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ABSTRACT

The U.S. Nuclear Regulatory Commission (NRC) is responsible for issuing regulations for the
packaging of spent fuel (and other large quantities of radioactive material) for transport that
provide for public health and safety during transport (Title 10 of the Code of Federal Regulations
(10 CFR) Part 71, “Packaging and Transportation of Radioactive Waste,” dated

January 26, 2004). In September 1977, the NRC published NUREG-0170, “Final Environmental
Statement on the Transportation of Radioactive Material by Air and Other Modes,” which
assessed the adequacy of those regulations to provide safety assurance. In that assessment,
the measure of safety was the risk of radiation doses to the public under routine and accident
transport conditions, and the risk was found to be acceptable. Since that time, there have been
two affirmations of this conclusion for spent nuclear fuel (SNF) transportation, each using
improved tools and information. This report presents the results of a fourth investigation into the
safety of SNF transportation. The risks associated with SNF transportation come from the
radiation that the spent fuel emits, which is attenuated—»but not eliminated—by the
transportation casks shielding and the possibility of the release of some quantity of radioactive
material during a severe accident. This investigation shows that the risk from the radiation
emitted from the casks is a small fraction of naturally occurring background radiation and the
risk from accidental release of radioactive material is several orders of magnitude less.

Because there have been only minor changes to the radioactive material transportation
regulations between NUREG-0170 and this risk assessment, the calculated dose caused by the
external radiation from the cask under routine transport conditions is similar to what was found
in earlier studies. The improved analysis tools and techniques, improved data availability, and a
reduction in uncertainty has made the estimate of accident risk from the release of radioactive
material in this study approximately five orders of magnitude less than what was estimated in
NUREG-0170. The results demonstrate that NRC regulations continue to provide adequate
protection of public health and safety during the transportation of SNF.
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EXECUTIVE SUMMARY

The U.S. Nuclear Regulatory Commission (NRC) has conducted several risk assessments and
other analyses to evaluate the safety of transportation of spent power reactor nuclear fuel during
the past 35 years. Regulations, shipping practices, and cask designs for transporting
radioactive material have remained essentially unchanged during this time. Therefore, the
actual per shipment risk over this time period also would have remained essentially the same.
What has changed during this period is the calculated risks. This change was brought about by
the improved ability to evaluate cask responses and their spent fuel contents to accident
environments. The improvements include advancements in tools available to determine those
responses and to calculate the consequences and risks that result from their response. This
has resulted in a decrease in the calculated per shipment risk. The consequences and risks
resulting from accidents calculated in this study are several orders of magnitude less than those
calculated in previous risk assessments.

In this study, the risk associated with the transportation of spent nuclear fuel (SNF) was
estimated by examining the behavior of three NRC-certified casks during routine transportation
and in transportation accidents. Two casks are designed for transport by railroad: (1) a cask
with steel gamma shielding and an inner welded canister for the spent fuel and (2) a cask with
lead gamma shielding that can transport spent fuel within an inner welded canister (referred to
in this report as canistered fuel) or without an inner canister (referred to as directly loaded fuel).
A third cask with depleted uranium (DU) gamma shielding is designed to transport directly
loaded spent fuel by highway. The response of these casks is typical of other cask designs.
The use of certified cask designs means this risk assessment includes the factors of safety
typically included in cask designs but not specifically considered in previous risk assessments.

The risks associated with routine shipments (incident-free) and shipments where an accident
occurs are calculated separately. During routine transportation, the risk and the consequence
are the same. In this case, the dose to residents living along a transportation route, to people
sharing the highway or railway, people at stops, and transportation workers are all calculated.
Regulations allow limited external radiation from the cask. The dose of radiation to members of
the public during routine transportation is a small fraction of the naturally occurring background
radiation that individuals experience.

If an accident occurs during shipment, most likely there is no damage to the cask. In this type of
accident the shipping vehicle is stopped for a period of time, which exposes people in the
vicinity of this stop (nearby residents, emergency response workers, etc.) to the allowed
external radiation from the cask. If the accident is more severe, the shielding effectiveness of
the cask could be reduced. If the cask is involved in a fire, the plastic neutron shielding material
could melt, resulting in a slightly elevated amount of radiation emanating from the cask. If the
lead shielded cask was involved in an exceptionally severe long-lasting fire, there could be a
reduction in the effectiveness of the gamma shielding. The response of the cask to fire
accidents was determined using detailed computer analyses. Even in the worst-case fires
analyzed, no cask experienced a seal failure that could have led to a release of radioactive
material from the spent fuel cask.

For impact accidents, the steel shielded cask with inner welded canister and the DU-shielded

cask have no release and no loss of gamma shielding effectiveness even under the most
severe impacts studied, which encompass all historic or even realistic accidents. The lead
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shielded cask experiences some loss of gamma shielding effectiveness during severe impacts.
Also, when spent fuel is transported without an inner welded canister some release of
radioactive material could occur during exceptionally severe impacts.

If material were to be released, weather conditions at the accident location would affect the
dispersal of that material. The risk assessment uses national average weather conditions
because the time and location of an accident are unknown. The number of people exposed to
the dispersed material is a function of the population density at the site of the accident, which is
determined from census data. The amount of material released, the dispersion, and the
population density are combined to determine the consequence (potential effects) of a release.
The estimated dose from the most severe accident scenarios evaluated in this study is less than
that required to produce an immediate injury or fatality.

