95% confidence level.

#
Sensitivity Ratio Mean 95% CI 95% CI 95% CI Sig

Measure Diff Half-Width LL UL Diff?

0 Baseline 1.00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 No

1 Latent Fiber Low (6.25 ft3) 1.05 8.76E-10 5.37E-10 3.39E-10 1.41E-09 Yes

2 Latent Fiber High (25 ft3) 0.92 -1.49E-09 8.00E-10 -2.29E-09 -6.87E-10 Yes

3 Latent Fiber Very High (50 ft3) 1.87 1.58E-08 1.45E-08 1.27E-09 3.02E-08 Yes

4 Boron Fuel Limit (4.0 g/FA) 93.01 1.67E-06 1.15E-06 5.24E-07 2.82E-06 Yes

5 Boron Fuel Limit (50 g/FA) 0.72 -5.10E-09 1.09E-09 -6.18E-09 -4.01E-09 Yes

6 Boron Fuel Limit (15 g/FA) 0.73 -4.88E-09 1.08E-09 -5.96E-09 -3.80E-09 Yes

7 Debris Transport Inside ZOI High 4.34 6.08E-08 2.22E-08 3.86E-08 8.30E-08 Yes

8 Debris Transport Inside ZOI Low 0.68 -5.76E-09 1.05E-09 -6.81E-09 -4.72E-09 Yes

9 Chemical Temp High 1.05 8.78E-10 4.22E-10 4.56E-10 1.30E-09 Yes

10 Total Failure % Outside ZOI Low (80%) 0.97 -4.73E-10 3.07E-10 -7.80E-10 -1.66E-10 Yes

11 Bump Factor High 1.26 4.70E-09 9.52E-10 3.75E-09 5.65E-09 Yes

12 Penetration Low Envelope 8.54 1.37E-07 1.69E-08 1.20E-07 1.54E-07 Yes

13 ZOI Size Small 0.37 -1.14E-08 1.52E-09 -1.29E-08 -9.86E-09 Yes

14 Turn Off 1 Spray Longer 0.86 -2.49E-09 7.02E-10 -3.19E-09 -1.78E-09 Yes

15 Hot Leg Injection Longer 1.08 1.44E-09 2.46E-09 -1.02E-09 3.90E-09 No

16 Strainer Limit Higher 0.90 -1.78E-09 6.57E-10 -2.44E-09 -1.13E-09 Yes

17 Water Volume Low 1.10 1.83E-09 5.45E-10 1.29E-09 2.38E-09 Yes

18 Water Volume High 0.91 -1.62E-09 6.87E-10 -2.31E-09 -9.38E-10 Yes

19 Debris Density High 1.41 7.49E-09 1.36E-09 6.14E-09 8.85E-09 Yes

20 Temperature Profiles Low 1.08 1.46E-09 5.51E-10 9.05E-10 2.01E-09 Yes

21 Spray Transport % Outside ZOI High (12%) 0.99 -1.96E-10 2.08E-10 -4.04E-10 1.25E-11 No

Tornado Diagram and Analysis

Because the CD frequencies we estimate are so small, it is useful to present a tornado diagram and
one-way sensitivity plot for the ratios on a logarithmic scale; see also our discussion surrounding
Table 17. Figure 24 is a tornado diagram for the 15 input parameters we varied for this sensitivity
study. Because we report results for the ratio R̂′

CD/R̂0
CD, if the ratio has value 10, it means that

the point estimate of the ΔCDF under the perturbed scenario is 10 times greater than that under
the nominal scenario. The CI bounds for the risk ratios are calculated using equation (10). In
what follows we examine six factors to which the estimate of ΔCDF seems to have the greatest
sensitivity. Changes in the other input parameters lead to more modest changes in the ΔCDF
estimate, with percentage differences of less than 30%.
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Figure 24: Tornado diagram in log space for ratios of the ΔCDF estimates (risk); i.e., we plot
R̂′

CD/R̂0
CD, along with the corresponding confidence intervals for each endpoint of the horizontal

bars. Values of the ratio that exceed one correspond to an increase in risk relative to the nom-
inal case. The scenario numbers in the first column of Tables 16 and 17 map the brief scenario
descriptions here to the richer scenario descriptions in Section A.4.

