

## Subsequent License Renewal Research – Path to Success

## Michael Case Director, Division of Engineering

Long Term Operations/Subsequent License Renewal Forum, Washington D.C. February 25, 2014



# SLR Research Keys to Success

- Collaboration
  - Selective technical areas leverage resources
  - Industry EPRI's LTO research
  - DOE LWRS
- Technical Focus
  - Relatively low knowledge, high susceptibility for degradation during SLR period
  - EMDA identified areas
- Schedule and Timing
  - Availability of data
  - Guidance development for regulatory assessment



## SLR Research Focus EMDA

- Major gap analysis related to reactor materials degradation
- Based on earlier 2007 work related to piping and reactor internals (PMDA)
- Extended the assessment to operation beyond 60 years
- Expanded the assessment to include reactor pressure vessel, concrete and cable aging
- Moderately successful with respect to the keys to success



Selected Key EMDA SLR Concerns – Metals

- Reactor Pressure Vessel
  - Evaluation and prediction of thermal aging and neutron effects on fracture resistance (higher fluence during SLR)
  - Attenuation of embrittlement in the nozzle course vs. in the beltline
  - Code development and acceptance of direct fracture toughness measurements from surveillance samples



Selected Key EMDA SLR Concerns – Metals

- Piping and Core Internals
  - High-fluence effects on lowering fracture resistance
  - High-fluence effects on SCC of austenitic stainless steels
  - Potential for distortion due to void swelling
  - Thermal aging embrittlement of cast austenitic stainless steels
  - Environmentally-assisted fatigue



#### Sample Projects Addressing SLR Concerns - Metals

NRC research programs are well-aligned with EMDA results

- Reactor Pressure Vessel
  - Coordination with C&S bodies (ASME & ASTM)
    - Evaluate embrittlement trends in commercial surveillance relative to SLR concerns identified in EMDA
    - Develop predictive model based on 40+ years of NRC & industry data
    - Enable alignment between NRC predictive model and ASME/ASTM practices



Sample Projects Addressing SLR Concerns - Metals

NRC research programs are well-aligned with EMDA results

- Piping and Core Internals
  - Evaluate high-fluence effects on austenitic SS core internals using materials from Zorita plant
  - Evaluate interacting effects of gamma heating and aging and neutron irradiation on cast austenitic stainless steels – fracture toughness and crack growth behavior
  - Coordinate sharing technical information with C&S committees



Selected Key EMDA SLR Concerns – Non-Metals

- Cable Aging
  - Estimation of activation energy under specific environment
  - Consequences of long-term wetting of both lowand medium-voltage cables
  - Effects of atmospheric oxygen concentration to consider in LOCA simulation
- Concrete
  - Irradiation effects for containment concrete
  - Creep of the post-tensioned concrete containment



#### Sample Projects Addressing SLR Concerns – Non-Metals

- Cable Aging
  - Evaluate naturally-aged safety-related cables from Zion NPP
  - Assess condition monitoring methods
  - Conduct LOCA testing to assess cable LOCA performance



Zion U2 Cable Spreading Room

- Concrete
  - Evaluate samples from biological shields and RPV supports of decommissioned NPP



**Prospects for SLR Research Success** 

- Collaborative research on materials is high, mature, and well-established
- Potential for new collaboration, such as Zorita II
- Complementary research projects are underway in industry (EPRI) and DOE-LWRS on key SLR issues
- Potential major challenge includes schedule and timing of research results to support SLR application assessment
- Research success probability is estimated to be high good coordination of NRC research with DOE (LWRS), EPRI (LTO) and other related international programs





| Abbreviation | Full Text                                   |
|--------------|---------------------------------------------|
| ASME         | American Society for Mechanical Engineers   |
| ASTM         | American Society for Testing Materials      |
| C&S          | Codes and Standards                         |
| DOE          | Department of Energy                        |
| EMDA         | Expanded Materials Degradation Assessment   |
| EPRI         | Electric Power Research Institute           |
| LOCA         | Loss of Coolant Accident                    |
| LTO          | Long Term Operation                         |
| LWRS         | Light Water Reactor Sustainability Research |
| NPP          | Nuclear Power Plant                         |
| NRC          | U.S. Nuclear Regulatory Commission          |
| PMDA         | Proactive Materials Degradation Assessment  |
| RPV          | Reactor Pressure Vessel                     |
| SCC          | Stress Corrosion Cracking                   |
| SLR          | Subsequent License Renewal                  |