Accident risk is the product of the consequence of the accident and its probability. The
probability of an accident that has an effect on the cask is the product of the probability that the
cask is involved in an accident and the conditional probability that the accident is severe enough
to reduce the shielding or containment effectiveness of the cask. The conditional probability is
based on State accident statistics for all types of heavy trucks and railcars. The accident
probability is determined by multiplying these State-by-State accident rates by the distance
traveled within each State. This was done for 16 representative truck routes and

16 representative rail routes. The representative routes chosen are for illustrative purposes
only, and no SNF shipments are planned from any of the points of origin to any of the
destinations.

The study reached the findings listed below.

. The collective dose risks from routine transportation are very small. These doses are
approximately four to five orders of magnitude less than the collective background
radiation dose.

. The routes selected for this study adequately represent the routes for SNF transport,
and there was relatively little variation in the risks per kilometer (km) over these routes.

. Radioactive material would not be released in an accident if the fuel is contained in an
inner welded canister inside the cask.

. Only rail casks without inner welded canisters would release radioactive material, and
only then in exceptionally severe accidents.

o If there were an accident during a spent fuel shipment, there is only about
one-in-a-billion chance that the accident would result in a release of radioactive material.

o If there were a release of radioactive material in a spent fuel shipment accident, the dose
to the maximally exposed individual (MEI) would be less than 2 sieverts (Sv) (200 rem)
and would not result in an acute lethality.

) The collective dose risks for the two types of extremely severe accidents (accidents

involving a release of radioactive material and loss of lead shielding (LOS) accidents)
are negligible compared to the risk from a no-release, no-loss of shielding accident.
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° The risk of gamma shielding loss from a fire is negligible.

o None of the fire accidents investigated in this study resulted in a release of radioactive
material.

Based on these findings, this study reconfirms that radiological impacts from spent fuel
transportation conducted in compliance with NRC regulations are low. In fact, they are
generally less than previous, already low, estimates. Accordingly, this study also reconfirms the
NRC'’s previous conclusion that regulations for transportation of radioactive material are
adequate to protect the public against unreasonable risk.

A more complete plain-language summary of the report is given in the following section.
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Nuclear fission in power reactors produces a large amount of energy, which has been
harnessed to make electricity. Fission also creates radioactive products that are contained in
fuel rod pins in nuclear fuel assemblies. Therefore, spent nuclear fuel is very radioactive when
first removed from a reactor, but it decays and becomes less radioactive over time. Because of
this radioactivity, people have some concerns when spent fuel is moved in trucks and by rail
over public roads and railroads.

Thirty-five years ago, the U.S. Nuclear Regulatory Commission (NRC) responded to these
concerns by estimating the radiological impact of transporting radioactive materials, including
spent fuel. This analysis resulted in NUREG-0170, “Final Environmental Statement on the
Transportation of Radioactive Material by Air and Other Modes,” issued in 1977 (U.S. Nuclear
Regulatory Commission, 1977). NUREG-0170 provided an environmental impact statement
(EIS) for transportation of all types of radioactive material by road, rail, air, and water, and
concluded the following:

o The average radiation dose to members of the public from routine transportation of
radioactive materials is a fraction of their background dose."

. The radiological risk from accidents in transporting radioactive materials is very small
compared to the nonradiological risk from accidents involving large trucks or freight
trains.

On the basis of this EIS, NRC regulations in 1981 were considered “adequate to protect the
public against unreasonable risk from the transport of radioactive materials.” However, the
adequacy of these regulations continued to be questioned, in part, because the EIS was based
on estimates of radiation dose and accident rates, for which not much data or information had
been available. Among the questions not fully resolved: What constitutes “reasonable” risk and
what are actual consequences should an accident happen?

The present work uses advanced models, risk assessment methods, and updated data to
provide a current assessment of the risks and consequences of transporting spent nuclear fuel.

All commodities that are transported by truck or rail can be involved in accidents. Trucks and
railcars carrying spent nuclear fuel transportation casks are no exception. The NRC recognizes
this, and it requires that spent fuel casks be designed and built to withstand severe
transportation accidents. NUREG-0170 and later studies of casks have considered accident
conditions more severe than those the regulations require the cask to demonstrate their ability
to withstand. A 1987 study applied actual accident statistics to projected spent fuel
transportation (Fischer et al., 1987). This study, known as the “Modal Study,” also recognized
that accidents could be described in terms of the strains they produced in the cask (for impacts)
and the increase in cask temperature (for fires). Like NUREG-0170, the 1987 study based risk
estimates on models because the limited number of accidents that had occurred involving spent
fuel shipments was not sufficient to support projections or predictions. The Modal Study’s
refinement of modeling techniques and use of accident frequency data resulted in smaller
assessed risks than had been projected by NUREG-0170.

The background dose is the average dose any individual will receive over the period of a year while
conducting routine, everyday activities (3.6 millisieverts).

NUREG-2125 XXViii



In 2000, a study of two generic truck casks and two generic rail casks analyzed the cask
structures and response to accidents by using computer modeling techniques (Sprung et al.,
2000). The study used semitrailer truck and rail accident statistics for general freight shipments
because, even though more than 1,000 spent fuel shipments had been completed in the United
States by 2000 and many thousands more had been completed safely internationally, there had
been too few accidents involving spent fuel shipments to provide statistically valid accident
rates.

Through a series of risk assessments, the release of radioactive material from a cask in an
accident—and its subsequent dispersion—has been modeled with increasing refinement.
NUREG-0170 assumed that most very severe accidents would result in release of all of the fuel
particles created by the accident to the environment (the cask did not serve as a barrier to
release). Although this engineering judgment overstated the release, it was nevertheless used
because analytical capabilities at the time did not permit a more accurate assessment. The
2000 study analyzed the physical properties of spent fuel rods in a severe accident and revised
estimates of material released to 1 percent or less of the NUREG-0170 estimates. Accordingly,
risk estimates were revised downward. The 2000 study also verified that an accidental release
of radioactive material could only be through the seals at the end of the cask where the lid is
attached. In other words, an accident could cause seal failure, but would not breach the cask
body (Sprung et al., 2000).