We see from the tornado diagram in Figure 24 that the boron fiber limit appears to be the
factor to which our estimate of ΔCDF is most sensitive. Increasing the limit from its nominal
value of 7.5 g/FA should decrease the ΔCDF, and decreasing the limit should have the opposite
effect. This holds because under a larger limit, more fiber can penetrate the strainer without the
simulation model declaring a failure. Increasing the limit from 7.5 g/FA to 15.0 g/FA decreases
ΔCDF by about 27%. Increasing the value further to 50.0 g/FA leads to little further decrease in
ΔCDF. However, decreasing the value from 7.5 g/FA to 4.0 g/FA increases the point estimate of
ΔCDF to 1.69E-06, larger than the nominal point estimate by a factor of 93.

The tornado diagram suggests the next perturbation to which the estimate of ΔCDF is most
sensitive involves changing the filtration function to its lower envelope using the estimates provided
in [14] and reported in Section A.4. The filtration function affects how much fiber penetrates the
strainer. Modifying the function so that less mass is filtered means that more mass penetrates, and
hence, we anticipate this will increase ΔCDF. At this lower envelope, the ΔCDF estimate increases
by a factor of 8.5 to 1.55E-07.

The transport matrix for debris inside the ZOI governs the amount of each type of debris
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transported to the sump. When this matrix has smaller transport fractions, we would expect the
estimated ΔCDF to decrease because less debris reaches the strainer, and larger transport fractions
should have the opposite effect. Under the perturbation to smaller transport fractions specified in
Section A.4, the point estimate of ΔCDF decreases by about 32% to 1.24E-08, and with more
debris transported to the strainer the ΔCDF estimate grows by a factor of 4.34 to 7.9E-08.

Next, we examine the effect of the size of the ZOI. We regard our nominal estimates of the ZOI
size as conservative (larger ZOI than expected), and so we examine the result of reducing the size of
the ZOI. A smaller ZOI means less debris will be generated, which should reduce ΔCDF. Reducing
the size of the ZOI as specified in Section A.4, decreases ΔCDF by about 63% to 6.8E-09.

We now examine the effect of latent fiber in the sump. We anticipate that increasing the amount
of latent fiber in the sump will increase ΔCDF as more fiber reaches the strainer and can penetrate
to the core. As the tornado diagram and Table 17 indicate, increasing the amount of latent fiber
from 12.5 ft3 to 50.0 ft3 leads to an 87% increase in ΔCDF. However, more modest changes in latent
fiber produce counterintuitive results, as shown in Table 17. A decrease in the amount of latent
fiber from 12.5 ft3 to 6.25 ft3 leads to a 5% increase in the ΔCDF estimate, and an increase in the
amount of latent fiber from 12.5 ft3 to 25.0 ft3 leads to a 8% reduction in the ΔCDF estimate. The
reason for these counterintuitive results is as follows. CASA Grande assumes that some fraction of
latent fiber is deposited on the screen when the simulation model is initialized. This latent fiber is
not eligible to penetrate the screen, although it is eligible to penetrate by shedding. Of course, in
reality some of this fiber will penetrate the screen, and hence the STP Technical Team may suggest
a minor modification to CASA Grande in this vein. Increasing the debris densities for low-density
fiberglass and Microtherm filaments leads to a 41% increase in the ΔCDF estimate to a value of
2.6E-08.

