AREVA Perspective on Fuel Fragmentation and Dispersal During Design Basis Accidents

Bert Dunn, Lisa Gerken AREVA Lynchburg, VA

March 13 & 14 2014 NRC Stakeholders Briefing on Fuel Dispersal

Introduction - LOCA

Cladding swelling and rupture have been treated by LOCA evaluation models since the 1973 rule without consideration of relocation and dispersal

Relocation

- In tube relocation has recently been included within LOCA EMs
 - Direct calculation
 - Indirect evaluation based on experiments or tangential modeling
- NRC is now requiring direct calculation of in tube relocation

Dispersal outside the cladding

- Has never been treated in LOCA models
- Dispersal requires cladding rupture
- Fuel particles released from rods considered well cooled in RCS

Introduction – Non-LOCA

Historically clad swelling, rupture, and pellet fragment relocation or dispersal not considered in non-LOCA events

RIAs for PWRs did not pass through CHF

Some recent calculations pass through CHF but do not incur rupture

Rod drop accidents in BWRs do not go through CHF

 Legacy methods may go through CHF but improved state of the art methods will not

Other DBAs do not experience swelling and rupture

- PWRs: do not pass through CHF
- BWRs: rod peak powers are reduced with burnup

LOCA Observations - Relocation

- Tests indicate that the possibility of relocation within the hot rod is credible for LOCA
- Cladding rupture temperature and strain are highly variable
- Evaluations of the packing factor of the rubble show substantial variability

AREVA

LOCA Observations - Dispersal

NRC Research

- Fuel particles must be smaller than rupture opening
- Burnup must be under threshold ~ 60 GWd/mtU
- Concern may be largely an artifact of conservative modeling
- BWR: Expect realistic evaluations to show no rupture
- PWR
 - PWR RLBLOCA results
 - Mean hot rod PCT ~ 1500°F
 Embedded conservatisms > 200°F
 - Expected true mean PCT < 1300°F
 - Best estimate prediction is no cladding rupture

Combining the low probability of LBLOCA and probability of rupture, the likelihood of significant dispersal within the core is very small

LOCA Dispersal Modeling Approach

Possible modeling approach based on RLBLOCA methodology

Swelling and rupture of rods can be modeled as statistically based in a realistic EM

- Model several rod power levels each characteristic of a fraction of the core
- Use statistical model for rupture, swelling, relocation and an estimate for rupture opening, and fraction of pellet material dispersed
 - Reasonably known:
 - Rupture & swelling based on current data (0630, EDGAR, REBEKA, etc.)
 - Limited information:
 - Relocation
 - Little information:
 - Rupture opening & fraction dispersed

Statistical Approach

AREVA

Statistical Approach

AREVA

Zr-4 Rupture Strain Uncertainty

March 13 & 14 2014 NRC Stakeholders Briefing on Fuel Dispersal

Needed Information for Mechanistic Evaluation

- Fraction of material released from fuel rod
- Potential for fragment aggregation within core
- Effects of accident tolerant cladding
- Effects of pellet doping

AREVA Perspective

The potential for clad swelling, rupture, and relocation is sufficient to require consideration in LOCA evaluations but that should be done realistically

Relocation

- Increased probability for high burnup fuel
- Research on the effect of burnup and pellet fragmentation thresholds is useful
- Research on packing factor useful

AREVA Perspective

Dispersal during LOCA

- Only limited amounts, nearly all fine particles, will be dispersed into the RCS
- Limited dispersal of larger fragments, if these are trapped in the assemblies they can be cooled there
- Fine particles will flow within the RCS and be cooled effectively
- Only large accumulations in the core would pose a significant risk of over heating

AREVA Perspective

Analysis of fuel dispersal using conservative bounds of currently available data likely to be extreme

Research should continue and regulation should await the research

- Relocation can be considered with best-estimate plus uncertainty
- The risk of adverse consequences from fuel dispersal is small
- Regulation of fuel dispersal should await further studies and evaluations

Nomenclature

- BWR Boiling Water Reactor
- CHF Critical Heat Flux
- **DBA** Design Basis Accident
- LBLOCA Large Break Loss of Coolant Accident
- LOCA Loss of Coolant Accident
- NRC Nuclear Regulatory Commission
- PCMI Pellet Clad Mechanical Interaction
- PCT Peak Clad Temperature
- PIE Post Irradiation Examination
- PWR Pressurized Water Reactor
- RCS Reactor Coolant System
- RIA Reactivity Insertion Accident
- RLBLOCA Realistic LBLOCA