The present study models certified cask designs (rather than generic casks) and the commercial
spent nuclear fuel that these casks are certified to transport. It evaluated two rail casks and a
truck cask.

Almost all spent fuel casks are shipped without incident. However, even this routine,
incident-free transportation causes radiation exposures because all loaded spent fuel casks
emit some external radiation. The radiation dose rates for spent fuel shipments are measured
before each shipment and must be maintained within regulatory limits. The radiation dose from
this external radiation to any member of the public during routine transportation, including stops,
is barely discernible compared to the public’s natural background radiation. Figure PS-1
illustrates a rail cask and the way in which the radiation to a member of the public is modeled.
One hundred times the dose at 1 meter (3.3 feet) from the cask measured in millisieverts/hour
(the dose measured in millirem/hour) is known as the Transport Index, which is used to
represent the amount of radiation coming from the cask during routine transportation.

The external radiation from the spent fuel cask results in a very small dose to each member of
the public along the route traveled by the cask. The collective dose from routine transportation
is the sum of all of these doses. This study examined several example transportation routes
considered to be representative of possible cross-country transport. No actual spent fuel
transport has occurred, or is planned to occur, on the routes studied. Table PS-1 and Figure
PS-2 show the possible total dose in person-sieverts (person-Sv) to all of the workers and
members of the public who would be exposed to radiation along one of these routes—the truck
shipment from the Maine Yankee Nuclear Power Plant to Oak Ridge National Laboratory.
Table PS-1 and Figure PS-2 include the background radiation dose to exposed workers and
members of the public during the time of the shipment.
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’w‘\\ber of the Public

Figure PS-1 Model of a spent fuel cask in routine, incident-free transportation and
radiation dose to a member of the public
Relative sizes of the cask and member of the public are approximately to scale.

Table PS-1 Collective Dose from Routine Transport for the Truck Route from Maine
Yankee Nuclear Power Plant to Oak Ridg_je National Laboratory (person-Sv)

Urban

Exposed Population Rural Suburban Urban Rush Hour Total
Residents near route 0.0000050 0.000089 0.0000020 |0.00000045 |0.000096
Traffic on the route 0.00013 0.00024 0.000054 |0.0000050 0.00046
Residents near truck stops 0.00000056 0.000012 * * 0.000012
Truck crew 0.00059 0.000076 0.00067
Escort 0.000000047 0.0000000043 0.000000051
Inspectors (10 inspections) 0.0016
People at truck stops 0.00086
Truck stop workers 0.000013

Total dose from spent fuel shipment 0.0037

Background 7.56
* Most truck stops are located in rural or suburban areas.

Note: (1 Sv = 100,000 mrem)
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Collective Doses from Background and from a Truck Shipment of Spent Nuclear
Fuel (Person-Sv) .
Residents near route,

Residents near truck 0.000096

stops, 0.000012

Background, 7.56 Total shipment dose,

0.0037

Figure PS-2 Collective doses from background and from a truck shipment of spent

nuclear fuel (person-Sv)
Figure note: (1 Sv = 100,000 mrem)

The collective doses calculated for routine transportation are higher for this study than for either
NUREG/CR-6672, “Re-examination of Spent Fuel Shipment Risk Estimates,” (Sprung et al.,
2000) or NUREG-0170 (NRC, 1977), but still a very small fraction of background dose. Figure
PS-3 compares the collective doses from truck transportation from the three studies. In
NUREG-0170, the analysis was for a single route; in NUREG/CR-6672, the analysis was for
200 representative routes (Sprung et al., 2000); and in this study, the analysis is for 16 truck
routes (as well as 16 rail routes). The collective average dose in the present study is larger than
the NUREG/CR-6672 result because present populations are generally larger, particularly along
rural routes; the number of vehicles sharing the highways with the spent fuel transport is now
much larger (see Chapter 2); and the number and length of refueling stops is much greater.
These increases were somewhat offset by the greater vehicle speeds used in the present study.

This study uses current (1991 to 2007) truck and rail accident statistics to determine the
probability of an accident and the severity of that accident. Researchers performed detailed
analyses to evaluate how the casks would respond to the accident scenarios. Figure PS-4
shows a cask response to one impact scenario, a 97 kilometer per hour (kph) (60 mile per hour
(mph)) corner impact onto a rigid target, and the resulting deformations. Almost all of the
deformation is in the impact limiter, a device that is added to the cask to absorb energy, much
like the bumper of a car. Similar analyses were performed for impacts at 48 kph (30 mph), 97
kph (60 mph), 145 kph (90 mph), and 193 kph (120 mph) in end-on (lid down), corner, and
side-on orientations for two cask designs. These impact speeds encompass all accidents for
truck and rail transportation.
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Average Collective Doses (person-Sv) from Routine Truck
Transportation
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Figure PS-3 Collective doses (person-Sv) from routine truck transportation

Impact
Limiter

Impact
Limiter

Canister Lid
Cask Lid

Rigid Target

Figure PS-4 Corner impact onto a rigid target at a 97-kph (60-mph) accident scenario for
a spent fuel cask and the deformations produced by the impact
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Figure PS-5 shows one fire scenario, a 3-hour engulfing fire, and the resulting temperature
distribution in the cask. Additional simulations were performed with the fire offset from the cask.
These fires include all fire-related accidents in rail transportation. The longest duration for an
engulfing fire during truck transportation is 1 hour because of the amount of fuel that is carried
onboard a tanker truck.