Even though the change is small in magnitude, we close this section by discussing a counter-
intuitive result. Increasing the spray transport fraction for debris outside the ZOI (unqualified
coatings failure) counterintuitively results in effectively no change or a slight reduction in debris
bed head loss and consequently very little change to ΔCDF. This result is caused by a reduction
in the overall (composite) surface-area-to-volume ratio (Sv) of the debris bed when spray transport
applied to failed coatings is increased as a single parameter in Scenario 21. The effect is caused by
competing ratios of constituents in the weighted average Sv. Specifically, enamel coatings have a
large inventory and a small diameter, so the constituent Sv for enamel is large, but enamel coatings
were assigned a spray transport fraction of zero. As quantities of other unqualified coating types
increase with increasing spray transport fraction, the relative proportion of enamel decreases, re-
sulting in a lower aggregate Sv. The effect is observed regardless of the weighting scheme chosen
for Sv, and both the magnitude and direction of the effect depends on the relative inventories and
particle diameters that are specified for the coatings debris types. In treatment of head loss through
porous media, the parameter Sv represents the total surface area inside of the bed that can induce
drag on the internal flow. Addition of any material inside of the same bed thickness should both
increase Sv and decrease porosity. The unusual dependence of the composite Sv on relative debris
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quantities and characteristics suggests that traditional use of a particulate-weighted bed property is
not appropriate. If a composite parameter is needed, total available drag area should be averaged
over the spatial dimensions of the bed and not over aggregate properties of the debris elements
themselves.

One-Way Sensitivity Plot and Analysis

Given the significant effect of the boron fiber limit on the ΔCDF estimate, we explore this sensitivity
further via a one-way sensitivity plot. Table 18 contains the results of running the simulation with
boron fiber limit values of 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.5, and 8.5 (g/FA). Figure 25 is a one-way
sensitivity plot of the ΔCDF estimate versus boron fiber limit over this range. As with the tornado
diagram, we present the ratio of the ΔCDF estimate for each of these values to the ΔCDF estimate
at the nominal value of 7.5 g/FA, and we present these ratios on a log scale. The CI bounds for
the risk ratios are calculated using equation (10). We employ common random numbers in the
simulation runs across these different fiber limit values.

Table 18: ΔCDF (Mean Risk) as a function of the boron fiber limit.

Boron Fiber Limit (g/FA) Mean Risk 95% CI HW Ratio

4.0 1.690E-06 1.146E-06 93.01
4.5 5.860E-07 8.359E-07 32.24
5.0 1.059E-07 5.789E-08 5.83
5.5 6.242E-08 3.961E-08 3.43
6.0 3.699E-08 2.038E-08 2.04
6.5 2.050E-08 1.999E-09 1.13
7.0 1.931E-08 1.950E-09 1.06
7.5 1.817E-08 1.914E-09 1.00
8.0 1.700E-08 1.790E-09 0.94
8.5 1.658E-08 1.729E-09 0.91
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Figure 25: Sensitivity plot for boron fiber limit (g/FA).

From Figure 25 we see there is little change in the ΔCDF estimate as the fiber limit ranges
from 6.5 g/FA to 8.5 g/FA. However, the ΔCDF estimate grows quickly as we decrease the fiber
limit from 6.5 g/FA.

Analysis of Amount of Fiber Penetration Using Perturbed Filtration Function

In addition to examining the ΔCDF estimate associated with each of the scenarios described above,
another performance measure of interest is the amount of fiber penetrating the core (g/FA) for
different scenarios. In particular, it is interesting to compare the average amount of fiber penetrating
the core using the nominal filtration function (scenario 0), and using the lower envelope of the
filtration function (scenario 12). In Table 19, we present the results of a statistical analysis on fiber
penetration for these two cases. When using the nominal filtration function, the average amount of
fiber penetrating the strainer in CASA Grande is 0.318 g/FA, and when using the lower envelope
of the filtration function, this same value is 0.648 g/FA. We see that approximately twice as much
fiber penetrates when using the lower envelope filtration function. The far right column of Table 19
presents statistical information about the difference between these two scenarios in terms of fiber
penetration. We can see the a 95% confidence interval on the mean difference does not include
zero, which indicates the difference is statistically significant, and of course, twice as much fiber
penetrating the strainer is also significant from a practical perspective.
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Table 19: Statistical analysis of fiber penetration under the nominal settings of the parameters and
when we use the lower envelope of the filtration function.