Detailed impact simulations were performed for two spent fuel casks—the NAC STC and the HI
STAR 100—intended for transportation by railroad. In addition, the results for a third cask, the
GA-4, which is intended for transportation by truck, were inferred from earlier analyses.
Detailed fire simulations were performed for all three casks.

Figure PS-5 Engulfing fire scenario and the temperature contours in the rail cask
following a 3-hour fire duration
The transparency of the flames has been increased so the cask can be seen; in the actual fire
simulation, and in a real fire, the flames are opaque.

The impact and thermal analysis results indicate that no accident involving the truck
transportation cask would result in the release of radioactive material or reduction in the
effectiveness of the gamma shielding. The only radiological consequence of an accident would
be exposure to external radiation from the cask because of the long-duration stop associated
with the accident. The stop needs to be long enough for responders to clear the accident scene
and to arrange for shipment to resume. During this stop, emergency responders could be fairly
close to the cask. Because there is no loss in effectiveness of the gamma shielding, the
radiation dose to these responders would be a small fraction of the allowed occupational dose.

For rail transport of spent fuel that is in an inner welded canister, this study shows that there
would be no release of radioactive material. For casks using lead gamma shielding, the most
severe accidents evaluated led to a reduction in the effectiveness of that shielding, which results
in an elevated external radiation level. In addition, for rail transport of spent fuel that is not in an
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inner welded canister, some radioactive material is released following exceptionally severe and
improbable accidents.

The calculated collective dose risk (the summation of dose to all exposed individuals times the
probability of the accident) from accidents has decreased with each successive risk
assessment. Figure PS-6 compares the average collective dose risks from releases and loss of
lead shielding from the three studies (NUREG-0170 did not calculate loss of lead shielding).
This study also considered accident doses from a source that was not analyzed in the prior
studies—the dose that results from accidents in which there is neither release nor loss of lead
shielding, but there is increased exposure to a cask that is stopped for an extended period of
time. Figure PS-7 shows the average collective dose risks for this scenario for the three casks
studied. This scenario is important because more than 99.999999 percent of all accident
scenarios do not lead to either release of radioactive material or loss of shielding. Figure PS-8
provides a summary of all the accident probabilities and risks. The first pie chart shows that
only about 1 in 1,000 trips would result in an accident. The second pie chart shows that if an
accident occurs, only about 1 in 2,000 accidents is more severe than the regulatory accident
conditions. The third pie chart shows that if an accident is more severe than the regulatory
accident conditions, only about 3 in 1,000,000 will result in either loss of gamma shielding or
release of radioactive material.

Average Accident Collective Dose Risks (person-Sv)
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NUREG-0170 NUREG/CR-6672 THIS STUDY RAIL-LEAD

Figure PS-6 Average collective dose risk from release and loss-of-shielding (LOS)
accidents
The LOS bar for NUREG/CR-6672 is not to scale.
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Figure PS-7 Average collective dose risk from accidents that have no impact on the
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Illustrative Rail Shipment
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Routine Transport
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B No LOS or Release

Most shipments are routine

99.86% of shipments occur without
accidents

Collective Dose from Routine
Transportation: 2.3 Person-mSv

Most accidents are less severe than
the hypothetical accident casks are
designed to withstand

99.95% of accidents would not exceed
regulatory requirements

Collective Dose Risk from 10-hour
Stop: 0.085 Person-mSv

Casks provide safety well beyond
the regulatory requirements

99.99973% of accidents that are more
severe than the regulatory hypothetical
accident do not lead to release or loss
of lead gamma shielding.

Collective Dose Risk from Loss of Lead
Gamma Shielding: 2.5 x107°
Person-mSv

Collective Dose Risk from Release:
3.5 x10"" Person-mSv

Dose to a hypothetical maximally
exposed individual (1.6 Sv) would not
result in an acute fatality.

Figure PS-8 Calculated results for an illustrative rail shipment using the rail-lead cask
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A final point of comparison between the studies is the maximum consequence of an accident.
For NUREG-0170, this was about 110 person-Sv; for NUREG/CR-6672, it was about

9,000 person-Sv; and for this study, it is 2.2 person-Sv. The reduction in consequence is the
result of using the actual spent fuel being shipped, a smaller release fraction, and improvements
in the RADTRAN model. This study estimated the effects of an accident on the maximally
exposed individual (a theoretical person located at the point of highest concentration of
potentially released radioactive material for 10 hours). The estimate for such an individual is
calculated to be a dose of 1.6 Sv, and would not cause an acute fatality (fatality within two
monthes of receiving the radiation dose).

As noted above, the purpose of this analysis was to reproduce (and, in some cases, extend) risk
analyses previously considered in NUREG-0170, the Modal Study, and NUREG/CR-6672 using
updated models and methods. The study reached the following findings:

o The collective doses from routine transportation are vanishingly small. These doses are
about four to five orders of magnitude less than collective background radiation doses.

. The routes selected for this study adequately represent the routes for spent nuclear fuel
transport, and there was relatively little variation in the risks per kilometer over these
routes.

° Radioactive material would not be released in an accident if the fuel is contained in an

inner welded canister inside the cask.

. Only rail casks without inner welded canisters would release radioactive material, and
only then in exceptionally severe accidents.

o The regulatory hypothetical accident conditions are more severe than 99.995 percent of
all accidents.
. The certification process not only assures that casks will survive the hypothetical

accident conditions, but that they also survive 99.9999 percent of more severe
accidents. Therefore, if there was an accident during a spent fuel shipment, there is less
than one-in-a-billion chance the accident would result in a release of radioactive
material.

. If there was a release of radioactive material in a spent fuel shipment accident, the dose
to the maximally exposed individual would be less than 2 Sv (200 rem), and would not
cause an acute fatality.

o The collective dose risks for the two types of extra-regulatory accidents (accidents
involving a release of radioactive material and loss of lead shielding) are negligible
compared to the risk from a no-release, no-loss-of-shielding accident.

° The risk of loss of shielding from a fire is negligible.
o None of the fire accidents investigated in this study resulted in a release of radioactive
material.
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Based on these findings, this study reconfirms that radiological impacts from spent fuel
transportation conducted in compliance with NRC regulations are low. In fact, this study’s
radiological impact estimates are generally less than the already low estimates reported in
earlier studies. Accordingly, with respect to spent fuel transportation, this study reconfirms the
previous NRC conclusion that the regulations for transportation of radioactive material are
adequate to protect the public against unreasonable risk.
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1. INTRODUCTION

1.1 Organization of this Report

The body of the report consists of an executive summary and six chapters. The chapters
describe the risk analysis qualitatively. Each chapter in this study has an associated appendix
that describes the analytical methods and calculations used to arrive at the results discussed in
the chapters. Descriptions of programs, calculations, and codes used are located in the
relevant appendices.

1.1.1 Chapter 1 and Appendix A

Chapter 1 gives an introduction to the study, a brief background, a discussion of risk as applied
to the transportation of radioactive materials, a discussion of cask selection, and a review of the
organization of the report. Appendix A contains details of certified spent fuel casks and the
certificates of compliance for the casks used in this study.

1.1.2 Chapter 2 and Appendix B

Chapter 2 and Appendix B discuss RADTRAN? analysis of incident-free transportation. During
routine (incident-free) transportation, spent fuel transportation casks deliver an external dose to
anyone in proximity to the shipment. This chapter describes the consequence of the external
dose. In most previous transportation risk studies, the regulatory maximum dose rate of

0.1 millisieverts (mSv)/hour at 2 meters from the cask was assumed to be the external dose rate
from every cask evaluated in the particular study. The present study uses the actual predicted
external dose rate from U.S. Nuclear Regulatory Commission (NRC)-certified casks, as reported
in the safety analysis reports (SARs) for those casks.

1.1.3 Chapter 3 and Appendix C

Chapter 3 and Appendix C address the structural analyses used to determine the cask
response to accidents and the parameters that determine loss of lead gamma shielding and
releases of radioactive material. The results of detailed analyses of the impact of the casks with
impact limiters onto rigid targets at speeds of 48 kilometers per hour (kph), 97 kph, 145 kph, and
193 kph (30 miles per hour (mph), 60 mph, 90 mph, and 120 mph) in end, corner, and side-on
orientations are given. Results are supplied for impacts onto other surfaces or objects. The
response of the fuel assemblies that the casks carry is also discussed.

1.1.4 Chapter 4 and Appendix D

Chapter 4 and Appendix D address the thermal analyses used to determine the cask response
to accidents and the parameters that determine loss of lead gamma shielding and potential
releases of radioactive material. The results from fire analyses that completely engulf the cask
as well as those offset from the cask are given. The temperature response of the cask seals,
the shielding material, and the spent fuel is provided.

RADTRAN is the radioactive material transportation risk assessment code originally developed for the NRC
in the 1970s by Sandia National Laboratories.
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1.1.5 Chapter 5 and Appendix E

Chapter 5 and Appendix E address RADTRAN analysis of transportation accidents,
development of accident event trees and conditional probabilities, development of the
radionuclide inventory and radioactive materials releases and dispersion of released material in
the environment. The chapter also discusses accidents where no releases occur (the most
likely accidents) and the radioactive cargo is not affected at all, but the vehicle is held for many
hours at the accident location before it is permitted to continue.

1.1.6 Chapter 6 and Public Summary

Chapter 6 summarizes the results of the analyses. The Public Summary at the front of the report
contains a “plain language” summary of this study.

1.1.7 Bibliography

The bibliography is located after the Appendices. It contains all cited references and other
bibliographic material. Citations in the text (e.g., Sprung et al., 2000, Figure 7.1) include specific
page, figure, or table references where appropriate.

1.1.8 Review Process

The draft and final versions of this NUREG have undergone technical and editorial reviews.
Before the draft NUREG was published for public comment, it went through an internal NRC
technical review and an external technical peer review conducted by Oak Ridge National
Laboratories. The draft NUREG had a 60-day public comment period, and written comments
were received from four organizations. The resolution of these comments is included in the
Public Comment Resolution Report (NRC, 2013a). In addition, the report was reviewed by the
NRC Advisory Committee on Reactor Safeguards Subcommittee on Radiation Protection and
Nuclear Materials and by the full Advisory Committee on Reactor Safeguards (ACRS). The
responses to comments from these two committees are included in the ACRS Comment
Resolution Report (NRC, 2013b). The final NUREG incorporates changes to address public
and ACRS comments, and has been reviewed by the NRC prior to publication.

1.2 Historical Transportation Risk Studies and the Purpose of this Analysis

The purpose of this study was to analyze the radiological risks of transporting spent nuclear fuel
(SNF) in routine transportation and transportation accidents, using the latest available data and
modeling techniques. This study primarily analyzes cask behavior rather than the behavior of
the spent fuel being transported. The study is the latest in a series of assessments of this type
that analyzes the behavior of NRC-certified casks carrying fuel of known isotopic composition
and burnup. The studies preceding this one were based on conservative and generic
assumptions.

This study is not intended to be a risk assessment for any particular transportation campaign
and does not include the probabilities or consequences of malevolent acts. It does not address
the acceptance of the risks associated with transportation of SNF but can be used to inform
such discussions.