Measure/Case Nominal Lower Envelope Difference

Mean 0.318 0.648 0.330
Variance 0.063 0.231 0.289

Standard Deviation 0.251 0.481 0.538
Number of Observations 308 308 308

Confidence Level 0.95 0.95 0.95
CI Half-Width 0.028 0.054 0.060
CI Lower Limit 0.290 0.595 0.270
CI Upper Limit 0.346 0.702 0.390

p-value - - 3.673E-23
Significant Difference? - - Yes

Summary

This appendix has focused on identifying the input parameters to which the performance measure
of ΔCDF (change in core damage frequency due to GSI-191 issues) is most sensitive. In general, we
estimate ΔCDF by coupling conditional failure probabilities, as estimated by the CASA Grande
simulation model, with: (i) the frequency of small, medium, and large LOCA events, and (ii)
the probability mass function governing the plant having access to a set of ECCS pumps. In the
analysis we presented here, we have assumed that the most likely pump-state case, in which the
plant has access to all pumps, occurs with probability one.

For this sensitivity analysis, the STP Technical Team selected a total of 15 input parameters
to the CASA Grande simulation model. (We note that some “parameters” actually correspond
to a collection of parameters; e.g., we simultaneously change a set of debris transport fractions.)
Nominal values for these parameters correspond to the analysis performed in Volumes 2 and 3
[22, 12]. Along with this nominal scenario, 21 further scenarios corresponded to changing the
values of these 15 parameters, one at a time. Some parameters were changed in only one direction,
and other parameters were both increased and decreased. With the ranges for these parameters
in hand, we constructed a tornado diagram characterizing the sensitivity of ΔCDF to changes in
the input parameters. Key to our analysis is that the perturbations to these 15 input parameters
are commensurate, meaning that they represent changes to the nominal case that have comparable
likelihood, as judged by the STP Technical Team.

Our ΔCDF estimate is most sensitive to three parameters that concern: (i) how much debris is
required to trigger an in-vessel failure (boron fiber limit), (ii) the fraction of debris that penetrates
the sump strainer (fiber penetration function), and (iii) the fraction of debris of different types that
is transported from different locations during different operational phases (debris transport fractions
in ZOI). The effect of the boron fiber limit exceeds that of the next most sensitive parameter by an
order of magnitude, and so we examined ΔCDF versus the boron fiber limit in further detail via a
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one-way sensitivity plot. The growth in ΔCDF is modest as we decrease the boron fiber limit from
7.5 grams per fuel assembly (g/FA) to 6.5 g/FA, but then we see sharp growth in ΔCDF as we
further decrease this limit.

The appendix of this report applies the initial steps of the sensitivity analysis procedure we
propose. Additional analysis will be carried out. We will seek to understand, conditional upon a
sump or boron fiber limit failure occurring, which weld locations are most likely to have experienced
a break. We will form a spider plot (step 8) for the three or four most sensitive parameters. We
will construct a meta-model of the type indicated in step 10 of our framework. And, we intend to
include further pump states, beyond the most likely state considered here.
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Contents 

•  Background on applying sensitivity analysis to 
CASA Grande simulation model 

•  Practical step-by-step guide to sensitivity 
analysis: 10-step process 

•  Illustrative example 
•  Results from CASA Grande 



Background 
•  Distinguish three sources of error:  

–  sampling-based errors due to Monte Carlo simulation  
–  errors due to uncertainty in model input  
–  errors due to a lack of fidelity of the model  

•  Include sampling errors via error bars 
•  Use UQ plots to characterize second uncertainty 
•  We do not address model uncertainty here 
•  Use common random numbers (CRNs) to reduce the 

variance when comparing performance measures 



10-Step Sensitivity Analysis Process 
•  Step 1: Define the Model 
•  Step 2: Select Outputs of Interest 
•  Step 3: Select Inputs of Interest 
•  Step 4: Choose Nominal Values and Ranges for Inputs 
•  Step 5: Estimate Model Outputs under Nominal Input Values 
•  Step 6: One-Way Sensitivity Analysis: Sensitivity Plots & Tornado 

Diagrams 
•  Step 7: One-Way Sensitivity Analysis: UQ Plots 
•  Step 8: One-Way Sensitivity Analysis: Spider Plots 
•  Step 9: Two-way Sensitivity Analysis: Two-way Sensitivity Plots 
•  Step 10: Metamodels & Design of Experiments 



Step 1: Define the Model 

•  λ1,, λ2,, λ3, λ4 : failure rates 
•  t0 : desired lifetime of system 
•  Δt : time required to perform PM on component 3 
•  k: PM benefit factor λ3/k 
 