The NRC certifies casks used to transport SNF under Title 10 of the Code of Federal
Regulations (10 CFR) Part 71, “Packaging and Transportation of Radioactive Material,” dated
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January 26, 2004. The adequacy of these regulations was confirmed in NUREG-0170, “Final
Environmental Statement on the Transportation of Radioactive Material by Air and Other
Modes” (NRC, 1977), an environmental impact statement (EIS) for transportation of all types of
radioactive material by road, rail, air, and water. Several conclusions drawn from this EIS are
listed below.

° The average radiation dose to members of the public from routine transportation of
radioactive materials is a fraction of the existing background radiation dose.

. The radiological risk from accidents in transporting radioactive materials is very small
compared to the nonradiological risk from accidents involving large trucks or freight
trains.

o The regulations in force at the time of the EIS were determined by the Commission to be

“adequate to protect the public against unreasonable risk from the transport of
radioactive materials” (46 FR 21629; April 13, 1981).

The risk assessment of NUREG-0170 was based on very conservative estimates of risk
parameters and on models available at the time; these models would be considered imprecise
today. The NRC concluded that the regulations were adequate because even very conservative
estimates of risk parameters did not result in unacceptable risk. The NRC also recognized that
the agency’s policies on radioactive materials transportation should be “subject to close and
continuing review.” Two comprehensive contractor reports on spent fuel transportation have
been issued since 1977: the Modal Study (Fischer et al., 1987) and NUREG/CR-6672,
“Re-examination of Spent Fuel Shipment Risk Estimates,” (Sprung et al., 2000).> The Modal
Study was the first intensive examination of vehicle accident statistics and the first to categorize
the frequency of severe accidents by structural and thermal response of a transportation cask.
The Modal Study concluded that the frequency of accidents severe enough to produce
significant cask damage was considerably less than NUREG-0170 estimated. The Modal Study
was not a risk analysis because it did not consider the radiological consequence of accidents,
but risks less than those estimated in NUREG-0170 could be inferred.

NUREG/CR-6672 refined the mechanical stress/thermal stress combinations of the Modal Study
and recast them as a matrix of accident-related impact speeds and fire temperatures. In
addition, NUREG/CR-6672 developed expressions for the behavior of spent fuel in accidents
and potential release of this material, and analyzed the potential releases. The enhanced
modeling capabilities available for NUREG/CR-6672 allowed analyses of the detailed structural
and thermal response of transportation casks to accidents. NUREG/CR-6672 also used results
of experiments by Lorenz et al. (1980), Sandoval et al. (1988), and Sanders et al. (1992) to
estimate releases of radioactive material from the fuel rods to the cask interior and from the
cask interior to the environment, following very severe accidents. The radionuclides available
for release in the accidents studied in NUREG/CR-6672 are from relatively low burnup

(30 gigawatt days per metric ton uranium (GWD/MTU)) and relatively high burnup (60
GWD/MTU) pressurized-water reactor (PWR) and boiling-water reactor (BWR) fuel, although
the transportability of the high burnup fuel was not considered. NUREG/CR-6672 studied the

“Modal Study” and “NUREG/CR-6672" are the names by which these documents are referred to in the
general transportation literature. The actual titles are in the bibliography of this document.
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behavior of two generic truck casks and two generic rail casks; each generic cask encompassed
design features of several NRC-certified casks.

The risks calculated in NUREG/CR-6672 were several orders of magnitude less than the
estimates of NUREG-0170, concluding that no radioactive material would be released in more
than 99.99 percent of accidents involving spent fuel shipments. These smaller risk estimates
resulted from the use of refined and improved analytical and modeling techniques, exemplified
by the finite element (FE) analyses of cask structure, and some experimental data substituted
for the engineering judgments used in NUREG-0170.

In addition to the NRC-sponsored risk assessments cited above, there have been many other
studies on the subject of spent fuel transportation. Perhaps one of the most independent,
objective, authoritative, and recent analyses is the National Research Council report
(co-sponsored by the NRC), “Going the Distance?—The Safe Transport of Spent Nuclear Fuel
and High-Level Radioactive Waste in the United States” (Committee on Transportation of
Radioactive Waste, 2006). This reference is recommended to readers interested in further
information on transportation package safety, transportation risk, and particularly for its
coverage of societal topics beyond the scope of the technical risk assessment in the present
study. One of the “Going the Distance” findings was:

The radiological risks associated with the transportation of spent fuel and
high-level waste are well understood and are generally low, with the possible
exception of risks from releases in extreme accidents involving very long
duration, fully engulfing fires.

In part because of that finding, the NRC sponsored several studies to investigate the potential
consequence from severe historical fire accidents if a spent fuel cask was involved. Two of
these studies investigated tunnel fires (Adkins et al., 2006; Adkins et al., 2007) and one
investigated the response of a spent fuel cask to an accident below a highway overpass
(Bajwa et al., 2011). While these three studies examined environments where fire accidents
actually occurred, they made assumptions about the placement of a cask within that
environment that would cause the most damage to the cask without considering the probability
of the placement. (The accident risk analyses in Chapter 5 discuss the probability of the
scenarios analyzed and the resultant risk.) This study also evaluates severe fire accident
consequences (but not modeling any particular historical accidents), as well as their associated
probabilities, to provide a risk perspective.