Step 2: Select Outputs of Interest 

•  ����������	
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Step 3: Select Inputs of Interest 
•  BASE Option: 

–  λ1,, λ2,, λ3, λ4 : failure rates 
–  t0 : desired system lifetime 
 

•  PM Option: 
–  Base option parameters plus: 
–  Δt : time required to perform PM on component 3 
–  k : PM benefit factor 

•  Component 3’s failure rate drops to λ3 /k, where ����� 



Step 4: Choose Nominal Values and 
Ranges for Inputs 
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Step 5: Estimate Outputs under 
Nominal Values of Input Parameters 
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Step 6: 1-Way Sensitivity Analysis: 
Tornado Diagrams 



Step 6: 1-Way Sensitivity Plots 



Step 6: 1-Way Sensitivity Plots 



Step 6: 1-Way Sensitivity Analysis: 
Tornado Diagrams 



Step 7: 1-Way Sensitivity Analysis: 
Uncertainty Quantification Plots 



Step 8: 1-Way Sensitivity Analysis: 
Spider Plots 



Step 8: 1-Way Sensitivity Analysis: 
Spider Plots 



Step 9: Two-way Sensitivity Analysis: 
Two-way Sensitivity Plots 



Step 10: Metamodels & Design of 
Experiments 

•  So far, change one or two input parameters at a time 
•  Metamodel (aka, response surface or surrogate 

model) built on an experimental design, better 
captures interaction effects 

•  A parsimonious metamodel is a polynomial 
regression model of low degree: 



Summary 
•  Proposed a 10-step sensitivity analysis procedure 

and illustrated ideas on a simple example 
•  Recommended using tornado diagrams as initial 

tool for assessing the input parameters to which 
output is most sensitive 

•  Recommended using sensitivity plots, UQ plots, 
spider plots, and metamodels for a richer 
exploration of model sensitivity 



Appendix 

Sensitivity Analysis for STP GSI-191 



Step 1: Define the Model 
•  We won’t detail CASA Grande here (Volume 3) 
•  Use CASA Grande to estimate probability of 

sump failure and boron fiber limit failure, 
conditional on small, medium & large breaks  

•  Estimate change in core damage frequency 
(ΔCDF) in events/year due to GSI-191 issues 
using these failure probabilities and link to PRA 

•  All results are conditional on all pumps working 



Step 2: Select Outputs of Interest 
•  Change in core damage frequency (ΔCDF) 
•  Sometimes, we report ratio of ΔCDF estimate 

for a scenario to ΔCDF estimate for baseline 
and call this the risk ratio 

•  Use stratified sampling on initiating frequency  
•  Use IID replications within each cell of 

stratification 
•  Use common random numbers across 

scenarios; i.e., use CRNs across specified 
changes in input parameters 



Step 2: Outputs: Estimating CDF 
Indices and Sets:
i = 1, . . . , F index for cells stratifying frequency replications
k = 1, . . . , N index for set of pump states

Events:
SL,ML, LL small, medium, large LOCA
PSk pumps in state k
Fi initiating frequency in cell i
S sump failure
B boron fiber limit failure
CD core damage

Parameters:
fSL, fML, fLL frequency (events/CY) of a small, medium, large LOCA
P (PSk) probability mass of PSk

P (Fi) probability mass of Fi

P̂ (S|LOCA,Fi, PSk) estimate of probability of S given LOCA = SL,ML, orLL, Fi, PSk

P̂ (B|LOCA,Fi, PSk) estimate of probability of B given LOCA = SL,ML, orLL, Fi, PSk

RBASE non-GSI-191 core damage frequency (events/CY)
R̂CD estimate of core damage frequency (events/CY)



Step 2: Outputs: Estimating CDF 

•  We report results with:  
-  fSL , fML , fLL  from Volume 2’s Table 4-1  
-  P(all pumps working)=1 
-  P(Fi ): Bounded Johnson fit to NUREG-1829 

•  We form a variance estimate for the above estimator 

ΔCDF = R̂CD − RBASE

=
F∑

i=1

N∑
k=1

P (Fi)P (PSk) ·
[
fSL · P̂ (S|SL,Fi, PSk) + fSL · P̂ (B|SL,Fi, PSk)