The present study analyzes the behavior of three currently certified casks carrying
Westinghouse 17x17 PWR fuel assemblies with 45 GWD/MTU burnup, the highest burnup that
any of the three casks were certified to carry as of 2008 (the time of the analyses; some of the
casks already have had changes to their allowed contents). In the future these casks may be
certified to carry higher burnup fuel that has been cooled for a longer time and with a similar
source term. A brief discussion on the effect of this change is provided in Section 6.3. For
routine transportation, the risks are slightly larger than those estimated in NUREG/CR-6672
because although the actual external dose rates are less than the regulatory maximum used in
the other studies, populations along the routes have increased significantly. For accidents, the
radiological risks calculated in the current study are at least an order of a magnitude less. The
reduction in the estimates of risk from those in NUREG—-0170 and NUREG/CR-6672 is the
result of new data (such as event trees and accident probabilities) and observations and
improved modeling techniques.

NUREG-2125 4



1.3 Risk

Understanding transportation risk is integral to understanding the environmental and related
human health impact of radioactive materials transportation. A large amount of data exists for
deaths, injuries, and damage from traffic accidents, but there are no data on health effects that
radioactive materials transportation cause since no such effects have been observed.
Therefore, regulators and the public rely on estimates of risk to gauge the potential effects of
radioactive materials transportation. The risk estimates consider the potential accidents and
events, where they could occur, and how severe they might be. Risk estimates include
estimating the likelihood and severity of transportation accidents, as well as the calculation of
exposure of workers and members of the public to ionizing radiation from routine transportation.

Risk is usually defined by answering the questions posed by the risk “triplet,” which is identified
below:

o What can happen (the scenario)?
o How likely is it (the probability)?
o What is the outcome if it happens (i.e., how bad is it (the consequence))?

A risk number (quantitative risk) is calculated by multiplying the probability and consequence for
a particular scenario. The probability of a scenario is always less than or equal to 1, because
the maximum probability of an event is 1 (100 percent); an event with 100 percent probability
(probability=1) of occurrence is an event that is certain to happen. In reality, very few events
are certain to happen or certain not to happen (zero probability). The probability of most events
is between these two extremes. Transportation accidents involving large trucks, for example,
have a very low probability. The probability of a traffic accident for all highway vehicles is about
0.0000012 per km (or 1.2 in 1,000,000 km) (0.000002 per mile (or 2 in 1,000,000 miles)),
according to the U.S. Department of Transportation (DOT) Bureau of Transportation Statistics
(DOT, 2007). The probability of a particular traffic accident scenario is even smaller, as shown
in the event trees in Appendix E (Figures E-1 and E-2).

1.3.1 Accident Data

The only data available to estimate the future probability of a scenario are how often that
scenario has occurred in the past. The probability of the scenario can be considered the same
as its historical frequency. In the case of transportation accidents, enough accidents must have
occurred in the past so that future accidents per kilometer can be predicted with reasonable
accuracy. Thatis, the sample must be large enough to be sampled randomly. The most
applicable frequency would be the frequency of accidents involving vehicles carrying SNF, but
there have been too few of these for a statistically valid prediction.* The sample size could have
been increased by using international data, but regulations and practices in other countries are
not consistent with those in the United States. In any case, there have not been enough
accidents worldwide involving spent fuel transportation to provide an adequate statistical
database. Even accidents involving all hazardous materials transportation do not provide a

The U.S. Department of Transportation’s (DOT) Bureau of Transportation Statistics lists accidents per year
for all classes of hazardous materials. The 2009 database lists 76 class 7 (radioactive materials) rail and
highway incidents in the past 10 years;
http://www.phmsa.dot.gov/staticfiles/PHMSA/DownloadableFiles/Files/tenyr ram.pdf. These data did not
specify the type of radioactive material involved. Not all of these incidents are accidents by DOT definition.
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large enough database from which to generate statistics on a State-by-State basis. The
database used in this study is the frequency of highway accidents involving large semitrailer
trucks and the frequency of freight rail accidents (DOT, 2007). Freight rail accident frequency is
based on accidents per railcar-mile.

1.3.2 Spent Nuclear Fuel Transportation Scenarios

Several scenarios categorize transportation risk in this study. The most probable is routine
transportation of SNF without incidents or accidents between the beginning and end of the trip.
Routine transportation is an example of the risk triplet identified previously.

o What can happen? The scenario is routine incident-free transportation.

o How likely is it? The probability is 100 percent (even if the shipment is involved in an
accident, it still has an incident-free segment and dose).

o What if it happens? The consequence is a radiation dose less than 1 percent of
background to individuals near the cask or along the route.

The doses and risks from routine transportation are analyzed in Chapter 2.
The accident scenarios discussed in this study are:

(1) Accidents in which the spent fuel cask is not damaged or affected.

) Minor traffic accidents (fender benders, flat tires) resulting in minor damage to
the vehicle.
o Accidents in which damage to the vehicle is enough that it cannot move from the

scene of the accident under its own power. There is no damage to the spent fuel
cask that results in increased radiation in this type of accident.

) Accidents involving a traffic death, injury, or both, but no damage to the spent
fuel cask that results in increased radiation in this scenario.

(2) Accidents in which the spent fuel cask is affected.

o Accidents involving loss of shielding (either neutron or gamma shielding) but no
release of radioactive material.

. Accidents in which a release of radioactive material occurs.

In the first type of accidents, the only potential radiation dose to the public is from exposure of
members of the public to external radiation emanating from the cask while the vehicle is
stopped. In the current study, all of these accidents assume that the vehicle is stopped for

10 hours. Only the second type of accidents involves release of radioactive material.

Traffic accident statistics (accident frequencies) are used in the analysis to calculate risks.

Average traffic accident frequencies since 1996 for large semitrailer trucks are about
1.3 accidents per million highway kilometers (which is about the same as the accident rate for
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all highway vehicles). For freight rail, average frequencies since 1996 are about 1 accident per
10 million railcar kilometers. The overall accident probability is the product of the probability that
an accident will happen and the conditional probability that it will be a particular type of accident.

The consequence of an accident scenario could be a dose of ionizing radiation, either from
external radiation from a stationary cask or from radioactive material released in an accident.
The risk associated with an accident is the product of the overall accident probability and the
accident consequence. This risk is expressed in dose units (e.g., Sv), but because it includes
accident probability, it is referred to as “dose risk.” Similarly, collective dose risk (person-Sv)
includes the accident probability and the collective (population) dose.

1.4 Requlation of Radioactive Materials Transportation

DOT regulates the transportation of radioactive materials as part of hazardous materials
transport regulations, primarily under Title 49, “Transportation,” to CFR Part 173, “Shippers—
General Requirements for Shipments and Packaging,” dated October 1, 2011. Mode specific
regulations are given in Parts 174 to 177 and specifications for packagings are given in

Part 178. In addition, 49 CFR 174.471 allows the use of packagings certified by the NRC under
10 CFR Part 71. The regulations of 10 CFR Part 20, “Standards for Protections against
Radiation,” also are relevant. NRC transportation regulations primarily apply to the
transportation of packages. DOT regulations include labeling, occupational and vehicle
standards, registration requirements, reporting requirements, and packaging regulations.
Generally, DOT packaging regulations apply to industrial and Type A packaging whereas the
NRC regulations apply to Type A fissile materials packaging and Type B packaging. Industrial
and Type A nonfissile packages are designed to resist the stresses of routine transportation and
are not certified to maintain their integrity in accidents, although many do. Type B packages are
used to transport very hazardous quantities of radioactive materials. They are designed to
maintain their integrity in severe accidents because the NRC recognizes that any transport
package and vehicle may be in traffic accidents. This study addresses SNF transportation;
therefore, it is only concerned with SNF for Type B packaging. (For the remainder of this report,
the term “cask” will be used to refer to the contents plus the packaging.)

Nuclear fuel that has undergone fission in a reactor is extremely hot and radioactive when it is
removed from the reactor. To cool the fuel thermally and allow the highly radioactive and
short-lived fission products in the fuel to decay, the fuel is discharged from the reactor into a
large pool of water. The fuel usually remains in the pool as long as there is space for it. After
the fuel has cooled sufficiently, it can be moved to dry surface storage at the reactor or
transported to a storage site or other destination. Currently, very little transportation of spent
commercial power reactor fuel takes place in the United States and there are no plans to
transport SNF before it has cooled for 5 years. The transportation casks are rated for heat load,
which often determines the cooling time needed for the fuel to be transported. Shielding or
other considerations may also drive the required cooling time.

10 CFR Part 71

The NRC recognizes that vehicles carrying radioactive materials are as likely as any vehicles of
similar size traveling on similar routes to be in accidents. Therefore, transportation packages for
very radioactive materials such as SNF are designed to maintain their integrity in severe
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accidents.® Packages meeting this requirement are Type B packages, which include the casks
considered in this analysis—the NAC-STC (NAC, 2004) and Holtec HI-STAR 100 (Holtec
International, 2000) rail casks, and the GA-4 (General Atomics, 1998) legal-weight truck casks.

Type B packages are designed to pass the sequential series of tests described in
10 CFR 71.73, “Hypothetical Accident Conditions.” These tests are summarized below.

(1) A 9-meter (30-foot) drop onto an essentially unyielding horizontal surface. “Essentially
unyielding” in this context means the target is hard and heavy enough that the package
absorbs nearly all of the impact energy and the target absorbs very little energy. This
test condition is more severe than most transportation accidents.

(2) A 1-meter (40-inch)® drop onto a fixed 15-centimeter (cm) (6-inch) diameter steel
cylinder to test the package’s resistance to punctures.

(3) An 800 degrees Celsius (C) (1,475 degrees Fahrenheit (F)) fire that fully engulfs the
package for 30 minutes.

(4) Immersion under 0.9 meters (3 feet) of water. In addition, a nonsequential immersion in
15 meters (50 feet) of water for 1 hour.

Figure 1-1 illustrates this sequence of tests.

In addition to the immersion test of 10 CFR 71.73, an undamaged cask carrying spent fuel is
also required by 10 CFR 71.61, “Special Requirements for Type B Packages Containing More
Than 10°A,,” to withstand an external pressure of 2 million Pascals (MPa) (290 pounds per
square inch (psi)) for a period of not less than 1 hour without collapse, buckling, or inleakage of
water. This pressure is equivalent to an immersion in 200 meters (660 feet) of water.

The package tests in 10 CFR 71.73 were developed to envelope real-life accidents. These
tests are not intended to represent any specific transportation route, any specific historical
transportation accident, or a “worst-case” accident. These tests are intended to simulate the
damaging effects of a severe transportation accident in a manner that provides international
acceptability, uniformity, and repeatability. All International Atomic Energy Agency Member
States use these tests.

Although regulations allow the release of a specific quantity of each radionuclide, Type B casks typically are
designed to remain leak-tight.

When discussing the regulations, the conversion between Sl units and English units are those in the
regulations. The actual arithmetic conversion factors are used in other areas of this report rather than the
nominal conversions adopted by convention within the regulations.

NUREG-2125 8



= @ -~
2-PUNCTURE

F e

1- FREE DROP ™ )¢

— j b " 40 Inch Drop
Steel Shaft —— 3| ¢ g

' -'Q\\. Y
I"I ]
=
30 Foot Drop
o —— Fully Engulfing Fire at
= =

= 1475 F for 30 Minutes

Figure 1-1 The four tests for Type B packages
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