+fML · P̂ (S|ML,Fi, PSk) + fML · P̂ (B|ML,Fi, PSk)

+fLL · P̂ (S|LL,Fi, PSk) + fLL · P̂ (B|LL,Fi, PSk)
]



Step 3: Select Inputs of Interest 
•  Amount of Latent Fiber in Pool:  Existing dust/dirt in containment, based 

on plant measurement. Assumed to be in the pool at start of recirculation, 
uniformly mixed. During fill up, latent debris available to penetrate sump 
screen. 

 
•  Boron Fiber Limit: Refers to threshold where boron precipitation occurs 

for cold leg breaks. Fiber limit comes from vendor testing that shows no 
pressure drop occurs with full chemical effects. Assume all fiber that 
penetrates sump screen deposits uniformly on core. 

 
•  Debris Transport Fractions in ZOI: Refers to three-zone ZOI debris size 

distribution. Each insulation type has characteristic ZOI divided in three 
sections to account for type of damage within each zone. 

 



Step 3: Select Inputs of Interest 
•  Chemical Precipitation Temperature: CASA Grande assumes that, once 

a “thin bed” of fiber forms on strainer, chemical precipitation bump up 
factors apply when pool temperature reaches precipitation temperature. 

 
•  Total Failure Fraction for Debris Outside the ZOI: CASA Grande uses 

table of total failure fractions applied to transport logic trees. Fraction of 
each type (fiber, paint and coatings, etc.) that passes to the pool are used 
to understand what is in the pool as a function of time during recirculation. 
Total failure fraction multiplies total inventory of unqualified coatings.  

•  Chemical Bump Up Factor: Used as a multiplier on conventional head 
loss calculated in CASA Grande. Multiplier is applied if thin bed is formed 
and pool temperature is at or below precipitation temperature. 

 



Step 3: Select Inputs of Interest 
•  Fiber Penetration Function: Fraction of fiber that bypasses the ECCS 

sump screen as a function of the amount of fiber on the screen.  
 
•  Size of ZOI: ZOI defined as direct function (multiplier) of break size and 

nominal pipe diameter; e.g., for NUKON fiber, ZOI is 17 times break 
diameter. ZOI is spherical unless break is not DEGB, in which case it is 
hemispherical. Truncated by any concrete walls within the ZOI. 

 
•  Time to Turn Off One Spray Pump: If three spray pumps start, then by 

procedure one is secured. Time to secure the pump is governed by 
operator acting on the conditional action step in procedure. 

 
 



Step 3: Select Inputs of Interest 
•  Time to Hot Leg Injection: Similar to the spray pump turn off time, the 

time to switch one or more trains to hot leg injection operation is governed 
by procedure. 

 
•  Strainer Buckling Limit: Limit is the differential pressure across ECCS 

strainer at which strainer is assumed to fail mechanically. This limit is 
based on engineering calculations that incorporate safety factor. 

•  Water Volume in the Pool: Depending on break size, amount of water in 
pool, as opposed to amount in RCS and other areas in containment, 
varies. Smaller breaks tend to result in less pool volume than larger 
breaks. 

 



Step 3: Select Inputs of Interest 
•  Debris Densities: Depends on amount and type of debris that arrives in 

pool. These densities are used in head loss correlations to calculate, for 
example, debris volume. 

 
•  Time Dependent Temperature Profiles: Temperature of water in sump 

affects air release and vaporization during recirculation. Time-dependent 
temperature profile comes from coupled RELAP5-3D and MELCOR 
simulations depending on break size. 

 
•  Spray Transport Fractions for Debris Outside ZOI: CASA Grande uses 

a table of failure fractions applied to transport logic trees. Fractions of 
each type of debris that passes to pool are used to understand what is in 
pool as function of time during recirculation. The spray failure fraction is 
fraction of failed coatings that wash to pool during spray operation.  



Step 4: Nominal Values and 
Ranges for Inputs 
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Step 5: Estimate Outputs Under 
Nominal Values of Inputs 
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Step 6: One-Way Sensitivity Analysis 
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